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Automated, vision-based early warning systems have been developed to detect behav-

ioural changes in groups of pigs to monitor their health and welfare status. In commercial

settings, automatic recording of feeding behaviour remains a challenge due to problems of

variation in illumination, occlusions and similar appearance of different pigs. Additionally,

such systems, which rely on pig tracking, often overestimate the actual time spent feeding,

due to the inability to identify and/or exclude non-nutritive visits (NNV) to the feeding area.

To tackle these problems, we have developed a robust, deep learning-based feeding

detection method that (a) does not rely on pig tracking and (b) is capable of distinguishing

between feeding and NNV for a group of pigs. We first validated our method using video

footage from a commercial pig farm, under a variety of settings. We demonstrate the

ability of this automated method to identify feeding and NNV behaviour with high accu-

racy (99.4% ± 0.6%). We then tested the method’s ability to detect changes in feeding and

NNV behaviours during a planned period of food restriction. We found that the method

was able to automatically quantify the expected changes in both feeding and NNV be-

haviours. Our method is capable of monitoring robustly and accurately the feeding

behaviour of groups of commercially housed pigs, without the need for additional sensors

or individual marking. This has great potential for application in the early detection of

health and welfare challenges of commercial pigs.

© 2020 The Author(s). Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
behaviour are a key symptom of health and welfare problems

1. Introduction

The accurate quantification of feeding and associated behav-

iours is an important challenge for the early detection of health

and welfare challenges in livestock. Changes in feeding
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(Gonz’alez et al., 2008). Subtler changes, linked to the way in

which the animal consumesan amountof food,maybe of value

for the early detection of health and welfare compromises

(Gonz’alez et al., 2008; Tolkamp et al., 2011).
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Nomenclature

Fi Feeding index

FPFk Number of pigs feeding at a given time-frame

K A given time-frame

N Total number of frames in a video segment

NNVi Non-nutritive visits index

NPFk Number of non-nutritive visits at a given time-

frame

AWERB Animal welfare and ethical review body

CNN Convolutional neural network

FPS Frames per second

GPU Graphical processing unit

NNV Non-nutritive visits

PC Personal computer

RAM Random access memory

RFID Radio frequency identification

RGB Red, green and blue

T-SNE T-distributed stochastic neighbour embedding

TL Transfer learning
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Feeding is a fundamental behaviour which can be quan-

tified in a number of different ways when considering a group

of pigs. These include recording the amount of food

consumed, recording the duration of time spent chewing/

biting food, or recording the amount of time and/or frequency

that the head of the animal is in the food trough. Unlike

actual consummatory behaviour, animals will also visit the

feeding area without consuming any feed, to sample or

explore the area where food is, or should be, distributed. This

is classified as a non-nutritive visit (NNV) (Miller et al., 2019;

Weary et al., 2009). The function of this behaviourmay simply

be to facilitate knowledge about when food is, or should

usually be, available (Weary et al., 2009). For instance, when

pigs experience food deprivation, their feeding motivation

increases, leading to higher activity and heightened interest

in the feeding area; an increased number of NNV may be

observed (Day et al., 1995; Pastorelli et al., 2012). In other

circumstances, where the health or welfare of an animal is

compromised, a decrease in the frequency of NNV may be

apparent prior to larger scale changes in behaviour, such as

in daily food intake (Gonz’alez et al., 2008). To date, quanti-

fying NNV behaviour in group housed animals has only been

possible retrospectively via highly time-consuming manual

analysis and therefore has limited use in a real world

scenario.

Radio Frequency Identification (RFID) provides a suitable

solution for detecting the feeding behaviour of pigs (Cornou

et al., 2008; Marcon et al., 2015). Electronic ear tags are

required to be attached to the pigs long-term, so that their

individual food intake can be calculated when they enter the

feeding area. On a commercial scale, RFID tags may not be a

feasible option as the attachment and detachment of tags

entails additional labour cost, and reduces the commercial

value of pigs in certain international markets (i.e., value of

pig ears). In addition, the implementation of the system

imposes constraints on the feeding space/process. Despite
the low-cost and robustness of infrared sensors in quanti-

fying pig activities (Ni et al., 2017), these systems may over-

estimate the actual time spent feeding due to the inability

to quantify and exclude non-nutritive visits (NNV) to the

feeding area.

Video surveillance is a suitable alternative to RFID for

detecting feeding behaviour with practical diagnostic value,

due to its low cost and the simplicity of its implementation.

The key challenge in this approach is how to extract formative

features from the images from which actionable knowledge

can be reliably extracted (Abolghasemi et al., 2018; Alameer

et al., 2016, 2020). In recent years, there have been some

relevant studies on how to accurately detect pigs housed in

groups. In the context of utilising depth imaging, several

researchers (Matthews et al., 2017; Mittek et al., 2017; Sa et al.,

2019; Yang et al., 2018) have proposed systems that track

individual pigs in a group-housed environment. Despite the

accurate tracking of the latter methods, they have only been

capable of providing short-term (< 20 min s) segments of

behaviours per animal, which may be insufficient for the

quantification of behaviours in a commercial context. RGB

(red, green and blue) cameras have been used to distinguish

the pigs from the background using handcrafted filters of

feature extraction, e.g., Gabor filters (Huang et al., 2018;

Nasirahmadi et al., 2019b). The main drawback for these

image processing methods is the inability to cope with the

variable farm environment (e.g., varying illumination) that

may easily disrupt system performance. To tackle these

challenges, researchers have used convolutional neural net-

works (CNNs) to accurately detect pigs (Nasirahmadi et al.,

2019a; Psota et al., 2019; Zhuang and Zhang, 2019). The dy-

namic filter selection in CNNs allows invariance to different

conditions, e.g., illumination (Ciaparrone et al., 2019; Yang

et al., 2018; Zhu et al., 2020).

In this work, we have developed a 2D camera-based deep

learning method to automatically detect the feeding behav-

iour of groups of pigs under commercial conditions, without

the need for additional sensors or individual marking. The

system operates on grayscale video images, and was trained

to handle the constantly changing farm conditions, e.g.,

lighting conditions, problems of occlusion caused by other

pigs, and insects occluding the image from the camera. Unlike

previous attempts to detect the feeding behaviour of pigs

using traditional pig tracking methods, GoogLeNet-like ar-

chitectures were utilised to monitor a smaller predefined pen

area covering two food troughs and a simple, clearly defined

area in front of those troughs. In this way, the proposed sys-

tem avoids short ID track-related issues, which can continu-

ously distort the accumulative feeding-behaviour recognition

process. Our proposed system also allows feeding to be

accurately identified (i.e., the pig has its head inside the

feeding trough inspected visually from the top of the pen) and

separately, NNV behaviour (i.e., the pig has one front foot, plus

a second foot, within the defined feeding zone but does not

have its head inside the feeding trough) on frame-by-frame

basis, see Fig. 1. As our system focuses only on a subset of

available feeding troughs within a commercial context, we

demonstrate that sufficient data can be collected from this

subset to identify changes associated in feeding behaviours at

group level.
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Fig. 1 e An example that illustrate the difference between feeding and non-nutritive visit (NNV) behaviours and how our

proposed system was developed to tackle this problem.
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2. Materials and methods

2.1. Animals and experimental design

All of the animal work was approved by the Animal Welfare

and Ethical Review Body (AWERB) of Newcastle University.

For this study, 15 pigs (Landrace/Large White synthetic sire

line, Hermitage Seaborough Ltd., North Tawton, UK) were

housed in a single fully-slatted pen (4 m � 2.4 m) from 9 to 14

weeks of age (mass range 33.6e51.0 kg at the start of the trial).

This stocking density is representative of UK commercial

conditions (0.67 m2 per pig). Within the pen, water and food

were available from four nipple drinkers and four feeding

troughs (two of which were fully covered by our camera) with

a black rubber mat (1 m � 0.4 m) covering the floor directly in

front of the troughs. The design of the troughs allowed one

pig of this age range to feed from a trough at any one time.

The black mat area was designated as the feeding zone. A

hanging chain with plastic pipes was also provided to meet

commercial enrichment requirements. Every morning, any

food remaining in the food troughs was removed, weighed

and replaced with a known quantity of new food at approx-

imately 09:30. All pigs were individually numbered using

ear tags and had been previously vaccinated against pneu-

monia at 7 and 28 days of age (1 mL M þ PAC, MSD Animal

Health., Milton Keynes, UK), post-weaning multi systemic

wasting syndrome at 28 days (1mL CircoFLEX, Boehringer

Ingelheim GmbH, Ingelheim, Germany), and Gl€asser’s dis-

ease when 9e10 weeks old (2mL Porcilis Gl€asser vaccine,

MSD Animal Health., Milton Keynes, UK). During the study,

the mean ambient temperature was 26.3 �C (range:

21.9e28.3 �C) and the relative humidity varied from 41 to 54%

(mean: 47%).

Throughout the study, the pigs had free and continuous

access to a commercial food suitable for this age and mass.

However, during week 12 of age (approximately halfway

through the experiment) the pigs were quantitatively

food restricted receiving 80% of their daily ad-libitum food

for 4 consecutive days. Water was available ad-libitum at

all times.
2.2. Equipment set-up and behavioural observations

The full floor area of the pen was captured with two RGB

cameras (Microsoft Kinect for Xbox One, Microsoft, Redmond,

Washington, USA) attached to the ceiling within ingress pro-

tected enclosures and positioned perpendicularly to the pen

floor (as described by Miller et al. (2019)). Videos of the pig

behaviour were recorded at 25 frames s�1 (FPS) with image

framewidth of 640 pixels and frame height of 360 pixels. Using

the sampled frames of our video recordings, manual annota-

tions of feeding and non-nutritive visits (NNV) to the feeding

area were made by a single, highly-trained observer. We used

scan sampling of daily activity for 10 min at the start of each

1/2 h from 06:00e11:40. As the observations focused on

feeding-related behaviours, only the video footage around the

feeding area, i.e., two of the food troughs covered by the camera

and the feeding zone immediately in front of the troughs, and

to the side of the outermost feeding trough, was used for

behavioural analysis and the remaining pen areawas excluded

by an image size reduction factor of 4.6. Following Miller et al.

(2019), a pig was considered to be feeding when it had its head

inside a food trough. A NNVwas scoredwhen a pig entered the

feeding area (i.e., on the black mat or side of outermost food

trough) with two feet (one of which was a front foot) without

ever consuming any food. Following the model validation, we

calculated the feeding index and the NNV index as:

Fi ¼
PN

k¼1FPFk

N
(1)

NNVi ¼
PN

k¼1NPFk

N
(2)

In Equations (1) and (2), Fi andNNVi refer to the feeding and

NNV indices, respectively. N is the total number of frames in a

video segment, while FPFk and NPFk are the number of pigs

feeding and NNVs at the kth frame, respectively. We obtained

the indices for feeding and NNV to ensure that we have

consistent measures across various data frames, e.g., drop-

ping frames throughout recording. Indices of feeding and NNV

were scored between 06:00e12:00 on the day immediately

https://doi.org/10.1016/j.biosystemseng.2020.06.013
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prior to the period of restriction, the four days of food re-

striction, and the day immediately following the restriction

period.

2.3. Algorithm for feeding behaviour recognition

Our method for detecting the feeding and NNV behaviours

used a single deep learning network, based on the GoogLeNet

architecture (Szegedy et al., 2015), which operated on a gray-

scale version of the images. We evaluated two variants of the

architecture: one trained from scratch with a single channel,

called Sc-GoogLeNet, and one architecture pre-trained on

ImageNet and then adapted to work with grayscale images,

called GoogLeNet in our experiments. We also compared the

results of the above models using the manually annotated

RGB images instead of grayscale ones.

2.3.1. Dataset
In order to build a robust system that generalises to a diverse

farm setting (e.g., pigs with different body features or sizes),
Fig. 2 e Examples of the image classes of pig behaviour in our da

(i.e., a pig head in the trough), a pig performing non-nutritive vis

on the area defined by the mat under the trough) or none (i.e., a
we selected varied examples of pigs exhibiting feeding and

NNV behaviour. We included images of pigs on top of each

other and images with reduced quality due to direct exposure

to sunlight or insects partially occluding the camera lenses.

Sample frames were selected from our database of video

sequences to construct a data set for training, validation and

testing. Our dataset comprised a total of 34375 images, divided

into seven categories, where the number given (1 or 2) repre-

sents the number of pigs performing the listed behaviour. The

behaviour classes were: 1 Pig Feeding (2270 images), 1 Feeding

1 NNV (378 images), 1 NNV (230 images), 2 Feeding (27736

images), 2 Feeding 1 NNV (933 images), 2 NNV (2688 images)

and None (where none of the above scenarios occurred, 140

images). Figure 2 shows two examples from each class to

reflect the richness of this dataset. It consists of a variety of pig

postures, such as lying, standing, bowing, looking up, pigs

standing on each other and pigs in direct contact with one

anotherwith different illumination conditions. As a result, the

dataset used in this work can be considered diverse and

representative of a commercial pig pen. This described
taset. The behaviours of interest were classified as feeding

it (NNV) (i.e., a pig had two of its legs, including one front leg

pig was not feeding or performing a NNV).

https://doi.org/10.1016/j.biosystemseng.2020.06.013
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dataset was sampled from our food restriction trial in late

spring/early summer and was only used for training and

cross-validation purposes. In addition to the above dataset,

we annotated a further dataset with a total of 7496 images for

testing; this dataset was randomly sampled from the same

study, however, at different dates to test for model general-

isation to unseen dates of the same trial.

Furthermore, we collected and annotated two further

datasets for validation purposes with the following

characteristics:

� Data captured from two other commercial pig trials that

were carried out at different time periods during the

year, i.e.,winter and early spring, resulting in changes in

natural light between datasets. Variations in the data

also include trough positioning within the pen and pig

sizes i.e., mean mass of pigs (kg): 31.89 and 34.17. The

total number of images in this collated dataset was 463;

behaviour classes were: 1 pig Feeding (47 images), 1

Feeding 1 NNV (92 images), 1 NNV (10 images), 2 Feeding

(267 images), 2 Feeding 1 NNV (15 images), 2 NNV (7

images) and None (where none of the above scenarios

occurred, 25 images).

� A manually customised dataset with high exposure to

sunlight was also used. Images were sampled from

random days in the afternoon when the sunlight was

illuminating the feeding area. The total number of im-

ages in this collated dataset was 444; behaviour classes

were: 1 pig Feeding (128 images), 1 Feeding 1 NNV (3

images), 1 NNV (261 images), 2 Feeding (14 images), 2

NNV (16 images) and None (where none of the above

scenarios occurred, 22 images).
Fig. 3 e Architecture proposed for the automatic recognition of

CNN model was (a, b) trained/validated with the manual annot

then (c) utilised to detect changes in said behaviours from a data

graph on the behavioural observation that shows the cumulati

compromise.
2.3.2. System architecture
We used the pipeline in Fig. 3 to train and validate our system.

To test our hypothesis that suggests the redundancy or

negative impact of the colour (RGB) channels for detecting

feeding postures of pigs (i.e., diverting the network attention

to pig colours rather than feeding postures), we converted all

input images into a single channel of grayscale representa-

tion. Consequently, we redesigned a network with a similar

architecture to GoogLeNet (Szegedy et al., 2015), however with

a single input channel, referred to as Sc-GoogLeNet, alongside

the traditional GoogLeNet architecture with three input

channels. In order to use the three-channel architecture we

simply replicated the data of the grayscale channel three

times. This apparent redundancy has an advantage: we can

leverage a transfer learning (TL) strategy by using a network

that has been pre-trained on the large ImageNet database

(Deng et al., 2009). As the experiments will show, this strategy

performs better than Sc-GoogleNet or the traditional Goo-

gLeNet architecture fed with RGB data. Similarly, we did not

apply any augmentation to the input data due to the sensi-

tivity of this task to common image transformations, such as

reflection, rotation, scaling, translation and shearing. The

rationale for selecting the GoogLeNet architecture is because

its small size, compared to other standard CNN architectures,

is translated into shorter prediction times, enabling our

method to be close to real-time in prediction speed: the pre-

diction time for processing a single image is 0.019e0.021 s.

Furthermore, this network architecture achieves high ac-

curacies and low error rate on well-known datasets in ma-

chine vision, such as ImageNet dataset (Deng et al., 2009). The

network depth, defined as the largest number of sequential

convolutional or fully connected layers on a path from the
feeding and non-nutritive feeding behaviours in pigs. The

ation of feeding and non-nutritive visit behaviours. It was

stream in days of control and food restriction. (d) Example

ve number of feeder visits in periods of health/welfare

https://doi.org/10.1016/j.biosystemseng.2020.06.013
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input layer to the output layer, is 22 layers with around 7

million parameters. We selected the hyper-parameters (e.g.,

solver, learning rate schedule settings, batch size, and the

maximum number of epochs) for training the network using

nested cross-validation. Finally, a softmax layer was utilised

to perform the final classification predictions.

The architecture of the GoogLeNet model consists of con-

volutional layers, max-pooling layers, relu layers, cross

channel normalisation layers, dropout layers and a fully-

connected layer. It also incorporates inception modules, see

Fig. 4, which create a more in-depth network without serially

stackingmore layers. At the inceptionmodules, varied sizes of

convolutional filters were implemented to capture features

with different levels of abstraction. Our network design uti-

lises nine inception modules. Filters with larger size extract

high-level features, while those with lower size extract fea-

tures at a lower level. For example, the 11 convolution filters at

the first stage of the module activate to correlated features in

the same region. It is also used for dimensionality reduction

where it can efficiently control the depth of the input features.

Conversely, the 33 and 55 convolutions activate to more so-

phisticated features. Finally, the output is formed by concat-

enating the feature maps from all convolutions using the

depth concatenation layer (Szegedy et al., 2015).

The model was implemented in Matlab R2019a on core i7

processor (2.5 GHz) PC using 16 G RAM and NVIDIA GeForce

GTX 970 M Graphical processing unit (GPU).

2.3.3. Training and evaluation procedure
To validate our model performance, we used stratified 10-fold

cross-validation. This means each fold has approximately the
Fig. 4 e The structure of the inception modules used in this work

and relu layers encourages the network to capture features wit

modules were used in all architectures provided in this work.
same class distribution as in the whole set. This standard

technique for validating the model performance produces

accurate estimations for the generalisation to independent

datasets (Kohavi, 1995; Alameer et al., 2015). The image

dataset was randomly partitioned into ten equal-sized sub-

sampleswith similar class distribution as thewhole set. Of the

10 subsamples, one subsample was used as the validation

data for testing the model, and the remaining 9 subsamples

were used as training data. The cross-validation process was

then repeated 10 times, with each of the 10 subsamples used

only once as a validation data. All models were trained and

evaluated using the same data partitions.

In addition to the above cross-validation, we tested the

model performance using sampled data frames from three

different days of the trial that had not been used for training.

We selected key dateswherewe predicted a change in feeding-

associated behaviours to be present: e.g. baseline (standard

feeding pattern for the animals is shown) vs. day 4 of food

restriction (predicted change in feeding-associated behaviours

due to known limited availability of food and therefore

competition for resources) vs. day 1 of return to ad-libitum

feeding (predicted change in feeding-associated behaviours as

pigs can freely access food following a period of restriction and

there is no longer competition for resources). This would

demonstrate how the model generalises to different scenarios

linked with e.g., crowding at the feeder during food restriction

when there is competition for resources.

Finally, we validated our primary model performance

against other challenging conditions using the two customised

datasets captured in different time periods of the year and

with high exposure to sunlight.
. The above combination of convolutional filters, max-pool

h different level of abstraction. A total of nine inception

https://doi.org/10.1016/j.biosystemseng.2020.06.013
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2.3.4. Visualisation methods
To understand how our trained model misclassified images,

we examined the raw activations of higher layers of our

model.We then inspectedwhich features the network learned

by comparing areas of activation with the original mis-

classified image. We normalised the activations such that the

minimum activation is 0 and the maximum is 1. We investi-

gated the output of the “interesting channels” by program-

matically examining only channels with maximum

activations.

In addition to directly visualising raw feature maps, we

generated occlusion sensitivity maps (Zeiler and Fergus, 2014)

to gain a high-level understanding of the biases of the network

toward certain classes. We perturbed small segments of the

image by applying a square-shaped occluding mask. We then

moved the mask across the whole image, and measured the

change in probability score for a given class as a function of

mask position. When an indicative feature (to a certain class)

of the image is occluded, the probability score of that class

falls accordingly.

Finally, we visualised the high-dimensional activations of

our model using t-distributed stochastic neighbour embed-

ding (t-SNE) (Maaten and Hinton, 2008). We used this tech-

nique to visualise how our model changes the representation

of input data as it passes through the network layers. It pre-

serves distances such that points near each other in the high-

dimensional space are also near each other in the 2-

dimensional proximity.
3. Results

Ad-libitum food intake of the pigs at 12 weeks of age ranged

from 0.059 to 0.070 kg [feed] kg�1 [initial total pen body mass].

In contrast, the restricted daily intake was 0.047 kg [feed] kg�1

[initial total pen body mass]. No adverse effects on health

were recorded at any point before, during or after the food

restriction protocol. Table 1 shows the parameters used to

train our model. After training, our selected model accurately

reported the number of pigs that exhibited feeding and NNV

behaviour.

3.1. Behaviour observations

3.1.1. Feeding behaviour
We used our model to inspect the feeding and NNV behaviour

during normal, baseline conditions and a planned period of
Table 1 e Parameter selection and their values used to
train the proposed architectures. The learning rate was
scheduled to decay by 0.05 every two epochs.

Parameter Value

Solver Adam optimizer

Initial Learn Rate 3.0 e�04

Learning Rate Schedule Settings Drop by 0.05 every 2 epochs

L2 Regularization 1.0 e�04

Max number of epoch 10

Size of mini-batch 64

Input size 224 � 224 pixels
food restriction. Figure 5 shows the feeding index across the

baseline day and across the 4th day of food restriction at an

hourly level from 06:00e12:00. Between 06:00 and 07:00, pigs

spend very low amounts of time eating on both baseline and

food restriction days. However, across the rest of themorning,

the pigs spend significantly more time feeding on the food

restricted day than during the non-restricted day, with an

increase shown after 9.30am. This coincides with when the

pigs were providedwith their allocated amount of food for the

day. Feeding at this timewould be a priority for the animals as

they would anticipate the food would not be present in suffi-

cient quantities to meet their needs later on the day, and thus

the pigs are competing for resources at this time point. During

baseline days, the food was topped up at exactly the same

time of day, but as the food was freely available at all times,

only limited feeding behaviour was observed during this

specific time frame.

Figure 6a shows the calculated feeding index per day

across the study period. Following the initial food restriction,

the feeding index increased across the 4 day test period. A

Wilcoxon Signed-Ranks test showed that the feeding index

across day 4 of the food restriction period was significantly

higher than at baseline (p ¼ 0.013). This shows that despite

less food being available, the pigswere spending an increasing

amount of time with their heads in the food trough. This is

probably due to the pigs checking the troughs thoroughly to

see if food has been replenishedwhen they are feeling hungry.

The pigs may also be spending an increasing amount of time

ensuring any small remaining amounts of food have been

removed from the back and sides of the food trough. When

feeding returned to ad-libitum, an immediate decrease in

feeding indexwas seen (p¼ 0.5186) as the pigs were easily able

to consume the full amount of food they required and thus

had no need to make repeat trips to the food trough to check

for further food availability. However, this decrease was

relatively small, as the pigs consumed more food than on the

first three restricted days. This could be in anticipation of re-

sources again becoming limited.

3.1.2. Non-nutritive visits (NNV) behaviour
Figure 6b shows the calculated NNV index per day across the

study period. Immediately following food restriction an in-

crease can be seen in the duration of time spent performing

NNV, as the pigs enter the feeding area and are unable to feed

due to limited resource availability. Over the following three

days when the food continued to be restricted, the duration

spent performing NNVs decreased as the pigs learn that once

the food has been consumed, no more will be made available

until the following morning. This was supported by a Wil-

coxon Signed-Ranks test that indicated that the NNV index

during day 4 of the restricted food test periodwas significantly

lower than that of the baseline (p ¼ 0.034). When ad-libitum

feeding was restored, the duration spent performing NNVs

was equivalent to that of baseline period as this behaviour

returns to control levels.

3.2. Behaviour-monitoring validation

Cross-validation was used to determine the prediction ca-

pacity of our automated feeding behaviour annotation
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Fig. 5 e The feeding index per hour during the baseline

day, when the pigs were fed ad-libitum and during the 4th

day of food restriction. In the latter case the pigs were

provided with their food allowance at 9.30. The higher the

value of the feeding index the more time spent feeding.

The overall feeding indices were 0.18 and 1.15 for the

baseline and the 4th day of food restriction, respectively.
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system. This validation showed that our models recognised

the feeding and NNV behaviours of pigs with an accuracy of

99.4% (for pre-trained GoogLeNet) and 98.7% (for Sc-

GoogLeNet) using stratified 10-folds cross-validation. With

similar experimental settings, lower accuracies were scored

using the RGB data: 99.2%with the pre-trained GoogLeNet and

96.46% with the non pre-trained GoogLeNet.

The performance of the pre-trained architecture with grey-

scale imaging, with the highest accuracies, is described in

further detail using the confusion matrix in Fig. 7, which

shows the accumulative information of the actual and
Fig. 6 e The calculated (a) feeding and (b) non-nutritive visit (NN

ad-libitum feeding days (blue bars) correspond to the days imme

The higher the Feeding and NNV index the more behaviour is s

references to color in this figure legend, the reader is referred t
predicted classifications. The average model accuracy in rec-

ognising the feeding behaviour was 99.5%, while the average

accuracy in identifying NNV was 99.4%.

Interestingly, our proposed systems exhibited logical bia-

ses between certain classes. For example, the system mis-

classified “2 Feeding” in favour of “1 Feeding 1 NNV” or “2

Feeding 1 NNV”, each on five occasions. We also observed

similar bias between “2 NNV” class and “None” class. Visually

discriminating between these classes is challenging even for

humans (e.g., due to the head of the pig obscuring the front

feet from some angles) and manual annotation of these ex-

amples required more attention. Additionally, the confusion

matrix showed that the “2 Feeding” class comprised more

images than other classes. This pattern would be expected to

occur more often given there were more pigs in the pen than

available feeding spaces and the feeder design allowing a

maximum of one pig/feeder.

For each frame, we produced a label that described the

current feeding-associated behaviours, and the predicted

scores that reflected the system confidence in making de-

cisions. Figure 8 shows the class scores produced in two sce-

narios taken from two different groups. In the first example,

themodel was fully confident of the feeding status. It predicted

a maximum score of 1. In the second example, however, the

model was less confident. It predicted scores of 0.67 and 0.33

for the classes “2 Feeding 1 NNV” and “2 Feeding”, respectively.

In either case, the estimation for the number of feeder pigswas

correct, i.e., 2 feeders. Interestingly, the third pig was on the

verge of the feeding trough area with only one leg visible.

3.3. Performance evaluation on the test set

To further validate our model performance, we used an in-

dependent dataset consisting of 7496 images from our sur-

veillance video sequence for testing. The images were
V) behaviour indices per day across the study period. The

diately before and after the food restriction protocol period.

hown during the day in question. (For interpretation of the

o the Web version of this article.)
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Fig. 7 e Confusionmatrix chart. The true and predicted behaviours were classified as feeding (i.e., a pig head in the tough), a

pig performing non-nutritive visit (NNV) (i.e., a pig had two of its legs, including one front leg on the area defined by the mat

under the trough) or none (i.e., a pig was not feeding or performing a NNV). The dataset had a maximum of up to 15 pigs

performing these behaviours.
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sampled randomly from three alternative dates of the study

period. Table 2 shows the average classification accuracy and

standard deviation per class for these dates. The results were

consistent for all dates tested. Once again, themodel using the

greyscale version of the data and a pre-trained GoogLeNet

achieved the highest performance. Therefore, we utilised this

model architecture as a primary model for all the experi-

mental trials. Results from the primary model reflect its ca-

pacity in generalising to pigs of larger body sizes. For instance,

the mean mass of the pigs was 41.56 ± 1.038 kg when we

trained our model. It went up by 8% on day 2 of the food re-

striction period with apparent visual differences. Finally, the

model showed consistent performance in classifying the two

customised datasets for validation to (a) other batches with

pigs of different sizes and (b) high exposure of sunlight, with

an average classification accuracy of 97.1% (±1.98%) and 96.4%

(±2.17%), respectively (Table 2).

3.4. Visualising activations

3.4.1. Raw feature maps
Each layer of our network architecture consists of many 2-D

arrays called “channels”. Channels in the deeper layers had

learned sophisticated features like the pig head, particularly

when approaching the feeding trough. Here, we identified the

location of the most prominent features to understand how
the network behaves under different circumstances, for

instance, misclassification between particular classes, Fig. 9.

The black pixels in this figure represent strong negative acti-

vations, while white pixels represent strong positive activa-

tions. We mapped pixel positions in the activation map such

that it corresponds to the same position in the original image.

The white pixels indicate that the channel is strongly acti-

vated at that position, for instance, at the pigs’ heads during

feeding. To perform this visualisationmethod,we selected the

activations in the second convolutional layer of the fourth

inception module; with filter size of (5 � 5). Empirical analysis

suggested that the output of this layer was more informative

than earlier and/or more advanced layers.

Figure 9 shows three examples of misclassified images. In

Fig. 9a, the network misclassified the status of the pig exhib-

iting the NNV behaviour due to the excessive sunlight,

therefore it was predicted as “2 Feeding”. Similar scenarios

were observed in part b and c of Fig. 9, this time due to head

and the body occlusion, respectively. These examples

demonstrate how the network misclassified these rare sce-

narios of excessive light exposure and occlusion.

3.4.2. Occlusion sensitivity maps
In this experimental analysis, we applied artificial occlusions

to further investigate our model behaviour. Figure 10

highlights the image regions with positive, or negative,
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Fig. 8 e The labels and posterior probabilities for two image samples. The snapshot in (a) our system was 100% confident of

the label “1 Feeding”, while in (b) it was 67% confident of the label “2 Feeding 1 NNV”.
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contribution to the score for the “2 Feeding” class. Red areas

indicate higher level of positive influence in the decision-

making process. Occluding these areas negatively affected

the model classification. Interestingly, both the occlusion

sensitivity maps and raw-feature map equally indicate that

pigs’ heads in the troughs provide the strongest evidence for

identifying pigs’ feeding behaviour. On the other hand,

occluding the blue areas of the image only increased the score

for the “2 Feeding” class. This indicates that the blue areas of

the map are evidence of different classes.

Despite the different functioning mechanism of the above

visualisation techniques, the results indicate that ourmodel is

learning formative features to detect the feeding behaviour

of pigs, thereby pulling its attention to pertinent spots of the

image.

3.4.3. High-dimensional features
In Fig. 11, we visualised the high-dimensional activations of

our model with t-SNE. Tight clusters in the t-SNE plot corre-

spond to classes that the network classifies correctly. Activa-

tions from first layers, Fig. 11a, do not show apparent

clustering by class as it does not contain semantic content.

However, activations from deeper layers, Fig. 11b, clustered

points more distinctly; in particular, the softmax layer shown

in Fig. 11c. Interestingly, observations that are semantically

similar, e.g., “1 NNV” and “2 NNV”, are near each other in the

softmax activations space. This indicates that our model has

formulated a high level of understanding of the feeding

associated behaviours of pigs which is reflected in the t-SNE

two-dimensional space.
Table 2eAverage classification accuracy (%)± standard deviati
training (i.e., training from scratch) correspond to the mechani
and gray-scaling outperforms other proposed architectures by

Time Point Grey Sca

TL

Baseline 97.67 ± 2.217

Day 4 food restriction 98.02 ± 1.83

Day returned to ad-libitum feeding 97.15 ± 3.35

Other batches 97.10 ± 1.98

Sunlight exposure 96.40 ± 2.17
4. Discussion

Overall, our paper makes five major contributions to the

detection of feeding-associated behaviours in commercially

housed pigs:

1. To enhance the speed and accuracy of existing

methods, we reframed the task to directly infer behav-

iours from images, i.e., eliminating the detection and

tracking stages.

2. We proposed a system that does not put particular

emphasis on the pig head (e.g., tracking the pig head) to

identify the feeding and NNV behaviour, as previous

studies suggest that the detection of pig behaviours is

not sustainable when the head is obscured (Psota et al.,

2019; Yang et al., 2018).

3. We identified image components (RGB/grayscale) of

most relevance and for the first time showed that im-

ages with one channel of grayscale aremore effective in

identifying animal feeding postures. Additionally, we

identified an effective CNN-architecture to handle our

data and we configured two variants of the GoogLeNet

architecture to a) leverage transfer learning; b) train

from scratch.

4. Using appropriate visualisation methods, we have

shown how our deep learning architecture has learnt to

capture patterns that are coherent from a domain

perspective, being semantically relevant with the

detection of feeding behaviour in pigs.
on (%) for the test data. TL (i.e., transfer learning) and no pre-
sms used to train models. Our primary model with both TL
a large margin in all scenarios.

le RGB Scale

Scratch TL Scratch

91.77 ± 8.02 92.23 ± 6.89 90.02 ± 9.41

92.40 ± 7.21 97.93 ± 1.58 92.34 ± 7.31

92.32 ± 6.00 94.20 ± 8.65 86.25 ± 18.12

90.71 ± 7.43 92.66 ± 1.87 90.28 ± 7.51

93.47 ± 3.85 94.82 ± 2.93 90.77 ± 4.16
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Fig. 9 e Visualising higher layer activation of misclassified images, due to (a) lighting conditions, (b) pig head occlusion and

(c) pig full body occlusion. In all cases the ground truth annotation is 2 pigs feeding and 1 exhibiting non-nutritive visit

(NNV) behaviour. In all cases the prediction is 2 pigs feeding.
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5. We demonstrated the capabilities of our method to

detect changes in feeding-associated behaviours

following a disruption to the pig feeding regime.

We showed that our method is robust enough to apply

under a variety of conditions, as we applied it on a different

batch that contained pigs of different sizes husbanded under

different conditions, and under conditions of very different

light intensities. When compared with currently available

approaches used to detect and track pigs (Yang et al., 2018;

Zhang et al., 2018), our system was faster (with a significant

time reduction of ~95% per frame) and more robust to com-

mon challenges in commercial farm settings, such as the
Fig. 10 e Occlusion sensitivity maps highlighting positive/nega

0 corresponds to areas with a negative contribution, and a maxi
short term tracking (i.e., losing track of a pig after a relatively

short time) and alterations in farm conditions, e.g., lighting

(Nasirahmadi et al., 2019b). To overcome the above chal-

lenges, we bypassed the tracking stage and directly inferred

behaviours of pigs in the feeding area; we trained our system

to generalise to a variety of conditions, e.g., lighting. Results

show that our method provides sustainable and long-term

segments of behaviour in “noisy” environments where pigs

are more likely to be touching and frequently occluded by

each other, overcoming problems associated with systems

that rely on pig tracking to identify behaviours, e.g (Mittek

et al., 2017). Furthermore, we tackled limitations associated

with over-estimating the time spent feeding in pigs (Matthews
tive areas in “2 Feeding” class. A minimum value of

mum value of 1 denotes areas with a positive contribution.
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Fig. 11 e Representing network behaviour with t-SNE. Activations of the baseline dataset are visualised for (a) the first MAX

pooling layer, (b) final convolutional layer and (c) the SoftMax layer. Each colour denotes a class of images; tight clusters of

the same colour indicate correct classifications. The high-dimensional features of the network activations are mapped into

two dimensions using t-SNE. This visualisation method allows tracking the network representation of input data while it

sifts through the networks’ layers.
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et al., 2017). The latter approach utilised the orientation and

location of the pig to estimate feeding behaviour, therefore, it

misclassifies scenarios where pigs are performing NNV

behaviour (see Fig. 1). In contrast, our method performs clas-

sification on a frame-by-frame basis and therefore is capable

of accurately distinguishing between feeding and NNV for a

group of pigs.

The proposed system does not put particular emphasis on

the pig head to identify behaviours, i.e., it does not require the

location of the pig head to be detected in each frame sequence

(Yang et al., 2018). Instead, our method detects the feeding-

associated behaviours based on the whole structural fea-

tures of the pig (e.g., while feeding) even when the head is

entirely invisible (i.e., in the feeding trough). Moreover, an

added benefit of the simpler system is efficiency: our method

takes only 0.02 s on average to classify an image, which is

about 2.5 x faster than the detection-based methods (Yang

et al., 2018). Compared with segmentation-based approaches

(Kashiha et al., 2013), our method handles situations where

pigs are partially occluded or close to each other more effi-

ciently. Our proposed method does not rely on segmenting

pigs using its contour information that is sensitive to noise. It

extracts high-level features of the entire pig posture to esti-

mate their feeding status.

The developed system is capable of directly extracting the

feeding associated behaviours of pigs without any post-

processing stages, e.g., processing the trajectory of individual

pigs. Thismechanismallowed long-segments of behaviours to

be obtained in real-time, i.e., 50 frames s�1. In order to

extrapolate this approach to encompass more pigs (þ2 pigs

feeding), we may define new classes of images, such as 3

feeding plus 1 NNV. Practically, this can be done by either

utilising transfer learning (i.e., storing knowledge gainedwhile
adding extra-classes), or by redefining the dataset and

following the methods described in this paper. GoogLeNet

architecture is capable of coping with an increased number of

classes. Themodel has shownhigh performance in classifying

a very large number of classes, e.g., 1000 classes in ImageNet

dataset (Deng et al., 2009; Szegedy et al., 2015).

We trained/evaluated the model using a relatively large

dataset of ~ 35000 annotated images. In comparison with

other relevant methods in the field, where < 3000 images have

been used (Nasirahmadi et al., 2019b; Psota et al., 2019; Yang

et al., 2018), it is the largest annotated dataset by a big

margin thus far. Using this dataset, we demonstrated that our

proposed model can apply in a variety of conditions, such as

fluctuations in natural lighting and pig body size. Further-

more, our proposed system does not require pigs to be indi-

viduallymarked (e.g., sprayedwith numbers or taggedwith an

RFID) and therefore reduces the time and cost required for

manual tasks. The introduced architectures, GoogLeNet and

Sc-GoogLeNet, provide a trade-off between classification ac-

curacy and network size. GoogLeNet provided superior per-

formance by being able to leverage the knowledge captured by

a network pretrained on ImageNet, despite being a more

complex architecture with more weights to train. Finally, grey

scaling the data has shown to be an effective pre-processing

step leading to superior performance when compared to a

network trained from the raw RGB data. Training our model

with grey-scale data pulled the network attention exclusively

to the pig feeding postures, rather than the colours and

markings of individual pigs. Adopting a pre-trained GoogLe-

Net architecture to the grayscale data achieved the highest

performances. This finding had led us to conclude that the

colour channels may be redundant in identifying the feeding

postures of pigs. The GoogLeNet architecture provided
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optimum trade-off between classification accuracy (99.4%),

speed (50 FPS) and size (21.8 MB). Faster network architec-

tures, such as AlexNet (Krizhevsky et al., 2012) and Squeeze-

Net (Iandola et al., 2016), may compromise classification

accuracy and/or network size.

The fast prediction time (0.02 s image�1 or 50 frames s�1;

using a 2.5 GHz core i7 processor with NVIDIA GeForce GTX

970 M GPU) and a relatively simple architecture (a size of

21.8 MB with only 22 layers) of the developed GoogLeNet

architecture, facilitates onefarm scale deployment. Practically,

this can be done either: (a) embedding small PCs, e.g., Rasp-

berry Pi, to each camera, with both devices housed in a pro-

tected enclosure, e.g., ingress (Matthews et al., 2017); or (b) by

utilising a data capture infrastructure that sends the images

from all deployed cameras to a centralised location (cloud

computing or high-performance computing, e.g., core i9 pro-

cessor (4.3 GHz) PC using (8 � 16) G RAM and NVIDIA GeForce

RTX 2080Ti GPU)where themethod runs. The former approach

may produce lower frame rate processing (< 50 frames s�1) due

to reduced capabilities of using GPU processing.

Quantifying feeding-associated behaviours is of great value

for the early detection of compromises to the health and

welfare of commercial pigs (Gonz’alez et al., 2008; Tolkamp et

al., 2011). Distinguishing between feeding and NNV behav-

iours in such a quantification may have specific diagnostic

value (Miller et al., 2019). The system developed here can

distinguish between the feeding and NNV behaviours

instantaneously in commercial stocking conditions without

requiring knowledge on the previous locations of the pigs, and

thus goes beyond previous work on the detection of feeding

behaviour of livestock (Yang et al., 2018). Previous research

has demonstrated the value of changes in NNV behaviour.

Reduced NNV behaviour has been shown to be a sensitive

indicator of declining health in transgenic mouse models of

Alzheimer’s and Huntington’s disease (Codita et al., 2010;

Oakeshott et al., 2011; Rudenko et al., 2009), and respiratory

disease in calves (Svensson and Jensen, 2007). Therefore,

changes in NNV behaviour may also have a value in the

detection of health and welfare problems, over and above the

changes in (consummatory) feeding behaviour. To our

knowledge, no previous attempt has been made to detect the

feeding and NNV behaviours of pigs directly from 2D images.

In this work, the black mat area was only used to identify

the boundaries of the NNV area. This is relevant for both

manual scoring by an animal behaviour scientist and also the

automated method. If this system was to be implemented in

another pen or on another farm, a simple indicator (e.g., spray

paint) could be placed on the floor area to indicate the

boundary of the NNV zone. Removing the mat would have no

effect in quantifying the feeding behaviour of pigs.

We specifically designed our trial to provide a model akin

to the early stages of a heath/welfare compromises in a group

of commercial pigs. When ad-libitum feeding stopped, the pen

as a whole was provided with 80% of the food they

would usually consume. We predicted that, at this level of

food restriction, disruption to the behaviour would be present,

but not at a level significant enough to result in overt, imme-

diately identifiable changes in behaviour that would been

seen pen side. Our study provided us with a data set that

showed subtle changes in behaviour that would be of a similar
level to subtle behavioural changes in the early stage of

health/welfare compromises (Kyriazakis and Tolkamp, 2010).

Changes were detectable even when we monitored only a

subset of the feeding troughs. Such changes are very difficult

to detect by human visual inspection on large-scale com-

mercial farms, thus warranting the development of this sys-

tem that can monitor and detect such important changes in

the patterns of feeding behaviour, without monitoring the

entire pen.
5. Conclusions

Automation in animal husbandry is a tool that has the capa-

bility for capturing early changes in key behaviours that occur

due to welfare and health compromises. Such changes are

impractical to quantify manually and early detection, through

automation, allows for timely intervention to prevent a

further reduction in animal welfare and associated economic

losses. This paper proposed a novel solution to resolve exist-

ing problems in automating the detection of feeding-

associated behaviours in pigs. Using video surveillance, we

have developed amethod to automaticallymonitor and report

the feeding and NNV behaviour of group-housed pigs under

commercial settings. We demonstrated a novel automated

system that can detect these subtle feeding behavioural

changes with over 99.4% accuracy using only visual surveil-

lance. The proposed method can operate in real-time pro-

cessing up to 50 frames s�1, and it does not require pigs to be

fitted with sensors or individually marked. The paper pro-

vided a practical implementation for detecting the feeding

behaviour of pigs using only video surveillance and suitable to

be used in commercial settings, as it applied in a variety of

husbandry and management conditions.
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