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Abstract: Influenced by nano-drug delivery applications, the present article considers the collective 

effects of hybrid biocompatible metallic nanoparticles (Silver and Copper), a stenosis and an aneurysm on 

the unsteady blood flow characteristics in a catheterized tapered inclined artery. The non-Newtonian 

Carreau fluid model is deployed to represent the hemorheological characteristics in the arterial region. A 

modified Tiwari-Das volume fraction model is adopted for nanoscale effects. The permeability of the 

arterial wall and the inclination of the diseased artery are taken into account. The nanoparticles are also 

considered to have various shapes (bricks, cylinders, platelets, blades) and therefore the influence of 

different shape parameters is discussed. The conservation equations for mass, linear momentum and energy 

are normalized by employing suitable non-dimensional variables. The transformed equations with 

associated boundary conditions are solved numerically using the FTCS method. Key hemodynamic 

characteristics i.e. velocity, temperature, flow rate, wall shear stress (WSS) in stenotic and aneurysm region 

for a particular critical height of the stenosis, are computed. Hybrid nanoparticles (Ag-Cu/Blood) accelerate 

the axial flow and increase temperatures significantly compared with unitary nanoparticles (Ag/blood), at 

both the stenosis and aneurysm segments. Axial velocity, temperature and flow rate are all enhanced with 

greater nanoparticle shape factor. Axial velocity, temperature, wall shear stress and flow rate magnitudes 

are always comparatively higher at the aneurysm region compared with the stenotic segment. The 

simulations provide novel insights into the performance of different nanoparticle geometries and also 

rheological behaviour in realistic nano-pharmaco-dynamic transport and percutaneous coronary 

intervention (PCI). 
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Nomenclature 

1B       Pressure gradient parameter 

pC       Heat capacitance 

Fr       Froude number 

Gr       Grashof number 

k         Thermal conductivity 

il          Length of diseased segment 

m       ,
o

m



= i.e. ratio of dynamic viscosity ( 0 ) and infinite shear-rate viscosity (  ) 

 n       non-Newtonian power law index in Carreau model 

2n        Nanoparticle shape parameter 

Pr       Prandtl number 

p        Pressure 

Q       Flow rate 

r         Radial co-ordinate 

R        Radius of the artery (stenotic)  

oR       Radius of the artery (non-stenotic) 

Re      Reynolds number 

t         Time 

T        Temperature 

u         Radial velocity 

w        Axial velocity 

z         Axial co-ordinate 

 

Greek Letters 

        Dimensionless temperature 

        Distance of diseased segment from origin 
        Heat generation parameter 

0       Reference dynamic viscosity in Carreau model 

      Infinite shear-rate viscosity in Carreau model  

         Inclination angle 

        Density 

        Tapering angle 

1 2,     Nanoparticle concentration 

        Depth of stenosis 

        Thermal expansion coefficient 

        Wall shear stress 
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1. Introduction: 

The study of hemodynamics in stenosed or aneurysmal arteries is a critical area of interest owing 

to many significant applications in cardiovascular diseases such as atherosclerosis, aneurysms, 

angina, or heart attacks which are among the leading causes of deaths worldwide. Cardiovascular 

diseases often arise in coronary arteries and are associated with depositing fatty substances inside 

the arterial wall lumen. This process decreases the blood vessel radius while enhancing the 

resistance (impedance) to blood flow, thereby effectively inhibiting the supply of oxygenated 

blood from the heart to other parts of the human body. Hence the formation of stenosis continually 

advances with time to manifest as serious circulatory and arterial diseases. Mainly, with the help 

of laboratory investigations, complementary numerical simulations are constructive in treating 

cardiovascular diseases.  

Several studies have been conducted theoretically and experimentally to understand the exact 

mechanisms of stenosis development and its influence on blood flow characteristics. It is noted 

that hemodynamics in the post-stenotic regions is linked with the development and continuation 

of stenosis. Rindfleish [1] and Nazemi et al. [2] noted that wall shear stress is a key factor in the 

progression of stenotic lesions. Fry [3] observed that high wall shear stress is a principal 

contributor to endothelial cell damage. It is also known that the formation of stenosis alters the 

flow characteristics in its vicinity. The hemodynamics can be categorized according to the 

geometry of the arterial segment. For medical engineering purposes, a rigid cylindrical tube with 

a single symmetric and non-symmetric hindrance is the most familiar model deployed in a stenotic 

arterial segment simulation. Many biomedical engineers and scientists have used this model to 

understand the blood flow characteristics in the stenosed arteries [4-7]. However, it is possible for 

stenoses to have irregular shapes or not be in series. Studies related to the multiple, irregular, or 

overlapped stenoses in an artery are available in refs. [8-10]. Moore [11] emphasized that multiple 

stenoses and post-stenotic dilatations are found to be very common in the coronary arteries. Many 

investigations have confirmed that non-Newtonian models provide much greater accuracy in 

representing the actual characteristics (rheological) of blood (particularly in smaller blood vessels) 

and that a high/low shear rate cycle exists within the cardiac period of heart pumping. Among 

various non-Newtonian models, which include viscoelastic (e.g., Oldroyd-B), viscoplastic 

(Casson), short memory (Walters-B), and microstructural (polar, micropolar, micro stretch) 
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formulations, the Carreau fluid model (and its modifications) is the most amenable approach for 

representing hemodynamic phenomena over different shear rates. Gijsen et al. [12] presented a 

numerical investigation of blood flow in 90°                      curved tubes using the Carreau-Yasuda 

model, elaborating the relative performance, for small Reynolds numbers, of both Newtonian and 

non-Newtonian behavior. Other hemorheological stenotic and post-stenotic blood flow studies 

include Manica and Bortoli [13], who computed both incompressible Newtonian and non-

Newtonian (pseudoplastic/dilatant) blood flow through channels.  Pincombe and Mazumbar [14] 

used the Casson model. Additionally, Ali et al. [15] studied the blood flow in a w-shaped stenotic 

arterial segment with the Oldroyd-B viscoelastic model. All these studies confirmed the significant 

contribution of rheological behavior in modifying hemodynamic characteristics, particularly 

downstream of the stenotic zone. 

Blood flow through arteries becomes more complicated due to the development of an aneurysm. 

An aneurysm is like balloon dilation found on the arterial wall, usually noticed in carotid, 

abdominal, cerebral, and femoral arteries. It slowly increases in starting, but later the progression 

is seen rapidly with time. Ali et al. [16] presented one of the first stenotic/aneurysm hemodynamic 

computational simulations using the Eringen micropolar model, also considering a tapered 

catheterized arterial region. Several other studies [17-18] have highlighted the importance of 

hemodynamics in aneurysm formation. Sharzehee et al. [19] employed fluid-structure interaction 

(FSI) modeling in pulsatile blood flow through a diseased artery with aneurysm and included a 

hydrodynamic stability analysis, demonstrating that aneurismal arteries are more susceptible than 

normal arteries to instability.  

In medicine, catheterization is an effective procedure utilized in treating haematological disorders 

such as atherosclerosis. It involves deploying a long, thin, and flexible tube (catheter) inserted in 

a stenotic blood vessel. The insertion of the catheter into a diseased artery forms an annular region 

between the catheter wall and vascular wall, which aims to improve the hemodynamic conditions 

in the artery [20]. Mekheimer et al. [21] analyzed the two-phase (fluid-particle suspension) blood 

flow through a catheterized stenotic overlapping artery, including heat transfer and entropy 

generation. Ahmed and Nadeem [22] studied the copper nanoparticle-doped blood flow through a 

curved catheterized artery containing a balloon angioplasty and included nanoparticle shape 

effects. An essential feature of real arteries is the permeability of the blood vessel. This property 
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permits the diffusion of oxygen and other vital nutrients through the vessel into the streaming 

blood flow, thereby enabling the distribution of essential substances to the entire cardiovascular 

system. Bali and Awasthi [23] presented a detailed analysis of the hemodynamic flow through a 

composite artery with a porous wall, also considering Newtonian blood flow characteristics. 

Srivastav [24] studied the Newtonian blood flow through composite stenosis in catheterized artery 

with a permeable wall. Further studies addressing the permeability effect for various stenotic 

geometries have been communicated by Singh et al. [25], Akbar et al. [26], and Eldesoky [27].  

In recent decades, nanofluids have emerged as a significant development in biomedical 

engineering. Choi [28] proposed the term "nanofluid," which constitutes a suspension of dissimilar 

nanoparticles suspended in a base fluid, aimed at elevating overall thermal characteristics. It has 

been confirmed clinically that the inclusion of nanoparticles in the base fluid, e.g. blood, increases 

the thermal conductivity by a remarkable degree. Among numerous nanotechnology applications 

in modern medicine, drug delivery (pharmacodynamics) has enabled clinicians and pharmacists to 

bring significant improvement in healthcare at the molecular level. Tripathi et al. [29] conducted 

a detailed review of the recent hemodynamic nano-drug delivery systems advancements. 

Theoretical and numerical studies pertaining to nanofluid applications in biomedicine include [30-

33]. However, the studies mentioned above were restricted to the consideration of a single type of 

nanoparticle material in hemodynamics. This is known as the unitary nanofluid, i.e., blood doped 

with a single nanoparticle material type. However, Makishima et al. [34] suggested nanofluid 

suspensions comprising two or more compatible nanoparticles dispersed in a base fluid to provide 

a homogenous mixture, i.e., hybrid nanofluids. Compared with unitary nanofluid, hybrid nanofluid 

successfully combines the unique individual thermophysical properties of multiple nanoparticles, 

which offers significant advantages in improving medical results. Tripathi et al. [35] examined 

theoretically, and numerically the unsteady blood flow doped with hybrid nanoparticles (gold and 

silver) through a diseased artery having irregular stenosis as a simulation of nano-pharmacological 

transport. Zaman et al. [36] simulated the hybrid nanoparticles (copper and silver) doped blood 

flow through a curved stenosed artery having an aneurysm, employing a forward time centered 

space (FTCS) method. Similarly, Tripathi et al. [37] performed a study for unsteady hybrid (gold-

silver) mediated nanoparticle-doped biomagnetic blood flow and heat transport in a diseased artery 

featuring an overlapped stenosis. They showed that hybrid nanoparticle-doped blood produces 

more beneficial results for nano-drug delivery therapies. 
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With the motivation of these above-mentioned studies, in the present investigation, a novel 

mathematical model is developed to simulate the effects of different shaped (brick, cylinder, 

platelet and blades) hybrid (Ag+Cu) nanoparticles in the pharmacodynamic transport with wall 

slip in an inclined catheterized tapered artery featuring both a mild stenosis and aneurysm. To 

represent the non-Newtonian characteristics of blood, the Carreau rheological (shear-thinning) 

model is applied. In addition, the slip velocity and pulsatile pressure gradient effects are 

implemented to provide a more realistic representation of actual blood flows under unsteady flow 

conditions. Heat generation effect and the permeability of blood vessel are also included. A 

modified Tiwari-Das volume fraction model is adopted for nanoscale effects. Consequently, to the 

best of the author’s knowledge the computation of different shaped hybrid nanoparticles (Ag+Cu) 

in rheological hemodynamics through a catheterized tapered inclined blood vessel having a mild 

stenosis and aneurysm and with arterial wall permeability, hydrodynamic slip and internal heat 

generation, has not been explored yet in biomedical computational fluid dynamics; this constitutes 

the novelty of the present article. With appropriate boundary conditions, the normalized (non-

dimensional) non-linear conservation equations are solved by an efficient finite difference method 

(FTCS). Further simulations and visualizations are produced in MATLAB software. The 

remainder of the article is divided into the following sections: Section 2 illustrates the arterial 

geometry of model (for mild stenosis and aneurysm) with associated geometric formulations. 

Section 3 explains the mathematical formulation based on the hybrid nanofluid model and 

elaborates on the partial differential conservation equations (mass, momentum and energy) and 

boundary conditions. In section 4, non-dimensionalization of the boundary value problem is 

performed, which permits the introduction of key scaling parameters i.e., Reynolds number, 

Prandtl number, Froude number, Darcy number etc. Section 5 provides a detailed explanation of 

FTCS numerical technique. Section 6 presents a comprehensive validation of problem. Section 7 

contains all the results and physical interpretation for the impact of selected parameters e. g. 

nanoparticle concentration (volume fraction) on velocity, temperature, wall shear stress and 

volumetric flow rate. Lastly, in section 8, the principal findings of the study are summarized with 

some pathways suggested for future work in nano-pharmacological hemodynamics. 
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2. Arterial geometry for stenotic/aneurismal flow model: 

Blood flow is considered to be axisymmetric, laminar, incompressible and unsteady in nature. The 

mathematical equations describing the geometry are formulated in a cylindrical co-ordinate system

( , , )r z , in which r  is radial coordinate,    is circumferential (tangential) coordinate and z  is 

axial co-ordinate, respectively. Since the flow is considered here as axisymmetric, hence the 

circumferential direction is neglected. The physical model is visualized in Fig. 1. Further, the 

mathematical expression of mild stenosis [38] in an artery is presented as: 

( )

( )

1 0

0

1 0

2
1 cos , ,

2 2( )

,

i i
i i i i

i

l
m z R z z l

R lR z

m z R otherwise

 
  

    
+ − + − −   +    

=      
 

+ 

            (1) 

In the above expression, R(z) is defined as the radius of diseased segment, αi represents the distance 

of the abnormal section from the origin, 0R  denotes the radius of the normal artery, δi as the 

maximum height of the stenosis and li is the length of abnormal section. Here 1 tanm = is the 

slope the tapered artery. The possibility of different shapes of the artery is explored by considering 

a convergent artery when 0   and a divergent artery when 0  . Here the radius of catheter is 

considered as Rc. Inclination of the artery invokes gravitational effects which are important in 

providing a more realistic appraisal of actual hemodynamics.  

 

Figure 1: Physical model for hybrid nanoparticle-doped hemodynamics in a stenotic and 

aneurysmal inclined catheterized tapered artery  

gravity 

flow 
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3. Mathematical transport model for hybrid nanoparticle-doped blood flow: 

For the unsteady and axisymmetric hybrid nanofluid blood flow model, the velocity and 

temperature profile for the current problem are defined as follows: 

𝑉 = [𝑢(𝑟, 𝑧, 𝑡),0, 𝑤(𝑟, 𝑧, 𝑡)] 

( , , )T T r z t=                              (2) 

where u and w are the radial and axial velocity components, respectively. In view of above equation 

and considering the hybrid nanoparticles model, the equation of continuity, momentum, and 

energy can be written as [39]: 

0
u u w

r r z

 
+ + =

 
                             (3) 

( ) ( ) ( ) ( )1

1
sin sinrz zz

hnf hnfhnf

w w w p
u w rS S g T T g

t r z z r r z
    

        
+ + = − + + + − +           

 

                    (4) 

( ) ( ) ( ) ( )1

1
cos cosrr rz

hnf hnfhnf

u u u p
u w rS S g T T g

t r z r r r z
    

        
+ + = − + + − − −           

 

                                 (5) 

2 2

2 2

1

( ) ( )

hnf

p hnf p hnf

kT T T T T T
u w

t r z C r r r z C



 

       
+ + = + + +          

           (6) 

The physical parameters that emerge in the above set of equations are defined as follows: hnf is 

the density of hybrid nanofluid (i.e. blood combined with hybrid nanoparticles), hnf is the 

dynamic viscosity, hnf  is the thermal expansion coefficient, hnfk is thermal conductivity, ( )p hnfC

is the specific heat at constant pressure for the hybrid nanofluid model, λ is the inclination angle 

of the artery to the horizontal plane, o is the heat generation parameter. The terms rrS , rzS and zzS  

appearing in Eqns. (4) and (5) are the component of extra stress. The constitutive equation for the 

Carreau rheological model is given as [40]: 

( ) ( )( )
1

2 2

0 11

n

S A   

−

 

 
= + + +  
 
 

            (7) 
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In Eqn. (7), 0  and  are the dynamic and infinite shear-rate viscosities of blood. The parameter 

n represents the power law index,  represents the time constant and 1A  represents the first Rivlin- 

Ericksen tensor as given below [40]: 

1

TA V V=  +                  (8) 

The second invariant of the first Rivlin-Ericksen tensor,  , is defined as: 

2

1

1
( )

2
tra A =                (9) 

In view of Eqn. (4), the constitutive relation (7) yields: 

1

22 2 2 2

2

02 ( ) 1 2

n

rr u u w u w u
S

r r z z r r
   

−

 

 
                   

 = + + +  + +  + +                                  
  

       (10) 

1

22 2 2 2

2

02 ( ) 1 2

n

zz u u w u w w
S

r r z z r z
   

−

 

 
                   

 = + + +  + +  + +                                  
  

       (11) 

1

22 2 2 2

2

0( ) 1 2

n

rz u u w u w w u
S

r r z z r r z
   

−

 

 
                    

 = + + +  + +  + + +                                   
  

 

                            (12) 

For the velocity profile and temperature field, the associated boundary and initial conditions are 

prescribed as follows for the arterial wall (r=R) and at the wall of catheter (r=Rc). The conditions 

also include a hydrodynamic axial slip velocity (wB) at the vessel wall.   

( , ) , ( , )B wr R r R
w r t w T r t T

= =
= = ,          ( , ) 0, ( , ) 0

c cr R r R
w r t T r t

= =
= =       (13) 

( ,0) 0, ( ,0) 0w r T r= =             (14) 

B porous

w
w w

r Da


 = − 

            (15) 
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In the boundary equation, Da presents the Darcy number (a dimensionless permeability parameter 

characterizing the porous nature of the vessel wall),   is defined as dimensionless slip parameter, 

Bw  is the slip velocity and 
porousw  as the velocity of permeable boundary [48]. According to Darcy 

law, porousw  is given by:  porous

dP
w Da

dz

 
= −  

 
        (16) 

4. Non-dimensionalization of hybrid nanofluid model: 

The mathematical model defined by Eqns. (3)-(6) can be made dimensionless with the help of the 

following set of parameters [39]: 

0 0 0

, , , ,
r w z R

r w z R
R U L R

= = = =  
2

0 0 1

*

0 0 0 10

, , , ,
w

Lu U t R p T T
u t p

R U L T TU




−
= = = =

−
 ,

o

m



=  

( )

( )22
0 1 00 0

1

, Pr , , Re ,
p o f f w f o

w f f o o o

C gR T T U RR
Gr

T T k k U

   


 

−
= = = =

−
, ,zz zzB

B

o o o

w L
w S S

U U 
= =

0, ,rr rr rz rz

o o o o

L R
S S S S

U U 
= =  

1
2

0 0

0 0

,

n

U U
Fr

gR R
 

−

 
= =  

 
                                                 (17) 

Here r  presents the dimensionless radial coordinate, w  is the dimensionless axial velocity, R is 

dimensionless radius, z  is dimensionless axial coordinate, u  is dimensionless radial velocity 

component, t  is dimensionless time, p is dimensionless pressure,   is dimensionless blood 

temperature,   is dimensionless heat generation parameter and Bw  is dimensionless slip velocity. 

In addition to this, Pr is the Prandtl number, Re is the Reynolds number, Gr is the local thermal 

Grashof number (ratio of thermal buoyancy force to viscous force) and Fr  is the Froude number 

(ratio of inertial force to gravity force). oU  appears as a reference velocity of blood flow and wT is 

wall temperature. Here *  represents as 
*

1 2max( , ),  =  and 1 2min( , )L L L= . In the above-defined 

variables, the non-dimensional geometric parameters are stenosis height parameter (
*

0R = ) 

and vessel aspect ratio 0( )R L = .  



11 
 

Introducing the above-defined variables in Eqns. (3)-(6) and after dropping the bars, the following 

non-dimensional conservation equations for mass, momentum (axial and radial) and energy 

emerge: 

0
u u w

r r z


  
+ + =   

           (18) 

( ) ( )
( )

( )
21

Re sin ( )

Re
sin (19)

hnf hnfrz zz

f f

hnf

f

w w w p
u w rS S Gr

t r z z r r z

Fr


    

 






          
+ + = − + + +                

+

 

( ) ( )2 2 2
( )1

Re cos ( )
( )

Re
cos (20)

hnf hnfrr rz

f f

hnf

f

u u u p
u w rS S Gr

t r z r r r z

Fr

 
       

 


 


          
+ + = − + + −                

−

 

( )

( )

2 2
2

2 2

1
Pr Re

p hnf f f

hnf hnfp f

C k k
u w

k t r z r r r z kC

      
   



             + + = + + +                      

                (21) 

Additionally, the non-dimensional form of the geometry represented by Eqn. (1) is given as: 

( )

( )

1

1

1
1 1 cos2 , 1,

2 2( )

1 ,

i
i i im z z z

R z

m z otherwise


   

    
+ − + − −   +    

=     
 

+ 

                       (22) 

Subsequently, with the help of Burton [42], the axial pressure gradient can be represented as: 

( )0 1 cos 2 , 0p

p
A A t t

z


 
− = +  

 
          (23) 

It is noteworthy that 0A is the mean pressure gradient and 1A denotes the amplitude of the pulsatile 

component, which is subjected to diastolic and systolic pressures. By using non-dimensionalized 

parameters, the normalized form of Eqn. (23) becomes: 

( )1 11 cos( )
p

B e c t
z

 
− = + 

 
              (24) 
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Here 
2

01 0 0
1 1

0 0 0

, , 2 ,
p

p p

o

RA A R
e B f c

A U U


 


= = = =            (25) 

The equations for the thermophysical parameters of a unitary nanofluid are represented following 

[41] by the relations: 

5/ 2
( ) , (1 )

(1 )

f

nf nf f s


     


= = − +

−
 

( ) (1 )( ) ( ) , ( ) (1 )( ) ( )p nf p f p s nf f sC C C         = − + = − +  

 
2 2

2

( 1) ( 1) ( )

( 1) ( )

nf s f f s

f s f f s

k k n k n k k

k k n k k k





+ − − − −
=

+ − + −
                                                                        (26) 

Additionally, the equations for thermo-physical properties of hybrid mediated nanofluid are 

presented as [41]: 

1 22 1 1 25/ 2 5/ 2

1 2

, (1 )[(1 ) ]
(1 ) (1 )

f

hnf hnf f S S


        

 
= = − − + +

− −
 

1 22 1 1 2( ) (1 )[(1 )( ) ( ) ] ( )p hnf p f p S p SC C C C       = − − + +  

1 22 1 1 2( ) (1 )[(1 )( ) ( ) ] ( )hnf f S S       = − − + +  

2 2 1 1

2 2 1 1

2 2 2 2 2 1

2 2 2 1

( 1) ( 1) ( ) ( 1) ( 1) ( )
,

( 1) ( ) ( 1) ( )

S bf bf S S f f Shnf bf

bf S bf bf S f S f f S

k n k n k k k n k n k kk k
where

k k n k k k k k n k k k

 

 

+ − − − − + − − − −
= =

+ − + − + − + −
 

            (27) 

In the above-mentioned equations, f is the viscosity, f  is density, ( )p fC is heat capacitance, 

f is thermal expansion coefficient and fk is the thermal conductivity of the base fluid. For 

different nanoparticles, 1 2( , )  represent volume fractions, 
1 2

( , )S S   are the densities of solid 

nanoparticles, 
1 2

[( ) ,( ) ]p S p SC C   are the heat capacitances, 
1 2

[ , ]S S   are thermal expansion 

coefficients and 
1 2

[ , ]S Sk k designate the thermal conductivities of solid nanoparticles, respectively. 

Here n2 is the shape factor of the nanoparticles. Various nanoparticle shapes with corresponding 

shape factors are given in Table 1. 
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Shape of 

Nanoparticles 

Shape Image Shape factor 

(n2) 

Corresponding Hybrid Thermal 

Conductivity 

Circle 

 

3.0 
2 2

2 2

2

2

2 2 ( )

2 ( )

S bf bf Shnf

bf S bf bf S

k k k kk

k k k k k





+ − −
=

+ + −
 

Bricks 

 

3.7 
2 2

2 2

2

2

2.7 2.7 ( )

2.7 ( )

S bf bf Shnf

bf S bf bf S

k k k kk

k k k k k





+ − −
=

+ + −
 

Cylinders 

 

4.9 
2 2

2 2

2

2

3.9 3.9 ( )

3.9 ( )

S bf bf Shnf

bf S bf bf S

k k k kk

k k k k k





+ − −
=

+ + −
 

Platelets 

 

5.7 
2 2

2 2

2

2

4.7 4.7 ( )

4.7 ( )

S bf bf Shnf

bf S bf bf S

k k k kk

k k k k k





+ − −
=

+ + −
 

Blades 

 

8.6 
2 2

2 2

2

2

7.6 7.6 ( )

7.6 ( )

S bf bf Shnf

bf S bf bf S

k k k kk

k k k k k





+ − −
=

+ + −
 

Table 1: Various nanoparticle shapes with associated shape factors 

In reference to further analysis, two different hypotheses have been taken into account; 𝛿 ≪ 1 and 

(1)O =  i.e. stenosis height parameter is greatly less than unity, and the vessel aspect ratio is of 

comparable magnitude to unity. After imposing these suppositions, Eqns. (18)-(21) will be reduced 

to a system of coupled differential equations. Further, for restraining the geometric effects, the 

radial coordinate transformation 
( )

r
x

R z
=  is employed in the reduced governing equations. Hence 

applying the transformation and after putting the non-dimensionalized form of pressure gradient, 

Eqns. (18)-(21) are changed into the following form: 

( ) ( )

( )

( )

1

2 2 2

1 1 2

1
Re 1 cos( ) 1 1

Re
sin sin (28)

n

hnf

f

hnf hnf

ff

w w w
B e c t x m m

t xR x R x x

Gr
Fr

 



 
  

 

−   
                

= + + + +  +  +                              
   

+
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( )

( )

2

2 2

1 1
Pr Re

p hnf f f

hnf hnfp f

C k k

k t R x x x kC

   




          = + +                   

        (29) 

Further, Eqns. (13)-(15) are prescribed the following boundary and initial conditions: 

1 1
( , ) , ( , ) 1,Bx x

w x t w x t
= =
= =               ( , ) 0, ( , ) 0

c cx R x R
w x t x t

= =
= =     (30) 

( ,0) 0, ( ,0) 0w x x= =            (31) 

B porous

w
w w

x Da


 = − 

            (32) 

Similarly, the volumetric flow rate and wall shear stress (WSS) respectively are presented by the 

following form: 

1

2

1

0

2 ,Q R wxdx
 

=  
 
        (33) 

1

1
,S

x

w

R x


=

 
= −  

 
       (34)  

5. Numerical solution with FTCS scheme:  

In this scheme, firstly the spatial domain is discretized and after that, the value of velocity 

component is calculated at each node ix and over the time instant kt , which is written as
k

iw . 

According to Hoffmann [43], the central differencing formulation for second order and forward 

differencing formulation for first order partial derivatives are defined respectively as: 

1 1

2

k k

i i
x

w w w
w

x x

+ − −
 =

 
              (35) 

2

1 1

2 2

2

( )

k k k

i i i
xx

w w w w
w

x x

+ − − +
 =

 
             (36) 

and 

 

1

( )

k k

i iw w w

t t

+ −


 
              (37) 
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Incorporating the values of described partial derivatives, Eqns. (28)-(29) will take the following 

form: 

1

1 2

1
2 22

1 1 2 2

1

2 1 1 2

2 1 1 2

1
[1 cos( )] (1 ) 1

( ) (
(1 ) (1 )

( )
Re (1 ) (1 )

n

k

Sk k

i i

fS S

f f

w w
B e c t x m m

xR x R x x

t
w w



 
   

 
   

 

−

+

   
         

+ + + +  +                
   

 
= + + − − + + 

     
− − + +  

    

2

1 2

2 1 1 2

)
Sin

( )

Re
(1 ) (1 ) Sin

S k

i

f

S S

f f

Gr

Fr




 
    

 

 
 
 
 
 
 

  
+  

   
      − − + +           
  

  

   (38)  

1 2

2
1

2 2

2 1 1 2

1 1

( ) ( )
Pr Re (1 ) (1 )

( ) ( )

hnf fk k

i i

f hnfp S p S

p f p f

k kt

k R x x x kC C

C C

 
  

 
   

 

+
        

= + + +                 
− − + +  

    

 

                (39) 

Further, the associated boundary and initial conditions for Eqns. (38)-(39) emerge as: 

1 1 0i iw = = ,    at 0t =           (40) 

1

k

N Bw w+ = ,   1 1k

N + = ,  at 1x = ,      1 1 0,k kw = =                                  at  cx R=                    (41) 

B porous

w
w w

x Da


 = − 

             (42) 

In the FTCS numerical scheme, the spatial variable is discretized into N+1grid-points, where step 

size is taken as 1
1

x
N

 =
+

. The time instant is defined by kt , where the value of kt is given as

( 1)kt k t= −  , in which t shows the small increment in time. The velocity component is further 

calculated at each node and for every time instant. As stability of this numerical scheme is 

dependent on both step size and time increment, hence 0.025x =  and 0.0001t =  are selected 

to fulfill the stability condition.  
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6. Validation of FTCS numerical scheme: 

Validation of the applied FTCS numerical scheme is done by comparing solutions for the current 

problem with the numerical results obtained by Ijaz and Nadeem [44]. The axial blood velocity for 

different nanoparticle concentrations was compared for the present computations. The validation 

is documented in Table 2 both for normal blood i.e. without nanoparticles (ϕ=0.00) and for blood 

doped with nanoparticles (ϕ=0.02) at the throat of the stenotic artery (z=1.5) and t=1.2. In both 

cases, first flow acceleration and then deceleration was observed with increasing radial coordinate 

(r). Evidently very close correlation is achieved and confidence in the present FTCS scheme is 

therefore justifiably high.  

Radius Ijaz and Nadeem 

[44] 

ϕ=0.00, δ=0.01 

Present FTCS 
results 

Ijaz and Nadeem 

[44] 

ϕ=0.02, δ=0.01 

Present FTCS 
results 

0.1 0.00 0.00 0.000 0.000 

0.2 0.0317 0.0319 0.0645 0.0649 

0.3 0.0418 0.0422 0.0820 0.0826 

0.4 0.0420 0.0425 0.0776 0.0782 

0.5 0.0366 0.0369 0.0613 0.0618 

0.6 0.0283 0.0288 0.0390 0.0394 

0.7 0.0191 0.0199 0.0152 0.0181 

0.8 0.0109 0.0110 -0.0060 0.0064 

0.9 0.0052 0.0055 -0.0206 -0.0210 

1.0 0.0039 0.0039 -0.0248 -0.0248 

Table 2: Comparison of FTCS code results with Ijaz and Nadeem [44] for axial 
velocity at throat of stenotic artery z= 1.5 and t=1.2 

 

7. Numerical results and discussion: 

In this section, the hemodynamic characteristics in the artery having mild stenosis and aneurysm 

in the presence of hybrid nanoparticles are computed. Considering the emerging parameters, the 

results for the thermophysical properties such as axial flow velocity, temperature, wall shear stress 

and volumetric flow rate are visualized graphically in Figures 2- 35. The figures show the 
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comparison for the hemodynamic characteristics at the stenosis and aneurysm regions and for 

three different arterial tapering scenarios (non-tapered, diverging, converging). Table 3 presents 

the default values for the key parameters implemented in the FTCS computations while Table 4 

presents the considered range of parameters in the computations.  

Φ1 Φ2 Wb Re Pr Fr m n β λ √Da Gr B1 α 

0.03 0.03 0.1 2 14 0.9 0.175 0.7 0.2 60o 0.1 2 1.41 0.1 

Table 3: Default values of emerging parameters 

Parameter 
1 , 2  

bw  Fr      Pr  Re  Gr  m  Da  1B  

Range 0.01-

0.05 

0.0-

0.2 

0.1-

0.9 

0.1-

1.0 

0.05-

0.2 

7-

21 

1-5 1-5 0.175-

0.775 

0.05-

0.2 

1.41-

6.6 

Table 4: Considered range of emerging parameters 

Figures 2 (a)-(b) represents the influence of unitary (silver) nanoparticle volume fraction (φ1) 

(range 0.00-0.05) on blood flow velocities at the stenosis and aneurysm regions, respectively. 

These graphs are also visualized for different tapering behaviour of the artery.  The graphs show 

that with increasing nanoparticle volume fraction (φ1), acceleration is computed in both regions. 

The results are also supported by Ahmed and Nadeem [22] study, which was conducted for the 

blood flow through curved artery with catheterized stenosis. Higher magnitudes of velocity are 

attained for the diverging tapered artery comparing to the non-tapered and converging artery cases. 

It is also evident that axial velocity is greater at the aneurysm region for various volume fractions 

compared with the stenotic region. In all plots, the velocity is maximum at the centerline of the 

artery and decreases to the vessel wall at which it attains the value of the slip velocity (wB).  
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Figure 2: Effect of nanoparticle concentration on axial velocity with  Ag nanofluid only at (a) stenosis (b) aneurysm 

and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

 

Figure 3: Effect of nanoparticle concentration on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

Similarly, Figures 3 (a)-(b) shows the effect of hybrid nanoparticle concentration (φ1+φ2) (range 

0.00-0.05) on axial velocity profile at the stenosis and aneurysm locations. As volume fraction is 

increased, there is a significant enhancement in velocity profile in both figures. Axial flow is 

therefore accelerated considerably with higher volume fractions of silver and copper nanoparticles 

These two figures also follow the same behaviour for the tapering effect as computed earlier in 

Figure 2. On comparing both figures of Figure 3 with Figure 2, it is found that addition of a second 
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nanoparticle type exacerbates the increment in velocity value and this result is extremely favorable 

since hemodynamic acceleration is desirable for mitigating arterial diseases [3, 6].   

Figures 4 (a)-(b) visualize the temperature profile response across the artery cross section (i.e. 

with radial coordinate) to different volume concentration of silver nanoparticles (φ1) again at the 

stenosis and aneurysm regions, respectively. Evidently as the volume fraction is increased, there 

is a marked increment in temperature magnitudes for both zones at the throat of the stenotic artery.  

Thermal enhancement is therefore achieved with greater doping of silver nanoparticles and this is 

due to the elevation in thermal conductivity of blood with nanoparticle presence. Contrary to the 

velocity profiles, however, it is seen that higher temperature magnitudes are acquired for the 

converging artery compared to the non-tapered and diverging artery. Similarly, Figures 5 (a)-(b) 

depict the temperature variation for various concentrations of hybrid nanoparticles (φ1+φ2). As 

volume fraction is increased from 0.00 (absence of nanoparticles i.e. pure blood) to 0.05, 

temperature is also found to be increased in the same manner. Comparing Figure 5 with Figure 4 

it may be noted that greater increases are registered for the hybrid nanofluid (silver and copper 

nanoparticles) case than for the unitary nanofluid (only silver nanoparticles). Again, this is due to 

the boost in thermal conductivity achieved with both silver and copper, relative to just silver 

nanoparticles alone. Also, a slight difference is observed in the temperature profiles between the 

stenosis (constriction) and aneurysm (bulge) region and temperature is consistently greater in the 

stenotic region.   

  

Figure 4: Effect of nanoparticle concentration on temperature profile with Ag nanofluid only at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 
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Figure 5: Effect of nanoparticle concentration on temperature profile with (Ag+Cu) hybrid nanofluid at (a) stenosis 

(b) aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

  

Figure 6: Effect of shape parameter (n2) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

Figures (6)-(7) illustrate the impact of different values of shape parameter of nanoparticles on 

velocity and temperature profiles, respectively. Figure 6 (a)-(b) exhibits the axial velocity 

distribution at the stenosis and aneurysm region for the tapered (diverging or converging) and non-

tapered artery cases. The graphs indicate that on changing the shape of nanoparticles from the 

bricks, then cylinders, then platelets to finally blades i.e. increasing the shape parameter (n2) from 

3.7 to 4.9 to 5.7 and eventually to 8.6, there is an apparent enhancement in velocity profile at the 
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throat of the stenotic artery and also in the aneurysmal region. Increasing the shape parameter 

results in an elevation in thermal conductivity of the hybrid nanofluid (since greater surface area 

encourages micro-convection in the vicinity of the nanoparticles) and this manifests in an 

accentuation in thermal diffusion in the hybrid nanofluid. This accelerates the axial flow. Results 

for the acceleration of velocity profile are supported by Ijaz and Nadeem [52] study, which 

elaborates the influence of hybrid nanoparticles on hemodynamics through overlapped stenotic 

artery. Higher magnitudes of velocity are computed for the diverging artery case, both at the 

stenosis and also the aneurysm, although velocity at the aneurysm is always slightly higher than 

at the stenosis. Similarly, figure 7 (a)-(b) shows the changes in temperature profile with an 

increment in the shape of nanoparticles at the stenosis and aneurysm. Temperature is strongly 

boosted on increasing the shape parameter from 3.7 to 8.6 i.e. brick nanoparticles produce minimal 

temperatures whereas blade-shaped nanoparticles achieve maximum temperatures. Furthermore, 

a higher amplitude is noticed for the converging artery case relative to the diverging and non-

tapered cases and this is exactly the opposite behaviour to that computed for the velocity profile.    

  

Figure 7: Effect of shape parameter (n2) on temperature profile with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

Figures 8 and 9 visualize the evolution in axial velocity profiles for different Froude number (Fr) 

(range 0.1-0.9) and slip velocity (wB) for (Ag+Cu) hybrid nanofluid.  Figure 8 (a)-(b) show that 

on increasing the Froud number from 0.1 to 0.9, there is a remarkable decrement in the velocity 

value in both stenosis and aneurysm. Froude number embodies the relative contribution of inertial 
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force to gravity force in the hemodynamic regime. It features however in the denominator of the 

supplementary body force term, +
𝜌ℎ𝑛𝑓

𝜌𝑓

𝑅𝑒

𝐹𝑟 𝑠𝑖𝑛 𝜆
 in the axial momentum conservation Eqn. (40). 

Higher values of Fr (with all other parameters fixed) therefore reduce the contribution of this body 

force to the blood flow and this manifests in a deceleration, as observed in Figs 8a,b. Diverging 

arteries attain higher values of axial velocity in comparison with non-tapered and converging 

arteries; momentum transport is assisted with the diverging geometry whereas it is inhibited with 

converging geometries or even the conventional non-tapered case by virtue of the continuity 

principle for incompressible flow.  

  

Figure 8: Effect of Froude number (Fr) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 
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Figure 9: Effect of Slip velocity (Wb) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) aneurysm 

and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

In figure 9 (a)-(b), with increasing wall slip parameter (range 0.0-0.2), deceleration in axial 

velocity is noticed. The slip parameter is a boundary condition which is imposed at the inner 

surface of the arterial wall. The presence of the slip velocity induces a momentum retardation and 

velocity delay which impedes the blood in the near-wall regime and decelerates the axial blood 

flow, although the effect clearly decays with further radial distance toward the arterial center line. 

In the aneurysm region, velocity is always higher than at the stenotic region and diverging arteries 

produce a maximum value in comparison to converging and non-tapered arteries.     

Figures 10-11 illustrate the effect of heat generation parameter (β) (range 0.1-1.0) on velocity and 

temperature profiles for hybrid nanofluid. This effect may correspond for example to spot thermal 

therapy in laser treatment in medicine. An increase in this parameter from 0.1 to 1.0 shows a 

noticeable impact on temperature profile (Fig. 11) whereas it produces a much more prominent 

enhancement in velocity (Fig. 10), in particular, near the centerline of the arterial zone. Ijaz and 

Nadeem [44] also showed the same influence of heat generation parameter on velocity profile 

through catheterized composite stenosed artery. Towards the vessel periphery there is a 

progressive diminishing in the influence of heat generation and all profiles merge. Marked 

differences can be seen with the tapering effect on both velocity and temperature profiles. 

Diverging arteries attain the maximum velocity magnitudes whereas converging arteries achieve 

the maximum temperatures. For axial velocity, magnitudes are always highest in the aneurysm 



24 
 

region compared to the stenosis region; however, a smaller difference is seen in the case of 

temperature.   

  

Figure 10: Effect of heat generation parameter (β) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis 

(b) aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

  

Figure 11: Effect of heat generation parameter (β) on temperature profile with (Ag+Cu) hybrid nanofluid at (a) 

stenosis (b) aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

Figure 12 (a)-(b) depicts the influence of porous parameter () (range 0.05-0.2) on axial velocity 

profiles at the stenosis and aneurysm regions, respectively. In both cases, when we increase the 

porous parameter from 0.05 to 0.2, then removal of blood via the permeable arterial wall is 

increased- this inhibits momentum diffusion in the axial flow and results in axial flow retardation. 
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The porous parameter features only in the arterial wall boundary condition i.e. 

B porous

w
w w

x Da


 = − 

 in Eqn. (44). The same favorable result is produced by Ijaz and Nadeem 

[44] for the impact of porous parameter (α) on flow velocity by considering the permeability effect 

on arterial wall. Evidently, the diverging tapered artery produces a higher axial velocity in 

comparison with the non-tapered and converging artery cases.   

  

Figure 12: Effect of porous parameter (α) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

  

Figure 13: Effect of Prandtl number (Pr) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 
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Figure 13 (a)-(b) and 14 (a)-(b) shows the velocity and temperature profile for various Prandtl 

numbers (Pr) (range 7-21) again at both stenosis and aneurysm regions. It is demonstrated that 

flow deceleration and cooling are produced with an increase in value of Pr from 7 to 21 at the 

throat of the artery. Prandtl number is the ratio of momentum diffusivity to thermal diffusivity, 

which implies that Pr is inversely related to heat transfer from the artery wall to the fluid. When 

Pr is significantly small (Pr<1), the momentum diffusion rate is much lower than thermal diffusion 

rate. The curve trends in Figure 13 and 14 confirm that with higher Prandtl number, velocity 

plummets as does temperature magnitude (this will correspond to thicker momentum boundary 

layer at the arterial wall and a thinner thermal boundary layer). Mitvalsky [45] has emphasized 

that in the normal  room temperature range, 19 - 30.8 Celsiust, laminar streaming blood has a 

Prandtl number between 15 and 25. Of course these values are reduced with the doping of metallic 

nanoparticles and therefore the range studied in the present simulations i.e. Pr of 7 to 21 is 

appropriate for hemodynamics. Blood therefore has a much higher momentum diffusivity 

comparing to thermal diffusivity. Diller [46] and Hensley et al. [47] elaborated that this property 

is necessary for thermoregulation and other biothermal functions. It is also noted that for the 

velocity distribution, the aneurysm region exhibits the peak value whereas for the temperature 

profiles, the stenotic zone produces the highest values.   
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Figure 14: Effect of Prandtl number (Pr) on temperature profile with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 

The effect of Reynolds number (Re) (range 1-5) on blood flow velocity and temperature profile is 

displayed in Figure 15 (a)-(b) and 16 (a)-(b). It is noteworthy that very low Reynolds numbers 

are considered laminar flow and the regime is therefore a viscous dominated one. On increasing 

the value of Re from 1 to 5, a significant amount of reduction in velocity has been seen. In the 

same manner, as we increased the magnitude of Re, the magnitude of temperature is also 

decreased. Although inertial force is increased with Reynolds number, the overwhelming effect is 

nevertheless flow deceleration owing to the stenotic obstruction and presence of nanoparticles. 

Substantial deviation in values is computed in the stenosis and aneurysm regions. As in velocity 

case, the magnitude is higher for all Reynolds number in aneurysm region while for temperature 

case, the reverse trend is observed (values are higher in the stenosis region). For the velocity 

profile, the diverging artery case produces a higher value compared to the non-tapered and 

converging arteries. Conversely, the converging artery case attains the maximum temperature 

magnitude.    

 

 

  

Figure 15: Effect of Reynolds number (Re) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2. 
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Figure 16: Effect of Reynolds number (Re) on temperature profile with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2 

  

Figure 17: Effect of Grashof number (Gr) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2 

The velocity profiles for variable Grashof numbers (Gr) (range 1-5) are plotted in figure 17 (a)-

(b) for the stenosis and aneurysm regions, respectively. Grashof number (Gr) is the ratio of thermal 

buoyancy force to viscous force. Gravitational body force contributes to the thermal buoyancy 

force. There is also a concentration difference of nanoparticles within blood, although this does 

not produce a solutal (species) buoyancy force. The accentuation in thermal buoyancy encourages 

momentum diffusion and reduces impedance to the blood flow. This manifests in a concomitant 
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axial flow acceleration and elevation in axial velocity magnitudes. Evidently flow deceleration 

arises with weak thermal buoyancy force (Gr =1) for which the thermal buoyancy force is 

equivalent to the viscous hydrodynamic force, as seen in figure 17 (a)-(b). Maximum axial flow 

velocity therefore is achieved with maximum Grashof number (Gr = 5). On comparing these two 

figures, it is also judicious to note that there is slightly higher velocity at the aneurysm region 

compared to the stenosis region.  

The effect of various non-Newtonian parameters (m) (0.175-0.775) on axial velocity is given by 

figure 18 (a)-(b). The parameter ,
o

m



= i.e. ratio of the dynamic viscosity ( 0 ) and infinite 

shear-rate viscosity (   ) The graphs demonstrate that on increasing the value of m from 0.175 to 

0.775, which corresponds to progressively stronger non-Newtonian flow (higher dynamic 

viscosity relative to the infinite shear-rate viscosity in the Carreau rheological model) a strong 

deceleration is computed at both (a) stenosis and (b) aneurysm. The velocity is always higher at 

aneurysm region for all the values of ‘m’ and diverging tapered arteries have maximum value in 

contrast to non-tapered and converging arteries. The rheological effect therefore produces a 

substantial modification in axial velocity distributions, which cannot be captured with classical 

Newtonian models.  

The impact of Darcy number (√Da) (range 0.05-0.2) on velocity profile is given by figure 19 (a)-

(b) at stenosis and aneurysm region, respectively. This parameter also features in the boundary 

condition (44) i.e. B porous

w
w w

x Da


 = − 

, and is used to quantify the permeability of the porous 

wall of the artery. It is distinct from the porous parameter () which is associated with lateral mass 

flux alone. As we increased the Darcy number from 0.05 to 0.2, the axial velocity is also elevated 

by a significant amount since the permeability of the wall is increased permitting greater influx of 

blood. A greater magnitude of velocity is found for the diverging artery at the aneurysm region in 

comparison to the non-tapered and converging artery cases at the stenosis region of the artery.  
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Figure 18: Effect of Non-newtonian parameter (m) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis 

(b) aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2 

  

Figure 19: Effect of Darcy number (√Da) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2 

The impact of inclination angle (λ) of the artery on axial velocity profile is depicted in figure 20 

(a)-(b). The graphs reveal that on increasing the inclination angle from 0° to 90°, the velocity is 

boosted, and axial flow is accelerated significantly. This shows that for horizontal artery (λ=0°) 

the velocity is minimal; however, with increment in inclination angle eventually to the vertical 

artery case (λ=90°), the velocity achieves its maximum value. From both the figures, it is clear 
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that diverging arteries achieve higher values in comparison with converging and non-tapered 

arteries. 

  

Figure 20: Effect of inclination angle (λ) on axial velocity with (Ag+Cu) hybrid nanofluid at (a) stenosis (b) 

aneurysm and 𝐵1 = 1.41, 𝛿 = 0.1, 𝑡 = 1.2 

In figure 21, the influence of pressure gradient (pulsatile flow) parameter B1 (featured in the non-

dimensional form of pressure gradient) on velocity distribution for different tapering artery cases 

is visualized. For different sizes of artery, B1 assumes different values. For example, with arterioles 

or the coronary artery, the value of B1 is 1.41. However, for the femoral artery in the human body, 

B1 attains a greater value of 6.6 – see Burton [42]. It is evident that on increasing the pressure 

parameter, the blood flow is significantly accelerated, confirming that femoral artery attains the 

maximum value and significantly exceeds the axial velocity computed for the coronary artery. 

Additionally, in aneurysm region, axial velocity is always higher compared to the stenosis region 

for all the tapering cases examined (i.e. diverging, non-tapered or converging).  
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Figure 21: Effect of pressure parameter (B1) on axial velocity with (Ag+Cu) hybrid nanofluid at stenosis and 

aneurysm considering 𝜙 = 0.03, 𝛿 = 0.1, 𝑡 = 1.2 

The effects of hybrid nanoparticle volume fraction (φ1+φ2) on wall shear stress and volumetric 

flow rate profiles are presented in figures 22-25. Figure 22-23 shows time series plots for wall 

shear stress (WSS) at the stenosis and aneurysm regions while Figures 24-25 depict the volumetric 

flow rates at the stenosis and aneurysm, respectively. These figures capture the oscillatory nature 

of the blood flow in the stenotic region and allow a direct comparison between the performance at 

stenosis and aneurysm region with progression in time. Both figures for the wall shear stress show 

that the magnitude initially decreases and, after a critical point in time, then exhibits an ascending 

trend which is sustained with subsequent time. The graphs also indicate that with increasing 

magnitude of nanoparticle volume fractions, wall shear stress also increases. A minor difference 

is observed between the values of wall shear stress for diverging, converging and non-tapered 

arterial cases. Values computed at the aneurysm are consistently slightly in excess of those 

observed at the stenosis region.  
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Figure 22: Effect of nanoparticle concentration (φ) on wall shear stress at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

 

Figure 23: Effect of nanoparticle concentration (φ) on wall shear stress at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    



34 
 

 

Figure 24: Effect of nanoparticle concentration (φ) on volumetric flow rate at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

Figures 24 and 25 portray the impact of various hybrid nanoparticle (silver, copper) volume 

fractions (1, 2) on volumetric flow rate profiles at the stenosis and aneurysm region, respectively. 

This quantity also significantly decreases initially and thereafter increases with progressive elapse 

in time. The diverging artery case attains the highest volumetric flow rate, followed by the non-

tapered case and then the converging artery case. A significant amount of difference is found 

between the values of flow rates at the stenosis and aneurysm regions; volumetric flow rate is 

higher for the aneurysm zone in comparison to the stenosis region.  

 

Figure 25: Effect of nanoparticle concentration (φ) on volumetric flow rate at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    
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Figure 26: Effect of Froude parameter (Fr) on volumetric flow rate at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

The effect of Froude parameter (Fr) on volumetric flow rate at the stenosis and aneurysm regions 

is presented in Figures 26-27. On increasing the value of Fr from 0.1 to 0.9, flow rate is also 

decreased, following the same pattern of axial velocity profile, as computed earlier. Comparison 

between figures shows that diverging arteries have higher magnitudes of volumetric flow rate 

relative to non-tapered and converging cases. The value of volumetric flow rate is always lower in 

the stenosis region compared with the aneurysm region.    

 

Figure 27: Effect of Froude parameter (Fr) on volumetric flow rate at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    
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Figure 28: Effect of Prandtl number (Pr) on volumetric flow rate at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

Figure 28 and 29 illustrate the time-varying profile of volumetric flow rate for varying values of 

Prandtl number (Pr) at stenosis and aneurysm respectively. This quantity is diminished with 

elevation in Prandtl number from 7 to 21. There is again considerable difference between the 

values computed for tapered and non-tapered arteries; a maximum is attained for the diverging 

artery in both Figures 28 and 29. Volumetric flow rate values at the aneurysm region are 

comparatively higher than at the stenosis region.   

 

Figure 29: Effect of Prandtl number (Pr) on volumetric flow rate at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    
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Figure 30 and 31 display the transient distributions for volumetric flow rates with increasing in 

Reynolds number (Re) and for different tapering artery scenarios. Strongly periodic profiles are 

again computed over a wide range of times. Generally, a consistent suppression in flow rate is 

observed with increasing the Reynolds number from 1 to 5, confirming the results computed earlier 

for axial velocity. As inertial effects are greater at higher Reynolds number, hence the dominant 

effect is flow retardation and decreased flux. Similar to the velocity profiles computed earlier, a 

diverging artery achieves a higher flow rate value compared to non-tapered and converging 

arteries. 

 

Figure 30: Effect of Reynolds number (Re) on volumetric flow rate at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

 

Figure 31: Effect of Reynolds number (Pr) on volumetric flow rate at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    



38 
 

The impact of various nanoparticle shape factors on volumetric flow rate at stenosis and aneurysm 

is shown by Figure 32-33. Inspection of the graphs indicates that on increasing the shape factor 

from a minimum of 3.7 (bricks) to a maximum of 8.6 (blades), the flow rate is also elevated with 

time progression at both the stenosis and aneurysm locations. It is also seen that diverging arteries 

attain the highest magnitudes in comparison to non-tapered and converging arteries for any 

nanoparticle shape factor. On comparing both the figures, the maximum magnitude of flow rate is 

observed at the aneurysm section.  

 

Figure 32: Effect of shape parameter (n2) on volumetric flow rate at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

 

Figure 33: Effect of shape parameter (n2) on volumetric flow rate at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    
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Figure 34-35 display the influence of non-Newtonian parameter (m) on volumetric flow rate 

profile at stenosis and aneurysm segment respectively. The figures exhibit that on elevating the 

value of non-Newtonian parameter from 0.175 to 0.775, the flow rate shows a decrement i.e. the 

flow rate is reduced with increasing m. Strongly non-Newtonian flow (m = 0.775) therefore 

produces lower volumetric flow of blood compared with weaker non-Newtonian blood (m = 0.175) 

since dynamic viscosity in the former is much greater relative to the infinite shear rate viscosity. 

Diverging arteries achieve higher volumetric flow rate magnitudes compared to other cases 

(converging and non-tapered). Finally, it is pertinent to note that the flow rate values at the 

aneurysm segment are comparatively higher than at the stenosis segment.  

 

Figure 34: Effect of non-Newtonian parameter (m) on volumetric flow rate at stenosis for hybrid nanoparticles at 

1 1.41, 0.1, 0.7B z= = =    

 

Figure 35: Effect of non-Newtonian parameter (m) on volumetric flow rate at aneurysm for hybrid nanoparticles at 

1 1.41, 0.1, 2.2B z= = =    
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8. Conclusions: 

Inspired by nano-drug delivery technologies for the treatment of arterial diseases, this study 

describes a theoretical and computational simulation of unsteady hybrid-nanoparticle (silver and 

copper) hemodynamics in inclined, catheterized diseased arteries with mild stenosis aneurysm 

features. A tapering geometry (converging and diverging), arterial wall permeability, and wall slip 

are considered to simulate the blood flow characteristics in arterial transport more accurately. Heat 

generation and thermal buoyancy effects are also included. To mimic the non-Newtonian 

characteristics of blood (hemorheology), the Carreau fluid model is taken into account. For 

realistic flow situations, the unsteady component of the pulsatile pressure gradient is included. 

Various shaped nanoparticles, i.e., bricks, cylinders, platelets, blades, are studied. The transformed 

nonlinear conservation equations with initial and boundary conditions are solved with realistic data 

using a finite difference method (FTCS). Extensive graphical plots for the impact of emerging 

parameters on hemodynamic characteristics (velocity, temperature, wall shear stress, and 

volumetric flow rate) at both the stenosis and aneurysm segments are computed. Validation with 

previous studies is also conducted. The key conclusions from the present numerical computations 

are summarized as follows: 

• The inclusion of hybrid nanoparticles (Ag-Cu/Blood) within blood increases the axial 

velocity and temperature magnitudes more significantly as compared to unitary 

nanoparticles (Ag/blood) at both the stenosis and aneurysm segments. 

• With an increment in nanoparticle shape factor (n2), axial velocity, temperature and flow 

rate are all enhanced.  

• On increasing the slip velocity (wb) and Froude number (Fr), axial velocity decreases at 

both stenosis and aneurysm segments.  

• Increment in Darcy number (Da) (wall permeability parameter) induces blood flow 

acceleration whereas an increment in porous parameter (α) decreases the velocity. 

• The axial velocity of blood increases with greater Grashof number (Gr) while axial flow 

deceleration and temperature depletion is generated with increasing Reynolds number (Re) 

and Prandtl number (Pr).  

• Increment in heat generation parameter (β) produces strong elevation in axial velocity and 

temperature, both at the stenosis and aneurysm diseased segments. 
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• With increment in arterial inclination angle (λ), velocity is also increased, and the highest 

axial velocity is obtained for the vertical artery case.  

• Axial velocity is always a maximum for the diverging artery compared to the non-tapered 

and converging artery cases. Conversely, magnitudes of temperature are highest for the 

converging artery relative to the diverging and non-tapered cases.  

• Magnitude of velocity, temperature, wall shear stress and volumetric flow rate profiles are 

always comparatively higher at the aneurysm region compared with the stenosis segment.   

The present simulations have revealed some interesting insights into non-Newtonian hybrid nano-

doped blood flow through a catheterized artery featuring both stenosis and aneurysm. Percutaneous 

coronary intervention (PCI) has become the most common revascularization procedure for 

coronary artery disease [49]. The use of stents has reduced the rate of restenosis by preventing 

elastic recoil and adverse remodeling. Electrokinetic viscoelastic blood flows [50] are also of great 

interest in nano-pharmacodynamics. Furthermore, Taylor dispersion is also of great relevance as 

are chemical reaction effects in oxygen diffusing through rheological blood [51]. Future studies 

will be orientated in these directions and may include arterial wall deformability (fluid-structure 

interaction).  
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