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Figure 1: BD-rate (Bjontegaard Delta-rate) vs. runtime of video encoders when assessed in terms of: PSNR, SSIM, VMAF-NEG,
VMAF and the P.910-MOS fused metric derived by our proposal. The utilized encoders (x264 AVC, vpxenc VP9, and svt-av1 AV1,
with and without preprocessing) lead to different BD-rate results for each metric. Instead of ad-hoc averaging of BD-rates, we
propose to consolidate this difference via domain-specific video quality metric fusion with limited subjective testing.

ABSTRACT
Video processing algorithms like video upscaling, denoising, and
compression are now increasingly optimized for perceptual qual-
ity metrics instead of signal distortion. This means that they may
score well for metrics like video multi-method assessment fusion
(VMAF), but this may be because of metric overfitting. This imposes
the need for costly subjective quality assessments that cannot scale
to large datasets and large parameter explorations. We propose a
methodology that fuses multiple quality metrics based on small-
scale subjective testing in order to unlock their use at scale for
specific application domains of interest. This is achieved by em-
ploying pseudo-random sampling of the resolution, quality range
and test video content available, which is initially guided by quality
metrics in order to cover the quality range useful to each application.
The selected samples then undergo a subjective test, such as ITU-T
P.910 absolute categorical rating, with the results of the test post-
processed and used as the means to derive the best combination
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of multiple objective metrics using support vector regression. We
showcase the benefits of this approach in two applications: video en-
coding with and without perceptual preprocessing, and deep video
denoising & upscaling of compressed content. For both applications,
the derived fusion of metrics allows for a more robust alignment to
mean opinion scores than a perceptually-uninformed combination
of the original metrics themselves. The dataset and code is available
at https://github.com/isize-tech/VideoQualityFusion.
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1 INTRODUCTION
Subjective visual quality assessment via well-knownmethodologies
such as ITU-T P.910 or BT.500 [2, 26] is considered to be the gold
standard for quality assessment in video signal processing systems
like video encoding, restoration, denoising, synthetic video creation,
etc. However, all subjective quality assessment methodologies are
also well-known to be cumbersome to apply at scale, as they re-
quire careful screening and briefing of participants, time-consuming
test sessions under controlled lab conditions or in crowdsourced
form, and statistical post-processing of the results [15] to ensure
raters’ bias and inconsistencies are taken into account. In addition,
the derived results only characterize the examined test conditions:
changes to the dataset or application conditions (e.g., encoding
recipe changes), or even the use of different content require new
subjective testing rounds.

On the other hand, objective quality metrics have evolved sig-
nificantly in the last 10 years. Indeed, video quality metrics that
encapsulate elements of human perception [2, 15, 23], perceptual
modelling of encoding artifacts [4, 14], as well as viewing setup
awareness [28] have emerged as strong contenders for the charac-
terization visual quality impairments in video systems. This has
also led to the research community now moving away from SNR-
optimization in favour of structural similarity (SSIM) [28, 30], video
multi-method assessment fusion (VMAF) [14], Apple’s advanced
video quality tool (AVQT) [25], and others. Even though many of
the more accurate metrics are computationally expensive to apply
at scale, their deployment can be automated and offers a way to
score quality impairments of various video signal processing sys-
tems for large datasets and under varying application conditions
[14, 25].

However, while such metrics have been evolving, so have algo-
rithms that focus on perceptual quality, such as psychovisually-
optimized video coding tools within AV1 and VVC [10, 20, 35, 37],
deep perceptual preprocessing for video coding [4, 37], perceptually-
optimized video denoising and upscaling [6] and synthetic video
generation with generative adversarial networks [17]. Given that
many of these systems optimize for variations of cost functions that
align to components of widely-used metrics like VMAF and SSIM,
this makes their performance diverge when assessed with multiple
state-of-the-art metrics. An example is illustrated in Fig. 1, where
BD-rates obtained for different encoders (and with and without
the use of deep perceptual preprocessing [4]) vary significantly
from one metric to another. Such observations have been reported
for a variety of applications and test conditions by a number of
independent studies [2, 37]. This is further exasperated with the
use of generative neural network loss functions [6, 17]. Within the
remit of encoding systems, theoretical studies have termed such
discrepancies as the perception-distortion trade-off [3].

This is by no means a negative development: after all, aligning
to human perception should indeed be the goal of any video signal
processing system [1, 10, 14, 20, 25]. However, it opens up the
following challenges:

• What is the best way to combine, or fuse, multiple distortion-
oriented and perception-oriented quality metrics in order to
match subjective mean opinion scores of a video signal process-
ing application?

• How can this be done efficiently, i.e., without the need for
extensive subjective tests?

To address these questions, we propose the use limited subjec-
tive testing with guided pseudorandom sequence and parameter
selection that spans the operational settings of a narrow-domain
problem. This is then used to train a support vector regressor in
order to derive a single metric that can be used for system testing
at scale. The benefits of this approach are validated in two different
domains, i.e., video coding systems with and without perceptual
preprocessing, as well as video denoising systems. As shown in the
rightmost part of Fig. 1, the results of this approach can mitigate
the discrepancies of individual metrics in a manner that is guided
by the recovered quality scores from subjective tests.

2 RELATEDWORK
Given a reconstructed frame 𝑥 and a ground-truth reference frame
𝑥 , full-reference distortion metrics quantify the quality of 𝑥 by its
pairwise discrepancy from 𝑥 . Common metrics for distortion in-
clude PSNR, SSIM [30], MS-SSIM [31], information fidelity criterion
(IFC) [22] and visual information fidelity (VIF) [21]. In the case
of video, these metrics are commonly computed per frame and
consolidated over the video with an arithmetic or harmonic mean.
While distortion metrics are ideal for quantifying fidelity to the
source, Blau et al. [3] illustrate that they are unable to capture the
perceptual quality of the content. Optimizing for PSNR or mean
squared error (MSE) renders a blurry output that is the average of all
possible solutions in the pixel space weighted by their likelihoods
[3, 4, 13]. A blurry output does not necessarily lie on the natural
image manifold and may not be perceptually aligned to the source.
The perceptual quality of a frame can instead be fully captured by
the divergence between the distribution of reconstructed frames
𝑝 (𝑥) and reference frames 𝑝 (𝑥), either in the pixel, wavelet or DCT
domains [16, 19]. GAN-based methods [1, 9, 12, 13, 29] employ
adversarial training to directly minimize some form of divergence
(e.g. Jensen-Shannon) between the generated and reference image
distributions and thus generate higher quality images than those
achievable by a simple autoencoder trained with MSE. However,
the distortion may be high, since divergence is measured between
distributions of images and not pairwise instances of 𝑥 and 𝑥 .

As proved by Blau et al. [3], there in fact exists a perception-
distortion bound where perception must be traded off for distor-
tion or vice-versa. Some full-reference distortion measures such
as LPIPS [36], DISTS [8], FUNQUE [27] or VMAF [14], which are
more perceptually-oriented due to further training with subjective
ratings, may present a weaker tradeoff at the boundary when com-
pared to the likes of PSNR or SSIM. In this paper, we propose to
capture the boundary behavior of multiple reference-based metrics
from the Netflix libvmaf library [14], and orient towards perceptual
quality by learning a fusion with subjective ratings. We achieve this
with very limited testing needed, which is shown to be three orders
of magnitude lower than the full exploration space of a typical
video streaming system. Such subjective testing is carried out in
this work by ITU-T P.910 ACR [11] followed by post-processing
[15], but other forms of subjective testing like crowdsourced quality
score collection [7] can also be employed if necessary.



Domain-Specific Fusion Of Objective VideoQuality Metrics Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 2: Typical algorithmic, preset, parameter, resolution and content space exploration for video encoding or denoising tests.
Parameter crf stands for constant rate factor and Preproc1,...,Preproc𝐾 stand for 𝐾 variations of a preprocessing algorithm
prior to encoding (if applicable).

Figure 3: VMAF-vs-bitrate plots for: (left) multiple qualities/bitrates, methods, resolutions and multiple CRFs; (right) convex
hull selection across the parameter space and pseudo-random sampling of the convex-hull.

3 FROM LIMITED DOMAIN-SPECIFIC
SUBJECTIVE TESTING TO FUSION OF
MULTIPLE OBJECTIVE METRICS

We begin by describing the typical parameter space of video stream-
ing systems and the way we pseudo-randomly sample it for limited-
scale subjective testing within a specific domain of interest, such
as video coding or video denoising (Section 3.1). We then present

the subjective testing methodology and the manner via which we
fuse multiple subjective metrics (Sections 3.2 and 3.3).

3.1 Sample Space
The typical exploration space of video coding or denoising exper-
iments is shown in Fig. 2. The figure illustrates the use of three
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coding standards (AVC, VP9 and AV1) with and without 𝐾 vari-
ants of a video preprocessing algorithm [4]. For each of these, one
can select: 𝐿 encoding presets,𝑀 quality settings (in terms of con-
stant rate factors), and 𝑁 encoding resolutions. Finally, a typical
assessment requires the use of a library of 𝑍 video test assets that
span the video content of interest. Even by selecting modest val-
ues of: 𝐾 = 2, 𝐿 = 5, 𝑀 = 8, 𝑁 = 6, and 𝑍 = 100, this leads to
3 × (𝐾 + 1) × 𝐿 × 𝑀 × 𝑁 × 𝑍 = 216, 000 outputs that need to be
assessed. This is clearly infeasible to handle with either lab-based
or crowdsourced-based testing. Even if it would be deemed to be
feasible, such tests cannot be generalized to more experiments with-
out some form of fitting of objective quality metrics to recovered
mean opinion scores.

However, not all experimental conditions are expected to be met
in real-world conditions. For example, testing very-low crf values
for very low resolutions is unnecessary, as theywould not be used in
practice: a higher resolution and lower crf value would offer better
quality at lower bitrate [33]. Similarly, a very complex encoding
preset at low resolution for a very static input video would also
not occur in reality, as a faster preset at higher resolution would
suffice for high-quality video representation at a modest bitrate
range. Therefore, we propose the use of convex-hull selection for
the pruning of the subset of test conditions are that most likely to
occur in practice. An example of such convex-hull pruning is shown
in Fig. 3, where it is shown that multiple quality-resolution-bitrate
points can be reduced to the convex hull of points that are optimal
using convex-hull selection [33]. In our work, we utilize VMAF as
the metric to select quality-bitrate points for each encoder and each
preset of interest. This is because VMAF has been shown to offer a
good balance between perception and distortion. Therefore, convex-
hull selection based on VMAF is expected to provide for points with
a better trade-off in the perception-distortion bound [3]. From the
surviving points, we then pseudo-randomly sample across encoders
(and also using preprocessing & encoding, if applicable), resolutions,
encoding presets, and test video files, in order to have a balanced
representation of the viable experimental space in our tests. For
the exploration space of Fig. 2, this typically results in as few as
450 sample videos, which can be easily handled via a small-scale
subjective test. When comparing to the 216,000 possible test results
needed to explore the sample space of Fig. 2, this corresponds to a
reduction of effort by three orders of magnitude.

3.2 Subjective Testing
Once content has been selected, we follow a standard subjective
testing methodology, such as ITU-T P.910 or BT.500 absolute cat-
egory rating (ACR) or degradation category rating (DCR). This
involves setting a standard viewing angle and distance from the
screen, controlled lighting and screen conditions, rater prescreening
for color blindness and eyesight, and rater briefing for the scoring
task. In our work, we used P.910 ACR with a five-scale rating and
hidden reference, as this has been shown to allow for the best use
of rating effort, i.e., the maximum number of samples within the
allocated time. The SUREAL package from Netflix is used for post-
processing the ACR ratings [15]. Essentially, SUREAL recovers the
subjective quality scores from the raw ACR ratings by assuming a
linear model and using maximum likelihood estimation (MLE) to

jointly estimate the subjective quality of videos and rater bias and
inconsistency [15].

The obtained scatter plots for the video coding application are
shown in Fig. 4 along with their corresponding correlation co-
efficients (CC), Spearman’s ranked order correlation coefficients
(SRCC) and root mean squared error (RMSE). VMAF and VMAF-
NEG are shown to be significantly more correlated to quality scores
than SSIM (FB-MOS) and PSNR. Similarly, the obtained scatter plots
for the video denoising application are shown in Fig. 5. Similarly
as before, VMAF and VMAF-NEG are shown to be significantly
closer to the recovered quality scores. SSIM is mildly correlated to
the recovered quality from the subjective test and PSNR is com-
pletely uncorrelated. This is not an unexpected result, given that
the utilized neural network denoising and upscaling architecture
(described in the experimental section) is trained for perceptual and
generative adversarial loss functions rather than signal distortion.
However, this emphasizes the need for consolidation between sub-
jective scores and objective metrics for state-of-the-art video signal
processing systems that go significantly beyond signal-to-noise
ratio minimization.

3.3 Fusion of Multiple Objective Quality Metrics
We propose to improve the quality assessment of any individual
quality metric, by fusingmetrics into a single P.910-MOSmetric that
conforms to the sample space and subjective testing methodology
of its input features. A a-support vector regressor (a-SVR) model
[5, 24] is trained to estimate the recovered quality scores via the use
of multiple quality metrics. We use PSNR, SSIM, VMAF-NEG, and
VMAF as input features, as they are readily derived at scale via the
libvmaf library of FFmpeg. Contrary to a 𝜖-SVR, where we control
the error term 𝜖 , with a a-SVR we are directly able to control the
number of support vectors required for optimization. Given a set
of training feature vectors 𝒙𝑖 ∈ R𝑝 , where 𝑝 represents the number
of input features and corresponding target outputs 𝑦𝑖 ∈ R1, the
primal problem can be written as:

min
𝒘,𝑏,b,b∗

1
2
𝒘⊤𝒘 +𝐶

(
a𝜖 + 1

𝑙
Σ𝑙𝑖=1 (b𝑖 + b

∗
𝑖 ))

)
s.t. (𝒘⊤𝜙 (𝒙)𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + b𝑖

𝑦𝑖 − (𝒘⊤𝜙 (𝒙)𝑖 + 𝑏) ≤ 𝜖 + b∗𝑖
b𝑖 , b

∗
𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑙, 𝜖 ≥ 0

(1)

where𝒘 and 𝑏 are learned weights and biases respectively, b and
b∗ are slack variables and 𝑙 is the number of videos. There are three
hyperparameters: a = the proportion of the number of support
vectors versus the total number of samples, 𝐶 = regularization
parameter on the loss function,𝛾 = the radius parameter of the radial
basis function (RBF) kernel, denoted as 𝜙 in (1). In short, the loss
function represents a tradeoff, where the first term enforces flatness
by penalizing large𝒘 , while the second term penalizes deviations
larger than the desired maximum error. The constraints ensure that
errors in prediction are less than 𝜖 (plus some slack). We optimize
the loss function on a training set by constructing a Lagrange
function with the constraints and solving the dual problem [24].

We follow a standard 80-20 training/test split over AV2CTC se-
quences. The datapoints that survive the pseudo-random sampling
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(a) PSNR (b) SSIM (c) VMAF-NEG (d) VMAF

Figure 4: Scatter plots of PSNR, SSIM, VMAF-NEG and VMAF vs. recovered quality scores and corresponding SRCC and CC for
the subjective tests with the video coding algorithms.

(a) PSNR (b) SSIM (c) VMAF-NEG (d) VMAF

Figure 5: Scatter plots of PSNR, SSIM, VMAF-NEG and VMAF vs. recovered quality scores and corresponding SRCC and CC for
the subjective tests with the video denoising algorithms.

(a) Encoding (b) Denoising & upscaling

Figure 6: Scatter plot of of SVR predicted scores vs recovered quality (true) scores for (a) Encoding (a = 0.5, 𝛾 = 0.85, 𝐶 = 1) and
(b) Denoising & upscaling (a = 1.0, 𝛾 = 0.0025, 𝐶 = 32.0).
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of the convex hull are then used for training the SVR. The input
features to the SVR are scaled and normalized prior to training. The
a-SVR is optimized with a radial basis function (RBF) kernel and
k-fold cross validation, with the number of folds equal to 4. A grid
search is used to find the values for hyperparameters that jointly
optimize the CC and SRCC, with 𝐶 ∈ [2−5, 215] and 𝛾 ∈ [2−15, 23].
The remaining 20% of sequences are then used for testing on the
video coding and denoising applications under the testing condi-
tions described in Sections 4.1 and 4.2 respectively.

4 EXPERIMENTS
We validate the proposed methodology for domain-specific fusion
of multiple video quality metrics on two applications: video cod-
ing with and without neural-network based preprocessing, and
neural-network based video denoising. In both cases, the utilized
algorithms are perceptually-oriented, which causes discrepancy
in performance assessment with different reference-based quality
metrics.

4.1 Video Coding
One of the key objectives of optimized video streaming is the se-
lection of the appropriate encoder and encoder preset that meets
the desired execution time complexity and bitrate efficiency versus
the state-of-the-art. While it is well known that bitrate efficiency
increases with the use of encoding presets of increased complexity,
e.g., x264 AVC preset=veryslow versus preset=fast, it is not clear
what is the relationship between different encoders. The use of
state-of-the-art preprocessing technologies for perceptual optimiza-
tion [4, 10, 20, 37] complicates this further, as such preprocessing
makes the encoding even more perceptually-tuned than the original
perceptual tuning within the encoders & recipes themselves.

The baseline results corresponding to this experiment are shown
in the left four plots of Fig. 1. They have been generated for the AV2
CTC test content [34] (excluding sequences above 1080p resolution)
and the optimized encoding recipes from recent work [32]. This
work also describes the full set of test conditions with respect to
encoding presets, multi-resolution encoding ladders and choice
of crf values, which have been adopted for our experiments. In
summary:

• resolutions span from 144p to 1080p;
• the crf ranges span from 18 to 42 (for x264 AVC) and from
22 to 63 for the svt-av1 AVC and vpxenc VP9;

• the utilized presets are shown in Fig. 1 and span the bulk of
the complexity-quality tuning on offer by each encoder;

• convex-hull selection takes place for all encoders and the BD-
rates for all surviving points in the convex hull are measured
using slope-based integration and the Netflix libvmaf BD-
rate calculator [14];

• execution time is measured using GNU parallel on an Intel
CPU (in our case this was an Intel Xeon 8275CL 24-core
CPU);

• VMAF, VMAF-NEG, SSIM and PSNR are computed using the
Netflix libvmaf library [14] and in our case SSIM is rescaled
so that it is more aligned to MOS using the FB-MOS rescaling
[18];

• preprocessing comprises an optimized deep perceptual pre-
processing model from recent work [4] that provides for
perceptually-optimized preprocessing with a single model
for all encoders, presets, resolutions and crf values.

The entire set of libvmaf JSON measurements is approximately 2.5
million files, which showcases the comprehensive nature of this
test. As shown in Fig. 1, despite the extensive nature of the test,
when focusing on a single metric like VMAF, SSIM or PSNR, one
can reach very different conclusions with respect to the complexity–
vs.–BD-rate efficacy of the different encoders and their presets. For
example,

• when considering SSIM, the M12 preset of svt-av1 AV1 en-
coder is shown to be on-par to x264 AVC preset=fast with
respect to execution time and BD-rate; on the other hand,
they differ by more than 60% in BD-rate when considering
VMAF;

• x264 AVC preset=veryslow with preprocessing is shown to
be faster and almost on-par to vpxenc VP9 preset=cpu3 with
respect to SSIM BD-rate, but is more than 15% worse when
considering VMAF;

• the difference between the fastest and slowest presets of each
encoder is much less pronounced in SSIM BD-rate versus
when considering VMAF BD-rate;

• the effect of perceptually-optimized preprocessing is much
more pronounced on all encoders when considering VMAF
thanwhen considering SSIM as the qualitymetric, and it is re-
versed when considering PSNR (since preprocessing changes
the input to the encoder and all metrics are measured using
the input video as reference).

When combining all four different metrics (PSNR, SSIM, VMAF-
NEG and VMAF) into a single P.910-MOS metric via the proposed
methodology and its instantiation, we obtain the derived SVR scat-
ter plot of Fig. 6(a). Comparing with Fig. 4, the SVR plot shows
increased correlation coefficients (SRCC and CC) versus using any
metric independently, which indicates a better fit to the recovered
quality scores.

We can now evaluate the BD-rate performance of preprocessing
vs encoding complexity directly with our P.910-MOS metric, as
illustrated in the rightmost plot of Fig. 1. The derived BD-rates of
P.910-MOS fall between those of SSIM, VMAF-NEG and VMAF,
and provide for a directly-interpretable way of cross-comparing
different encoding technologies and their settings than an ad-hoc
weighted averaging of BD-rates of different metrics. Importantly,
the obtained BD-rates are also in good agreement with the BD-
rates obtained by slope-based merging of recovered quality scores
for the example cases of x264 AVC preset=veryslow and vpxenc
VP9 preset=cpu0. Specifically, when BD-rate of preprocessing is
measured vs. encoding of the same AVC and VP9 presets for the
AV2 CTC results of the central part of Fig. 1, we obtained -11% and
-9% (resp.), while for the slope-based merging of recovered quality
scores we obtained -12% and -6% (resp.).

4.2 Video Denoising and Upscaling
In the second application, we aim to denoise and upscale video
by learning to recover from compression-induced artifacts. The
inference architecture tested comprises a single-frame input model
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(a) AVC (CRF 33)
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(b) AVC (CRF 37 and 39)
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(c) VP9 (CRF 52)
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(d) VP9 (CRF 61)

Figure 7: Recovered quality scores vs. SVR-based P.910-MOS for Lanczos upscaling and neural network denoising and upscaling.

with only 5 residual blocks in its inference. The first layer is designed
by a strided convolution (downscaling the input resolution by a
factor of 2) with LeakyRelu non-linearity thereafter, followed by
5 residual blocks and two Depth2Space (pixelshuffle) layers for
upscaling. Each convolutional feature map has 64 channels. Finally,
a convolutional layer is used to predict the output.

While the target for this application is high-crf encoding, and
training is done using crf ∈ {35, .., 42} for AVC and crf ∈ {58, .., 63}
for VP9 encodes, our tests involve the use of both low, medium
and high-crf content in order to test the architecture in out-of-
distribution cases and ensure it does not lead to worse results
than standard upscaling. In particular, for inference tests we used
720p and 1080p content from the AV2 CTC dataset that has been
downscaled to 360p and 540p (resp.) and compressed with AVC
crf ∈ {23, 33, 37, 39} and VP9 crf ∈ {33, 52, 61} using x264 AVC
preset=veryslow and vpxenc VP9 preset=cpu5. The produced down-
scaled and compressed output is then:

• upscaled with FFmpeg Lanczos (with setting param5=0);

• denoised and upscaled with the neural network architecture
under consideration

As with the video coding application, we first combine the four
individual metrics from the Netflix libvmaf library (VMAF, VMAF-
NEG, PSNR and SSIM) into a single P.910-MOS metric that predicts
the recovered quality scores obtained after SUREAL processing.
In this case, the derived scatter plot of Fig. 6(b) shows similar but
improved correlation coefficients to VMAF and VMAF-NEG in Fig.
5(c)+(d). Out of the utilized libvmaf metrics, only VMAF is close to
the subjective scores, and PSNR and SSIM can safely be disregarded
when it comes to visual quality assessment of the utilized video
denoising and upscaling architecture.

Given our learned P.910-MOS metric, we assess the performance
of the denoising and upscaling architecture versus Lanczos upscal-
ing on a subset of sequences from the AV2 CTC dataset in Fig. 7,
for mid CRF and high CRF ranges and on both AVC and VP9. As
expected, the difference between the two methods increases as the
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noise levels (i.e., crf values) increase. Additionally, the derived P.910-
MOS metric appears to follow the true recovered quality scores
for most cases, thereby providing an automated way to assess the
impact of neural denoising and upscaling versus standard linear
upscaling at scale.

5 CONCLUSION
We address the growing challenge of how to assess perceptually-
oriented video signal processing techniques more reliably and in a
manner that can scale to large datasets. Our results on video coding
and video denoising & upscaling show that even psychovisually-
tuned metrics like Netflix libvmaf’s video multi-method assessment
fusion (VMAF) and structural similarity (SSIM) most often lead to
a mixed picture with respect to the tangible benefits of advanced
coding or denoising methods. While this can be resolved with large-
scale subjective tests, a thorough exploration of the parameter and
content space quickly becomes infeasible. Instead we propose the
significantly condense the application and parameter space with
a pseudorandom sampling strategy that is guided by metrics, and
then carry out limited subjective testing in order to fit the fusion of
multiple metrics to the recovered quality scores of each application
of interest. Validation in video coding and video denoising and
upscaling experiments showed that this can provide for a better
way to combine standard libvmaf metrics towards a fused objective
score that can be applied at scale. Future work can investigate the
extension of this methodology to further objective metrics and also
other applications.

6 ACKNOWLEDGEMENTS
The work of the authors from iSIZE was supported in part by a
grant from Innovate UK, project SEQUOIA (#96984)

REFERENCES
[1] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer, Radu Timofte, and

Luc Van Gool. 2019. Generative adversarial networks for extreme learned image
compression. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 221–231.

[2] Simone Bianco, Luigi Celona, Paolo Napoletano, and Raimondo Schettini. 2018.
On the use of deep learning for blind image quality assessment. Signal, Image
and Video Processing 12, 2 (2018), 355–362.

[3] Yochai Blau and Tomer Michaeli. 2018. The perception-distortion tradeoff. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
6228–6237.

[4] Aaron Chadha and Yiannis Andreopoulos. 2021. Deep Perceptual Preprocessing
for Video Coding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 14852–14861.

[5] Chih-Chung Chang and Chih-Jen Lin. 2002. Training v-support vector regression:
theory and algorithms. Neural computation 14, 8 (2002), 1959–1977.

[6] Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming Yang. 2018. Image
blind denoising with generative adversarial network based noise modeling. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
3155–3164.

[7] Ross Cuttler. 2022. P.910 Crowd. Retrieved April 7, 2022 from https://github.com/
microsoft/P.910

[8] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. 2020. Image
quality assessment: Unifying structure and texture similarity. arXiv preprint
arXiv:2004.07728 (2020).

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[10] Christian R Helmrich, Sebastian Bosse, Mischa Siekmann, Heiko Schwarz, Detlev
Marpe, and Thomas Wiegand. 2019. Perceptually optimized bit-allocation and
associated distortion measure for block-based image or video coding. In 2019
Data Compression Conference (DCC). IEEE, 172–181.

[11] Recommendation ITU-T. 2008. ITU-t P. 910. Subjective video quality assessment
methods for multimedia applications (2008).

[12] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
8110–8119.

[13] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-realistic single image super-resolution using a generative
adversarial network. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 4681–4690.

[14] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, AnushMoorthy,
and JD Cock. 2018. VMAF: The journey continues. Netflix Technology Blog 25
(2018).

[15] Zhi Li, Christos G Bampis, Lucjan Janowski, and Ioannis Katsavounidis. 2020. A
simple model for subject behavior in subjective experiments. Electronic Imaging
2020, 11 (2020), 131–1.

[16] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. 2012. No-
reference image quality assessment in the spatial domain. IEEE Transactions on
image processing 21, 12 (2012), 4695–4708.

[17] Maxime Oquab, Pierre Stock, Daniel Haziza, Tao Xu, Peizhao Zhang, Onur Celebi,
Yana Hasson, Patrick Labatut, Bobo Bose-Kolanu, Thibault Peyronel, et al. 2021.
Low bandwidth video-chat compression using deep generative models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2388–2397.

[18] Shankar L Regunathan, HaixiongWang, Yun Zhang, Yu Ryan Liu, David Wolsten-
croft, Srinath Reddy, Cosmin Stejerean, Sonal Gandhi, Minchuan Chen, Pankaj
Sethi, et al. 2020. Efficient measurement of quality at scale in Facebook video
ecosystem. In Applications of Digital Image Processing XLIII, Vol. 11510. SPIE,
69–80.

[19] Michele A Saad, Alan C Bovik, and Christophe Charrier. 2012. Blind image
quality assessment: A natural scene statistics approach in the DCT domain. IEEE
transactions on Image Processing 21, 8 (2012), 3339–3352.

[20] Heiko Schwarz, Muhammed Coban, Marta Karczewicz, Tzu-Der Chuang, Frank
Bossen, Alexander Alshin, Jani Lainema, Christian R Helmrich, and Thomas
Wiegand. 2021. Quantization and entropy coding in the versatile video coding
(VVC) standard. IEEE Transactions on Circuits and Systems for Video Technology
31, 10 (2021), 3891–3906.

[21] H.R. Sheikh and A.C. Bovik. 2006. Image information and visual quality. IEEE
Transactions on Image Processing 15, 2 (2006), 430–444. https://doi.org/10.1109/
TIP.2005.859378

[22] H.R. Sheikh, A.C. Bovik, and G. de Veciana. 2005. An information fidelity criterion
for image quality assessment using natural scene statistics. IEEE Transactions
on Image Processing 14, 12 (2005), 2117–2128. https://doi.org/10.1109/TIP.2005.
859389

[23] Zeina Sinno and Alan C Bovik. 2018. Large scale subjective video quality study. In
2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 276–280.

[24] Alex J Smola and Bernhard Schölkopf. 2004. A tutorial on support vector regres-
sion. Statistics and computing 14, 3 (2004), 199–222.

[25] Pranav Sodhani. 2021. Evaluate videos with the Advanced Video Quality Tool.
Retrieved April 7, 2022 from https://developer.apple.com/videos/play/wwdc2021/
10145/

[26] Marc Sullivan, James Pratt, and Philip Kortum. 2008. Practical issues in subjective
video quality evaluation: Human factors vs. psychophysical image quality evalu-
ation. In Proceedings of the 1st international conference on Designing interactive
user experiences for TV and video. 1–4.

[27] Abhinau KVenkataramanan, Cosmin Stejerean, andAlan CBovik. 2022. FUNQUE:
Fusion of Unified Quality Evaluators. arXiv preprint arXiv:2202.11241 (2022).

[28] Abhinau K Venkataramanan, Chengyang Wu, Alan C Bovik, Ioannis Katsavouni-
dis, and Zafar Shahid. 2021. A hitchhiker’s guide to structural similarity. IEEE
Access 9 (2021), 28872–28896.

[29] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. 2018. Esrgan: Enhanced super-resolution generative
adversarial networks. In Proceedings of the European conference on computer
vision (ECCV) workshops. 0–0.

[30] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861

[31] Z. Wang, E.P. Simoncelli, and A.C. Bovik. 2003. Multiscale structural similarity for
image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals,
Systems Computers, 2003, Vol. 2. 1398–1402 Vol.2. https://doi.org/10.1109/ACSSC.
2003.1292216

[32] Ping-Hao Wu, Ioannis Katsavounidis, Zhijun Lei, David Ronca, Hassene Tmar,
Omran Abdelkafi, Colton Cheung, Foued Ben Amara, and Faouzi Kossentini. 2021.
Towards much better SVT-AV1 quality-cycles tradeoffs for VOD applications. In
Applications of Digital Image Processing XLIV, Vol. 11842. International Society
for Optics and Photonics, 118420T.

https://github.com/microsoft/P.910
https://github.com/microsoft/P.910
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/TIP.2005.859389
https://doi.org/10.1109/TIP.2005.859389
https://developer.apple.com/videos/play/wwdc2021/10145/
https://developer.apple.com/videos/play/wwdc2021/10145/
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ACSSC.2003.1292216
https://doi.org/10.1109/ACSSC.2003.1292216


Domain-Specific Fusion Of Objective VideoQuality Metrics Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[33] Ping-Hao Wu, Volodymyr Kondratenko, Gaurang Chaudhari, and Ioannis Kat-
savounidis. 2021. Encoding Parameters Prediction for Convex Hull Video Encod-
ing. In 2021 Picture Coding Symposium (PCS). IEEE, 1–5.

[34] XIPH Media. 2021. AV2-CTC Test Set. Retrieved April 7, 2022 from https:
//media.xiph.org/video/aomctc/test_set/

[35] Fan Zhang, Angeliki V Katsenou, Mariana Afonso, Goce Dimitrov, and David R
Bull. 2020. Comparing VVC, HEVC and AV1 using objective and subjective
assessments. arXiv preprint arXiv:2003.10282 (2020).

[36] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
2018. The unreasonable effectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
586–595.

[37] Yun Zhang, Linwei Zhu, Gangyi Jiang, Sam Kwong, and C-C Jay Kuo. 2021. A
Survey on Perceptually Optimized Video Coding. arXiv preprint arXiv:2112.12284
(2021).

https://media.xiph.org/video/aomctc/test_set/
https://media.xiph.org/video/aomctc/test_set/

	Abstract
	1 Introduction
	2 Related Work
	3 From Limited Domain-Specific Subjective Testing to Fusion of Multiple Objective Metrics
	3.1 Sample Space
	3.2 Subjective Testing
	3.3 Fusion of Multiple Objective Quality Metrics

	4 Experiments
	4.1 Video Coding
	4.2 Video Denoising and Upscaling

	5 Conclusion
	6 Acknowledgements
	References

