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A B S T R A C T   

Friction tuned mass dampers (FTMDs) are widely used to control the displacement of structures located in 
seismically active areas. Typically, the frequency and friction ratios of FTMDs are tuned up during design, but 
this task is complex if real ground motion records are considered. This article proposes a novel and accurate 
approach to calculate optimum parameters of FTMDs for controlling the displacements of both single degree of 
freedom (SDOF) systems and multi-story structural frames subjected to real ground motion records. In this study, 
the SDOF displacement and two FTMD parameters (frequency ratio and friction ratio) are first optimized 
simultaneously using a Particle Swarm Optimization (PSO) algorithm. A series of sensitivity analyses are then 
carried out to examine the effect of different structural features (damper movement, variations of optimized 
parameters and damping) on the optimized SDOF displacements and FTMD parameters given by the PSO. It is 
shown that, compared to a more established method available in the literature, the PSO algorithm reduces the 
SDOF displacements by an additional 21% on average. The PSO is then used to obtain optimum parameters of 
FTMDs and TMDs connected to four moment-resisting frames, and the results from the frames are compared to 
those from equivalent SDOF systems. This article contributes towards providing more suitable optimization tools 
for structures fitted with FTMDs, which in turn can lead to more efficient design methods for dampers.   
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1. Introduction 

Tuned mass dampers (TMDs) are used in structures to reduce the 
vibrations induced by strong earthquakes. Traditionally, TMDs are fitted 
with viscous damping elements that help the damper remain in the 
linear (elastic) stage, thus simplifying its design. However, TMDs tend to 
be expensive, which in turn hinders their wide adoption in the structural 
control of structures. Moreover, traditional TMDs with viscous damping 
elements are prone to aging and their behavior is temperature- 

dependent. To bypass these drawbacks, friction tuned mass dampers 
(FTMDs) with dry friction elements were proposed in the past [1]. The 
use of a friction damping mechanism in the damper has practical ad-
vantages such as ease of implementation, low cost and minimal main-
tenance. In general, FTMDs can be grouped into two types: i) 
translational FTMDs, in which the damper moves parallel to the move-
ment of the main structure and dissipates energy through an 
elasto-plastic force, and ii) pendulum FTMDs, in which the mass of the 
damper moves (rolls or slides) on a surface by taking advantage of 
gravity. 

Previous research has examined the effectiveness of translational 
FTMDs at controlling the response of structures. For instance, Ricciar-
delli and Vickery [2] investigated the steady state response of a single 
degree of freedom (SDOF) structure with a TMD with linear stiffness and 
dry friction elements (which is essentially a FTMD). Ricciardelli and 
Vickery also proposed closed-form expressions to calculate the opti-
mized FTMD parameters (based on minimum structural displacements 
as objective function) when the system was subjected to harmonic force. 
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Nasr et al. [3] subsequently reformulated Ricciardelli and Vickery ex-
pressions for a system with viscous damping. Lee et al. [4] demonstrated 
that, with a proper design, FTMDs can have both mass damper and 
friction damper characteristics, thus enhancing its structural perfor-
mance. Lin et al. [5,6] studied semi-active FTMD models and proved 
experimentally that their adopted solution was effective at controlling 
vibrations in SDOF structures. FTMDs also proved effective at mitigating 
the vibrations of bladelike structures, but only when these structures are 
lightly damped [7]. On the other hand, pendulum-type FTMDs have 
been less studied [8–12] mainly due to their complexity in design and 
construction. For example, Chung et al. [13] presented optimal design 
solutions for friction pendulum tuned mass damper with varying friction 
coefficients. Past studies have also examined the effect of the type of 
load on the response of structures fitted with FTMDs. Gewei and Basu 
[14] analyzed SDOF systems with FTMDs subjected to harmonic load. 
Pisal and Jangid [15] investigated the influence of the FTMDs’ main 
parameters on the response of SDOFs subjected to harmonic excitations 
and ground motion records. Dogan and Cigeroglu [16] used the har-
monic balance method to obtain steady state solutions of two TMDs 
equipped with dry friction dampers in the frequency domain. Kim and 
Lee [17] used four configurations of frictional multiple tuned mass 
dampers (FMTMDs) and discussed their practical applications. Whilst 
the understanding the performance of FTMDs subjected to ground mo-
tion excitations is necessary to determine the effectiveness of such de-
vices, only a few studies have actually focused on this aspect [18–20]. 
Moreover, FTMDs tend to behave in a nonlinear manner when con-
trolling vibrations. Such nonlinear behavior complicates the calculation 
of a system’s response because the simple mathematical methods used to 
analyze TMDs cannot be applied to FTMDs. 

In real practice, the main parameters of TMDs (i.e. mass, stiffness and 
damping) have to be optimized during design to meet an optimum level 
of response. Previous research has successfully optimized the parame-
ters of TMDs using classical methods [21–24]. However, while such 
methods can be easily applied to periodic excitations (e.g. sinusoidal), 
their application to random excitations (e.g. ground motion records) is 
not trivial. Other alternative techniques have been proposed to optimize 
the TMDs parameters including: genetic algorithms [25], bat algorithms 
[26], ant colony algorithms [27], flower pollination algorithms [28], 
and harmony searches [29]. Bakre and Jangid [30] extracted optimum 
parameters for damped SDOF systems using harmony search algorithms 
and compared their results with classical closed-form mathematical 
solutions. Likewise, Marano et al. [31] proposed an approach to opti-
mize the parameters of TMDs but the damper’s mass was kept as a 
variable in the optimization process. Marano et al. concluded that the 
optimized damper’s mass was too large and thus unachievable in real 
practice, which suggests that the damper’s mass can be fixed (within 
reasonable values) during design. Particle Swarm Optimization (PSO) 
has also proved successful in TMD optimization problems [32,33]. 
Compared to other evolutionary algorithms [e.g. genetic algorithms 
(GA) or ant colony optimization (ACO)], PSO has prominent features 
such as simplicity in implementation, few parameters to set, and high 
convergence speed [34]. As a result, PSO is an attractive option to 
optimize the main parameters of FTMDs that requires further 
investigation. 

This article proposes a novel and accurate approach based on PSO to 
calculate optimum parameters of FTMDs for controlling the displace-
ments of both single degree of freedom (SDOF) systems and multi-story 
structural frames subjected to real ground motion records. First, a 
parametric study is performed to examine the effect of mass ratio, fre-
quency ratio and friction ratio on the displacement of SDOFs fitted with 
FTMDs. Subsequently, a PSO algorithm is used to optimize the SDOF 
displacement and the main parameters of the FTMDs. For comparison, 
the parameters of TMDs are also optimized. The results are discussed in 
terms of the dampers’ optimum response, optimum damper parameters, 
and sensitivity of the response to changes in the properties of the SDOFs 
and FTMDs. The results from the optimization are also compared with 

those from an existing optimization approach available in the literature. 
Finally, the same PSO procedure is used to obtain optimum parameters 
of FTMDs and TMDs connected to four multi-story moment-resisting 
frames. These optimum parameters are compared with their corre-
sponding values in equivalent SDOF systems. This article contributes 
towards providing more suitable optimization tools for structures fitted 
with FTMDs, which in turn can lead to more efficient design methods for 
buildings fitted with dampers. 

2. Structural model 

Fig. 1 shows schematically the system analyzed in this study. The 
equations of motion of such system (assuming dynamic acceleration at 
the base) can be expressed by Eqs. (1a) and (1b). 

msẍs + csẋs + ksxs + kd(xs − xd)= − msẍg(t) + fssgn(ẋd − ẋs) (1a)  

mdẍd − kd(xs − xd)= − mdẍg(t) − fssgn(ẋd − ẋs) (1b)  

where ms, ks and cs are the corresponding mass, stiffness and damping 
ratio of the SDOF structure, respectively; md and kd are the mass and 
stiffness of the FTMD, respectively; fS is the friction force mobilized 
between the damper and the SDOF structure; sgn represents the sign 
function; and ẍs, ẋs and xs are the acceleration, velocity and displace-
ment of the main structure. Likewise, ẍd, ẋd, xd represent the accelera-
tion, velocity and displacement of the damper, respectively. Note that 
the term (xs − xd) in the above equations represents the relative 
displacement of the damper with respect to the main structure. 

Eqs. (1a) and (1b) can be rewritten in matrix form as: 

MẌ(t)+CẊ(t) + KX(t) = Eẍg(t) + BFS(t) (2)  

X(t)=
{

xs(t)
xd(t)

}

(3)  

where M, K and C are the mass, stiffness and damping matrices of the 
system, respectively; E and B are the placement vectors for excitation 
and friction forces; X(t), Ẋ(t) and Ẍ(t) are the displacement, velocity and 
acceleration of the system, respectively; ẍg(t) is the ground acceleration; 
FS(t) is the friction force produced by the FTMD; and xs(t) and xd(t) are 
the relative displacements between the ground and the SDOF structure 
and the FTMD, respectively (see Fig. 1). M, K, C, E, and B can be 
calculated using Eqs. (4)–(8), whereas FS(t) can be computed using Eq. 
(9): 

M =

[
ms 0
0 md

]

(4)  

Fig. 1. FTMD and SDOF system used in this study.  
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C=

[
cs 0
0 0

]

(5)  

K =

[
ks + kd − kd
− kd kd

]

(6)  

E=

[
− ms
− md

]

(7)  

B=

[
1
− 1

]

(8)  

Fs(t) = fssgn(ẋd(t) − ẋs(t)) (9)  

In this study, the FTMD parameters are defined through a mass ratio μ, a 
frequency ratio f , and a friction ratio Rf , as shown in Eqs. (10)–(12) [14, 
15]: 

μ=md/ms (10)  

f =ωd/ωs (11)  

Rf =
fs

md × g
(12)  

where ωd =
̅̅̅̅̅̅̅̅̅̅̅̅̅
kd/md

√
and ωs =

̅̅̅̅̅̅̅̅̅̅̅̅
ks/ms

√
are the frequencies of the damper 

and the SDOF structure, respectively; g is the acceleration of gravity. The 
rest of the variables are as defined before. 

3. Parametric analysis 

Based on the system shown in Fig. 1, a parametric analysis was 
carried out to examine how the FTMD parameters change the 
displacement of SDOF structures. The SDOF structures had structural 
periods Ts = 0.5, 1.0 or 2.0 s (where Ts = 2π /ωs), which are repre-
sentative of regular low-, mid- and high-rise buildings. It is assumed here 
that such buildings are controlled predominantly by their 1st mode of 
vibration. The building mass was assumed to be 10,000 kg. Each system 
was examined using three mass ratios μ = 0.01, 0.03 or 0.05, which 
represent practical values used in real projects and in previous studies 
[9,15]. It should be noted that the mass of FTMDs depends on practical 
and economic considerations, and as such the mass ratio is limited to 
values within those proposed above. In practical applications, the mass 
ratio of TMD in high-rise buildings rarely exceeds 0.5% of the total mass 
of the structure [35]. Therefore, in order to improve the performance of 
TMDs, the tuned mass damper inerter has been developed as a 
lower-mass alternative to conventional TMDs [36,37]. Clearly, these 
innovations should also be considered for FTMD to result in a significant 
reduction of the attached mass. 

The systems were modeled and analyzed in OpenSees software [38]. 
An elastic material was used to model the stiffness (kd) of the FTMDs, 
whereas a rigid-plastic material was used to model the friction between 
the FTMDs and the SDOF structures (see Fig. 2). A set of 20 real ground 
motion records from the SAC project were selected for the analyses [39]. 
All records had a probability of exceedance of 10% in 50 years for Los 
Angeles, as summarized in Table A.1 of Appendix A. The mean spectral 
acceleration of the set of records matches well the ASCE-07 design 
spectrum, which is consistent with current design practice. During the 
analyses, the ground motion records were applied to the base of the 
SDOF structures. 

Fig. 3 shows the (mean) maximum displacement of the SDOF 
structures (xs,ave) as a function of the frequency ratio f and friction ratio 
Rf for the three mass ratios μ = 0.01, 0.03 and 0.05 adopted in this study. 
The plots in Fig. 3 present values of Rf ranging from 0.015 to 0.5, and 
values f ranging from 0.015 to 0.5, both with increments of 0.015. The 
results in Fig. 3 were obtained using a constant value ωs and a variable 

value ωd, as well as a damping ratio ξs = 0.02 (ξs = csωs /2ks) which is 
representative of structures fitted with dampers. The results in Fig. 3 
confirm previous research that showed that xs,ave reduces if the fre-
quency of the FTMDs is close to the frequency of the SDOF structure. 
Indeed, the smallest values of displacements xs,ave occur at ranges of f =
0.8–1.1, but more evidently at f ≈1. Note also that the maximum dis-
placements xs,ave of uncontrolled (i.e. without FTMDs) SDOF structures 
with Ts of 0.5, 1.0 and 2.0 s are around 95, 300 and 415 mm, 
respectively. 

The results in Fig. 3 show that, for the three structural periods Ts 
considered in the analyses, the displacements xs,ave reduce as the mass 
ratio μ increases. However, the reduction in xs,ave is less significant as μ 
increases. Fig. 3 also shows that Rf varies from 0 to 0.5, thus suggesting 
that the friction ratio (as a variable parameter of FTMDs) is affected by 
both the structure and damper parameters. However, for the studied 
systems, the optimum value of Rf is always less than 0.2. The results in 
Fig. 3 also indicate that, in some cases, the controlled and uncontrolled 
responses of the analyzed system are similar. For instance, a system with 
Ts = 1.0 s, μ = 0.01, f = 1.5 and Rf = 0.5 experiences a displacement 
xs,ave = 229 mm, which is the same displacement that the main system 
would experience in an uncontrolled state. This proves the importance 
of selecting the optimized FTMD parameters, as the damper may not 
change the response of the system if the parameters are not optimized. 

The results from the parametric analysis confirm that the FTMDs’ 
parameters (mainly the frequency ratio f and friction ratio Rf ) influence 
heavily the displacements of the SDOF structure. Moreover, such pa-
rameters also depend on the SDOF structure’s properties, which in turn 
complicates the design of FTMDs. Accordingly, the following section 
implements a Particle Swarm Optimization (PSO) algorithm aimed to 
find optimum damper parameters that lead to the smallest SDOF dis-
placements xs,ave. It should be mentioned that, whilst the interpretation 
of results in Fig. 3 seems straightforward, the results are clearly different 
for the different systems. For example, FTMDs with μ = 0.03 have 
different performances to the rest of systems. It is also evident that there 
is not monotonicity in their boundaries for two parameters. Moreover, 
Fig. 3 only presents the case studies examined in this article and clearly 
the results may be different for other structural periods. Consequently, it 
is not possible to use boundary search techniques because a robust 
method to deal with different types of performances is required in the 
analysis. Whilst boundary search techniques with more general ap-
proaches could be adopted in the analysis, it is considered that such 
techniques do not give a significant advantage over PSO methods and 
therefore the latter are adopted in this study. 

4. Particle swarm optimization (PSO) process 

In essence, a PSO algorithm is characterized by the position and 
velocity of a particle in a d-dimensional space. Thus, every particle in the 
swarm is defined by a position vector Xi = [x1,i, x2,i,…, xd,i], and by a 

Fig. 2. Force-displacement model in friction phase of FTMDs.  
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velocity vector Vi = [v1,i,v2,i,…,vd,i]. Particles also keep their own best 
position experience Pi = [p1,i,p2,i,…,pd,i] during the process, according to 
the objective function of optimization. A global best position Pg is also 
defined, which is a shared component between all the particles in the 
swarm. 

The PSO algorithm was implemented in Matlab® in order to link it to 
the systems modeled in OpenSees (shown in Fig. 1). To compare the 
effectiveness of FTMDs to other solutions, equivalent TMDs were also 
optimized. TMDs are used as a benchmark mainly because their 
behavior is similar to that of FTMDs, and also because TMDs are a more 
established solution for structural control. The aim of the optimization 
was to obtain the optimized parameters of both FTMDs (i.e. frequency 
ratio f and friction ratio Rf ) and TMDs (i.e. frequency ratio f and viscous 
damping ratio ξT) that led to the minimum mean displacement xs,ave of 
the SDOF structure. The optimization was repeated for five mass ratios μ 
= 0.01, 0.03, 0.05, 0.07 and 0.10, and for eight periods Ts = 0.3, 0.5, 0.7, 
1.0, 1.5, 2.0, 3.0 and 4.0 s. Accordingly, 80 different systems were 
optimized using the set of 20 ground motion records. 

The implementation of the PSO algorithm on the investigated sys-
tems follows the general steps below, also summarized in Figure A1 of 
Appendix A: 

Step 1) Determine the objective function: This was done to find the 
damper parameters that minimized the maximum average 
displacement xs,ave of the SDOF structure when subjected to the full 
set of ground motion records. The value xs,ave is used here because 
drifts are extensively used in structural control. It should be noted 
that other parameters such as the acceleration response of the 
structures, their energy dissipation capacity or any combination 
between these parameters can be used as objective function that may 
result in a better performance [40–42]. The minimization of the 
maximum average displacement was used here as an example to 
investigate the effectiveness of the PSO algorithm. 
Step 2) Determine the target space: The optimization variables were 
f and Rf for systems fitted with FTMDs, or f and ξT for systems with 
TMDs. This led to two-dimensional spaces. Based on the results from 
Section 3, the values of f and Rf are set to 0.65≤ f ≤1.15 and 0.0≤ Rf 

≤0.4 for the periods Ts considered in the analyses. Note that the 
value of the mass ratio μ is not optimized because its value is limited 
by practical constraints (e.g. space restrictions for FTMD’s installa-
tion, complexity in construction, material costs etc.). Therefore, the 
mass ratio is set to a maximum value of μ = 0.1 in the optimization 
process. 

Fig. 3. Mean maximum displacement (xs,ave) of SDOFs as a function frequency ratio f and friction ratio Rf for mass ratios a) μ = 0.01, b) μ = 0.03, and c) μ = 0.05.  
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Step 3) Specify characteristics of the adopted algorithm: The popu-
lation of particles and the number of iterations are selected to be 5 
and 25, respectively. The final values of these two parameters were 
selected by trial and error until a change (increase) in their magni-
tudes no longer influenced the optimized results. 
Step 4) Initialization: Random position values are assigned to each 
particle based on the target space. 
Step 5) Evaluate objective values: Based on the objective values of 
each particle, the best experienced position of the particles is 
extracted, as well as the best position experienced by the entire 
swarm. 
Step 6) Update velocity and position of particles: The velocity and 
position of the particles are updated by using Eqs. (13) and (14), 
respectively. 

vij[t + 1] = w vij[t] + c1 r1
(
pij − xij[t]

)
+ c2r1

(
gj − xij[t]

)

j = 1, 2
(13)  

xij[t+ 1] = xij[t] × vij[t+ 1] (14)  

where vij[t+1] and xij[t+1] are the velocity and position to be applied to 
the ith particle in the next step; vij[t] is the current velocity of the particle; 
xij[t] is the current position of the particle; r1 and r2 are random vectors 
with the same size of problem variables (with values between 0 and 1) 
that help the convergence; w, c1 and c2 are the acceleration of the par-
ticle’s motion in its current direction, the acceleration of the particle’s 
motion towards its best position, and the acceleration of the particle’s 

motion towards the best global position of the particles, respectively. 
The current study adopted the optimized values for a multidimensional 
space proposed by Clerc and Kennedy [43]: w = 2.05, c1 = 0.73 and c2 =

0.73. 

Step 7) Update the particles’ best position and global best position: 
The responses taken from the new position and velocity of particles 
are compared with the current particles’ best position and global best 
position to find the best position. 
Step 8) Iteration: Steps 5 to 7 are repeated based on a certain number 
of iterations. The number of iterations was adjusted by trial and error 
and set equal to 140. 
Step 9) Extract the global best position and its objective values: 
These parameters correspond to the optimum value of the objective 
function and the optimized damper parameters f and Rf (or f and ξT). 

The following section presents and discusses the results of the 
adopted optimization process. 

5. Results and discussion 

5.1. Maximum displacements of optimized systems with FTMDs and 
TMDs 

Table 1 compares the maximum mean displacements xs,ave of the 
SDOF structures fitted with FTMDs or TMDs, as well as the reduction in 

Table 1 
Mean displacements of systems without (uncontrolled) or with TMDs and FTMDs.  

Ts (s) μ Uncontrolled system FTMD TMD 

xs,ave (mm) xs,ave (mm) Reduction (%) Average Reduction (%) xs,ave (mm) Reduction (%) Average Reduction (%) 

0.25 0.01 27.7 24.0 13.2 16.7 23.5 15.2 22.7 
0.03 23.2 16.0 21.9 20.8 
0.05 22.6 18.3 21.0 24.1 
0.07 23.0 17.0 20.5 25.8 
0.10 22.4 18.9 20.0 27.7 

0.5 0.01 95.1 81.8 14.0 22.5 80.9 14.9 25.5 
0.03 75.8 20.3 72.9 23.4 
0.05 72.8 23.5 69.6 26.8 
0.07 70.4 26.0 66.9 29.6 
0.10 67.9 28.6 63.9 32.8 

0.75 0.01 156.4 141.6 9.4 15.3 140.7 10.0 17.8 
0.03 134.6 13.9 131.4 16.0 
0.05 131.4 16.0 126.4 19.2 
0.07 128.9 17.6 124.0 20.7 
0.10 125.9 19.5 120.6 22.9 

1.0 0.01 228.6 209.3 8.4 15.1 208.0 9.0 18.2 
0.03 195.5 14.5 191.2 16.4 
0.05 189.6 17.1 182.0 20.4 
0.07 189.0 17.3 178.8 21.8 
0.10 186.9 18.2 175.5 23.2 

1.5 0.01 344.0 301.9 12.2 20.1 298.9 13.1 22.3 
0.03 284.1 17.4 277.9 19.2 
0.05 270.1 21.5 263.1 23.5 
0.07 263.2 23.5 253.5 26.3 
0.10 254.8 25.9 242.9 29.4 

2.0 0.01 415.8 377.4 9.3 17.1 375.3 9.7 18.5 
0.03 349.4 16.0 346.3 16.7 
0.05 338.8 18.5 333.8 19.7 
0.07 332.9 19.9 324.1 22.1 
0.10 325.5 21.7 314.7 24.3 

3.0 0.01 638.6 581.2 9.0 18.1 579.9 9.2 19.7 
0.03 538.8 15.6 534.6 16.3 
0.05 512.5 19.7 501.7 21.4 
0.07 499.2 21.8 483.2 24.3 
0.10 482.2 24.5 464.6 27.2 

4.0 0.01 649.5 612.9 5.6 12.6 613.0 5.6 13.7 
0.03 580.0 10.7 577.0 11.1 
0.05 560.3 13.7 551.0 15.2 
0.07 547.9 15.6 536.0 17.5 
0.10 538.4 17.1 524.0 19.2  
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displacements with reference to equivalent uncontrolled structures. The 
results show that, as expected, both FTMDs and TMDs reduce xs,ave when 
compared to uncontrolled counterpart systems. Compared to the 
FTMDs, the TMDs are slightly more effective at reducing xs,ave for all 
mass ratios μ. However, the reduction depends on the period Ts. For 
example, if all mass ratios are considered, the displacements xs,ave of 
systems with TMDs and Ts = 0.25 s are only 6% smaller than that those 
of the equivalent systems with FTMDs. Note also that structures with Ts 
= 0.5 s experience the largest reductions in xs,ave, but such reductions are 
small for long-period structures with Ts = 4.0s. Moreover, as the period 
Ts elongates, the reductions in xs,ave are very similar regardless of 
whether FTMDs and TMDs are fitted. This indicates that, for long-period 
structures, the damper mass influences more the reduction in xs,ave than 
the friction phase of the FTMD, or the viscous damping of the TMD. 

Figs. 4a–b compare the optimum frequency ratios f of systems with 
FTMDs and TMDs for different values of Ts and μ. The results show that i) 
f tends to decrease as the mass ratio μ increases, and ii) f tends to vary in 
a similar way for both FTMDs and TMDs, which is consistent with the 
findings presented by Leung and Zhang [32]. For example, f tends to 
increase between Ts = 2.0 s and Ts = 4.0 s. Note also that the range of 
values of f is similar for both FTMDs and TMDs. For instance, for a 
system with Ts = 0.5 s and μ = 0.05, both optimized FTMDs and TMDs 
resulted in a frequency ratio f = 0.93. This indicates that, although the 
energy dissipation mechanisms of these two types of dampers are 
different, their behavior is rather similar which in turn allows for 
comparisons between them (e.g. to perform sensitivity analyses to 
optimize values). The results in Fig. 4b also show that, for structures 
with Ts >1.5 s and fitted with TMDs, the optimum frequency ratio f 
decreases as the mass ratio μ increases. Overall, the range of optimum 
frequency ratios was found to be 0.78–1.07 for systems with FTMDs, and 
0.81–1.06 for systems with TMDs. Based on these results, it is reasonable 
to adopt frequency ratios f between 0.9 and 1.0 for both FTMDs and 
TMDs in the analyses of idealized SDOF structures. It should be 
mentioned the scattered and oscillating trends of the frequency ratios in 
Figs. 4a-b can be attributed to the fact that the optimization is using a set 
of earthquake records. Indeed, a small change in a parameter can result 
in a large change in some records results, which leads to sudden changes 
in the optimum parameter because such a change can minimize the 
average response more effectively. This is different to cases when opti-
mization is done for harmonic excitations or for single earthquake re-
cords, where the trends of the frequency rations (and other optimum 
parameters) are expected to be much smoother. 

Fig. 5a compares optimum friction ratios Rf of the systems fitted with 
FTMDs for different values of Ts and μ. Likewise, Fig. 5b compares op-
timum viscous damping ratios ξT of counterpart systems with TMDs. 
Fig. 5a shows that as Ts elongates from 0.25 to 4.0 s, the mean value of Rf 

(over all mass ratios) decreases from 0.23 to 0.012. Also, for the different 
values Ts, the mean Rf increases (from 0.045 to 0.12) with the value of μ. 
These observations are also valid for Fig. 5b, where the optimum values 
of ξT in systems with TMDs follow a similar trend. The results in 
Figs. 5a–b highlight one of the main advantages of systems with FTMDs 
over systems with TMDs: for the mass ratios considered in the optimi-
zation, the scatter of Rf in FTMDs tends to be much smaller than the 
scatter of ξT in TMDs. The smaller scatter of Rf in systems with FTMDs 
can be advantageous in practical design situations, where the main 
damper parameters may need to be tuned up to match the project needs. 
However, note that for a constant mass ratio, the difference between 
optimum values of Rf is larger than the difference between optimum 
values of ξT. 

5.2. Effect of damper movement and phase lag 

The main energy dissipation mechanism in FTMDs and TMDs is the 
movement of the damper with a phase lag with respect to the movement 
of the structure. The study of the dampers’ displacement is thus 
important towards designing these control devices in order to satisfy 
space limitations in structures. Table 2 compares the average displace-
ments of the SDOF structure (xd,ave) and the displacements of both 
optimized FTMDs and TMDs when the systems are subjected to the set of 
20 seismic records. In this table, dFTMD and dTMD are the ratios of the 
mean displacements of the FTMDs and TMDs, respectively, over the 
mean displacement of the SDOF structure. Note that the results are 
shown for Ts = 0.5, 1.0 and 4.0 s as these are representative of regular 
low to high-rise buildings. The results show that, for both FTMDs and 
TMDs, the displacements of both the SDOF structure and dampers 
decrease as the mass ratio μ increases. However, as μ increases, the 
dampers’ displacements reduce faster than the displacements of the 
SDOF structure, as indicated by decreasing values of dFTMD and dTMD. 
This implies that an increase in μ is more effective at reducing the 
dampers’ displacement rather than the SDOF structure displacement. An 
additional consideration in the design is the stroke limits of TMDs and 
FTMDs. Long strokes need more room for installation. Fig. 1 shows that 
there is no limitation in the movement of md. Moreover, the variability of 
the friction coefficient between the static and dynamic phases was not 
considered in the numerical analysis. However, the strokes of TMDs and 
FTMDs strokes (xd,ave − xs,ave) were found to be within an acceptable 
range. Table 2 shows that for the worst-case scenario (Ts = 4.0 s and μ =
0.01) the stroke would be about 4.5 m. This is deemed as achievable in 
tall buildings with large roof plans and TMDs and FTMDs fitted on them. 
Moreover, a limitation on the stroke can be added as a constraint in the 
PSO process. 

Previous research [44] has shown that the phase deviation between 

Fig. 4. Optimum frequency ratios f for systems with a) FTMDs, and b) TMDs.  
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the movements of the TMD and the main structure is critical at reducing 
vibrations. Indeed, a TMD is most effective at reducing vibrations when 
a 90◦ phase lag exists between the TMD’s movement and the structure’s 
movement. Due to the similar behavior of TMDs and FTMDs, it is ex-
pected that the latter will also be most effective at reducing vibrations at 

a 90◦ phase lag. 
To investigate the phase lag of the investigated systems, Fig. 6a and c 

compare, respectively, the displacement histories of the optimized 
FTMDs and TMDs with the displacement of the SDOF structure with Ts 
= 0.5 s. Whilst Fig. 6 was obtained by subjecting the system to the Im-
perial Valley ground motion record (record LA01, PGA = 0.46 g), the 
following observations can be extended to the rest of the records. A close 
analysis of the displacement histories between 10 and 15 s (Fig. 6b) 
indicates that the phase lag at many displacement peaks is close to 90◦. 
Moreover, the FTMD only moves if the SDOF displacements are signif-
icant (e.g. between 2 and 35 s in Fig. 6a and c). After 35 s, the FTMD and 
the SDOF structure move together since the input force from the 
earthquake cannot overcome the friction force of the FTMD. On the 
other hand, the TMD (Fig. 6d) essentially moves during the whole 
duration of the record. Note that the TMD keeps its secondary mass 
behavior and phase lag, and it also moves even at small SDOF dis-
placements. This suggests that, since the TMD displaces more than the 
FTMD, the former damper would require more regular inspection and 
maintenance, which in turn would lead to higher operational costs for 
TMDs. 

5.3. Effect of variations in optimized parameters 

In real designs, the actual damper parameters can differ from the 
theoretical optimized values. This difference in the parameters has a 

Fig. 5. Optimum values of a) friction ratio Rf for systems with FTMDs, and b) viscous damping ratio ξT for systems with TMDs.  

Table 2 
Comparison of displacements of dampers and SDOF structures.  

Ts μ FTMD TMD 

xd,ave 

(mm) 
xs,ave 

(mm) 
dFTMD xd,ave 

(mm) 
xs,ave 

(mm) 
dTMD 

0.5 0.01 736.0 81.8 9.0 491.2 81.0 6.1 
0.03 568.8 75.8 7.5 333.7 73.3 4.6 
0.05 494.9 72.8 6.8 296.1 70.0 4.2 
0.07 436.3 70.4 6.2 248.0 67.1 3.7 
0.10 434.4 67.9 6.4 210.0 64.5 3.3 

1.0 0.01 1507.1 209.3 7.2 1346.0 208.3 6.5 
0.03 1173.2 195.5 6.0 919.7 191.0 4.8 
0.05 929.1 189.6 4.9 688.3 182.6 3.8 
0.07 812.6 189.0 4.3 559.0 179.1 3.1 
0.10 729.0 186.9 3.9 458.8 175.6 2.6 

4.0 0.01 5209.9 612.9 8.5 4906.4 613.3 8.0 
0.03 3248.0 580.0 5.6 2894.0 577.0 5.0 
0.05 2857.8 560.3 5.1 2060.1 551.4 3.7 
0.07 2520.2 547.9 4.6 1703.5 536.1 3.2 
0.10 2207.5 538.4 4.1 1287.0 524.0 2.5  

Fig. 6. Displacement of SDOF structure and (a)–(b) FTMD dampers, and (c)–(d) TMD dampers under Imperial Valley earthquake.  
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direct influence on the effectiveness of the damper at controlling vi-
brations. To assess the sensitivity of FTMDs and TMDs to variations in 
their optimized parameters (summarized in Table 3), three systems with 
Ts = 0.5, 1.0 and 4.0 s and μ = 0.05 were analyzed. The responses of the 
SDOF structures were analyzed using a range of damper parameters, 
including the optimized values in Table 3 and their deviations from such 
values (from ±25% to ±50%). The sensitivity analysis was done using 
all the set of ground motions (20 records), and the results are the average 
of the responses. 

Figs. 7a–c show the sensitivity of xs,ave to variations in the optimum 
frequency ratio f for the three systems. To get these results, the friction 
ratio Rf of FTMDs and damping ratio ξT of TMDs were set to their 
optimized values listed in Table 3. The results show that, in the case of 
FTMDs, the displacement xs,ave is less sensitive to variations of f . This is 
one of the main advantages of FTMDs over TMDs. For instance, in the 
case of Ts = 0.5 s (Fig. 7a), the maximum variation of xs,ave from the 
optimum value is 14% for a system with FTMDs, whereas such variation 
was 21% for the counterpart system with TMDs. However, as Ts elon-
gated, xs,ave was similar for both systems with FTMDs and TMDs 
(Fig. 7c). Note also that some non-optimized values of f in FTMDs led to 
lower xs,ave when compared to equivalent non-optimized values of f in 
TMDs. It can be also noted that the optimized TMDs could reduce the 
mean displacement of the SDOF structure more than FTMDs, on average, 
by 6%. 

Figs. 8a–c and Figs. 9a–c show, respectively, the sensitivity of xs,ave to 
variations in the optimized friction ratio Rf and viscous damping ratio ξT 
of the dampers. In these analyses, the parameters Rf and ξT were devi-
ated ±50% from their optimized values, but the optimized value of f 
was kept as constant. The results in Fig. 8a–c and Fig. 9a–c indicate that, 
for values Rf and ξT higher than their optimum values, the displacement 
xs,ave varies with a smooth gradient. For example, for a structure with 
FTMDs and Ts = 0.5 s (Fig. 8a), the maximum variations of xs,ave cor-
responding to deviations of +50% and − 50% from the optimized Rf are 
2% and 4.3%, respectively. For an equivalent system with TMDs, such 
variations of xs,ave reduce to 0.25% and 1.4%, respectively. Based on the 
assumptions of this study, it is recommended that the friction ratio Rf 

and viscous damping ratio ξT are always chosen to be equal or higher 
than their optimized values. It should be added that, due to the inherent 
uncertainties of these parameters during the seismic response, it is not 
possible to suggest this for design purposes unless a comprehensive 
analysis is done for these parameters. Fig. 8a–c and Fig. 9a–c also show 
that, for the three systems examined, the optimum point given by the 
PSO process (marked with a black dot) coincides with the smallest xs,ave 

given by the sensitivity analysis, which confirms the effectiveness of the 
optimization procedure. 

5.4. Effect of variations in the structure’s damping ratio 

In the analyses carried out in previous sections, the damping ratio of 
the SDOF structure was set to a ratio ξS = 0.02 as this value is often used 
in the design of structures with dampers. However, different structures 
can have different damping ratios. Figs. 10a–c shows the sensitivity of 
the optimized xs,ave, f and Rf of systems with FTMDs to different 
damping ratios (ξS = 0.0, 0.01.0.02, 0.05 or 0.10) for different mass 
ratios μ. Figs. 11a–c also show comparable results (xs,ave, f and ξT) but for 
systems with optimized TMDs. The results in Figs. 10a and 11a indicate 

that the optimum xs,ave follows consistent trends with variations in ξS 
and μ. For values ξS <0.05, small increments in the mass ratio μ leads to 
significant reductions in the displacement xs,ave. However, for damping 
ratios ξS ≥0.05, an increase in μ reduces xs,ave only marginally. 

Figs. 10b and 11b show that the trend of the optimum frequency 
ratio f is similar for systems with FTMDs and TMDs. Overall, an increase 
in ξS leads to a reduction in f . Additionally, the results in Fig. 10c 
indicate that, in systems with FTMDs, the friction ratio Rf reduces as ξS 
increases. Note that the value of Rf tends to be approximately constant 
for mass ratios μ ≥0.02. Fig. 11c shows that the damping ξT of TMDs also 
reduces as ξS increases. However, ξT tends to increase as μ increases. A 
significant oscillation in ξT is evident for values of mass ratio μ ≤0.05. 
Such oscillation of results (also observed in Figs. 10b–c and Fig. 11b) can 
be attributed to the variable nature of the ground motion records used in 
the analyses. 

The results in this section suggest that fitting FTMDs (and TMDs) on 
structures with low damping ratios (ξS < 0.02) is effective at reducing 
the structure’s displacements. In this case, an increase in mass ratio 
leads to smaller structural displacements. Moreover, maximizing the 
value of the mass ratio in such structures is an attractive option to reduce 
the frequency ratio of the damper. Conversely, for structures with large 
damping ratios ξS, the structural displacements are similar regardless of 
the mass ratio, and therefore increasing the mass ratio is unlikely to 
reduce the structure’s displacements. 

6. Comparison of optimization methods 

To get further insight into the effectiveness of the optimization 
process, this section compares the results from the PSO algorithm 
(Section 4) and from the optimization method proposed by Ricciardelli 
and Vickery [2]. This allows for quantitative comparisons between the 
optimum displacements and optimum FTMD parameters calculated by 
the optimization process, and a well-established method used in prac-
tical design. However, it should be mentioned that this comparison has 
some limitations due to the different optimization procedure adopted by 
Ricciardelli and Vickery and by this study. Indeed, Ricciardelli and 
Vickery proposed closed-form expressions to minimize the steady state 
response of a SDOF structure with FTMDs subjected to harmonic force. 
Ricciardelli and Vickery considered two cases: i) a system at resonance, 
and ii) a system subjected to an excitation with a varying frequency and 
constant amplitude. Ricciardelli and Vickery’s method neglects the 
frequency content of the excitations, and therefore there is no difference 
between optimum parameters for different ground motions. In contrast, 
in the proposed PSO method, optimum parameters are calculated based 
on the excitation’s frequency content, aiming to minimize the average 
response of the system. 

A series of systems similar to that studied by Ricciardelli and Vickery 
are considered for comparison, with Ts = 0.5s and mass ratios 0.005 < μ 
< 0.1. Fig. 12 compares xs,ave of the above systems with FTMDs pa-
rameters f and Rf calculated using Ricciardelli and Vickery’s method 
and with FTMDs parameters f and Rf optimized with the PSO algorithm. 
The average displacement of the uncontrolled system is 111.7 mm. The 
results in Fig. 12 show that both methods effectively reduce xs,ave and 
that the reduction in xs,ave increases with the mass ratio μ. However, 
compared to Ricciardelli and Vickery’s optimization method, the PSO 
algorithm reduces the SDOF displacements xs,ave by an additional 21% 
on average. Such difference in results was somehow expected since 
Ricciardelli and Vickery’s closed-form expressions are for optimizing 
FTMDs parameters of systems subjected to harmonic excitations, 
whereas the case studies examined in this article were subjected to 
ground motion excitations. 

Fig. 12 also shows that the values f calculated by Ricciardelli and 
Vickery’s method are always larger than those obtained with the PSO 
algorithm. However, optimum values of Rf given by both methods are 
relatively close to each other, especially in the case of μ > 0.06. Based on 

Table 3 
Optimum parameters of FTMDs and TMDs.  

Ts (s) FTMD TMD 

f Rf f ξT 

0.5 0.929 0.194 0.928 0.043 
1.0 1.054 0.057 1.023 0.050 
4.0 1.062 0.012 1.019 0.028  
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Fig. 7. Sensitivity of xs,ave to variations in frequency ratio of systems with Ts = a) 0.5 s, b) 1.0 s, and c) 4.0 s.  

Fig. 8. Sensitivity of xs,ave to variations in friction ratio of systems with FTMDs and Ts = a) 0.5 s, b) 1.0 s, and c) 4.0 s.  

Fig. 9. Sensitivity of xs,ave to variations in viscous damping ratio of systems with TMDs and Ts = a) 0.5 s, b) 1.0 s, and c) 4.0 s.  

Fig. 10. (a) Optimum displacement xs,ave, (b) frequency ratio f , and (c) friction ratio Rf of systems with FTMDs for different damping ratio ξS of SDOF structure.  
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these results, it is possible to conclude that whilst Ricciardelli and 
Vickery method can be used to estimate optimum parameters, the PSO 
algorithm proposed here is more effective than their method at opti-
mizing the SDOF displacements of the examined systems. Accordingly, 
PSO is a more effective option to optimize the response of structures 
with FTMDs. However, due to the limited number of systems, damper 
parameters and ground motion records considered in this study, further 

research should verify the validity of these conclusions to other case 
studies. It should be also noted that changes in the intensity of the 
ground motion records can change the results, especially in case of 
FTMDs with nonlinear behavior. Indeed, if a record set with a different 
hazard level is used in the optimization process, the optimum parame-
ters would also change (especially the value Rf ). 

Fig. 11. (a) Optimum displacement xs,ave, (b) frequency ratio f , and (c) damper damping ratio of systems with TMDs for different damping ratio ξS of SDOF structure.  

Fig. 12. Comparison of results from Ricciardelli and Vickery’s and PSO optimization methods.  

Fig. 13. Schematic elevation of moment-resisting frames.  
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7. Behavior of multi-story frame buildings with optimized 
FTMDs and TMDs 

To investigate the effectiveness of FTMDs at controlling the dis-
placements of multi-degree of freedom steel structures, a 10-story 
moment-resisting frame (fundamental period of 2.01 s) used by Pir-
izadeh and Shakib [45] was analyzed (Fig. 13a). Additionally, three 
regular moment-resisting frames from the SAC project [39] were also 
examined (Figs. 13b–d). The latter frames have 3, 9 and 20 stories, and 
fundamental periods of 1.01, 2.26 and 3.83 s, respectively. These frames 
have been used in previous research [46] to assess the effectiveness of 
vibration-control devices. 

The above frames were modeled in OpenSees software [38] to 
perform nonlinear dynamic analysis. All frames were assumed as fixed at 
the base. The behavior of columns and beams was modeled using a Steel 
02 material model. Likewise, the structural models were validated 
against the results presented in Refs. [39,45]. For each frame, it was 
assumed that FTMDs or TMDs were connected to the roof story level. For 
FTMDs, the mass was connected to the main structure by an elastic 
spring element and a rigid-plastic spring element working in parallel. In 
the case of TMDs, the mass was connected to the main structure by an 
elastic spring element and a viscous damper element working in parallel. 
To calculate the mass ratio μ, the mass of the main structure was 
considered as the mass of all stories above the ground level that are not 
restrained in the lateral direction. The viscous damping ratio of all 
frames was taken as 2%. 

Table 4 presents the optimum response and damper parameters of 
FTMDs and TMDs connected to the frames. To find the optimum pa-
rameters of FTMDs and TMDs, the optimization procedure described in 
Section 4 was followed. Accordingly, the main objective was to mini-
mize the maximum average displacement of the roof level of the frames 
when subjected to the full set of ground motion records (Table A.1 in 
Appendix A). The optimization variables were f and Rf for structures 
with FTMDs, and f and ξT for structures with TMDs. The optimization 
procedure was conducted for mass ratios ranging from 1% to 5%. The 
results in Table 4 are compared with the results in Table 1 and Table 3 
for SDOF systems based on the fundamental period of the frames. Whilst 
this comparison has its own limitation (e.g. frames consider higher mode 
effects and nonlinear behaviour of materials), some general conclusions 
can be drawn. For example, increasing μ in both SDOF systems and 
frames resulted in increasing the percentage reduction of roof 
displacement. In the 3-story and 9-story frames, the percentage 

reduction of roof displacement was larger than their corresponding 
SDOF systems, whereas the opposite occurred in the 20-story frame. In 
the case of the 10-story frame, the roof displacement reduced by a 
similar percentage to the corresponding SDOF systems. This implies that 
the displacements predicted by SDOF systems match well the actual roof 
displacements of mid-rise height frames. In addition, changes of the 
percentage reduction of roof displacement for structures with TMDs and 
FTMDs show a similar trend. In most cases, however, the reduction is 
larger for structures with TMDs. The reduction also decreases for the 10- 
story and 20-story frames compared to the 3-story and 9-story frames. 
The results in Table 4 also provide some insight into the range of 
applicability of TMDs and FTMDs. For low-rise buildings, TMDs are 
often not an appealing solution due to their high cost. Moreover, the 
results in Table 4 indicate that, in high-rise buildings, TMDs and FTMDs 
reduce the seismic response only marginally. This is evident in the case 
of the 20-story frame, where the uncontrolled lateral displacement is 
small. As the behavior of this frame is practically linear, both TMDs and 
FTMDs are less effective at controlling lateral displacements. 

A comparison of results in Table 3 and Table 4 also indicates that the 
optimum parameters of FTMDs and TMDs for SDOF systems and the 
studied frames are different. For example, the optimized frequency ra-
tios f of FTMDs and TMDs for the 3-story frame were about 0.7, but the 
values f are always above one in its equivalent SDOF system. However, 
the optimum friction ratio Rf and viscous damping ratio ξT of FTMDs 
and TMDs in such a frame are close to their values in the equivalent 
SDOF system. In the case of the 20-story frame, the values f of FTMDs 
and TMDs are larger than their corresponding values in the equivalent 
SDOF system. Moreover, Rf and ξT of FTMDs and TMDs in this frame are 
zero, which means that damping in the added mass did not reduce the 
roof displacement. This is also observed in equivalent SDOF systems 
(Table 3), although in this case the ratios Rf and ξT are close to zero 
instead. Based on these results, it can be concluded that optimum fric-
tion ratios Rf and viscous damping ratios ξT obtained from SDOF systems 
represent good estimates for their corresponding ratios in real structural 
frames; however, this is not the case in optimum frequency ratios f . This 
also suggests that there are cases in which multi-story frame buildings 
cannot be simply represented by simple SDOF systems, especially if 
these are subject to real earthquakes. Finally, it should be noted that for 
the 3-story and 9-story frames (which experienced the best reduction in 
their response), the maximum displacements of the damper mass were 
1.4 and 5.0 m respectively, which is acceptable for practical 
applications. 

Table 4 
Optimum FTMDs and TMDs fitted in moment-resisting frames.  

Frame  μ FTMD TMD 

Uncontrolled roof 
displacement (m) 

f Rf Controlled roof 
displacement (m) 

Percentage 
reduction (%) 

f ξT Controlled roof 
displacement (m) 

Percentage 
reduction (%) 

3-story 0.191 1% 0.81 0.04 0.156 18.0 0.81 0.00 0.153 24.8  
2% 0.80 0.05 0.154 19.5 0.80 0.01 0.143 29.9  
3% 0.74 0.02 0.139 26.9 0.78 0.05 0.138 32.3  
4% 0.71 0.01 0.136 28.5 0.74 0.03 0.131 35.7  
5% 0.72 0.04 0.134 29.9 0.73 0.04 0.126 38.1 

9-story 0.885 1% 1.01 0.00 0.778 12.1 0.95 0.03 0.774 12.5  
2% 1.04 0.07 0.751 15.1 0.95 0.06 0.702 20.7  
3% 0.97 0.13 0.732 17.3 0.95 0.08 0.648 26.8  
4% 0.73 0.11 0.700 20.9 0.96 0.08 0.614 30.6  
5% 1.12 0.02 0.628 29.1 0.94 0.11 0.586 33.8 

10-story 0.402 1% 0.90 0.06 0.358 11.0 0.86 0.09 0.359 10.6  
2% 0.85 0.05 0.363 9.6 0.63 0.14 0.350 13.0  
3% 0.84 0.05 0.354 11.9 0.63 0.13 0.344 14.5  
4% 0.61 0.04 0.329 18.2 0.61 0.07 0.317 21.1  
5% 0.66 0.04 0.337 16.2 0.62 0.13 0.316 21.5 

20-story 0.672 1% 0.92 0.00 0.664 1.1 1.27 0.00 0.663 1.3  
2% 1.11 0.00 0.655 2.5 1.36 0.00 0.654 2.6  
3% 1.12 0.00 0.647 3.7 1.26 0.00 0.646 3.8  
4% 1.25 0.00 0.638 5.0 1.26 0.00 0.638 5.0  
5% 1.24 0.00 0.631 6.1 1.25 0.00 0.631 6.1  
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It should be mentioned that whilst in this article the focus was on 
maximum average displacements, future research should investigate 
both the displacement and acceleration response in SDOF and MDOF 
systems with different properties and different types of FTDMs. This is 
particularly relevant for structures with short periods, where accelera-
tions can be more relevant. Further research should also compare the 
robustness of TMDs and FTMDs by adopting a mechanical approach and 
frequency-based analyses. 

8. Summary and conclusions 

This article examined numerically the effectiveness of FTMDs at 
controlling the displacements of single degree of freedom systems sub-
jected to real ground motion records. A PSO algorithm was adopted to 
find the optimized displacement of SDOF structures, as well as optimized 
parameters of FTMDs. For comparison, equivalent systems with TMDs 
were also optimized. Finally, a comparison was made between the above 
results and the results obtained for four multi-story moment-resisting 
frames. Based on the results of this study, the following conclusions are 
drawn:  

1) The use of FTMDs is a feasible option to reduce the displacements of 
SDOF systems subjected to seismic records as those considered in this 
study.  

2) Whilst optimized TMDs reduced the displacements more than 
FTMDs, the former reduces the SDOF displacements by an additional 
6% on average. For both TMDs and FTMDs, the optimum frequency 
ratio as a function of the structure’s period varies in a similar way. 
For the mass ratios considered in the PSO, the smaller scatter of 
friction ratio Rf in systems with FTMDs can be advantageous in 
practical design situations, where the main damper parameters may 
need to be tuned up to match the project needs.  

3) Compared to the frequency ratio of TMDs, the frequency ratio of 
FTMDs is less sensitive to deviations from the optimum value. This 

makes FTMDs more attractive from an operational point of view. For 
design purposes, it is recommended to choose values of friction ratio 
Rf equal or higher than their optimized values.  

4) FTMDs are effective at reducing the structure’s displacement if the 
damping of the structure is low (ξS < 0.02). In this case, an increase 
in mass ratio leads to smaller structural displacements. However, in 
structures with high damping (ξS = 0.1), the use of FTMDs leads to 
similar structural displacements regardless of the mass ratio.  

5) PSO is an attractive option to optimize the response of structures 
with FTMDs. For the structural systems examined in this study, the 
PSO algorithm reduces the SDOF displacements by an additional 
21% on average when compared to Ricciardelli and Vickery’s opti-
mization method.  

6) PSO can also be used to optimize the response of more complex 
structures with FTMDs. In addition, optimum friction ratios and 
viscous damping ratios obtained for SDOF systems can be used as 
good estimates for their corresponding ratios in real structural 
frames, but this is not acceptable for optimum frequency ratios. This 
also suggests that there are cases in which multi-story frame build-
ings cannot be represented by simple SDOF systems, especially if 
these are subjected to real earthquakes. This highlights the need for 
further studied in this area. 
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Appendix A  

Table A.1 
The selected SAC ground motion records for Los Angeles (probability of exceedance 10% in 50 years) with their dominant periods 
[31].  

ID Record Information Mw Period (sec) PGA (g) 

La01 Imperial Valley,1940,El Centro 6.9 0.52 0.46 
La02 Imperial Valley,1940,El Centro 6.9 0.26 0.48 
La03 Imperial Valley,1940,Array #05 6.5 0.16 0.39 
La04 Imperial Valley,1940, Array #05 6.5 0.34 0.49 
La05 Imperial Valley,1940, Array #06 6.5 0.06 0.3 
La06 Imperial Valley,1940, Array #06 6.5 0.30 0.23 
La07 Landers,1992,Barstow 7.3 0.72 0.42 
La08 Landers,1992,Barstow 7.3 0.32 0.43 
La09 Landers,1992,Yermo 7.3 0.68 0.52 
La10 Landers,1992,Yermo 7.3 0.22 0.36 
La11 Loma Prieta,1989,Gilroy 7.0 0.22 0.67 
La12 Loma Prieta,1989,Gilroy 7.0 0.20 0.97 
La13 Northridge,1994,Newhall 6.7 0.32 0.67 
La14 Northridge,1994,Newhall 6.7 0.30 0.66 
La15 Northridge,1994,Rinaldi RS 6.7 0.40 0.53 
La16 Northridge,1994,Rinaldi RS 6.7 0.30 0.58 
La17 Northridge,1994,Sylmar 6.7 0.32 0.57 
La18 Northridge,1994,Sylmar 6.7 0.36 0.82 
La19 North Palm Springs,1986 6.0 0.16 1.02 
La20 North Palm Springs,1986 6.0 0.22 0.99   
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Fig. A1. Flowchart of PSO algorithm implementation  
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