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Abstract 

Background:  Therapy resistance in cancer is often driven by a subpopulation of cells 
that are temporarily arrested in a non-proliferative G0 state, which is difficult to capture 
and whose mutational drivers remain largely unknown.

Results:  We develop methodology to robustly identify this state from transcriptomic 
signals and characterise its prevalence and genomic constraints in solid primary 
tumours. We show that G0 arrest preferentially emerges in the context of more stable, 
less mutated genomes which maintain TP53 integrity and lack the hallmarks of DNA 
damage repair deficiency, while presenting increased APOBEC mutagenesis. We 
employ machine learning to uncover novel genomic dependencies of this process and 
validate the role of the centrosomal gene CEP89 as a modulator of proliferation and G0 
arrest capacity. Lastly, we demonstrate that G0 arrest underlies unfavourable responses 
to various therapies exploiting cell cycle, kinase signalling and epigenetic mechanisms 
in single-cell data.

Conclusions:  We propose a G0 arrest transcriptional signature that is linked with 
therapeutic resistance and can be used to further study and clinically track this state.

Keywords:  Cell cycle arrest, G0, Cancer, Persister cells, Genomic dependencies, 
Machine learning, Data integration, Bulk/single-cell sequencing

Background
Tumour proliferation is one of the main hallmarks of cancer development [1] and has 
been extensively studied. While most of the cells within the tumour have a high prolif-
erative capacity, occasionally under stress conditions, some cells will become arrested 
temporarily in the G0 phase of the cell cycle, in a reversible state often referred to as 
‘quiescence’, ‘dormancy’, ‘diapause-like’ or a potentially irreversible state called ‘senes-
cence’, where they maintain minimal basal activity [2–5]. It has been proposed that G0 
arrest enables cells to become resistant to anti-cancer compounds that target actively 
dividing cells, such as chemotherapy [5–7]. Moreover, a drug-tolerant ‘persister’ cell 
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state represented by slow cycling, entirely quiescent or even senescent cells [4, 8–11] 
has been observed in a variety of pre-existing or acquired resistance scenarios, also in 
the context of targeted therapies [12, 13]. As neoplastic cells evolve, G0 arrest can also 
be employed as a mechanism to facilitate immune evasion [14, 15] or adaptation to new 
environmental niches during metastatic seeding [16, 17]. In the context of disseminated 
tumour cells, these G0 cycle arrest states can facilitate minimal residual disease, a major 
cause of relapse in the clinic [18].

Although G0 arrest is a widely conserved cellular state, essential for the normal devel-
opment and homeostasis of eukaryotes [2, 19], and has been extensively studied in a 
variety of organisms including bacteria and yeast [20, 21], its role and different facets 
in cancer are still poorly defined. Hampering our understanding is the fact that it rep-
resents a number of heterogeneous states [19, 22]. Canonically, cells can be forced into 
G0 arrest through serum starvation, mitogen withdrawal or contact inhibition [19]. Cells 
can also undergo G0 arrest spontaneously in response to cell-intrinsic factors like rep-
lication stress [23–25]. This process is controlled by p53 [26], which triggers the inhibi-
tion of cyclin-CDK complexes by activating p21 [24]. This in turn allows the assembly of 
the DREAM complex—a key effector responsible for repression of cell-cycle-dependent 
gene expression [27]. Min and Spencer [28] recently demonstrated a much broader sys-
temic coordination of 198 genes underlying distinct types of G0 arrest by profiling the 
transcriptomes of cells that entered this state either spontaneously or upon different 
stimuli. Additionally, proliferation-G0 decisions can be impacted by oncogenic changes 
such as MYC amplification [29] or altered p38/ERK signalling [30].

Despite these advances, the identification of G0-arrested cells within tumours pre-
sents an ongoing challenge due to their scarcity and lack of universal, easily measura-
ble markers for the activation and maintenance of this state. As they are often defined 
by a lack of proliferative markers [31, 32], different forms of G0 arrest such as quies-
cence, senescence, dormancy and (to a lesser extent) stemness might sometimes be used 
interchangeably [4, 33]. Quiescent and dormant cells can readily resume their prolif-
erative state, senescent cells are irreversibly arrested [28] while cancer stem cells have 
a high capacity for self-renewal and sit at the top of the differentiation hierarchy [34]. 
Even though the same cell cycle arrest programme underlies all of these states, they are 
linked with distinct environmental stimuli and drive cancer progression and therapeu-
tic resistance in different ways [11, 12, 35, 36]. Increasing evidence from the literature 
points towards the rapid adaptation of tumour cells to drug treatments being enabled 
by a slow dividing or a quiescent state that persists for a short period of time before the 
cells start reproliferating [37]. Thus, quiescence could more frequently be encountered at 
the early stages of therapeutic resistance compared to other cell cycle arrest phenotypes, 
although senescence and stemness are also often discussed in this context. Biomarkers 
of cell cycle arrest and persistence that are sufficiently specific and robust to be clinically 
useful are clearly needed.

Furthermore, our understanding of how cancer evolution is shaped by proliferation 
and G0 arrest decisions is limited. The proliferative heterogeneity of cancer cell popula-
tions has been previously described and linked with FAK/AKT1 signalling [38], but the 
constraints and consequences of these cell state switches have not been systematically 
profiled across cancer tissues. The extent to which G0 arrest in cancer is enacted through 
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transcriptional or genetic control is unknown [5, 39], and neither are the mutational 
processes and genomic events modulating this state. Understanding the evolutionary 
triggers and molecular mechanisms that enable cancer cells to enter and maintain G0 
arrest would enable us to develop pharmacological strategies to selectively eradicate 
these arrested cancer cells or prevent them from re-entering proliferative cycles.

To address these challenges, we have developed a new method to reliably quantify G0 
arrest in cancer using transcriptomic data, and employed it to characterise this phenom-
enon in bulk and single-cell datasets from a variety of solid tumours. We describe the 
spectrum of proliferation and G0 arrest decisions in primary tumours, which reflects a 
range of stress adaptation mechanisms during the course of cancer development from 
early to advanced disease. We identify and validate mutational constraints for the emer-
gence of G0 arrest, hinting at potential new therapeutic targets that could exploit this 
mechanism. We also demonstrate the relevance of G0 arrest to responses to a range of 
compounds targeting cell cycle, kinase signalling and epigenetic mechanisms in single-
cell datasets and propose an expression signature that could be employed to detect treat-
ment resistance induced by G0 arrested tumour cells.

Results
Evaluating G0 arrest in cancer from transcriptomic data

We hypothesised that primary tumours contain varying numbers of cells temporarily or 
permanently arrested in the cell cycle, which reflect evolutionary adaptations to cellular 
stress and may determine their ability to overcome antiproliferative therapies. To capture 
this elusive phenotype, we developed a computational framework that would allow us 
to quantify G0 arrest signals in bulk and single-cell sequenced cancer samples (Fig. 1a). 
To define a signature of G0 arrest, we focused on genes that have been shown by Min 
and Spencer [28] to be specifically activated or inactivated during quiescence that arises 
spontaneously or as a response to serum starvation, contact inhibition, MEK inhibition 
or CDK4/6 inhibition. The activity of 139 of these genes changed in a coordinated man-
ner across all these five distinct forms of quiescence, likely representing generic tran-
scriptional consequences of G0 arrest. The expression levels of these markers were used 
to derive a score reflecting the relative abundance of G0 arrested cells within individual 
tumours (see ‘Methods’, Additional file 1: Table S1).

(See figure on next page.)
Fig. 1  Methodology for quantifying G0 arrest in cancer. a Workflow for evaluating G0 arrest from RNA-seq 
data; 139 genes differentially expressed in multiple forms of quiescence were employed to score G0 arrest 
across cancer tissues. b Receiver operating characteristic (ROC) curves illustrating the performance of 
the Z-score methodology on separating actively proliferating and G0 arrested cells in seven single-cell 
(continuous curves) and bulk RNA-seq (dotted curves) datasets. AUC area under the curve. c Compared 
classification accuracies of the G0 arrest Z-score approach and classic cell proliferation markers across the 
seven single-cell/bulk RNA-seq validation datasets. d G0 arrest levels of embryonic fibroblast cells under 
serum starvation for various amounts of time. Replicates are depicted in the same colour. e Representative 
images of lung cancer cell lines immunostained and analysed to detect the G0 arrest fraction. Hoechst 
(labels all nuclei) is in blue, phospho-Rb in green and EdU in red in the merged image. White dashed circles 
highlight G0 arrested cells that are negative for both phospho-Rb and EdU signals. Scale bar: 100 µm. f 
Graphs show single-cell quantification of phospho-Rb and EdU intensities taken from images and used to 
define the cut-off to calculate the G0 arrest fraction (green boxes). Images in e and graphs in f are taken from 
the A549 cell line. g–h Correlation between theoretical estimates of a G0 or G1 state and the fraction of cells 
entering G0 arrest in nine lung adenocarcinoma cell lines, as assessed through g phospho-Rb assays and h 
EdU assays. Mean of n = 3 is shown for the average percentage of G0 arrested cells



Page 4 of 35Wiecek et al. Genome Biology          (2023) 24:128 

To validate this signature and select the optimal method to score G0 arrest in indi-
vidual samples amongst different enrichment/rank-based scoring methodologies 
[40–43], we used seven single-cell and bulk datasets [12, 44–49] where actively prolif-
erating and quiescent/dormant cells had been independently isolated and sequenced 
(Additional file 1: Table S2, Methods). We tested the performance of our signature and 
scoring methodology, as well as that of other commonly used gene signatures, in dis-
tinguishing between the truly quiescent/dormant and truly proliferating cells in these 
seven datasets while varying the expression cut-offs for labelling cells as G0 arrested 
or proliferating based on the respective signature. A combined Z-score approach had 

Fig. 1  (See legend on previous page.)
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the highest accuracy in detecting signals of G0 arrest, with a 91% mean performance 
in classifying cells as G0 arrested or cycling (Fig.  1b, Additional file  2: Fig. S1a-b). 
Indeed, the individual cells that had been identified as arrested in G0 in the experi-
ments showed a significantly higher Z-score than the dividing cells across all data-
sets (Additional file 2: Fig. S1c). Our signature reflected an expected increase in p27 
protein levels, which are elevated during G0 arrest [50] (Additional file 2: Fig. S1d). 
It also outperformed classical cell cycle and arrest markers, such as the expression 
of targets of the DREAM complex, CDK2, Ki67 and of mini-chromosome replication 
maintenance (MCM) protein complex genes—which are involved in the initiation of 
eukaryotic genome replication, as well as recently defined G1/S and G2/M signatures 
[51] (Fig. 1c). Importantly, our approach provided a good separation between G0 and 
proliferating samples across a variety of cancer types and models including cancer 
cell lines, 3D organoid cultures, circulating tumour cells and patient-derived xeno-
grafts (Additional file 1: Table S2), thereby demonstrating its broad applicability. Fur-
thermore, the strength of the score appeared to reflect the duration of G0 arrest [52] 
(Fig. 1d).

We further experimentally validated our methodology in nine lung adenocarci-
noma cell lines. We estimated the fraction of G0 cells in each of these cell lines using 
quantitative, single-cell imaging of phospho-Ser807/811-Rb (phospho-Rb, which 
labels proliferative cells [53]) and 24-h EdU proliferation assays (Fig. 1e–h). In these 
assays, cells were pulse-labelled with the nucleotide analogue, EdU, for 24  h before 
fixation and immunostaining. Only cells which have proliferated in the last 24 h will 
be labelled by EdU. EdU-negative cells are classed as G0. Cells that were negative 
for phospho-Rb were also defined as G0, and not G1, since they have not yet passed 
the restriction point (phospho-Rb negative; see ‘Methods’, Fig.  1e–f ). This G0 frac-
tion was further validated in A549 and NCI-H1944 cells where endogenous PCNA 
has been labelled with an mRuby fluorophore to enable tracking of cell cycle phase 
lengths by live-cell imaging (Zerjatke et  al. [54], ‘Methods’). By quantifying the G0/
G1 length in individual cells (i.e. time taken to enter S-phase after mitotic exit) over 
a 48-h period, we could see that these cells were quiescent and not senescent (or in 
deep quiescence), as all G0/G1 cells did eventually enter S-phase, albeit with variable 
timing (Additional file 2: Fig. S1e).

There was a remarkably good correlation between our predicted G0 arrest levels based 
on the expression of these cell lines from the Cancer Cell Line Encyclopedia (CCLE) and 
the fraction of G0 cells in the experiment as assessed by lack of EdU incorporation over 
a 24-h period (EdU incorporation only occurs during S phase) but particularly by lack 
of Rb phosphorylation. Phosphorylation and inactivation of the retinoblastoma protein 
is often used to define the boundary between G0 and G1 and was specifically shown 
to distinguish the G0 state recently by Stallaert et al. [53]. Furthermore, a G1 signature 
(see ‘Methods’) was not associated with these experimental measurements, suggesting 
our method recovers a state more similar to G0 arrest rather than a prolonged G1 state 
(Fig. 1g–h). The G0 arrest correlations appeared robust to random removal of individual 
genes from the signature, with no single gene having an inordinate impact on the score 
(Supplementary Fig.  1f-h). This provided further reassurance that our Z-score-based 
methodology is successful in capturing G0 arrest signals from bulk tumour data.
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The spectrum of G0 arrest capacity in solid primary tumours

Having established a robust framework for quantifying G0 cell cycle arrest in cancer, we 
next profiled 8005 primary tumour samples across 31 solid cancer tissues from The Can-
cer Genome Atlas (TCGA). After accounting for potential confounding signals of non-
cycling non-tumour cells from the microenvironment by correcting for tumour purity 
(see ‘Methods’, Supplementary Fig. 1i-j), we observed an entire spectrum of fast prolif-
erating to slowly cycling tumours, with the latter presenting stronger G0-linked signals 
(Fig. 2a). While we acknowledge that no tumour would be entirely quiescent/senescent 
and we cannot identify individual G0 arrested cells within the tumour, this analysis does 
capture a broad range of phenotypes reflecting varying proliferation and cell cycle arrest 
rates, which suggests that G0 arrest is employed to different extents by tumours as an 
adaptive mechanism to various extrinsic and intrinsic stress factors. Cancers known to 
be frequently dormant, such as glioblastoma [6, 44], were amongst the highest ranked 
in terms of G0 arrest levels, along with kidney and adrenocortical carcinomas (Fig. 2b). 
This is likely explained by the innate proliferative capacity of the respective tissues. 
Indeed, tissues with lower stem cell division rates presented a greater propensity for G0 
arrest (Fig. 2c) [55].

Our score showed strong negative correlations with the expression of proliferation 
markers (Fig.  2d), suggesting that it captures a cellular state that could potentially act 
as a baseline for all major forms of cell cycle arrest, including quiescence, senescence, 
stemness and clinical dormancy. Indeed, we found that our signature could to a certain 

Fig. 2  Pan-cancer evaluation of proliferative heterogeneity and linked tumour hallmarks. a PHATE plot 
illustrating the wide spectrum of proliferative to slow cycling/arrested states across 8005 primary tumour 
samples from TCGA. Each sample is coloured according to the relative G0 arrest level. b Variation in tumour 
G0 arrest levels across different cancer tissues. c Correlation between mean G0 arrest capacity and stem cell 
division estimates for various tissue types. d Correlating tumour G0 arrest scores with cancer cell stemness 
(Stemness Index), telomerase activity (EXTEND score), p21 activity (CDKN1A) and the expression of several 
commonly used proliferation markers. The Pearson correlation coefficient is displayed. RC replication 
complex. e Consistently higher levels of G0 arrest are detected in samples with functional p53. f Lower G0 
arrest scores are observed in tumours with one or two whole-genome duplication events. Wilcoxon rank-sum 
test p-values are displayed in boxplots, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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extent also separate senescent cells from proliferating ones in single-cell data from Her-
nandez-Segura et al. [56], which is unsurprising since these cells are also in the G0 phase 
(Additional file 2: Fig. S2a). Indeed, the authors of this resource highlight that some of 
the pathways uncovered in these senescent cells may be shared with quiescence, which 
is also backed up by a study from Fujimaki and Yao [57] suggesting similarities between 
deep quiescence and senescence. Our score did not show strong correlations with other 
markers of senescence such as the senescence-associated secretory phenotype (SASP) 
and β-galactosidase activity [58–60] in single cells or TCGA samples (Fig. 2d, Supple-
mentary Fig. 2b-d), although we cannot exclude the possibility of a senescent state being 
captured occasionally given that neither β-galactosidase nor the SASP are obligatory for 
maintaining senescence [61]. However, the underpinning programme appears to be dis-
tinct from that of cancer stem cells, marked by signatures associated with high telomer-
ase activity and an undifferentiated state [62, 63] (Additional file 2: Fig. S2e-f ).

Lastly, we confirmed expected dependencies on the p53/p21/DREAM activation axis: 
tumours that were proficient in TP53 or the components of the DREAM complex, as 
well as those with higher p21 expression, had elevated G0 arrest levels across numerous 
tissues (Fig. 2e, Supplementary Fig. 2g-h), although only 8 out of 139 genes in our signa-
ture are directly transcriptionally regulated by p53 [64]. Nevertheless, p53 proficiency 
appears to be a non-obligatory dependency of G0 arrest, which is also observed to arise 
in p53 mutant scenarios in 21% of cases. p53 has also been shown to play a role in pre-
venting the occurrence of larger structural events and polyploidy [65–67], potentially 
explaining the lower G0 arrest levels we observed in tumours that had undergone whole-
genome duplication (Fig. 2f ).

The genomic background of G0 arrest in cancer

Cancer evolution is often driven by a variety of genomic events, ranging from single base 
substitutions to larger scale copy number variation and rearrangements of genomic seg-
ments. It is reasonable to expect that certain mutations accumulated by the cancer cells 
might enable a more proliferative phenotype, impairing the ability of cells to enter G0 
arrest, or - on the contrary - might favour cell cycle exit as a temporary adaptive mecha-
nism to extreme levels of stress. Having obtained G0 arrest estimates for primary tumour 
samples, we set out to identify potential genomic triggers or constraints that may shape 
proliferation versus G0 arrest decisions in cancer. We identified 285 cancer driver genes 
that were preferentially altered (via mutations or copy number alterations) either in slow 
cycling or fast proliferating tumours (Fig. 3a). Reassuringly, this list included genes pre-
viously implicated in driving cell cycle exit decisions such as TP53 and MYC [26, 29]. We 
also investigated associations with mutagenic footprints of carcinogens (termed ‘muta-
tional signatures’), which can be identified as trinucleotide substitution patterns in the 
genome [68, 69]. Fifteen mutational signatures were linked with G0 arrest levels either 
within individual cancer studies or pan-cancer (Additional file 2: Fig. S2i).

Following the initial prioritisation of putative genomic constraints of G0 arrest, we 
employed machine learning to identify those events that could best distinguish slow 
cycling tumours with higher abundance of G0 arrested cells from fast proliferating ones, 
while accounting for tissue effects. An ensemble elastic net selection approach similar to 
the one described by Pich et al. [70] was applied for this purpose (Fig. 3b, see ‘Methods’). 
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Our pan-cancer model identified tissue type to be a major determinant of G0 arrest lev-
els (Additional file  2: Fig. S3a). It also uncovered a reduced set of 57 genomic events 
linked with proliferation/G0 arrest switches, including SNVs and copy number losses in 
17 cancer genes, as well as amplifications of 10 cancer genes (Fig. 3c). These events could 
then be successfully employed to predict G0 arrest in a separate test dataset, thus inter-
nally validating our model (Additional file 2: Fig. S3b). Thus, while these events are not 
necessarily causative, the link is strong enough to be identifying G0 arrest states from 
genomic data alone. Such events may also pinpoint cellular vulnerabilities that could be 
exploited therapeutically.

Overall, the genomic dependencies of G0 arrest mainly comprised genes involved in 
cell cycle pathways, p53 regulation and ubiquitination (most likely of cell cycle targets), 
and RUNX3 regulation, which have previously been shown to play a role in controlling 
proliferation and cell cycle entry [71] (Additional file 2: Fig. S3c). Invariably, this analysis 
has captured several events that are well known to promote cellular proliferation in can-
cer: this is expected and confirms the validity of our model. It was reassuring that a func-
tional TP53, lack of MYC amplification and lower mutation rates (Fig. 3c) were amongst 
the top ranked characteristics of tumours with high levels of G0 arrest, which also dis-
played less aneuploidy. However, our analysis has also uncovered novel dependencies of 
G0 arrest-proliferation decisions that have not been reported previously, such as CEP89 
and LMNA amplifications observed in fast cycling tumours, or ZMYM2 deletions preva-
lent in samples with high levels of G0 arrest. ZMYM2 has recently been described as 
a novel binding partner of B-MYB and has been shown to be important in facilitating 
the G1/S cell cycle transition [72]. p16 (CDKN2A) deletions, one of the frequent early 
events during cancer evolution [73, 74], were enriched in tumours with high proportions 
of cells in G0. RB1 deletions and amplifications were both associated with a reduction in 
G0 arrest, which might reflect the dual role of RB1 in regulating proliferation and apop-
tosis [75].

Our model also calls to attention to the broader mutational processes associated with 
this cellular state. Such processes showed fairly weak and heterogeneous correlations 
with G0 arrest within individual cancer tissues (Additional file  2: Fig. S2g), but their 
contribution becomes substantially clearer pan-cancer once other genomic sources 

(See figure on next page.)
Fig. 3  Genomic landscape of G0 arrest decisions in cancer. a Cancer drivers with mutations or copy number 
alterations depleted pan-cancer in a G0 arrest context. Features further selected by the pan-cancer model 
are highlighted. b Schematic of the ensemble elastic net modelling employed to prioritise genomic changes 
associated with G0 arrest. c Genomic events significantly associated with G0 arrest, ranked according to their 
importance in the model (highest to lowest). Each point depicts an individual tumour sample, coloured by 
the value of the respective feature. For discrete variables, purple indicates the presence of the feature and 
green its absence. The Shapley values indicate the impact of individual feature values on the G0 arrest score 
prediction. d G0 arrest levels are significantly reduced in microsatellite unstable (MSI) samples in stomach 
adenocarcinoma (STAD) and uterine corpus endometrial carcinoma (UCEC), with the same trend (albeit not 
significant) shown in colon adenocarcinoma (COAD). Wilcoxon rank-sum test *p < 0.05; **p < 0.01. e Genomic 
alterations are depleted across DNA repair pathways during G0 arrest. Odds ratios of mutational load on 
pathway in G0 arrest are depicted, along with confidence intervals. CS, chromosome segregation; p53, p53 
pathway; UR, ubiquitylation response; CPF, checkpoint factors; TM, telomere maintenance; CR, chromatin 
remodelling; TLS, translesion synthesis; NHEJ, non-homologous end joining; NER, nucleotide excision repair; 
MMR, mismatch repair; FA, Fanconi Anaemia; BER, base excision repair. f G0 arrest scores are increased in cell 
lines with slow doubling time across MCF7 strains, which also show lower prevalence of PTEN mutations. g 
Tissue-specific changes in G0 arrest between samples with/without quiescence-associated deletions (blue), 
amplifications (red) and SNVs (brown) within the TCGA cohort (top) and external validation datasets (bottom)
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are accounted for. In particular, we identified an association between G0 arrest and 
mutagenesis induced by the AID/APOBEC family of cytosine deaminases as denoted by 
signature SBS2 [68] (Fig. 3c). As highlighted by Mas-Ponte and Supek [76], APOBEC/
AID driven mutations tend to be directed towards early-replicating, gene-rich regions of 
the genome, inducing deleterious events on several genes including ZMYM2, which our 
pan-cancer model has linked with G0 arrest.

In turn, defective DNA mismatch repair, as evidenced by signatures SBS44, SBS20, 
SBS15, SBS14 and SBS6 [68], was prevalent in fast cycling tumours (Fig. 3c). Mismatch 

Fig. 3  (See legend on previous page.)
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repair deficiencies lead to hypermutation in a phenomenon termed ‘microsatellite insta-
bility’ (MSI), which has been linked with increased immune evasion [77]. Cancers par-
ticularly prone to MSI include colon, stomach and endometrial carcinomas [78], where 
this state was indeed linked with reduced G0 arrest (Fig.  3d). Furthermore, tumours 
with high proportions of cells in G0 were depleted of alterations across all DNA damage 
repair pathways (Fig. 3e).

Our measurements of G0 arrest also reflected expected cycling patterns across 27 
MCF7 strains [79]: cell lines with longer doubling times exhibited increased G0 arrest 
(Fig. 3f ). This coincided with a depletion of PTEN mutations, a dependency highlighted 
by the pan-cancer model.

When checking for dependencies in individual cancer tissues, 24 out of the 25 genes 
identified by the model were significantly associated with G0 arrest or proliferation deci-
sions in at least one tissue, most prominently in breast, lung and liver cancers which also 
represent the largest studies within TCGA (Fig. 3g, top panel). Most of these genomic 
insults were linked with a decrease in G0 arrest. In external validation datasets, these 
associations, including deletions in PTEN and LRP1B or amplifications of MYC, CEP89 
and ETV6, featured most prominently in the largest cohort of breast cancer samples 
(Fig.  3g, bottom panel). These results highlight the fact that although a pan-cancer 
approach is suited to capture genomic events that are universally associated with cell 
cycle exit, certain genetic alterations may facilitate a higher or lower propensity of G0 
arrest in a single tissue only.

Indeed, when building a tissue-specific breast cancer model of G0 arrest using a com-
bined ANOVA and random forest classification approach (Additional file  2: Fig. S4a), 
we not only recovered the associations with the TP53, MYC, LMNA and ETV6 events 
already seen in the pan-cancer model (Additional file  2: Fig. S4b) but also identified 
additional events which validated in the METABRIC cohort and were also seen in sev-
eral other cancers, e.g. bladder, lung and lower grade glioma (Additional file 2: Fig. S4c). 
Notably, the APOBEC mutational signature SBS2 was the strongest genomic signal 
linked with G0 arrest in breast cancer (Supplementary Fig. 4b,d) and was most prevalent 
in Her2+ tumours, although the Luminal A subtype showed the highest levels of G0 
arrest overall, as expected given its well-known lower proliferative capacity [80] (Sup-
plementary Fig. 4e-f ).

Validation of CEP89 as a modulator of G0 arrest capacity

To gain more insight into the underlying biology of G0 arrest in cancer, we sought to 
experimentally validate associations highlighted by the pan-cancer model. We focused 
on the impact of CEP89 activity on proliferation/arrest decisions due to the high ranking 
of this putative oncogene in the model, the relatively unexplored links between CEP89 
and cell cycle control, as well as its negative association with G0 arrest across a variety 
of cancer cell lines (Supplementary Fig. 5a-c). The function of CEP89 is not well char-
acterised; however, the encoded protein has been proposed to function as a centroso-
mal-associated protein [81, 82]. Centrosomes function as major microtubule-organising 
centres in cells, playing a key role in mitotic spindle assembly [83] and the mitotic entry 
checkpoint [84]. Moreover, centrosomes act as sites of ubiquitin-mediated proteolysis 
of cell cycle targets [85], and members of several growth signalling pathways, such as 
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Wnt and NF-kB, localise at these structures [86, 87]. Several genetic interactions have 
also been reported between CEP89 and key cell cycle proteins, including cyclin D2 [88] 
(Fig. 4a).

Our model linked CEP89 amplification with fast cycling tumours (Fig.  3c). Centro-
some amplification is a common feature of tumours with high proliferation rates and 
high genomic instability [89], and overexpression of centrosomal proteins can alter cen-
triole structure [90, 91]. Indeed, CEP89 amplified tumours presented elevated expres-
sion of a previously reported centrosome amplification signature (CA20) [89] (Fig. 4b), 
which was strongly anticorrelated with G0 arrest levels (Fig. 4c). Furthermore, CEP89 
expression was prognostic across multiple cancer tissues (Fig. 4d) and linked with toxic-
ity of several cancer compounds in cell line models (Additional file 2: Fig. S5d).

Fig. 4  CEP89 amplification is associated with lower G0 arrest capacity. a Network illustrating CEP89 
interactions with cell cycle genes (from GeneMania). The edge colour indicates the interaction type, with 
green representing genetic interactions, orange representing predicted interactions and purple indicating 
pathway interactions. The edge width illustrates the interaction weight. b CA20 scores are significantly 
increased in TCGA primary tumours containing a CEP89 amplification. c Pan-cancer relationship between 
CA20 and G0 arrest scores across the TCGA cohort. d Cox proportional hazards analysis estimates of the log 
hazards ratio for the impact of CEP89 expression on patient prognosis within individual cancer studies, after 
adjusting for tumour stage. Patients with high expression of CEP89 show significantly worse prognosis within 
ACC, LUSC, LIHC, KIRC and STAD, but significantly better prognosis within HNSC, PAAD and KIRP studies. e 
Western blot showing depletion of Cep89 protein 48 h after siRNA transfection of NCI-H1299 cells. Mock is 
lipofectamine only; NTC is non-targeting control siRNA. B-actin is used as a loading control. f Graphs show 
that Cep89 depletion in NCI-H1299 cells leads to a reduction in nuclear number and an increase in the 
fraction of G0 arrested cells, measured by an increase in the percentage of EdU negative (24 h EdU pulse) and 
Phospho-Ser 807/811 Rb negative cells. One-way ANOVA, *p < 0.05, **p < 0.01. Mean of n = 3
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We validated this target in the lung adenocarcinoma cell line NCI-H1299 showing 
high levels of CEP89 amplification. Cep89 depletion via siRNA knockdown caused a 
consistent decrease in cell number, in the absence of any detectable cell death, and an 
increase in the fraction of G0 cells as measured by phospho-Rb and EdU assays (Fig. 4e–
f). Thus, we propose CEP89 as a novel cell proliferation regulator that may be exploited 
in certain scenarios to control tumour growth.

Characterisation of individual stress response programmes of G0 arrest

While we had previously examined a generic programme of G0 arrest, cancer cells can 
enter this state due to different stimuli [19] and this may inform its aetiology and mani-
festation. To explore this, we re-scored tumours based on gene expression programmes 
specific to serum starvation, contact inhibition, MEK inhibition, CDK4/6 inhibition or 
spontaneously occurring quiescence as defined by Min and Spencer [28] (see ‘Methods’). 
We observed a good correlation between our estimates representing individual stress 
response programmes and the expression of genes associated with the corresponding 
form of G0 arrest in the literature (Fig. 5a–e, Additional file 2: Fig. S6, see ‘Methods’). 
Specifically, strong inverse correlations were seen between our CDK4/6 inhibition scores 
and the mean expression of CDK4 and CDK6, or between our MEK inhibition scores 
and the expression of genes involved in the MAPK pathway [92]. Spontaneous quies-
cence and serum starvation scores were most correlated with the activity of p21, or of 
genes involved in the cellular response to starvation, respectively. The contact inhibition 
programme was also captured, but with lesser specificity.

CDK4/6 inhibition-induced G0 arrest levels were further validated using exter-
nal RNA-seq datasets from cancer cell lines and xenograft mice sequenced before and 
after treatment with the CDK4/6 inhibitor palbociclib [93, 94] (Fig. 5f, Additional file 1: 
Table S3). The fact that the estimates for a generic G0 arrest phenotype were equally or, 
in some cases, more discriminative of cells treated with palbociclib confirms the gener-
alisability of this score, which may be more broadly applicable to different tissues and/
or model systems, as shown previously in the single-cell validation data. The CDK4/6 
inhibition scores outperformed all the other stress response subtype scores, suggesting 
that a combination of individual programmes and the generic score might best identify 
a specific stimulus driving G0 arrest. Interestingly, we also observed significant differ-
ences in spontaneous quiescence scores before and after treatment. Indeed, p21 activ-
ity has been linked with the palbociclib mechanism of action [95, 96], and this analysis 
suggests potential similarities between CDK4/6 inhibition and p21-dependent G0 arrest 
phenotypes.

Having validated our framework for quantifying stimulus-specific G0 arrest pro-
grammes, we proceeded to estimate the dominant form of stress that may induce cell 
cycle arrest in different cancer types (Fig. 5g). We found a range of G0 arrest aetiolo-
gies across most tissues, while a minority of cancers were dominated by a single form 
of stress response, e.g. serum starvation in all G0 arrested pheochromocytomas and 
paragangliomas, contact inhibition in 88% of head and neck carcinomas and CDK4/6 
inhibition in 80% of adrenocortical carcinomas. While we do not wish to claim that 
the state of cell cycle arrest will have necessarily been induced by the actual pre-
dicted stimulus (impossible in the case of CDK4/6 or MEK inhibition, as the analysed 
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samples are all treatment-naïve), we suggest that the downstream signalling cascade 
may resemble that triggered by such stimuli, e.g. via CDK4/6 or MEK loss of function 
mutations.

Some of the differences observed might be explained by the dependency between 
p53 activity and the form of stress response that is enacted. Amongst the five differ-
ent forms, spontaneous G0 arrest appeared most strongly dependent on p53 func-
tionality, with a nearly two-fold enrichment of p53 proficient tumours in this group 
(Additional file  2: Fig. S6f ). Indeed, significantly higher levels of spontaneous G0 
arrest were observed in the majority of cancers (56%) when p53 was functional rather 
than mutated. The second most dependent state was that of CDK4/6 inhibition, with 
increased levels in 36% of cancer types displaying p53 proficiency (Additional file 2: 
Fig. S6g).

Overall, these analyses of stress response states point to common transcriptional 
features of drug-tolerant G0 arrested cells in different cancer settings that could be 
employed in designing ways to eradicate these cells in the future.

Fig. 5  Pan-cancer characterisation of individual G0 stress response programmes. a-e Comparison of 
correlation coefficients between stress response programme scores and a mean expression of CDK4 and 
CDK6, b mean expression of curated contact inhibition genes, c a transcriptional MAPK Pathway Activity 
Score (MPAS), d mean expression of curated serum starvation genes and e CDKN1A expression (encoding 
for p21), across TCGA cancers. The correlations expected to be strongest (either negative or positive) are 
denoted by an asterisk. The generic G0 arrest score refers to scores calculated using the original list of 139 
genes differentially expressed across all 5 forms of G0 arrest. f Comparison of stress response programme 
scores measured in cancer cell lines before (grey) and after (red) palbociclib treatment across three validation 
studies. Datasets used for validation are denoted by their corresponding GEO series accession number. g 
Predicted stress response diversity in samples with high levels of G0 arrest across individual cancer types. The 
same colour legend as in a is applied. Grey bars represent the proportion of samples for which the G0 arrest 
inducer could not be estimated
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Role of G0 arrest in driving therapeutic resistance in cancer uncovered from single‑cell 

data

Overall, G0 arrest appears to be beneficial for the long-term outcome of cancer patients, 
even when accounting for potential confounders such as stage, sex and tissue (Fig. 6a, 
Additional file  2: Fig. S7a). No clear relation was observed between G0 arrest levels 
within the primary tumour and risk of relapse, although higher G0 arrest was occasion-
ally deemed favourable to avoiding disease recurrence or progression (Additional file 2: 
Fig. S7b-e). Indeed, such slow cycling, indolent tumours would have higher chances of 
being eradicated earlier in the disease, which is consistent with reported worse prog-
nosis of patients with higher tumour cell proliferation rates [97]. As expected, G0 arrest 
levels were increased in stage 1 tumours, although later stages also exhibited this phe-
notype occasionally (Additional file  2: Fig. S7f ). However, outcomes do vary depend-
ing on the stress source, with worse survival observed upon contact inhibition (Fig. 6b). 
The outcomes also vary by tissue: when the cut-offs between increased G0 arrest and 
high proliferation were defined on an individual cancer basis rather than pan-cancer, we 
found that lung, colon or oesophageal carcinoma patients displayed significantly worse 
prognosis in the context of high proportions of G0 arrested cells in the tumour (Fig. 6c, 
see ‘Methods’). Indeed, p53 wild-type colorectal cancers expressing a quiescence-linked 
fetal phenotype have been recently associated with metastasis and poor prognosis [98]. 
In contrast, adrenocortical and kidney papillary cell carcinoma ranked in the top of can-
cers with improved survival. It is noticeable that the cancers in the former, worse prog-
nosis group are also amongst the ones displaying lower than average G0 arrest (Fig. 2b), 
so the observed inferior outcomes could in part be linked to these cancers being intrinsi-
cally faster progressing. It is possible there is a lower limit below which G0 arrest stops 
being useful for delaying growth and becomes detrimental instead, perhaps in conjunc-
tion with treatment. Indeed, other factors such as the type of therapy received could play 
a role too. While we are limited in the investigation of such factors in TCGA due to the 
incomplete records available, these discrepancies should be subject to future research.

While G0 arrest may confer an overall survival advantage in most cancers, it can 
also provide a pool of cells that are capable of developing resistance to therapy [12, 99]. 
Using our methodology, we indeed observed an increase in G0 arrest levels in cell lines 

Fig. 6  Impact of G0 arrest on patient prognosis and treatment response. a Disease-specific survival based 
on proliferation/G0 arrest levels for patients from TCGA within 15 years of follow-up. Patients with increased 
levels of G0 arrest in primary tumours showed significantly better prognosis than patients with fast 
proliferating tumours. b–c Hazard ratio ranges illustrating the impact of different forms of G0 induction (b) 
and different tissues (c) on patient prognosis, after taking into account potential confounding factors. Values 
above 0 indicate significantly better prognosis when tumours contain high proportions of cells arrested 
in G0. d Change in G0 arrest scores inferred from bulk RNA-seq across breast, pancreatic, colorectal and 
skin cancer cells in response to treatment with the CDK4/6 inhibitor palbociclib, 5-FU or the BRAF inhibitor 
vemurafenib. e–f UMAP plot illustrating the response of the TP53-proficient RKO colorectal cancer cell line 
to various 5-FU doses and the corresponding proportions of cells predicted to be arrested/proliferating. 
Each dot is an individual cell, coloured according to its G0 arrest level. g–h The same as previous, but for the 
TP53-deficient SW480 cell line. i–j UMAP plot illustrating the response of individual PC9 NSCLC cells to the 
EGFR inhibitor erlotinib across several time points and the corresponding proportion of cells predicted to be 
arrested/proliferating. k Principal component analysis illustrating the superimposition of single-cell RNA-seq 
profiles (circles) of G0 arrested NSCLC cells before/after EGFR inhibition onto the bulk RNA-seq reference data 
(triangles) for MCF10A cells occupying various stress response states. l The proportion of NSCLC cells in k 
predicted to occupy different stress response states across several time points

(See figure on next page.)
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following treatment with EGFR, BRAF and CDK4/6 inhibitors, as well as conventionally 
used chemotherapies such as 5-fluorouracil (5-FU) in multiple bulk RNA-seq datasets 
(Fig. 6d).

Furthermore, the recent widespread availability of single-cell transcriptomics offers the 
opportunity to investigate the impact of G0 arrest on such therapies with much greater 
granularity than is allowed by bulk data. Using our G0 arrest signature and single-cell 
data from RKO and SW480 colon cancer cell lines treated with 5-FU [100], we could 
observe G0 arrest and proliferation decisions following conventional chemotherapy 

Fig. 6  (See legend on previous page.)
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treatment. Within the p53 proficient cell line RKO, the fraction of G0 arrested cells 
increased from 41 to 93% after treatment with a low dose (10  μM) of 5-FU and per-
sisted at higher doses (Fig. 6e–f). In contrast, a comparable increase in G0 arrest was 
not observed in TP53 mutant SW480 cells, further emphasizing the key role of p53 as a 
regulator of cell cycle exit (Fig. 6g–h). This implies that although TP53 mutations confer 
a more aggressive tumour phenotype and may drive resistance via other mechanisms, 
TP53 wild-type tumour cells are more likely to be capable of entering a G0 ‘persistent’ 
state associated with drug resistance. SW480 cells showed higher apoptotic activity 
following treatment compared to RKO cells, particularly within actively cycling cells, 
further corroborating that cells capable of entering G0 arrest may be intrinsically less 
vulnerable to this therapy (Supplementary Fig. 8a-b).

Similarly, using single-cell data from an EGFR mutant non-small cell lung cancer 
(NSCLC) cell line treated with the EGFR inhibitor erlotinib [13], we predicted that 40% 
of cells were likely to exist in a G0 arrest state prior to treatment. EGFR inhibition led 
to a massive decrease in cell numbers immediately after treatment, mostly due to pro-
liferating cells dying off (Supplementary Fig.  8c-d), while the proportion of arrested 
cells increased to 96% at day 1, indicating an immediate selective advantage for such 
cells (Fig. 6i–j). These cells appear to gradually start proliferating again in the following 
days during continuous treatment, with the percentage of proliferating cells approach-
ing pre-treatment levels by day 11 (Fig. 6j). The same trend captured by our signature 
could be observed upon KRAS and BRAF inhibition in different cell line models (Addi-
tional file 2: Fig. S8e-h, Additional file 1: Table S3) [12, 13]. Furthermore, during the first 
days of treatment, the NSCLC cells that survived EGFR inhibition appeared to reside in 
a state most resembling that induced by serum starvation (Fig. 6k–l). Both EGFR kinase 
inhibitors and serum starvation have been shown to trigger autophagy [101], which may 
explain the convergence between this inhibitory trigger and the type of stress response. 
At day 11, most of the remaining arrested cells appeared in a state similar to that preced-
ing the treatment (Fig. 6l).

Thus, G0 arrest appears to explain resistance to broad acting chemotherapy agents as 
well as targeted molecular inhibitors of the Ras/MAPK signalling pathway, being either 
selected for, or induced immediately upon treatment, and gradually waning over time 
as cells start re-entering the cell cycle. Using massively multiplexed chemical transcrip-
tomic data, we also analysed responses to 188 small molecule inhibitors in cell lines at 
single-cell resolution [102] (Additional file 2: Fig. S9). We observed a large increase in 
G0 arrest following treatment with not only compounds targeting cell cycle regulation 
and tyrosine kinase signalling, consistent with our previous results, but also for com-
pounds modulating epigenetic regulation, e.g. histone deacetylase inhibitors—thus high-
lighting the broad relevance of G0 arrest.

While links between G0 arrest and therapeutic resistance are prevalently observed 
in cell lines, one would question whether this translates to similar pathology in cancer 
patients. While we observed significantly higher G0 arrest levels in pre-treated tumours 
of non-responders to neoadjuvant chemotherapy in a breast cancer study by Hatzis et al. 
[103] (Additional file  2: Fig. S10a), surveying various targeted therapy datasets from 
the SELECT study [104] and the TCGA data for links with response to various thera-
pies (single agent and combinations) showed little to no evidence for a bulk signature 
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of G0 being useful for predicting resistance in these studies (Supplementary Fig.  10b-
c). Although the studies available for inspection are rather sparse, evidence from all the 
analyses presented here suggests there is no universal a priori role that G0 arrest has 
within the pre-treated primary tumour in determining response to treatment: favour-
able overall outcomes are observed occasionally due to slower progressing malignancy, 
but resistance is also observed in the case of chemotherapy in breast cancer. Instead, the 
role of G0 arrest in enabling therapeutic resistance as a short-lived acquired phenotype 
as demonstrated in single-cell datasets appears more consistent.

Tumour cell G0 arrest signature for use in single‑cell transcriptomics data

Our ability to probe the nature of G0 arrest phenotypes in single-cell RNA-seq data 
using a defined G0 signature could aid the development of methods to selectively tar-
get G0 arrested drug-resistant persister cells. However, a major challenge of single-cell 
RNA-seq data analysis is the high percentage of gene dropout, which could impact our 
ability to evaluate G0 arrest using the full 139 gene signature. The single-cell RNA-seq 
datasets we analysed exhibited an average drop-out of 8.5 genes out of the full gene sig-
nature. While our scoring method remains robust to such levels of dropout (Supple-
mentary Fig. 1d-f ), we also employed machine learning to reduce our initial list of 139 
markers of quiescence to a robust 35-gene signature, comprised mainly of RNA metabo-
lism and splicing-regulating factors, and also of genes involved in cell cycle progression, 
ageing and senescence, which could be applied to sparser datasets with larger levels of 
gene dropout (see ‘Methods’, Fig. 7a-b, Additional file 1: Table S4). The optimised sig-
nature of G0 arrest performed similarly to the initial broadly defined programme in 
distinguishing fast cycling tumours from those containing high proportions of G0 cells 
(Fig. 7c). It also showed an average dropout of only 0.5 genes across the single-cell RNA-
seq datasets used in this study (Fig. 7d), was similarly prognostic (p = 0.004) and showed 
comparable profiles of resistance to treatment (Fig. 7e, Additional file 2: Fig. S11). This 
minimal expression signature could be employed to track and further study emerging G0 
arrest-enabled resistance in a variety of therapeutic scenarios.

Discussion
Despite its crucial role in cancer progression and resistance to therapies, G0 arrest in all 
its forms remains poorly characterised due to the scarcity of suitable models and bio-
markers for large-scale tracking in the tissue or blood. The lack of proliferative mark-
ers such as Ki67 or CDK2 [31, 105] does not uniquely distinguish G0 arrest from other 
cell cycle phases, e.g. G1. Miller et al. [32] have shown that the Ki67 is expressed at the 
mRNA level but the protein is degraded continuously both in G0 and G1, and it rather 
acts as a graded marker of S/G2/M. Similarly, CDK2 activity is low in G0 and G1, builds 
up at the restriction point, is high in the S phase and is then replaced by CDK1 in mito-
sis. Reduced CDK2 expression can manifest due to not only quiescence and mitosis but 
also to DNA damage [106], and thus cut-offs to uniquely distinguish its activity in G0 
would be difficult to define. Furthermore, these and other reliable markers of G0 arrest 
such as p27 or p130 [50] are best captured at protein level, which is much more sparsely 
measured, and expression does not accurately reflect their activity. This study overcame 
this limitation by employing genes active in different forms of quiescence whose patterns 
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of expression are distinct from markers of a longer G1 phase and capture cell cycle arrest 
as also observed in senescence, stemness or dormancy. We have extensively validated 
our method and signature in single-cell datasets and cancer cell lines and have demon-
strated that it can reliably and robustly capture signals of G0 arrest both in bulk tissue as 
well as in single cells.

Within bulk tissue, we are limited in our capacity to distinguish between large fractions 
of cells residing in short-lived G0 arrest and a smaller fraction of cells that are in deeper 

Fig. 7  Optimisation of the G0 arrest signature for use in single-cell RNA-seq data. a Methodology for refining 
the gene signature of G0 arrest: random forest classifiers are trained to distinguish arrested from cycling 
tumours on three high confidence datasets; Gini index thresholding is optimised to prioritise a final list of 35 
genes. b Gini index variation, correlation with experimentally measured quiescence via EdU and phospho-Rb 
staining assays, and corresponding p-values are plotted as the number of genes considered in the model is 
increased. The vertical black dashed line indicates the threshold chosen for the final solution of 35 genes. The 
horizontal grey dotted line indicates the threshold for p-value significance. c Additional external validation 
of the 35 gene signature acting as a classifier of G0 arrested and proliferating cells in single-cell and bulk 
datasets. d Dropout in single-cell data by gene signature. The percentage of genes out of the 35 (red) and 
139 (grey) gene lists with reported expression across the single-cell RNA-seq datasets analysed in this study. 
e Proportion of cycling and G0 arrested cells estimated in single-cell datasets of p53 wild-type and mutant 
lines treated with 5FU, as well as cells treated with EGFR inhibitors. Data as in Fig. 6
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G0 arrest, as our score seems to reflect both parameters to a certain extent. Bearing in 
mind this limitation, our score could potentially also be used in a single-cell setting to 
capture longer-lived cell cycle arrest states such as ones demonstrated in senescence or 
dormancy and could assist in identifying such states, but only with the help of additional 
cell-state specific, immune or secretory biomarkers. Indeed, gene activity linked to cell 
cycle arrest is not exclusive to quiescence, but can be shared with senescence or dor-
mancy in certain scenarios, as also demonstrated in some of our analyses of senescent 
cells. This makes it difficult to clearly distinguish states like dormancy, senescence and 
quiescence (particularly deep quiescence), as even their definitions can be contentious at 
times both in the context of human cancers [4, 57, 107–109] as well as in physiological 
conditions in other organisms [110, 111]. Since our signature was derived and validated 
in experiments that were tailored specifically to induce and/or measure quiescence, we 
believe the signature proposed in this study best reflects a quiescent-like, reversible G0 
cell cycle arrest state. While senescent and dormant cells could be distinguished from 
their quiescent counterparts simply based on additional senescence and dormancy 
markers, further research is nevertheless required in the future to delineate signatures 
that are both necessary and sufficient to unambiguously discriminate all three states. In 
the meantime, future studies utilising our G0 signature should also test for such addi-
tional markers like β-galactosidase activity, the SASP and other senescence markers, or 
NRF2, NR2F1, SOX9, RARβ [112, 113] and other dormancy markers to ascertain the 
type of G0 arrest that is being captured.

The versatility of our signature is evidenced by high classification accuracies across a 
variety of solid cancer datasets. More variable performance was observed when applied 
to haematopoietic stem cells as it was not designed to capture signals in this context 
(Additional file  2: Fig. S1b). While we cannot exclude that the patterns captured may 
also occasionally reflect cell cycle arrest in G1 or G2, this broad signature would still 
capture phenotypes resulting from intrinsic or extrinsic cellular stress that reflect tem-
porary tumour adaptation during the course of cancer evolution or upon treatment with 
drugs. Thus, studying such states is relevant for identifying vulnerabilities that could be 
exploited at different time points during the course of cancer treatment.

We show that G0 arrest is pervasive across different solid cancers and generally associ-
ated with more stable, less mutated genomes with intact DNA damage repair pathways. 
We also find a link between APOBEC mutagenesis and higher levels of G0 arrest. Some 
neoplastic events enriched in tumours with increased G0 arrest, such as p16 or ZMYM2 
deletions, could mark elevated genomic stress that renders cells more prone to cell cycle 
exit. We also identified mutational events affecting a variety of genes such as PTEN, 
CEP89, CYLD and LMNA that appear unfavourable to cell cycle arrest, thus potentially 
implicating them in influencing G0 arrest-proliferation decisions. Amongst these, we 
propose and validate CEP89 as a novel modulator of G0 arrest capacity in non-small cell 
lung cancer. A recent paper describes how increased CEP89 copy number and expres-
sion correlates with a worse prognosis in ovarian cancer [114], which we hypothesise 
could be linked to Cep89’s role in modulating G0 arrest. Although we do not yet know 
how Cep89 regulates G0 arrest, two roles have been ascribed to Cep89 which could be 
significant. First, Cep89 is required for primary cilium assembly [115, 116]. The primary 
cilium acts as a signalling hub, transducing extracellular signals to intracellular signalling 
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networks, many of which regulate growth and proliferation [117]. Cep89 deficiency also 
leads to defects in Complex IV assembly in the electron transport chain in mitochon-
dria, leading to decreased mitochondrial function and ATP production [118]. Decreased 
ATP would impair the ability of cells to proliferate. Since Cep89 is a coiled-coil protein 
with no obviously targetable regulatory domains, it will be important to ascertain which 
Cep89 function is key to regulating the balance between proliferation and arrest in can-
cer cells to be able to potentially target that process, rather than Cep89 itself, to induce 
or maintain G0 arrest.

These large-scale genomic associations with G0 arrest phenotypes are only currently 
feasible in bulk datasets. However, bulk sequenced data has a major limitation in cap-
turing an average signal across all cells within the tumour, which prevents individual 
cell state identification and counting. Our subsequent exploration of single-cell datasets 
across 193 therapeutic scenarios complements this analysis and illustrates the power of 
applying our signature in single cells.

Our signature of G0 arrest is prognostic and marks primary tumours with a lower 
proliferative capacity before treatment, but we also clearly demonstrate that it can be 
employed to track resistance to multiple cell cycle, kinase signalling and epigenetic tar-
geting regimens, where it often appears as a short-lived phenotype. While this discrep-
ancy may appear incompatible at first glance, it is not unlike other cellular processes that 
have been shown to present dual roles in a cancer setting, such as reactive oxygen spe-
cies [119], but also p38α [120] or NRF2 [121], both of which have been implicated in qui-
escence or dormancy [113, 122]. It is possible that there is a tipping point between G0 
arrest acting beneficially or detrimentally during tumour development and treatment. 
Furthermore, this is likely influenced by a myriad of other complex factors that we have 
not had the chance to analyse in depth here, and in some cases, it may just be the base-
line for acquiring cancer cell stemness or senescent properties. While we acknowledge 
this conundrum requires further study, we believe this phenotype also offers a unique 
opportunity to further understand mechanisms of tumour resistance. A key open ques-
tion remains: if G0 arrest drives resistance, does it do so in a Darwinian fashion, as a pre-
existing population that is selected for upon drug treatment, or is it instead an acquired 
phenotype? Our single-cell analyses cannot exclude either scenario. Given the variable 
links to treatment response and lack of clear evidence for relapse when surveying G0 
arrest in primary tumours before treatment, it is likely our G0 arrest signature in its cur-
rent form cannot be used to predict resistance to chemotherapy or targeted therapy, and 
we would not recommend it for this purpose unless further validated in a specific cancer 
setting. We have also not inspected the role of G0 arrest in the context of immunother-
apy, which remains an area of future study. However, we believe our signature has high 
value for the study of emerging resistance in an in vitro/in vivo setting, as a short-lived 
enabler of drug tolerance. The optimised signature we propose for single-cell data makes 
it tractable to a variety of future studies in this area.

In a treatment setting, vulnerabilities of G0 arrested cells could be exploited for com-
bination therapies. Cells which have exited the cell cycle utilise several mechanisms 
to achieve drug resistance, including upregulation of stress-induced pathways such as 
anti-apoptotic BCL-2 signalling [123], anti-ROS programmes [28] or immune evasion 
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[15]. Further studies are needed to elucidate which of these mechanisms are specifically 
employed on a case-by-case basis.

Our findings contribute to the understanding of the aetiology and genetic context of 
G0 arrest in cancer. This is particularly relevant to not only identifying new anti-prolif-
erative targets but also for the detection and eradication of drug-tolerant persister cells, 
which have been frequently, although not always, observed to be slow cycling or entirely 
quiescent/senescent [8, 9]. Importantly, the state of G0 arrest that we have studied here 
is distinct from that of disseminated tumour cells causing clinical dormancy and can-
cer relapse, often after many years from the treatment of the primary tumour [4, 124]. 
Here, we have focused on understanding how tumours make proliferation and G0 arrest 
decisions during the earlier stages of cancer development, within the treatment-naïve 
primary tumour and as an immediate response to anti-cancer therapies. However, since 
the dormancy of disseminated tumour cells is fundamentally enabled through a long 
but temporary cell cycle arrest, we believe our findings of the fundamental processes 
linked with G0 arrest could in the future help inform a better characterisation of dor-
mant tumour cells when combined with specific microenvironmental signatures that are 
critical for enabling that process.

Conclusions
Overall, our study provides, for the first time, a pan-cancer view of G0 arrest and its 
evolutionary constraints, underlying novel mutational dependencies which could be 
exploited in the clinic. We propose a G0 arrest signature which can be robustly meas-
ured in bulk tissue or single cells and could potentially inform therapeutic strategies in 
the longer term. This signature could be assessed in the clinic to track rapidly emerg-
ing resistance, e.g. through liquid biopsies or targeted gene panels. We hope these 
insights can be used as building blocks for future studies into the different regulators 
of G0 arrest, including epigenetics and microenvironmental interactions, as well as the 
mechanisms by which it enables therapeutic resistance both in solid and haematological 
malignancies.

Methods
Selection of G0 arrest marker genes

Generic G0 arrest markers

Differential expression analysis results comparing cycling immortalised, non-trans-
formed human epithelial cells and cells in five different forms of quiescence (sponta-
neous quiescence, contact inhibition, serum starvation, CDK4/6 inhibition and MEK 
inhibition) were obtained from Min and Spencer [28]. A total of 195 genes were differen-
tially expressed in all five forms of quiescence under an adjusted p-value cut-off of 0.05. 
This gene list, reflective of a generic G0 arrest phenotype, was subjected to the follow-
ing refinement and filtering steps: (1) selection of genes with a unidirectional change of 
expression across all five forms of quiescence; (2) removal of genes involved in other cell 
cycle stages included in the ‘KEGG_CELL_CYCLE’ gene list deposited at MSigDB; (3) 
removal of genes showing low standard deviation and low levels of expression within 
the TCGA dataset, or which showed low correlation with the pan-cancer expression of 
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the transcriptional targets of the DREAM complex, the main effector of quiescence, in 
TCGA. The resulting 139-gene signature is presented in Additional file 1: Table S1.

G0 arrest stress response‑specific markers

Gene lists representing spontaneous quiescence, contact inhibition, serum starvation, 
CDK4/6 inhibition and MEK inhibition programmes were obtained using genes differ-
entially expressed in each individual quiescence form using an adjusted p-value cut-off 
of 0.05. The gene lists were subjected to filtering steps 2 and 3 described above. Follow-
ing the refinement steps, 10 upregulated and 10 downregulated genes with highest log2 
fold changes were selected for each stress response type.

Quantification of G0 arrest in tumours

The GSVA R package was used to implement the combined Z-score [40], ssGSEA [41] 
and GSVA [42] gene set enrichment methods. For the above three methods, a sepa-
rate score was obtained for genes upregulated in quiescence and genes downregulated 
in quiescence, following which a final G0 arrest score was obtained by subtracting the 
two scores. The singscore single-sample gene signature scoring method [43] was imple-
mented using the singscore R package. In addition to these, we also calculated a mean 
scaled G0 arrest score based on the refined list of genes upregulated and downregulated 
in quiescence, as well as a curated housekeeping genes from the ‘HSIAO_HOUSEKEEP-
ING_GENES’ list deposited at MSigDB, as follows:

G0m = mean scale G0 arrest score
GU = expression of genes upregulated in quiescence
GD = expression of genes downregulated in quiescence
GH = expression of housekeeping genes
n = number of genes in each gene set
G0 arrest scores for the TCGA cohort were derived from expression data scaled by 

tumour purity estimates. The pan-cancer TCGA samples were also classified into groups 
with ‘high’ or ‘low’ levels of G0 arrest based on k-means clustering (k = 2) on the expres-
sion data of 139 G0 biomarker genes, following the removal of tissue-specific expression 
differences using the ComBat function from the sva R package [125].

Measuring the duration of G0 arrest

We employed the GSE124109 dataset from Fujimaki et  al. [52] where rat embryonic 
fibroblasts were transcriptomically profiled as they moved from short- to long-term qui-
escence in the absence of growth signals. The derived G0 arrest scores using our com-
bined Z-score methodology increased from short- to longer-term quiescence.

G0m =

1

n
GU −

1

n
GD

1

n
GH
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Validation of G0 arrest scoring methodologies

Single‑cell RNA‑sequencing validation datasets

Datasets were obtained from the ArrayExpress and Gene Expression Omnibus (GEO) 
databases though the following GEO Series accession numbers: GSE83142, GSE75367, 
GSE137912, GSE139013, GSE90742 and E-MTAB-4547. Quality control analysis was 
standardised using the SingleCellExperiment [126] and scater [127] R packages. Normal-
isation was performed using the scran [128] R package.

Bulk RNA‑sequencing validation datasets

Datasets were obtained from the GEO database through the following GEO Series 
accession numbers: GSE93391, GSE114012, GSE131594, GSE152699, GSE124854, 
GSE135215, GSE99116, GSE124109, GSE61130, GSE64553 and GSE63577. GSE114012 
count data were normalised to TPM values using the GeoTcgaData R package. All nor-
malised datasets were log-transformed before further analysis.

The accuracy with which the G0 arrest scoring methods could separate proliferating 
and quiescent samples within the validation datasets was determined by calculating the 
area under the curve of the receiver operating characteristic (ROC) curves, using the 
plotROC R package.

Experimental validation in lung adenocarcinoma cell lines

The average fraction of cancer cells spontaneously entering quiescence was estimated 
for nine lung adenocarcinoma cell lines (NCIH460, A549, NCIH1666, NCIH1944, 
NCIH1563, NCIH1299, NCIH1650, H358, L23) using EdU and phospho-Rb staining 
proliferation assays.

Cell lines were obtained from ATCC or Sigma and regularly checked for mycoplasma. 
A549 and NCIH460 were cultured in DMEM (Gibco). NCIH358, NCIH1299 and 
NCIH1563 were maintained in RPMI-1640 (Gibco) supplemented with 5 mM sodium 
pyruvate and 0.5% glucose. NCIH1944, NCIH1666, NCIH1650 and L23 were grown in 
RPMI-1640 ATCC formulation (Gibco). A427 were cultured in EMEM (ATCC). A549, 
NCIH460, H358, NCIH1299, NCIH1563, and A427 were supplemented with 10% heat 
inactivated FBS. NCIH1666 with 5% heat-inactivated FBS and all other cell lines with 
10% non-heat inactivated FBS. All cell lines had penicillin–streptomycin (Gibco) added 
to 1%. Cells were maintained at 37 °C and 5% CO2. To calculate the quiescent fraction, 
A549 and NCIH460 cells were plated at a density of 500 cells/well, and all other cell lines 
at a density of 1000/well, in 384-well CellCarrier Ultra plates (PerkinElmer) in the rel-
evant media. Twenty-four hours later, 5 μM EdU was added and cells were incubated 
for a further 24 h before fixing in a final concentration of 4% formaldehyde (15 min, RT), 
permeabilization with PBS/0.5% Triton X-100 (15 min, RT) and blocking with 2% BSA 
in PBS (60 min, RT). The EdU signal was detected using Click-iT chemistry, according 
to the manufacturer’s protocol (ThermoFisher). Cells were also labelled for phospho-
Ser807/811 Rb (phospho-Rb) using Rabbit mAb 8516 (CST) at 1:2000 in blocking solu-
tion, overnight at 4 °C. Unbound primary antibody was washed three times in PBS and 
secondary Alexa-conjugated antibodies were used to detect the signal (ThermoFisher, 
1:1000, 1 h at RT). Finally, nuclei were labelled with Hoechst 33258 (1 μg/ml, 15 min RT) 
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before imaging on a high-content widefield Operetta microscope, 20 × N.A. 0.8. Auto-
mated image analysis (Harmony, PerkinElmer) was used to segment and quantify nuclear 
signals in imaged cells. Quiescent cells were defined by the absence of EdU or phospho-
Rb staining, determined by quantification of their nuclear expression (Fig. 1e–f).

Endogenous PCNA was labelled at the N-terminus with a cDNA encoding mRuby 
in both A549 and NCI-H1944 cells, using AAV-mediated gene-targeting, according to 
methods described in Zerjatke et al. [54]. mRuby-expressing cells were sorted into 50:50 
conditioned:fresh media at single-cell density into 96-well plates by FACS and single-cell 
clones expanded. For live-cell imaging, 500 cells in phenol-red free media were plated 
per well of a 384 CellCarrierUltra plate (PerkinElmer) the day before imaging. Prior 
to imaging, a breathable membrane was applied to the plate and cells were imaged on 
the Operetta HCS microscope (PerkinElmer) at 37 °C, 5% CO2 using the 20 × N.A. 0.8 
objective and at 10–12 min intervals for 48 h. Images were then exported and G0/G1 
length (time from mitotic exit to S-phase entry) was analysed manually in FIJI.

The G0 arrest scores for cancer cell lines were calculated using corresponding log-
transformed RPKM normalised bulk RNA-seq data from the Cancer Cell Line Encyclo-
pedia (CCLE) database [129].

CEP89 was depleted by ON-Target siRNA Pool from Horizon. NCI-H1299 cells were 
reverse transfected in 384-well plates with 20  nM of non-targeting control (NTC) or 
CEP89-targeting siRNA using Lipofectamine RNAiMax (ThermoFisher), according to 
the manufacturer’s instructions. Cells were left for 24  h, before 5  μM EdU was added 
for the final 24  h and then cells were processed as above to determine the quiescent 
fraction. To determine the level of Cep89 depletion by western blot, cells were reverse 
transfected with siRNA in 24-well plates. Forty-eight hours after transfection, cells were 
lysed directly in 1 × SDS sample buffer with 1 mM DTT (ThermoFisher). Samples were 
separated on pre-cast 4–20% Tris-Glycine gels, transferred to PVDF using the iBlot2 
system and membranes blocked in blocking buffer (5% milk in TBS) for 1 h at RT. The 
membrane was then cut and the upper half was incubated in 1:1000 Cep89 antibody 
(Sigma, HPA040056), the bottom half in B-actin antibody 1:2000 (CST; 3700S) diluted 
in blocking buffer overnight at 4 °C. Membranes were washed three times in TBS-0.05% 
TritonX-100 before being incubated in secondary anti-rabbit (Cep89) or anti-mouse 
(B-actin) HRP conjugated antibodies (CST 7074P2 and CST 7076P2, respectively) 
diluted 1:2000 in blocking buffer for 1  h at RT. Membranes were washed three times 
again and signal detected using Clarity ECL solution (BioRad) and scanned on an Amer-
sham ImageQuant 800 analyser.

Multi‑omics discovery cohort

FPKM normalised RNA-sequencing expression data, copy number variation gene-
level data, RPPA levels for p27 as well as mutation annotation files aligned against the 
GRCh38 human reference genome from the Mutect2 pipeline were downloaded using 
the TCGABiolinks R package [130] for 9712 TCGA primary tumour samples across 
31 solid cancer types. Haematological malignancies were excluded as the G0 markers 
were derived in epithelial cells and might not be equally suited to capture this pheno-
type in blood. For patients with multiple samples available, one RNA-seq barcode entry 
was selected for each individual patient resulting in 9631 total entries. All expression 
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data were log-transformed for downstream analysis. During G0 arrest score calculation, 
expression data for the primary tumour samples was scaled according to tumour purity 
estimates reported by Hoadley et al. [131] to account for potential confounding cell cycle 
arrest signals coming from non-tumour cells in the microenvironment. Samples with 
purity estimates lower than 30% were removed, leaving 8005 samples for downstream 
analysis.

The mutation rates of all TCGA primary tumour samples were determined by log-
transforming the total number of mutations in each sample divided by the length of the 
exome capture (38 Mb).

TP53 functional status was assessed based on somatic mutation and copy num-
ber alterations as described in Zhang et al. [132]. TP53 mutation and copy number for 
the TCGA tumours were downloaded from cBioPortal (http://​www.​cbiop​ortal.​org). 
Tumours with TP53 oncogenic mutations (annotated by OncoKB) and copy-number 
alterations (GISTIC score ≤  − 1) were assigned as TP53 mutant and CNV loss. Tumours 
without these TP53 alterations were assigned as TP53 wild type. The effects of the TP53 
mutation status on G0 arrest were then determined with a linear model approach with 
the G0 arrest score as a dependent variable and mutational status as an independent 
variable. The P values were FDR-adjusted.

APOBEC mutagenesis enriched samples were determined through pan-cancer clus-
tering of mutational signature contributions as described in Wiecek et  al. [133]. The 
APOBEC mutagenesis cluster was defined as the cluster with highest mean SBS2 and 
SBS13 contribution. This was repeated 100 times and only samples which appeared in 
the APOBEC cluster at least 50 times were counted as being APOBEC enriched.

Aneuploidy scores and whole-genome duplication events across TCGA samples were 
obtained from Taylor et  al. [134]. Microsatellite instability status for uterine corpus 
endometrial carcinoma, as well as stomach and colon adenocarcinoma samples were 
obtained from Cortes-Ciriano et  al. [78]. Telomerase enzymatic activity ‘EXTEND’ 
scores were obtained from Noureen et al. [62]. Expression-based cancer cell stemness 
indices were obtained from Malta et al. [63]. Centrosome amplification transcriptomic 
signature (CA20) scores were obtained from Almeida et al. [89].

PHATE dimensionality reduction

The phateR R package [135] was used to perform the dimensionality reduction with a 
constant seed for reproducibility. The ComBat function from the sva R package [136] 
was used to remove tissue-specific expression patterns from the TCGA RNA-seq data.

Cancer stem cell division estimates

The mean stem cell division estimates for different cancer types used in this study were 
obtained from Tomasetti and Vogelstein [55].

Mutational signature estimation

Mutational signature contributions were inferred as described in Wiecek et al. [133].

http://www.cbioportal.org
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Machine learning of G0 arrest‑linked features via ensemble elastic net regression models

The COSMIC database was used to source a list of 723 known drivers of tumorigenesis 
(tiers 1 + 2); 285 oncogenes and tumour suppressors from a curated list showed a sig-
nificant enrichment or depletion of mutations or copy number variants in samples with 
high levels of G0 arrest either pan-cancer or within individual TCGA studies.

To classify G0 arrest-prone from fast proliferating tumours, the 285 genes were used 
as input features for an ensemble elastic net regression model along the tumour muta-
tional rate, whole-genome doubling estimates, ploidy, aneuploidy scores and 15 muta-
tional signatures, which showed a significant correlation with G0 arrest scores either 
pan-cancer or within individual TCGA studies. The caret R package was used to build 
an elastic net regression model 1000 times on the training dataset of 3753 TCGA pri-
mary tumour samples (80% of the total dataset). Only samples with at least 50 mutations 
were used in the model, for which mutational signatures could be reliably estimated. For 
each of the 1000 iterations, we randomly selected 90% of the samples from the training 
dataset to build the model. Only features which were included in all 1000 model itera-
tions were selected for further analysis. To test the performance of our approach, a linear 
regression model was built using the reduced list of genomic features and their corre-
sponding coefficients averaged across the 1000 elastic net regression model iterations. 
When applying the resulting linear regression model on the internal validation dataset 
of 936 samples, we found a strong correlation between the observed and predicted G0 
arrest scores (R = 0.73, p < 2.2e − 16).

SHAP values for the linear regression model used to predict G0 arrest scores were 
obtained using the fastshap R package.

Gene enrichment and network analysis

Gene set enrichment analysis was carried out using the ReactomePA R package, as well 
as GeneMania [137] and ConsensusPathDB [138]. Interactions between CEP89 and 
other cell cycle components were inferred using the list of cell cycle genes provided by 
cBioPortal and GeneMania to reconstruct the expanded network with direct interactors 
(STAG1, CCND2, STAT3). Networks were visualised using Cytoscape [139].

Gene lists

Genes associated with the G1 phase of the cell cycle were obtained from the curated 
‘REACTOME_G1_PHASE’ list deposited at MSigDB. Genes associated with the G1/S 
and G2/M phases of the cell cycle were obtained from Tirosh et al. [51].

Genes associated with apoptosis were obtained from the curated ‘HALLMARK_
APOPTOSIS’ list deposited at MSigDB.

Genes associated with the senescence-associated secretory phenotype were obtained 
from Basisty et al. [60]. Lists of genes making up the various DNA damage repair path-
ways were derived from Pearl et al. [140].

Genes associated with contact inhibition were obtained from the curated ‘contact inhi-
bition’ gene ontology term. Genes associated with serum starvation were obtained from 
the curated ‘REACTOME_CELLULAR_RESPONSE_TO_STARVATION’ list deposited 
at MSigDB. MEK inhibition was assessed based on the activity of the MAPK pathway as 
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determined using an expression signature (MPAS) consisting of 10 downstream MAPK 
transcripts [92].

Validation of the genomic constraints of G0 arrest

For elastic net model feature validation, RNA-seq data was downloaded for six cancer 
studies from cBioPortal [141], along with patient-matched whole-genome, whole-exome 
and targeted sequencing data. The 6 datasets used comprise breast cancer (SMC [142] 
and METABRIC [143]), paediatric Wilms’ tumour (TARGET [144]), bladder cancer, 
prostate adenocarcinoma and sarcoma (MSKCC [145–147]) studies. The data were pro-
cessed and analysed in the same manner as the TCGA data. RNA-seq data for 27 MCF7 
cell line strains, alongside cell line growth rates and targeted mutational sequencing data 
were obtained from Ben-David et al. [79].

Genomic dependency modelling in breast cancer

An ANOVA-based feature importance classification was used and identified 30 genomic 
features most discriminative of samples with lower and higher than average G0 arrest 
scores. A random forest model was then built using the identified features and correctly 
classified samples according to their G0 arrest state with a mean accuracy of 74% across 
five randomly sampled test datasets from the cohort.

Survival analysis

Multivariate Cox proportional hazards analysis was carried out using the coxph func-
tion from the survival R package. The optimal quiescence score cut-off value of 2.95 was 
determined pan-cancer using the surv_cutpoint function. We also used this function to 
determine optimal cut-offs for individual cancer types, as presented in Fig. 6c.

Treatment response single‑cell and bulk RNA‑seq datasets

Datasets have been obtained from the GEO database through the following GEO Series 
accession numbers for the cell line experiments: GSE134836, GSE134838, GSE134839, 
GSE137912, GSE149224, GSE124854, GSE135215, GSE99116, GSE152699, GSE178839, 
GSE139944, and the following accession numbers for the patient sample datasets: 
GSE191127, GSE109211, GSE50509, GSE65185, GSE66399, GSE68871, GSE99898 
(Additional file 1: Table S3). Unified treatment response data for TCGA was obtained 
from Moiso, medRxiv 2021 [148]. The umap R package was used for dimensionality 
reduction with constant seed for reproducibility.

Stress response subtype determination

TCGA cohort studies

Samples with evidence of cell cycle arrest characterised by a generic G0 score > 0 were 
further subclassified based on the most likely form of stress response, among CDK4/6 
inhibition, contact inhibition, MEK inhibition, spontaneous quiescence or serum 
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starvation, using stress-specific expression signatures. We opted for a conservative 
approach and classed each sample with a high level of G0 arrest into a specific stress 
response subtype if the arrest score for the corresponding programme was higher than 
one standard deviation of the distribution across the TCGA cohort and if the score was 
significantly higher than for the remaining programmes when assessed using a Student’s 
t test. Samples which could not be classified into any of the five stress response states 
characterised in this study were classified as ‘uncertain’.

Single‑cell RNA seq treatment response datasets

The stress response subtype of individual single cells was inferred by mapping such 
individual cells onto the reference dataset of MCF10A cells reflecting different forms 
of G0 arrest obtained from Min and Spencer [28]. The ComBat R package was used 
to remove the study batch effect between the expression data to be classified and the 
reference bulk RNA-seq data. PCA dimensionality reduction analysis was then used 
on the combined datasets using the prcomp R function. For each patient sample or 
single-cell expression data entry, a k-nearest neighbour algorithm classification was 
performed using the knn function from the class R package. During the classifica-
tion, the three nearest reference bulk RNA-seq data points were considered, with two 
nearest neighbours with identical class needed for classification.

Optimisation of the G0 arrest signature

We investigated if a subset of the 139 G0 phase-related genes could act as a more reli-
able marker of cell cycle arrest that would bypass dropout issues in single-cell data. 
This was performed in three steps:

(1)	 Assessment of individual importance as G0 arrest marker for a given gene

	 We collected three high confidence single-cell expression datasets separating arrested 
from proliferating cells. A random forest model was trained on each dataset sepa-
rately to predict the state (G0 arrest/cycling) of a given cell based on the expression 
levels of the 139 genes in the signature. The Gini indices corresponding to each gene 
in the model were normalised to a range of values between 0 and 1, which would 
reflect how important an individual gene was for determining G0 arrest state relative 
to the other 138 genes. The procedure was repeated 1000 times for each of the three 
datasets, and the average Gini coefficients across iterations were stored.

(2)	 Prioritisation of gene subsets based on cumulative importance in the model
	 Genes were placed in the candidate subset if their importance metric was above a 

given threshold in at least one of the datasets. By gradually increasing the threshold 
from 0 to 1, different gene combinations were produced.

(3)	 External validation of candidate subsets
	 The gene combinations in (2) were tested for their ability to predict G0 arrest. For this, 

a separate validation dataset was utilized, which contained gene expression levels for 
the 139 genes in the 10 lung cancer cell lines previously employed for experimental 
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validation, along with the quiescence state of the lines as inferred by phospho-Rb 
and EdU staining. For each gene subset, a combined Z-score of G0 arrest was cal-
culated from the expression levels as described previously. The correlations between 
this Z-score and the two experimental measurements of quiescence were used to 
establish the ability of a gene combination to predict quiescence. Among the top 
performing subsets, a 35 gene signature with a mean correlation of 78% between 
predicted and measured G0 arrest levels in the test data (p = 0.016) showed the 
highest correlation with phospho-Rb measurements capturing short-lived G0 arrest, 
the more common state observed in single-cell treatment datasets. Therefore, this 
signature was deemed to achieve the best trade-off between gene numbers and sig-
nal capture.

The optimised gene signature is provided in Additional file 1: Table S4.

Statistical analysis

Groups were compared using a two-sided Student’s t test, Wilcoxon rank-sum test or 
ANOVA, as appropriate. p-values were adjusted for multiple testing where appropriate 
using the Benjamini–Hochberg method. Graphs were generated using the ggplot2 and 
ggpubr R packages.
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