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Abstract
Purpose Robotic ophthalmic microsurgery has significant potential to help improve the success of challenging procedures
and overcome the physical limitations of the surgeon. Intraoperative optical coherence tomography (iOCT) has been reported
for the visualisation of ophthalmic surgical manoeuvres, where deep learning methods can be used for real-time tissue
segmentation and surgical tool tracking. However, many of these methods rely heavily on labelled datasets, where producing
annotated segmentation datasets is a time-consuming and tedious task.
Methods To address this challenge, we propose a robust and efficient semi-supervised method for boundary segmentation
in retinal OCT to guide a robotic surgical system. The proposed method uses U-Net as the base model and implements a
pseudo-labelling strategy which combines the labelled data with unlabelled OCT scans during training. After training, the
model is optimised and accelerated with the use of TensorRT.
Results Compared with fully supervised learning, the pseudo-labelling method can improve the generalisability of the model
and show better performance for unseen data from a different distribution using only 2% of labelled training samples. The
accelerated GPU inference takes less than 1 millisecond per frame with FP16 precision.
Conclusion Our approach demonstrates the potential of using pseudo-labelling strategies in real-time OCT segmentation
tasks to guide robotic systems. Furthermore, the accelerated GPU inference of our network is highly promising for segmenting
OCT images and guiding the position of a surgical tool (e.g. needle) for sub-retinal injections.

Keywords Deep learning, Pseudo-labelling · Real-time OCT segmentation · Robotic microsurgery · Semi-supervised
learning

Introduction

Optical coherence tomography (OCT) is a non-invasive tech-
nique to create high-resolution volumetric images of tissue,
and it is a significant technique in the field of ophthalmol-
ogy [1]. OCT has been widely used in surgeries as it can
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inform where the surgical instrument is with reference to the
sample [2]. Intraoperative OCT imaging can help to enhance
the quality of surgical results, and potentially provide guid-
ance for surgical tools [3]. Our ultimate aim is to translate
this into real clinical settings where live intraoperative OCT
(iOCT) during surgery is displayed for assisting the sur-
geons. Therefore, we relied on 2D segmentation instead of
3D segmentation as, (a) live iOCT feed displays 2D slices
in the operating theatre and the surgeons are familiar with
this arrangement, (b) computation of 2D is less expensive
than 3D making it better suitable for real-time implementa-
tion. For live surgery settings these two factors are essential.
Surgery on the eye, especially in the retina, is very challeng-
ing due to the delicate tissues [4], and the micrometre-scale
manoeuvres. The sub-retinal injection is a way of deliver-
ing treatments, which requires a special type of syringe to
travel through the entire vitreous humour to the retina. Inside
the syringe is a blunt-ended soft-tip cannula that is pushed
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through the retina, between the photoreceptors (PR) and the
retinal pigment epithelium (RPE). This is called the sub-
retinal space. Sub-retinal injection to the sub-retinal space
is a method shared by emerging treatment approaches such
as gene therapy [5]. The sub-retinal space is usually a tight
junction. The procedure for gene delivery entails inserting
the cannula at this depth in the retina, lifting the retina away
from the RPE with a saline solution over the course of 2 to
5min, creating a bleb, which is a blister-like fluid collection,
as shown in Fig. 1, and injecting the viral vector with the new
gene.

Collaborative robots are an exciting and rapidly advancing
research area with significant potential for improvement in
the outcome of micro-surgical procedures. Medical robotics
technology is not yet at the level of maturity to significantly
reduce the duration of a procedure nor improve patient out-
comes compared to a skilled surgeon.An important exception
to this comment is sub-retinal injections for gene therapy.
Collaborative robotic-assisted sub-retinal injections [6] can
be complemented by OCT for positioning the cannula into
the sub-retinal space and for cross-sectional visualisation of
the bleb. This unique application integrates surgical robotics
and medical imaging, where OCT overcomes human limita-
tions byprovidingmicrometre scale resolution imagingof the
retina, quantitative measurement of tissue deformation dur-
ing the creation of the bleb, and improved stability of robot
control, thereby enhancing the micro-surgical outcome.

The tasks of surgical robot vision for segmenting the retina
and cannula are an important part of sub-retinal injections.
Microsurgery requires real-time knowledge of the location
of the surgical tool and retinal layers. Machine vision helps
provide this information by understanding the scene con-
text through segmentation.OCT layer segmentation in retinal
imaging involves dividing the scan into individual retinal lay-
ers. In the literature, a variety of techniques are applied for
retinal segmentation.Kefieh et al. [7] reviewed the algorithms
including pre-processing and OCT segmentation; the com-
monly used methods for OCT segmentation involve artificial
intelligence approaches such as support vector machine [8],
active contours approach [9], and graph-based techniques
and dynamic programming [10]. However, all these meth-
ods rely on huge computations and are often slow. The deep
learningmethod is used to address the problems of traditional
OCT segmentation techniques and the computer vision and
medical imaging groups have recently invested a lot of effort
towards semantic segmentation utilising deep neural net-
works (DNN). The U-Net architecture, an encoder–decoder
design, is proposed by Ronnerberger et al. for biomedical
image segmentation [11]. When proper data augmentation
and gradient-weighting strategies are applied, a similar archi-
tecture can be trained successfully even in a situation that
lacks the training data. This architecture shows a satisfactory
result for OCT segmentation, and it is adapted into the real-

time domain fromBorkovina et al.’s work [12]. Another deep
neural network called ReLayNet which is implemented by
Roy et al. [13] is a fully convolutional neural network. The
advantage of ReLayNet is that it not only segments the retinal
layers, but it can also segment the fluid (if present), which
is not considered in many previous works. DeepRetina pro-
posed by [14], which is adaptive from the Xception network,
is another automatic retina layer segmentation framework
and also accelerated into the real-time domain but compu-
tational performance needed to be improved in future work.
Previous works have shown good results for OCT retinal
layer segmentation tasks, but most of them are not applica-
ble in real-time situations. Moreover, previous work heavily
relies on labelled OCT scans, and a massive amount of unla-
belled data is wasted.

Semi-supervised learning (SSL) is a popular technique for
utilising large amounts of unlabelled data while minimising
the workload on annotators, and a small number of labelled
samples are combined with unlabelled samples to carry out a
specific task. This area has developed significantly in recent
years [2, 15–17]. Entropyminimisation, consistency regular-
isation, and pseudo-labelling are the three main methods for
semi-supervised learning, and most works adhere to one or a
combination of thesemethods. Pseudo-labelling is frequently
employed in practice, as it is simple and straightforward [15,
16, 18]. A simple method of training neural networks using
pseudo-labelling is proposed by Lee [15] and many pseudo-
label strategies are based on this method [16, 19]. It states
how to use labelled data and unlabelled data simultaneously
to train the model and improve generalisation performance.
The theories behindwhy pseudo-label works are based on are
low-density separation between classes and entropy regulari-
sation [15]. Lee’s method relies on a high-confident class and
a weight factor which is dependent on the number of epochs.
Since it is an efficient way to take advantage of unlabelled
data and OCT data intrinsically satisfying the low-density
separation principle, we adopted Lee’s method and fit it into
OCT segmentation task.

Inspired from Lee [15] approach, we propose Pseu-
doSegRT, a simple and efficient approach for real-time
pseudo-labelling-based semantic segmentation of iOCT.
PseudoSegRT includes a high confidence threshold and a
weight function to ensure the accuracy of pseudo-labels
and control the contribution of the pseudo-labels during the
simultaneous training process. Pseudo-labels update during
the training process and become more accurate as the model
learns more. Through experimental validation, we demon-
strate that PseudoSegRT is suitable for theOCT-related tasks.
The trained PSeudoSegRT is then accelerated to a real-time
domain to achieve the inference time as little as 1millisecond.
The contributions of the proposed PseudoSegRT include a
dynamic weight function that changes the contribution of the
pseudo-labels during training, use of only marginal labelled
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Fig. 1 Sub-retinal injection bleb
formation (left). A retinal OCT
image (right), the top image
shows a binary segmentation
prediction (Tissue &
Background), and the bottom
image shows the layer
segmentation prediction, where
internal limiting membrane
(ILM), and Bruch’s membrane
(BM) are shown

training examples to achieve high performance on unseen test
data and real-time implementation making the method suit-
able for clinical translation and integration in current iOCT
settings. We show that the segmentation model (U-Net) is
more generalisable with the proposed pseudo-labelling strat-
egy compared to fully supervised learning.

Proposedmethod

For the real-time surgical tool guidance and tracking for
OCT-guided sub-retinal drugdelivery, it is important to detect
the ILM (top) and BM (bottom) layers from the OCT (see
Fig. 1b. This simplifies the OCT layers segmentation prob-
lem to a boundary segmentation problem, i.e. segmenting the
OCT image into tissue and background classes.

We select U-Net [11] as the base model for the bound-
ary segmentation task, as it has achieved high segmentation
accuracy in biomedical image segmentation tasks. U-Net is
also shown to be applicable in OCT layer segmentation tasks
[12], which is similar to the boundary segmentation task but
with more segmentation classes. During the training phase,
the model needs to be trained with different patterns of OCT
scans (optical nerve head) and flat patterns (shown in Fig. 3).
Therefore, labelled data are selected to ensure it captures this
variability and different patterns. For the unlabelled data,
the OCT scans are randomly chosen. The flowchart of the
training process is shown in Fig. 2. The segmentation model
is first pre-trained with very limited annotated OCT scans
using cross-entropy loss until it reaches the validation inter-
section over union (IoU) score of over 70%. The pre-trained
model is then used to generate pseudo-labels on an equal
number of images as that of the labelled training data with a
confidence threshold. The pseudo-labels and labelled scans
are jointly used to further train the segmentation model. For
every epoch, the pseudo-labels are predicted and updated
which results in facilitates in improving the pseudo-label
confidence. Early stopping is applied to avoid over-fitting.

Pseudo-segmentation labels

Pseudo-labels are predicted labels for unlabelled data that
can be treated as true ground-truth labels. The proposed
PseudoSegRT method applies a high-confidence threshold
to the prediction mask to obtain the pseudo-labels. During
themodel’s continued training process, the pseudo-labels are
updated and the high-confidence threshold and weight factor
of pseudo-label loss are applied. The threshold is set to make
sure that every pixel in the pseudo-label can be trusted. There-
fore, the high-confident pixels of prediction are selected as
pseudo-labels, and the others are ignored. The pseudo-label
yi can be written as:

yi =

⎧
⎪⎨

⎪⎩

fi (x) = 1 if fi (x) > 0.9

fi (x) = 0 if fi (x) < 0.1

ignored otherwise

(1)

where x is the unlabelled data and fi (x) is the predicted value
at the i th pixel location. The high-confidence threshold is set
for two classes: 0 and 1. Only if the confidence of the pixel
is higher than 90%, it is used as a pseudo-label giving useful
information, and the uncertain pixels will be set to None
value, and they will not influence the training of the model.

During the continued training process, binary cross-
entropy loss is computed separately for both labelled data
(LSL ) and pseudo-label data (LPL ). The binary cross-
entropy loss is represented as:

L = l(x, y) = {l1, . . . , lN }T (2)

ln = −[yn · log xn + (1 − yn) · log(1 − xn)] (3)

where N is the batch size, y is target, and x is prediction.
A weight, α, is applied to the pseudo-label loss as a

controller to adjust howmuch we want to rely on the pseudo-
labels, and it is used to adjust the influence of the pseudo-label
in the combined loss function. α is adaptively computed
such that if the pseudo-labels are more accurate, α is higher,
thus pseudo-label loss contributes more to the training and
vice versa. From the high-confidence selection of pseudo-
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Fig. 2 Flowchart of the proposed PseudoSegRT method (left) and dia-
gram of U-Net (right). The proposed strategy first trains a segmentation
network in a supervised fashion on the limited dataset. The trained
model is used to generate pseudo-labels on limited unlabelled data.

The limited labelled and pseudo-labelled data are then used to continue
training the segmentation network while updating the pseudo-labels
until early stopping is achieved

labels, the accuracy of the pseudo-label can be quantified
by the amount of high-confidence prediction. When a higher
amount of high-confidence pseudo-labels are generated, they
can be trusted more. Therefore, the loss of the pseudo-label
can contributemore to the total loss and vice versa. Similarly,
it is inversely proportional to the number of pixels that are
ignored, which is convenient for calculation. Therefore, the
weight function can be expressed as, α ∝ 1

ni
, where ni

represents the number of ignored pixels.
The total loss for training with labelled and unlabelled

data simultaneously is then given by:

L = LSL + α LPL , (4)

where LSL represents the loss for the labelled data, LPL is the
loss of pseudo-labels, and two components of the overall loss
function are instances of the previously described function in
Eqs. (2) and (3). α is the weight function. We empirically set
α to be half of the total number of pixels in the scan divided
by the number of pixels ignored.

Model acceleration for real-time deployment

The resolution of the data used is too high, as the resolu-
tion of the OCT scans is 1000×575 pixels, and the CPU
computational power is unable to deal with the data size.
As NVIDIA GPU gives powerful computational capability,
U-Net can be optimised using TensorRT. The pipeline to con-
vert the PyTorch model is to: convert the PyTorch model to
the ONNX1 model, and then to the TensorRT engine. When
converting the ONNX model to the TensorRT model, the
precision of the engine should be chosen. Although neural
network parameters are trained using 32-bit floating point

1 https://onnx.ai/.

(FP32), TensorRT offers support for FP32 (32-bit floating
point), FP16 (16-bit floating point), and INT8 (8-bit integer)
precision modes. The inference time may be significantly
reduced by selecting a lower precision option. It must be
ensured that the performance of the model should still be
satisfying with a high speed.

Dataset description and preparation

The dataset used for boundary segmentation is from a public
data set [20], and it uses spectral domain optical coherence
tomography (SD-OCT) scans from mouse models. SD-OCT
scans use the spectral detectionmethod forOCT,which inter-
rogates all depths at once and can give a faster speed relative
to the time-domainOCT. In this data set, SD-OCT scanswere
acquired from ten mice, five mice that were kept as healthy
controls, and an additional fivemice imaged on four days—1,
3, 6, and 9 days after light-induced retinal damage. A rectan-
gular scanning mode is used in this data set, and ten B-scans
from ten locations are obtained from SD-OCT ophthalmic
imaging system. In this paper, the healthy data set is used for
the training process. The healthy data set contains 2000 OCT
scans from five mice acquired on four different days, and the
data set is separated into the training, validation, and test sets
with a ratio of (7: 1.5: 1.5) as mentioned in Table 1. None of
the unhealthy scans are used in the training process which is
mainly used as testing the generalisation capabilities of the
proposed method.

Original labelled data provides information about eight
retinal layers [20] but the boundary segmentation task
requires binary segmentation (only tissue and background).
Thus, a binary mask was applied to segment eight retinal
layers (from ILM to BM—see Fig. 1) as tissue and the other
area as background. For the model training, all volumes were
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Table 1 Number of OCT scans
in the training, validation, test,
and unseen test sets

Training set Validation set Test set Unseen test set
(Healthy) (Healthy) (Healthy) (Unhealthy)

# scans 1400 300 300 300

# folders 14 3 3 3

# % of background pixels 58 59 57 56

# % of tissue pixels 42 41 43 44

Table 2 Comparison of the
proposed PseudoSegRT with
relevant pseudo-labelling and
fully supervised learning
methods on the test data

Method Training data IoU (%) PA(%)

Used/total HD UD Overall HD UD Overall

Pseudo-Lee [15] 25/1400 95.56 88.26 91.91 98.04 94.41 96.23

Pseudo-notrust 25/1400 94.60 82.55 88.58 97.59 91.54 94.57

FSL-full 1400/1400 97.86 83.06 90.46 99.06 91.21 95.14

FSL-partial 5/1400 93.06 81.01 87.04 96.86 90.88 93.87

FSL-partial 25/1400 96.20 80.61 88.41 98.52 90.26 94.39

FSL-partial 50/1400 96.90 77.64 87.27 98.65 89.01 93.83

PseudoSegRT 5/1400 92.20 81.36 86.78 96.49 91.30 93.90

PseudoSegRT 25/1400 96.19 88.88 92.54 98.31 94.47 96.39

PseudoSegRT 50/1400 97.27 85.75 91.51 98.80 93.26 96.03

Key: HD, healthy dataset; UD, unhealthy dataset; IoU, mean intersection over union; PA, average pixel
accuracy

resized to 512 ×1024 pixels and pre-processed for boundary
segmentation labels.

Experimental setup

Training details

All experiments are performed using a Linux machine hav-
ing an NVIDIA GTX Titan X card with a memory of 12 GB
and an Intel(R) Xeon(R) CPU E5-2620 v3, at 2.40 GHz. The
PyTorch framework is used for the model implementation.
As the input data are in grayscale format, and the predic-
tion is also in a single channel, 1–1 binary U-Net is used as
shown in Fig. 2. Models are trained using Adam optimiser
with the learning rate of 10−5. The batch size is set to 1 due
to GPU memory limit. The validation IoU is set to 70% for
pre-training (FSL phase). The total number of epochs for
pseudo-labelling training is set to 40 epochs with early stop-
ping applied with patience of 10 epochs. This early stopping
criterion terminates the training process when the validation
IoU score remains less than the maximum recorded IoU for
continuous 10 epochs. Theweights captured at themaximum
IoU are used during model testing.

Data augmentation

Data augmentation is a technique to apply slight modifica-
tions to existing data and obtain new data to train the model,

which is efficient to expand the diversity of the existing data
set. Considering the characteristics of theOCT scans, in these
experiments, randomrotation (angle between10and20◦) and
a change of brightness factor (1–2) were applied during the
training process.

Evaluationmetric

The Metric used to evaluate the performance of the model is
the mean IoU score and the mean Pixel Accuracy (PA), since
these are the most commonly used metric for segmentation.
IoU measures the degree of overlap between the ground-
truth and predicted segmentation masks. As the amount of
the background class and tissue class are balanced (57.16%
background and 42.84% tissue), pixel accuracy is chosen
which measures the percentage of the correctly classified
pixels.

Comparisonmethods

To evaluate the performance of the proposed PseudoSegRT,
we perform its comparison with (1) FSL-full: the fully super-
vised learning method trained on the full training set of 1400
OCT scans, (2) FSL-partial: the fully supervised learning
method trained only using 25 training images, (3) Pseudo-
Lee: the pseudo-labelling method proposed by Lee [15], and
(4) Pseudo-notrust: our proposed pseudo-labelling approach
without the confidence threshold and weight function. In the
case of the pseudo-labelling approaches, 25 labelled OCT
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Fig. 3 Qualitative comparison of the proposed PseudoSegRT with the fully supervised [11] and Pseudo-Lee [15] methods on unseen healthy and
unhealthy scans. Ground-truth tissue boundaries are labelled in green and predicted ones are labelled in yellow

Table 3 Comparison of the
proposed PseudoSegRT
(reporting mean intersection
over union) with various values
of confidence threshold when
using 25 labelled scans in
training

Confidence threshold Healthy dataset Unhealthy dataset Overall

70% 96.02 87.10 91.56

80% 96.36 87.66 92.01

90% 96.19 88.88 92.54

scans and an equal number of pseudo-labelled OCT scans
are used during the training process.

Ablation study

To understand how many training and pseudo-labelled sam-
ples are required to achieve comparable performance as that
of a fully supervised approach, we perform ablation exper-
iments. We trained PseudoSegRT with 5, 10,..., 60 labelled
and an equal number of unlabelled scans. Likewise, we
trained FSL-partial with 5, 10,..., 60 scans. For simplicity,
we only report the performance on 5, 25, and 50 scans in
Table 2. We can observe from this table that the two mod-

els converged at 25 scans dataset, with PseudoSegRT even
surpassing FSL-full in unhealthy test data. Beyond 25 scans,
there was no significant performance gain. Therefore, we
selected 25 scans as the training set for the rest of the pseudo-
labelling experiments.

Results and discussion

Quantitative comparisons of fully supervised learning and
pseudo-labelling methods are presented in Table 2. It can
be observed that though FSL-full achieved the best perfor-
mance on the healthy test dataset, it failed to generalise
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Table 4 Acceleration result:
comparison between raw
PyTorch model, accelerated
TensorRT Engine with precision
FP16 and TensorRT Engine with
precision FP32

IoU score Inference time Frames/second
(%) (ms) (fps)

PyTorch model 96.19 493.37 2

TensorRT Engine (FP32) 95.78 3.14 318.5

TensorRT Engine (FP16) 95.78 0.67 1492.5

on the unseen unhealthy test dataset. As shown in Fig. 3,
the unseen unhealthy dataset has large difference compared
with the healthy dataset; as a result FSL methods failed
in such situation. Likewise, the performance of FSL-partial
was comparatively low. All pseudo-labelling techniques
achieved better performance, showing better generalisation
capabilities compared to the FSL approaches. The proposed
PseudoSegRToutperformedLee’smethod inboth thehealthy
dataset and the unhealthy dataset giving an overall IoU of
92.54%.

Thequalitative results formodel comparison are presented
in Fig. 3. Compared to FSL-full, our proposed method and
Lee’s method shows better generalisability and are more
competitive for unseen data even when a limited amount of
training data is applied. This result shows the limitation of
fully supervised learning, and it is useful to apply a pseudo-
labelling strategy to deal with unseen data. From Fig. 3, it
can be seen that the fully supervised learningmethod showed
good performance on the healthy samples (row 1–2), but it
almost failed to detect the bottom boundary of the unseen
data (row 3–6). Lee’s method and our proposed method sac-
rifice a little amount of accuracy of the data which has similar
distribution learned but achieve improved generalisability.
With our proposed PseudoSegRT method, the pseudo-labels
can give better performance by applying the weight factor
design and updating the pseudo-labels during training. The
pseudo-labelling method which does not have a threshold
and weight function gave a worse performance compared
with other pseudo-labelling methods. Pseudo-labels without
a high confidence threshold may disturb the training process
as the information of the unlabelled data is not used effi-
ciently as results shown in Table 3. From Table 3, it can be
observed that the overall performance of the model increases
with the value of the confidence threshold.

As the cleanOCT scans satisfy the low-density separation,
the results of the proposed method show a good performance
for layer segmentation. However, it requires further tests for
complicated situations, such as when a surgical tool appears
in the OCT scan. Further study can also be done for surgical
tool detection.

Following the details mentioned in section “Model accel-
eration for real-time deployment”, we accelerate the seg-
mentation model using TensorRT. The inference time (in
milliseconds) and processing frequency (in frames per sec-
ond) are reported in Table 4. The FP16 implementation

on TensorRT came out to be extremely efficient with an
inference time of only 0.67 milliseconds. Improved gen-
eralisability and increased efficiency make the proposed
PseudoSegRT to be suitable for intraoperative OCT segmen-
tation.

Conclusion

Weproposed a simple and efficient pseudo-labelling approach
for semi-supervised segmentation in intraoperative optical
coherence tomography (iOCT). We showed the significance
of obtaining high-confidence pseudo-labels through high-
confidence thresholding and adaptative weighting during
training. We showed that PseudoSegRT is suitable for the
application of OCT-related tasks. Sometimes, there are a
limited amount of manual segmentation provided, and a
pseudo-labelling strategy canmake use of the unlabelled data
set. The experimentation with pseudo-labelling on themouse
retina data had results that were comparable to the fully
supervised performance on the original test set. The benefit
of the pseudo-labelling was demonstrated on the additional
test set of diseased eyes, which suggested that the addi-
tional (pseudo-labelled) image data used for training helped
to improve the generalisability of the neural network on out-
of-distribution images. Therefore, a robust and generalisable
neural network can be created which has the potential to
function correctly even in the presence of unseen data. The
OCT segmentation task can be accelerated into a real-time
domain. From the result of the boundary segmentation, more
than 1400 frames can be segmented in a second efficiently.
The future work will focus on post-processing to filter out
the noisy predictions and integration of the method in the in
laboratory setup for OCT-guided robotic microsurgery.
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