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Abstract

SH2B3 is a negative regulator of multiple cytokine receptor signalling pathways in

haematopoietic tissue. To date, a single kindred has been describedwith germline bial-

lelic loss-of-function SH2B3variants characterizedbyearly onset developmental delay,

hepatosplenomegaly and autoimmune thyroiditis/hepatitis. Herein, we described two

further unrelated kindredswith germline biallelic loss-of-function SH2B3 variants that

show striking phenotypic similarity to each other as well as to the previous kindred of

myeloproliferation and multi-organ autoimmunity. One proband also suffered severe

thrombotic complications. CRISPR-Cas9 gene editing of zebrafish sh2b3 created

assorted deleterious variants in F0 crispants, which manifest significantly increased

number ofmacrophages and thrombocytes, partially replicating the humanphenotype.

Treatment of the sh2b3 crispant fish with ruxolitinib intercepted this myeloprolifer-

ative phenotype. Skin-derived fibroblasts from one patient demonstrated increased

phosphorylation of JAK2 and STAT5 after stimulationwith IL-3, GH, GM-CSF and EPO

compared to healthy controls. In conclusion, these additional probands and functional

data in combination with the previous kindred provide sufficient evidence for bial-

lelic homozygous deleterious variants in SH2B3 to be considered a valid gene-disease

association for a clinical syndromeof bonemarrowmyeloproliferation andmulti-organ

autoimmunemanifestations.
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1 INTRODUCTION

SH2B3 (SH2B adapter protein 3) is a negative regulator of multi-

ple cytokine receptor signalling pathways in hematopoietic tissue

including Signal transducer and activator 5 (STAT5), Protein kinase

B (PKB/AKT) and Mitogen-activated protein kinase (MAPK) [1, 2].

Acquired deleterious SH2B3 variants resulting in increased Janus

kinase/signal transducer and activator of transcription (JAK/STAT)

signalling are observed in approximately 5% of chronic phase myelo-

proliferative neoplasms (MPN) either in the presence or absence

of canonical MPN driver variants (e.g. JAK2 Val617Phe) [3, 4]. In

contrast to the acquired setting, the clinical implications and any phe-

notype associated with deleterious germline variants in SH2B3 are

less clear. A single kindred has been previously described with two

affected probands carrying homozygous frameshift SH2B3 variants

who presented at a young age with hepatosplenomegaly, autoimmune

hepatitis, developmental delay and autoimmune thyroiditis [5]. One of

these probands also developed B-acute lymphoblastic leukaemia [6,

7]. Despite this initial important description, there is currently insuf-

ficient evidence to definitively establish a clinically valid gene-disease

pair resulting from germline deleterious SH2B3 variants according to

formal criteria [8]. Moreover, the potential breadth of any pheno-

type is currently unknown. Herein, we provide clinical and functional

data on two further unrelated kindred that harbor biallelic deleteri-

ous germline SH2B3 variants and establish a novel germline syndrome

with the clinical phenotype of myeloproliferation and multi-organ

autoimmunity.

2 METHODS

2.1 Patient identification and genomic
investigation

Two unrelated patients were identified from Peter MacCallum Cancer

Centre (PMCC, Melbourne, Australia) and University College London

Hospital (UCLH, London, United Kingdom). Patient 1 underwent next

generation sequencing (NGS) using a targeted panel as previously

described [9], patient 2 underwent whole genome sequencing (WGS)

as part of as part of the PID domain of the United Kingdom NIHR

BioResource—Rare Diseases program [10].

2.2 Zebrafish sh2b3 loss-of-function models

CRISPR/Cas9mutagenesis of zebrafish sh2b3was performed as previ-

ously described [11, 12]. Briefly, three guide RNAs (gRNAs) targeting

sh2b3 exon 1 (Table S1) were microinjected together in 1-cell embryos

of reporter lines marking hematopoietic stem cells, myeloid cells and

thrombocytes and quantified in F0 knockdown crispants by manual

counting of fluorescent cells. Ruxolitinib was administered by immer-

sion at 4 µM, renewed daily, for up to 5 dpf (see Supplementary

Methods).

2.3 Assessment of signalling from skin fibroblasts

Cultured skin-derived fibroblasts from patient 2 were treated for

15 min with interleukin-3 (IL-3, 20 ng/ml and/or 200 ng/ml), growth

hormone (GH, 100 ng/ml and/or 500 ng/ml), granulocyte-macophage

colony-stimulating factor (GM-CSF, 10 ng/ml and/or 100 ng/ml) or

erythropoietin (EPO, 15 ng/ml). Native and phosphorylated signalling

proteins were then assessed by immunoblotting and flow cytometry

(see SupplementaryMethods).

3 RESULTS AND DISCUSSION

Patient 1 was a male who presented with splenomegaly, thrombocyto-

sis, neutrophilia and a leukoerythroblastic blood filmat 3months of age

(Figure 1A). A bone marrow biopsy demonstrated myeloid hyperplasia

with megakaryocytic hyperplasia and atypia (Figure 1B). The patient

developed alopecia areata at age 2 and autoimmune hypothyroidism at

age 6.Hewas otherwise developmentally normalwithout any detected

liver abnormalities or thrombotic episodes. His splenomegaly and neu-

trophil count gradually improved throughout life; however, his platelet

count remainedmarkedly elevated (∼1000× 109/L at 18 years of age).

At age 18, the patient underwent investigation with an NGS panel

as previously described9 and a homozygous frameshift variant was

detected in SH2B3 (NM_005475.3:c.441_468del; p.(Arg148Profs*40)).

Both parents (with no history of cytoses or autoimmune dis-

ease) were found to be heterozygous carriers of this same variant

(Figure 1A)

Patient 2 was a male born to consanguineous Iranian parents

(Figure 1A) who was noted shortly after birth to have isolated

splenomegaly for which no cause was identified. A persistent throm-

bocytosis was noted throughout life ranging from550–780×109/L. At

age 12, he was diagnosed with autoimmune hypothyroidism and Ray-

naud syndrome.At 17 years old, he developed acute hepatitiswith liver

biopsy features consistent with autoimmune hepatitis. A bonemarrow

biopsy at this stage demonstrated a mildly hypercellular marrow with

megakaryocytic hyperplasia and atypia (Figure 1C). In addition, he was

also noted to be hyperglycemic and was diagnosed with autoimmune

diabetes mellitus and commenced on insulin. His liver function tests

improved with prednisolone and tacrolimus; however, he presented 2

months later with left-sided weakness and on investigation was found
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to have a right-sided middle cerebral artery territory infarct with a

right carotid artery thrombus.

The patient and his parents underwent trio WGS testing and a

homozygous missense variant in SH2B3 (c.1204G>A; p.(Val402Met))

was detected in the patient with both parents found to be heterozy-

gous carriers (Figure 1A). The SH2B3 Val402Met has been observed

multiple times in hematological malignancy (https://cancer.sanger.ac.

uk/cosmic) as an acquired variant, occurs in the SH2 domain (which is a

recurrent site of acquiredmutations inmyeloproliferative neoplasms4)

and has been previously been shown to have reduced negative reg-

ulating activity in vitro [13]. Skin-derived fibroblasts were obtained

from the patient which demonstrated SH2B3 protein expression

(Figure 1D, E), a basal increase in pSTAT5 and pSTAT3 by phosphoflow

compared to healthy cells (Figure 1F). In addition, increased pJAK2

and pSTAT5 by immunoblotting after stimulation with IL-3, GH, GM-

CSF and EPO compared to healthy controls was demonstrated by

immunoblotting (Figure 1G).

To model the SH2B3 Arg148Profs*40 variant from patient 1,

CRISPR-Cas9 gene editing [11, 14] was targeted to the analogous

region of zebrafish sh2b3 to create assorted deleterious variants

in F0 crispants (Figure 2A). Sanger sequencing confirmed on-target

editing with NGS demonstrating a mixture of in-frame, missense

and frameshift variants (Figure 2B). F0 crispants had a significantly

increased number of macrophages and thrombocytes, replicating the

patient phenotype (Figure 2C). Treatment of the sh2b3 crispant fish

with the JAK inhibitor ruxolitinib (previously demonstrated tobeactive

against zebrafish JAK2 [15]) intercepted themyeloproliferative pheno-

type (Figure 2D). The myeloproliferative phenotype was not observed

in stable deletion mutants, likely reflecting genetic compensation not

present in crispants (Figure S1) [16].

The clinical phenotype of these two patients demonstrates remark-

able similarity to each other as well as the previously reported kindred

[5]. The haematopoietic manifestations were dominated by myelopro-

liferative features consistent with the established role of SH2B3 in

negatively regulating signalling from the erythropoietin and throm-

bopoietin receptors [1, 17]. Moreover, we provide two independent

lines of evidence linking SH2B3 dysfunction to this disease phenotype

by (1) reproducing this myeloproliferation by CRISPR-Cas9 medi-

ated disruption of zebrafish sh2b3 and (2) demonstrating increased

phosphorylation of JAK2, STAT5, and STAT3. Notably, Sh2b3 knock-

out models in both mouse and rat generated by others show similar

myeloproliferative features as well as splenomegaly [18, 19]. Impor-

tantly, despite evidence of generalized myeloproliferation, neither

of our patients had clinicopathological evidence of a haematological

malignancy (either myeloid or lymphoid lineage) during follow-up.

Both of our patients developed clinically significant extra-

haematopoietic multi-organ autoimmune manifestations throughout

life including autoimmune hypothyroidism, autoimmune hepatitis,

alopecia areata and autoimmune diabetes mellitus. Whilst prominent

autoimmune manifestations have not been noted in model organisms

to date (including our zebrafish model) [18, 19], the spectrum of

autoimmunity observed in our patients closely mirrors the estab-

lished increased risk of autoimmune phenomena associated with

common loss-of-function SH2B3 germline polymorphisms established

through genome wide association studies and serves to further

support the validity of these increased risks in the heterozygous

state [20–25].

In conclusion, we propose that these additional probands and func-

tional data in combination with the previous kindred provide sufficient

evidence for biallelic deleterious variants in SH2B3 to be considered

a valid gene-disease association for a clinical syndrome of bone mar-

row myeloproliferation and multi-organ autoimmune manifestations.

Descriptions of further affected individuals will be required to fully

understand the breadth of the phenotype. Moreover, our data support

ruxolitinib as a potential therapeutic option for patients with this rare

immune dysregulatory syndrome.

F IGURE 1 Clinicopathological features of patients with biallelic loss of function variants in SH2B3. (A) Pedigree for patients 1 and 2; half-filled
squares and circles indicate carrier status for SH2B3 variants for males and females, respectively. Fully filled squares indicate homozygous SH2B3.
n.t. – not tested. Double line indicates consanguinity. (B) Bonemarrow aspirate from patient 1 demonstrating hypercellular marrowwith
megakaryocytic hyperplasia andmorphological atypia (×100). (C) Bonemarrow trephine biopsy from patient 2 demonstratedmegakaryocytic
hyperplasia and atypia (haematoxylin and eosin (H&E),×400). (D) SH2B3 expression assessed intracellularly by flow cytometry on skin-derived
fibroblasts using amouse anti-human SH2B3 antibody followed by goat anti-mouse IgG-AlexaFluor488 staining after fixation and
permeabilization using the BDCytofix/CytoPerm buffers. Immunoreactive SH2B3 expression is present in wildtype healthy control (HC) and
proband (V402M) cells. Negative control is secondary antibody (Ab) only. Numbers inside panels represent mean fluorescence intensity (MFI). (E)
Western blot showing normal expression of SH2B3 in V402M skin-derived fibroblasts; GADPH loading control. (F) Basal STAT-5 and STAT-3
phosphorylation was evaluated on skin-derived fibroblasts by Phosflow assay using BD Phosflow Fix I and Perm III buffers according to
manufacturer instructions (BD Biosciences). Histograms on the left show a representative example and graphs on the right the normalisedmean
values for four experiments. Numbers inside histograms represent mean fluorescence intensity (MFI). pSTAT3 and pSTAT5 levels were
significantly elevated relative to control in the proband (V402M) samples (*indicates p< 0.05,Mann–Whitney test). (G) Increased phosphorylation
of JAK2 and STAT5 in SH2B3-V402M. Skin-derived fibroblasts were obtained from patient 2 and from a healthy control were assessed for SH2B3,
pJAK2, pSTAT3 and pSTAT5 protein expression by immunoblotting before and after 15-min stimulation with the indicated ligands (optical density
for experiment and replicates provided in histogram). Black lines next to samples in lanes 13 and 14 (pSTAT5 and GAPDH) indicate where images
have beenmoved in the figure to allow comparison between healthy control versus patient. Graphs on the right show quantitation of multiple
immunoblots with lines connecting paired samples. EPO, erythropoietin; GH, growth hormone; GM-CSF, granulocyte-macrophage
colony-stimulating factor; HC, healthy control; IL-3, interleukin-3.
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