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Abstract: The current article presents a mathematical model for bi-directional convection 

magnetohydrodynamic (MHD) tangent hyperbolic nanofluid flow from the upper horizontal 

subsurface of a stretching parabolic surface to a non-Darcian porous medium, as a simulation of 

nano-coating. Chemical reaction, activation energy and thermosolutal buoyancy effects are 

included. The Darcy-Brinkman-Forchheimer model is deployed which permits the analysis of 

inertial (second order) porous drag effects. The Buongiorno nanoscale model is deployed which 

includes Brownian motion and thermophoresis effects. The dimensionless, transformed, non-

linear, coupled ordinary differential equations are solved by implementing the spectral relaxation 

method (SRM). Validation with previous studies is included. The numerical influence of key 

parameters on transport characteristics is evaluated and visualized graphically. Velocity is elevated 
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(and momentum boundary layer thickness is reduced) with increasing wall thickness parameter, 

permeability parameter, Forchheimer parameter, Weissenberg (rheological) parameter and 

modified Hartmann (magnetic body force) number. Velocity enhancement is also computed with 

increment in stretching rate parameter, rheological power-law index, thermal Grashof number, and 

species (solutal) Grashof number, and momentum boundary layer thickness diminishes. 

Temperature is suppressed with increasing stretching rate index and Prandtl number whereas it is 

substantially elevated with increasing Brownian motion and thermophoresis parameters. Velocity 

and temperature profiles are reduced adjacent to the parabolic surface with larger wall thickness 

parameter for stretching rate index < 1, whereas the reverse behaviour is observed for stretching 

rate index>1. Nano-particle concentration magnitude is depleted with larger numeric of Lewis 

number and the Brownian motion parameter, whereas it is enhanced with greater values of the 

stretching index and thermophoresis parameter. The nanoparticle concentration magnitude is 

reduced with an increase in chemical reaction rate parameter whereas it is boosted with activation 

energy parameter. Skin friction, Nusselt number and Sherwood number are also computed.  The 

study is relevant to electromagnetic nano-materials coating processes with complex chemical 

reactions. 

Keywords: Bi-directional convection; parabolic coating surface; non-Newtonian nanofluid; porous 

medium; activation energy; SRM technique. 

 

1. INTRODUCTION 

In 1995, Choi [1] introduced the term “nanofluid” in which nanometer-sized particles e.g. 

metals (copper, silver, aluminum, zinc, titanium, gold etc.)  are suspended in the base fluids, e.g. 

ethylene glycol, oil, water, and toluene). Nanofluids are, therefore, a subset of molecular fluids 

operating at the nanoscale. They have stimulated a strong interest in engineering sciences owing 

to their thermally enhancing properties. Nanofluid mechanics provides a robust bridge between 

bulk materials and molecular or atomic structures. Choi [1] has shown experimentally that 

nanofluids are stable as long as the size of the nanoparticles is about 100nm. Nanofluids modify 

the base fluid thermal conductivity [2] and can therefore be used to achieve enhanced cooling, for 

example in automobile engine radiators, electronic circuits etc. The deployment of nanofluids is 

expanding also in nuclear reactors, solar renewable energy generation, coolants for lubrication, 

anti-bacterial (sterilization) systems, aerospace propellants (rocket fuels) and nanomedicine 
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(cancer therapy) [3-9]. Due to the superior thermal conductivity and convectively heat transfer 

coefficient of nanofluids [3], these liquids offer significant advantages over conventional base-

fluids (e.g., water, air, etc.). The nanoparticles, whether metals or metallic oxides (Cu, Ti, Al, 

Al2O3) etc or non-metals (carbon nanotubes, graphite) in base fluids, both produce enhancement. 

Mathematical models of nanofluid dynamics have generally adopted one of two approaches. The 

first is the two-component Buongiorno nanoscale model [10] which includes a formulation for 

nanoparticle diffusion (concentration) and includes thermophoresis and Brownian dynamics 

effects; however, it does not permit the analysis of a specific nanomaterial and is confined to a 

generic nanofluid. The second approach is the Tiwari-Das “single phase model” [11] which 

although it ignores nanoparticle species diffusion, nevertheless, permits the properties of different 

nanoparticles and base fluids (e.g. thermal conductivity, viscosity etc) to be quantified via 

appropriate relationships featuring a solid volume fraction. Via this approach the nanofluid 

properties can be averaged and thermal modifications in flows can be simulated. Kakaç and 

Pramuanjaroenkij [12] presented an extensive survey of convective transportation in nanofluids, 

highlighting major contributions using the Buongiorno and Tiwari-Das approaches.  

External boundary layer flows feature frequently in coating dynamics [13]. Numerous surfaces 

require coating in engineering applications and common processes involve stretching and 

shrinking plane surfaces, inclined substrates, circular geometries. These often feature heat transfer 

(thermal coating) [14] and arise in aerospace and marine applications e.g. cylinders for fuselages), 

spheres for fuel storage tanks, paraboloids for aircraft nose configurations and radomes.  Coatings 

have to be manufactured precisely in these systems also to achieve drag reduction and 

corrosion/erosion protection [15], 16]. Many researchers have explored the use of nanofluids in 

coating flows. Bachok et al. [17] studied the steady boundary-layer of nanofluid from a translating 

semi-infinite sheet. Basha et al. [18] presented Keller box numerical solutions for entropy 

generation in tangent hyperbolic nanofluid flow from a circular geometry cylinder with nonlinear 

Boussinesq approximation, also computing isotherms and streamline distributions. Haddad et 

al. [19] confirmed experimentally the important contributions of Brownian motion and 

thermophoresis in natural convection flows of nanofluids. Mustafa et al. [20] used homotopy and 

MATLAB bvp4c quadrature to simulate numerically the Hiemenz stagnation flow of a nanofluid 

from an exponentially stretching sheet, noting that both temperature and the thermal boundary 

layer thickness are enhanced with greater Brownian motion and thermophoresis effects. They also 
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observed that increasing thermophoresis effect elevates the nanoparticles volume fraction 

(concentration). Khan et al. [21] presented finite difference computational solutions for the three-

dimensional nanofluid flow from an exponentially stretched surface using Buongiorno’s model. 

Ray et al. [22] derived homotopy solutions for a variety of external boundary layer thermal coating 

flows with nanofluids considering flat surfaces, wedges and cones using the Boungiorno two-

component model.  

In modern materials engineering, engineers are increasingly adopting functional designs 

which permit the manipulation of, for example coating liquids, with external magnetic or electrical 

fields. These coatings are therefore “smart”. The accurate simulation of such flows (e.g. enrobing 

deposition, spin coating, flame spray finishing etc) [23] involves, in the case of magnetic functional 

materials [24], the science magnetohydrodynamics (MHD). MHD allows the interaction of 

magnetic field and fluid flows to be analyzed and also features crystal growth, MHD power 

generators, MHD sensors, etc. Magnetohydrodynamic Newtonian coating flows have been 

addressed by Weidner [25] and Conroy and Matar [26]. Nano-coatings utilizing magnetic 

nanoparticles have been extensively studied experimentally by Triwikantoro et al. [27] and Liu et 

al. [28] and have been shown to achieve superior particles distribution, improved morphology and 

excellent durability for many applications including energy systems [29]. Mathematical models of 

magnetic nanofluid boundary layer coating flows have also been reported in recent years. Ibrahim 

and Shankar [30] investigated the magnetic nanofluid flow and heat transfer with velocity, thermal 

and solutal slip boundary conditions from a permeable stretching sheet. Ibrahim et al. [31] 

explored the MHD nanofluid stagnation point flow from a stretching sheet. MHD boundary layer 

nanofluid flow with heat transfer towards a nonlinear stretching was analyzed by Mabood et al. 

[32]. All these studies confirmed the strong influence of external magnetic field on nanofluid 

transport phenomena. However, these investigations ignored non-Newtonian behaviour. The 

presence of nanoparticles in base fluids can dramatically alter the rheology of the resulting 

colloidal suspension i.e. nanofluid, as confirmed in many studies including Gonçalves [34]. 

Rheology of nanofluids produces several advantages including water-solubility, electro-optical 

features, surface plasmon resonance effect-boosted thermal sensitivity, self-improving 

conductivity and viscosity, all of which contribute to more resilient and intelligent coating designs. 

A variety of non-Newtonian models have also been deployed to simulate rheological 

characteristics of nanofluids including Reiner-Rivlin third order viscoelastic models [35], Eyring-
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Powell model [36], Casson viscoplastic models [37], power-law (pseudoplastic/dilatant) models 

and couple stress (polar) models [39]. Another useful model which can accurately predict shear 

thinning phenomena is the tangent hyperbolic model [40], which has also been implemented in 

many hydromagnetic coating nanofluid dynamics investigations [41- 44].  

A porous medium comprises of solid material fibers interspersed with pores. The enhanced 

internal surface area has numerous advantages in insulation systems, thermal power technologies 

and during coating fabrication processes. The increased dissipation area of porous media, for 

example, achieves improved heat convection compared with conventional substrate coating. 

Moreover, the tortuosity of porous media also makes them ideal for filtration and damping of 

flows, providing an excellent control mechanism for coating finishing operations. Low-speed 

porous media transport (viscous-dominated) is conventionally simulated with the Darcy model 

[45]. For example, Shamshuddin et al. [46] investigated the thermo-capillary coating flow of 

magnetic nanofluids on a disk in a saturated Darcian porous medium. This and other studies have 

shown that nanofluids permeating porous media achieve enhanced thermal features, such as 

convective heat transfer coefficients and higher thermal conductivity as compared with the base 

material. Hence, nanofluid transport in porous media is attractive from the viewpoint of enhancing 

the heat transfer characteristics. In certain coating flows, higher velocities arise and inertial 

(quadratic) porous media drag effects become important. These require non-Darcian models of 

which the Darcy–Brinkman–Forchheimer model [48] is very popular. This model allows the 

inclusion of viscous diffusion and inertial drag in addition to the conventional Darcy impedance 

effect. Bhatti et al. [47] used the Darcy–Brinkman–Forchheimer model to compute the electro-

magnetohydrodynamic flow of a Carreau non-Newtonian liquid in a micro-channel. Elgazery [48] 

studied MHD rheological nanofluid flow in non-Darcy porous media. Jawad et al. [49] analyzed 

the slip hydromagnetic flow of a magnetic nanofluid with Ohmic dissipation.  

The above studies have generally neglected chemical reaction effects. Arrhenius activation 

energy is the least possible energy required to induce chemical reactions and is important in 

nanomaterials processing operations for optimized synthesis of coating products, chemical reactor 

design, geothermal engineering, biotechnological manufacturing etc. Several researchers have 

examined activation energy effects in both viscous flows and more recently in chemo-nanofluid 

mechanics. Bestman [50] presented on the of the first studies of thermo-solutal natural convection 

flow with binary reaction and Arrhenius activation in a Darcian porous medium with suction 
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effects using asymptotic methods. Makinde et al. [51] examined the time-dependent natural 

convective boundary layer flow from a perforated surface with activation energy and nth-order 

chemical reaction. Hamid et al. [52] used a finite difference scheme to compute the impact of 

activation energy on time-dependent hydromagnetic flow of a Williamson non-Newtonian 

nanofluid from a stretching cylinder, observing that Nusselt number is reduced with greater 

reaction rate parameter whereas nanoparticle concentration is elevated with greater activation 

energy parameter. Irfan et al. [53] examined the nonlinear reactive mixed convection in 3D 

radiative Carreau nanofluid flow with activation energy. Zeeshan et al. [54] studied the influence 

of activation energy on Couette-Poiseuille nanofluid flow with chemical reaction and convective 

boundary conditions. Khan et al. [55] used a shooting numerical method and Buongiorno’s 

nanoscale model to compute the effect of activation energy in hydromagnetic reactive slip flow of 

a tangent hyperbolic nanofluid from a moving surface with convective boundary conditions. They 

noted that nanoparticle concentration is enhanced with activation energy parameter and that 

temperature is elevated with greater Weissenberg (rheological), thermophoresis, Brownian motion 

and thermal Biot numbers. Bhatti et al. [56] used the successive local linearization method (SLLM) 

to compute the magnetic bioconvection nanofluid flow from a stretching surface in porous media, 

noting that an increase in chemical reaction constant depletes the nanoparticle concentration 

whereas the opposite effect is induced with greater activation energy parameter.  

An inspection of the literature has shown that thus far, no studies have been reported on 

magnetohydrodynamic tangent hyperbolic non-Newtonian nanofluid flowing from a stretching 

upper parabolic geometry with chemical reaction and activation energy in non-Darcy porous 

media. This is the focus of the current study. The novelty of this work is that it extends previous 

studies (e.g. Khan et al. [57]) to consider non-Newtonian nanofluid properties with the tangent 

hyperbolic model and also employs a Darcy-Brinkman-Forchheimer model for porous media 

effects. The governing partial differential equations are normalized and rendered into ordinary 

differential equations by making use of similarity transformations. The resulting nonlinear 

boundary value problem is solved numerically by employing the spectral relaxation method (SRM) 

[58, 59]. The present technique shows promising results compared with other similar methods [60-

64]. Validation with earlier studies is included. Numerical results for velocity, temperature and 

nanoparticle concentration are visualized graphically for the influence of key emerging 

parameters. Extensive interpretation is included. The simulations provide deeper insight into 
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chemically reactive coating flows of magnetic (smart) nanocoating flows on a complex 

geometrical substrate. 

 

2. NON-NEWTONIAN HYDROMAGNETIC NANOFLUID REACTIVE COATING FLOW MODEL  

Consider the bi-directional steady magnetohydrodynamic (MHD) boundary layer coating flow of 

a hyperbolic tangent non-Newtonian nanofluid along the upper surface of a stretching parabolic 

substrate with chemically reacting species. The physical model and Cartesian coordinate system 

are shown in Fig. 1.  

 

 

Fig. 1. Schematic flow diagram. 

 

A magnetic field with strength 𝐵0  is applied in the transverse direction to the surface of the 

parabola. The parabola wall is stretched with a nonlinear velocity 𝑈𝑤 = 𝑈0(𝑥 + 𝑏)
𝑚, where 𝑚 

regards as a stretching index and 𝑈0 is a  reference stretching velocity (linear case). The initial 

position of the slot subsurface flow is given by  𝑦 = 𝐴(𝑥 + 𝑏)
1−𝑚

2  with 𝑚 < 1. The nanoparticle 

concentration 𝐶𝑤, and temperature 𝑇𝑤 on the subsurface of a parabola are assumed to be constant 

and greater than the ambient concentration 𝐶∞  and temperature 𝑇∞ . Buongiorno’s nanoscale 

model is adopted which features thermophoresis and Brownian motion and a separate 

Transverse 

magnetic field, Bo  

Non-Darcy 

porous medium 

Parabolic coating 

substrate  
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concentration boundary layer equation for nanoparticles. By utilizing the Boussinesq 

approximation on bi-convection flow, the governing flow equations of non-Newtonian hyperbolic 

tangent magnetohydrodynamic reactive nanofluid flow along the parabolic surface following [57] 

and [65] may be expressed as: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣̌

𝜕𝑦
= 0,  (1) 

𝑢̌
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈 [(𝑛 − 1)

∂2𝑢

∂𝑦
2 + √2Γ (

∂𝑢

∂𝑦
)
∂2𝑢

∂𝑦
2] −

𝜎𝐵0
2

𝜌
𝑢̌ +

𝜕

𝜕𝑥
[ḡ𝛽𝑥

(𝑚+1)

2
(𝑇 −

𝑇∞)] +
𝜕

𝜕𝑥
[ḡ

𝛽(𝑚+1)𝑥

2
(𝐶 − 𝐶∞ )] −

𝜇𝑓

𝜌𝑘
𝑢̌ −

𝐶𝐹

√𝑘
𝑢̌2,  

(2) 

(𝑢̌
∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
) = 𝛼

∂2𝑇

∂𝑦
2 + 𝜏 [𝐷𝐵

∂𝑇

∂𝑦

∂𝐶

∂𝑦
+

𝐷𝑇

𝑇∞
(
∂𝑇

∂𝑦
)
2

],  (3) 

𝑢̌
∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
= 𝐷𝐵

∂2𝐶

∂𝑦
2 +

𝐷𝑇

𝑇∞
(
∂2𝑇

∂𝑦
2) − 𝑘1(𝐶 − 𝐶∞) − 𝑘𝑟

2(𝐶 − 𝐶∞) (
𝑇

𝑇∞
)
𝑚1

exp (
−𝐸𝑎

𝑘0𝑇
).  (4) 

The associated boundary conditions are prescribed as: 

𝑢̌ (𝑥, 𝐴(𝑥 + 𝑏)
1−𝑚
2 ) = 𝑈𝑤(𝑥) = 𝑈0(𝑥 + 𝑏)

𝑚, 𝑣 (𝑥, 𝐴(𝑥 + 𝑏)
1−𝑚
2 ) = 0,

𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤,            at  𝑦 = 𝐴(𝑥 + 𝑏)
1−𝑚
2 ,

} 
 

(5) 

𝑢̌ → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞, as  𝑦 →  ∞, (6) 

Here 𝛼 =
𝑘

(𝜌𝑐)𝑓
, 𝜏 =

(𝜌𝑐)𝑝

(𝜌𝑐)𝑓
, 𝑢̌  and 𝑣  are the velocity components in the 𝑥  and 𝑦  directions 

successively, 𝑛  the power-law index, ḡ  gravitational acceleration, Γ  the time constant, 𝜈  is 

kinematic viscosity, 𝜎, 𝑘 are the electrical and thermal conductivities of the magnetic nanofluid,  

𝑇  is the temperature, 𝐶, 𝐶∞  are the nanoparticle concentration and free stream nanoparticle 

concentration, respectively, 𝐷𝐵 , 𝐷𝑇  denote the Brownian-diffusion coefficient and 

thermophoresis-diffusion coefficient, sequentially, 𝑐𝑝  is the specific heat, 𝛼  is the thermal 

diffusivity, 𝐶𝐹  the Forchheimer coefficient, 𝛽  and 𝛽 are the volumetric solutal and thermal 

expansion coefficients,  𝑘1 is the reaction rate, 𝑘𝑟 the chemical reaction ratio, 𝐸𝑎 the activation 

energy, m1 denotes the unitless exponent fitted rate constant, and 𝑘0 is the universal gas constant 

in the Arrhenius exponential reaction term. The new terms introduced in the current model 
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extending the physics of the current literature are the Forchheimer non-linear drag term −
𝐶𝐹

√𝑘
𝑢̌2and 

the non-Newtonian term, +√2Γ (
∂𝑢

∂𝑦
)
∂2𝑢

∂𝑦
2 both of which appear in the momentum conservation 

Eqn. (2). The following similarity transformations are invoked to simplify the primitive equations 

(1)-(6):  

𝜓 = √
2𝜈𝑈0(𝑥 + 𝑏)𝑚+1

(𝑚 + 1)
𝐹(𝜂), 𝜂 = √

(𝑚 + 1)𝑈0(𝑥 + 𝑏)𝑚−1

2𝜈
 𝑦

𝑢̌ = 𝑈0(𝑥 + 𝑏)
𝑚𝐹′(𝜂),   𝑣̌ = −√

2𝜈𝑈0(𝑥 + 𝑏)𝑚−1

(𝑚 + 1)
[
(𝑚 + 1)

2
𝐹 +

(𝑚 − 1)

2
𝜂𝐹′]

 𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 𝜙(𝜂) =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞ }

 
 
 
 

 
 
 
 

. (7) 

Using Eq. (7) in Eqs. (1)-(6), the following system of the ordinary differential equations for 

momentum, energy (heat) and nanoparticle concentration emerge: 

(𝑛 − 1)𝐹′′′ +√
(𝑚 + 1)

2
𝑛𝑊𝑒𝐹′′𝐹′′′+𝐹𝐹′′ −

2𝑚

𝑚 + 1
𝐹′2

−
2

𝑚 + 1
(𝛽𝐷𝐹

′ + 𝐹𝑟𝐹
′2 + 𝐻𝑎𝐹′) + 𝐺𝑟𝑏𝜃 + 𝑅𝑏𝜙 = 0, 

(8) 

𝜃′′ + 𝑃𝑟 {𝐹𝜃
′ +

𝑚 − 1

𝑚 + 1
𝜂𝐹′𝜃′ + 𝑁𝑏 𝜙′𝜃

′ + 𝑁𝑡𝜃′
2} = 0, (9) 

𝜙′′ + 𝐿𝑒 {𝐹𝜙
′ +

𝑚 − 1

𝑚 + 1
𝜂𝐹′𝜙′ +

𝑁𝑡
𝑁𝑏
𝜃′′ −

2

𝑚 + 1
𝛾𝜙

−
2

𝑚 + 1
𝜎1(1 + 𝛿𝜃)

𝑚1𝑒(
−𝐸
1+𝛿𝜃

)𝜙}  = 0. 

(10) 

The transformed boundary conditions at the parabola surface (wall) and in the free stream become:   

𝐹(0) =
(1 − 𝑚)𝛼1
𝑚 + 1

, 𝐹′(0) = 1, 𝜃(0) = 𝜙(0) = 1,

𝐹′(∞) = 0, 𝜃(∞) = 𝜙(∞)  = 0.
} (11) 

Here: 
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𝛼1 = 𝐴√
(𝑚 + 1)𝑈0

2𝜈
,𝑊𝑒 = √

2𝑈0
3(𝑥 + 𝑏)3𝑚−3

𝜈
Γ, 𝛽𝐷 =

𝜇𝑓

𝑈0(𝑥 + 𝑏)𝑚−1𝑘
 , 

 𝐻𝑎 =
𝜎𝐵0

2

𝜌𝑈0(𝑥 + 𝑏)𝑚−1
, 𝐺𝑟𝑏 =

ḡ𝛽(𝑇𝑤 − 𝑇∞)

(𝑥 + 𝑏)2𝑚−1𝑈0
2,  

 𝑅𝑏 =
ḡ(𝐶𝑤 − 𝐶∞)

(𝑥 + 𝑏)2𝑚−1𝑈0
2 , 𝐹𝑟 =

𝐶𝐹(𝑥 + 𝑏)

√𝑘
, 𝑃𝑟 =

𝜈

𝜅
, 𝑁𝑡 =

𝜏𝐷𝑇(𝑇𝑤 − 𝑇∞)

𝜈𝑇∞
,  

𝑁𝑏 =
𝜏𝐷𝐵(𝐶𝑤 − 𝐶∞)

𝜈
, 𝛾 =

𝑘1
𝑈0(𝑥 + 𝑏)

𝑚−1
, 𝜎1 =

𝑘𝑟
2

𝑈0(𝑥 + 𝑏)
𝑚−1

,  

𝐿𝑒 = 
𝜈

𝐷𝐵
, 𝛿 =

(𝑇𝑤 − 𝑇∞)

𝑇∞
, 𝐸 =

𝐸𝑎
𝑘0𝑇∞

 .  

(12) 

The parameters in Eqn. (12) are respectively wall thickness parameter 𝛼1 , Weissenberg 

(rheological) number 𝑊𝑒 , permeability parametric quantity 𝛽𝐷 , Forchheimer parameter 𝐹𝑟 , 

Hartmann magnetic number 𝐻𝑎 , the thermal Grashof number,  𝐺𝑟𝑏 , concentration Grashof 

numbers 𝑅𝑏, Prandtl number 𝑃𝑟, the thermophoresis parameter 𝑁𝑡, the Brownian motion parameter 

𝑁𝑏 , Lewis number 𝐿𝑒  , the chemical reaction constant, 𝜎1  , temperature ratio parameter 𝛿 , he 

activation energy parameter, 𝐸 and chemical reaction rate parameter, 𝛾, respectively.  

Some significant physical parametric quantities in coating dynamics are the skin-friction 

coefficient “𝐶𝐹”  (dimensionless surface shear stress at the parabola surface), the local-Nusselt 

number “𝑁𝑢𝑥” (dimensionless nanoparticle mass transfer rate at the parabola surface) and the 

local-Sherwood number “𝑆ℎ𝑥” (dimensionless nanoparticle mass transfer rate at the parabola 

surface). These may be defined for the current flow regime as:  

                     𝐶𝐹𝑅𝑒𝑥

1

2 = √
(𝑚+1)

2
{(𝑛 − 1)𝐹′′(𝜂) + 𝑛𝑊𝑒𝐹′′(𝜂)}𝜂=0,  

                                          
𝑁𝑢𝑥

𝑅𝑒𝑥

1
2

= −√
(𝑚+1)

2
𝜃′(0), 

          
𝑆ℎ𝑥

𝑅𝑒𝑥
1/2 = −√

(𝑚+1)

2
𝜙′(0),                                (13) 

Where 𝑅𝑒𝑥 = √
𝑈0(𝑥+𝑏)𝑚−1

𝜈
 represents a local Reynolds number. 
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3. NUMERICAL SOLUTIONS WITH SRM   

3.1 The SRM scheme: 

Consider a set of non-linear ordinary differential equations in unknown functions i.e, i.e, 𝑓𝑖(𝜁), 

𝑖 = 1, 2, … , 𝑛 where 𝜁 ∈ [𝑎, 𝑏] is the dependent variable. We define a vector 𝑭𝑖 to be  a vector of 

derivatives of the variable 𝑓𝑖   for 𝜁 as follow 

𝑭𝑖(𝜁) = [ 𝑓𝑖
(0), 𝑓𝑖

(1)… 𝑓𝑖
(𝑝), , … 𝑓𝑖

(𝑚)],      (14) 

Where 𝑓𝑖
(0) = 𝑓𝑖 ,  𝑓𝑖

(𝑝)
 is the pth differential of 𝑓𝑖  with respect to 𝜁 , and 𝑓𝑖

(𝑚)
 is the highest 

differential, respectively. The system can be written as the summation of linear and non-linear 

terms as follows:  

ℒ[𝑭1, 𝑭2, … , 𝑭𝑟 ] + Ñ[𝑭1, 𝑭2, … , 𝑭𝑟 ] = 𝒢𝑘(𝜁), 𝑘 = 1, 2, … , 𝑟,                                            (15) 

Here 𝒢𝑘(𝜁) is a known function of 𝜁. Eqn. (15) is solved subject to two-point boundary conditions 

which can be symbolized as:  

∑ ∑ 𝛼𝜐,𝑗
(𝑝)𝑚𝑗−1

𝑝=0
𝑚
𝑗=1 𝑓𝑗

(𝑝)(𝑎) = 𝑙𝑎,𝜐,    𝜐 = 1,2, … , 𝑟𝑎,            (16) 

∑ ∑ 𝛽𝜐,𝑗
(𝑝)𝑚𝑗−1

𝑝=0
𝑚
𝑗=1 𝑓𝑗

(𝑝)(𝑏) = 𝑙𝑏,𝜎,    𝜎 = 1,2, … , 𝑟𝑏 ,            (17) 

Here  𝛼𝜐,𝑗
(𝑝)

 and 𝛽𝜐,𝑗
(𝑝)

are the constant coefficients of 𝑓𝑗
(𝑝)

 in the boundary conditions, and 𝜁𝑎, 𝜁𝑎 are 

the boundary conditions at 𝑎 and 𝑏 sequentially. 

Now, starting from the initial approximation 𝑭1,0, 𝑭2,0, … , 𝑭𝑟,0, the iterative method is obtained as  

ℒ1[𝑭1,𝑟+1, 𝑭2,𝑟+1, … , 𝑭𝑟,𝑟+1 ] + Ñ1[𝑭1,𝑟, 𝑭2,𝑟 , … , 𝑭𝑟,𝑟 ] = 𝒢1(𝜁),                                             (18) 

ℒ2[𝑭1,𝑟+1, 𝑭2,𝑟+1, … , 𝑭𝑟,𝑟+1 ] + Ñ2[𝑭1,𝑟 , 𝑭2,𝑟 , … , 𝑭𝑟,𝑟 ] = 𝒢2(𝜁),                                               (19) 

⋮⋮ ⋮  ⋮  ⋮⋮ ⋮ ⋮ 

ℒ𝑟−1[𝑭1,𝑟+1, 𝑭2,𝑟+1, … , 𝑭𝑟,𝑟+1 ] + Ñ𝑟−1[𝑭1,𝑟, 𝑭2,𝑟 , … , 𝑭𝑟,𝑟 ] = 𝒢𝑟−1(𝜁),                                           (20) 

ℒ𝑟[𝑭1,𝑟+1, 𝑭2,𝑟+1, … , 𝑭𝑟,𝑟+1 ] + Ñ𝑟[𝑭1,𝑟, 𝑭2,𝑟 , … , 𝑭𝑟,𝑟 ] = 𝒢𝑟(𝜁),                                               (21) 

Where 𝑭𝑖,𝑟+1  and 𝑭𝑖,𝑟  are the approximations of 𝑭𝑖  at the current and precedent iterations, 

consecutively. Eqns. (18)-(21) establish a set of 𝑛  linear decoupled equations to be resolved 

iteratively for 𝑟 = 1, 2,   .  .  .  . . These iterations commence with an initial approximation 𝑭𝑖,0 that 

conforms to the given boundary conditions. The iterations continue until convergence is achieved.  

Now, the Chebyshev pseudospectral method [33] is implemented at this stage over Eqs. (17) -(20). 

The differentiation matrix is defined as follow 

𝑑𝑓𝑖(𝜁𝑙)

𝑑𝜁
= ∑ 𝐃𝑙𝑘𝑓𝑖(τ𝐾) = 𝐃𝑭𝑖,

𝑁
𝐾=0   𝑙 = 0,… ,𝑁,           (22) 
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Here 𝑁 + 1 represents the number of collocation points, 𝑫 = 2𝐷/(𝑏 − 𝑎) and 𝑭 = [𝐹(𝜁0), 𝐹(𝜁1),

.  .  .  , 𝐹(𝜁𝑁)  ]
𝑇 is the vector function of the collocation points and 𝑫 for higher-order derivatives 

are obtained as: 

𝑓𝑗
(𝑝) = 𝐃𝒑𝑭𝑖.               (23) 

 Thus, for the system of Eqns. (18)-(21), the previously known functions decouple the system of 

equations and an efficient iteration scheme is established to generate accurate results. 

 

3.2 Solutions by SRM Technique: 

The SRM technique is now applied to the present nonlinear ordinary differential Eqns. (8)-(10) 

and boundary conditions (11). This demands the reduction of the order in the momentum Eqn. (8).  

Assuming 𝐹′ = 𝐺, then Eqns. (8)-(10) assume the form:  

(𝑛 − 1)𝐺′′ +√
(𝑚+1)

2
𝑛𝑊𝑒𝐺′𝐺′′+𝐹𝐺′ −

2𝑚

𝑚+1
𝐺2 −

2

𝑚+1
(𝛽𝐷𝐺 + 𝐹𝑟𝐺

2 + 𝐻𝑎𝐺) + 𝐺𝑟𝑏𝜃 +

𝑅𝑏𝜙 = 0,          (24) 

𝜃′′ + 𝑃𝑟 {𝐹𝜃
′ +

𝑚−1

𝑚+1
𝜂𝐺𝜃′ + 𝑁𝑏 𝜙′𝜃

′ + 𝑁𝑡𝜃′
2} = 0,                                                       (25) 

𝜙′′ + 𝐿𝑒 {𝐹𝜙
′ +

𝑚−1

𝑚+1
𝜂𝐺𝜙′ +

𝑁𝑡

𝑁𝑏
𝜃′′ −

2

𝑚+1
𝛾𝜙 −

2

𝑚+1
𝜎1(1 + 𝛿𝜃)

𝑚𝑒(
−𝐸

1+𝛿𝜃
)𝜙}  = 0.     (26)                                                                                 

Next the Gauss-Seidel relaxation technique is deployed to decouple the reduced system into the 

following form:                                                                           

 𝐹′𝑠+1 = 𝐺𝑠,                                                              (27) 

(𝑛 − 1)𝐺′′𝑠+1 + 𝐹𝑠𝐺
′
𝑠+1 − (

2

𝑚+1
) {𝐻𝑎 + 𝛽𝐷}𝐺𝑠+1 = (

2𝑚

𝑚+1
)𝐺2

𝑠
+ (

2

𝑚+1
)𝐹𝑟𝐺

2
𝑠 −

√
(𝑚+1)

2
𝑛𝑊𝑒𝐺′𝑠𝐺

′′
𝑠 − 𝐺𝑟𝑏𝜃𝑠−𝑅𝑏𝜙𝑠,          (28) 

𝜃𝑠+1
′′ + 𝑃𝑟 {𝐹𝑠+1𝜃

′
𝑠+1 +

𝑚−1

𝑚+1
𝜂𝐺𝑠+1𝜃

′
𝑠+1 + 𝑁𝑏 𝜙𝑠′𝜃

′
𝑠+1 + 𝑁𝑡𝜃

′2
𝑠+1} = 0,             (29) 

𝜙𝑠+1′′ + 𝐿𝑒 {𝐹𝑠+1𝜙
′
𝑠+1

+
𝑚−1

𝑚+1
𝜂𝐺𝑠+1𝜙

′
𝑠+1

+
𝑁𝑡

𝑁𝑏
𝜃′′𝑠+1 −

2

𝑚+1
𝛾𝜙𝑠+1 −

2

𝑚+1
𝜎1(1 +

𝛿𝜃)𝑚1𝑒(
−𝐸

1+𝛿𝜃
)𝜙𝑠+1}  = 0.          (30) 

The boundary conditions (11) become:  

                      𝐹𝑠+1(0) =
(1−𝑚)𝛼1

𝑚+1
, 𝐺𝑠+1(0) = 1 = 𝜃𝑠+1(0) = 𝜙𝑠+1(0),                                   (31) 
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                                             𝐺𝑠+1(∞) = 0 = 𝜃𝑠+1(∞) = 𝜙𝑠+1(∞).                                          (32) 

Here the components with indexing “𝑠 + 1” denote the recently approximated data and the 

components with indexing “𝑠” denote former approximated data. At this stage, the Chebyshev 

pseudospectral method [58, 59] is implemented in Eqns. (26)-(32), and here the differentiation 

matrix “𝑫 =
2

𝑙
𝐷” is computed for approximate magnitudes of the differentials of undetermined 

variables in Eqns. (26)-(32), giving: 

𝑫𝐹𝑠+1 = 𝐺𝑠,                                                              (33) 

          {(𝑛 − 1)𝑫2 + 𝑑𝑖𝑎𝑔[𝑎0,𝑠]𝑫 −
2

𝑚+1
𝑑𝑖𝑎𝑔[𝑎1,𝑠]𝑰} 𝐺𝑠+1 = 𝐵1,𝑠,              (34) 

{𝑫2 ++𝑃𝑟 {𝑑𝑖𝑎𝑔[𝑏0,𝑠]𝑫 +
𝑚−1

𝑚+1
𝑑𝑖𝑎𝑔[𝑏1,𝑠]𝑫 + 𝑁𝑡𝑫

2}} 𝜃𝑠+1 = 𝐵2,𝑠,                            (35) 

{𝑫2 ++𝐿𝑒 {𝑑𝑖𝑎𝑔[𝑐0,𝑠]𝑫 +
𝑁𝑡

𝑁𝑏
𝑑𝑖𝑎𝑔[𝜃′′𝑠+1] −

2

𝑚+1
𝛾 −

2

𝑚+1
𝑑𝑖𝑎𝑔[𝑐1,𝑠]}}𝜙𝑠+1 = 𝐵3,𝑠.      (36) 

The related boundary conditions emerge as:  

         𝐹𝑠+1(𝜂𝑁) =
(1−𝑚)𝛼1

𝑚+1
, 𝐺𝑠+1(𝜂𝑁) = 1 = 𝜃𝑠+1(𝜂𝑁) = 𝜙𝑠+1(𝜂𝑁),                                    (37) 

𝐺𝑠+1(𝜂0) = 0 = 𝜃𝑠+1(𝜂0) = 𝜙𝑠+1(𝜂0).                                                                           (38) 

Now, writing the compressed form of Eqns. (33)-(36) yields: 

Ä1𝐹𝑠+1 = Ë1,                                            (39)                               

Ä2𝐺𝑠+1 = Ë2,                                      (40)   

Ä3𝜃𝑠+1 = Ë3,                                                                          (41)   

 Ä4𝜙𝑠+1 = Ë4,                                                    (42) 

Where 

                                Ä1 = 𝑫, Ë1 = 𝐺𝑠,                                                                                       (43)      

Ä2 = (𝑛 − 1)𝑫2 + 𝑑𝑖𝑎𝑔[𝑎0,𝑠]𝑫 −
2

𝑚+1
𝑑𝑖𝑎𝑔[𝑎1,𝑠]𝑰, Ë2 = 𝐵1,𝑠,                                               (44)                                   

Ä3 = 𝑫2 ++𝑃𝑟 {𝑑𝑖𝑎𝑔[𝑏0,𝑠]𝑫 +
𝑚−1

𝑚+1
𝑑𝑖𝑎𝑔[𝑏1,𝑠]𝑫 + 𝑁𝑡𝑫

2} , Ë3 = 𝐵2,𝑠,                                 (45)                         

Ä4 = 𝑫2 ++𝐿𝑒 {𝑑𝑖𝑎𝑔[𝑐0,𝑠]𝑫 +
𝑁𝑡

𝑁𝑏
𝑑𝑖𝑎𝑔[𝜃′′𝑠+1] −

2

𝑚+1
𝛾 −

2

𝑚+1
𝑑𝑖𝑎𝑔[𝑐1,𝑠]} , Ë4 = 𝐵3,𝑠,      (46) 
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Where: 

𝑎0,𝑠 = 𝐹𝑠  , 𝑎1,𝑠 = [𝐻𝑎 + 𝛽𝐷], 𝐵1,𝑠 = 𝐺𝑠
2 

+(
2

𝑚 + 1
)𝐹𝑟𝐺𝑠

2 −√
(𝑚 + 1)

2
𝑛𝑊𝑒𝐺′

2
𝑠𝐺

′′
𝑠 − 𝐺𝑟𝑏𝜃𝑠−𝑅𝑏𝜙𝑠, 

𝑏0,𝑠 = 𝐹𝑠+1 ,   𝑏1,𝑠 = 𝜂𝐺𝑠+1 + 𝑁𝑏𝜙
′
𝑠
 , 𝐵2,𝑠 = 0,  

𝑐0,𝑠 = 𝐹𝑠+1 +
𝑚−1

𝑚+1
𝜂𝐺𝑠+1 , 𝑐1,𝑠 = (1 + 𝛿𝜃)𝑚1𝑒(

−𝐸

1+𝛿𝜃
), 𝐵3,𝑠 = 0,  (47) 

and 

𝑑𝑖𝑎𝑔[𝑎0,𝑠] = [

𝑎0,𝑠(𝜂0) ⋯

⋮ ⋱ ⋮
⋯ 𝑎0,𝑠(𝜂𝑁)

] , 𝑑𝑖𝑎𝑔[𝑎1,𝑠] = [

𝑎1,𝑠(𝜂0) ⋯

⋮ ⋱ ⋮
⋯ 𝑎1,𝑠(𝜂𝑁)

], 

𝑑𝑖𝑎𝑔[𝑏0,𝑠] = [

𝑏0,𝑠(𝜂0) ⋯

⋮ ⋱ ⋮
⋯ 𝑏0,𝑠(𝜂𝑁)

] , 𝑑𝑖𝑎𝑔[𝑏1,𝑠] = [

𝑏1,𝑠(𝜂0) ⋯

⋮ ⋱ ⋮
⋯ 𝑏1,𝑠(𝜂𝑁)

], 

𝑑𝑖𝑎𝑔[𝐵1,𝑠] = [

𝐵1,𝑠(𝜂0)

⋮
𝐵1,𝑠(𝜂𝑁)

] , 𝑑𝑖𝑎𝑔[𝑐0,𝑠] = [

𝑐0,𝑠(𝜂0) ⋯

⋮ ⋱ ⋮
⋯ 𝑐0,𝑠(𝜂𝑁)

],   

𝐵1,𝑠 = 𝐵2,𝑠𝐵3,𝑠 = 𝟎 = [
0
⋮
0
].      (48) 

𝐹𝑠+1 = [𝐹(𝜂0), 𝐹(𝜂1), .  .  .  , 𝐹(𝜂𝑁)  ]
𝑇 , 𝐺𝑠+1 = [𝐺(𝜂0), 𝐺(𝜂1), .  .  .  , 𝐺(𝜂𝑁)  ]

𝑇 , 𝜃𝑠+1 =

[𝜃(𝜂0), 𝜃(𝜂1), .  .  .  , 𝜃(𝜂𝑁)  ]
𝑇, 𝜙𝑠+1 = [𝜙(𝜂0), 𝜙(𝜂1), .  .  .  , 𝜙(𝜂𝑁)  ]

𝑇 ,  are vectors of 

dimensions (𝑁 + 1) × 1 . 𝟎  is a vector of dimension (𝑁 + 1) × 1  and 𝑰  describes the identity 

matrices of dimension (𝑁 + 1) × (𝑁 + 1). 

The enforcement of boundary conditions on the system of Eqns. (43)-(46) are: 

Ä1 = [
Ä1

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , 𝐹𝑠+1 = [

𝐹𝑠+1(𝜂0)

𝐹𝑠+1(𝜂1)
⋮

𝐹𝑠+1(𝜂𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , Ë1 =

[
 
 
 
 

Ë1

(1 − 𝑚)𝛼1
𝑚+ 1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

]
 
 
 
 

,  
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Ä2 = [

1 … 0

Ä2

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , 𝐺𝑠+1 =

[
 
 
 
𝐺𝑠+1(𝜂0)

𝐺𝑠+1(𝜂1)
⋮

𝐺𝑠+1(𝜂𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
 
 
 

, Ë2 = [

0

Ë2

1̅

], 

Ä3 = [

1 … 0

Ä3

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

] , 𝜃𝑠+1 =

[
 
 
 
𝜃𝑠+1(𝜂0)

𝜃𝑠+1(𝜂1)
⋮

𝜃𝑠+1(𝜂𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
 
 
 

, Ë3 = [

0

Ë3

1̅

] , Ä4 = [

1 … 0

Ä4

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

], 

𝜙𝑡+1 =

[
 
 
 
𝜙𝑠+1(𝜂0)

𝜙𝑠+1(𝜂1)
⋮

𝜙𝑠+1(𝜂𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
 
 
 

, Ë4 = [

0

Ë4

1̅

] , [

1 … 0

𝐵5

0 … 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

].    (49) 

The pertinent earliest guesses are chosen as below: 

𝐹0(𝜂) =
(1−𝑚)𝛼1

𝑚+1
+ (1 − 𝑒−𝜂), 𝐺0(𝜂) = 𝑒−𝜂 , 𝜃0(𝜂) = 𝜙0(𝜂) = 𝛷0(𝜂) =  𝑒

−𝜂 .        (50) 

The above earliest assumed approximated values obey the boundary conditions (37)-(38) and 

allow subsequent updating of the approximated values of 𝐹𝑠, 𝐺𝑠, 𝜃𝑠 , 𝜙𝑠 to each 𝑠 = 1, 2, ……by 

employing the SRM technique. 

 

4.CONVERGENCE, ERROR AND STABILITY OF THE SRM ITERATION SCHEME 

The convergence and stability of the current iterative SRM can be determined by considering the 

norms of the variation in the function values for two successive iterations. Therefore, towards 

every iteration, the maximal error (𝐸𝑟) over the (𝑟 + 1)th iteration is prescribed as: 

𝐸𝑟 = 𝑀𝑎𝑥 (‖𝑓1,𝑟+1 − 𝑓1,𝑟‖∞, ‖𝑓2,𝑟+1 − 𝑓2,𝑟‖∞, … , ‖𝑓𝑚,𝑟+1 − 𝑓𝑚,𝑟‖∞).                                       (51) 

Whenever the numerical values from the iterations converge, the error 𝐸𝑟 is predicted to drop with 

an increment in further iterations. The unknowns are approximated across the numbers of 

collocation points 𝑁, until the following test for convergence is satisfied on iteration 𝑟: 

𝐸𝑟 ≤ 𝜀.                           (52)    

where 𝜀 is the convergence tolerance level and for the present study is prescribed as 𝜀 = 10−7. 

The impact of the numbers of collocation points 𝑁 are analyzed to choose the minimal values of 
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𝑁 that provide congruent solutions to the 𝜀 error level. This is accomplished through re-solving 

the governing equations utilizing the suggested iteration scheme with various values of 𝑁 until 

consistent solutions are obtained. 

5.VALIDATION OF SRM APPROACH WITH PREVIOUS STUDIES  

Table 1 shows the comparison of SRM solutions with results from the literature to validate the 

SRM scheme. It is evident that excellent agreement is obtained with the shooting method solutions 

of Khan et al. [57] for the data prescribed in Table 1 (bioconvection effects in [57] are negated for 

the comparison). SRM is therefore confirmed to be a reliable and adaptive method and confidence 

in the SRM solutions is justifiably very high.   

Table 1. SRM solutions for  −𝜃′(0) and −𝜙′(0) compared with Khan et al. [57] for various 𝑁𝑡 

and 𝑁𝑏  values with  𝑚 = 𝛼1 = 𝐻𝑎 = 𝑊𝑒 = 0.1, 𝐺𝑟𝑏 = 𝑅𝑏 = 𝛾 = 0.5, 𝑃𝑟 = 𝐿𝑒 = 1.0, 𝑛 =

1.2, 𝛽𝐷 = 𝐹𝑟 = 𝜎1 = 𝛿 = 𝐸 = 0. 

 

𝑵𝒃 𝑵𝒕 SRM results for 

−𝜽′(𝟎) 

Khan et al. [57]  

(shooting method) 

for −𝜽′(𝟎) 

SRM results for 

 −𝝓′(𝟎) 

Khan et al. [57] 

(shooting 

method) for 

 −𝜙′(0) 

 

0.1 0.1 1.345406 1.3453 1.435312 1.4353 

0.2 0.1 1.103514 1.1035 1.113524 1.1135 

0.3 0.1 1.005178 1.0051 1.006446 1.0064 

0.1 0.1 1.345366 1.3453 1.435312 1.4353 

0.1 0.2 1.215108 1.2151 1.315611 1.3156 

0.1 0.3 1.112093 1.1120 1.112877 1.1128 

 

6. RESULTS AND DISCUSSION 

 The SRM technique, together with the pseudo-spectral method, has been employed to 

compute the transport characteristics for reactive magnetohydrodynamic hyperbolic tangent 

nanofluid flow from a parabolic subsurface in non-Darcy porous media. The impact of the 
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emerging parameters on velocity, temperature and nano-particle concentration distributions is 

visualized in Figs. 2-15.  

 

 

 

 

 

Fig. 2 Influence of 𝛽𝐷 and 𝛼1 on velocity profiles. Solid curve: 𝛼1 = 0.15, Dotted curve: 𝛼1 =

0.35. 

 

Fig. 3 Influence of 𝐹𝑟 and 𝐻𝑎 on velocity profiles. Solid curve: 𝐻𝑎 = 0, Dotted curve: 𝐻𝑎 =

0.55. 
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Fig. 4 Impact of 𝐺𝑟𝑏 and 𝑅𝑏 on velocity distributions. Solid curve: 𝑅𝑏 = 0, Dotted curve: 𝑅𝑏 =

0.55. 

 

Fig. 5 Effects of 𝑊𝑒 and 𝑚 on velocity distribution. Solid curve: 𝑛 = 1.25, Dotted curve:  𝑛 =

1.55. 
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Fig. 6 Influence of 𝛼1 and 𝑚 on velocity profiles. Solid curve: 𝑚 = 0.25, Dotted curve: 𝑚 =

1.25. 

 

 

Fig. 7 Impact of 𝛼1 and 𝑚 on temperature profiles. Solid curve: 𝑚 = 0.25, Dotted curve: 𝑚 =

1.25. 
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Fig. 8 Impact of 𝑁𝑏 and 𝑃𝑟 on temperature magnitudes. Solid curve: 𝑃𝑟 = 1.15, Dotted curve: 

𝑃𝑟 = 4.15. 

 

Fig. 9 Variation of 𝑁𝑡 and “𝑃𝑟” on temperature magnitudes. Solid curve: 𝑃𝑟 = 1.15, Dotted 

curve: 𝑃𝑟 = 4.15. 
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Fig. 10 Impact of 𝑃𝑟 and “𝑚” on temperature profiles. Solid curve: 𝑚 = 0.15, Dotted curve: 

𝑚 = 3.15. 

 

 

Fig. 11 Influence of 𝐿𝑒 and “𝛾” on concentration magnitudes. Solid curve: 𝛾 = 0.45, Dotted 

curve: 𝛾 = 0.75. 
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Fig. 12 Influence of 𝑁𝑡 and 𝑚 on the concentration magnitudes.  Solid curve: 𝑚 = 0.15, Dotted 

curve: 𝑚 = 4.15. 

 

Fig. 13 Variation of 𝑁𝑏 and 𝑚 on the concentration magnitudes.  Solid curve: 𝑚 = 1.55, Dotted 

curve: 𝑚 = 4.15. 
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Fig. 14 Influence of 𝜎1 and 𝐸 on the concentration magnitudes. Solid curve: 𝐸 = 0.65, Dotted 

curve: 𝐸 = 1.3. 

 

Fig. 15 Impact of 𝛿 and 𝐸 on the concentration magnitudes. Solid curve: 𝐸 = 0.35, Dotted 

curve: 𝐸 = 1.35. 
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Table 2. SRM solutions for skin-friction coefficient for various 𝑁,𝐻𝑎, and W𝑒 with 𝑚 = 𝛼1 =

0.1, 𝐺𝑟𝑏 = 𝑅𝑏 = 0.5, , 𝑛 = 1.2, 𝛽𝐷 = 𝐹𝑟 = 0. 

 

𝑵 𝑯𝒂 𝐖𝒆 𝑪𝑭𝒙

𝑹𝒆𝒙
𝟏/𝟐

 

45 0.1 0.1 0.5528 

55 0.1 0.1 0.5539 

65 0.1 0.1 0.5549 

90 0.1 0.1 0.5549 

45 0.2 0.1 0.4841 

55 0.2 0.1 0.4852 

65 0.2 0.1 0.4861 

90 0.2 0.1 0.4861 

45 0.3 0.1 0.4022 

55 0.2 0.1 0.4033 

65 0.1 0.1 0.4041 

90 0.1 0.1 0.4041 

45 0.1 0.2 0.5535 

55 0.1 0.2 0.5547 

65 0.1 0.2 0.5556 

90 0.1 0.2 0.5556 

45 0.1 0.3 0.5543 

55 0.1 0.3 0.5554 

65 0.1 0.3 0.5562 

90 0.1 0.3 0.5562 

 

It is important to note that all data used is carefully selected to be representative of actual coating 

flows of magnetic nanofluids and is extracted from [66-69]. Other data is taken from Khan et al. 

[55] and Khan et al. [70]. In particular, weak magnetic field is studied i.e. Ha < 1 for which the 

Lorentzian magnetic body force is weak and therefore Hall current effects are not invoked [71]. 

Fig. 2 illustrates the influence of 𝛽𝐷 and 𝛼1 on velocity magnitudes. It is seen that velocity is 
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reduced with increment in both permeability parameter 𝛽𝐷  and wall thickness 𝛼1 . Momentum 

boundary layer thickness is therefore enhanced with both these parameters since the flow is 

decelerated. Permeable parameter 𝛽𝐷  ( =
𝜇𝑓

𝑈0(𝑥+𝑏)𝑚−1𝑘
 ) arises in the term, −

2

𝑚+1
(𝛽𝐷𝐹

′) in the 

dimensionless momentum Eqn. (8). This is the Darcian term and is a drag force associated with 

bulk porous medium fibers. This term is inversely proportional to the actual permeability of the 

porous medium, k. As 𝛽𝐷 increases therefore the permeability is reduced. This produces greater 

solid fiber resistance to the nanofluid and results in flow deceleration. Although a retardation is 

also induced with greater wall thickness parameter, 𝛼1, the effect is not as prominent as with 

increment in permeability parameter which may be attributable to the wall thickness parameter, 

arising only in the wall boundary condition (11) i.e.  𝐹(0) =
(1−𝑚)𝛼1

𝑚+1
. Asymptotically smooth 

convergence of all profiles from the wall (parabola surface) to the free stream is also achieved 

confirming the selection of a suitably large infinity boundary condition in the SRM computations. 

Fig. 3 shows the influence of Forchheimer (quadratic porous medium drag) parameter 𝐹𝑟  and 

Hartmann number 𝐻𝑎 on velocity distributions is shown. Significant retardation in the flow is 

induced with larger Hartmann number 𝐻𝑎  and also greater Forchheimer parameter 𝐹𝑟 . Both 

parameters are associated with drag forces i.e. the terms −
2

𝑚+1
(𝐹𝑟𝐹

′2)   and −
2

𝑚+1
(𝐻𝑎𝐹′) in 

Eqn. (8). Whereas the Forchheimer drag term is quadratic, the Lorentzian magnetic drag term is 

linear. As Ha  is increased the resistive Lorentz force (which is directed transverse to the magnetic 

field and therefore acts along the parabola surface) is also increased relative to the inertial  

hydrodynamic force, as per the definition of the modified Hartmann number (𝐻𝑎 =
𝜎𝐵0

2

𝜌𝑈0(𝑥+𝑏)𝑚−1
 ). 

Velocity is therefore maximum for the electrically non-conducting case (Ha =0) for which a 

thinner momentum boundary layer is produced. With Ha = 0.55, the velocity is reduced, and the 

momentum boundary layer is thicker. Both magnetic parameter and Forchheimer parameter 

effectively achieve significant damping of the flow field.  

Fig. 4 portrays the impact of thermal and concentration Grashof numbers i.e. 𝐺𝑟𝑏  and 𝑅𝑏  on 

velocity magnitudes. Increasing thermal Grashof number  𝐺𝑟𝑏 =
ḡ𝛽(𝑇𝑤−𝑇∞)

(𝑥+𝑏)2𝑚−1𝑈0
2 implies a greater 

thermal buoyancy force contribution and increasing concentration (solutal) Grashof number, 

 𝑅𝑏 =
ḡ(𝐶𝑤−𝐶∞)

(𝑥+𝑏)2𝑚−1𝑈0
2  corresponds to a larger nanoparticle species buoyancy force contribution. 
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Velocity is enhanced with increment in both Grashof numbers i.e. the flow is accelerated and there 

is a concomitant decrease in momentum (hydrodynamic) boundary layer thickness. Significant 

escalation in the flow is therefore achieved with thermal and species buoyancy forces.  

Fig. 5 shows that the movement of fluid decelerates for taking increment in Weissenberg number 

𝑊𝑒  and escalates for the power-law index 𝑛 . 𝑊𝑒 = √
𝑈0

3(𝑥+𝑏)3𝑚−3

𝜈
Γand is used to quantify 

viscoelastic behaviour and expresses the ratio of elastic force to viscous force in the boundary 

layer. It also defines the ratio of the relaxation time of the fluid and a specific process time.  We 

appears only in the augmented shear diffusion term, +√
(𝑚+1)

2
𝑛𝑊𝑒𝐹′′𝐹′′′  in the momentum 

equation (8). As We is elevated, the elastic force is increased relative to the viscous force (and the  

relaxation time is reduced. This decelerates the boundary layer flow, as also observed in Gaffar et 

al. [40] and Hayat et al. [41] and enhances momentum boundary layer thickness. With increment 

in tangent hyperbolic nanofluid power-law index 𝑛, however, the opposite trend is produced and 

velocity is elevated. The nanofluid boundary layer thickness on the parabola surface is therefore 

reduced with increasing power-law index. The parameter n is also used to characterize the rheology 

of the tangent hyperbolic nanofluid. It features in the highest order shear term, (𝑛 − 1)𝐹′′′ and 

also the term, √
(𝑚+1)

2
𝑛𝑊𝑒𝐹′′𝐹′′′. Overall, this parameter aids in momentum development on the 

substrate whereas Weissenberg number opposes momentum diffusion. 

Fig. 6 displays the influence of wall thickness, 𝛼1 and stretching index 𝑚. Whereas the parameter, 

𝛼1 appears only in the boundary condition (8), the parameter m features in multiple terms in not 

only the momentum eqn. (8) but also the energy eqn. (9) and nanoparticle concentration eqn. (10). 

It is noted that increasing values in 𝛼1 causes a decrement in the velocity magnitudes and increases 

momentum boundary layer thickness for 𝑚 < 1, whereas it enhances the velocity and decreases 

momentum boundary layer thickness with 𝑚 > 1. The stretching velocity of the coating on the 

parabola substrate is increased with power-law stretching parameter, m. This aids in momentum 

diffusion and leads to flow acceleration in the boundary layer.  

Figs. 7-10 depict the impact of Prandtl number 𝑃𝑟, thermophoresis parameter 𝑁𝑡, Brownian 

motion parameter 𝑁𝑏 , wall thickness 𝛼1, and stretching parameter, 𝑚 on temperature magnitudes. 

It can be seen from Fig. 7, that an increment in 𝛼1 produces a decrement in temperature and 

decreases thermal boundary layer thickness adjacent to the substrate for 𝑚 < 1, whereas the 



27 

   

opposite trend  (temperature enhancement and thicker thermal boundary layer) is computed for  

𝑚 > 1. Effectively greater wall thickness induces heating in the regime, for m> 1, and produces 

cooling for m < 1. Figs. 8-9 show that with elevation in 𝑁𝑡 and 𝑁𝑏, there is an escalation in both 

temperature magnitudes and thermal boundary layer thicknesses. Greater thermophoretic body 

force in the nanofluid encourages the migration of nanoparticles under a thermal gradient and 

boosts thermal diffusion. Similarly, with greater Brownian motion parameter, the nanoparticles 

are reduced in size (as per the Buongiorno model [10]) which exacerbates heat diffusion in the 

regime. In contrast, increasing Prandtl number 𝑃𝑟 reduces temperatures since thermal conductivity 

is reduced (Prandtl number is inversely proportional to thermal conductivity for a fixed value of 

dynamic viscosity and specific heat capacity). Thermal boundary layer thickness is also therefore 

decreased. Prandtl number also expresses the ratio of momentum diffusion rate to thermal 

diffusion rate. For higher Prandtl number, lower thermal diffusion rates arise, and this explains the 

decrement in temperature for Pr = 4.15 compared with Pr = 1.15. Fig. 10 confirms these trends 

showing again that temperature is suppressed with increasing stretching parameter index, 𝑚 and 

increasing Prandtl number, Pr. 

Figs. 11-15 visualize the influence of Lewis number 𝐿𝑒 , stretching parameter index 𝑚, 

thermophoresis parameter 𝑁𝑡, Brownian-motion parameter 𝑁𝑏, chemical reaction rate parameter, 

𝛾, chemical reaction constant 𝜎1, temperature ratio parameter 𝛿, and activation energy parameter 

𝐸, on nano-particle concentration distributions. From Fig. 11, it is evident that greater 𝐿𝑒 strongly 

reduces the nanoparticle concentration magnitudes. Lewis number characterizes the ratio of 

thermal diffusion to nanoparticle diffusion and also expresses the relative thickness of the thermal 

boundary layer to the nanoparticle species boundary layer. Since all values of Le considered are in 

excess of unity, the nanoparticle species diffusion rate is always lower than thermal diffusion rate. 

Nanoparticle concentrations are therefore suppressed with increasing Le. Maximum nanoparticle 

concentration clearly corresponds to the minimum magnitude of 𝐿𝑒. It is also observed that with 

higher values of chemical reaction rate parameter, 𝛾 the nano-particle concentration decreases. 

This parameter arises in the term, −
2

𝑚+1
𝛾𝜙 in the nanoparticle concentration eqn. (10). Higher 

values of the reaction rate imply greater conversion of the original nanoparticles to a new species 

and therefore the original concentration is depleted. Nanoparticle species boundary layer thickness 

is also reduced with increase in chemical reaction rate parameter, 𝛾 from 0.45 (solid line) to 0.75 

(dotted lines). From Figs. 12-13, it is apparent that there is an escalation in both concentration 
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magnitudes with larger values of stretching parameter index 𝑚 . However, concentration 

magnitudes increase with higher values of 𝑁𝑡 whereas they decrease with greater 𝑁𝑏. Fig. 14. 

Illustrates the impact of chemical reaction constant 𝜎1 and the activation energy 𝐸 parameter on 

nano-particle concentration, 𝜙. There is a reduction in nanoparticle concentration with greater 

values of 𝜎1 , whereas it is increased with an increment in activation energy parameter, 𝐸. 

Therefore, nanoparticle species boundary layer thickness is therefore suppressed with higher 

values of chemical reaction constant 𝜎1  whereas it is boosted with higher activation energy 

parameter, 𝐸. Finally, Fig. 15 indicates that nanoparticle concentration is enhanced with 

increasingly negative values of the temperature ratio, 𝛿 and species boundary layer thickness is 

therefore also reduced. Once again however with an increase in activation energy parameter, 𝐸. 

Table 2 displays the numerical results of 𝐶𝐹𝑥/𝑅𝑒𝑥
1/2

 for number of collocation points in 

the SRM code, 𝑁 , Weissenberg number, 𝑊𝑒 , and modified Hartmann magnetic number, 𝐻𝑎 

keeping all other parameters fixed. Very good stability of results is obtained for different 

collocation point number. With increasing Weissenberg number, We, there is a considerable 

increase in skin friction magnitudes. With greater magnetic parameter, Ha, there is also a 

significant decrease in skin friction indicating greater retardation of the flow in the boundary layer 

adjacent to the parabolic substrate with stronger applied magnetic field. 

7. CONCLUDING REMARKS  

Motivated by emerging applications in magnetic smart Nano coating systems, in this article, a 

theoretical study of magnetohydrodynamic tangent hyperbolic non-Newtonian nanofluid flowing 

from a stretching upper parabolic substrate geometry with chemical reaction and activation 

energy in non-Darcy porous media, has been presented. The Darcy-Brinkman-Forchheimer model 

for porous media effects has been utilized. The governing partial differential equations are 

rendered into ordinary differential equations via appropriate similarity transformations. The 

resulting nonlinear boundary value problem is solved numerically by employing the spectral 

relaxation method (SRM) and validation is included with earlier studies. Numerical results for 

velocity, temperature and nanoparticle concentration are visualized graphically for the influence 

of key emerging parameters. Tables for skin friction, Nusselt number and Sherwood number are 

also presented. The principal observations of the current study may be summarized as follows:  
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i. Velocity is decreased with an elevation in wall thickness parameter, permeability 

parameter, Forchheimer (quadratic porous media drag) parameter, Weissenberg number 

and modified Hartmann magnetic number. There is a corresponding increase in the 

momentum boundary layer thickness over the stretched parabolic subsurface. 

ii. Velocity is enhanced with increment in stretching index, tangent hyperbolic rheological 

power-law index, thermal Grashof number and species (solutal) Grashof number, and an 

associated reduction in the momentum boundary layer thickness.  

iii. The velocity and temperature magnitudes adjacent to the subsurface are reduced with an 

increment in wall thickness parameter for stretching index  <  1, whereas the opposite 

behaviour is computed for stretching index > 1.  

iv. Temperature magnitudes are depleted (i.e. cooling is induced) with increment in stretching 

index and Prandtl number; however, the temperatures are boosted with increasing 

Brownian motion and thermophoresis parameters. 

v. Nano-particle concentration magnitudes are reduced with greater Lewis number and 

Brownian motion parameter; however, magnitudes are elevated with increasing values of 

the stretching index and thermophoresis parameter.  

vi. Nano-particle concentration magnitude is suppressed with increasing values of the 

chemical reaction constant whereas they are elevated with increment in activation energy 

parameter.  

vii. Skin friction is strongly suppressed with greater modified Hartmann number whereas it is 

enhanced with increment in Weissenberg number. 

viii. The spectral relaxation method (SRM) demonstrates excellent accuracy and numerical 

stability for solving nonlinear boundary value problems of multi-physical reactive 

magnetic rheological nanofluid coating materials processing on complex surfaces. Future 

studies may consider alternative non-Newtonian models e.g. Eringen’s micropolar model 

[59] and will be communicated imminently. 
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