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Abstract

Reputation-based Strategies for the Evolution of Cooperative Behaviour

by Shirsendu PODDER

Cooperation between strangers can be difficult to explain. Several mechanisms have
been shown to sustain cooperation among which one of the most general is Indirect
Reciprocity. This describes how reputation-based social norms can distinguish be-
tween appropriate and inappropriate behaviours and sustain cooperation through
the promise of future reciprocity from other members of a population. We present
three experiments that investigate how a social norm’s ability to sustain cooperation
is affected when: information flow is restricted to between neighbours, anyone can
punish and anyone can be punished, and when people are capable of fine tuning
their behaviour in response to their environment.

Using simulations and a series of agent-based models, we find that - in the two-
person prisoner’s dilemma - restricting the flow of information and ensuring people
learn from their neighbours, benefits the maintenance of good behaviour. In such
scenarios, the best chances for cooperation occur when actions are judged harshly,
ensuring that a good reputation once lost, is difficult to regain. For social norms
to sustain cooperation in collective action problems, similar harshness is required
through the ongoing threat of punishment. These situations can be highly coop-
erative if withdrawal from the social dilemma is possible and such behaviour is not
judged to be morally worse than defection. However, if people are not able to punish
badly behaving peers, then free-riding runs rampant unless the population consid-
ers defection to be worse than withdrawing from the social dilemma. We show that
an improvement on this state of affairs, can be obtained when agents are able to
fine-tune their behaviour when confronted with various reputational environments.
Regardless of how actions are morally viewed, cooperation has a good chance if
people can be sufficiently deliberate.
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Impact Statement
In the real world, reputational systems are frequently used, both subtly through
social media and overtly in online marketplaces like eBay or Airbnb. They are in-
trinsically valuable to form a useful gauge of a stranger’s reliability. In a world
where “fake news” is spread rapidly, reputational systems can be used positively
but can also be abused. Due to the instant communication capabilities of social me-
dia, which can reach an almost infinite audience, many people take false information
spread by a reliable source as fact. The research presented in this thesis can be used
to help platform designers create and improve reputational systems to favour posi-
tive actions and limit malicious ones. Our first experiment suggests that preventing
the spread of harmful behaviour requires limiting the scope but enhancing the re-
liability of the ways in which people can access information about the reputations
of their peers. More generally, the results of our experiments on collective action
show that better chances for widespread cooperation exist when reputational sys-
tems allow discerning different types of behaviour (e.g. free-riding vs not playing).
Furthermore, we have identified the characteristics of reputational systems that re-
ward good behaviour and categorised the reputational norms that work best in a
variety of situations. Such systems ought to prioritise severe reputational penalties
for improper conduct and make regaining it more challenging.

The results of our research can impact similar future endeavours, indicating that
models should consider the fact that many species are capable of making more com-
plex decisions, according to our second and third studies. Models should take into
account strategies that fine tune their reactions to the proposed environment, as op-
posed to being defined by one or two actions, as they frequently have been in pre-
vious literature. Our research shows that using genetic algorithms can be a solution
to deal with the large strategies spaces implied by more complex strategies. Models
can increase the likelihood that such strategies will support long-term cooperation,
even in the absence of other enforcement mechanisms like punishment, by taking
into account the population’s capacity to perceive reputation. Finally, to account for
the relative strengths between competing social norms, future research on reputa-
tional systems should also take into account the co-evolution of both behavioural
and reputational norms. To encourage cross-cultural cooperation in a world that
is becoming more interconnected and diverse, it is crucial to study the interactions
between parties with radically different views of what is right and wrong.
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Chapter 1

Introduction

1.1 Context

Altruistic and cooperative behaviour is difficult to explain. Why do individuals
freely give help to others at a cost to themselves? We witness acts of cooperation
every day. We observe it in children (Koomen and Herrmann, 2018; Prétôt, Gonza-
lez, and McAuliffe, 2020), we see it in animals (Raihani, Thornton, and Bshary, 2012;
Scheel and Packer, 1991), we see it across the world through businesses and charities
- strangers freely spend significant amounts of time, effort and money to help oth-
ers, all the while frequently receiving nothing in return from the beneficiary of their
help. This makes us wonder, for natural selection to favour unselfish behaviour,
what mechanisms make altruism possible?

1.2 Key Definitions

Various frameworks have been proposed, each with a singular focus like reciprocity
between genetic relatives, or existing within some spatial or geographical space,
or systems of quid pro quo agreements. Humans punish behaviour they feel im-
proper, even if it comes at a cost and may only return a delayed benefit (Fehr and
Gächter, 2002). Even animals incorporate punishment systems, inflicting punish-
ment to maintain dominance or as retribution against unwilling mating partners
(Clutton-Brock and Parker, 1995). Multi-level selection postulates of selection oc-
curring not only over the individuals within a group, but between groups them-
selves (Okasha, 2009). Indirect reciprocity is one of the most general, following the
idea that by helping, you attract the help of others. Within this paradigm, everyone
is equipped with a reputation, formed through interactions with other people and
serves as a signal to observers announcing whether or not they are a good person.

These reputations depend on two things. First, on a shared moral value system,
which is the set of rules that say which actions represent good behaviour, and which
actions define bad behaviour. Second, they require a strategy through which people
can use these reputations to help them decide whether to offer help to others, or to
refuse it. Since deciding to help comes at a cost, the key danger is the emergence
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of free-riding, where people take advantage of others by receiving their help, but
selfishly refuse to help others.

Online marketplaces are examples of such reputational systems. Some platforms
are unilateral in their implementation of reputation. Amazon and Etsy are two on-
line marketplaces that offer a platform for sellers to publicly list items for sale to
elicit purchases. Both Amazon and Etsy implement reputations for sellers and in-
dividual products which depend on the reviews and ratings assigned by past buy-
ers. Etsy considers a seller’s rating (or reputation) as the average rating over the
past 12 month period (Etsy, n.d.) while Amazon uses a more complex “machine-
learned” model which takes into account additional factors like how recently the
rating and/or review were given, and whether or not the purchase was verified
(Amazon, n.d.). The complete list of factors that they consider is kept private.

Other platforms consider both the reputation of the seller and the buyer. For in-
stance, Ebay, Airbnb, Uber each implement a reputation for both parties of a prod-
uct or service transaction. Ebay is an online marketplace where any individual or
business is able to list items for sale, and anyone is able to purchase it. However,
consumers are more likely to purchase goods from reputable sellers than disrep-
utable sellers. The reputation of a seller is therefore an important factor that impacts
a their welfare (Saeedi, 2019).

With more service-oriented platforms like AirBnB and Uber, the reputation of the
buyer also plays an important part (Airbnb, n.d.). Airbnb allows people (hosts)
to temporarily hire out unused residences or residential space to the general pub-
lic. This is an inherently risky decision because renters have the potential to cause
damage to properties either accidentally or intentionally. One way hosts can miti-
gate their risk is to selectively choose renters with good reputations. A renter with a
good reputation implies that they have a positive history of renting other residences,
meaning that they are unlikely to cause a lot of damage to a future host’s property.
Here, reputation is valuable on both sides of an interaction, both from the point of
view of the seller, and the buyer. A seller without a good reputation would not find
any renters willing to pay to reside in their properties (since they would be expect-
ing a negative experience), while a buyer without a good reputation would have
more difficulty in being accepted for a stay by a sufficiently discriminating host. The
same process applies to Uber. Uber drivers are provided a set of jobs in their local
area which they can either choose to accept or reject based on the rider’s reputation.
These reputations reflect (a) how prompt the rider was on pickup or how long the
driver was forced to wait for them, (b) their courtesy for the driver’s personal vehi-
cle, treating it with respect and cleanliness, and (c) their conduct regarding the safety
of the journey and whether or not they pressured the driver into doing something
they felt was unsafe (Uber, n.d.).
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S lists product P

B purchases P

P arrives late P arrives on time P does not arrive

P is of low quality P is not as listedB is happy with P

S S

S SS

FIGURE 1.1: Transaction flowchart from the buyer’s point of view.
The buyer is represented by B, the seller as S, and the product as P. The
colour of the circular nodes state the reputation of the seller following

the interaction.

The reputation of an individual on these platform following an interaction or trans-
action depends on the experience of their interaction partner. Suppose a buyer de-
cides to purchase a product from seller (Fig. 1.1). What can we say about the rep-
utability of the seller in the variety of resulting situations? In practise, there are sev-
eral ways in which the buyer can become unsatisfied, leading to a negative review
or reputation being assigned to the seller. The product could be of low quality or
misleadingly advertised in which case the seller is directly and negatively impacted
by the buyer. Other issues can also affect the seller’s reputation, even those that are
outside of their control. For instance, packages get lost in the post all the time or
are damaged during delivery in which case it is not the fault of the seller, and so
within real social norms, the seller would not typically be penalised with a negative
reputation to the same extent.

These situations typically only involve two parties. Many other instances involve
multiple people within an interaction and therefore necessitate the study of their
behaviour and reputational impact in groups. As an example, consider a group of
employees within a company, working in a team to accomplish a project goal. At
the end of the project, all group members have been promised a bonus for their hard
work, one that would be equally shared amongst the participants. An employee that
puts in the maximum effort they can, contributing to the long list of tasks that need
to be completed would be a cooperator since they contribute their time and effort into
the public good (the completion of the project). An employee that participates in the
team, yet neglects to make meaningful progress in any part of the project, or only
elects to take on the smallest and easiest "low-effort" tasks would be a defector. They
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choose not to contribute a sufficient amount of effort or time into completing the
project. There also exists a third type of individual, one that may publicly state they
have too many other tasks required for other projects, tasks that must take priority,
and so they are not able to contribute to this particular project. In this scenario, the
employee chose to withdraw from the group instead of remaining in the group and
minimising their contribution. In the literature, this type of individual is called a
loner (Hauert, 2002). They do not contribute to the completion of the group project,
but they also forfeit its rewards which avoids negatively impacting the other group
members.

Consider the possible outcomes of this scenario. If the group is filled with hard-
working employees, they would all be eager to get the bonus and know that the best
outcome overall would be if everyone worked as hard as they could, maximising
the bonus for the group. This would be full cooperation. However, one individual
may be unwilling to commit the time and work it would take to receive the bonus
and so they may think that if everyone else worked, they could lower their own
contribution but still enjoy the bonus at the end of the project. This however lowers
the amount of the bonus given to each of their team members. Overall, this act of
defection lets this employee have the largest benefit of the other members within the
group. What if everyone in the group was like this person and everyone defected?
In that case, there would be no bonus at all because if everyone allowed someone
else to do the work, then the work is never completed. This is full defection. Finally,
it is also possible that there are too many projects for all of the employees and they
all decide to abstain from the group project, all neglecting to contribute their time
but also withdrawing themselves from receiving the project’s bonus. In such a case,
the project remains incomplete, and no one receives the bonus.

For all rational individuals, there is a direct conflict between maximising their per-
sonal benefit, and maximising the benefit of all members of the interaction. In most
cases, it is possible to increase personal benefit by lowering personal contributions,
which lowers the benefit for all of the other members. This is a loose definition of the
social dilemma which - at least theoretically - has no solution that maximises both
personal and group benefit without any additional interventions. For the purposes
of this thesis, we first assume that the costs and benefits of cooperating in the so-
cial dilemma (both in the two-person case and the n-person case) are fixed within
individual situations, and second, we assume that contributing is a true or false de-
cision. A player may only cooperate or not cooperate. By cooperating they pay a
fixed cost. There is no middle-ground in this matter whereby a player contributes
varying amounts compared to other participants.

We model these situations with abstractions of these social dilemmas that exhibit
this conflict of interest. In the two-person case, a cooperator pays a cost - in terms
of money, time or some resource - to help another individual who receives the ben-
efit of this cooperation. A defector does not pay a cost but still receives the benefits
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of the cooperation of others. In groups, cooperators contribute towards a common
or public good - a costly action - while defectors participate but do not contribute.
All participants, both cooperators and defectors are able to enjoy the rewards of the
public good. A third type of behaviour exists in the group case where an individ-
ual can abstain from the public good entirely, not paying its costs like a defector,
but also not partaking in its rewards. These behaviours are abstractions, portraying
behaviours in real life. While their exact definitions depend on the underlying con-
text, we assume that only cooperation and defection is possible in social dilemmas
where participants are forced to act one way or the other. Otherwise, if participation
is optional, then opting out is the third and final action that a player may take.

So far we have neglected to include reputational concerns within the problem. How
does a cooperator decide to cooperate? A person who cooperates indiscriminately
with everyone would be prone to exploitation and is therefore not behaving sustain-
ably. People need to be sure that their cooperation is not going to be exploited by
others and that others are likely to reciprocate their cooperation. Thus, these people
can use the reputation of others to help judge whether or not cooperation is in their
best interest. These reputations are formed through social norms which distinguish
between good and bad behaviours as discussed above. While real-world reputa-
tions can be quite complex and include multiple facets and considerations which
contribute to whether some action is good or bad, we can simplify these cases into a
simple binary choice (but other formulations are possible).

In studying these social norms, we adhere with the following assumptions. First, the
social norm is fixed within a population such that people do not change their under-
standing of what entails good and bad behaviour over time. Second, we assume that
everyone abides by this behaviour metric, regardless of behavioural strategy. Thus,
everyone - in the absence of any error - will always agree on what actions consti-
tute good behaviour and what constitutes bad behaviour. Next, for simplicity we
assume that reputations are simplified into binary and trinary values. That is, some-
one can be either good, or bad (in all cases where participation in the social dilemma
is compulsory), or good, bad or neutral (in all cases where participation in the social
dilemma is optional). Third, social norms and the reputations they prescribe are in-
herently trusted. The accuracy of reputations must be taken with a degree of trust
otherwise they are meaningless and cannot form the foundation of any interaction.
In each of our studies, we assume that reputations are formed honestly and with no
malicious intent. We account for only one source of error - reputation assignment
error - which we explicitly parametrise as a probability within our models.

Simple strategies that can guide behaviour based on reputations could be, for exam-
ple, cooperate if your opponent is good, but do not cooperate if they are bad. Within
the context of a owner deciding to let a property to a tenant on AirBnb, the owner is
likely to take into account reputational information of the tenant - in the form of rat-
ing, past reviews, etc. - into account when deciding whether to let them the property
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(cooperating) or refusing to let them the property (defecting). Within our workplace
scenario, an employee may very well modify their contribution to the group project
depending on the reputation of the other members of the group. Does the group
consist of individuals that generally behave well in the workplace, completing work
on time and taking on a fair amount of responsibilities? Based on this reputational
information, a reasonable conclusion would be that since on average the reputation
of the other members of the group is good, it is a sufficiently safe environment in
which to cooperate to contribute equally. These rules specifying how reputations
are mapped onto actions, are called behavioural strategies.

The final concept that needs context is that of punishment. What happens when
people are dissatisfied with the behaviour of others? The usual approach is that of
partner choice - if someone behaves poorly, then that person will be avoided in fu-
ture interactions because they have shown that they cannot be trusted. This is also
called social ostracism. However, an increasingly popular action is that of costly
punishment. The most widely known instances of punishment are fines (for exam-
ple for driving or parking offences) or imprisonment (for more serious offences like
property damage or harm to other individuals). While these are instances of insti-
tutional punishment, or punishment from a central authority, it is also known that
people are willing to pay to punish their peers for behaviours they consider inappro-
priate. There are many forms that this may take. For instance, if a group of friends
has a rule that everyone must contribute equally to the cost of an event and one per-
son fails to pay their fair share, they may be penalised with a financial penalty. Other
punishments like public shaming are less definitive than financial penalties but can
still be effective. These can take various forms such as online shaming, gossiping,
or ridicule. Public shaming can be a powerful form of costly punishment that can
significantly damage a person’s self-esteem and reputation. Informally, costly pun-
ishment is defined as an individual that willingly gives time, effort, money and/or
resources not towards the benefit of another individual or public good, but with the
express purpose of lowering the well-being of another individual who - according to
them - has behaved in a certain way that warrants punishment. We assume that like
the costs and benefits of cooperation, the decision to punish is also binary. Someone
either chooses to punish and pay its cost, or not, and someone is either punished
and pays the penalty, or does not. There is no middle-ground in terms of the degree
to which someone is punished.

1.3 Contributions

This thesis will study altruistic behaviour that uses reputation as a mechanism of
indirect reciprocity. Reputation has the potential to be extremely adaptable, able
to coexist alongside many other mechanisms purported to incentivise cooperation,
particularly in situations that were otherwise rife with free-riding. In particular,
we will be considering three specific auxiliary mechanisms alongside reputation:
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the locality of information, the decision to inflict punishment upon others, and the
cognitive complexity of behaviours.

We use two social dilemmas to generate the atomic interactions necessary to test our
hypotheses. The first is the prisoner’s dilemma, in which we view cooperating as
a stand-in for offering assistance, and defecting as a stand-in for refusing it. This is
able to simulate a variety of two-person interactions, but for groups we use a pub-
lic goods game variant. Here we consider cooperating as a proxy for contributing
and enjoying the delights of the public good, and defecting as a proxy for selfishly
refusing to contribute whilst still enjoying its proceeds. The Optional Public Goods
Game extends a third choice by introducing a more solitary person who refuses to
participate and instead elects to withdraw themselves from the game.

Many natural processes in human and animal societies can be abstracted into these
symbolic social dilemmas. Within the context of climate change, a country hesitating
to implement changes would enjoy a greater immediate benefit by maintaining their
current behaviour, despite all countries eventually benefiting from a greener climate.
Many species of animals engage in the reciprocal sharing of food in long-term part-
nerships. Likewise, public goods games aim at simulating any instance where some
common good relies on collaborative efforts to survive. For instance, many countries
enforce restrictions on their waters to prevent overfishing. Any individual fisherman
could improve their personal return by exceeding their quota, but if everyone chose
to do the same, the fish population would quickly and irrevocably be depleted.

1.3.1 Research framework

The purpose of this thesis is to explore the evolution of cultural norms, and of the
various conditional strategies that can emerge that utilise the reputation of others in
strategic interactions with others. We use a series of agent-based models (Section 2.7)
to explore the evolution of large populations through simulations. The main com-
ponents of this framework are:

Payoffs The payoffs of a game represent the benefits or costs that players receive
from their actions. In evolutionary game theory, payoffs are not necessarily mone-
tary but can represent any fitness measure that affects the reproductive success of
individuals.

Strategies Strategies are the actions that players can take in a game. In evolution-
ary game theory, strategies are considered to be genetically encoded traits that are
subject to natural selection. In our case, we consider players to use strategies that
consider the reputations of their opponents when deciding an action.



8 Chapter 1. Introduction

Replicator Dynamics Replicator dynamics is a mathematical model used to de-
scribe the evolution of strategy frequencies in a population. It assumes that individ-
uals with higher payoffs will be more likely to reproduce and pass on their strategies
to their offspring. It is closely linked with the concepts of natural selection and of
the survival of the fittest.

To combine these elements, we generate a population of agents that strategically in-
teract with each other in micro-level social dilemmas. Each agent is equipped with
a behavioural strategy that describes how they will behave according to the reputa-
tions of their opponent/s . We utilise the principles of Darwinian evolution of nat-
ural selection and survival of the fittest by modifying the frequencies of strategies
in future generations of these populations depending on their fitnesses or payoffs
following these social dilemmas. This approach is one where the fittest persons and
strategies prosper, and is one that is used very frequently in the literature (Okada,
2020). In essence, evolutionary game theory gives us the tools through which we
can explore the conditions that both foster and harm cooperation. We can explore
how these conditions are affected by different stimuli, like the relative costs of co-
operation or its benefits, the costs of punishment and the penalties it accrues, and
increased mutation rates or the speed at which people decide to change to better
strategies, and several more. In doing so, we can build a comprehensive picture of
the stylised facts that influence cooperation within the scope of indirect reciprocity,
and reputation-based social norms.

1.3.2 Locality of information

Our first exploration into the locality of information stemmed from a shortlist of
rules, referred to as the Leading Eight. These are sets of rules, describing firstly which
actions result in good reputations and which do not, and secondly, the way reputa-
tions are used to judge whether or not help should be given. Out of all the possible
ways these reputations or actions could be decided in a prisoner’s dilemma game
between two individuals, these eight were consistently found to be the best at sus-
taining cooperation. However, these rules depend on both reputation and the pros-
perity of other behaviours being public knowledge, spreading like gossip through
the population. Frequently, this is either unlikely or extremely difficult. Instead,
we propose the more likely scenario where reputation and other information is only
observable by the individuals with whom we are closest. Thus the knowledge of a
person’s goodness and their relative successes are known locally, and only to a few.

Our goal was to investigate whether or not this restriction of the transfer of informa-
tion affects the efficacy of the Leading Eight to encourage and sustain cooperation.
We found that the Leading Eight remain well equipped to sustain cooperation under
a wide range of scenarios when information can only spread to network neighbours.
While reputation that is only spread amongst neighbours is just as effective as when
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it spreads to everyone, only knowing how well our neighbours are faring can sustain
cooperation more easily than if we knew how well everyone is doing.

1.3.3 Punishment

In our first experiment, we have only taken into account the behaviours and repu-
tations of people when they interact in pairs, but this is not always the case. Fre-
quently we engage in public goods that can only be supported and funded through
the ongoing cooperation of many people. These collective action problems, modelled
through the public goods game, tend to struggle with low contributions by partic-
ipants, and much like the two-person case, free-riding is commonplace. If people
are given the option to withdraw from the dilemma - the so-called loner strategy -
unbridled free-riding can be stopped in the optional public goods game, yet people
would ultimately be better off not taking part.

Aside from reputation, the unilateral threat of punishing free-riders can effectively
deter their emergence (Boyd et al., 2003). However, based on experimental evidence
(Rand and Nowak, 2011), this is unlikely to capture real-world situations in which
anyone can inflict punishment, and anyone can be forced to endure it. Accounting
for this more general form promotes the spread of the more nefarious anti-social
punishment (Gächter and Herrmann, 2009, 2011; Herrmann, Thoni, and Gächter,
2008), where free-riders engage in the punishment of those who behave coopera-
tively, effectively disproving the mechanism’s claim to incentivise cooperation.

While anti-social punishment damages cooperation (Rand and Nowak, 2011), repu-
tation has shown it can help sustain it in the public goods game without the option
to opt-out. Thus the question that naturally arises is whether giving people the op-
tion to opt-out and the power to punish whomever they choose, while also allowing
them to consider reputations when making decisions, they will be better able to de-
fend themselves against free-riders, and reliably sustain cooperative behaviour. Our
research supports this hypothesis. Strong and ongoing levels of cooperation can be
maintained if people are able to punish and take other people’s reputations into con-
sideration, forming an effective barrier against freeloaders and those who punish in
an anti-social way. However, if you take away their ability to punish, their capability
to sustain cooperation is greatly diminished and only restricted to a specific type of
social norm that assigning reputations.

1.3.4 Behavioural Complexity

The results of the previous investigation demonstrated that without the complemen-
tary threat of punishment, reputation alone cannot sustain the same level of coopera-
tion. We contend that the limiting factor was in presuming that people were limited
in their accounting of other people’s reputations, only able to determine whether
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groups were generally good, or generally bad. Because of their extraordinary ca-
pacity for critical thought and perception, humans should be able to distinguish
between a variety of environmental conditions before choosing the best course of
action.

Arguably, if individuals or entities with enough cognitive capacity are better able
to perceive and interpret reputation, they should be able to distinguish not only be-
tween groups that are generally good or generally bad, but also between the degree
to which they are good or bad. Specifically, we believe that if a person can accu-
rately assess the reputation of a group of people, they will be able to tailor their
response, maintaining a strong level of cooperation without the need for threats of
punishment. Our work corroborates this. We demonstrate that communities which
morally differentiate between a person who does not contribute and a person who
withdraws from the social dilemma, can achieve the highest levels of cooperation if
they are guided by sufficiently sophisticated behaviours. Additionally, we discover
that the collective good rises when interaction groups are small enough for people
to clearly distinguish between various behaviours.

1.4 Scope/Assumptions

We implement the prisoner’s dilemma and the optional public goods game within a
number of agent-based models in order to be able to model, describe and study the
impact of different mechanisms when coupled with a reputational system. We create
sizeable populations that repeatedly engage in these social conundrums, where each
member agrees on what they do and do not consider to be appropriate behaviour,
and where each member is free to choose their own behaviour when interacting with
others.

By methodically studying the evolution of these populations through repeated sim-
ulations, we learn how they respond to negative circumstances like increased free-
riding temptations, errors in how reputations are perceived, frequent accidental be-
haviours, the costs associated with punishing others, and the consequences of receiv-
ing punishment. We learn about the traits and characteristics of these populations
that either enhance or hinder their capacity to maintain cooperation through this
process.

1.5 Thesis Structure

Thus, this thesis presents a collection of three studies that examines reputation within
the context of either the two-person prisoner’s dilemma, or the optional public goods
game. Chapter 2 will open by presenting pertinent background information on these
social dilemmas, examining how well they promote cooperation. We continue on to
explore how reputation-based indirect reciprocity has been studied in conjunction
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with these games in the literature, paying particular attention to: how reputations
are assigned and used to guide behaviour, and the relative merits and deficiencies
of the various theoretical and empirical approaches. Then, we go over the different
ways through which punishment can be enforced, and how their definitions fit into
these models. The merits of these mechanisms are explored, and their capacity to
sustain cooperation is questioned, particularly when it becomes possible to punish
others who may not deserve it. We explore works that consider populations that are
embedded into various network structures, analysing which of their characteristics
make them ideal for simulating real-world networks, and if any, which make them
more capable of supporting cooperation than others. After that, we talk about other
researchers’ strategies for approaching these social dilemmas, which ones we can-
not adopt for our needs, and the benefits of the approaches we do use in their place.
Finally, we clearly define our contributions with respect to the existing body of lit-
erature, putting into context our areas of focus, namely the locality of information,
the complementary dynamics between reputation and punishment, and finally the
complexity of strategic behaviour.

In each of Chapters 3 to 5, we begin by motivating our specific research questions
in more depth and providing the theoretical bases of our experiments. We formally
describe each of our models in detail, explaining each of the component steps of our
simulations, and the mechanisms we are using them to explore. We provide our
results and discuss them in depth.

The main findings of this thesis are threefold, with each of the main chapters pub-
lished. Chapter 3 is an elaboration on Podder, Righi, and Takács (2021). Here, the
author (SP) contributed towards the development of the theory and the experiments.
He designed the computational framework and implemented it in code. SP took the
lead on presenting the results in the first draft of the manuscript. The following
chapter, Chapter 4, is an expansion of Podder, Righi, and Pancotto (2021). In this
work, SP contributed towards the conception of the presented idea and developed
its theory and experiments. He designed the computational framework and imple-
mentations, created the graphics and visualisations of the results, and helped write
the manuscript. The final chapter, Chapter 5 is based on the work of Podder and
Righi (2023). Here, all authors contributed equally to the development of the re-
search idea, model conception and simulation design. SP developed the model in
code, ran the simulations and generated the graphical outputs. He wrote the first
draft and improved it with help from feedback from the second author.

Chapter 3 will explore cooperation when the transfer of reputational information is
local, when the transfer of evolutionary information is local, and when both kinds
are local. Chapter 4 will consider the punishment mechanism and its resulting dy-
namics within a population when its people use reputation to guide their behaviour.
Finally, Chapter 5 will describe a system of learning complex strategies, each able
to perceive and respond accordingly to other people’s reputations in an increasingly
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nuanced manner. For each study, we describe the pertinent results from each of the
experiments that were run, and discuss them extensively in the wider context of the
study and its body of earlier work.

We conclude this thesis in Chapter 6 where we join together the central themes of
each chapter, contextualising them within the broader study of indirect reciprocity,
reputation, and the evolution of cooperation. We present the impact of these results
and how they are relevant for future research. Lastly, we summarise the directions
that we consider to be the most important going forward.
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Chapter 2

Literature Review

Cooperation is ubiquitous in the lives of most creatures on Earth. Every species
whether it be animal, bacterial, or human, engages - provided the right conditions
- in cooperative behaviour. The most common example is the ant colony. Despite
their relatively simple communication mechanisms, they are known to create vast
networks of interconnected nests sometimes hundreds of kilometres long (Helanterä
et al., 2009). Bodes of prey that are too large to transport by single ants are moved
collaboratively with nestmates (Kube and Bonabeau, 2000). In heavy rains, ants
have been observed (Mlot, Tovey, and Hu, 2011) to create self-assembled hydropho-
bic surfaces: by linking their bodies together, they significantly increase their water
repellency, allowing them to float on water and to survive situations together that
would otherwise have caused them to perish. Also famous for their cooperative be-
haviour, honeybees exist in colonies that are characterised by cooperative brood care
(taking care of the colony, including the offspring of other individuals) and clear di-
visions of labour whereby the queen is responsible for reproducing, the drones are
sexually active males responsible for mating with the queen, and the workers are
responsible for gathering food as well as protecting the colony (Page, Robinson, and
Fondrk, 1989; Tarpy, Gilley, and Seeley, 2004). Each caste contributes to the colony
in a way the other castes cannot, ensuring their joint survival (except for the drones
who live very poor and short lives). Lions hunt in packs to overcome large prey that
would be impossible to beat alone (Scheel and Packer, 1991). Primates groom each
other maintaining their hygiene (Hutchins and Barash, 1976). Birds emit warning
cries upon spotting potential predators alerting others to the danger yet drawing
attention to themselves (Colman, 2006; Griesser, 2013).

Modern human society would not have come to be what it is if it did not embrace
cooperation. Modern foraging populations (Henrich, 2012; Henrich and Henrich,
2007) can give clues to the behaviours and social lives of our palaeolithic ancestry,
particularly the division of labour in hunter-gatherer groups that share the rewards
for their efforts between themselves. More modern acts of cooperation like giving
blood or plasma, going to war, paying taxes, aid and charitable organisations are
all instances of human collaboration and cooperation in real-life. Objectives that are



14 Chapter 2. Literature Review

unachievable by single individuals can be achieved collectively through cooperation
where contributions benefit the group in which the individuals belong.

Instances of competitive behaviour are also commonplace. Norway rats (McClin-
tock, Anisko, and Adler, 1982) and chimpanzees (Mitani, 2009) are rife with com-
petition in mating. Female rats competed amongst themselves for opportunities to
mate with more dominant males, while male chimpanzees competed for mating op-
portunities with females due to low reproductive rates. The interplay between the
cooperation and competition is observable even at a cellular level with pathogenic
bacteria competing for shared resources (Griffin, West, and Buckling, 2004; Ross-
Gillespie et al., 2007) and cheating (Dunny, Brickman, and Dworkin, 2008).

Cooperation is rarely free or easy, there are costs and often no immediate benefits.
Drones in bee colonies mate with their queen, despite them often dying in the pro-
cess. There is a considerable conflict of interest between individuals and the whole
social group. Why does the drone willingly mate with the queen, even though at
best it faces ejection after mating and at worst, death?

We explore aspects of how the literature has addressed aspects of this problem through-
out the following six sections of the chapter. Beginning in Section 2.2, we explore the
field as a whole, briefly summarising the different approaches that researchers have
taken over the past sixty years (Nowak, 2006). We look at the different mechanisms
through which cooperation can be sustained for instance in families of related indi-
viduals or through group selection, before focusing on the focus of this thesis which
is indirect reciprocity (Okada, 2020) in Section 2.3. We delve into the reputational
systems that are used in order to help people conditionally cooperate on the basis of
reputation. The general idea of this kind of literature is that individuals who have a
good reputation are more likely to be cooperative and anyone with a bad reputation
should be treated with caution. This has the potential of allowing people to avoid
exploitation from defectors, from those who free ride on the altruism of others. We
consider various levels of complexity of these social norms using the analogy of the
prisoner’s dilemma in the two-person case.

Section 2.4 generalises interactions to the n-person case, either through the very sim-
ilar n-person prisoner’s dilemma or the public goods game. We compare what game
theory tells us the outcomes of these games should be, with what they actually
are in experiments. We look at the public goods game with two main extensions,
firstly when reputation is used and secondly when the option to withdraw from the
dilemma is available.

Section 2.5 explores punishment - within the context of the prisoner’s dilemma and
the public goods game - and whether or not it is a tool used solely for cooperation
(Raihani and Bshary, 2019). Two major systems of punishment are discussed: pool
and peer (centralised versus decentralised), describing whether punishment is either
inflicted by an independent third-party or by competing peers. We differentiate the
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two based on their shortcomings, like the emergence of cooperators who free-ride on
punishing defection and anti-social punishment, and explore the solutions to these
problems that have been examined in the literature.

While the deep-dive into the literature has been largely focused on the theory of
indirect reciprocity and cooperation, the penultimate chapter is concerned with the
potential approaches to the solutions discussed within the experiments of this thesis.
We consider two key methodologies in Section 2.7 that are commonplace within
the literature: agent-based modelling and genetic algorithms. The first allows us to
specify simple micro-level rules and structures for simulating agents who interact
using our social dilemma analogues. On the macro-scale, this allows us to explore
and analyse broad behaviours and complex dynamics that arise from the simple
rules we specify, forming an excellent tool in deconstructing the inner workings of
complex systems. And finally, in Section 2.8 we link together the previous chapters -
that at times can seem quite disparate - and concretely define the key questions that
we will be answering in the remainder of this thesis.

However, let us first discuss the setting in which altruistic behaviour takes place,
and how we can quantify it before delving any further into the literature on indirect
reciprocity.

2.1 Background

Altruism is most commonly studied under the paradigm of game theory (Beck-
enkamp, 2002; Sigmund, 2010). The typical social dilemma informing the 2-person
case is the Prisoner’s Dilemma (PD). Suppose prisoners A and B committed a crime,
were caught, and are now being interrogated. They are each held in isolation, with
no means of communicating to each other. Their captor (in this case a police consta-
ble or a judge) does not have enough evidence to prosecute both of the prisoners on
the principal charge but only enough for a lesser charge. Each prisoner is therefore
given two options: (a) betray their partner by testifying that the partner committed
the crime in return for being set free or (b) stay silent, and refuse to inform on their
partner. Three distinct outcomes are possible:

1. If both prisoners betray the other, then they will each serve two years in prison.

2. If one of them remains silent but the other chooses to betray their partner, then
the betrayer will go free, and their partner will be sentenced to three years in
prison.

3. If both prisoners remain silent, neglecting to inform on the other, they will each
only serve one year in prison.

This particular situation is described in the form of a payoff matrix in Table 2.1. The
dilemma arises because both prisoners have an incentive to betray the other. By
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B
C D

A
C (1, 1) (0, 3)
D (3, 0) (2, 2)

B
C D

A
C (R, R) (S, T)
D (T, S) (P, P)

TABLE 2.1: Left: Payoff table for prisoners A and B in the form (prison
sentence for A, prison sentence for B). Right: A generalised payoff
table in terms of a reward R that each player gets if they both coop-
erate, a punishment P that both players get if they both defect, the
temptation payoff T that a player gets if they defect while the other
cooperates, and the sucker payoff S that a player gets if they cooper-
ate while the other defects. These payoffs are subject to the condition
that T > R > P > S representing that in order of payoffs, the reward
for succumbing to temptation is greater than that of mutually coop-
erating, which is greater than being punished with mutual defection,
which is greater than being a sucker and cooperating with a defector.
This form of payoff table ranks the payoffs of each situation without
dictating the extent to which each situation is more or less preferable

than another.

coming clean and throwing their partner to the wolves, they are not incarcerated
and are able to go home free of any charges. By defecting, they were able to avoid
the costs of the dilemma, and receive all of the benefits. Should one of them want
to cooperate and stay silent, he or she has no way of trusting that the other will do
the same since this situation has symmetric rewards. Independently, they can both
come to the same conclusion that betraying the other is their best possible action.
Thus, the Nash Equilibrium1 is of mutual betrayal or mutual defection. The best
overall outcome is for both of them to stay quiet of course and each only receive
one year. However, from an individual point of view, they can increase their benefit
and decrease their cost by betraying the other to receive no incarceration, while their
partner is imprisoned. Since they both can come to the same conclusion, they both
betray, leading to the worst possible outcome.

In this situation, the prisoner staying quiet is an act of cooperation, while betrayal
is an act of defection. The actors are referred to as a cooperator (also known as an
altruist) or a defector (also known as a free-rider) respectively. The payoff matrix of
the general case is defined in terms of a benefit b and a cost c and is displayed on the
right of Table 2.1. This situation is also sometimes referred to as the giving game, the
donor-recipient game, or the indirect reciprocity game. Different classifications of
the same dilemma are possible if we allow for asymmetrical payoffs (payoff matrix
is displayed in Table 2.2) - they have been explored widely in the literature but will
not be the subject of discussion here.

Generalising many of the situations we are about to discuss, we will consider popu-
lations consisting of individuals who have the option to choose between helping or

1A Nash Equilibrium is a situation in which no player has any incentive to change their action, even
if they have full knowledge of their opponent’s strategy. In other words, no one has any incentive to
change their own strategy.
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B
C D

A
C (b − c, b − c) (−c, b)
D (b,−c) (0, 0)

TABLE 2.2: The payoff table for the general case defined in terms of
a cost of cooperating c and the benefit b received if cooperated with.
This special case is known as the donation game with the additional

constraint 2R > T + S or 2(b − c) > b − c in the iterated game.

not helping others. Random pairs of players are repeatedly sampled (with replace-
ment but often the population is so large that two people rarely interact again, at
least in the well-mixed case) from the population whereupon they simultaneously
interact as a donor (to their partner) and as a recipient (from their partner). A donor
has the choice of cooperating with the recipient at a cost of c which would award the
recipient a reward of b, under the condition that the reward received is greater than
the cost of cooperation b > c (since if the cost of cooperation exceeds its benefits,
then the best option is to do nothing and there is no social dilemma). If the donor
chooses not to cooperate, they pay no cost and the recipient receives no benefit.

The simplest strategies possible in this situation are that of the unconditional coop-
erator2 (UC) and the unconditional defector (UD). The former strategist will always
cooperate, regardless of any and all other information available to them about their
partner, while the latter strategist will always refuse to cooperate, never paying any
costs but hoping to be the target of others’ cooperative efforts. In the long run with
just these two unconditional strategies, total defection is the only possible outcome.

Instead, if a social dilemma consists of more than just two individuals interacting,
then the public goods game is used instead. While it can be quite difficult to find
a standard model of the PGG implemented consistently throughout the literature,
there are certain elements of the social dilemma which appear repeatedly. To identify
these, let us consider a relatively simple public good. Suppose four students are
brought into a room by a moderator and are each given an endowment of £5. They
are then told by the moderator – without conversation or deliberation or disclosing
their decision – to choose some value between £0 and £5 inclusive to put forward into
the public good. Then, the total contribution would be doubled by the moderator,
and then returned to the students equally, regardless of their contributions. So if the
individual contributions were £0, £2, £5, £4, the total amount to be distributed back
to the students would be £22, or £5.50 each, resulting in an overall change of +£5.50,
+£3.50, +£0.50, +£1.50. We see that the individual that contributed the most received
the worst payoff, while the individual who contributed nothing achieved the best
payoff. Another example is illustrated in Fig. 2.1

This example encompasses continuous contributions, where individuals are given
a certain endowment, and then can choose how much of it to donate to the public

2or the unconditional or indiscriminate altruist
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FIGURE 2.1: This is an example of a public good (or a n-person PD)
with 4 participants composed of three cooperators and one defector.
The blue individuals cooperate by donating a certain number of units
each, while the red individual defects by contributing nothing. The
public good then consists of 11× 2 = 22 units which grows under the
influence of the synergy factor r = 2, culminating in 22/4 = 5.5 units
returned to each participant. The defector is clearly the winner with
the greatest overall payoff of 5.5 units, while each of the cooperators

earned much smaller payoffs.
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good. In this setup, we relax our definition of a defector slightly, designating only
low contributors with that label. Another approach fixes the cost of the contribution
at c, so a defector in this case is someone who simply does not pay the cost which
allows a simpler binary decision which can be easier to explore through simulation-
based studies (Hauert et al., 2002; Szolnoki, Szabó, and Perc, 2011), while the former
is preferred in experiments (Isaac, McCue, and Plott, 1985; Marwell and Ames, 1981).
Regardless of the approach chosen, once the contributions are gathered, they are
multiplied by some factor r representing the group synergy factor, and then evenly
divided amongst each of the players. The four students in this case would be each
paying a cost c if they cooperated, and nothing if they defected. The public good
would be multiplied by r, with the result being shared, and each student receiving
nccr

4 if there were nc students who cooperated. Both approaches are used widely.

However, in many social dilemmas or problems of collective action, participation is
not compulsory. By utilising the loner strategy, players have the choice of withdraw-
ing from the public good, forgoing all of its costs, but also all of its benefits. This
variation of the PGG, account for voluntary participation is known as the Optional
Public Goods Game (OPGG). In addition to the typical PGG rules of the cooperator
and defector strategies described earlier in Section 2.4, the loner strategy does not
participate in the public good but instead contributes nothing and receives a small
return, σ obtained elsewhere. This is referred to as the loner’s payoff and has the
condition that 0 < σ < (r − 1)c to remain a non-trivial social dilemma. This is be-
cause in context with cooperators and defectors, a group of cooperators will have a
higher utility than a group of loners who will have a higher utility than a group of
defectors as long as σ > 0. When σ > (r − 1)c, it signifies that a better payoff is
guaranteed outside of the OPGG, and as such is always favoured by selection. An
example of the OPGG is described in Fig. 2.2.

It is important to note that many earlier works considered voluntary play, not in the
context of the loner strategy, but through the possibility of a continuous contribution
c where c ∈ R+. There, individuals had the option to contribute nothing leading to
its description as voluntary. However, we choose the convention that a zero contri-
bution is an act of defection, while contributions or the costs of cooperation are fixed
and are the same for everyone in the population, regardless of who pays them.

2.2 Leading theories on cooperation

Behaviours within these social dilemmas have enormous effects on the welfare and
levels of cooperation within the whole population. Why then, do they sometimes
behave in contrary to their own interests? We follow the taxonomy of Nowak (2006)
which describes the key mechanisms that explain the emergence of cooperation: kin
selection, network reciprocity, group selection, direct and indirect reciprocity. Our
objective is not to simply list these mechanisms, but to provide a brief overview of
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FIGURE 2.2: This is an example of the optional public goods game
with 4 participants composed of two cooperators, one defector and
a loner. The blue individuals cooperate by contributing a certain
amount of units into the public good. The red individual contributes
nothing, free-riding on the contributions of others. The gray individ-
ual acts as a loner, also contributing nothing to the public good. The
public good then consists of 7.5 × 2 = 15 units which grows under
the influence of the synergy factor r = 2, culminating in 15/3 = 5
units being returned to each participant. The defector is still clearly
the winner with the greatest overall payoff of 5 units, while the coop-
erators each receive a payoff of either 2.5 or 0 units. The loner does
not profit from the proceeds of the public good, but instead receives
a small payoff of σ = 1. Thus free-riding resulted in the highest pay-
off, and cooperating in the worst payoff, while being a loner acts as a

middle-ground between the two.
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the work presented, and explore in more detail those that are more closely related to
the experiments of this thesis.

Kin selection Kin selection theory was originally formulated as an evolutionary
principle by Hamilton (1964) who originally referred to it as inclusive fitness theory.
It was slightly later that Smith (1964) coined it kin selection theory. As discussed by
Bourke and Franks (1995), kin selection is the natural selection of genes for social actions
via the sharing of these genes between the performer of the action and its relatives (kin).
Consider first the definition of a gene for a trait in this context. If individuals with a
particular gene typically exhibit a trait while others without the gene do not exhibit
that trait, it is accepted that the gene is for that trait. Consider next the definition of
a social action which entails an individual (or a focal player, or actor) behaving in
such a way as to cause a change in the personal fitness (survival or ability to create
offspring) of another individual (the opponent or recipient), and in doing so altering
their own personal fitness. Therefore the holder of a gene for social action would
typically perform social acts.

The principle of inclusive fitness or kin selection was immortalised in Hamilton’s
rule (Hamilton, 1964), rb − c > 0 or r > b/c, combining together three key elements:
the fitness cost c to the focal individual, the fitness benefit b to the recipient, and
the degree of genetic relatedness r between them. Kin selection is used mainly to
describe acts of altruism which occur when an individual behaves in such a way that
the result is an increase in the survival or offspring production of another individual and
a decrease in its own survival or offspring production (Bourke and Franks, 1995), but
can also be used to explain other behaviours such as cooperation or mutual benefit,
selfishness, and spite, depending on the signs of r, b and c.

Kin selection has been widely explored in many different disciplines (Burt and Trivers,
2008; Frank, 1998; Haig, 2002; Krebs et al., 1993; Mock and Parker, 1998; West, Grif-
fin, and Gardner, 2007), allowing clear predictions to be made about social adapta-
tions in a manner that is straightforward to test empirically. While there are clear
proponents for Hamilton’s rule and all it entails (Bourke, 2014; Bourke and Franks,
1995; Foster, Wenseleers, and Ratnieks, 2006), there is no shortage of vocal critics
(Allen and Nowak, 2016; Nowak, Tarnita, and Wilson, 2010; Nowak et al., 2017).
Many theoretical works question its validity (Gardner, West, and Wild, 2011; Wilson,
2005; Wilson and Hölldobler, 2005), suggesting that it requires excessively restrictive
assumptions or that its practitioners redefine the cost, benefit and relatedness terms
and depart from the original framework of kin selection theory.

Social insects like ant colonies and bees are widely thought to exhibit kin selection
tendencies (Gadagkar, 1985; Helanterä et al., 2009; Hughes et al., 2008; Queller and
Strassmann, 1998). For instance, bird species (Emlen and Wrege, 1988; Koenig and
Dickinson, 2004; Stacey and Koenig, 1990), and even certain primates like baboons,
macaques, vervets, and red howlers (Lehmann, Korstjens, and Dunbar, 2007; Silk,
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2002, 2009) all exhibit cooperative behaviours biased towards kin. While a great deal
of significant theoretical and empirical findings in this area are able to explain many
kinds of behaviour in multiple species, there remain stark examples of cooperation
and altruism within animal social groups composed of unrelated individuals.

In cooperatively breeding bird groups (Riehl, 2010, 2013), while the majority of
species remain embedded in nuclear family groups, a small proportion primarily
nest with non-relatives, indicating that with sufficiently severe constraints on indi-
vidual breeding, the direct benefits obtained through group membership can sub-
stitute for potential kin-selected benefits leading to the emergence of social groups
with low genetic relatedness. Multiple studies contribute supporting evidence to
this in other bird species (Dunn, Cockburn, and Mulder, 1997; Reyer, 1984, 1986;
Seddon et al., 2005), African mole-rats (Burland et al., 2002), wild chimpanzees (Vig-
ilant et al., 2001), bats (Wilkinson, 1984; Wilkinson et al., 2016) and even instances
of non-kin relationships in the aforementioned ant (Suarez and Goodisman, 2021)
and honey-bee groups (Ostwald, Haney, and Fewell, 2022; Tarpy, Gilley, and See-
ley, 2004; Tarpy and Nielsen, 2002). Human social groups exhibit many examples
of successful cooperation in the absence of kinship. For instance, countries coop-
erate on an international scale with organisations like the United Nations, World
Health Organisation, World Trade Organisation, or the North Atlantic Treaty Or-
ganisation (NATO). People often cooperate with their colleagues at work, working
together to achieve common goals and tasks. Members of online communities like
online forums and social media groups have people willing to volunteer their time to
moderate and provide support to others in their communities. Charitable organisa-
tions rely on a combination of donations, paid staff, and unpaid volunteers to tackle
social, economical, and environmental issues. These are all instances of altruistic be-
haviour in social groups that are generally composed of unrelated individuals, and
so for cooperation to be sustained, there must be a reason other than kin selection.

Network reciprocity In kin selection, direct and indirect reciprocity, a key assump-
tion is that individuals interact with others completely at random. That is, every
person in the population has exactly the same probability of meeting any other in-
dividual in the population. This is not always true in practise. For instance, within
friendship groups, individuals interact amongst each other with much greater fre-
quency than they do with absolute strangers. Online social networks exhibit this
clearly, where the likelihood of an individual interacting with another connected in-
dividual is much more common than interacting with someone who is unconnected.
To explore these scenarios, we borrow elements of graph theory to place individuals
on the nodes of a network, and allow its edges to define the connections between
players such that the only evolutionary games that can be played occur through a
subset of these edges. Thus, network reciprocity explores the principles of cooper-
ation when the repeated interactions between individuals are governed in part by
spatial structure.
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The seminal works of Nowak and May (1992, 1993) explored such spatially restricted
interactions. Using computer simulations, they placed players in a 2D array where
in each round, every player played the PD with each of their neighbours. After the
games, each site was occupied by the original player, or by one of their neighbours
depending on who had the greatest payoff. By utilising the simplicity of just two
strategies, that of unconditional cooperation and defection, they were able to gener-
ate chaotic and fractal patterns in which cooperators and defectors persisted indef-
initely. They later expanded their work (Nowak, Bonhoeffer, and May, 1994) to ex-
plore (a) deterministic verses stochastic update rules, (b) discrete verses continuous
time, and (c) different geometries of interaction in regular and random topologies.

The main conclusions of Nowak and May (1993) showed that local interactions
within a spatial array are sufficient in sustaining cooperation over the long term.
They note that elements of their spatial games can be thought of quite similarly to
elements of kin selection if neighbours were considered relatives. Their work was
easily extended to more realistic networks like small world or scale-free networks
(see Section 2.6) and despite being difficult to explore analytically (since there are an
exponential number of different configurations that are possible), it can be easier to
analyse computationally. There is a large body of work over recent years dedicated
towards exploring the dynamics of evolutionary games on such graphs (Herz, 1994;
Killingback and Doebeli, 1996; Kirchkamp, 2000; Lieberman, Hauert, and Nowak,
2005; Lindgren and Nordahl, 1994; Szabó and Fáth, 2007). While playing the PD
on a lattice was the primary focus of Nowak and May (1992) and Szabó, Vukov,
and Szolnoki (2005), Nowak and May (1993) and others (Abramson and Kuperman,
2001; Masuda and Aihara, 2003; Sakiyama, 2021) explored different networks, dif-
ferent games (Allen, Gore, and Nowak, 2013; Brandt, Hauert, and Sigmund, 2003;
Hauert and Doebeli, 2004; Okada et al., 2021; Szolnoki and Perc, 2011), compulsory
verses voluntary games (Hauert and Szabó, 2003), the impact of costly punishment
(Helbing et al., 2010a,b; Nakamaru and Iwasa, 2005; Szolnoki and Perc, 2017; Szol-
noki, Szabó, and Czakó, 2011; Szolnoki, Szabó, and Perc, 2011), multiplexes or layers
of interconnected networks (Cencetti and Battiston, 2019), temporal effects (Roca,
Cuesta, and Sánchez, 2009) and even the modelling of diversity (Hauert and Doe-
beli, 2021) to list just a few. However, Ohtsuki et al. (2006) shows us that in many
cases we are able to predict whether or not natural selection will favour cooperation
within a network using the very simple rule: b/c > k where b and c are the bene-
fits and cost of the altruistic act, and k is the average degree or the average number
of neighbours within the network. In such cases, without the supplementary help
from reputation, nor any excessively complex strategic behaviours, cooperation can
be sustained as a consequence of social viscosity if the benefit to cost ratio exceeds
the network’s average degree.

Group selection The idea that groups are able to evolve through selection much
in the same way that individuals do has been around since Darwin (1871) where it
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was written here can be no doubt that a tribe including many members who [...] were al-
ways ready to give aid to each other and to sacrifice themselves for the common good, would
be victorious over other tribes; and this would be natural selection. Wright (1945) pro-
posed a mechanism of selection that would favour the evolution of traits beneficial
to groups. It conceived of a single semi-structured population composed of many
subpopulations (or demes or colonies), all statistically identical to each other. Selec-
tion at the individual level takes place within each colony, favouring defectors (since
they pay fewer costs of cooperation than cooperators but can still benefit from its re-
wards). However, selection at the group level favours cooperation (since a group
of cooperators, willing to help and contribute towards the common good are more
likely to be successful over other groups with fewer cooperators).

Experimental studies (Goodnight and Stevens, 1997) have found significant responses
to group selection in populations of Tribolium or flour beetles, domestic rats, and
caged chickens (Craig, 1982; Goodnight, 1985, 1990a,b; McCauley and Wade, 1980;
McClintock, 1984; McClintock, Anisko, and Adler, 1982; Muir, 1996; Wade and
Goodnight, 1991; Wade, 1977, 1980, 1982) in response to changes in population size,
emigration size, competitive abilities among a few. Goodnight and Stevens (1997)
also discusses five instances of group selection in nature (Banschbach and Herbers,
1996; Breden and Wade, 1989; Kelly, 1996; Stevens, Goodnight, and Kalisz, 1995;
Tsuji, 1995) and note that while they are not enough to form general conclusions,
they do hint towards group selection being more common than previously sup-
posed.

More recently, there have been frequent debates about the relevance and distinction
of group selection or what is now being referred to as multi-level selection. Traulsen
and Nowak (2006) developed a model of group selection and derived the conditions
for the cooperation to be favoured over defection: b/c > 1 + n/m, where b, c are the
benefits and costs of cooperation as usual, and n, m are the critical size of a group,
and the total (fixed) number of groups. Lehmann et al. (2007) disagreed that group
selection is a distinctive process from kin selection, and arrived at the same set of
results using the theory of kin selection instead. Williams (1966) critiqued group
selection as an explanation for human altruism since empirically the necessary con-
ditions for the selection pressure at the group level were not met. These conditions
included the low ratios of variation both between groups and within groups, migra-
tion rates, the rarity of group extinctions or inter-group warfare.

Direct reciprocity Reciprocity tries to answer these questions in two distinct flavours:
direct and indirect reciprocity. Direct reciprocity (DR) states that you help another
person so that in the future, that same person is more likely to return that help to you.
Reciprocal cooperation emerges from repeated interactions between a single pair of
individuals (Boorman and Levitt, 1980; Trivers, 1971). Axelrod and Hamilton (1981)
organised a tournament (Axelrod, 1980a,b) for the quintessential 2-person game, the
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prisoner’s dilemma. Tit-for-tat (TFT), presented by Professor Anatol Rapoport of
the University of Toronto, was the simplest non-trivial strategy, performing the best
out of strategies submitted by other experts in the field. This strategy is nice in that
it begins by cooperating, but then simply mimics their opponent’s previous action.
Suppose two players playing the game are called A and B. If an individual A coop-
erates, and B cooperates, then A will continue to cooperate in the following round.
However, if B did not cooperate in the first round, then neither will A in the follow-
ing round. Its success was attributed to three properties which made it exceedingly
robust: it was kind (never being first to defect), it was provocable (retaliating upon
defection by their opponent), it was forgiving (would cooperate again if their op-
ponent did so too). While TFT largely showed success in computer simulations in
both the Axelrod tournaments (Axelrod, 1980a,b) and later studies (Aoki, 1983; Lich-
bach, 1992; Rand, Ohtsuki, and Nowak, 2009), it suffers from two weaknesses: when
playing against itself, it is unable to recover from erroneous actions (accidental de-
fection causes mutual defection deadlock), and it is easily overcome by random drift
when unconditionally cooperators enter the population. Many variations of TFT and
other strategies (Imhof, Fudenberg, and Nowak, 2007; Milinski and Wedekind, 1998;
Nowak and Sigmund, 1993; Nowak and May, 1992; Wedekind and Milinski, 1996)
have been proposed to overcome these drawbacks. However, direct reciprocity is
only applicable only in symmetrical situations, and those where interactions are fre-
quently repeated with the same individuals.

2.2.1 Indirect reciprocity

Unlike direct reciprocity, the more general indirect reciprocity (IR) accounts for inter-
actions between people who are strangers to each other. It states that you give help to
another person with the hope that the interaction was observed and the knowledge
of your altruistic behaviour spreads through some medium so that others notice and
are in turn more likely to give you help in later interactions. While direct reciprocity
requires first-hand experience of opponents and knowledge of the history of actions
between them, indirect reciprocity relaxes this assumption to be able to account for
a much wider range of scenarios.

Indirect reciprocity relies on acts of cooperation being observed by others (Ferrière,
1998; Wedekind, 1998), which can be spread or available through public reputation
systems, gossip (Sommerfeld, Krambeck, and Milinski, 2008), broadcasts, or news
reports. A person who cooperates is hopeful that being observed makes others more
likely to act cooperatively at some point in the future towards them. This pseudo-
morality exists as a system of indirect reciprocity, which according to Alexander
(1987), “involves reputation and status, and results in everyone in the group contin-
ually being assessed and reassessed”.

Indirect reciprocity can be viewed in two ways. Suppose an individual A helps
another individual B. Upstream reciprocity suggests that A provides help at cost to
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themself because they hope that B is then motivated to help another individual C
at some later point in time, i.e. “I will help someone because someone else helped
me”. Alternatively, A’s motivation for helping B could be that the act of altruism
would make someone else more likely to help them at some point in the future.
This is downstream reciprocity, i.e. “by helping someone, I am now more likely to be
helped by someone else”. Of the two, the latter is seen to be more likely. Indeed,
upstream reciprocity is a form of misdirected gratitude, and is unlikely to lead to
the evolution of cooperation (Nowak and Roch, 2007) without elements of direct or
spatial reciprocity.

Why Indirect Reciprocity?

Indirect reciprocity is the main focus of this thesis due to its generality, but when
does it apply to real life situations? A classic example of IR in online marketplaces
like eBay is the use of feedback systems. When a buyer completes a transaction with
a seller, they have the option to leave feedback about their experience. This feedback
is visible to other potential buyers who are considering purchasing from the same
seller in the future. If a seller consistently receives positive feedback, they are more
likely to attract new buyers and increase their sales. In this scenario, the seller is
motivated to provide a positive experience for the buyer in order to receive good
feedback and maintain their reputation. This, in turn, creates a system of indirect
reciprocity where buyers are more likely to trust and purchase from sellers with a
good reputation, while sellers are motivated to provide good service to maintain that
reputation. On the other hand, direct reciprocity is a type of cooperation where indi-
viduals help each other in a one-to-one exchange. In the context of eBay, an example
of direct reciprocity could be a buyer and a seller engaging in repeated transactions
with each other. For example, imagine a buyer who frequently purchases items from
a particular seller on eBay. The seller recognizes the buyer’s name and knows that
they have been a reliable and prompt payer in the past. In turn, the seller may offer
the buyer discounts or special offers on future purchases as a way to reward their
loyalty and encourage them to continue buying from their store. The buyer, in turn,
may feel more inclined to continue purchasing from this seller because they appre-
ciate the discounts and value the seller’s recognition of their loyalty. This creates a
system of direct reciprocity where both parties benefit from their ongoing exchange
of goods and services. Overall, direct reciprocity can be an effective strategy for
building long-term relationships and fostering cooperation in online marketplaces
like eBay, however exploring an environment of IR is more generalised and able to
account for the reputational effects of an entire population of sellers at the same time,
instead of only one in particular individual.

To explain cooperation in general, kin selection theory requires a degree of related-
ness between individuals and while there are certainly interactions between kin in
every day life, the majority are not. In modern life, with the advent of the internet
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and the world wide web, it is easy to interact with someone on the other side of the
planet as if they were in the same room. In many of these instances, such as online
communities, social media, you may not have had any previous direct interaction
with people, and thus you rely on various forms of gossip, or reputational informa-
tion source from third-parties. Direct reciprocity is inappropriate in modelling these
scenarios since it is specifically for situations that involve repeated interactions be-
tween the same individuals.

Network reciprocity attributes a spatial structure onto the interacting members of a
population, such that interactions are governed can only occur amongst individu-
als who are connected. In most works, this strict topology can be thought of as a
slight extension to direct reciprocity with multiple interacting partners. However,
by loosening the assumption that social dilemmas can only occur between network
neighbours and considering them to occur between any two individuals of the pop-
ulation, we can return to a hybrid state of a spatial and well-mixed population and
therefore use elements of both network reciprocity and indirect reciprocity in its
modelling.

Finally, the theory of group selection is heavily debated and is more suited towards
modelling the evolution of cooperation of subpopulations. Interactions in these sit-
uations typically occur within these smaller groups, and occasionally, groups them-
selves split into two, or groups are removed on the grounds of inter-group selection
or lethal competition. While elements of this have been argued to explain the evolu-
tion of early human cooperation, when there existed disparate tribes which would
only occasionally cross paths, it is less relevant in modern times where this is a high
degree of connectivity amongst people. While we do borrow elements from these
neighbouring theories of direct reciprocity, group selection and network reciprocity,
we base our work on the very general and highly applicable theory of indirect reci-
procity.

2.3 Reputation and Social Norms

The first study of indirect reciprocity intended to extend the simplest direct reci-
procity strategy. Boyd and Richerson (1989) analytically explored a population of
three possible strategies, (1) unconditional defection, (2) upstream TFT i.e. “if I have
been helped, I will pass on the favour by helping someone else”, and (3) down-
stream TFT i.e. “I will help someone if they have helped someone else”. As groups
became larger, upstream TFT players had difficulty spreading when initially rare,
but downstream TFT was evolutionarily stable in any situation where pairwise or
direct reciprocity was successful. The wider range of circumstances in which down-
stream TFT is stable as opposed to upstream TFT, suggests that behaviours based
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on the strategy of “being nice to people who are nice to others” will be evolutionar-
ily stable in a wider set of circumstances than behaviours based on the strategy of
“being nice to people because others have been nice to me”.

This work, while seminal, had a number of significant assumptions which affect the
reliability of the findings. Firstly, all information regarding behaviours of individ-
uals in past interactions was public knowledge. In actuality, identifying whether
or not an individual cooperated or defected may be difficult or even impossible.
Secondly, information was assumed to be errorless. Even in situations when it is
possible to observe these interactions, it is possible to misconstrue acts of coopera-
tion as defection and vice versa. To realistically model situations in which indirect
reciprocity is possible, we must account for the possibility of imperfect or incorrect
information, as well as instances of accidental behaviour.

The formalisation of social norms helped to achieve this. These in essence are a metric
allowing members of a population to distinguish between good and bad behaviour.
They can take various pieces of information (like past actions, their past reputations,
their last opponent’s reputation and action) and condense it to a single reputation
value (Milinski, 2016). These works typically begin with three assumptions. First,
each individual within a population has a reputation. Following an interaction, rep-
utations are assigned to the players by the population’s social norm. They are given
a good reputation if they exhibited good behaviour according to the social norm, and
a bad reputation otherwise. These reputations are then used in subsequent interac-
tions, where behavioural strategies guide players in deciding whether to cooperate or
to defect, depending on the reputability of their opponent.

This section will discuss the various social norms that have been presented in the
literature, their advantages and disadvantages, what problems they solve, and what
problems are further caused by their implementation. Furthermore, we discuss the
relevant behavioural strategies that are played under these social norms.

2.3.1 Image scoring

One of the simplest social norms was proposed by Nowak and Sigmund (1998b)
called image scoring. Experiments show that humans often utilise image scoring
(Russell, Stoilova, and Dosoftei, 2020; Wedekind and Milinski, 2000), as well as
several animal species (Bshary, 2002; Bshary and Grutter, 2006; Russell, Call, and
Dunbar, 2008). Under image scoring, when an individual cooperates, they enjoy
an increase in their image score or image, whereas if they defect their score would
decrease instead. Nowak and Sigmund (1998b) considered a selection of straight-
forward behavioural strategies under this social norm. They began with the binary
case where cooperators have a good reputation and defectors have a bad reputation.
These are labelled numerically as a one and a zero where they correspond to a good
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and bad reputation respectively. Within each 2-player interaction, individuals coop-
erate if their opponent (or partner) has a good reputation, and refuses to cooperate
if they have a bad reputation. They additionally considered the case where an in-
dividual’s image can range from -5 to +5, indicating the extent to which a person
is reputable or not. Cooperative acts increment the person’s reputation, while non-
cooperative acts decrement it (within a bounded limit, Nowak and Sigmund (1998b)
considered −5 ≥ k ≥ 5). Each strategy is identified by a number k that can range
from −5 ≥ k ≥ 6, that represents the minimum image score a recipient needs to
have for the donor to cooperate. The strategy k = −5 represented an unconditional
altruist since everyone will have an image score of at least negative five, and the
strategy k = 6 represented an unconditional defector since no one could have an
image score greater than five.

Nowak and Sigmund (1998b) devised a simulation-based experiment with multiple
situations each centred around a small population of individuals where individuals
decide to extend or refuse help to one another. Within each round, pairs of individ-
uals are chosen, one as a donor and one as a recipient. Each donor decides to help
the recipient based on (1) their own strategy (the minimum image a recipient must
have for the donor to help them), and (2) the image score of the recipient (which
is initially 0 at the beginning of each generation). The population plays a number
of rounds within a single generation, accumulating a payoff, and then creating off-
spring proportional to that payoff to play the following generation.

In this first scenario (in the absence of random mutation), the population quickly
converges to the discriminator strategy (where k = 0) after only 150 generations. That
is, eventually everyone would help one another if they had a non-negative image or
if generally, they helped as much as they received help.

The second scenario allowed offspring to occasionally deviate from their parents’
behaviour; to randomly select a strategy instead. These much lengthier simulations
resulted in cyclic behaviour in which discriminating (or conditional) cooperators are
harmed by UCs. Eventually, after each period of stable cooperation, individuals that
are too cooperative (k = −4 or k = −5) emerge through random drift undermining
the population, as they allow the invasion of defectors (strategies of k = 4 or k = 5).
Sooner or later however, these defectors are in turn overcome by stern discrimina-
tors (k = 0) again. By excluding UCs (k = −5) from the population, the easy route
to invasion for defectors is removed and thus the stable periods of cooperation per-
sist longer. These behavioural strategies however required knowledge of the image
scores of their opponents, and so Nowak and Sigmund (1998b) found that for coop-
eration to proliferate, “the probability of knowing the image of the ‘recipient’ must
exceed the cost-to-benefit ratio of the altruistic act”.
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Nowak and Sigmund (1998b) also briefly covered some slightly more complex be-
havioural strategies under the image scoring norm. They considered the ‘and’ strate-
gies (where an individual would cooperate if their co-player’s image was at least k
and when their own image was below h) and the ‘or’ strategies (where an individual
would cooperate if their co-player’s image was at least k or if their own image was
below h). In the ‘and’ setup, under perfect information the k = 0, h = 1 strategy
was the most widespread with good presence of any strategy with h = k + 1. Un-
der imperfect information, k = 0, h = 4 was most successful; it is best to cooperate
with anyone with an image of 0 or greater, but only until our own image is at least
4. The higher requirement of the donor’s image score is attributed to limited obser-
vation of an altruistic act by only a subset of other players. The ‘or’ setup results in
highly cooperative and heterogeneous populations (players generally have k ≤ 0)
but presents the easiest opportunities for unconditional defectors (k = 6, h = −5)
which are the single most successful strategy. Any strategy using solely the donor’s
own image score while ignoring the recipient’s score, is not successful in fostering
cooperation. Leimar and Hammerstein (2001) recreated this study with largely iden-
tical findings under perfect information. With imperfect information, they observed
the disappearance and re-emergence of cooperative strategies (dominated by the
families of strategies described by k = 0, h = ∗ and k = ∗, h = 1 where ∗ describes a
wildcard, or any possible value for h and k respectively) and observed lower overall
levels of cooperation.

Pollock and Dugatkin (1992) reached approximately the same setup as Nowak and
Sigmund (1998b) with the “use of vicarious observation to direct initial play in actual
encounter we term minimal attributed reputation”. They proposed the Observer
TFT (OTFT) strategy that used a primitive version of inferred reputation. OTFT was
identical to the traditional TFT strategy except upon meeting a new partner that was
observed to defect against someone else where it prescribes defection. They found
it to be evolutionarily superior to TFT under low probabilities of future interaction
between the same pairs of individuals.

Lotem, Fishman, and Stone (1999) and Sherratt and Roberts (2001) extended Nowak
and Sigmund (1998b)’s model to account for phenotypic defectors or individuals
who want to give help but are unable to (for instance the young, sick or handi-
capped) alongside discriminators and indiscriminate cooperators and defectors. Their
simulation-based studies found that maintaining a baseline level of those unable to
help prevented the slow increase of naivety that comes from sustained cooperation,
thus disallowing unconditional defectors from gaining a foothold in the population.
This implementation was however highly dependent on the cost of cooperation,
where higher costs removed the benefits of phenotypic defectors, moderate costs in-
creased the level of discriminating altruists in the population, and low costs entirely
suppressed the cyclic behaviour observed by Nowak and Sigmund (1998b), with a
long term domination by discriminators with strategies around k = 0 on average.
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In further analyses, Nowak and Sigmund (1998a) restricted themselves to the bi-
nary image scoring social norm, where individuals can either be good (G) or bad
(B), represented as a one or a zero respectively. They considered the discriminator
behavioural strategy that cooperates with good people but defects with bad peo-
ple, and subsequently derived the analytical conditions for evolutionary stability
against UCs and UDs under a wide range of scenarios and assumptions. Wedekind
and Milinski (2000) tested the success of image scoring in 79 first-semester students,
and found that the image score of receivers (of help) were on average higher than
those who received nothing. They also identified that a lower cost of cooperation
and higher initial endowment was more closely linked with a high average image
score instead of a higher cost of cooperation and lower initial endowment. Russell,
Stoilova, and Dosoftei (2020) successfully replicated this study with six groups of
ten individuals each to arrive at the same conclusions.

However, image scoring assigns an image or a score by using only the information
of the donor’s action: whether they cooperated and extended help, or defected and
refused to help. As a first-order assessment rule, this norm is minimalistic in the in-
formation it uses, and so while it isn’t very cognitively demanding (so people don’t
need to remember lots of information at any given time), it is coupled with a sub-
optimal capacity for cooperation. Several works have modified elements of these
interactions to give rise to better chances for cooperation than image scoring alone.

Brandt and Sigmund (2005) showed that the chances for cooperation can be im-
proved by modifying an individual’s social circle. Allowing an individual’s social
network to evolve over time increased the probability of the individual knowing the
image of their co-players when playing the IR game. They showed analytically that
if this probability (for a single individual) was sufficiently high, then it was possible
that the population reached a stable equilibrium between discriminators and UCs
such that defectors were not able to invade.

Nax et al. (2015) took a different approach and explored image scoring in two levels
within the PGG, where in addition to image scoring of the players, groups them-
selves are given an image score. In this analysis, a player’s image score is positive
if their contribution exceeded the average contribution within the group, and nega-
tive if below the average. If it is exactly equal, then the score does not change. The
group score is very similar, in that all members of the group are attributed a pos-
itive group score if the total contribution of the group is greater than the average
contributions over all groups, negative if less than the average contribution, and un-
changed if equal. Nax et al. (2015) studied the individual and group scoring, both
independently and together to form a hybrid score (where in each time-step, the rep-
utation assignment rule is selected randomly with some probability between image
scoring and group scoring, and once selected, it is used to update their reputation).
They discovered that while group scoring alone did not support cooperation, the
hybrid score did. The degree of image scoring that was required with respect to the
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group score was very small but dependent on the size of the population. Within hy-
brid scoring, assigning reputations through group scoring was sufficient most of the
time, but required an occasional update through the image score. They concluded
that the key mechanism enabling cooperation, and what scoring did was to allow
the conditions for cooperators to completely segregate themselves from defectors
(forming homogenous groups without any defectors), with the actual identification
of defection of secondary importance.

2.3.2 Standing

While Nowak and Sigmund derived the conditions under which cooperation can
proliferate, some key problems remain. They acknowledged that image scoring con-
dones the reputational penalty of a good person refusing to help someone else who
(to the best of their knowledge) previously refused help. The tenuous success of
cooperation under image scoring was made possible by a very strong drift (ran-
dom fluctuations causing the population to present overly frequent strategies or
the sudden disappearance of other strategies), and a very low cost of cooperation
(Leimar and Hammerstein, 2001). It additionally suffered from second-order free-
riding, whereby discriminating altruists were evolutionarily disadvantaged against
indiscriminate altruists. Since the former punished defectors by withholding help,
the latter enjoyed a greater payoff if they were lucky in avoiding the defectors and
were therefore preferred by selection. While some solutions emerged in the form of
considering interactions between more than just two people (Suzuki and Akiyama,
2007a,b), this was not seen to be a sufficient answer in the simpler dyadic case.

The standing criterion addresses this issue. Originally discussed within the scope
of direct reciprocity in Sugden (1986), this social norm - like image scoring - gives
a good reputation (or standing) to cooperators. Everyone initially starts in good
standing. If they defect upon encountering someone in good standing, then the
defector would be assigned a bad standing. However, if the act of defection was
against someone who had a bad standing (and is therefore likely to be a defector
themselves), then the act of defection is not penalised with a bad standing. Thus
an individual behaving in line with the standing strategy would offer help when in
bad standing or to another in good standing, and will refuse to help those in bad
standing.

Sugden (1986) argued that the standing strategy was evolutionarily stable. Leimar
and Hammerstein (2001) developed the analysis to decipher its resilience to both
implementation (accidental defection) and assessment (assigning an incorrect stand-
ing) error in an island-model3 (Wright, 1943) which had the advantage of being able
to avoid genetic drift. Besides recreating the simulations of Nowak and Sigmund

3Instead of exploring a single population evolving as a whole (sometimes referred to as panmixia),
the Wright (1943)’s island-model considered a population to be divided into subpopulations, or demes
that are typically composed of genetically similar individuals, to explore intergroup selection of genetic
systems.
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Social Norm 11C 11D 10C 10D 01C 01D 00C 00D Order Note

Image Scoring/Scoring 1 0 1 0 1 0 1 0 1 Nowak and Sigmund (1998b)
Standing/Simple-

Standing
1 0 1 1 1 0 1 0 2 Leimar and Hammerstein (2001) and Sugden

(1986)
Simple-Standing 1 0 1 1 1 0 1 1 2 Ohtsuki and Iwasa (2007) and Santos, Santos,

and Pacheco (2016)
Strict-Standing 1 0 1 1 1 0 0 0 3 Sugden (1986); L8 strategy (s7)

Stern-
Judging/Judging/Kandori

1 0 0 1 1 0 0 1 2 Kandori (1992) and Ohtsuki and Iwasa
(2007); L2 strategy, called JUDGING in
Brandt and Sigmund (2004)

Shunning 1 0 0 0 1 0 0 0 2 Takahashi and Mashima (2006); L2 strategy
Ohtsuki and Iwasa (2007)

Strict-
Discriminator/Judging

1 0 0 1 1 0 0 0 2 Mashima and Takahashi (2005) and Taka-
hashi and Mashima (2006); Judging in Oht-
suki and Iwasa (2004), L8 strategy (s8)

TABLE 2.3: Summary of social norms explored in the literature.

(1998b), Leimar and Hammerstein (2001) showed simulations in which the standing
strategy is able to invade a population consisting of discriminators with (a) imple-
mentation error alone, (b) assessment error alone, and(c) both implementation and
assessment errors. They also derived the evolutionary stability of the standing strat-
egy dependent on the two types of error. In this analysis, the discriminator strategy
from the image scoring norm is almost exactly the same as the standing strategy4

except while the former is penalised for withholding help from someone in good
standing, the latter is not.

Panchanathan and Boyd (2003) considered two variants (see Table 2.4) of standing
strategies: (i) contrite TFT (CTFT) and (ii) reputation discriminator (RDISC). Both
mirror the same rules in that a good standing is attributed to all that cooperate,
while distinguishing between justified and unjustified defection (leaving the indi-
vidual’s standing unchanged in the former, but assigning a bad standing in the lat-
ter5). They differ in their behavioural decisions. Where an RDISC strategist only
considers their opponent’s standing, a CTFT strategist will also consider their own;
CTFT strategists cooperate when in bad standing in order to regain a good standing.
Indirect reciprocity was analytically shown to be evolutionarily stable when RDISC
and CTFT (separately) were in populations also consisting of UCs and UDs.

However, Panchanathan and Boyd (2003) did note that the evolutionary stability
of the RDISC and CTFT strategies relied heavily on the availability of information
that individuals had about their co-player’s standing. When the likelihood of know-
ing your partner’s standing decreased, the domain of attraction of the strategy de-
creased (Panchanathan and Boyd, 2003, figures 4 and 5).

While the theoretical benefits of standing over image scoring is clear, the actual
presence of these strategies in human populations was questioned by Milinski et
al. (2001). They presented a study using students. When acting as donors, half

4Leimar and Hammerstein (2001) and several other works often refer to the social norm and the
behavioural strategy by the same name. This thesis will refer to the social norm and the behavioural
strategies under that norm to be distinct from each other, for clarity.

5These definitions are the same as the simple-standing norm in Ohtsuki and Iwasa (2007) and San-
tos, Santos, and Pacheco (2016) and strict-standing in Ohtsuki and Iwasa (2004) and Sugden (1986) for
CTFT and RDISC respectively, see Table 2.3
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Strategy 11 10 01 00 Note

UC C C C C Always cooperate.
UD D D D D Always defect.

DISC, CO,
Standing

C D C D Cooperate if opponent is good, defect if opponent is bad. Only concerned with the recipient’s rep-
utation (Nowak and Sigmund, 1998b), CO in Ohtsuki and Iwasa (2004), Standing in Leimar and
Hammerstein (2001).

SELF D D C C Cooperate only if own reputation is bad. Defect otherwise (Ohtsuki and Iwasa, 2004).
AND D D C D Cooperate if own reputation is bad and recipient’s reputation is good (Ohtsuki and Iwasa, 2004).
OR C D C C Cooperate if own reputation is bad or reputation’s reputation is good (Same as CTFT), (Ohtsuki and

Iwasa, 2004).
RDISC C D C D Identical to DISC/CO (Panchanathan and Boyd, 2003).
CTFT C D C C If focal player’s reputation is positive, then it is identical to DISC, if focal player’s reputation is

negative, then it will always cooperate to regain its positive reputation (Same as OR), Panchanathan
and Boyd (2003).

TABLE 2.4: Summary of behavioural strategies explored in the litera-
ture.

of them could fully see their recipient’s past behaviours (little information), while
the other half could additionally see the standing scores of their recipient’s pre-
vious interaction partners (much information), thus providing context to whether
their recipient’s potential defections were justified. Their findings were not clear
cut. There was insufficient evidence of the use of standing strategies, despite the
absence of assessment errors. The behaviour of their subjects was more in line with
image scoring than with standing, but still not exactly what they were expected to
be under image scoring. Panchanathan and Boyd (2003) claimed that this study ig-
nored the crucial adaptation of language, and that encoding standing history rather
than action history of their co-players would yield better results, allowing them to
clearly distinguish between instances of scoring and standing. Milinski et al. (2001)
argued that the standing strategy may have been too demanding in terms of mem-
ory capacity and suggested that simpler standing strategies may be possible with
using a memory capacity of one (only a donor’s last action is remembered instead
of a complete history). Interestingly, they observed that each session implementing
‘much information’ (that is with a full history of a recipient’s behaviours and their
co-player’s standings available to donors) was on average 50% longer than the ‘lit-
tle information’ sessions, suggesting that the subjects did in fact use this additional
information, but in a way that could not be fully explained by the standing strategy
as implemented.

Modelling assumptions appear to be an important factor in arriving to these analyti-
cal conclusions according to Brandt and Sigmund (2004), especially with the simpli-
fication of binary reputational scores actually making things more difficult. To exem-
plify this, they briefly discuss the difference in outcome between Fishman, Lotem,
and Stone (2001) and Fishman (2003), and Panchanathan and Boyd (2003), where the
former works found that a population consisting of unconditional and conditional
altruists could be evolutionarily stable, while the latter concluded that this combina-
tion was unstable and could only end in defection. The key difference between these
two models was that Panchanathan and Boyd (2003) implemented a fixed probabil-
ity of further rounds, while Fishman (2003) assumed a constant number of rounds
per individual. A stochastic number of rounds is the preferred approach for many
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models in the literature because of the well-known ‘end effect’ where if individuals
are aware of a fixed number of rounds m, then there is no incentive to cooperate in
the mth round, which means there is no incentive to cooperate in the (m− 1)th round,
and so on (Luce and Tucker, 1959).

2.3.3 The Leading Eight

So far, we have mainly considered the image scoring and standing social norms.
Image scoring assigns a player’s image based on only their action. Standing also
uses their action, but also uses their opponent’s standing in order to judge their
reputation. Only using a single source of information, image scoring is referred to as
a first-order assessment rule, while standing is a second-order rule since it uses two
sources of information.

Ohtsuki and Iwasa (2004) presented the first exhaustive analysis of the evolution-
ary stability of all possible social norms of up to the third-order. Third-order social
norms (which are a superset of first and second-order norms where the additional
information is simply unused) depends on three pieces of information: the focal6

player’s action, the opponent’s reputation, and the focal player’s reputation.

Thus we can categorise a vast assortment of interactions. An individual A’s reputa-
tion is based on not only their behaviour toward others, but also the reputations of
their co-players. On top of this, their old reputation is also taken into consideration
because incentives for helping are not limited to altruism, can also be in selfishly
preserving one’s own reputation. Thus, people are more likely to cooperate when
they are viewed negatively in order to regain their positive reputation.

Ohtsuki and Iwasa (2004) consolidated the ideas of image, standing and social sta-
tus into a single reputation value which they define to be an Honour score, or H
score. With the simplifying assumption of binary reputations, individuals can only
be good or bad, one or zero, represented as a binary digit. Since these social norms
take as input two binary reputations, and another binary action (cooperation or de-
fection), there are 23 = 8 possible types of interaction between a pair of individu-
als, each requiring a resulting reputation to be assigned. They are represented by
d : {0, 1} × {0, 1} × {C, D} → {0, 1} or dijX where i ∈ {1, 0} and j ∈ {1, 0} represent
the focal player and their opponent’s reputations, while X ∈ {C, D} represents the
focal player’s action. Since each of these 8 situations can award either a good (1) or
bad (0) reputation, there are 28 = 256 mappings of interaction to reputation. These
constitute the set of all possible social norms or as Ohtsuki and Iwasa (2004) referred
to them, reputation dynamics.

6Up until now, we have described interactions in a directional manner from a donor to a recipient.
In this context, and in the following chapters, interactions will occur simultaneously, that is in an
interaction between two players A and B, they are both simultaneously the donor and the recipient.
A is the donor for B the recipient at the same time as B is the donor for A who is a recipient. In these
situations, we refer to the interaction from the point of view of only one of these individuals at any
given time, referring to the pair as the focal player and their opponent.
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Reputations are useful because they provide a measure of how likely an individual
is to exhibit good behaviour. Behavioural strategies use these reputations to specify
whether a player should cooperate or whether they should defect. They are a func-
tion or mapping p : {0, 1}× {0, 1} → {C, D}4 from the focal player’s reputation and
the opponent’s reputation, to a given action. Thus there are 22 = 4 possible states of
an interaction, 11, 10, 01, 00, (10 for example refers to the case where the focal player
has a good reputation and their opponent has a bad reputation) each of which can
return either the instruction to cooperate or defect, labelled as p11, p10, p01, p00, lead-
ing to 24 = 16 possible behavioural strategies for a single social norm. The ‘and’
behavioural strategies in Nowak and Sigmund (1998b) characterised by k, h pairs
can be interpreted as the general case to the present binary case with only good and
bad reputations. Combining all possible variations of social norm (reputation as-
signment rules, labelled d), with behavioural strategies (behavioural rules, labelled
p), there are a total of 28 · 24 = 212 = 4096 possible strategies.

This large strategy space was methodically searched by fixing a single social norm
for the population, and then comparing each behavioural strategy p against the oth-
ers to determine whether it was an evolutionarily stable strategy (ESS). This was
achieved by deriving the expression for the average H-score for a strategy, and then
using it to calculate its average payoff. If the payoff for a strategy p was greater than
the payoffs for each of the other possible strategies p∗ under this social norm d, it was
found to be an ESS. To achieve this, they used the assumption that the social norm
d was agreed to be used by all members of the population, and that they would all
agree on an individual’s reputations.

Ohtsuki and Iwasa (2004) repeated this analysis for varying benefit/cost ratios, find-
ing that a lower ratio resulted in a lower number of ESS pairs. This ranged from 73
pairs (when benefit/cost ratio was 4) to 13 (when it was 1.1). By analysing the actual
pairs existing in each of these settings, they identified eight pairs that were con-
sistently outperforming the rest, with the highest possible range of average relative
payoffs (relative to the theoretical maximum payoff). These were dubbed the Leading
Eight (Table 2.5).

The standing social norm discussed previously makes an appearance in the Leading
Eight in s1, and the strict-standing variant in s7. The standing criterion (both s1 and
s7) assigns a good reputation to cooperators (d11C = d10C = d01C = d00C = 1), allows
justified defection against those in bad standing by leaving the defector’s reputa-
tions unchanged (d10D = 1 and d00D = 0), and doesn’t condone unjustified defection
(d11D = d01D = 0). The strict standing variant (s7) additionally has d00C = 0, thus
ensuring that the only route to regaining a good reputation is to cooperate with
someone else with a good reputation. In other words under strict-standing, only
cooperating with someone good will give you a good reputation, while interacting
with a bad person in any way will not help your reputation. The judging norm (see
Table 2.3) is present in s8 where it is identical to strict-standing except for d10C = 0,
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Group Reputation Dynamics Behavioural Strategies
d11C d11D d10C d10D d01C d01D d00C d00D p11 p10 p01 p00

I 1 0 1 1 1 0 1 0a C D C Cd s1
1 0 0 1 1 0 1 0 C D C Cd s2

II 1 0 1 1 1 0 1 1 C D C De s3
1 0 1 1 1 0 0 1 C D C De s4
1 0 0 1 1 0 1 1 C D C De s5
1 0 0 1 1 0 0 1 C D C De s6

III 1 0 1 1 1 0 0 0b C D C De s7
1 0 0 1 1 0 0 0c C D C De s8

a Standing, b Strict-Standing, c Judging, d OR, e CO

TABLE 2.5: The “Leading Eight strategies” found in Ohtsuki and
Iwasa (2004, Table 4) depicting the eight strategies that remained evo-
lutionarily stable through a wide range of benefit/cost ratios. They
each consist of a single social norm or reputation dynamics d, with a

corresponding behavioural strategy p.

signalling that helping someone of ill-repute is an untrustworthy act, and as such
will reflect poorly on the helper.

2.3.4 Characterisation of the Leading Eight

Ohtsuki and Iwasa (2004) categorised the leading eight strategies into three groups
corresponding to the characteristics of the ESS pairs. Firstly, Group I is characterised
by the or behavioural strategy, d00C = 1 and d00D = 0. They derive the stability
of these strategies with respect to assessment and implementation errors and found
the strictest condition for stability against unconditional defectors and the largest
average payoff of the three groups. Group II is characterised by d00D = 1 where
defection between two persons of ill-repute is considered justified defection and
good behaviour resulting in a positive reputation. These strategies are particularly
vulnerable to clusters of defectors who interact amongst one another, obtaining a
good reputation in the eyes of the population (since d00D = 1 here) and making
it easier to fool and exploit conditional cooperators. Group III is characterised by
d00C = d00D = 0, such that no interaction between two ‘social parasites’ can re-
sult in a good reputation. Thus, reputation is highly valued and difficult to achieve
under these social norms. These strategies have the weakest condition for stability
against unconditional defectors, and the lowest payoff of the three groups. In lay-
man’s terms, cooperation is easier to maintain as you move from group I to III, but
is paid for with a decreasing average payoff.

Regardless of the group, each of the leading eight strategies are able to sustain high
levels of cooperation. Overall, there are two common characteristics. First, if you
cooperate with good people, you remain or become a good person (d11C = d01C = 1)
and if you defect against a good person, then you remain or become a bad person
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(d11D = d01D = 0). Second, if you are a good person who refuses to cooperate with
a bad person, then you are a good person (d10D = 1). This condition describes justi-
fied defection, the advantage of standing over image scoring, legitimising standing’s
presence within the leading eight.

Ohtsuki and Iwasa (2006) further dissected their properties to identify four charac-
teristics necessary to sustain cooperation within a population. First is the mainte-
nance of cooperation, where we have p11 = C and d11C = 1. A population consisting
largely of these strategies would almost always have a good reputation and as such
would be cooperating a majority of the time to maintain their positive reputation.
Secondly, the identification of defectors is necessary to quickly label defectors so that
future partners are able to refuse help towards them. Here, d11D = d01D = 0 (anyone
defecting against someone good is bad). Third, is punishment and the justification of
punishment where we have p10 = D and d10D = 1. Good people can punish defectors
by withholding help, and they are not penalised for this defection. Finally, forgive-
ness which allows the return to a good reputation after accidental defection or an
instance of reformation. Here, p01 = C and d01C = 1. People with a bad reputation
should cooperate with a good individual to regain a positive reputation.

Santos, Pacheco, and Santos (2021) and Santos, Santos, and Pacheco (2018) explored
higher-order social norms, asking the question on whether or not increased informa-
tion in the form of previous reputation can improve cooperation. They concluded
that simple moral rules can sufficiently encourage cooperation, even if the environ-
ment remains complex. The norm that sustained the most cooperation did not dis-
criminate based on these reputations. In fact, they found that it was the Judging
norm that had the best chances of sustaining cooperation, also seen previously in
the L8 third-order social norms.

2.3.5 Leading second-order Norms

The same exhaustive search methodology was repeated for the second-order social
norms in Ohtsuki and Iwasa (2007). In this world, reputations are assessed based on
a focal player’s action, and their opponent’s reputation. Since there are two possible
actions (cooperate or defect), and two possible reputations (good or bad, 1 or 0),
there are 2 × 2 = 4 possible kinds of interaction to assign reputations. Two possible
reputations for each case, leaves 24 = 16 possible social norms which are displayed
in Table 2.6.

Ohtsuki and Iwasa (2007) stated that Ohtsuki and Iwasa (2004, 2006) only considered
the invasibility condition of a monomorphic population equilibrium consisting of a
single social norm and behavioural strategy while polymorphic populations with
heterogeneous equilibriums are possible. However, this analysis due to the third-
order nature of the social norms created a solution space that was intractably large.



2.3. Reputation and Social Norms 39

d∗1C d∗0C d∗1D d∗0D Name

1 1 1 1
1 1 1 0
1 1 0 1 Simple-Standing
1 1 0 0 Scoring†
1 0 1 1
1 0 1 0
1 0 0 1 Kandori
1 0 0 0 Shunning
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0

† Image scoring cannot sustain cooperation.

TABLE 2.6: All possible second-order reputation dynamics explored
by Ohtsuki and Iwasa (2007). Of the 16 possible norms, only the
Simple-Standing, Kandori and Shunning norms can reliably sustain
cooperation in heterogeneous populations consisting of UCs, UDs
and conditional cooperators (DISC). The image scoring norm (†) can-
not sustain cooperation. This table is modified slightly to follow the
same naming conventions as in Ohtsuki and Iwasa (2004, 2006); the
asterisks (d∗1C for example) denote that the focal player’s reputation
immediately prior to the interaction is ignored, 1s represent a positive

reputation, 0s represent a negative reputation.
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To overcome this, they condensed their social norms to use only second-order infor-
mation, and considered only the behavioural strategies of unconditional defection,
unconditional cooperation, and discriminators (as in Nowak and Sigmund (1998b)
who cooperate if the recipient is good, and defect if they are bad), which resulted in
a much more reasonable number of social norm and strategy pairs.

Within this simplified setup, only three norms were able to sustain cooperation out
of the initial sixteen (see Table 2.6): simple-Standing, kandori, and shunning. The
simple-standing (Chalub, Santos, and Pacheco, 2006) explored here is very similar
to the original standing criterion proposed in Sugden (1986). While standing’s defin-
ing characteristic was that defecting against a bad actor simply left the focal individ-
ual’s reputation untouched, the simple-standing here explicitly defines a positive
reputation for defection against a bad actor. Kandori (Kandori, 1992) on the other
hand assigns a negative reputation for helping a bad actor. Shunning (Takahashi
and Mashima, 2006), is the strictest of these norms, proclaiming that the only way
to maintain or regain a good reputation, is to help a good actor while interacting in
any way with a bad actor is harmful to your reputation.

The simple-standing and kandori norms (but not shunning) are leading strategies
in both the second-order (called the leading two in Ohtsuki and Iwasa, 2007) and
third-order (Ohtsuki and Iwasa, 2004) assessment settings. It is easy to see from
Table 2.5 that s1, despite being labelled a third-order norm, does not in fact use three
levels of assessment information. Note that d11C = d01C = 1 can be rewritten as
d∗1C = 1 (where the 1 represents the recipient’s past reputation, C represents the
focal player’s action towards the recipient, and ∗ represents a wildcard - both a 1
and a 0) as the assigned reputation does not change depending on the focal player’s
past reputation. Similarly, the other cases would be: d11D = d01D = d∗1D = 0, d10C =

d00C = d∗0C = 1. The final case is slightly different, where d10D = 1 ̸= d00D = 0 but
can be summarised as d∗0D = ∗, which represents the arbitrary previous reputation
∗ remaining unchanged. A second-order norm written in this format would have
the first four columns equal to the last four columns, for instance s6 in Table 2.5 or
image scoring in Table 2.3.

2.3.6 Trust

An essential and implicit component of all the reputation-based systems of IR is
trust. Do people trust in the social norms they use? Are reputations serve a reliable
indicator of the goodness of a person? IR typically approaches this by a blanket as-
sumption that everyone in the population - typically within an computational model
- abides by the same social norm, and that the reputations of an individual - since
they are typically formed by third-parties and communicated to them via word-of-
mouth or gossip - can be trusted enough to base responding actions upon. In these
cases, reputations that are unknowingly mislabelled are typically trusted and the
consequent downsides are accepted as inevitable and impossible to avoid - since
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humans are fallible. It is therefore worth exploring how the concepts of reputation
and trust, are modelled in other fields, outside of the simplified sphere of reciprocity
and the evolution of cooperation.

The majority of works exploring trust and reputation have been in the computer
security sector, typically exploring the belief systems that underpin cryptographic
protocols (Burrows, Abadi, and Needham, 1990; Gambetta, 2000). However, they
fall short of being used as general models of trust since among other things, they do
not form a clear definition of trust, which means that all subsequent works would
each subjectively interpret their work in different ways (Abdul-Rahman and Hailes,
2000). Other trust models have the same shortfall, in that they do not provide a clear
and general definition of trust or are not able to be generalised to multiple domains
(Abdul-Rahman and Hailes, 1997b; Beth, Borcherding, and Klein, 1994; Jøsang, 1996;
Maurer, 1996; Rangan, 1988; Yahalom, Klein, and Beth, 1993).

Marsh (1994), however, achieved a generalisable formulation of trust as the social
phenomenon instead of a mechanism within the scope of a specific domain but fell
short on its simplicity. Abdul-Rahman and Hailes (2000) argued that their model
was too large and too complex to be reliable in serving as a generalised model of
trust since they attempted to model a large number of abstract concepts through
continuous variables, in which case their model outputs were ambiguous and open
to interpretation. Instead, they followed the definition that ... trust (or, symmetrically,
distrust) is a particular level of the subjective probability with which an agent will perform a
particular action, both before [we] can monitor such action (or independently of his capacity
of ever to be able to monitor it) and in a context in which it affects [our] own action (Gam-
betta, 2000). They developed a model of trust based on experiences and reputations
which explored a combination of the trust generated through direct experience (di-
rect trust), and the communication of agent beliefs to others (recommender trust).
Such a model is also critical of the trust of the recommender, such that any recom-
mender’s opinion is also evaluated on the basis of trust and is not blindly followed.

One of the primary goals of their study was to develop a mechanism that could be
easy mapped onto the software of artificial agents given the rise over recent years
of Human-Computer Interactions (HCI) and Computer-Mediated Communications
(CMC) (Corritore, Kracher, and Wiedenbeck, 2003; Fogg, 2002; McKnight and Cher-
vany, 2000; McKnight and Chervany, 2001; Tan and Thoen, 2000). In particular, Artz
and Gil (2007) presents a review of four categories of research into trust mechanisms:
policy-based trust, reputation-based trust, general models of trust, and trust in in-
formation resources. They explore one aspect reputation-based trust that is par-
ticularly relevant to Chapter 3 which is the relationship between centralised and
decentralised reputations. From Artz and Gil (2007), one solution to obtaining trust-
worthy reputation information is to consult a central, trusted third party that has had prior
experience with the entity in question and can provide an assessment of its reputation and
argue that it is little explored in the literature in lieu of providing a system in which
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individuals are empowered to make trust decisions rather than rely on a centralized process
(Abdul-Rahman and Hailes, 1997a; Abdul-Rahman and Hailes, 1997b). In particular,
Yu and Singh (2000, 2002, 2003) explore trust decisions on the basis of reputational
information received from other agents, while taking into account the reputation of
these witnesses - the sources of information in these cases. Sabater and Sierra (2002)
show an approach that take into account both an individuals direct experiences with
the information gleaned from others in multi-agent system environments.

In summary, the concept of trust and reputation is ubiquitous in life, whether it is
in the context of in-person, or virtual communities and marketplaces. The study of
their role in facilitating positive and beneficial behaviours is therefore very impor-
tant, and while there are many different approaches to modelling it (Grandison and
Sloman, 2000; Medic, 2012; Sabater and Sierra, 2005), each are coupled with similar
underlying principles.

2.4 n-person Social Dilemmas

Frequently, interactions involving more than two people occur that rely on the col-
lective action of a group of individuals for the creation of a public good (Titmuss,
1970). These situations consider public goods that are non-excludable (so everyone
can benefit from it) and rival (such that the increased consumption of the good by
one person reduces the availability of the good for others). Aspects of nature or the
environment are public goods. For instance, the welfare of wildlife, where many
species are in danger of extinction due to overhunting, or the diminishing quality
of the air we breathe due to the unbridled combustion of fossil fuels, the consump-
tion and pollution of freshwater systems, land-based resources offering fertile soils
and mineral deposits, or entire ecosystems of coral reefs or forests. Each describes a
good shared by multiple people, where no one can be restricted from having access
or from partaking in its consumption, while being a limited resource that is ’used
up’. To model such social dilemmas, we use the public goods game (PGG).

If all individuals are able to benefit from a public good (Section 2.1) regardless of
their individual contribution towards its costs, individual acts of free-riding lower
the payoffs of others. If we assume that people are rational - that is they prioritise
maximising their own payoff - the best strategy is to contribute nothing, regardless
of what anybody else does. This is in spite of the fact that the best possible collective
return would be if everyone contributed as much as they could. If all individuals
engaged in the public good are rational, they would all come to the same conclusion,
neglecting to contribute becoming free-riders. In other words, the group would - at
least theoretically - fail to perform the collective action required to establish and
maintain the public good. This is otherwise known as the free-rider problem but
also as the tragedy of the commons (Hamilton, 1975; Hardin, 1968; Ostrom, 2000;
Smith and Szathmary, 1997; Trivers, 1971).
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2.4.1 What can we predict about the PGG?

Suppose again, that we have the four friends playing the public goods game. But
now, assume that they trusted each other implicitly and no one had any fear of be-
ing exploited. If they each contributed their entire endowment of £5 to the public
good to be doubled, then this would result in £40 being redistributed amongst them,
leading to an overall change of +£5 each, doubling their initial endowment. This is
clearly the best outcome assuming the students prioritised the best social outcome
for them all. However, this is not rational behaviour as it does not try to maximise
the well-being of the individuals themselves.

Taking the point of view of a rational individual within the game, what is the best
amount to contribute to the public good? The action that maximizes the agent’s
payoff is to contribute nothing. However, this sentiment of “I am better off if I con-
tribute less” is often felt by each of the other individuals within the group. There is
no incentive to offer a high contribution to the public good if it is more profitable to
contribute less.

If we consider the same situation where three of the four individuals decide to max-
imally contribute £5 each, but the fourth person chooses to contribute nothing, then
the total public good to be redistributed is £30, or £7.50 each. Now, the overall
changes become +£7.50 for the individual who contributed nothing, and +£2.50 for
the others. The individual’s decision to withhold their contribution has cost each of
the other participants £2.50 (compared to their payoffs if all four had contributed £5)
while improving their own return.

Formalising these examples, we must first assume (Caporael et al., 1989; Sigmund,
2010) that people are rational individuals. That is they are able to assess and act
upon information to behave depending on their beliefs and interests. Secondly they
are selfish maximisers, in that they act in such a way to minimise their costs, and
maximise their benefits. Typically, the PGG social dilemma7 is played in groups of n
individuals who each have the choice between cooperating (C) or defecting (D). Co-
operators participate and contribute some cost c to the public good while defectors
(or non-cooperators) participate but do not contribute. The sum of all contributions
are then multiplied by some growth factor r with r ≤ n , the returns of which are
distributed evenly among all participants.

Here, the payoffs for UCs ΠC and UDs ΠD are:

ΠD =
rcnc

nc + nd
,

ΠC = ΠD − c,

7The criteria for a social dilemma is described in Dawes (1980). If the return of the public good is
high enough, then a cooperator in a group of defectors can still improve their utility when r > n which
violates the conditions for it to be a social dilemma. See Fig. 2.3.
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where nC and nD are the number of cooperators and defectors respectively (with
nC + nD = n), c is the cost of cooperation, and r is the group synergy factor.

The Nash equilibrium of the PGG is zero contributions by all if r ≤ n, since the best
action any rational individual could take is contributing nothing. If r > n, the Nash
equilibrium is to contribute as much as possible since a cooperator will always be
better off regardless of the number of defectors within the group. Fig. 2.3 shows the
invalid point where in a group of five individuals, a single cooperator still has a net
positive payoff, which no longer satisfies the conditions for a social dilemma. This
case is not discussed in the literature as it is trivial.

FIGURE 2.3: This is an example of the payoffs for a cooperator and a
defector as a function of the number of cooperators in the group. The
point labelled as invalid refers to the case where r > n which violates
the conditions of the PGG being a social dilemma since cooperators
can still improve their standing in a group that consists of n − 1 de-

fectors.

2.4.2 What do we see experimentally?

These bleak predictions of limited to no cooperation describe the free-rider hypothesis
(Hardin, 1968; Marwell and Ames, 1981). A large number of public goods exper-
iments and studies have been undertaken to test this hypothesis in two flavours
(Asch and Gigliotti, 1991): (1) the strong free-rider’s hypothesis defined as universal
failure of voluntary contributions to the public good and (2) the weak free-rider’s
hypothesis where contributions are below the social optimum but are non-zero.

Marwell and Ames (1981) present a series of experiments run on high-school/undergraduate
students under a wealth of different conditions. They confidently conclude that -
over the large number of experiments with varying setups - the strong free-rider’s
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hypothesis does not hold, since time and time again, individuals voluntarily con-
tribute large portions of their resources to the public good, despite the experiment
modifications to make free-riding as likely as possible. The only significant excep-
tion to this was the final experiment with economic graduate students who showed
the highest likelihood for free-riding. Accordingly, the weak-free-rider’s hypoth-
esis holds more weight as, while the public good contributions are substandard,
they do exist. This is shown several times over by Isaac, McCue, and Plott (1985),
Isaac and Walker (1988), Isaac, Walker, and Thomas (1984), Kim and Walker (1984),
and Marwell and Ames (1979, 1981), but contributions never reach exactly what
the strong free-rider’s hypothesis predicts. Clearly, there are elements to the de-
cision making process that are not sufficiently modelled by the rational and self-
interested/selfish/utility-maximising point of view of behavioural economics (Dawes
and Thaler, 1988).

If the group interacts repeatedly, the first round works much like it does in the one-
shot case (Dawes and Thaler, 1988) but Marwell and Ames (1981) show that contri-
butions quickly decline in later periods. Cooperators upon noticing that their collab-
orators are contributing minimally or worse, not contributing at all, lower their own
contributions. Over multiple rounds, this situation is repeated with an ever dimin-
ishing public good. In game theoretic terms, the Nash Equilibrium8 of a repeated
PGG, is a zero contribution (Friedman, 1986). The observed experimental results
however are extremely varied.

Andreoni (1988) observes that free-riding is rare in single-shot games, but does find
declining contributions when games are repeated. Two hypotheses are explored
for the cause. The learning hypothesis states that it takes time for participants to
understand the best game strategies while the strategies hypothesis instead states
that individuals initially cooperate to conceal their rationality from the other partic-
ipants, but eventually start to bail out once they know the repeated games will soon
be ending (akin to the crowding out effect discussed previously). Following this,
Andreoni (1995) suggests that cooperation is either from those who deliberately act
irrationally by cooperating despite understanding strategic and rational free-riding,
or by accident and/or confusion. Isaac, Walker, and Thomas (1984) observe that both
extremes of strong free-riding and near-Lindahl9 optimal behaviour do take place,
but this intermediary is distinct from the weak free-riding hypothesis. They point to
and discuss two factors that have an impact on the levels of free-riding in the pop-
ulation, namely replication (where subjects learn by repeating the decision process
for a group ten times), and the marginal per-capita return (or MPCR, which is the

8A concept from Game Theory where a player after considering their opponent’s choices, has no
incentive to deviate from their chosen strategy or action.

9A theoretical equilibrium where the optimal quantity of the public good is achieved and the cost
is shared fairly amongst everyone subject to a Lindahl tax which charges individuals proportionally to
the received benefits.
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benefit to cost ratio of deciding to contribute a single token in the group investment
account).

Group size can be closely related to MPCR. Typically, as the group size increases,
the benefits earned by a single individual, showing a decreased per-capita return.
Isaac and Walker (1988) investigate the effect on cooperation as group size increases,
specifically looking at (1) the marginal return to an individual from contributions
to the public good and (2) the actual number of members in the group. They find
that group size in isolation actually has little effect on the observed level of free-
riding. Their results actually suggest that larger groups have more problems with
free-riding because of factors which can be interpreted as declining or small MPCR.
Isaac, Walker, and Williams (1994) then presented experiments with the opposite re-
sult which showed that cooperation and provision of the goods are actually higher
in groups of 40 and 100 than in groups of 4 and 10, a surprising result since pre-
sumably it would be harder to maintain cooperation in larger groups. They identify
the cause as the ’MCPR effect’, and show that with a sufficiently high MCPR, then
the size of the group has no bearing on its ability to sustain cooperation or in other
words, if the benefit gained by an individual isn’t negatively effected enormously
by others joining the group, then there are fewer incentives to free-ride.

Somewhat related to the MPCR, Dorsey (1992) compares linear payoff functions to
provision point functions (where a minimum total contribution must be reached for
a moderate payoff) while allowing revisions to voluntary10 contributions, and finds
that public good provision is increased when the revisions are limited to increases
with a provision point, and also when there is high initial marginal return from the
public good. Pereda, Capraro, and Sánchez (2019) consider a payoff structure similar
to provision points (see Marwell and Ames, 1981), but where once a critical mass is
reached, additional contributions yield no further payoffs. They find that critical
mass has little effect while confirming the finding that increasing group size has a
positive effect on cooperation. The two strongest strategies in the experiment were
unconditional defection, followed by unconditional cooperation.

Under the n-person PD, Boyd and Richerson (1988a) show the opposite result, that
cooperation is more difficult to achieve in larger groups. They consider (a) uncondi-
tional defectors alongside a family of strategies akin to the generalised TFT (strategy
Ta cooperates if at least a individuals cooperated in the previous round), (b) ran-
domly formed groups, and (c) rounds repeated with some probability to calculate
the expected fitness of such strategies. They conclude that the threshold frequency
of conditional cooperators increases as the group size increases. This means that for
small groups, only a small part of the population needs to be a conditional coop-
erator for cooperation to spread, but as the group size increases, the proportion of
the population that needs to be a conditional cooperator increases such that for large

10In the sense that people can choose to contribute nothing. This is not the same as voluntary partic-
ipation through the Loner strategy which will be discussed later.
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groups, almost the entire population needs to be a conditional cooperator before co-
operation is favoured by selection. They identify that with groups of size n, only
Tn−1 is capable of resisting invasion from unconditional defectors, but only when
the probability of repeated rounds of the PD is high enough and when there is a
sufficient number of initial Tn−1 strategists already in the population.

In summary, analytical and game theoretic approaches have shown that the PGG
more often than not suffers in contributions in both the one-shot and repeated ver-
sions of the game. In the former, contributions tend to be low but non-zero by the
weak free-rider’s hypothesis, while in the latter, they continually decrease as the
rounds progress. When viewed in relation to the group size of the PGG, there is
largely mixed and contradictory evidence. It is clear that to achieve higher levels of
cooperation, additional mechanisms must be at play.

2.4.3 Public Goods Game with Reputation

Milinski, Semmann, and Krambeck (2002) were perhaps the first to propose and
show that “reputation solves the tragedy of the commons”. In an experiment, they
alternated rounds of the PGG and the IR game and found that the interactions of
the IR game directly impacted the decisions made in the PGG, improving the levels
of cooperation in the repeated public good where they would have otherwise de-
clined, as long as participants knew the IR game was coming. If IR rounds were not
expected, then contributions rapidly drop to zero.

However, Semmann, Krambeck, and Milinski (2005) argued that since the IR rounds
and the PGG rounds in Milinski, Semmann, and Krambeck (2002) were both played
within the same groups consisting of the same people, they argued that the resulting
level of cooperation may not be a result of reputation building, but may be simply
the effects of direct reciprocity. To explore this, Semmann, Krambeck, and Milinski
(2005) conducted a very similar double-blind experiment, again alternating rounds
of the PGG and the IR game, but this time, considering various compositions of
groups. They confirmed that building a good reputation helps participants in future
social interactions. Additionally, good behaviour in a previous social group resulted
in a good reputation that was rewarded by others regardless of whether or not it was
built in the same or a different social group.

The value of reputation across social groups however relies on the same set of soci-
etal norms across the different groups, potentially restricting them to similar cultures
and demographics. Certain cultures attribute different moral values (reputation) to
different behaviours (Saunders et al., 2010, Chapter 2), thus impacting the transfer-
ability of social reputation across cultures. Many cultures punish or criticize very
cooperative people (Herrmann, Thoni, and Gächter, 2008). It has been observed by
low cooperators, inflicting punishment on high cooperators to avoid looking bad
alongside them Pleasant and Barclay (2018), or by defectors as retribution for earlier
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pro-social and punishments, (Nikiforakis, 2008). Whether or not reputation can still
be valuable across groups with different or conflicting social norms, is questionable.

Whereas the Milinski, Semmann, and Krambeck (2002) and Semmann, Krambeck,
and Milinski (2005) implicitly used reputation through a large screen that presented
a history of participant behaviours to all, Suzuki and Akiyama (2005) directly used
reputation through the scoring mechanism Nowak and Sigmund (1998a). Using
simulations, they simulated a population playing the n-person PD, while using the
image scoring social norm (where a person’s image can range from -5 to +5) and
reputations were considered public knowledge. They modified the discriminator
strategy of cooperating if the image score of the recipient is at least k, to cooperate
if the average reputation of the group of recipients is at least k. Selection occurred
through a genetic algorithm, a binary selection tournament, and the absence of ran-
dom mutation.

Suzuki and Akiyama (2005) found three interesting results. Firstly, they found that
cooperation was pervasive in the population when groups consisted of four individ-
uals. Secondly, they identified that as group size increased, the level of cooperation
decreased. Thirdly, they identified three distinct final population states where the
smallest groups meant the population was almost universally cooperative, moder-
ately sized groups led to mixed populations of discriminating cooperators and de-
fectors, while the largest groups were entirely composed of defectors. They showed
that reputation is enough to sustain cooperation in smaller groups, but as group size
increases, cooperation suffers (contrary to Isaac, Walker, and Williams (1994) but in
line with Boyd and Richerson (1988a), both in the absence of reputation). A potential
explanation they provided for this is that the impact of an individual’s reputation is
increasingly limited as the group size increases, as well as it becoming increasingly
difficult to identify and distinguish a single individual’s reputation within a larger
group.

Suzuki and Akiyama (2007b) developed their work further by comparing the stand-
ing norm against the image scoring norm accounting for implementation error (de-
fined as accidental cooperation, while explicitly forbidding accidental cooperation).
They implemented a slightly different behavioural strategy to Suzuki and Akiyama
(2005). Whereas previously they considered k strategists where individuals would
cooperate if the average image score of the group was at least k, Suzuki and Akiyama
(2007b) considered the DISCn−1 strategy that cooperates if there were n − 1 individ-
uals with a good image in the previous round. This strategy is the Tn−1 strategy of
Boyd and Richerson (1988a), and as such they came to a similar conclusion: DISCn−1

is favoured by selection if the cost to benefit ratio is sufficiently small and there is a
sufficiently large initial concentration of DISCn−1 strategists. When the group size
increased, the initial threshold required for cooperation also increased, making them
increasingly restrictive. They explored the case where n = 3 further in Suzuki and
Akiyama (2007a) with UCs alongside UDs, comparing the simplest n-person game
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with the results of the 2-person case. Their results showed the DISC strategy to be
stable against both UDs and cooperators in the 3-person case where it wasn’t in the
2-person case. While both allow a stable polymorphism between DISC and UCs,
the 2-person stability is tenuous and is vulnerable to mutations or neutral drift. The
3-person case is not, with DISC stable against UCs and UDs even in the presence of
random mutation and neutral drift.

So far we have interpreted reputation to be a signal of cooperativeness in either the
PD or the PGG. However, other approaches are also possible. For instance, Hauert
(2010) instead considers reputation through the lense of a rewarding mechanism
where two-stage interactions consist of a PGG followed by an IR game where in-
dividuals choose to reward others who contributed to the public good. There are
four kinds of individuals, composed of cooperators and defectors who have the
choice between rewarding or not rewarding cooperation. They are dubbed the neg-
ligent cooperators (cooperate but doesn’t reward), the cheaters (does not cooperate
or reward), the pro-social (cooperates and rewards cooperation) and the cautious
individuals (refuse to cooperate but rewards cooperation). The reputation that is
considered here is implemented as the likelihood of uncovering whether or not an
individual rewards cooperation in the second stage of interactions. Rewarding in
this way is considered a positive incentive mechanism as opposed to negative in-
centive mechanisms like punishment (see Section 2.5 for a more detailed discussion
of punishment). It turns out that rewarding positive behaviour is not as effective
as punishing negative behaviour and that while the act of rewarding does stimulate
cooperation, it cannot sustain it in the long run, succumbing to the common second-
order free-riding problem. Cooperators that do not reward will generally have a
higher payoff than cooperators that do reward, spreading in the population through
replicator dynamics, thus opening the door to exploitative individuals. Reputation
(while not the conventional type) however is essential here, because without any
mechanism of distinguishing between those who reward and those who do not,
there is no chance for cooperation.

If people are not guided by reputation, but the punishment of defectors is possi-
ble (explained in more depth in the following section), Rand et al. (2009) argued
that punishment makes little impact on the level of cooperation except for lower-
ing payoffs. The real benefit was argued to come from offering rewards, increasing
both contributions to the public good and its average payoff. Similarly, Cressman
et al. (2013) show that a combination of both reward and punishment by the central
authority (or voluntarily by peers in Choi and Ahn (2013)) can also illicit better co-
operation than punishment alone. In spatial settings the outcome may be different.
Szolnoki and Perc (2010) find that in the spatial PGG, rewarding can only promote
cooperation when the synergistic effects of the public good are low. When the costs
of rewarding are high, defection is still a strong contender able to exploit coopera-
tors. However, like the well-mixed case, cooperation has been shown to be strong in
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the spatial case where cooperative groups are rewarded alongside the punishment
of non-cooperative groups by a low-cost third-party (Fang et al., 2019). However,
this success is built on the presence of both mechanisms. If either one is lost, then so
too are the benefits.

2.4.4 Optional Public Goods Game

Our review has so far explored collective action problems through the lense of the
PGG, as well as the results when players use reputations to decide their behaviour
through various social norms. However, all results discussed so far assumed that
individuals are forced to partake in the public good by deciding between cooper-
ating and defecting. However, based on frequent and widespread observations of
human and animal societies, it is evident that this is not always the case. A simpler
strategy that is often utilised - without the need for reputation - is that of complete
withdrawal from the PGG. This ‘loner’ strategy rejects the benefits of the public
good and the attached risks and costs, preferring to remain independent from the
participants of the public good choosing a smaller, risk-free return.

A large body of work explores group behaviours in species like lions (Scheel and
Packer, 1991), primates (Smuts et al., 2008), and humans (Gell, 1986). Packer and
Ruttan (1988) and Scheel and Packer (1991) describe four distinct behaviours seen
in lions during a hunt, dependent on whether or not the lions have a companion.
Firstly, there are individuals that actively pursue prey. The presence and action of a
companion makes no impact on the cooperator’s decision to hunt. Secondly, there
are cheaters who let their companions hunt instead of them, refusing to pursue prey.
Such defectors will only hunt if they are alone or are the first to identify prey, but
will refuse if they have a companion, or if they are second to identify the prey. They
will stop hunting if they are joined by a companion. Thirdly, there are scavengers,
who do not hunt but partake in the benefits of other’s hunts, and lastly the soli-
tary, who choose to hunt alone. The first type can be thought of as a cooperator,
the second and third are variations of a defector strategy, while the fourth type is
a loner. Within primates, grooming behaviours are of significant importance not
only as a hygienic function (Hutchins and Barash, 1976), but also as a social function
(Dunbar, 1991; Henazi and Barrett, 1999; Lehmann, Korstjens, and Dunbar, 2007).
Grooming behaviours identify groups of primates that (1) reciprocate grooming (a
costly behaviour in terms of time and effort) to others in their social group, (2) enjoy
grooming from others but do not reciprocate, and finally (3) do not groom or receive
grooming from others choosing instead to groom themselves (Smuts et al., 2008).
The United Kingdom can also be viewed as a loner, since instead of paying the costs
of cooperation and enjoying its benefits, they opted out of the European Union. Co-
operation here would look like a country providing contributions to the EU, while
defection would be low or no contributions, or renegotiating agreements in order to
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pay less, and get more. Admittedly, this is a very simplistic view which ignores the
wealth of EU member countries and their ability to contribute.

Hauert et al. (2002) first formalised this idea of the loner strategy within the indirect
reciprocity literature, describing loners to be individuals who “rely on some autarkic
way of life”. Without needing to identify and discriminate against defectors (which
any punishment mechanism requires), conditional participation becomes possible,
allowing risk-averse behaviour which relaxes the social dilemma and prevents long-
term exploitation by defectors.

By simulating a large, well-mixed population consisting of cooperators, defectors
and loners, Hauert et al. (2002) uncovers cyclical or rock-paper-scissor dynamics in
the population. When the population is dominated by cooperators, the best pay-
off can be obtained by defecting. However, this line of thinking spreads through
selection, causing the population to be eventually dominated by defectors. In such
non-cooperative conditions, there is nothing to be gained by cooperating (since you
would immediately be exploited) nor defecting (since there are very few coopera-
tors to exploit). Therefore the best course of action is to refuse to play the game, ob-
taining the loner’s payoff. Eventually, the population becomes dominated by those
who withdraw until random chance (mutation) encourages a small proportion of
the population to chance cooperating again. When enough cooperators exist to in-
teract amongst each other, the number of cooperators in the population eventually
increases renewing the cycle once more.

The resultant effect of the loner strategy however is that the population only ever
experiences brief intermittent bursts of cooperation. (Hauert, 2002) found that when
the OPGG synergy factor is low, the population is largely dominated by loners and
does not tend to deviate. However, when it is moderately high, the periodic cycle
emerges and remains in orbit around an equilibrium point consisting of all three
strategies. The population equilibrium of these simulations is equal to the time av-
erage of the ratio of cooperators to defectors to loners. The time-averaged payoffs
of each strategy turn out to be identical to each other, or equivalent to the loner’s
payoff. So in the long run, it is just as rewarding to permanently opt out, as it is to
play and risk a better result in the PGG (Hauert, 2002).

These analytical findings were confirmed experimentally by Semmann, Krambeck,
and Milinski (2003). In the beginning of the experiment, participants were lulled
into the understanding that the most frequent strategies in the population were re-
spectively cooperators, defectors and then loners. Testing each in turn allowed the
examination of the unmanipulated remainder of the experiment to test whether the
predicted dominating strategy did in fact come to fruition and take over the popu-
lation. The resulting level of cooperation in the OPGG was found to be higher than
that what is usually found after several rounds of the PGG.
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It is clear that the loner strategy does not catalyse the explosion of cooperation, since
the resulting overall social outcome of the OPGG is equivalent to that of no public
good at all. But instead, it provides a release. Not only does it allow the breaking
of the deadlock of mutual defection, it does so without requiring any observation
of said defection, simply relying on the experience and the overall dynamics of an
individual’s payoffs.

Indirect reciprocity in the form of reputation has only been lightly explored within
the context of optional play. Ghang and Nowak (2015) and Olejarz, Ghang, and
Nowak (2015) explore the two-person PD with just two strategies, UCs and UDs un-
der the image scoring norm. Individuals cooperate if their opponents have either an
unknown or a good reputation and are socially rewarded with a good reputation.
Defectors are given a bad reputation which is broadcasted with some probability to
the rest of the population, unless the act of defection was against another defector.
Ghang and Nowak explore voluntary play by allowing cooperators to reject interac-
tion partners if they are seen to have a bad reputation. However, since some individ-
uals may have received the knowledge that a defector has a bad reputation and thus
should be avoided, others may not have. Therefore, this model incorporates private
information since different people may have different opinions of the reputation of
an individual. They find that if hQB > 1 (where h is the average number of rounds
per person, B is the benefit to cost ratio b

c − 1 and Q is the probability of negative
reputation broadcast), the identity of defectors eventually becomes common knowl-
edge amongst the entire population allowing cooperators to fully prevent their ex-
ploitation. Ghang, Olejarz, and Nowak (2019) further extend this work to not only
consider the probability of a defector’s reputation being discovered after interacting
with a cooperator, but also with other defectors. They identify the regions in terms
of the two kinds of negative reputation broadcast where cooperators and defectors
can stably coexist.

The loner strategy as described in Hauert (2002) has not been examined in the pres-
ence of reputation. Nakamaru and Yokoyama (2014) do explore the OPGG with a
form of image scoring, but like the previous works exploring the PD, they do not
consider voluntary play to be a strategy in its own right. Instead, they consider
the rejection of individuals from the public good if their reputation is seen to be
bad. Thus, they do not account for voluntary play but instead for ostracism and
exclusion. The rejection here exists as a form of costless punishment for defectors,
admittedly achieving good success in maintaining cooperation in the OPGG.

It is clear that there are unanswered questions within the intersection of the OPGG
and reputation-based indirect reciprocity. The works that consider optional play
with reputation are not comprehensive because firstly, they consider only UCs which
are an unlikely simplification shown to be suboptimal when compared with discrim-
inating or conditional strategies that behave on the basis of reputation. Secondly,
optional play is studied as an ‘add-on’ mechanism to the cooperators, and not as a
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distinct strategy able to evolve on its own. Third, the analyses have been limited
to the PD but are of equal if not greater importance to public goods that consist of
larger groups of interacting individuals. Exploring and accounting for these three
issues is important in understanding the evolution of reputation in the more real-
istic multi-person social dilemmas where individuals have the option to withdraw.
This thesis aims to address these issues by contributing to the gaps in the literature
as identified above.

2.5 Punishment

Besides reputation, punishment is another mechanism that has the potential to help
encourage cooperation (Gintis, 2008). This describes situations where punishers ac-
cept the costs of punishing in order to inflict a penalty upon another individual.
In this section, we look at where punishment occurs naturally in both animal and
human social groups, discussing the conditions in which it can help sustain coop-
eration, and the conditions in which it cannot. We also consider the problems that
arise when people can obtain a greater payoff when they choose not to punish, as
well as the solutions that can prevent a punishment system from being undermined.

Animal social groups exhibit punishment behaviours that are used to achieve a wide
variety of purposes. Biting cleaner fish punish cheating behaviours where others
feed on client tissue rather than parasites. Since this often causes the clients to exit
the interaction, it is behaviour that is punished (Bshary, 2002; Raihani, Grutter, and
Bshary, 2010). The seminal work of Clutton-Brock and Parker (1995) on animal soci-
eties describes the groups into which these punishments can be categorised. Regard-
less of its intent, each act of punishment directly reduces the punisher’s payoff since
they have to spend time and/or resources in enacting the punishment, whilst also
reducing the punished individual’s payoff. The scope of literature focused on pun-
ishment is enormous, and so we will be avoiding all but the most crucial models and
experimental studies that consider punishment within the context of group-based
social dilemmas.

Fehr and Gächter (2000) experimentally explored punishment in the PGG, first when
groups remain the same between rounds, and second when they are shuffled in-
between rounds, considering both cases when punishment was and was not al-
lowed. In treatments where punishment was allowed, participants were able to view
the contributions of their peers following PGG rounds, and assign them punishment
points to reduce their payoffs. They found that in the PGG, punishment increased
the level of cooperation in the population, preventing the typical outcome of consis-
tently decreasing contributions towards the public good. Additionally, the punish-
ments were observed to be proportional to the magnitude of the deviation from the
norm, so worse behaviour was responded to in kind with harsher punishments.
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2.5.1 Pool vs peer punishment

Experiments in contract enforcement (Fehr, Gächter, and Kirchsteiger, 1997) and bi-
lateral ultimatum games (Roth, 1995) have shown that people often are willing to
punish behaviour they feel to be unfair (Ostrom, Walker, and Gardner, 1992; Os-
trom, 2000) despite their awareness of the involved costs of punishing. In relation
to the evolution of cooperation, punishment falls broadly into one of two categories:
institutional and peer.

Institutional punishment or pool punishment concerns the existence of an independent
third-party that holds responsibility for deciding and enacting punishment. These
institutions are usually funded through contributions from the population, either
compulsorily through taxes or voluntarily through charitable pro-social donations.
This concept dates back to Hobbes’s Leviathan (Hobbes, 1651). He defined any
agreement of future performance to be a covenant, and argued it to be null and
void if either party has a reasonable suspicion that the other will not perform. He
argued that cooperation would not be possible unless a coercive power by the “ter-
ror of some punishment, greater than the benefit they expect by the breach of their
covenant” compelled the performance of both parties of a covenant. Democratic
procedures (Gao, Du, and Liang, 2020; Yamagishi, 1986) implementing these punish-
ment institutions were shown to be a popular preference for interacting individuals
and were found to be beneficial in enforcing cooperation.

On the other hand, peer punishment explains situations in which individuals choose
to bear the costs of punishment themselves in order to inflict some pecuniary dam-
age or retribution on another individual. These are typically in response to payoff-
harming behaviours which the punisher wishes to discourage, or as retribution for
past punishment, but it has also been argued to be the result of other behaviour, for
instance the enforcement of fairness (Fehr and Schmidt, 1999).

2.5.2 Second-order free-riding problem

Many works have compared pool and peer punishment. Baldassarri and Grossman
(2011), Sigmund et al. (2010, 2011), and Traulsen, Röhl, and Milinski (2012) show that
the key factor in deciding which method is optimal, is the option to punish individ-
uals who cooperate but decline to pay the costs of punishing free-riders (Hilbe et al.,
2014; Perc, 2012), thus they are free-riding on pro-social punishment. Indeed the
punishment mechanism is itself a second-order public good. If a player refuses to
punish others in a population of punishers, they can enjoy both the increased coop-
eration incentivised from others’ punishments, and avoid its costs. What incentives
do people then have to punish?

Cooperation enforced by punishment often favours cooperators that do not punish
over those that do, allowing the re-emergence of defectors into the population (Boyd
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et al., 2003; Heckathorn, 1989; Henrich and Boyd, 2001; Oliver, 1980; Sethi and So-
manathan, 1996). This is a particular shortcoming in the appearance of accidental
defection (Boyd and Richerson, 1992) or implementation error. Consider a popula-
tion of cooperators and punishers (that cooperate and punish defection) that punish
when no errors are possible. Selection cannot distinguish between the two since they
are identical when there are no defectors to punish. However, when errors are possi-
ble and someone accidentally defects, punishers would receive a lower payoff due to
their costly punishing, leading selection to favour non-punishing cooperators. Sub-
sequently, punishers of defection are invaded by indiscriminate cooperators who in
turn become easy targets for free-riders.

If we consider the PGG when groups are large, punishers can potentially be faced
with many defectors who they would want to punish, leading to very high pun-
ishment costs. This can put them at a substantial evolutionary disadvantage. Boyd
and Richerson (1992) explored this and found two conditions under which punish-
ment mechanisms can lead to the evolution of cooperation. Firstly, if the benefits
of cooperation are sufficiently high, the population will consist of punishers, reluc-
tant cooperators (who only cooperate when punished), and cooperators that do not
punish. Secondly, if the cost of being punished is great enough, then an evolution-
arily stable strategy emerges that cooperates, and punishes both non-cooperators
and non-punishers. This accounts for and solves the second-order free-rider prob-
lem of non-punishing cooperators allowing defection as an easier route back into the
population, without the need of additional punishment stages like Hirshleifer and
Rasmusen (1989) or a punishing institution like Yamagishi (1986).

If individuals who refuse to pay the costs of punishing defection are themselves
punished, then social learning leads to pool punishment. If such sanctioning is not
possible, then peer punishment is preferable. An efficiency and stability trade-off
emerges where pool punishment is very stable in its dominance, but not very effi-
cient in the absence of people to punish (since it still requires funding but there have
been efforts to negative this effect through deposit-based commitments to punish-
ment in Sasaki et al. (2015) where refunds are given as long as certain pro-social
rules are followed). On the other hand, peer punishing is much more efficient since
there are no costs when there are no punishments to enact, but it suffers from stabil-
ity issues as it is more easily invaded by non-punishing cooperators or second-order
free-riders. The ongoing punishment costs in the absence of free-riders despite being
argued as a disadvantage for punishment institutions, might actually be a necessary
signal (Schoenmakers et al., 2014) and in fact is the reason for which there are no
free-riders to punish. Szolnoki, Szabó, and Czakó (2011) instead claim that peer and
institutional punishment nullify each others’ effects allowing the proliferation of de-
fectors. In their model, they find that peer punishment alone is usually the better
choice for the majority of parametrisations. However, if peer punishment is very
weak, then pool punishers can survive with a richer variety of outcomes.
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Boyd et al. (2003) also explored punishment in the PGG like Fehr and Gächter (2000),
except the population evolved using group-selection as opposed to imitation. This
took place over two stages where a person wanting to update their strategy will
imitate the strategy of another individual who can either be within their group
with probability m, or outside their group otherwise. They then copy their strat-
egy with probability proportional to the difference of their payoffs. Selection then
occurs between groups where they are randomly matched through inter-group con-
flict. Groups with more defectors are more likely to lose and be replaced by the other
group. This approach showed an inherent asymmetry in the relative payoffs of altru-
istic cooperators to defectors, independent of how many defectors there were. How-
ever, as the proportion of defectors decreased, the payoff of punishers increased as
acts of punishment became increasingly rare. Altruistic punishment was favoured
by selection in one-shot anonymous interactions, even when the size of the public
good groups are large.

Allowing voluntary participation to the public good can help overcome this by low-
ering the costs for sanctioning institutions (Sasaki et al., 2012; Sigmund et al., 2011)
thereby improving the level of cooperation in the population. Sustained cooperation
was found to depend on the loner’s payoff in Shin et al. (2022). Their simulation-
based study showed punishment to have a positive effect when OPGG groups were
large but only for a limited range of payoffs for loners, but when groups were small,
it had a negative effect regardless of the loner’s payoff.

In the spatial PGG setting, Szolnoki, Szabó, and Czakó (2011) and Zhu et al. (2020)
find similar results, but they do explicitly ignore the sanctioning of second-order
free-riders. Zhang et al. (2014) experimentally confirm the predictions of Sigmund
et al. (2010), but contrary to their predictions, find peer punishment to be more
stable than predicted. Contrastingly, Andreoni and Gee (2012) show that people
choose to delegate the policing mechanism over 70% of the time in which a “hired-
gun”punishes the lowest contributing player. Their study shows that people actively
choose to pay the costs of pool punishing, despite it not punishing second-order free-
riders.

Helbing et al. (2010a) show that moral strategies (pro-social punishers) can beat co-
operators that do not punish, but this depends largely on the segregation of strate-
gies and an “unholy collaboration” between moralists (cooperators that punish de-
fectors) and immoralists (defectors who paradoxically punish other defectors) who
can exist in populations with suitably low punishment costs and penalties. Inter-
estingly, with a moderate synergy factor11 r, UCs are quickly defeated and exit the
population. Presumably in such a world, immoralists would be an illogical strategy
that dies out because they not only pay the fines from being punished for defection,
but also pay the costs themselves to punish the defection of others. However, as
long as the punishment costs are sufficiently low, a delicate balance emerges where

11This is the factor that multiplies the total contributions of the group, growing the public good.
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immoralists can survive by exploiting moralists, who in turn benefit from the im-
moralists’ punishment of defectors. Helbing et al. (2010b) continue exploring the
same world consisting of the same four strategies, investigating the mechanisms by
which the strategies spread through the spatially-arranged population. Clustering
and segregation effects allow moralists to protect themselves from invasion from
cooperators with a suitable level of punishment fine which solves the second-order
free-riding problem. If the punishment is great enough, then both defectors and co-
operators both exit the population with additional punishment having no additional
benefits.

The second-order free-riding problem is not limited to punishment but is possi-
ble under any costly behaviour. Panchanathan and Boyd (2004) consider this issue
through the lense of the multi-period mutual aid giving game where following each
collective action game, a single randomly selected needy individual is chosen and
each group member has the option of providing them help. The second-order prob-
lem remains here: why do individuals willingly bear the cost of giving aid when
not doing so yields a greater payoff? Panchanathan and Boyd suggest that indirect
reciprocity, and more specifically the standing norm offers the solution. Shunners
conditionally cooperate by choosing to help only the needy individuals who remain
in good standing. By doing so, they pay the costs of cooperation and can maintain
their good standing which makes it more likely that they themselves will receive
help in the future.

Another potential solution involves punishment reputation. Brandt, Hauert, and
Sigmund (2003) explore the dynamics of four strategies (cooperators and defectors
that do or not punish defection) on a hexagonal lattice playing the PGG in groups
of three. They find that punishment in an anonymous setting (with no reputation)
leads to one of two population states. Either the population is fully asocial (does not
cooperate and does not punish defection) or the population is a combination of coop-
erators and punishers. This latter state is frozen, in that they do not consider random
mutation so there is no change once the population consists entirely of cooperators
and punishers (since the two are identical when there is no one to punish). Which
of the two they arrive on depends only on the initial frequency and distribution of
the strategies. If it becomes possible for individuals to distinguish between those
that do or do not punish, the population remains composed of the two strategies
but with more relaxed requirements for cooperation to thrive (in terms the group
synergy factor). In this situation, cooperators and punishers are given the opportu-
nity to defect when they are aware that their co-players do not punish. This allows
punishing cooperators to retain an evolutionary advantage over non-punishing co-
operators, who now have a lower payoff since they are occasionally exploited by
cooperators. Thus, this lowering of morals prevents the invasion of punishing co-
operators by non-punishing cooperators, thereby allowing the quick and decisive
removal of invading mutant defectors in the population.
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The reputation of being a punisher has been widely explored (García and Traulsen,
2019; Kamei, 2014; Raihani and Bshary, 2015; Wolff, 2012). While Brandt, Hauert,
and Sigmund (2003) consider the exploitative nature of cooperators supporting the
rise in cooperation, dos Santos, Rankin, and Wedekind (2013) and Santos, Rankin,
and Wedekind (2011) argue with an analytical and simulation-based approach, that
in the helping game punishers are more likely to receive help and their initial costs
are eventually compensated by punished individuals and observers. Santos and
Wedekind (2015) extend their dyadic exploration into the compulsory PGG and com-
pare reputation (akin to image scoring) formed through punishment with reputation
formed through generosity and find that punishment reputation consistently fosters
greater levels of cooperation in the population, performs better in larger groups, and
is more robust to errors in reputation assessment.

2.5.3 Anti-social punishment

A key argument against the claim that punishment is a mechanism for cooperation,
is the widespread prevalence of antisocial punishment in both animal and human
societies. Many of the works we have discussed so far assume that the mechanism
is one-sided: these analyses consider only pro-social punishment, that is the pun-
ishment of a defector by a cooperator. However many situations exhibit anti-social
punishment, that is punishment of cooperators by defectors.

Acts of punishing cooperation can take many forms. Consider retaliation or revenge,
referring to the eye for an eye idiom where a punisher is punished, not for the pur-
poses of deterring defection, but as retribution for sanctions in the near past. Anti-
social punishing also emerges through competition (Rand and Nowak, 2011), func-
tioning as a mechanism of self-preservation which pre-emptively punishes those
that threaten their livelihood. There is clear evidence of widespread anti-social pun-
ishment around the world (Dreber and Rand, 2012; Nikiforakis, 2008; Stavrova,
Schlösser, and Fetchenhauer, 2013). Fu and Putterman (2018) and Herrmann, Thoni,
and Gächter (2008) examined participant pools across the world and observed a
large degree of variation of punishment behaviours across societies. First, they con-
firmed the baseline result of decreasing public good contributions as the rounds
progress in the absence of punishment (Herrmann, Thoni, and Gächter, 2008). With
punishment, this trend disappeared. Locations like Boston, Melbourne, and Not-
tingham exhibited the least amount of antisocial punishment, while Muscat, Athens,
and Riyadh exhibited the most with comparable if slightly lower average levels of
contribution to the public good.

Fatas and Mateu (2015) focus on a single culture from Southern Europe, known to
be traditionally high in anti-social punishment and find that anti-social punishment
remains detrimental to cooperation if the PGG uses a linear production function
(where the team’s output is a linear function of the joint contributions). Despite this,
if actions are complementary (where each group member’s contribution is equal to
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the individual who contributed the least), then increasing sanctions remains an ef-
fective mechanism increasing the public good until participants develop conditional
cooperation strategies resulting in a significant and eventual reduction in all types
of punishment.

Rabellino et al. (2016) consider the behaviour of altruistic and anti-social punishment
both in-group (participants of the same nationality) and out-group (participants of
different nationalities) settings. They used the dictator game12 with a third-party
observer to explore how punishment behaviours changed depending on whether
the punisher is or is not of the same social group as the person to be punished. The
experiment confirmed the presence of altruistic punishment, regardless of the ar-
rangement of nationalities between the three individuals. However, they noted that
observers tended to punish dictators who behaved unfairly towards victims in the
observer’s group, regardless of the group of the dictator, suggesting an element of
in-group favouritism. Bryson et al. (2014) reach a related conclusion, arguing that
people are less likely to antisocially punish those they consider to be in-group. Fur-
thermore, according to Goette et al. (2010), punishment tends to occur pro-socially if
groups do not compete amongst themselves, but if they do, then members of other
groups are more likely to be the target of anti-social punishment.

The populations investigated by Herrmann, Thoni, and Gächter (2008) exhibited a
correlation between the lack of strong norms of civil cooperation, and the lack of a
strong rule of law in a country. Essentially, anti-social sanctioning is negatively cor-
related with the strength of the enforcement of the law. The authors suggest that this
might be due to the complementary nature of informal sanctions and formal law en-
forcement institutions; informal sanctions seem to work best under an effective law
enforcement system, otherwise the rise of antisocial punishment can cancel out the
positive effects of punishment. Other works provide alternative explanations and
factors explaining anti-social punishment. For instance, Parks and Stone (2010) iden-
tify the presence of anti-social punishment (in the form of expulsion from the group)
of high-contributing and low-taking individuals in a collegiate environment. They
suggest this is due to the high-contributor violating the perceived or accepted norm
of desired behaviour. An alternative proposal for the root of anti-social punishment
was given by Irwin and Horne (2013) who suggested that non-conformists from
the accepted group norms become the targets of anti-social punishment, regardless
of their positive benefits on the group. They provided evidence towards descrip-
tive norms which fuel the punishment of norm-breakers, but not the punishment
of free-riders. Similarly, Pleasant and Barclay (2018) conclude that the anti-social
punishment does not stem from differences in contribution (Thöni, 2014), punish-
ments based on moral systems, or confusion, but as a strategy to level the playing

12The dictator game is derived from the Ultimatum game in which an individual, the dictator, deter-
mines how to split an endowment between themselves, and a second player. The recipient, can either
choose to accept or reject this proposal. If they refuse, then both the dictator and the recipient receive
nothing.
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field. When an individual’s welfare depends on their level of contribution relative
to everyone else’s contributions, instead of increasing their own efforts, they punish
the high-contributors to minimise the social difference between them, lowering the
minimum amounts they must contribute to the public good.

The effect of anti-social behaviour on the evolution of punishment has been exten-
sively explored in spatial settings (Hauser, Nowak, and Rand, 2014; Nakamaru and
Iwasa, 2005, 2006; Rand et al., 2010). Group-selection has been argued to maintain
altruistic cooperation and punishment (Bowles and Gintis, 2004; Boyd et al., 2003)
but the efficacy of this stance has been refuted (Powers, Taylor, and Bryson, 2012).
Hilbe and Traulsen (2012) show that if the likelihood of knowing an individual’s
punishment reputation (the information of whether or not the player punishes) is
high enough, then cooperation can be sustained with a combination of UCs and op-
portunistic cooperators through responsible sanctioning (punishment of defectors)
despite the availability of anti-social punishing. Salahshour (2021) shows that a com-
bination of pool punishment and rewarding of punishers can allow the evolution of
pro-social over anti-social punishment.

One unexpected positive consequence of the presence of anti-social punishment is
that in spatial settings, second-order free-riding is annulled. By considering four
strategies, namely cooperators, defectors, cooperators who punish defectors, and
defectors who punish cooperators, Szolnoki and Perc (2017) show that in a spatial
model, defectors who do not punish cooperators form a shield around coopera-
tors who punish defectors, protecting them from the defectors who do punish co-
operators. Essentially, second-order free-riding on anti-social punishment counter-
intuitively aids cooperation.

2.5.4 Punishment in the PGG & OPGG

Punishment has a significant impact on the dynamics of strategies in populations
able to opt out of interactions. In its absence, the introduction of the loner strategy
alongside the acts of cooperation and defection, changes the compulsory PGG to the
OPGG. Populations playing the repeated OPGG do not converge to a single fixed
equilibrium, but instead result in cyclical population dynamics where cooperators
are invaded by defectors, who are in turn invaded by loners, presenting a fertile
ground for the re-emergence of cooperation once again (see Section 2.4.4). The pop-
ulation enjoys brief periods of cooperation, followed by defection and then longer
periods dominated by loners. Hauert (2002) and Hauert et al. (2002) show that the
resulting average payoff of the population typically tends to be no better than that of
the loner’s payoff, meaning that there is not much to be gained by playing the OPGG
in the first place all the while continuously changing strategies, and that refusing to
play the game is just as fruitful as any other option.
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Implementing a pro-social punishment mechanism - where cooperators can punish
defectors - in the compulsory PGG does improve cooperation significantly. Instead
of cooperating, a player improves their odds of a larger payoff by defecting, but this
behaviour can quickly collapse cooperation in the population if it spreads. Allow-
ing cooperators to punish defectors can improve cooperation, but since punishing
is costly, cooperators who do not punish eventually invade punishing cooperators.
Even a fully cooperative population consisting of punishers and indiscriminate al-
truists is susceptible to second-order free-riding in the presence of a non-zero likeli-
hood of implementation error, which quickly returns the population to the previous
low cooperation state (see Section 2.4).

Combining the ability to opt-out of interactions with the possibility of pro-social
punishment breaks the rock-paper-scissors dynamic of the OPGG (Fowler, 2005)
leading to population models that are always dominated by punishers solving the
second-order free-riding problem (Hauert et al., 2007). Here, cooperators who pun-
ish become the dominant strategy that are only occasionally overcome by non-punishing
cooperators through drift, but inevitably the punishers always eventually regain
dominance. Therefore, allowing individuals to choose between engaging with the
common good and not, positively impacts cooperation in the presence of coopera-
tion and the possibility of pro-social punishment. However, Pancotto, Takács, and
Righi (2021) contradict this result in experiments with non-student subjects. While
they agree that voluntary play and punishment individually increase cooperation,
they identify that punishment is a better solution to the problem of cooperation only
if the public good is compulsory. In other words, they find the two mechanisms to
be incompatible and when forced to participate, loners punish antisocially.

When a punishing society – in which any individual regardless of their chosen be-
haviour is able to punish another individual again regardless of their behaviour –
also allows individuals to abstain from the public goods, all benefits of the punish-
ments are lost. Instead of punishment taking the role of an incentive against wrong-
doing, it becomes a tool for self-preservation. In this setup, Rand and Nowak (2011)
consider cooperators, defectors, and loners each of whom are able to punish any
combination of cooperators, defectors, and loners. In the long run, it becomes ap-
parent that this situation yields a similar level of cooperation in the population to the
OPGG in the absence of any punishment whatsoever. The strategies that dominate
are those that aim to punish their would-be invaders. For instance, in the origi-
nal OPGG, the population exhibits cyclic behaviour where cooperators are invaded
by defectors who are in turn invaded by loners, who pave the way for cooperators
to take dominance again. The dynamics of the population when introducing the
complete set of punishment strategies remain largely the same, except the strategies
that remain dominant are cooperators who punish defectors, defectors who punish
loners, and loners who punish cooperators. Selection here favours antisocial pun-
ishment through the loners and defectors who both punish behaviours other than
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cooperation.

Punishment Compulsory (PGG) Voluntary (OPGG)

None • (E) Cooperation declines in repeated
interactions (Dawes and Thaler, 1988;
Hardin, 1968; Marwell and Ames, 1981)

• Rock-paper-scissor dynamics mean
cooperators are invaded by defectors,
who are invaded by loners, who repeat
the cycle by being invaded by coopera-
tors again (Hauert, 2002; Hauert et al.,
2002; Semmann, Krambeck, and Milinski,
2003)

Pro-social

• (E) Punishment of defectors raised
average levels of cooperation, and pre-
vented the decline of contributions in re-
peated interactions (Fehr and Gächter,
2000, 2002)
• (S) Group level selection is particu-

larly effective in allowing the evolution
of both altruistic punishment and coop-
eration (Boyd et al., 2003)
• (S) Strong reciprocators (pro-social pun-
ishers) are highly likely to grow when ini-
tially rare, leading to high levels of coop-
eration in a heterogeneous population of
cooperators, defectors and reciprocators
(Bowles and Gintis, 2004)

• (A) Pro-social punishment (including
punishment of non-punishing coopera-
tors which prevents second-order free-
riding) increases the basin of attraction
for punishment strategies to be the dom-
inant strategy in the population (Fowler,
2005)
• (S) Voluntary participation in conjunc-
tion with pro-social punishment (pun-
ishment of defectors) leads to popula-
tions dominated by punishers, which are
only (temporarily) defeated by coopera-
tors through neutral drift before punish-
ers return, compulsory participation usu-
ally leads to universal defection (Hauert
et al., 2007)

Complete

• (E) Anti-social punishment observed
in several societies linked by weak so-
cial norms of civic cooperation and a
weak rule of law Herrmann, Thoni, and
Gächter (2008)
• (A) When antisocial punishment is pos-
sible, altruistic punishment can no longer
promote cooperation (Rand et al., 2010)

• (S) In the spatial PGG, defectors
that do not punish cooperators (and are
therefore free-riding on antisocial pun-
ishment) protect cooperators from antiso-
cially punishing defectors (Szolnoki and
Perc, 2017)

• (A) When people other than defec-
tors can be punished, the population dy-
namics return to the earlier rock-paper-
scissor dynamics with a comparable level
of cooperation to the case with no pun-
ishment. The dominant strategies here
are the ones that punish their would-be
invaders (C-NPN, D-NNP, L-PNN) Rand
and Nowak (2011)
• (A) If loners are excluded from pun-
ishing and from being punished (or ex-
cluded from being punished alone), then
cooperators who punish defection thrive
despite the availability of antisocial pun-
ishment, returning to high levels of coop-
eration as long as intensity of selection is
high enough García and Traulsen (2012)

TABLE 2.7: Summary of key literature on pro/antisocial punish-
ment with compulsory/optional play. Describes experimental (E),

simulation-based (S) and analytical (A) studies.

Raihani and Bshary (2019) offer a comprehensive review (also see Table 2.7) of the
main arguments and predictions surrounding punishment as a tool for cooperation:
(1) punishers should also be cooperative, (2) punished individuals should cooper-
ate more in the future, (3) punishment should be used in scenarios where it is most
likely to deter cheating, (4) punishment should be targeted towards defectors and
not cooperators, (5) punishers should base their actions not on payoffs but on ac-
tions. Their review systematically argues against each of these predictions. For our
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purposes, the presence of antisocial punishment (Herrmann, Thoni, and Gächter,
2008; Rand and Nowak, 2011) is enough to disprove each and every one of these
predictions. Therefore, while punishment could be used as a tool for cooperation, it
is just as capable of protecting selfish behaviours where most are not beneficial to
the population as a whole.

2.6 Indirect Reciprocity on Networks

The majority of works we have discussed so far, we typically assume that the pop-
ulation is well-mixed; interactions take place randomly and in an infinite or large
population such that individuals never meet each other twice. While this assump-
tion makes the analytical approach to solving social dilemmas easier, it does not
always hold true in practise. Many situations exist involving cooperative behaviour
across a particular structure. For instance, citation-cartels (Fister, Fister, and Perc,
2016) are groups of researchers who cite each other more frequently than they do
other researchers, cells can be thought of as networks of chemicals that are con-
nected by their reactions, the internet is a network of routers and computers each
cooperating to sustain near-instant global communication. With the advent of so-
cial media, humanity has never been more connected with many users obsessed
with getting followers, visibility and popularity. With so much taking place through
clearly defined and evolving networks (Kleinberg, 2013; Newman, 2003; Vespignani,
2018), key questions arise. What do these networks look like? How do they grow?
What properties do they have? What happens when bad actors take over parts of the
network for exploitative purposes? Can reputation play a role in keeping these net-
works safe from free-riding? To reliably and robustly sustain cooperative behaviour
in these networks, understanding their fundamental properties and characteristics
is essential.

Classical evolutionary game theory, can be extended to a spatial dimension. The
easiest such instance begins with a simple two-dimensional lattice. This a set of
nodes and edges arranged in a grid-like structure. Nodes represent individuals or
entities13, while the edges connecting them form the pathways through which so-
cial dilemmas occur. Modellers have the choice of two types of neighbourhood in
which to play (although variants do exist): the von Neumann or Moore neighbour-
hoods. The former only considers connections between a focal individual and their
neighbours immediately to the north, south, east and west of them. The latter, ad-
ditionally includes the neighbours to the northeast, southeast, northwest and south-
west. Regardless of the specific type chosen, the same process holds. Individuals
are randomly selected within the lattice to interact either in pairs (in the case of the
two-person PD) or in groups (in the case of the n-person PD or the PGG). Once each
individual has played, or the round ends stochastically, they either accumulate or

13Many works remove the middleman and assume nodes are occupied by strategies
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average their payoffs (Ichinose and Sayama (2017) show that this can lead to differ-
ent qualitative outcomes) which are used in the evolutionary stage. In this stage,
modellers typically implement either a deterministic or stochastic strategy update
rule. The former is of the “copy-the-best” type, where individuals choose to copy
the strategy of the best-performing individual in their neighbourhood. The latter
is of the “copy-the-better” type, where individuals choose to copy the strategy of
a better-performing individual in their neighbourhood, typically with some proba-
bility14. Depending on the intent of the modellers, these updates can either happen
synchronously where earlier updates can potentially impact the later updates within
a single round, or asynchronously where updates occur instantaneously through the
network, based on a static set of information for everyone in the population.

These decisions form the fundamentals of a framework of study for the effect of
spatial structure upon population organisation and selection. Lindgren and Nordahl
(1993) explores many such approaches to modelling spatial structures in biological
and ecological settings, as does Hauert (2006), while Szabó and Fáth (2007) explores
evolutionary games in a review targeted towards physicists.

2.6.1 Lattices

Nowak and Sigmund (1992) were the first to study the simplest possible case of co-
operation and defection on such lattices. Ignoring all aspects of strategies or memo-
ries of past behaviour, they considered individuals arranged on a two-dimensional
lattice (see Fig. 2.4) where each connection denotes a PD partner. They consider the
simplest population consisting of just two types of player: UCs and UDs. By re-
peatedly simulating interactions on this lattice, they uncovered “patterns of extreme
richness and beauty”. The simple and deterministic strategies of unconditional co-
operation and defection gave rise to sequences of “dynamic fractals” not unlike the
cellular automatas explored in Conway’s Game of Life (hereafter known as “Life”).
Indeed the same structures from Life like gliders (and rotators, and growers) have
been shown to arise in networks of cooperators and defectors (Nowak and May,
1993). Symmetrical yet chaotic patterns emerge both when a single cooperator in-
vades a world of defectors, and when a single defector invades a world of coopera-
tors as long as the initial configurations of the populations are suitably symmetrical.
For particular ranges of the benefit to defectors, irregular but static patterns emerged
where cooperators and defectors could coexist. Here, only 2x2 clusters (or larger) of
cooperators could invade defectors, and vice versa. Cooperators in these situations
relied on clustering effects to avoid invasion from defectors. Cooperators, when in
clusters of other cooperators, had a lower chance of being exploited by a defector.
In the long run however, it was shown that most (but not all) sizes of lattices under
these scenarios eventually end up completely dominated by UDs.

14Usually this is linearly proportional to the difference of their payoffs.
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d = 3 d = 4 d = 6

FIGURE 2.4: Degree d regular lattices. Three values for d are shown
where in each graph, each node has exactly d neighbours.

A more general lattice model involving two-person matrix games is considered by
Lindgren and Nordahl (1994). In addition to exploring strategies of a finite memory
(genetically encoded as binary strings, see Section 2.7.2), they explore the special case
of the PD between UCs and UDs (memory-0 strategies) on a two-dimensional lattice,
identifying considerably more complicated behaviours than in the well-mixed pop-
ulation case. Varying the payoffs for the temptation (when one individual defects
exploiting the other’s cooperation) and punishment (when both individuals defect)
cases of the PD, (see Table 2.1), Lindgren and Nordahl (1994) numerically found
five different regions of qualitatively different, asymptotic behaviours: homogenous
population of defectors, small stable clusters of cooperators among defectors, stable
percolation network of defectors among cooperators, chaotic coexistence of cooper-
ators and defectors, organised spatial structures of cooperators among defectors that
grow linearly from small seeds to a stable state, some of which also show oscillatory
behaviours akin to Life’s cellular automata.

While Hauert et al. (2002) began their OPGG exploration by considering well-mixed
populations, they also consider their population arranged within a square lattice.
They consider the four combinations of setups that arise from a low versus high
public good multiplier, and a deterministic versus stochastic update rule. They find
that in the spatial OPGG, cooperators persist as long as the loner’s payoff isn’t too
lucrative compared to cooperating in the public good, regardless of whether individ-
uals imitate strategies deterministically or stochastically. However, when updates
are stochastic, the absence of loners signals the extinction of cooperators even with
a high public good synergy factor.

Only a very high public good multiplier can sustain cooperation if the public good
is compulsory, but if people are allowed to withdraw from it, then the conditions
to sustain cooperation are relaxed and it can be sustained for lower public good
multipliers. Thus loners in the spatial public goods game perform much the same
function as they do in the well-mixed population case, they provide protection from
defection.
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A direct comparison of the spatial PD and PGG was achieved with a simple trans-
formation of payoff equations in Hauert and Szabó (2003). They explored several
aspects of the two spatial social dilemmas: the difference between pairwise and
group interactions, the effects of group size, both von Neumann and Moore neigh-
bourhoods (both play the dilemma with neighbours to the north, south, east, and
west, while the latter also includes the neighbours to the north-east, south-east,
north-west, and south-west), and the provision for optional play. In the compul-
sory PGG, the results do not change when pairwise interactions (in the PD) move
towards group interactions (in the PGG). As the public good multiplier increases,
three domains of behaviour emerge. Defection is dominant for the lowest multipli-
ers, while cooperation is wide-spread for the highest multipliers. For moderate mul-
tipliers, both defectors and cooperators can comfortably coexist.The voluntary PGG
or the OPGG confirm the findings of Hauert (2002) where if the multiplier is suffi-
ciently high, a dynamic equilibrium exists exhibiting rock-paper-scissors cyclic be-
haviour which is visually seen as waves of cooperators, defectors, and loners sweep-
ing across the lattice (Szabó and Hauert, 2002a show that the voluntary PD gives
rise to cyclic dominance and self-organising patterns on square lattices, but different
oscillatory behaviours on random regular graphs dependent on T, the temptation
to defect). Cooperation becomes inviable if the public good multiplier is not suffi-
ciently high, since loner returns the greatest payoff, but if the multiplier is too great,
then being a loner is no longer necessary as cooperation can thrive despite the pres-
ence of defectors. Viewed through the lense of group size, in the compulsory setting
larger groups make cooperation more difficult, while the relationship is reversed
when optional play is allowed where cooperation is more easily achieved in larger
groups.

Indirect reciprocity based on the social capital of closed triads were found to be the
best to support cooperation on simple networks playing the PD (Righi and Takács,
2018). Szabó and Hauert (2002b) instead consider the OPGG in the spatial setting,
uncovering the re-emergence of rock-paper-scissors dynamics as in the non-spatial
setting. This was shown to be reliant on clustering effects and the multiplier of the
public good. This was recreated in Hauert and Szabó (2005) with the PD where
they identified the conditions that allowed oscillatory coexistence of cooperators,
defectors, and loners on both random regular lattices, and small-world networks.

Kirchkamp (2000) develops the work of Nowak and May (1993) and Nowak and
Sigmund (1992) by addressing two key assumptions. Firstly, the synchronicity of
interactions, where each individual plays a dilemma with each individual simul-
taneously with every other individual in the population, thus they all interact and
imitate strategies with common information. Secondly, the indiscriminate nature of
players. Kirchkamp (2000) considers both interactions happening in a continuous
manner, with discriminating strategists based on Moore automata. A number of in-
teresting results are found: complexity favours cooperation, local evolution leads
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FIGURE 2.5: Degree d random regular lattices. Three values for d are
shown where in each graph, each node has exactly d neighbours.

to alternating patterns of feeding and exploiting between neighbouring strategies,
and cooperation survives with either synchronous or asynchronous timing if play-
ers have a long memory. Allen, Gore, and Nowak (2013) explore the public goods
game within a biochemical context where public goods can diffuse, and find that
cooperation is favoured under low diffusion rates, low colony dimensionality, and
low decay rates of the public good.

If the assumption of regularity is removed from the lattice, then we can conceive
of a graph with a uniform degree distribution but where each and every node had
exactly the same number of neighbours, but with random connections. These are
called d-degree random regular lattice or d-RRL. These (Kun and Scheuring, 2009;
Ohtsuki, Pacheco, and Nowak, 2007; Rong et al., 2019; Vukov, Szab’o, and Szolnoki,
2006) can show improved cooperation (Hauert and Szabó, 2005) when compared to
regular lattices.

Ohtsuki et al. (2006) find an approximate rule for the evolution of cooperation on
graphs considering again only populations of unconditional altruists and defectors.
Reminiscent of Hamilton’s rule15 (Hamilton, 1964), they find that if the benefit b
to cost c ratio exceeds the average number of neighbours k within the graph ( b

c >

k), then cooperation can evolve even without the effects of reputation or strategic
complexity. Since behaviours are spread through imitation of one’s neighbours, the
more neighbours you have, the faster cooperative behaviour can spread and the
more strongly natural selection is favoured, something they call social viscosity.

While the simplest case to consider is a population arranged within a lattice, it is con-
ceptually straightforward to generalise to any kind of topology. Lieberman, Hauert,
and Nowak (2005) tries to answer the simplest question of evolutionary graph the-
ory: “what is the probability that a newly introduced mutant generates a lineage that
takes over the whole population?” They label this the fixation probability and define it
for the class of lattice structures (triangular, square, hexagonal or any similar tiling),
and structures where the adjacency matrix is symmetrical. They conclude that the

15 b
c > 1

r where r represents the degree of genetic relatedness.
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FIGURE 2.6: Clustering and Characteristic Path Length of small-
world networks. A simulation-based recreation of a result from Watts

and Strogatz (1998).

underlying structure of graphs can completely alter the outcome of evolutionary
games and so we focus our analyses onto three such graphs, the Erdős-Rényi ran-
dom network, the Watts-Strogatz small-world model, and Barabasi-Albert scale-free
networks.

2.6.2 Clustering and average path length

Two common characteristics used to discuss and compare these theoretical graphs
with networks found in the real world, are the clustering coefficient C and the av-
erage path length L (Fig. 2.6). A graph or network with a high clustering coeffi-
cient signifies the presence of multiple groups of nodes that are highly connected
in-between themselves, while the groups themselves have very sparse connections
in-between them. The clustering coefficient (Watts and Strogatz, 1998) of a net-
work is the average of the local clustering coefficients across each vertex, defined
as Ci =

2|{ejk :vj,vk∈Ni ,ejk∈E}|
ki(ki−1) where Ni = {vi : eij ∈ E ∪ eji ∈ E} is the neighbourhood

of vertex i, vi represents vertex i and ejk represents the edge connecting vi and vj

making the average clustering coefficient C = 1
n ∑n

i=1 Ci. A low average path length
however describes the average distance between any two randomly chosen nodes
on a network, as a measure of how easy it is to traverse a network along its edges
defined as L = 1

n(n−1) ∑i ̸=j d(vi, vj) where d(·, ·) is the length of the shortest path
between two nodes.

2.6.3 Erdős-Rényi

The analytically simplest non-lattice network was conceptualised by Paul Erdős and
Alfréd Rényi who proposed (Erdős, Rényi, et al., 1960) a graph of vertices and and
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G(30,0.04) G(30,0.1) G(30,0.3)

FIGURE 2.7: ER random networks. Three different probabilities of
any two nodes being connected are shown. Nodes shaded grey are

unconnected.

randomly arranged edges (Fig. 2.7). Called the Erdős-Rényi random network (ER), it
is generated by randomly selecting a graph from the set of all graphs with n vertices
and M edges. An alternative definition (that is slightly more useful for our purposes)
was independently proposed Gilbert (1959) by Edgar Gilbert. His definition started
with n vertices and the probability p that any two vertices are connected. This is
written as the G(n, p) model and is sometimes called the Erdős-Rényi-Gilbert model
(Fienberg, 2012) (with the previous model described as G(n, M)). These networks
are characterised by a constant, random and independent probability of any two
nodes being connected, and as such they have a low clustering coefficient and a low
average path length.

Cooperation is difficult to achieve on ER random graphs with UCs and UDs. Spread-
ing cooperation is difficult without large benefit/cost ratios or a low density (a low
probability of any two nodes being connected (Ohtsuki et al., 2006)). Raghunandan
and Subramanian, 2012, Theorem 5 shows16 that if G(n, p) is an ER random graph
where p = O( 1

n ), then G does not sustain cooperation. Poncela et al. (2007) explored
ER random graph through simulations, comparing them with scale-free networks
to identify the minimum number of initial cooperators required to achieve coopera-
tion. Hofmann, Chakraborty, and Sycara (2011) explored different strategy update
rules and identified that the win-stay-lose-shift strategy from Nowak and Sigmund
(1993) yields the best cooperation in random networks.

2.6.4 Small-world

Random networks are useful abstractions to aid analysis of complex networks, but
they do not exhibit many of the characteristics that we would expect from real-world
networks. These are characterised by a short average path length and a high cluster-
ing coefficient (while the ER random network has a low clustering coefficient). These

16The theorem statement uses Big-O notation which provides the upper bound of the growth of a
function.
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k=4, p=0 k=4, p=0.01 k=4, p=0.1

FIGURE 2.8: Small-world networks. Starting from an initial ring lat-
tice with k = 4 neighbours, edges are removed (red & dotted) and
rewired (red & solid) with some probability. Three such rewiring
probabilities p are shown. Networks with a small rewiring proba-

bility are said to be small-world networks.

graphs (Fig. 2.8) tend to contain cliques which are essentially sub-graphs or sub-
networks highly connected within themselves, but much more sparsely connected
between them. They are frequently be found in the real world like the neural net-
work of a worm, the United States power grid, the collaboration network between
actors (Watts and Strogatz, 1998), social movements (Shirky, 2008), information dis-
semination on Twitter Ch’ng (2015), diffusion and transport in porous rock (Yang,
2001), and earthquakes (Jiménez, Tiampo, and Posadas, 2008). Studies have also
shown that these small-world properties exist within the brain (Bassett and Bull-
more, 2017; Bassett and Bullmore, 2006; Bettencourt et al., 2007; Sporns et al., 2004;
Yu et al., 2008), allowing more efficient communication between neurons (Bullmore
and Sporns, 2012).

The Watts-Strogatz model (Watts and Strogatz, 1998) was suggested to account for
the middle-ground between completely regular graphs (like lattices) and completely
random graphs (ER). Generating a Watts-Strogatz small-world (WSSW) graph be-
gins from a ring lattice (n vertices where each vertex is connected to the k nearest
neighbours), where each edge is rewired to another random vertex with probability
p. When p = 0 the ring lattice is unchanged (with high clustering and high average
path length) and when p = 1 the graph is completely random (with low clustering
and low average path length). For small rewiring probabilities, specifically in the
range p ∈ [10−3, 10−1] (Watts and Strogatz, 1998), the small-world characteristics of
high clustering and low average path length emerge.

Many works have studied the evolution of cooperation on small-world networks
(Cameron and Cintrón-Arias, 2013; Watts, 1999). Small groups of cooperators (on
average of size four) persist on small-world networks (Abramson and Kuperman,
2001), which - with a small rewiring probability - give rise to a population where
cooperators can beat defectors. The small-world networks still appear to be (Masuda
and Aihara, 2003) the optimal network structure when it comes to the spread of
cooperative strategies, when compared to a family of topologies that range between
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m=1 m=2 m=4

FIGURE 2.9: BA networks. These networks are parametrised by the
number of edges created per added node. Darker nodes correspond
to nodes with larger degrees, white nodes have the minimum degree

of the graph (typically m).

a regular lattice to a completely random graph. Hauert and Szabó (2005) confirmed
these results but also identified the ranges of the ratio of costs to net benefits that
allowed oscillatory coexistence of the three strategies of cooperation, defection and
abstention on both random regular lattices, and small-world networks. If a regular
lattice was rewired instead of a ring lattice, a random regular relational graph is
formed where Tomochi (2004) shows that random connections create defector niches
in which no incentives exist that favour cooperative strategies.

2.6.5 Scale-free

Small-world networks are not the only structures argued to resemble empirical net-
works. In particular, there are networks that satisfy a scale-free and power-law de-
pendence of the degree distribution (Albert and Barabási, 2002; Barabási and Albert,
1999; Dorogovtsev and Mendes, 2003). While some argue that these are quite rare
in practise (Broido and Clauset, 2019), others disagree (Artico et al., 2020). Often
credited to Barabási and Albert (1999), these graphs (Fig. 2.9) are generated via the
process of continuously and preferentially adding new vertices. This thesis will fo-
cus on the preferential attachment approach used in the Barabási-Albert (BA) model.
Simply put, the more highly connected a node is, the more likely it is a newly added
node will be connected to it. This incorporates two key concepts of growth and
preferential attachment, both very common in real networks.

Scale-free networks are thought to have a degree distribution that follows a power
law k−α where k is a particular degree. They attempt to explain networks where
there are a select few nodes with a very large number of neighbours, and a great
many nodes with very few neighbours. The ER model on the other hand exhibits a
Poisson degree distribution (Erdös and Rényi, 2011), while the small-world model
suggested by Watts-Strogatz exhibits a degree distribution that peaks narrowly at
k (the degree of the initial ring-lattice) for a rewiring probability p = 0 and gets
broader for increasing p (Barthélémy and Amaral, 1999).
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Cooperation is favoured in scale-free networks over random networks like the ER
model (Hofmann, Chakraborty, and Sycara, 2011; Nowak and Sigmund, 1992; Raghu-
nandan and Subramanian, 2012; Santos and Pacheco, 2005). They arise naturally in
Li, Zhang, and Hu (2007) if individuals are able to cultivate long-range links to other
individuals in the population. In their model, learning occurs under the copy-the-
best paradigm, whereby individuals both copy the strategy of the neighbour that is
most successful, and by swapping their long-range link to that of their neighbour
if they are more profitable than the current link. This coevolution method allows
higher cooperation than networks that do not have adjustable long-range connec-
tions. Santos, Rodrigues, and Pacheco (2006) and Santos, Santos, and Pacheco (2008)
attribute the higher levels of cooperation in scale-free networks to the presence of
cooperative hubs as they can enjoy higher payoffs than their defecting neighbours.
Others consider clustering and degree assortativity17 effects to play an important
role (Assenza, Gómez-Gardeñes, and Latora, 2008; Jia and Liu, 2022; Kuperman and
Risau-Gusman, 2012; Wang, Suri, and Watts, 2012). Nath, Sinha, and roy (2021)
disagrees and compares scale-free networks with other networks exhibiting identi-
cal degree distributions to argue that cooperation does not necessarily depend on
clustering nor on the presence of hubs. The degree distribution may play a sig-
nificant role according to Lee et al. (2008) where they consider both homogenous
and inhomogeneous group sizes. Under certain conditions with an inhomogeneous
group size, lower degree individuals are more likely to be cooperators than higher
degree individuals when payoffs are low, but this relationship weakens when pay-
offs are high. When group sizes are fixed, they find non-monotonic dependence on
the payoffs which they attribute to the network structure. Payoff functions have
also been examined, particularly the difference between accumulated and average
payoffs which were also found to be dependent on the average degree. Ichinose
and Sayama (2017) finds that accumulated payoffs allow higher cooperation than
average payoffs (the accumulated payoff divided by the number of neighbours with
whom they play the PD). However when the average degree increases, cooperation
decreases for the accumulated payoff and increases for the average payoff which
again shows that low-degree individuals are important in the pursuit of coopera-
tion.

2.6.6 Related works

Even though this thesis will only focus on the particular networks above, there are
two avenues that are particularly interesting within the literature and are worth
mentioning: dynamic and multiplex networks.

Static networks have been a key assumption in the models discussed where once
the network has been formed, no new nodes enter or exit the population, and no

17Assortativity refers to the tendency of a node to connect to other nodes that are similar in some
way, usually by node degree.
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new edges are formed, nor are they destroyed. Several works have challenged
this assumption, modelling the breaking and formation of social ties. The group-
selection (Smith, 1964) and the Red Queen (Hauert et al., 2002) mechanisms have
been shown to develop spontaneously in Szolnoki and Perc (2009) where after up-
dating strategies, individuals lose their connections but have regular chances to re-
place them. The timescales and rates at which links are both formed and broken
have been explored by Pacheco, Traulsen, and Nowak (2006a,b) where they iden-
tify the conditions for the evolution of cooperation to be favoured by natural se-
lection. The movement of individuals have been considered (Yu, 2011), finding that
cooperators moving more slowly than defectors offers better chances for cooperation
(Cheng et al., 2010).The dynamic nature may not even be restricted to the topology
of the networks but of the dilemmas faced by their populations. Li et al. (2019) al-
lows agents to learn the dilemmas played by their neighbours, thereby being able to
choose to play it themselves for their own benefit. Emotional content embedded on
signed networks has been shown to catalyse the spread of unconditional coopera-
tion with the most favourable conditions found in networks with high probabilities
of rewiring and low likelihoods of strategy adoption (Righi and Takács, 2014). In-
terestingly, contrary to non-signed networks, cooperation becomes more common
when the network topologies increase in density.

Multiplexes are another area of network science of particular relevance to the evo-
lution of cooperation with a wide array of multi-disciplinary analyses (Bardoscia et
al., 2021; Battiston and Martinez-Jaramillo, 2018; Boccaletti et al., 2014; Hristova, Mu-
solesi, and Mascolo, 2014; Kivelä et al., 2014). Multiplexes describe systems where
each layer is associated with a specific spatial or temporal setting, for example the
transport system in major cities which are a combination of multiple modes of trans-
port: buses, trams, railways, metros. The PD played over multiple layers of a multi-
plex show improved levels of cooperation and an increased resilience against defec-
tion for all levels of temptation (Gómez-Garde\ nes et al., 2012) but more evidently
with high temptation. Battiston, Perc, and Latora (2017) find enhanced cooperation
in the PGG when there exists a significant overlap over the edge layers of a multi-
plex as long as at least one layer supports cooperation with a sufficiently high syn-
ergy factor. Matamalas et al. (2015) distinguishes between coherent (same strategy
on each layer of the network) and incoherent (possibly different strategies on each
layer of the network) strategists, identifying a unique role for the incoherent players
in each of the types of social dilemmas (the harmony, PD, stag-hunt, and hawk-dove
games). Multiplexes are a relatively recent area of study (Boccaletti et al., 2014) but
is relevant to several fields with a lot of rich dynamic to be explored like diffusion of
behaviours (Cencetti and Battiston, 2019; Nag Chowdhury et al., 2020) or rumours
(Xian et al., 2020), and social pressure (Pereda, 2016).
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2.7 Approaches to modelling evolution

Over the decades, a large array of techniques and approaches have been utilised
to study the evolution of cooperation. Models like those of Nowak and Sigmund
(1998a,b) and Rand and Nowak (2011) or the leading eight (Ohtsuki and Iwasa, 2006)
were explored primarily through mathematical analysis of the limiting behaviours
of the payoff functions with average group composition to determine evolutionary
stability. Mean-field theory (Szabó and Fáth, 2007; Szabó, Vukov, and Szolnoki, 2005;
Vukov, Szabó, and Szolnoki, 2008) has been used to approximate concentrations of
cooperators in spatial settings. While incredibly useful, a strictly analytical approach
- especially in situations where empirical data is sparse or when strategies and norms
use higher-order information - is difficult and time consuming. Computational al-
ternatives like agent-based models and genetic algorithms provide researchers with
tools that are superior in modelling more complex systems, allowing them to explore
and investigate emergent behaviours and glean stylised facts with ease.

2.7.1 Agent-Based Modelling

Agent-based models (ABMs) are a field-agnostic method of simulating complex adap-
tive systems and to examine their emergent behaviour (Abar et al., 2017). Modellers
specify agent attributes, strategies of behaviour, the connections between agents,
their methods of interaction, and their environment in which they exist. The gen-
eral idea is that by specifying simple rules and mechanisms at the micro-level can
give rise to complex and highly convoluted effects at the macro-level. They have
been used to simulate very simplistic behaviours like Life (popularised by Gardner
(1970)), or on an enormous scale to simulate the European economy (Deissenberg,
van der Hoog, and Dawid, 2008; Holcombe et al., 2013), and everywhere in-between
(Righi and Takács, 2017b). In models with several interconnected mechanisms work-
ing synergistically with multiple independent sources of stochasticity, finding a math-
ematically accurate analytical model is virtually impossible.

This is not to say that ABMs are a replacement for a rigorous mathematical ap-
proach. Mathematical assumptions used in investigating evolutionary game the-
ory like an infinitely large population, perfect mixing of populations, determinis-
tic strategies are infeasible and untrue in real, finite populations (Adami, Schossau,
and Hintze, 2016). Such properties of realistic systems are more achievable through
ABMs. Manzo (2014) argues that like any other approach, the method of ABM has
its disadvantages: it suffers from the conditional nature of results (dependency on
model inputs, and internal assumptions and structure), the uncertainty of results
(relying on repeated realisations which provide results in terms of distributions and
their volatilities), the transparency of model workings (the difficulty in understand-
ing the underlying process of the programmed mechanisms), and the reproducibil-
ity of such models (despite the increasing availability of standardised agent based
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modelling packages, the modelling of such specific phenomena lead researchers to
largely develop their own code, the inherent difficulty in explaining every nuance
of a model within a publication’s word or page limits, and the lack of open-sourced
code leads models to not be easily reproduced). Wunder, Suri, and Watts (2013)
notes that the findings from agent based models should complement mathematical
and empirical findings by parametrising and initialising their models from empiri-
cal and experimental findings, to then conclude their simulations in the traditional
way.

2.7.2 Genetic Evolution Algorithm

Earlier works have been limited in the strategy spaces they explore. Ohtsuki, Pacheco,
and Nowak (2007) limit their search to second-order assessment rules for the pur-
poses of “making the exhaustive examination of global behaviour feasible.” Genetic
algorithms or GAs (Holland, 1992; Mirjalili, 2019; Sumida et al., 1990) can address
the issue of searching for an optimal solution over a large or high dimensional space
using the typical properties of selection, crossover and mutation (Goldberg and Deb,
1991). They have been used in environmental modelling (Burn and Yulianti, 2001;
Cho, Seok Sung, and Ryong Ha, 2004), optimisation (Maier et al., 2019), student-
project-supervisor allocation (Abraham, Irving, and Manlove, 2007) just to name a
few. Their key advantages in the study of cooperation is that they allow a dynamic
method of searching for behavioural strategies that are able to sustain cooperation
and are robust and resilient towards defectors, without having to search through the
entire set of solutions like Ohtsuki and Iwasa (2004, 2007).

Inspired from biological evolution, genetic algorithms aim to abide by the Dar-
winian theory of survival of the fittest. GAs are used in conjunction with ABMs
where populations consist of chromosome representations that each describe a poten-
tial solution. These chromosomes - typically binary string format - describe charac-
teristics, traits or behaviours which are used to evaluate each chromosome or solu-
tion’s fitness. The chromosomes of the population with the highest levels of fitness
then form the basis of the next generation of the population. For each new genera-
tion, genetic operators iteratively create child chromosomes based on the best parent
chromosomes of the previous generation. This is called selection. Crossover then com-
bines the genetic components of the parent chromosomes by mixing and matching
segments of the chromosomes. One approach for this involves choosing two parent
chromosomes, randomly selecting a crossover point known as a chiasma, and then
creating a child by swapping a segment between parents, with the new child ran-
domly chosen from the two possible choices. Lastly, mutation enables an element of
exploration, randomly swapping bits in the binary string representation of the chro-
mosome. This allows the algorithm the chance to find true global optima and avoid
being trapped near a local optimum.
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Katoch, Chauhan, and Kumar (2021) summarises many of the different options a
modeller could choose for each genetic operator. For instance chromosomes need
not be binary, but could take octal, hexadecimal or value encodings. Choosing the
best in the population of solutions could be undertaken through roulette-wheel se-
lection, Boltzmann or tournament selection. Crossover as discussed in the previous
paragraph describes single point crossover, but there are numerous ways this could
be achieved: K-point, order, shuffle, or cycle crossover (just to name a few). Like-
wise there are multiple methods of mutation; bit flipping remains the traditional
approach but there are also displacement, inversion, or scramble mutation mecha-
nisms. Each have their benefits and disadvantages relevant to modelling in different
domains.

GAs are only occasionally used within the study of the evolution of cooperation,
even less so in combination with reputation. The earliest such work was the seminal
paper by Axelrod in Bicchieri et al. (1997, chapter one), using a GA to search through
the strategy space parametrised by the outcome of the previous three PD rounds.
Since there are four possible outcomes for a single round (as specified by the four
cases of R, S, T, and P), there are 43 = 64 possible outcomes for which an answering
action must be encoded. These are represented as “a list of sixty-four C’s and D’s”.
The three initial moves must also be specified, resulting in an additional six genes (to
cooperate or to defect for each of the three beginning rounds gives 2 × 3 = 6 genes).
Thus with a total of 70 genes, and since each gene is a response to a unique state of
the game, they can take on the values of C or D resulting in 270 or approximately 1021

possible strategies. Suppose that it is possible to simulate a population consisting of
a single strategy against unconditional defectors, and that this takes just one second.
It would still take 3.74 × 1011 centuries to finish simulating the entire strategy space.
Of course this crude approximation assumes simulations running one after another
which does not have to be the case. But even if we were able to run these simulations
in parallel, the process would still be already virtually impossible just for a memory-
3 strategy space.

In the search for cooperation through indirect reciprocity, Suzuki and Akiyama (2005)
explores varying image scoring strategies using a genetic algorithm that uses a bi-
nary tournament selection mechanism to identify the parents for reproduction. Here,
pairs of candidates are randomly sampled from the population, where the one with
the higher fitness is chosen to be the parent with probability 0.9, and is subsequently
copied to form a single individual in the following generation of the population.
Memory m strategies are explored in Lindgren and Nordahl (1994), where each
memory-m strategy genome is encoded as a binary string s of length 2m. Selec-
tion occurs through a copy-the-best mechanism, simultaneously occurring for each
individual in the lattice where they always adopt the best strategy within the von
Neumann neighbourhood. Three kinds of mutations are explored within the re-
productive stage. Point mutations flip single bits with some frequency/probability,
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gene duplications increase the memory of strategies from m → m + 1 with some
probability, and finally split mutations splits a genome into two smaller genomes of
equal size, one of which is chosen at random to be kept in the population. Thus,
the genetic formulation of the strategy space combined with the mutation processes
allow the search for optimal strategies of an unbounded space of strategies (since
multiple memory-m strategies can be introduced into, coexist in, and die out of the
population). Considerably more complex formulations of such problems are possi-
ble. Albin and Foley (2001) considers memory-1 strategies within the spatial com-
pulsory PGG and represents them as 19-bit binary strings. These are organised as a
tuple of a single bit, and two eight bit strings where 1s and 0s represent the acts of
cooperating and defecting respectively. The first bit encodes the individual’s open-
ing behaviour, whether it is nice or not in Axelrod’s terms. The next eight-bit tuple
denotes actions depending on how many of their eight neighbours cooperated in the
previous round, assuming the individual defected in that round, while the second
eight-bit tuple assumes the individual cooperated. This strategy space gives rise to
219 = 524288 possible strategies, which despite being orders of magnitude smaller
than Bicchieri et al. (1997) would still be impractical to analyse with traditional ap-
proaches.

Uniquely, Schimit (2014, 2016) and Schimit, Santos, and Soares (2015) consider genomes
to consist of a single locus dictating an individual’s probability of cooperation, while
exploring multiple fitness functions prioritising varying preferences including an
individual’s lifetime, how much death they have caused (how aggressively they
evolve in the population), and possible combinations of the two.

2.7.3 Experimentation

Models, no matter how accurate, are always an abstraction of reality. Every mathe-
matical and computational study is accompanied by numerous simplifications and
modelling assumptions to help make a problem tractable. This allows them to test
their hypotheses in a quick, repeatable and verifiable way using the modern comput-
ing power to rapidly simulate millions of generations of evolution. While it would
be difficult and at times irresponsible to map the findings of their models one-to-
one onto real life, they can provide a suitable starting point for more focused social
experimentation (Kleinmeier, Köster, and Drury, 2020; Rand and Nowak, 2011).

Historically, this has usually been with the help of high-school or undergraduate
students in the researchers’ home institutions (de Quervain et al. 2004; Fehr and
Gächter 2000, 2002; Marwell and Ames 1979; Sanfey et al. 2003, just to name a few)
due to convenience and cost. Gathering human subjects that are not students and
will attentively participate in all stages of the study is a much more challenging en-
deavour (Coen, Patrick, and Shern, 1996; Patel, Doku, and Tennakoon, 2003; Samek,
2019). Henrich (2006) and Pancotto, Righi, and Takács (2020) use representative sam-
ples of a country in an effort to legitimise the study of social norms within actual
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social groups. However, in practise it is difficult to achieve the exact balance that
is representative of the general population due to timing, availability, geographical
constraints. In many cases, the resulting conclusions from such experiments can be
entirely different depending on, for instance, geographical location (like Herrmann,
Thoni, and Gächter (2008) identifying very low levels of anti-social punishment in
Boston, US, while Muscat, Oman showed much greater levels of anti-social pun-
ishment). While the point of Herrmann, Thoni, and Gächter (2008) was in fact to
highlight this difference particularly relating to punishment norms, it is equally ap-
plicable to all societal norms and behaviours. Budgetary and funding constraints
on such experiments can lead to erroneous conclusions that are only applicable on
certain narrow subsets of the human population.

It is possible to sidestep some of these issues with Amazon Mechanical Turk (AMT),
which is a crowdsourcing marketplace to enlist a human workforce to complete mi-
crotasks (typically 5 minutes). It is well suited towards gathering qualitative and
quantitative data, however it does fall short at collecting interviews, running fo-
cus groups, and gathering naturalist data. It is becoming increasingly popular due
to several reasons (Shank, 2016). For budget-constrained researchers and graduate
students, it can provide a way of gathering experimental data that would usually
be too cost-prohibitive. It can serve as an intermediary stage between computa-
tional modelling and full-scale/long-term data collection whereby researchers can
trial run their studies on a smaller scale as a pilot study or a proof-of-concept. Fur-
thermore, it can aid access to particular demographics, particularly those outside
of the local community, that would be difficult or prohibitively expensive to access
the usual way. Several works have had success on gathering economic data on on-
line labour markets, not necessarily AMT (Buhrmester, Kwang, and Gosling, 2011;
Horton, Rand, and Zeckhauser, 2011; Mason and Suri, 2010; Rand, 2012; Rand and
Nowak, 2011; Strickland and Stoops, 2019; Suri and Watts, 2011), but there remains
further questions on its use in gathering data (Paolacci, Chandler, and Ipeirotis,
2010). Are AMT workers representative of the desired population as a whole? Is
the data gathered of high quality? While the first question can be mitigated at least
partially by restricting respondent requirements to specific demographics and geo-
graphic locations, the motivations of such workers can suggest that whether or not
they take the answers given to such online studies seriously. With no supervision, it
is questionable whether respondents pay suitable attention to the experiment guide-
lines as they typically would in an in-person study. It is also questionable, given the
generally low payments given for participating in such studies whether respondents
create multiple accounts to provide separate responses to the same study in order to
maximise their own return. Improvements to such online systems do help mitigate
these issues with additional steps such as credit card verification and "catch trials"
designed to identify inattentive subjects.

In summary, online marketplaces can be a cost-effective and practical alternative
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of sourcing experiment subjects, but sufficient care must be taken in order to not
inadvertently bias subject selection and implement multiple occasional checks for
inattentive subjects. There are certainly advantages to researchers who use these
methods in searching for experiment subjects, it must be handled carefully if mean-
ingful results are to be gained from them.

2.8 Gap in the Literature

Reputation-based social norms can help players distinguish between appropriate
and inappropriate behaviours. So far, this has only been explored within the con-
text of public information, so everyone is aware of another person’s reputation, and
people know what the best behaviours are across the entire population. Real-world
situations cannot be accurately modelled under this assumption. By restricting in-
formation flow to the connections between people, we can explore whether the L8
remain able to provide a suitable incentive against free-riding, and promote coopera-
tive behaviour in two-person interactions. However, to sustain cooperation in larger
groups, many situations require the use of a punishment mechanism. Without repu-
tation, worlds where people are able to opt-out of interactions cannot sustain coop-
eration unless non-cooperators are pro-socially. If anyone can choose to punish any
behaviour they deem improper, then anti-social punishment destroys the chances
of cooperation in the population. Reputation can improve levels of cooperation in
the PD, so it could do the same in the OPGG in conjunction with the option to pun-
ish other behaviours, meaningful levels of cooperation can be sustained despite the
negative effects of anti-social punishment. However, such work often does not ac-
count for people’s abilities to perceive nuanced information. While the complexity
of assigning reputations has gone under considerable scrutiny, behavioural strate-
gies using the reputational information has not. We explore whether accounting
for additional complexity of behaviour, in the form of perceiving and responding
to multiple reputational environments can increase the likelihood of cooperative be-
haviour, without the need for additional mechanisms. We describe and elaborate on
these motivations in the section below.

2.8.1 Locality of reputational and evolutionary information

The first, concerns the leading eight. As a reminder, the leading eight are third-
order assessment rules that were found to be ESS (Ohtsuki and Iwasa, 2004, 2006)
organised into three groups. Group I strategies had the strictest condition to be
evolutionarily stable in terms of the benefit/cost ratio and the two kinds of error
their model implements, as well as the largest average payoff of the three groups.
Group III strategies on the other hand had the weakest condition to be evolutionarily
stable and is equipped with the smallest payoff.
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There are two key assumptions made in Ohtsuki and Iwasa (2004) that we explore,
pertaining to the way through which information is accessible throughout the pop-
ulation. Firstly, anyone is able to access the information about anyone else in the
population, or in other words, information is perceived globally. Secondly, when it
comes to updating their strategies, players are aware of the average utility of each
strategy in the population so that they may switch to a better one through replica-
tor dynamics. In reality, these assumptions rarely hold as information exchanging
interactions are often more likely to occur within networks of friends rather than
amongst complete strangers. Specifically, unlike much of the literature at the union
of cooperation and networks, it is not the interactions that are constrained within
the topology of a network or a graph, but the routes through which reputational
and evolutionary information can travel.

Consequently, by allowing a population to reside on a fixed network, we retain the
assumption of interactions occurring between randomly selected individuals - re-
gardless of their position or location on the network - and only allow reputational
and evolutionary information to be transferred through the edges. Our contribution
explores this form of localised reputation such that the reputation of an individual
is known only to their neighbours, each of whom know their true reputation with
some probability. The same applies to evolution. When it comes time for an indi-
vidual to decide whether to change their strategy, instead of evaluating the average
utility of the strategies over the entire population - which we argue to be an unrea-
sonable assumption - they only evaluate the utility of the strategies within their local
neighbourhood, implementing a copy-the-best rule (Righi and Takács, 2018; Schimit,
Santos, and Soares, 2015).

The first question we ask is, does relaxing the assumptions of global information and global
evolution to local information and local evolution impact the number of leading strategies
that are able to sustain cooperation against invading unconditional defectors? The lead-
ing eight have not yet been explored in spatial settings, despite complex behaviours
emerging when considering even very simple models using well-mixed populations
to network topologies (Giardini and Vilone, 2016; Nowak and Sigmund, 1992). This
examination will be drawing on the knowledge of social norms based on indirect
reciprocity (Section 2.3) on network topologies (Section 2.6), embedding a popula-
tion into various types of network where interactions occur randomly between any
two individuals on the network but letting the edges dictate the transfer of both rep-
utational information, and the information of which strategies are locally optimal. In
doing so, we can explore how the leading eight are able to sustain cooperation when
information is no longer public knowledge, but only known to network neighbours.

2.8.2 Reputation with pro- and anti-social punishment in the OPGG

In this first experiment, reputation would only have an impact on two-person inter-
actions but to be successful, many situations call for the collective action of groups
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of individuals. Therefore, our second research question will be focused on how
reputation-based indirect reciprocity can help sustain cooperation within the con-
text of the PGG, specifically, when people are both allowed to opt-out of interactions,
and allowed to punish any other behaviour they choose.

In the simplest case, the OPGG exhibits cyclic and repetitive dominance of all three
unconditional strategies but with the population spending the greatest amount of
time filled with loners (Hauert et al., 2002) with no improvement in average payoffs
compared to the compulsory game. While pro-social punishment indeed breaks this
cycle to raise cooperation levels far beyond what is achieved in its absence, the more
realistic assumption of a complete punishment strategy set demolishes the chances
for cooperation. Anti-social strategies (prevalent in several cultures as explored by
Herrmann, Thoni, and Gächter (2008)) gain in popularity leading to a similar cyclic
dynamic in which the population is in turn dominated by cooperators that punish
defectors, defectors that punish loners, and finally loners who punish cooperators.
In this case, punishment is no longer a tool for cooperation, but a tool of self-interest
and self-preservation (Rand and Nowak, 2011), with negative effects on the achiev-
able levels of cooperation.

Independently from punishment, we have discussed the various ways reputation-
based social norms can be used to improve the levels of cooperation in the pop-
ulation. The simplest of them include the image scoring (Nowak and Sigmund,
1998b) social norm and the standing criterion (Leimar and Hammerstein, 2001; Pan-
chanathan and Boyd, 2003), but even more complex norms are possible like the third-
order leading eight social norms (Ohtsuki and Iwasa, 2004, 2006). They are effective
in both well-mixed (Hauert, Haiden, and Sigmund, 2004; Sigmund, Hauert, and
Nowak, 2001) and spatial populations Brandt, Hauert, and Sigmund (2003) able to
promote, stabilise, and sustain cooperation under a large variety of conditions.

This leads us to the second question that we ask. In a world where antisocial punish-
ment is possible, how does a reputation-based social norm impact the evolution of coopera-
tion? Reputation dynamics and punishment devices coexist in human social groups
(Jordan and Rand, 2020), and while the reputation of being a punisher has been ex-
tensively explored (Brandt, Hauert, and Sigmund, 2003; dos Santos, Rankin, and
Wedekind, 2013; Santos and Wedekind, 2015), there has been little investigation into
the more traditional reputational mechanism: the coexistence of image scoring with
peer punishment allowing both pro-social and antisocial sanctioning. This exami-
nation will be drawing on OPGG social dilemma (Section 2.4) which is used as the
basic interaction through which we study sustained cooperation. We combine ele-
ments of reputation-based indirect reciprocity through simple implementations of
social norms (Section 2.3) in order to allow players to behave conditionally depend-
ing on the reputation of their opponents, while being allowed to enact punishment
not only pro-socially towards non-cooperators, but also anti-socially, towards any
kind of player they choose (Section 2.5).
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2.8.3 Behavioural strategy complexity

This experiment, found the reputational mechanism to be reliant on the popula-
tion’s freedom to punish other behaviours. This suggested that the reputational
mechanism found it difficult to sustain meaningful levels of cooperation. Indeed,
conditionally cooperating players were only able to distinguish between two rep-
utational environments of the group. However, groups consisting of five or more
individuals are capable of displaying more nuanced information through their aver-
age reputation. Therefore, we ask whether or not an individual’s ability to perceive
and respond to multiple reputational environments can improve the chances for co-
operation when the option to punish is not available.

Social norms have been carefully analysed in terms of complexity (Santos, Pacheco,
and Santos, 2021; Santos, Santos, and Pacheco, 2018) where they find that simpler
social norms are sufficient in achieving reasonably high levels of cooperation while
more complex norms do not result in proportional increases of cooperation. In the
aforementioned papers, the increased complexity arises from higher-order reputa-
tion assessment rules and their requirement of increased information requirements
on those that witness interactions - they have to remember more pieces of informa-
tion in order to accurately assign reputations.

The behavioural strategies that decide to cooperate and to defect (or to abstain) un-
der these social norms have not been investigated to the same degree. Some works
have considered discriminating strategies like in Boyd and Richerson (1988a) where
an individual cooperates if and only if a certain number of the other individuals in
the n-person PD game cooperated in the previous round. This is closely related to
the discriminating strategy of Nowak and Sigmund (1998b), which prescribes co-
operation if the image of the potential recipient is sufficiently high. These kinds of
strategies need to be extended when the option to opt-out of interactions becomes
available. Only a handful of works consider multiple-valued reputations (Leimar
and Hammerstein, 2001; Mohtashemi and Mui, 2003; Nowak and Sigmund, 1998b;
Roberts, 2007) but these are not sufficient in describing the extent of cooperation
and the possible reputation values when it comes to more than just two kinds of
behaviour. While trinary reputations are explored by Tanabe, Suzuki, and Masuda
(2013), they do not account for the loner strategy with their model still accounting
for only cooperative and non-cooperative actions.

The number of behavioural strategies suited to these situations can quickly become
too large to explore analytically when accounting for multiple possible reputational
states, particularly when they are in play in n-person social dilemmas. Previously,
reputation was largely binary. Someone was either good, or they were bad. With
multiple people involved in a PGG setting, it can be more appropriate to discuss
reputation in terms of the group average. Identifying individuals’ reputations in
groups can be difficult at the best of times, especially when the groups become larger
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in size. An argument could be made that obtaining a general sense of the reputability
of the group can be easier. More importantly however, it is not who commits a
particular action that impacts a player’s payoff, but its potential impact in the group
outcome that is relevant. In this sense alone, considering the average reputation
makes more sense than individual reputations. Therefore our question becomes,
how does the complexity of a behavioural strategy affect the chances for cooperation under
a simple reputation-based social norm? This question has not been investigated within
the context of the OPGG and will draw on the knowledge acquired in Section 2.4
and Section 2.7.

2.8.4 Research Approach

However, before we continue into the world of indirect reciprocity, we will first jus-
tify the approach we will be taking. For each of our models, we utilise ABMs to
simulate populations under these social norms, and simulating the evolution of co-
operative (and non-cooperative) behaviour over many generations. A mathematical
analysis of the average payoffs of strategies in the style of Ohtsuki and Iwasa (2004,
2006) would be very difficult to achieve when exploring the evolution of these pop-
ulations without the assumptions of an infinite sized population (or at least so large
that no two players interact more than twice), or in the style of Rand and Nowak
(2011) which calculates payoffs by considering the possible combinations of group
compositions. With very simple strategies - say unconditional cooperators and un-
conditional defectors - a mathematical approach on spatial populations is feasible
(Szabó, Vukov, and Szolnoki, 2005). However, when strategies and social norms be-
come complex - as in the L8 - it remains challenging to find closed-form solutions.
Mean-field approaches (Kułakowski and Gawroński, 2009) make the problem more
achievable but with it comes its own assumptions and simplifications.

We elected against designing experiments to explore these norms with human sub-
jects since in our view, experiments are a way of complementing original mathe-
matical and/or computational studies. With any initial exploration into a problem,
there is always a high likelihood of failure, especially when equipped with an ex-
ploratory mindset, and with a view to repeatedly try an idea, tweak it, and then try
again until we converge upon a consistent body of work and knowledge. It would
be impractical and irresponsible to use human subjects for each failed attempt be-
cause of the significant costs that running an experiment entails. Participants must
be compensated for their time, even university students. The time spent recruiting
for such studies is immense, and keeping participants involved and interested can
be difficult. Then having to repeat this multiple times would be next to impossible.

In comparison, an ABM is a much more feasible method in which rapid exploration
is possible. It becomes much easier to declare simple micro-level behaviours, de-
fine the rules of social norm, and the methods through which players interact. By
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monitoring macro-level statistics, average payoffs of the social dilemmas, the fre-
quencies of strategies in the population, it becomes possible to draw a broader pic-
ture of how these mechanisms work, without being stuck in the minute details that
comes with the mathematical approach. It also makes the exploration of the relation-
ship between cooperation and our model parameters much simpler to deduce, with
minimal effort. Therefore, for the above reasons, we decided that an ABM guided
approach afforded the greatest payoff with the least effort.

2.8.5 Thesis Roadmap

The remainder of this thesis will be structured in the following way. Chapter 3 will
explore the first question, exploring the impact of local information and local selec-
tion mechanisms on the leading eight’s ability to sustain cooperation on various net-
work structures where populations interact through the PD. Results reported in this
chapter are an extended and revised version of those presented in Podder, Righi,
and Takács (2021). Chapter 4 will investigate the second question, looking for the
relationship between reputation and punishment in the OPGG in the presence of
strategies that can punish antisocially. Results reported in this chapter are extended
and revised versions of those presented in Podder, Righi, and Takács (2021). Chap-
ter 5 will delve into the third and final question of this thesis, extending and gener-
alising the previous model, exploring the impact of the complexity of behavioural
strategies that play the OPGG under a reputation-based social norm. Chapter 6 will
summarise the contents of this thesis, explore its implications and the potential di-
rections of further study.



85

Chapter 3

Local Reputation, Local Selection
and the Leading Eight Norms

In this chapter, we set the stage for the first model of this thesis. As discussed in
the literature review in Section 2.3.3, Ohtsuki and Iwasa (2004, 2006) conducted a
methodical search for the social norms that were able to consistently sustain cooper-
ation. By searching through a total of 4096 possible combinations of reputation dy-
namics and behavioural strategies, they found a total of eight strategies - the leading
eight - that were able to consistently sustain high levels of cooperation in the pop-
ulation in the face of invasion from other mutant strategies over a large range of
benefit/cost ratios of the indirect reciprocity (IR) game.

3.1 Introduction

The Leading Eight (L8) are pairs of social norms and behavioural strategies that
were found to be evolutionarily stable strategies in Ohtsuki and Iwasa (2004). They
are broadly categorised into three groups (Table 3.1). Group I consists of the strate-
gies s1 and s2, and are characterised by the reputation assignment rules of d00C = 1,
d00D = 0, and the or behavioural strategy (which instructs an individual to cooperate
if either they or their opponent have a bad reputation, but not both simultaneously).
Group II is the largest of the three groups consisting of strategies s3-s6. These strate-
gies are characterised by d00D = 1, rewarding disreputable people who justifiably
defect with a good reputation. Finally, group III consists of s7 and s8, and are charac-
terised by the reputation assessment rule d00C = d00D = 0. This group has the most
stringent view towards forgiveness or reformation, allowing only one way for those
with a bad reputation to regain a good reputation: to cooperate with a good person.
The three groups are ordered by weaker conditions for ESS such that of the three
groups, defectors have the easiest time in group I while they would find it challeng-
ing in group III. While group III creates the strongest defences against defection, it
pays for its security with the lowest average payoff, while group I enjoys the highest.
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Group Reputation Dynamics Behavioural Strategies
d11C d11D d10C d10D d01C d01D d00C d00D p11 p10 p01 p00

I 1 0 1 1 1 0 1 0a C D C Cd s1
1 0 0 1 1 0 1 0 C D C Cd s2

II 1 0 1 1 1 0 1 1 C D C De s3
1 0 1 1 1 0 0 1 C D C De s4
1 0 0 1 1 0 1 1 C D C De s5
1 0 0 1 1 0 0 1 C D C De s6

III 1 0 1 1 1 0 0 0b C D C De s7
1 0 0 1 1 0 0 0c C D C De s8

a Standing, b Strict-Standing, c Judging, d OR, e CO

TABLE 3.1: The “Leading Eight” from in Ohtsuki and Iwasa (2004, Ta-
ble 4) depicting evolutionarily stable third-order social norms d and
their behavioural strategies p. This table is repeated here from Ta-

ble 2.5 for clarity.

Their seminal work makes two key assumptions. First, when two individuals A and
B interact, there exists an independent third-party D who is not involved in the in-
teraction but simply observes its outcome in order to assign A their new reputation
(subject to assignment error). Then, following the outcome of the game, this repu-
tation is spread to the rest of the population such that each member has the same
opinion of the focal player A’s reputation. Frequently, information does not spread
immediately and freely in human societies and is mediated by local observers of
a given behaviour. Second, their approach to calculate the evolutionary stability of
the leading eight assumed the free availability of global information. Their analytical
method calculated the average payoffs for each strategy against each mutant strat-
egy in each set of reputation dynamics and used that to find whether the strategies
were evolutionarily stable. Practically, this information is not available and if it was,
it would be very difficult to obtain. Regardless of whether a strategy has a globally
better payoff than another, locally the optimality may be completely different.

Under these assumptions of global information and global evolution, the analysis
of Ohtsuki and Iwasa resulted in the leading eight being ESS. In more realistic sce-
narios, these results could be misleading. Consider the first assumption. Suppose
instead of a single third-party observer D of A and B’s interaction, each individ-
ual had multiple observers who were able to assign A’s reputation independently,
each subject able to witness the interaction with some error with some probability
of assigning the incorrect reputation. This is preferable to the ‘indirect observation
model’ of Ohtsuki and Iwasa (2004) since instead of an individual’s reputation being
known to all, their reputation is now only realistically known to the select few who
are closest to them. When another unrelated individual happens to interact with A,
in the absence of direct observation their only source of information on whether or
not A deserves help is A’s neighbours. The second assumption is equally unlikely as
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individuals in real scenarios are unlikely to have a perfect view and understanding
of the utility of every strategy over the entire population. However, they can instead
be realistically expected to observe the relative outcomes of those closest to them-
selves and to judge the best strategy based on their observations of their utilities.
While a strategy may have a globally optimal utility, locally the story may not be the
same.

The main question we aim to answer in this chapter is then, does relaxing the as-
sumptions of global information and global evolution to local information and local evolu-
tion impact the number of leading strategies that are able to sustain cooperation against
invading unconditional defectors? Once one or both of these assumptions are relaxed,
information - whether it pertains to reputation or the relative utility of strategies -
can only be known to a subset of the population. This implies that our agents can
now be represented as nodes on a network where the edges between them repre-
sent the links of information transfer. The follow up question that we then need to
answer is whether certain networks are more suited towards sustaining cooperation
using the leading eight social norms than others? Indeed, previous literature shows
that network structures are important, especially when studying the evolution of the
simpler strategies of unconditional cooperation and defection (Lieberman, Hauert,
and Nowak, 2005; Szabó and Fáth, 2007) in sparse (Nowak, 2006; Ohtsuki et al.,
2006), small-world (Masuda and Aihara, 2003) and other (Cameron and Cintrón-
Arias, 2013) real-world networks. It is important to emphasize that our work differs
from the traditional spatial approach in that any two individuals in the population
are able to interact, and not just those bound to each other by an edge. This is re-
quired for indirect reciprocity to work. However, when two individuals are not di-
rectly connected, information on their regards (which is necessary for interactions)
can be acquired - potentially with a possibility of error - through the agents who
are directly connected to the focal individual. This study is thus the first to investi-
gate the leading eight on these network structures with more realistic assumptions
of reputation and information transfer.

3.2 Methodology

We use an agent-based model to explore the impact of the various combinations of
global and local reputation as well as global and local information on the ability of
the leading eight to sustain cooperation.

3.2.1 Simulation algorithm

We describe the simulation process in Fig. 3.1. A network is generated with an agent
situated on each of its nodes, connected amongst themselves through the edges (Sec-
tion 3.2.7). The population is equipped with a single social norm (Section 3.2.2), so
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everyone judges actions and assigns reputations by the same set of rules. Each indi-
vidual within the population acts according to their behavioural strategy, either one
of the L8 is being simulated, or of UD. We simulate a predefined number of time-
steps while allowing for early convergence of the population at multiple checkpoints
(Section 3.2.6). If triggered, the simulation will end before the maximum number of
time-steps is reached. Each time-step begins with at least one PD game played be-
tween two individuals randomly selected from the population, with further rounds
of the PD repeated with some probability Ω where we select another two agents to
interact. This probability is set to 0.99 for all simulations. This is to ensure that on
average one hundred rounds of the PD is played each time-step1. Each round of the
PD uses either a global or a local reputation mechanism to first access an opponent’s
reputation to decide whether or not they deserve cooperation, and second to assign
reputations of the pair of players following the interaction (Section 3.2.3). Once the
rounds end, each player has the chance to update their strategy according to the
globally better or the locally better strategy (Section 3.2.4). Following the evolution-
ary update, mutations occur with some probability where players start behaving as
UDs (Section 3.2.5).

Once either the maximum number of time-steps has been reached or the population
has converged to a single fixed point, the simulation ends and we capture the dis-
tribution of strategies in the population in the final time-step, as well as the final
proportions of cooperative, non-cooperative, and loner actions.

3.2.2 The Leading Eight

Simulations exploring one of the L8 strategies consist of the population of agents (we
will use the terms agent, player, individual, and strategist interchangeably) all abid-
ing by the same social norm d (Table 3.1) which - with perfect reputation broadcast
and the absence of assignment error - allows all individuals to agree on the reputa-
tions assigned to a single interaction. Agents behave according to their behavioural
strategies. This is either the corresponding behavioural strategy for the L8 social
norm being used, or it is the UD behavioural strategy.

For a single simulation, the population will only ever be composed of two strategies:
an L8 strategy s and UD. Importantly, we do not consider multiple L8 strategies in
parallel. The resilience of L8 strategy s is explored in two ways. With probability α,
mutation causes a randomly selected player’s behavioural strategy to switch to that
of unconditional defection or UD. This random mutant then will defect in all subse-
quent interactions, ignoring everyone else’s reputations. This does not in any way
modify their interactions as a third-party observer for their neighbours. The other
way we test s’s resilience from defection is against an initial shock of UD agents. We

1To model this, let X be the number of rounds (trials, defined on the set {1, 2, 3, . . .}) played until the
time-step ends. Then X has a geometric distribution with p probability of success (the probability of
the time-step ending). The mean of this distribution is p−1. Thus if the time-step ends with probability
p = 0.01, then, on average, p−1 = (0.01)−1 = 100 rounds will be played.



3.2. Methodology 89

START
Initialise net-

work1,population2, con-
vergence checkpoints

t < Tmax?

Is t a
convergence
checkpoint?

Has system
converged?

Choose random
pair of agents

Play PD

Update payoffs

Update reputations

Continue
round?

Evolution round

Mutation round

END

t = 1

YES

NO

YES

YES

NO

YES → Ω3

NO → 1 − Ω

NO

t
=

t+
1

FIGURE 3.1: Simulation flowchart. This outlines the major stages of
a single simulation that utilises early convergence. The YES → Ω and
NO → 1 − Ω labels refer to the YES and NO events occurring with
probability Ω and 1 − Ω respectively. 1The network is regenerated
if the minimum degree is less than two. 2Players are initialised with
random reputations. Player strategies are distributed randomly on
the network, but in the correct proportion of L8 strategy to UD. There
are only ever two strategies, one of the L8, and UD. ß3The probability
of further rounds (Ω = 99

100 ) was chosen to ensure that on average,
100 rounds of the PD was played in any given time-step.
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B
C D

A
C (b − c, b − c) (−c, b)
D (b,−c) (0, 0)

B
C D

A
C (1, 1) (−1, 2)
D (2,−1) (0, 0)

TABLE 3.2: The payoff table on the left displays the general case de-
fined in terms of a cost of cooperating c and the benefit b received
from another’s cooperation. The right hand side displays the payoff
table for the PDs played in each experiment of this chapter, where

b = 2 and c = 1.

consider a proportion n of the population to consist of UD agents and the remaining
1 − n proportion to consist of s players. Mutation only converts agents to UD and
cannot reintroduce a leading strategy back into the population if it has been com-
pletely invaded. It also disregards the strategies of individuals in the population
when selecting them for mutation, so it is entirely possible that an UD is themself
selected for mutation in which case their strategy remains unchanged.

We simulate a maximum of Tmax time-steps or periods (typically Tmax = 2000) but
account for early convergence (see Section 3.2.6). Each period consists of at least one
round of the PD which is equivalent to the IR game of Ohtsuki and Iwasa (2004).
To play a round of the PD, we randomly select two individuals in the population
regardless of whether or not there exists an edge that connects them. We follow the
PD payoffs of Table 3.2 where cooperating or offering help to the other is accompa-
nied by a cost c (typically c = 1) while there is no cost for refusing to cooperate or
refusing to help someone. If an individual enjoys another’s cooperation, then they
receive the benefit b (typically b = 2). Mutual cooperation provides b − c to both
participants, while mutual defection gives no payoff. If one individual gives in to
temptation and defects while the other cooperates, then the defector will receive b
while the cooperator will have a payoff of −c.

3.2.3 Global & Local Reputation

We model the differences in global vs local reputational systems. A global reputation-
based system whether they are online or offline refers to any situation where an in-
dividual is able to directly observe the reputation of any interaction partner they
may come across. Online, this more likely to imply the existence of a trusted third-
party that is somewhat omnipotent, in the way that they observe all interactions and
therefore know and make available upon request everyone’s reputations. Offline,
this would mean that interactions are all public, anyone is able to observe them,
and subsequently assign them a reputation. Both systems would ultimately assign
the same reputation to the individual depending on any instances of error that may
emerge. The global reputation-based system is developed in line with Nowak and
Sigmund (1998a), Ohtsuki and Iwasa (2004), and Panchanathan and Boyd (2003).
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A local reputation-based system would be very similar, except that there is no cen-
tral authority, no single trusted third-party in charge of tracking interactions and
reputations. Instead, an individual’s reputation depends on who you ask. The peo-
ple you ask would be those closest to this individual, who are able to witness this
person’s transactions and assign their reputation directly and independently from
others. They would then make this information available to anyone who asks.

Such a mechanism may present itself within a classroom where students regularly
undertake paired projects. Consider two versions of this situation. Suppose within
this classroom you are student at the start of a project where you have been paired
with another student A. You have had no direct previous experience with student A,
but you have had the opportunity to observe them (along with all the other students)
in previous projects and know that they earned a good reputation by spending a
lot of time (paying the costs of contribution) working on their last paired project.
Alternatively, it is also possible that this class has a teacher or lecturer that observes
all students, in which case it may also be able to approach this lecturer to obtain the
reputability of student B.

Consider instead a paired project that takes place simultaneously amongst several
classrooms where between each project, students are shuffled around. This limits the
set of people who are able to observe interactions to a local setting. Suppose again
that you are a student but are now in classroom 1 and you have been partnered with
a student B in classroom 2. You do not have any direct observation of this player’s
reputation or their past behaviours, but you know other students in classroom 2 that
have observed student B in the past. In this case, you simply query another student
in classroom 2 for B’s reputation. You delegate the observation of B’s reputation
to someone else who is more socially or geographically closer to B. This like the
previous setup is not perfect either. Observations are often not perfect, and can be
prone to incorrect conclusions concerning the observed student’s reputability. It is
possible that if you asked multiple students, you would get different answers. Thus,
the reputation of a player depends on the errors involved in assigning reputations
to the students in these observations, how likely it is that the queried student in
question happened to be looking in the correct direction to observe the interaction
(if they were not, then they would not be aware of a new interaction and would
therefore be using outdated information), and the size of the classroom (the number
of people who can observe this interaction).

Regardless of whether or not the classrooms use a global or local reputation mech-
anism, the subsequent steps are identical. Using this information, you then have a
choice to either contribute equally (cooperating by also paying the cost of coopera-
tion) or to put in a significantly reduced effort or none at all (defecting by refusing
to pay the cost of cooperation). If both students in each paired project are given the
same grade, then there is a clear incentive to lower or remove your own contribution
to exploit the cooperation of the other student. Such behaviours are then observed
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by others (either globally or locally), reputations are updated and the series of group
projects continue.

Each of our simulations implement one of the two possible reputation mechanisms.
The process of updating reputations takes places immediately after each PD round.
The first is global reputation (Gr), implemented in the same manner as Ohtsuki and
Iwasa (2004) which treats an individual’s reputation as public knowledge (so that
everyone knows it and all agree on which it is). Agents are initialised with random
reputations (either good or bad, 1 or 0) at the beginning of a simulation. These val-
ues persist between time-steps but are updated after each round of the PD, subject
to assignment error. During an interaction, two agents are selected and each decide
whether to cooperate or to defect based on their own reputation and their oppo-
nent’s reputation (panel A of Fig. 3.2). Both play the PD and are rewarded for their
decisions with their respective payoffs (panel B, Fig. 3.2). The interaction culminates
in the update of reputations in panel C where the social norm is used to assign their
new reputations subject to assignment error.

p10 = D

p01 = C

A Play Prisoner’s Dilemma

p10 = D

p01 = C
+b −c

B Update payoffs

p10 = D

p01 = C
+b −c
d10D = 1

d01C = 1

C Update reputations

FIGURE 3.2: Global Reputation Mechanism. Reputation here is
treated entirely as public knowledge so every member of the pop-
ulation is aware of any individual’s reputation. If assignment error is
triggered in this scenario, the entire population would agree on the

incorrect reputation of an individual.

We propose a more realistic form of local reputation (Lr). Like before, reputation is
initialised randomly at the beginning of a simulation, is updated following each and
every interaction (possibly with reputation broadcast error or observation error),
and persists between time-steps. As graphically summarised in Fig. 3.3, in order to
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decide whether or not to cooperate, players A and B will use their own reputation
and their opponent’s reputation.

A player obtains these reputations from a player in their opponent’s neighbourhood.
The size of this neighbourhood entirely depends on the parametrisation of the net-
work, but we know they will have at least two neighbours (see Section 3.2.7). Addi-
tionally, since initial player strategies are distributed geographically in the network
at random, there is no specific trait or characteristic of these neighbours other than
the edge they share with the opponent. Since players exist on nodes and these neigh-
bourhoods are defined by the edges, the network structure completely controls the
set of neighbourhoods of each player. We only consider the first-order neighbour-
hood, that is the immediate neighbours (at most one edge away) of a player are
the only players consulted. We do not consider second-order (neighbours of neigh-
bours) or higher-order neighbourhoods.

Players obtain their opponent’s reputation by selecting one and only one of these
neighbours at random, who at which point will provide the player with their opinion
about their opponent’s reputation.If the population is embedded within a sparse
network, then this implies that only minimal edges between players exist, restricting
the set of individuals who can observe a player’s interactions and would therefore
be aware of their reputation (subject to error). A dense network however would
imply many edges between players, increasing the size of this set of individuals.
In other words, if the population is embedded in a very sparse network, then for a
given player, their neighbours (in the sparsest case there are only two neighbours)
will be queried for their reputation every time they interact in the PD. However, if
the network is very dense, then since the size of the neighbourhood becomes large,
many neighbours will be asked but only occasionally.

Formally, let RA ∈ {0, 1} represent A’s reputation obtained from one of A’s neigh-
bours, and RB ∈ {0, 1} represent B’s reputation obtained from one of B’s network
neighbours. A’s decision will be pRARB while B’s decision will be pRBRA (right hand
side of Table 3.1). Thus a player will defer to their neighbour’s opinion of their own
and interacting partner’s reputation.

Importantly, we restrict players from using their own perception of their own repu-
tation for simplicity and to maintain a certain symmetry within the interaction. Once
A and B have either cooperated or defected respectively, these actions are misinter-
preted with probability ν representing the observation error, and this reputation is
then broadcasted to each neighbour with probability δ representing the likelihood
of reputation broadcast. Practically, the impact of both ν and δ mean that under a
certain social norm, an agent’s reputation as perceived by their neighbours and by
their future interacting partners is not guaranteed (and in general is not) to be the
same for each interacting partner.
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RA

RB

A
B

A′

B′

p10 = D

p01 = C

(A) Play PD. We illustrate the information transfer with an
example. Suppose players A and B just played the PD. Each
of A’s neighbours have their own perception on A’s reputa-
tion which is visualised as either a green (good reputation)
or red (bad reputation) edge. Likewise, B’s neighbours also
have their opinions on B’s reputation, visualised in the same
manner. For A to decide their action, they require both their
own and their opponent’s reputations. Their own reputation
is sourced from a randomly selected neighbour (bold green
edge) and labelled RA. Their opponent’s reputation is ran-
domly sourced from one of B’s neighbours (bold red edge)
and labelled RB. A then uses both of these reputations and
their behavioural strategy to decide whether or not to coop-
erate. Similarly, B uses the same two reputations but reversed for
their action against A. Thus, depending on their behavioural

strategies, A’s action is pRA RB while B’s is pRB RA .

A
B

+b

−c

(B) Update payoffs. Update the payoffs of each player ac-
cording to Table 3.2.

A
B

d10D = 1

d01C = 1

(C) Update reputations. Each of A’s neighbours still perceive
A to have a good reputation following the interaction. For B,
there is now a difference of opinion. According to the social
norm rule d01C = 1, by all accounts B should have a good rep-
utation, having gained forgiveness (Section 2.3.4). However,
we observe that due to an imperfect likelihood of reputation
broadcast, only two of B’s three neighbours are aware of their
reformation, while the other still perceives them to be bad.

This will effect B’s future interactions.

FIGURE 3.3: Local reputation mechanism.
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Ohtsuki and Iwasa (2004) do in fact describe the differences in outcome between the
direct and indirect observation models within the context of their setup. In their
words, their indirect approach allows anyone to observe an interaction of two in-
dividuals (subject to assignment error) and then to spread it throughout the pop-
ulation such that every individual has the same opinion on the reputations of the
pair of interacting individuals. The direct approach assumes that every individual
in the population observes every single interaction in the population and therefore
has their own unique opinion on the reputations of every other individual in the
population. They argue this approach to be excessive in terms of the cost of mon-
itoring interactions and claim that their direct approach is more suitable in human
interactions. Our approach in implementing this direct observation model solves
the problem of excessive monitoring costs by restricting the number of observations
each individual has to monitor to the neighbours of the agent arranged on the net-
work. We believe this method to be the best of both worlds, further improving the
realism and requiring lower monitoring costs as long as the density or the average
degree of these network-based populations remain low, as they typically are in real-
world social networks.

A potential irregularity arises from the implementation of assignment error in both
the Gr and Lr mechanisms. Under Gr, suppose a player A cooperates against an-
other well-reputed player but is incorrectly observed to have defected. In the pop-
ulation’s eyes, A now has a bad reputation, but to A, they believe they have done
nothing wrong since they cooperated. Similarly, suppose A and B interact under the
Lr mechanism. A’s reputation is obtained from one of A’s neighbours, B’s reputation
is obtained from one of B’s neighbours. If A cooperates but their neighbours mis-
takenly believe they defected, then A would believe themself to be good, while their
neighbours believe A to be bad.

Accounting for A’s own perception of their own reputation would improve the real-
ism and ability of our model to accurately depict real-life interactions. However, it
also increases the complexity of our model, while requiring agents to keep track of
multiple sources of reputation requiring additional cognitive capabilities. Addition-
ally, we also argue that this is a form of direct observation, and since the purpose
of the L8 is to explore reciprocity in a world where direct experiences cannot be
accumulated, it is appropriate to discount this possibility.

For the purposes of our investigation, we simplify the issue and consolidate the
reputations in the following way for both Gr and Lr mechanisms. When A and
B interact, A requires their own reputation and B’s reputation to decide an action,
while B requires B’s own reputation and A’s reputation to decide an action. We
enforce that both players use the same information for A’s reputation (from both of
their perspectives) and the same information for B’s reputation (also from both of
their perspectives). Therefore, when A decides their action against B, they will use
the same reputation for themself as B will use for them.
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This ensures that the interaction uses only two sources of reputation for both A and
B, used by both A and B, meaning that their action rules are symmetric. If rA and
rB are the reputations for A and B obtained from their neighbours respectively, then
A’s action rule will be prArB and B’s action rule will be prBrA . However, there are
downsides to this approach.

Symmetric Reputations

Arguably, consolidating reputations in this manner is not ideal. The intent behind
implementing it in this manner was to isolate all sources of direct experience from
our model, and thus restrict all instances of reciprocity to be indirect rather than di-
rect. Future works stemming from this model would be improved if they accounted
for both mechanisms. So, in addition to each agent tracking the reputations of their
neighbours, they also track their own reputation at all times. A player updating
their own reputation would likely not be affected by any additional (third) source of
error, but would be affected by implementation error. Suppose they meant to coop-
erate but accidentally defected, if they are aware of their outcome then they would
correctly assign their new reputation according to the social norm, but if are not
aware of their action, then it is likely that their perception of their own reputation
would also be flawed. While this addition does include the accumulation of personal
experiences in a model of indirect reciprocity, arguably this cannot be avoided since
(a) decision making in species often uses multiple sources of information, not being
limited to the opinions of others, and (b) the size of social groups meaning that oc-
casionally repeated interactions between strangers would in fact introduce personal
opinion and experience into the decision making process. Future works should take
this into account and consider both a combination of personal and third-party repu-
tations.

Initial Reputational Distribution

Each of the simulations within the confines of our model begin with the population
being assigned reputations at random. This follows the approach taken in Ohtsuki
and Iwasa (2004) that found the the proportion of individuals with an H-score of 1
as t → ∞ was not dependent on the initial conditions, instead converging upon a
fixed point. While this forms a good starting point, it should be noted that this result
was derived on the assumption of a fully mixed population, while ours is rooted in
a network.

It is also possible to justify different approaches to bootstrapping the reputations of
a population at the outset of a simulation. If no individuals in the population have
any history of interacting with anyone, then reputations are essentially meaningless
in the opening rounds. There is no reason why behavioural strategies would begin
by being "nice", like the GTFT (generous tit for tat) strategies of direct reciprocity.
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Such a system would assign everyone a good reputation, assuming that everyone
should be trusted until they give a reason not to be.

Ultimately, varying the distributions of reputations at the initialisation of the pop-
ulation was not believed to have a significant impact on the corresponding level of
cooperation in the population nor the distribution of strategies at the end of the sim-
ulation. Both Nowak and Sigmund (1998b) and Suzuki and Akiyama (2005) chose a
different approach. In their models, reputations were bounded in [−5, 6] and were
reset to 0 at the beginning of every time-step.

We instead relied on multiple runs with randomised reputations to reduce the bias
gained from the initialisation effect. Future works can improve upon this result by
accommodating an additional model parameter, tuning the initial proportion of the
population with a good reputation to ensure the initialisation of the simulations do
not have a significant effect on the results of the simulations.

3.2.4 Global & Local Selection

We consider both a global evolution (Ge) and local evolution (Le). After each PD
interaction, there is a 1 − Ω probability of ending the time-step. At that point, a
number of PD games would have been played as well as corresponding reputational
updates. Once the time-step ends, the evolutionary stage begins. Like reputation,
this can be in one of two forms. Since Ohtsuki and Iwasa (2004) used payoff equa-
tions to judge evolutionary stability and we use an ABM (see Section 2.7), our im-
plementation of global selection cannot be an exact replication. Our global selection
mechanism is more akin to replicator dynamics, such that the members of the pop-
ulation move towards the strategy that yields a better payoff. The larger the payoff
difference is in favour of a given strategy, the more likely agents are to switch to it.
Since there are only ever two strategies in the population (one of the leading eight
and UD), we define the probability that a single agent switches their strategy to the
strategy with the better payoff as,

µ · Π(i)− Π(j)
Π(i) + Π(j)

,

where µ is the speed of evolution, Π(s) = max(π(s), 0) is the adjusted average
payoff of all s strategists in the population and π(s) is the unadjusted average payoff.
If the payoff for either strategy is negative, we consider it to be zero so that no one
moves to a worse strategy, in which case the probability is reduced to µ which then
represents the total proportion of the population that change strategy. We do not
allow agents to switch to a non-optimal strategy.

Our approach to modelling local selection works as follows. Within each evolution-
ary stage, each individual in the population has a chance to update their strategy
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based on how well their neighbours are faring. This works through the copy-the-
best paradigm. Each agent will identify which of their neighbours has the highest
payoff, and will switch to their behavioural strategy with probability µ. If multi-
ple players have the same highest payoff, then the agent will switch to one of their
strategies, chosen at random. For low values of µ, very few individuals will update
their strategies each time-step, but for high values of µ, almost everyone will up-
date their strategies, and so we can informally refer to this variable as the speed of
evolution or the speed of selection. Note that this strategy update happens simulta-
neously for each individual in the population, such that they all make their decision
to update based on the same set of information.

A

B

UD

s

s
s

FIGURE 3.4: Local evolution mechanism. Consider a population
consisting of s and UD players and take the point of view of agent
A through the evolution process. A has three neighbours (dashed).
Of these three neighbours, the UD player has the highest payoff and
so with probability µ, A will switch to the UD strategy since we im-
plement a copy-the-best selection method. A’s previous strategy has
no bearing in this decision. Suppose we now take the view of agent
B. B’s neighbours (dotted) consist of one individual with a negative
payoff and two individuals with an identical positive payoff. In this
scenario, with probability µ, B will choose to switch to the strategy of
one of the neighbours with a positive payoff at random. While only
shown for two agents A and B, this process happens simultaneously
for every agent in the population; everyone first chooses the strategy

they wish to switch to, and then they actually switch all at once.

3.2.5 Random UD Mutation

Once the evolutionary or selection stage has completed, each agent in the popula-
tion has the same likelihood turning into a UD by random mutation. Our model
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considers α as the expected number of random UD mutants per time-step. This
is then normalised by the size of the population to get the probability of mutation
α
N . Mutation in this case only causes players to become UD players, unlike other
works where mutation can elicit the reappearance of multiple strategies. We ignore
a player’s previous strategy in mutation, so both s and UD players can mutate to
become UD.

3.2.6 Early convergence

We implemented a mechanism of early convergence to avoid unnecessary computa-
tion once the simulation has reached a fixed point. Prior to each simulation, we es-
tablished a number of checkpoint periods satisfying two constraints. First, there are
exactly n checkpoints where n = ⌊ Tmax

100 ⌋, creating a convergence checkpoint every
hundred time-steps or so on average. Second, checkpoints t∗1 , t∗2 , . . . , t∗n only begin
once a quarter of the simulation has finished t∗1 , t∗2 , . . . , t∗n ∈ [⌊ Tmax

4 ⌋, Tmax] and were
randomly and uniformly distributed.

At each checkpoint, a snapshot of the state of the population was taken, recording
the proportions of each strategy in the population. Following the third checkpoint,
we checked whether the population state of the two strategies (one of the L8 and UD)
were equal to the previous two population state checkpoints up to small variations.
Following checkpoints were only compared against the previous two so the earliest
checkpoints are ignored once enough checkpoints were reached. This behaved like
a queue of length three, under the first-in-first-out method.

3.2.7 Network topologies

The main network topology we explore is the Erdős-Rényi random network. This is
a network of a particular size is generated by adding edges between every possible
pair of nodes with a certain probability. From a theoretical perspective, the simple
formulation of these random graphs facilitate clear and easily derivable properties
which are useful for further analysis. In particular, as described in Section 2.6.3 and
Erdös and Rényi (2011), these graphs are simply parametrised by their size N and
a certain probability δ representing the probability that any two nodes in the graph
are connected.

However, Erdős-Rényi random networks are characterised by a lower clustering co-
efficient and a low average path length which make them relatively inappropriate in
modelling social networks. Therefore, we also consider three additional types of net-
work. Firstly, d-regular random lattice (d-RRL), discussed in (Section 2.6.1), consists
of N nodes, each with exactly d edges to neighbouring nodes.

Next, Barabási-Albert (BA) networks are explored, generating them through prefer-
ential attachment (Barabási and Albert, 1999). By starting from an initial connected
cluster of m0 nodes, new nodes are then preferentially connected to m ≤ m0 existing
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nodes with probabilities according to the number of existing links they have. These
graphs are useful in modelling real-networks which exhibit scale-free degree distri-
butions. Formally, this means that their degree distributions follow a power law of
the form P(k) ∼ kα where P(k) denotes the probability of a node having degree k
and α is a constant.

Finally, we consider Watts-Strogatz small-world networks (Watts, 1999; Watts and
Strogatz, 1998) which facilitate the modelling of real-world networks like power
grids, neuronal networks within the brain, and information dissemination on twitter.
They are generated from a ring lattice of degree k, whereby each edge is randomly
cut and reconnected to another randomly chosen node with probability p.

Static vs Dynamic Networks

The simulations discussed here will not be considering the possibility of dynamic
networks. This is when networks do not change size (nodes are not added or re-
moved) nor are the connections in-between them modified (edges are not added or
removed). While most simulation-based works in the literature typically consider a
population of a finite and fixed size, some do indeed consider the population and
group size stochastic in nature (Cremer, Melbinger, and Frey, 2012).

Considering the case where the network and population size remain fixed, dynamic
networks allow individuals to break ties with defectors and create new ties with
others who are more likely to be cooperative. Indeed, cooperative behaviour is
more likely in models that explore the coevolution of behavioural strategies with
social ties. For instance, Santos, Pacheco, and Lenaerts (2006) compare the rela-
tive timescales of behavioural strategy changes against changes in social ties (la-
belled W), and show that given the average degree of the network, if the ratio W
exceeds a certain critical value, then cooperators can fully wipe out defectors. Szol-
noki and Perc (2009) instead consider strategy-independent adaptations of social
ties, and consider the ratio of link addition to link deletion. They consider links to
delete whenever a strategy is updated, and new links added after a given number
of game iterations. They find that two mechanisms, red queen and group selection -
both powerful promoters of cooperation - emerge spontaneously favouring "cooper-
ative behaviour beyond the levels of static complex networks". However, Kun and
Scheuring (2009) find that a dynamic network that is even very slow to update re-
sults in a marked reduction in fixation probabilities for cooperative strategies when
compared to a static graph in the style of Ohtsuki et al. (2006). While this effect was
observed over multiple topologies (random regular, random, and scale-free graphs),
scale-free graphs appeared to be the least effected.
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A B

FIGURE 3.5: Network nodes must have a degree of at least two.
When B interacts with A, there is no neighbour of A to ask for A’s
reputation except B themself. Due to strictly blocking the accumu-
lation of all direct experiences to only analyse indirect reciprocity’s
effect on cooperation, we prevent this scenario entirely by enforcing

a minimum degree of two.

Minimum degree of 2

Regardless of the underlying network, we implement minimum degree of at least
two (Fig. 3.5). Suppose we zoom in on a small section of a network where the agents
A and B happen to be interacting with the condition that deg A = 1 and deg B > 1.
Importantly, they are interacting while being neighbours by chance and not inter-
acting because they are neighbours, interaction partners are not geographically re-
stricted within the network. When A wishes to decide their action, they can select
randomly from one of B’s three neighbours (not including himself) to find B’s repu-
tation. However, the issue arises when B wants to decide their action against A, they
will need A’s reputation from one of A’s neighbours but the only neighbour A has, is
B themself. Since we wish to examine the L8 strategies in a world where direct reci-
procity is not possible, we cannot allow reputations to be accumulated directly and
so A must have at least one other neighbour for B to gain access to A’s reputation,
thereby introducing the requirement of a minimum degree of two.

3.2.8 Proposed Models

Since each population can only use one reputation mechanism and one selection
mechanism at a time, we consider four possible models with different combinations
of global or local, reputation and selection, displayed in Table 3.3. We recreate the
results of Ohtsuki and Iwasa (2004) with the global reputation and global selection
model (GrGe), forming the benchmark against which we compare the three other
models: global reputation and local evolution (GrLe), local reputation and global
evolution (GrLe) and local reputation and local evolution (LrLe). Each variable in
the models is summarised and described in Table 3.4.
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Reputation
Global Local

Evolution
Global GrGe LrGe
Local GrLe LrLe

TABLE 3.3: Model roadmap. In addition to our implementation of
Ohtsuki and Iwasa (2004) - GrGe model - we present three additional
models with local variants of reputation (LrGe) or evolution (GrLe)

or both (LrLe).

Parameters Description

Model N ∈ N Number of agents
n ∈ [0, 1) Initial proportion of UD
s ∈ {s1, . . . , s8} L8 strategy
Ω ∈ [0, 1) Likelihood of further interactions
Tmax ∈ N Maximum length of simulation
µ ∈ [0, 1] Speed of evolution/likelihood strategy update in any given time-step
δ ∈ [0, 1] Probability of an agent’s reputation being broadcast to their neighbours in Lr
ν ∈ [0, 1] Probability of an agent’s action being swapped before reputation assignment
α ∈ R+

0 Expected number of UD mutations in a single time-step

Erdős-Rényi λ ∈ [0, 1) ER network density
d-RRL d ∈ N d-RRL degree
Barabási-Albert m ∈ N Number of preferentially attached connections made for incoming nodes
Watts-Strogatz k ∈ N Initial degree of regular ring lattice

p ∈ [0, 1) Edge rewiring probability

TABLE 3.4: Model parameters. The first group of definitions refers
to the variables that influence the process of simulations, while the
remainder are responsible for initialising the structure of the network

topologies on which the members of the population interact.

3.3 Results

In the following, we assess the results of the key variables within our simulations,
scrutinizing and discussing their behaviour within each of the three additional mod-
els we present here, all the while comparing against the GrGe benchmark model of
Ohtsuki and Iwasa (2004). We simulate each given model and parameter combina-
tion a total of one hundred times, taking the average of their final proportions of
cooperation (either at Tmax or at whichever time-step they converged). We find that
strategies within each group behave very similarly, so frequently aggregate our re-
sults over the three L8 groups. Expanded figures detailing each of the L8 strategies
individually can be found in Appendix A. Similarly, at times there are large simi-
larities between either the global reputation (GrGe and GrLe) and local reputation
models (LrGe and LrLe) or the global evolution (GrGe and LrGe) and local evolution
(GrLe and LrLe) models, for which we aggregate the results of the global and local
versions of the relevant mechanism. A record of all the model parameters that were
used to create the figures is shown in Table 3.5.

Our main result is that populations utilising any combination of global or local
mechanism of reputation and selection is able to sustain cooperation in a wide range
of scenarios in Erdős-Rényi random networks. We begin by establishing a baseline
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setup characterised by the entrance of random UDs (once every ten time-steps on av-
erage). Under perfect information, no observation errors and for a sufficiently high
probability of reputation diffusion (δ > 0.6), panels B-D of Fig. 3.6 show that each
of the L8 (aggregated by their groups) are capable of supporting very high levels of
cooperation under both global and local reputation networks.

In the face of less reliable information transfer in local reputation networks (i.e. pro-
gressively low δ), the L8 eventually fail. Figure 3.6, panel A shows the levels of coop-
eration sustained across the leading eight strategies when only 30% of neighbours
are able to observe their neighbour’s updated reputations (δ = 0.3). The models
utilising global reputation (GrGe and GrLe) have no dependence on δ but have been
displayed for comparison. For higher δs, all of the strategies are able to sustain rea-
sonably high levels of cooperation under local reputation. For the lower δs however
there is a difference in behaviours.

Consider panels B-D of Fig. 3.6. The vertical dashed lines show a rough threshold
for δ (defined as the approximate value at which local reputation achieves 50% coop-
eration) for the LrGe (black line) and LrLe (green line) models. Of the three groups
(ignoring the evolutionary mechanism for now), the threshold (in terms of δ) for
group II is the highest, then followed by group I and finally group III. An expanded
set of results is found in Fig. A.5 where panel A is replicated for a larger range of δ

values. The resilience of group II strategies turns out to be a recurring pattern, where
in most adverse conditions, group II tends to be the strongest contenders for cooper-
ation. In what follows, we interrogate these findings by exploring each of the model
variables individually, allowing us to form an analysis of each of their impacts on
cooperation.

Reputation Broadcast Delving into reputation broadcast in more detail, panels A1
and A2 of Fig. 3.7 show the effect of different likelihoods of reputation broadcast
on both of the local reputation models. It shows the same data as panels B-D of
Fig. 3.6 but instead views the information through the strategy groups instead of
aggregating by model. Like before, GrGe and GrLe are ignored here because global
reputation has no dependence on δ. This view highlights the dependence of group
II strategies (orange lines) on more accurate information to achieve a similar level
of cooperation to the other groups. Additionally, there is a further difference be-
haviours between global evolution and local evolution of groups I and III. Under
global evolution (panel A1), both react almost identically to each other in terms of
their dependence on δ. Both are able to sustain a greater levels of cooperation than
group II and at lower δs. Under local evolution (A2) the two groups diverge and
group III shows improved levels of cooperation at lower δs than group I. The rela-
tive differences are visualised more clearly in panel B where the difference in coop-
eration levels are plotted per group between local evolution and global evolution.
Above the horizontal axis means that local evolution is better, below the axis means
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FIGURE 3.6: Average final proportions of the leading eight. Panel
A: Each of the L8 strategies under each of the four models are shown
for δ = 0.3 and no assignment error ν = 0. We find that group II
strategies are the first to weaken in their ability to sustain cooperation
when 30% of reputations do not diffuse to an individual’s neighbours
following a PD game. Panel B-D: We aggregate the L8 strategies over
the three groups as categorised by Ohtsuki and Iwasa (2004) and dis-
play the level of cooperation sustained by each model under a range
of reputation broadcast probabilities. Vertical dashed lines approx-
imate the point at which the group reaches 50% cooperation in the
population. We find that group III has the lowest threshold, followed
by group I and then group II. In summary, group III is best at with-
standing unreliable information transfer, while group III is the worst.
When δ > 0.6, we observe near perfect cooperation in all models and

groups.
Note that while panel A is represented as a line graph, there is no
ordered relationship between the leading eight strategies s1 − s8; the
horizontal axis is purely categorical. Portraying this information on
a single or multiple panels using a more appropriate bar chart with
error bars was difficult to achieve while ensuring the visualisation
was easy to understand and not cluttered. Therefore, the decision
was made to use a line chart purely for a better aesthetic and ease of

communicating the message of this figure.
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global evolution is better. Group III strategies exhibit better cooperation under local
evolution for all δ, but particularly when 0.1 ≤ δ ≤ 0.3. Groups I and II are better
suited towards global evolutionary mechanisms when reputation reliability is low
(0.15 ≤ δ ≤ 0.28 and 0.22 ≤ δ ≤ 0.35 respectively), but local evolution prevails
in more reputationally secure settings with a small improvement of cooperation for
δ > 0.28 and δ > 0.35 respectively.
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FIGURE 3.7: Likelihood of reputation broadcast. We only consider
Lr mechanisms which mean the GrGe and GrLe models are not visu-
alised since δ has no meaning under a Gr mechanism. Panels A1 and
A2 show the each group’s dependence on the probability of reputa-
tion diffusion for Ge and Le respectively. Under Ge, group III demon-
strates the best resilience towards unreliable reputations, with groups
I and III both behaving similarly, sustaining less cooperation. Under
Le, group III again demonstrates the greatest resilience, followed by
groups I and then III. Panel B shows how much more cooperation is
sustained by LrLe than by LrGe (above horizontal axis → Ge better,
below horizontal axis → Ge performs better). When reputation diffu-
sion is very reliable (0.4 ≤ δ ≤ 1), each of the L8 can sustain a high
degree of cooperation. When it is not reliable (δ < 0.4), group II per-
forms better (sustains more cooperation) under Le, whereas groups I

and II perform better under Ge.

Speed of Evolution Similar results are found when examining the effect of µ, or
the speed of evolutionary update on our models. Panels A1 and A2 of Fig. 3.8 show
that if individuals are relatively slow to update strategy, then cooperation is high
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regardless of their evolutionary mechanism. The L8 are completely invaded if indi-
viduals update strategies more frequently and consistently (µ → 1). We identify a
significant difference between group III and the others depending on the evolution-
ary mechanism. Group III is again the strongest performer when faced with quicker
evolution. Mimicking the same behaviour as in Fig. 3.7, under global evolution,
groups I and III almost in parallel but under local evolution their abilities diverge
with group III able to sustain the same level of cooperation as group I but at much
quicker evolutionary speeds.

Comparing the two mechanisms (panel B of Fig. 3.8), it is clear that local evolution
is always as good as if not better than global evolution for all values of α, for all
of the L8. In the worst case, local evolution is able to sustain equivalent levels of
cooperation to global evolution (although this can be misleading as for low µ both
exhibit almost full cooperation and for high µ both exhibit no cooperation). The
largest improvement comes to group III where these strategies are able to sustain
better cooperation than global evolution for 0.2 ≤ µ ≤ 0.75 values. Groups I and II
show improvements for 0.2 ≤ µ ≤ 0.5 and 0.1 ≤ µ ≤ 0.45. An expanded figure is
found in Fig. A.6.

Assignment Error We explore the likelihood of assignment (or observation) error
ν and its impact on cooperation within our framework. First consider the differences
between global and local evolution (panels A1 and A2 of Fig. 3.9). Group III is the
best performer regardless of the evolutionary mechanism at play. Under local evolu-
tion, each of the three L8 groups show some improvement in cooperation over global
evolution in panel B. This shows that like before, the benefit obtained by evolving
locally is weighted largely towards group III with the greatest range of ν for which
there is an increase in cooperation, but also to towards group II which experiences
significantly better cooperation for low ν in local evolution. Group I shows very lit-
tle benefit from evolving locally as opposed to globally. The relationship is flipped
however if we consider the difference in reputation mechanisms instead (panels A1,
A2 and B of Fig. 3.10). This is the first instance where global reputation was observed
to be strictly better than local reputation for the full parameter range of ν, albeit only
by very small levels ≈ 8% of cooperation. An expanded figure is found in Fig. A.7.

Mutation rates We test the robustness of the L8 strategies against UD in two ways.
The first (Fig. 3.11) considers the entrance of UD mutants into the population at
varying rates and is parametrised by α - representing the average number of UD
mutations per time-step. In doing so, we are able to study whether or not the UD
strategy can invade a population of one of the L8 strategies. We consider both a
reasonable range where UD mutants appear every few time-steps (panels A1-A3) as
well as a more extreme range where multiple UD mutants appear within each time-
step (panels B1-B3). The first two rows of panels represent the global and local evo-
lutionary mechanisms, while the final row depicts the excess cooperation achieved
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FIGURE 3.8: Speed of evolutionary update. Panels A1 and A2 show
each group’s ability to sustain cooperation Ge and Le respectively. We
average together the Gr and Lr variants since they are quantitatively
similar (see Fig. A.6 for full diagram). We find that regardless of the
evolution mechanism, group III can withstand the quickest evolution
before being invaded by UD, followed by group I and II. Under Ge,
group I follows group III fairly closely in its dependence on µ with
group II lagging behind, while under Le, they all exhibit distinct be-
haviours, differentiating group III as the best, group II as the worst,
and group I as being moderate at sustaining cooperation. Panel B
compares each group across the Ge and Le mechanisms. We find that
in all cases, Le provides a better environment for cooperation than Ge.
This is reasonable because a defector who is particularly successful in
exploiting others cannot be observed by as many other players un-
der local evolution as with global evolution. When strategies evolve
globally, players know what strategies are doing better overall and
can switch to them, and when they evolve locally, players can only

know the best strategy in their local neighbourhood.
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FIGURE 3.9: Likelihood of assignment error by evolution mecha-
nism. Panels A1 and A2 show that if too frequent (ν > 0.3 and ν > 6
for Ge and Le respectively), then no cooperation can be sustained.
Under both models, group III has the strongest resilience towards as-
signment error. Under Ge, group I fares slightly better than group
II but performs identically under Le. By comparing the two mod-
els in panel B, we find that evolving locally is preferable under most
possible frequencies of assignment error, and in the worst case is no
worse than evolving globally. This is also a reasonable result. When
assignment errors are more likely, defectors are observed and mistak-
enly given good reputations by their observers. This leads to more
instances of players being unknowingly exploited by defectors rais-
ing their utility. In globally evolving populations, the higher average
payoff of defecting strategists is more easily observed by the entire
population, while in the locally evolving population, only the neigh-
bourhood of the defector (a very small proportion of the population)

are able to observe the high payoff and imitate the strategy.
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FIGURE 3.10: Likelihood of assignment error by reputation mecha-
nism. Panels A1 and A2 describe the levels of cooperation sustained
when populations utilise Gr versus Lr respectively. Like Fig. 3.9, we
find that past a certain frequency of assignment error (ν > 0.6 and
ν > 0.5 for Gr and Lr respectively) there is no cooperation able to be
sustained. There are no major differences between the two models,
however, if we consider panel B, we find that cooperation is slightly
likely under the Gr mechanism. At best, this yields an advantage of

8% cooperation over Lr.
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by local evolution over global evolution. We find here that for reasonable mutation
rates, the mechanisms are largely equivalent with local evolution achieving slightly
more cooperation (approximately 2-3%) than global evolution for α ⪅ 0.8 (panel
A3). However, greater mutation rates with multiple entrants per time-step (panel
B3) show global evolution to offer better chances for cooperation. For all α > 1,
global evolution is able to sustain better cooperation than local evolution for all L8
strategies. An expanded figure is found in Fig. A.8.
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FIGURE 3.11: Expected number of UD mutants. Column A dis-
plays a reasonable mutation rate while column B explores more ex-
treme rates. Rows 1 and 2 explore the Ge and Le mechanism respec-
tively. Panel A3 considers the excess cooperation sustained by a lo-
cally evolving population than a globally evolving population. We
find that the behaviour of the leading eight under reasonable rates of
UD mutations are generally stable, supporting very slightly more co-
operation (2-3%) under Le than Ge. However in column B, we see that
applying considerably more stress to the L8 in terms of very frequent
UD mutations, both evolutionary mechanisms show group III to be
able to resist the quickest mutation rate, followed by group I, and fi-
nally group II. Panel B3 compares the mechanisms for the same large
range of α values and finds that Ge is able to sustain higher levels of
cooperation for the majority of mutation rates. Thus, if mutation rates
are low, then Le is better suited than Ge to support cooperation (but
only slightly), and if mutation rates are high, then Ge is better suited

than Le to support cooperation.

For our second approach, we considered no ongoing mutation but varying the pro-
portion of the population that was an UD at the beginning of the simulation. While
the previous exploration allowed us a view into the ability of the L8 to withstand in-
dividual UD invaders, the present exploration allows us a view of the ability of the
L8 to grow in populations that are up to almost fully composed of UD players. In
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summary, strategies in groups I and III typically sustain close to 100% cooperation in
Fig. 3.12 regardless of whether players evolve strategies globally (panel A) or locally
(panel B), and for the vast majority of initial concentrations of defectors in the pop-
ulation. In simulations where the population is almost entirely UD at the beginning,
then these group I/III strategies can eventually sustain at least 50% cooperation by
the end of the simulations. Group II strategies tend to be weaker, often being un-
able to invade a population that consists of more than just a small concentration of
UD players at the beginning of a simulation. When players evolve globally, group
II strategies can sustain full cooperation by the end of simulations when there are at
most ∼ 25% UD players (and ∼ 75% L8 players) at the start. When evolving locally,
if simulations begin with below ∼ 37% UD players (and ∼ 63% L8 players), then
group II strategies will be able to sustain full cooperation by the end of the simu-
lations. As the initial concentration of UD players increase in either the globally or
locally evolving populations, the final levels of cooperation achieved by the strate-
gies also decrease. This continues until group II is unable to sustain any cooperation
which occurs at ∼ 50% and ∼ 70% initial concentrations of UD in globally and lo-
cally evolving populations respectively. An expanded version of Fig. 3.12 is shown
in Fig. A.9.

3.3.1 Sensitivity Analyses

Consistently throughout the previous explorations, as conditions become harsher
and less conducive towards sustaining cooperation, the groups fail in the order of
group II, then group I, and finally group III. Coming back to our baseline choice
of studying populations that contain no initial UD component but an ongoing UD
mutation once every ten time-steps on average, we considered each of the network
topologies and their component parameters in Fig. 3.13 to explore whether network
structure made an impact on the ability of the L8 to sustain cooperation. In addition
to the Erdős-Rényi network parametrised by its density p (panel A), we explored
the BA network parametrised by the number of edges m preferentially attached to
each node added (panel B), d-RRLs where every node has exactly d network neigh-
bours (panels C and D), and finally the WSSW network parametrised by the degree
k of the initial ring lattice (panel E) and the subsequent edge rewiring probability
p (panel F). We explore the complete spectrum of ER densities and RRL degrees
but not for the BA and WSSW networks. These networks have interesting proper-
ties which only hold for specific parameter ranges. For example, as the preferential
attachment parameter m → N, the BA network would eventually become a fully
complete graph whose degree distribution would no longer follow the power law.
Similarly, as k → N, the WSSW network would become a fully complete graph or
if p → 1, a random graph, losing the properties of small-world networks which
make them ideal in modelling real-world networks. Therefore, we consider only a
restricted parameter set for the BA and WSSW networks. Expanded figures for these
networks are found in Figs. A.1 to A.4.
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FIGURE 3.12: Initial proportion of UD. Panels A1 and A2 consider
the Ge and Le mechanisms in relation to the weighting of UD play-
ers alongside the L8 at the start of the population. In the absence of
ongoing mutation, both groups III and I are able to successfully resist
high levels of UD in the population, and most importantly, are able
to successfully invade a population that almost entirely consist of UD
players. Group II however struggles to be as resilient with coopera-
tion levels starting to drop at n > 0.25 and n > 0.35 for Ge and Le
respectively. If the population consists of more than 50% (Ge) or 65%
(Le) UD players, then group II is not able to invade the population
in any meaningful way. Comparing the two mechanisms in panel B,
we find that cooperation is favoured by group II if evolving under
Le for moderate initial levels of UD in the population with not much
difference otherwise. However, for groups III and I, cooperation is
favoured at extreme levels of UD players if the population evolves

globally.



3.4. Discussion 113

It should be noted that we average our results across each strategy, regardless of
their positions across the network. This means that we do not explore the relative
utility of these strategies depending on the characteristics of their local neighbour-
hoods (for example whether being on the edge of the network is better than being
in the center), nor do we consider the location of the mutation on the network. For
instance, introducing a defector systematically into the largest hub (the player with
the largest number of neighbours), this may have the effect of favouring a quicker
collapse of cooperation.

The decline of group II strategies is evident in the Erdős-Rényi and d-RRL networks
where increasing p or d reduces the level of cooperation in the population approxi-
mately logarithmically (panel D). The decline is not seen for the observed parameter
ranges in the BA (m) or WSSW (k) networks, which is unsurprising since only much
higher network densities impacted group II strategies in the Erdős-Rényi and d-RRL
networks. Panel F shows no effect of p in the WSSW network because rewiring
edges does not change network density. In general, we find that no particular net-
work topology significantly impacts the levels of cooperation observed within the
population, and that the L8 are typically robust against invasion by UDs.

Once again, we find group II to be the first to exhibit weakness in larger networks.
Panel A of Fig. 3.14 shows that for globally evolving models, all three groups of the
L8 strategies decline in cooperation. However, group II in particular declines at the
fastest rate. Locally evolving populations however were able to maintain very high
levels of cooperation regardless of the size of the network. Similarly, the right panel
of Fig. 3.14 shows that longer simulations did show increased levels of cooperation
for globally evolving populations, while local evolution was able to achieve higher
levels of cooperation within shorter simulations. An expanded figure of both the
size of the population and the maximum length of simulation is found in Figs. A.10
and A.11 respectively.

3.4 Discussion

Cooperation is a defining property of human societies. Why people cooperate with
strangers despite not having an inkling of whether they are trustworthy is a tricky
and ongoing problem. Indirect reciprocity offers one potential solution through the
use of reputation-based social norms which provides a method to help distinguish
between good and bad people, to decide who is worthy of help and who is not. Pre-
vious works have found the L8 (Ohtsuki and Iwasa, 2004) social norms that are able
to reliably sustain cooperation when information is public but their efficacy when
information is not so freely available has come under question. Humans judge their
behavioural decisions based on direct experiences or on the reputational informa-
tion sourced from close contacts who are able to provide better information about
the nature of an individual. Furthermore, selection does not take place at the global
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FIGURE 3.13: The L8 on other networks. In all cases, we find that Le
offers a slightly higher level of baseline cooperation over Ge regard-
less of the underlying network topology. We consider the ER random
network parametrised by density λ, the BA network parametrised by
m as the number of edges made for each newly created node, the d-
RRL where every node has the same degree d, and finally the WSSW
parametrised by k and p representing the initial degree of the ring lat-
tice and the edge rewiring probability. Panel A looks at the impact of
density of the ER random network. We find that cooperation is able
to be sustained in all cases and all densities, with the exception of
group II under Le. In this case, we find that as density increases, the
level of cooperation sustained also decreases to a minimum of 70%
for a density λ = 1 or a complete graph. The BA network in panel
B considers reasonable preferential attachment parameters and finds
that cooperation is sustained for m ≤ 10 regardless of group or evo-
lutionary mechanism. Panels C and D explore the d-RRL. Like the ER
network, we find that as the graph becomes denser (d → N − 1, then
group II strategies under Le will only be able to sustain at most 70%
cooperation. Finally, panels E and F both consider the two parame-
ters of the WSSW network: the initial degree of its ring lattice k, and
the rewiring probability p. Cooperation is near-perfect for all k and
p values considered, with the exception of a very small 1% drop in

cooperation at k = 2.
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FIGURE 3.14: Population size and simulation length. Panel A finds
that as the size of the network increases, lower levels of cooperation
are sustained by Ge populations. Groups III and I remain the most
resilient to size increases with the slowest rate of decrease in cooper-
ation, while the cooperation sustained by group II falls the quickest.
Under Le, the networks are largely indifferent to the size of the net-
work and a very high level of cooperation is sustained for N ≤ 700.
Panel B shows the impact of the maximum simulation length on sus-
tained levels of cooperation. We find little to no difference for either
the Ge or Le mechanisms. However, Ge will gain an additional 4%
cooperation if Tmax = 10000, after which there is no additional in-

crease in sustained cooperation.

Figure Experiment N b c Ω Tmax µ n ν δ α λ d m k, p

3.6 (A) Final proportions of the L8 300 2 1 0.99 2000 0.1 0 0 0.3 0.1 0.038 - - -
3.6 (B-D) Probability of Reputation Broadcast 300 2 1 0.99 2000 0.1 0 0 ∗ 0.1 0.038 - - -
3.7 Probability of Reputation Broadcast 300 2 1 0.99 2000 0.1 0 0 ∗ 0.1 0.038 - - -
3.8 Probability of Strategy Update 300 2 1 0.99 2000 ∗ 0 0 1 0.1 0.038 - - -
3.9 Reputation assignment error 300 2 1 0.99 2000 0.1 0 ∗ 1 0.1 0.038 - - -
3.10 Reputation assignment error 300 2 1 0.99 2000 0.1 0 ∗ 1 0.1 0.038 - - -
3.11 Mutation Rate 300 2 1 0.99 3000 0.1 0 0 1 ∗ 0.038 - - -
3.12 Initial Proportion of UD 300 2 1 0.99 3000 0.1 ∗ 0 1 0 0.038 - - -
3.13 (A) Erdős-Rényi density 300 2 1 0.99 2000 0.1 0 0 1 0.1 ∗ - - -
3.13 (B) Barabasi-Albert Preferential Attachment 300 2 1 0.99 2000 0.1 0 0 1 0.1 - - ∗ -
3.13 (C, D) Random regular lattice 300 2 1 0.99 3000 0.1 0 0 1 0.1 - ∗ - -
3.13 (E, F) Watts-Strogatz Small World Parameters 300 2 1 0.99 2000 0.1 0 0 1 0.1 - - - ∗
3.14 (A) Network Size ∗ 2 1 0.99 2000 0.1 0 0 1 0.1 * - - -
3.14 (B) Simulation Length 300 2 1 0.99 ∗ 0.1 0 0 1 0.1 0.038 - - -

TABLE 3.5: Experiment parameters. We show the parameters for
each of the simulations displayed in any of the figures in this chap-
ter or in Appendix A. In order of appearance, the columns reference
the figure we are discussing, what we explore in that experiment,
the L8 strategies we consider, the size of the network (N), the benefit
gained from receiving another’s cooperation (b), the cost of cooperat-
ing with someone else (c), the probability of further PD rounds within
the same time-step (Ω), the maximum length of the simulation (Tmax),
expected number of UD mutations per time-step (α), the proportion
of UD agents in the population at t = 0 (n), the speed of evolution
(µ), the probability of reputation broadcast (δ), and the reputation as-
signment error (ν), the ER network density (λ), the RRL degree (d),
the BA preferential attachment parameter (m), the WSSW ring lattice

degree (k) and edge rewiring probability (p).
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scale, but more aptly at a smaller local scale. In this study, we have worked to ex-
plore the local embeddedness of reputation through social norms and of selection in
order to develop the analysis on the L8’s ability to establish and sustain strongly co-
operative populations. Drawing from the results in the previous section, we present
four key findings.

Finding 1 The leading eight are capable of maintaining a high level of cooperation in a wide
array of circumstances with local information and local selection.

Our primary result is that as long as the speed of evolution µ and observation error ν

are suitably low, and the frequency of reputation broadcast δ is suitably high, the L8
are able to sustain high levels of cooperation under any combination of global or lo-
cal selection with local reputation. Within these scenarios, reputational information
transferring locally amongst neighbours gives rise to a world in which cooperation
levels are largely equivalent to worlds with publicly available reputations. The fre-
quency δ at which reputation is transferred locally between neighbours however is
critical in controlling this outcome. We found little to no cooperation for δ < 0.3, in
line with earlier findings (Hilbe et al., 2018) that considered IR with private reputa-
tions or with gossip (Righi and Takács, 2022). For moderate values 0.3 ≤ δ < 0.4, the
behaviours of the L8 begin to diverge. Here, group I and III strategies remain able
to sustain cooperation and resist invasion from UDs, but group II strategies that are
defined by the rewarding of justified defection by bad actors (d00D = 1), are not. For
higher values δ ≥ 0.4, cooperation is more easily achievable by each of the L8 due
to the prevalence of up-to-date and accurate - if ν is sufficiently high - reputational
information.

Finding 2 Local evolution is capable of sustaining cooperation under a wider range of sce-
narios than global evolution, while local reputation is equally as effective as global reputation.

Local evolution was repeatedly observed to sustain better levels of cooperation in
the population than global evolution except in very specific scenarios with group II
strategies (see Fig. 3.12 when n ≈ 1 and Fig. 3.11 when α > 1, and finally Fig. A.8).
Suppose δ is sufficiently high allowing strong and accurate reputational informa-
tion transfer. Local evolution limits the rate at which UD strategies can diffuse into
the population. To illustrate this, suppose agent A is a particularly fruitful UD mu-
tant who has exploited multiple altruistic cooperators and has yielded a relatively
high payoff. Under global evolution, the average utility of the UD strategy under
selection would be very high because of the combination of a high payoff and a
low number of UD interactions within the population. While the entire population
is impacted by this difference in payoffs under global evolution, the subset of the
population that is able to observe and emulate A’s strategy under local evolution is
dependent on the density of the population network or in other words, how many
neighbours A has. In a sparse network, very few individuals would be able to ob-
serve and mimic the fruitful UD strategy, while in a very dense network, many more
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individuals can mimic the UD strategy. Local evolution and low network density of
the population therefore work in synergy by limiting the growth of more exploita-
tive strategies providing more protection for cooperative strategies. This is the key
reason why group II strategies struggle to sustain cooperation in denser networks
(Figs. A.1 and A.2). Bad actors - with indiscriminate defection - are able to exploit
the group II social norms to undeservedly receive good reputations through justi-
fied defection. This leads to an increase in the proportion of L8 strategists that are
exploited and fooled into cooperating, thus increasing the payoffs of the UD strate-
gists. Denser networks under local evolution using the copy-the-best strategy rule
would more often than not lead to the UD strategy as being the "best". Global evo-
lution does not have this shortcoming since the payoffs are averaged over the UD
interactions, but no such averaging takes place under local evolution. Thus it is
easier for defectors to exploit the group II L8 strategies in denser networks.

However, there is always the possibility that the UD agent is discovered before they
are able to exploit multiple individuals. This is more likely when reputation broad-
cast δ is high and speed of evolution µ is low. In these situations (with local evolu-
tion), once the UD is identified, they suffer from a form of social punishment where
honest strategists refuse to help them, thereby lowing the UD player’s payoff and
making them a less desirable target for another player’s evolutionary update. In the
global evolution setting, all that matters is the distance between the population-wide
average payoffs. If there are multiple UD players in the population, then the singu-
lar and poor performing UD agent is protected from selection by the better average
performance amongst all UD players. Thus, cooperation thrives more easily under
local evolution with wider ranges of evolutionary speeds α, reputation broadcast
probabilities δ, and observation errors ν.

Thus we can now answer the question asked in the final paragraph of Section 3.1.
No, relaxing the assumptions of global information and of global evolution does not
impact the number of leading strategies that are able to sustain cooperation against
UD since there are still a large set of circumstances in which they are able to sustain
a high degree of cooperation under local information and local evolution. Coop-
erators should prefer systems of local evolution because when learning can only
happen between immediate neighbours, the rate at which non-cooperative strate-
gies can spread throughout the population network is decreased. This however can
be a double-edged sword since the same applies to the spread of cooperative strate-
gies in a population of defectors. Returning to the classroom project analogy in
Section 3.2.3, students evolving their strategies locally would only be able to learn
strategies - cooperative or non-cooperative - from the other students in their class.
It would take more time and more projects for the strategies to transition between
classrooms.

We also asked whether or not certain networks are better suited towards sustaining
cooperation, and the answer is also in favour of the L8. We find that they are able
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to sustain high levels of cooperation in each of the networks we explored under
local reputation and local evolution, as long as the network density is sufficiently
low. When this is not possible, four of the L8 are weakened, but are still capable of
sustaining moderately high levels of cooperation in the population.

We have seen that the L8 remain leading and able to sustain high levels of coopera-
tion. Now, we analyse the groups of strategies that make up the L8, as characterised
by Ohtsuki and Iwasa (2004) and shown to have results that are systematically very
similar within each group.

Finding 3 The social norms that do not reward justified defection through positive reputa-
tion offer better chances for cooperation under a greater speed of evolution, larger networks,
noisy reputations, and when UD enter the population in greater numbers.

The inherent weakness of group II strategies is the key differentiator between global
evolution and local evolution. When reputations are transferred without error, all
strategies are able to identify, exclude and invade UD mutants. However, when
faced with error in information transmission, extreme initial proportions of UD within
the population, quick evolution, or larger networks, group II strategies are always
the first to succumb to complete defection.

Strategies within group II are characterised by d00D = 1 which characterises in-
stances of justified defection by bad individuals as good behaviour, socially reward-
ing it with a good reputation. Based on only mixed empirical evidence on its pres-
ence and relevance in human decision making (Samu, Számadó, and Takács, 2020;
Tanaka, Ohtsuki, and Ohtsubo, 2016; Ule et al., 2009) has come under scrutiny. Un-
der these norms, both cases of justified defection are rewarded with a positive repu-
tation d10D = d00D = 1. The first is a common mechanism of all of the L8 strategies
and represents the social rewarding of those that punish social norm deviators. This
is akin to the standing norm where defecting against bad people does not harm the
individual’s standing. It allows the identification of disreputable individuals who
are unlikely to cooperate, so that others are given a chance to avoid being exploited.
The second case of d00D = 1 however describes an instance of a disreputable in-
dividual defecting against another disreputable individual. Under less than ideal
circumstances, these interactions are able to snowball increasing the rapid spread
of defection in the population. If there is a large number of UD in the population,
then it is likely that these individuals firstly have a bad reputation, and second fre-
quently interact with other UD players. In these cases, this social norm essentially
rewards collusion with good reputations at no cost to UD players instead of achiev-
ing the original goal of identifying defectors. Because of this, group II strategies are
particularly susceptible to any conditions that increase the likelihood of interactions
between UD players: high mutation rates and the initial proportions of UD in the
populations, but also circumstances that cause L8 strategists to be mislabelled as dis-
reputable through high observation errors. Low likelihoods of reputation broadcast
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also contribute to their downfall but this primarily occurs through the misidentifica-
tion of a bad player, leading others to believe they are reputable thereby cooperating
with them. The UD strategy flourishes in environments where reputation is uncer-
tain.

There are two kinds of behaviour captured by different L8 rules with regards to jus-
tified defection. The first considers all acts of defection against someone with a bad
reputation as good behaviour (d10D = d00D == 1), while the other considers de-
fection against someone with a bad reputation as neutral behaviour, ultimately not
changing the focal player’s reputation (d10D = d00D == 1). The former is found
in group II, while groups I and III exhibit the latter. It is perhaps the rewarding of
what should be neutral or ambiguous behaviour (Yamamoto, Suzuki, and Umetani,
2020) that causes group II strategies to struggle to sustain cooperation in the face
of UD. For instance, in 2022 following the build up of Russian aggression towards
Ukraine, the hacker group known as "Anonymous" declared cyber war against the
Russian government (Milmo and editor, n.d.). Arguably, hacking is commonly asso-
ciated with illegal activity and data theft by cyber criminals and thus can be seen as
a disreputable activity. However, Anonymous’s vigilantism against various Russian
entities has led to public support Alexopoulou and Pavli (2021), Blok (1972), and
Coleman (2014), justifying their criminal activities in a way, although this position
is far from unanimous. Our finding suggests that social norms that allow for this
ambiguity between what constitutes good and bad behaviour can have a negative
impact on cooperation.

Figure 3.12 shows the transition from full cooperation when the initial proportion of
UD is low, to no cooperation when the initial proportion of UD is high. A threshold
can be seen where below it, the population can prevent the invasion by UD but above
the L8 strategy collapses. For global evolution, this threshold appears to be around
25-50%, whereas it is 40-70% for local evolution; it is significantly higher for local
than global evolution. For values of n close to the threshold, it is likely that given
enough time, the group II strategies would eventually invade the entire population
but for n closer to 1, it is unlikely that any length of simulation would have allowed
the spread of the few remaining group II strategists.

We now return to our baseline formulation, considering populations of L8 strate-
gies and their resilience against defectors through: ongoing UD mutation, initial UD
groups in the population, low likelihoods of reputation diffusion, and assignment
errors and categorise the relative differences between each group of the L8 in their
abilities to sustain cooperation.

Finding 4 As conditions become increasingly harsh under local evolution, the group II
strategies are most easily invaded by UD, followed by group I and finally group III.

The rewarding of UD agent collusion is prevented in groups I and III because d00D =
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0. While both are better performers than group II under many scenarios, they some-
what diverge in behaviour when it comes to the frequency of reputation transmis-
sion and speed of strategy evolution under local evolution. Group III can sustain
greater levels of cooperation than group I norms. In the few exceptions to this
(Fig. 3.12), group III is capable of sustaining at least as much cooperation as group
I. The reason for this difference in the majority of situations is the combination of
reputation assignment d00C and behavioural rule p00 which details interactions be-
tween pairs of bad actors or those with bad reputations. The forgiving characteristic
of group I social norms allows those in bad standing to cooperate p00 = C thereby
regaining a good reputation d00C = 1. This attribute however makes the strategies
vulnerable to exploitation by UDs. Suppose an agent A interacts in a population that
uses a group I social norm and accidentally gains a bad reputation. In this case, A
will be incentivized to cooperate no matter who they meet so they can regain their
standing in the population. Ideally, this would be another honest but disreputable
strategist with similar intentions, but it can just as easily be a disreputable UD player
who is seeking to exploit others. In these populations, the reputations of UD agents
become less important due to the willingness of disreputable group I strategists to
cooperate with other disreputable individuals. Instead, UD agents are favoured by
selection as long as they are able to maximise the number of interactions they engage
in within the population since this maximises their chances of exploiting another in-
dividual looking to regain their good standing.

So far, we have seen that each group II strategy socially rewards justified defections
with good reputations, ultimately benefiting UD players. Group I encourages coop-
erating with anyone who has a bad reputation, also ultimately benefiting UD players
since if group I players are still going to be willing to cooperate with disreputable
people, their standing within the population is no longer that important. Group III
however, negates both of these issues. These unforgiving strategies do not allow the
rewarding of justified defection between two bad actors d00D = 0, nor does it pre-
scribe cooperation when in possession of a bad reputation p00 = D. The only way to
be socially forgiven is by cooperating with a good actor p01 = C thereby regaining a
good reputation d01C = 1. In such norms, the only circumstances that remain for UD
agents to exploit are those initial interactions after mutation where they still have a
good reputation. If the frequency of reputation broadcast is low then they may be
able to take advantage of being mislabelled as a good person for longer periods, able
to exploit multiple honest players who are unaware of their true reputations. The
stringent rules of group III strategies form the most resilient populations in the face
of observed defections. Members of these populations are risk averse, unwilling to
risk exploitation and so they suffer from the lowest average payoffs (Ohtsuki and
Iwasa, 2004) of the three groups. Robust rules condemn any actions towards bad
actors so all will simply play safe by unilaterally defecting. The relative difficulty in
achieving forgiveness under these social norms are more beneficial in fostering high
levels of cooperation.
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3.4.1 Possible criticisms

This analysis of the L8 strategies is not without fault. There are a number of assump-
tions made that must be understood when considering our results within the context
of the wider field of evolution of cooperation.

The discovery of the L8 in Ohtsuki and Iwasa (2004) considered the evolutionary
stability mathematically and showed that the L8 would consistently have a greater
average payoff as t → ∞ against all other possible mutant strategies. Our work fol-
lows a simulation-based approach which methodically tested each of the L8 against
just one strategy - arguably the most harmful towards altruistic cooperation - of un-
conditional defection. While we have explored the resilience of the L8 on networks
under conditions of local information and local selection, it remains possible that
other strategies outside of the L8 outperform them under these new constraints and
that the L8 are not actually leading after all. It is possible that a different set of
strategies are optimal under our localised settings. In order to rigorously examine
this hypothesis, a methodical search should be undertaken for each and every possi-
ble combination of the original 4096 pairs of social norms and behavioural strategies,
testing them not only against UD, but also against each other.

Another limitation of our model of local reputation does not fully encapsulate real-
istic use of reputations. For reasons of simplicity, ease of modelling, and ignoring all
direct experiences for the purposes of isolating indirect reciprocity, we assumed that
when a player decides to cooperate or to defect using their behavioural strategy, the
source of their own reputation is not from their own knowledge, but the knowledge
of their neighbour. This allowed interactions to use two sources of reputational in-
formation instead of four. Removing this assumption would be the most impactful
change towards making this model closer to reality, but it would also make the study
of the L8 strategies less clear cut.

To remove this assumption, further work should account for a player’s own percep-
tion of their own reputation when it comes to deciding their behaviour within an
interaction, potentially with an additional error parameter controlling the accuracy
of perception. In such a model, an interaction between players A and B would look
slightly different. Like before, both A and B require two reputations each for their
behavioural strategy, to decide whether or not to cooperate with the other: their
own reputation, and their opponent’s reputation. Both players will obtain their op-
ponent’s reputation by querying one of their opponent’s neighbours at random. The
improved model would utilise A’s reputation from A’s own point of view, and the
same for player B. The present model uses the same information from A’s neighbour
as A’s reputation from A’s point of view. By allowing A to maintain their own view
of their reputation, it would also be likely that they occasionally make a mistake on
how they are reputationally perceived by others. Hence, such a model would also
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introduce a third source of error. In doing so, the model becomes slightly more com-
plex, and the behavioural strategy rules from A’s and B’s point of view are no longer
symmetrical. However, in return, we improve the model’s realism.

Furthermore, we instigated a restriction of a minimum degree of two within each of
our networks. While it was only technically required under local reputation mech-
anisms, the restriction was applied among all networks to ensure results were not
inconsistently affected. This restriction was put in place to prevent the possibility of
direct reciprocity coming into play for our model, in cases where a player interacted
with their one and only neighbour and had no other source of reputational informa-
tion for their neighbour other than themselves. In such cases, a more appropriate
method of dealing with this circumstance would be to guess an opponent’s reputa-
tion if no other sources of their reputational information are present. As this deals
with a relatively rare scenario, we surmise that this would not have significantly im-
pacted results, but would have greatly simplified the simulation process. With such
an improvement, the only requirement would then be that the network is connected.

3.4.2 Further work

One of the initial and most important assumptions made in our work is that only
one social norm is active within a population in any given simulation. This ensures
that each individual would agree on the resulting reputations of any given interac-
tion in the absence of all errors. However, we know that this need not be the case,
and in fact, it is not true in practise. We know different cultures across the world
can react to the same interactions in wildly different ways, attributing different so-
cial values to identical interactions. As such, it is appropriate to consider modelling
the co-evolution of multiple social norms. Such models would increase in compu-
tational complexity but would aid our understanding in the intricacies of strategic
cooperation both within and between different cultures. These models could either
use variations of the island model (Wright, 1943) to consider the relative strengths
between different social norms (different islands), or instead considering both be-
havioural strategy and reputation dynamics to evolve at the same time as pairs.
However, multiple evolutionary speeds must be considered in this latter case since
changing individual behaviours can occur much more frequently than changing a
player’s entire moral value system.
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Chapter 4

Reputation and Punishment
sustain cooperation in the Optional
Public Goods Game

We have answered several questions on the efficacy of the L8 in the two-person pris-
oner’s dilemma, specifically pertaining to how cooperation is impacted when infor-
mation - whether it is reputational, or used for the purposes of evolving strategies -
is transmitted throughout the network. However, frequently, interactions also occur
between more than just two players. Sustaining cooperation in larger groups is dif-
ficult to achieve. The subclass of problems that require the collaboration of groups
larger than two people is frequently referred to as collective action problems. These
model situations in which a group of individuals attempt to cooperate to achieve a
common goal (Isaac and Walker, 1988; Isaac, Walker, and Williams, 1994; Ostrom,
2000), whilst balancing personal incentives against group incentives.

4.1 Introduction

These problems have initially been studied through the PGG (Section 2.4) with co-
operation and defection as the sole key basic strategies. In this relatively simple case,
cooperation is difficult to achieve because they are easily invaded by free-riders. A
player can always improve their payoffs by lowering their own contributions to the
public good, in fact the optimal action is to contribute nothing. As observed in exper-
iments for example in Marwell and Ames (1979, 1981) and Trivers (1971), in repeated
iterations of the game, contributions to the public good drop as the rounds progress.
Since a group member can always stand to gain by decreasing their own contribu-
tions, theoretically, the predicted result (called the strong free-rider’s hypothesis)
is that no one cooperates and the public good is depleted. Experimentally, while
we don’t always achieve the complete lack of cooperation the strong free-rider’s
hypothesis predicts, we do reliably observe ongoing decreases in cooperation in re-
peated games to low but non-zero levels (weak free-rider’s hypothesis) (Marwell
and Ames, 1979).
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Marwell and Ames (1979) have claimed that the weak free-rider’s hypothesis - co-
operation persisting but at suboptimal levels - is demonstrated by a small group of
altruistic cooperators who despite the risk of exploitation and defection, still con-
tinue contributing to the common good. However, high levels of cooperation have
been frequently observed in a sustained manner in empirical circumstances suggest-
ing that there must be other mechanisms at play to sustain cooperation in collective
action problems. Hauert (2002) proposed the loner strategy that allows individu-
als who would prefer to cooperate, another avenue to avoid exploitation in non-
cooperative groups. By allowing them the option to withdraw from the game - now
called the OPGG - they avoid the risk of cooperating in groups of defectors, thereby
receiving a smaller but non-negative and risk-free payoff. The addition of uncondi-
tional loners (UL) alongside UC and UD improves cooperation somewhat through
the emergence of cyclic dynamics between the three strategies. In a population that
consists entirely of cooperators, defecting is the optimal strategy, and so cooperators
are invaded by defectors. In a population that now consists entirely of defectors,
cooperating would be foolish because it is almost guaranteed to result in a worse
outcome than defecting. However, loners in such cases have the best outcome, able
to prevent an almost guaranteed loss from cooperation, while being able to obtain
a certain payoff by not participating. Thus, a population consisting of defectors is
invaded by loners. Finally, these populations which consist entirely of loners can-
not improve their standing by defecting because by the nature of the loner strategy,
they all exit the OPGG. However, when defectors are rare, loners by cooperating can
improve upon the payoff obtained by abstaining. Thus, a population consisting of
loners is invaded by cooperators. In summary, a population of cooperators is in-
vaded by defectors, which is in turn invaded by loners, and finally re-invaded by
cooperators at which point the cycle repeats.

Loners prevent the deadlock of cooperators and defectors in the OPGG, allowing a
route back to cooperation when the interaction environment becomes too exploita-
tive. However, the resulting population tends to spend most of its time in periods
dominated by loners, with only brief and occasional stints of cooperation. Hauert
et al. (2002) shows that the average payoff of the population tends to converge to
the loner’s payoff, suggesting that the population needn’t bother with the costs of
cooperating within the OPGG and they would fare just as well by always withdraw-
ing from the game. How can cooperation then be encouraged to beyond the levels
achieved through this mechanism?

Two mechanisms have been prime contenders to elicit and sustain significant levels
of cooperation. The first is costly punishment. Pool punishment mechanisms del-
egate punishment to an independent third-party, paid either by a secondary public
goods game or by taxes, whereas peer punishment occurs when individuals freely
pay the needed expenses to inflict punishment on another individual. Fehr and
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Gächter (2000, 2002) show evidence that people are willing to pay the costs of pun-
ishment. Larger deviations from the cooperative norms lead to harsher penalties
(Fehr and Fischbacher, 2004) even though they were enacted by independent third-
parties whose economic payoffs where not affected by the defectors. However,
punishment in experiments and real human societies is not only directed at badly
behaved people. Frequently, punishment of cooperators by defectors is observed
(Herrmann, Thoni, and Gächter, 2008; Rand et al., 2010). By allowing punishment to
be directed not only towards defectors but towards anyone, the positive effect of co-
operation was removed. In the case of the OPGG, Rand and Nowak (2011) showed
that allowing pro-social punishment did break the cyclic dynamics inducing high
levels of cooperation within the population, but if the complete set of punishment
strategies was possible, the levels of cooperation dropped again to pre-punishment
levels and re-establishes the cyclic dynamics observed in the absence of of punish-
ment. In such situations, anti-social strategies prevailed, primarily the strategies
that punished their would-be invader: cooperators who punish defectors, defectors
who punish loners, and loners who punish cooperators. Arguably, should loners -
who by definition are withdrawn and independent from the OPGG - be allowed to
punish and receive punishment? García and Traulsen (2012) shows that if they are
protected, despite the availability of anti-social strategies, pro-social cooperators do
prevail able to sustain cooperation.

Aside from punishment, the other key mechanism to encourage and sustain coop-
eration in multi-person interactions, is reputation. As we have discussed in Sec-
tion 2.3, reputation is formed through a moral-value system. Called a social norm or
reputation dynamics, they attribute different reputations to different actions. At the
most basic level, cooperation is thought to be reputable, defection is thought to be
disreputable. This describes the image-scoring norm, but more complex norms are
possible of course. The standing criterion solves the problem of the punishment of
justified defection under the image scoring norm, but requires additional informa-
tion regarding not only an individual’s action, but also their opponent’s reputation
thereby tailoring reputation to account for the context within actions were taken.
More complex social norms like the leading eight that formed the basis of the pre-
vious chapter, used a third source of information in order to assign reputations: the
reputation of the focal individual themself, accounting for their intent behind their
actions too. Details of these social norms have been discussed in Section 2.3 of the
literature review.

In the absence of reputation, a significant portion of the literature studies the evo-
lution of cooperative strategies in two-player social dilemmas like the PD (Axelrod,
1980a), but many works also consider dilemmas consisting of many players, through
the PGG (Hardin, 1968) or its many amalgamations. Eliciting cooperation in both
the PD and PGG is substantially more difficult when reputation is not considered
(Molander, 1992). Yao (1996) extended the two-player iterated PD to n persons,
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and explored the evolutionary stability of the resulting systems. They found that
no finite mixture of pure strategies in the n-person iterated PD can be evolutionar-
ily stable for n greater than two in the absence of errors, or a reputational system.
However, stability can be achieved if mistakes are allowed in the n-person game
or if agents are endowed with memory of previous actions or either direct or in-
direct reciprocal strategies (Akimov and Soutchanski, 1994; Hauert and Schuster,
1997) leading to stable levels of cooperation (Joshi, 1987) as long as groups remain
small. Larger groups can sustain cooperation with increasingly restrictive assump-
tions (Boyd and Richerson, 1988a; Hilbe et al., 2014).

While the PGG can sustain cooperation albeit with some difficulty, it is more eas-
ily achievable in the presence of reputation through a simple discriminator strategy.
This indirect reciprocity strategy - of cooperating with anyone who has a good repu-
tation whilst defecting against anyone with a bad reputation - is evolutionary stable
even for the most simple image scoring social norm Suzuki and Akiyama (2008b),
although the standing norm allows IR to sustain cooperation under slightly more
relaxed conditions (Suzuki and Akiyama, 2007a). In more general cases, periodic or
chaotic dynamics emerge under simple reciprocal strategies (Suzuki and Akiyama,
2008a), but reacts similarly to Boyd and Richerson (1988a) with increased difficulty
in sustaining cooperation as groups become larger.

Reputation-based social norms and costly punishment coexist in human societies
(Jordan and Rand, 2020), and while the reputation of punishers has been widely ex-
plored, the study of the union of the two distinct mechanisms has not yet been sat-
urated to the same extent, and no studies on their interaction within the OPGG. For
the initial exploration, we adapt the image-scoring norm to quantify the moral value
of cooperators, defectors and loners. We consider four such norms, each prizing co-
operation but with varying views between defection and abstention. By fixing the
reputation dynamics over a population, we formalise conditional strategies that ob-
serve and react accordingly to the reputations of others. However, unlike the L8
strategies in the PD, we now have multiple players, each with their own individ-
ual reputation. Therefore, behavioural strategies must condition their actions in the
OPGG on the average reputation of the other members of their group. Finally, we im-
plement the complete set of punishment strategies alongside reputation, allowing
the full range of non-punishing, pro-socially punishing, and anti-socially punishing
behaviours.

Our main question is, can the choice to base one’s actions on the reputations of others in-
crease the likelihood of cooperation in a society where anyone can punish anyone they choose?
By comparing against the baseline model of Hauert (2002) with three simple strate-
gies of unconditional behaviour (UC, UD, and UL) with no additional mechanisms,
and the model of Rand and Nowak (2011) which implements the full set of pun-
ishment strategies, we extend the theory of the OPGG to explore two additional
models which consider reputation-based social norms and conditional behaviours
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Game Model Reputation? Punishment?
# of

strategies
Reference

PGG Baseline ✗ ✗ 2 Molander (1992) and Yao (1996)
PGG Reputationa ✓ ✗ 3 Suzuki and Akiyama (2007a, 2008b)

OPGG Baseline ✗ ✗ 3 Hauert (2002)
OPGG Punishmentb ✗ ✓ 24 Rand and Nowak (2011)
OPGG Reputationc ✓ ✗ 11 Present work
OPGG Reputationc and Punishmentb ✓ ✓ 88 Present work

a Image scoring and standing social norms using UC, UD, and DISC behavioural strategies.
b We only consider the complete punishment strategy set, allowing for punishment to be directed towards cooperators, defectors, and loners.
c Anti-defector, anti-loner, anti-neither, anti-both social norms. See Section 4.2.

TABLE 4.1: Conceptual placement of this study. See Table 2.7 for a
more detailed overview of punishment within the compulsory and

voluntary PGG.

both in the absence and presence of punishment. In total, we have four models (Ta-
ble 4.1): Baseline (B), Punishment (P), Reputation (R), Reputation and Punishment
(RP), with the latter two models explored in each of four possible social norms. By
comparing the effect of social norms on agents reacting conditionally to reputations,
we explore the strategic interchanges that occur between reputation and punishment
behaviours in the OPGG.

4.2 Methodology

We explore the coexistence of reputation and punishment within the OPGG using
an ABM. A population of N agents play the OPGG in groups of n over T time-
steps. In each time-step, the population is randomly partitioned into groups of n
individuals to play a minimum of one round of the OPGG. Players act according
to their behavioural strategy, behaving unconditionally as in the B and P models,
or conditionally to the current average reputation of the group under the R and RP
models. Players can cooperate and pay a cost c, or defect and avoid costs, or abstain
from the game entirely, avoiding both its cost and its benefit. The total contributions
to the public good are multiplied by a growth factor r, and then distributed evenly
amongst the participants (everyone but the loners) of the group. The loners who
abstained and withdrew from the OPGG receive a loner’s payoff 0 < σ < (r − 1)c.
If all but one member of a group abstains (or equivalently, if there are n − 1 loners),
then the lone participant is also forced to abstain and receives the loner’s payoff.
The payoffs of players who defected ΠD, cooperated ΠC, or abstained ΠL (these do
not refer to specific strategies, but those who behaved in a particular manner) in the
round are:
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ΠD =
rcnC

nC + nD

ΠC = ΠD − c

ΠL = σ.

The defector’s payoff ΠD is calculated by multiplying the synergy factor of the
OPGG r by the cost of cooperation c and the number of cooperators in the group
nC. This quantity is the total profit of the public good. This is then shared amongst
each of the nC + nD participants. Note that n = nC + nD + nL. The cooperator’s
payoff ΠC is the same as the defector’s payoff, except that the cooperator pays the
initial cost of cooperation. Finally, the loner’s payoff ΠL is simply σ.

Immediately after the payoffs of the round are distributed, a punishment round be-
gins (in the P and RP models, but not in the B or R models) where every individual
in the population has the opportunity to punish any or all individuals within their
group based on their preceding behaviour. Players pay a cost of γ to enact punish-
ment on another individual while those being punished are forced to pay a penalty
of β. Punishment costs and penalties are additive so if a player decides to punish
multiple people, then γ must be paid per punishment. Likewise, if an individual
is punished by multiple people, they must pay the penalty multiple times. Model P
recreates the model of Rand and Nowak (2011) with a total of 24 strategies. These ac-
count for the non-punishing unconditional strategies, as well as an additional seven
each that punish one or more of cooperators, defectors or loners. Displayed in Ta-
ble 4.2, these are represented as a string of three Ps or Ns, representing acts of pun-
ishment (P) or no punishment (N), towards cooperators, defectors and loners: NNN,
NNP, NPN, PNN, PPN, PNP, NPP, PPP. For example, CNPP players will always co-
operate in the OPGG, will avoid punishing other cooperators, but will punish each
defector and loner in their group. Thus, the payoff equations become:

ΠD =
rcnC

nC + nD
− γk − βqD

ΠC = ΠD − c − γk − βqC

ΠL = σ − γk − βqL.

where qC, qD, qL are the number of players in the group that punish cooperators,
defectors and loners respectively and k represents the number of players in the group
that satisfy the player’s conditions for punishment. For instance, within a group of
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Subscript Punish Cooperators Punish Defectors Punish Loners

NNN ✗ ✗ ✗

NPN ✗ ✓ ✗

NNP ✗ ✗ ✓

PNN ✓ ✗ ✗

NPP ✗ ✓ ✓

PPN ✓ ✓ ✗

PNP ✓ ✗ ✓

PPP ✓ ✓ ✓

TABLE 4.2: Punishment strategies. Described as a string of three
characters, each either an N or a P, representing no punishment or
punishment respectively, against cooperators, defectors, or loners, in
that precise order. Each behavioural strategy is by default the non-
punishing variant, while the additional seven variants account for

various pro- and anti-social punishments.

size n, if a player is cooperator that punishes defectors and loners, and everyone else
in the group is either a cooperator or loner, then k = n − 1.

Once the first round (consisting of every player playing the OPGG and then en-
acting their punishments) ends, reputations are updated (in the R and RP models),
and subsequent rounds are played with probability Ω, or equivalently, the OPGG
is played until the time-step ends with probability 1 − Ω. This approach allows ev-
eryone in the population to play exactly the same number of OPGG rounds, which
is used instead of repeatedly sampling OPGG groups from the population with re-
placement like the PD interaction pairs in the L8 study. This decision allows us to
consider the extent to which direct and indirect reciprocity interact within the con-
fines of our model. Repeatedly sampling OPGG groups would limit us to exploring
only indirect reciprocity as reputations are constantly formed in one group, and then
observed and used in another.

Once punishments have been enacted, the evolutionary stage begins. Based on a
group-selection mechanism, players change their strategies according to the distri-
bution of payoffs within their group or the population. In each time-step, a single
agent A is paired with another agent B who is either in the same group with proba-
bility 1 − m, or outside of the group with probability m. Player A will switch to B’s
strategy with probability

exp(ui)

exp(ui) + exp(uj)
,

where ux denotes the payoff of agent X and the exponential function is used to ac-
count for negative payoffs. With probability ϵ, a single player is mutated each time-
step to prevent convergence on a local optimum. This is dissimilar to the L8 study
where α of the population mutated each time-step.

Reputation within our model is a slight variation of the binary image scoring social
norm. We modify it to account for the abstentions as well as cooperation and defec-
tion. In Nowak and Sigmund (1998b), the binary image scoring norm attributed a
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good reputation to cooperators, and a bad reputation to defectors represented as a
1 or a 0 respectively. We propose a third reputation, -1, representing now the worst
reputation, while 0 becomes a moderate one. Arguably, cooperation in highly func-
tioning societies is associated with a good reputation and so we attribute a good
reputation (1) to cooperators1, while varying average (0) and bad (-1) reputations
to defectors and loners. Four such assignments are possible (Table 4.3). The anti-
defector (AD), attributes a bad reputation to defectors and a moderate reputation to
loners. The anti-loner (AL) norm is the opposite of the AD norm, assigning bad and
moderate reputations to loners and defectors respectively. The anti-neither (AN)
and anti-both (AB) social norms both assign the same reputation to both acts of de-
fection and abstention, but to differing extents with the AN norm assigning mod-
erate reputations, and the AB norm assigning bad reputations. We do not consider
the paradoxical social norms that value defection or abstention most highly as these
tend to be illogical and unlikely to match real social norms in practise.

Social Norm C D L

Anti-Defector AD 1 -1 0
Anti-Loner AL 1 0 -1

Anti-Neither AN 1 0 0
Anti-Both AB 1 -1 -1

TABLE 4.3: Four social norms. We explore four social norms that
assign good reputations (1) to cooperators, and various arrangements

of moderate (0) and bad reputations (-1) to defectors and loners.

To model agents that behave conditionally under a social norm, we create strate-
gies that are based on the average reputation of the other members of the group.
This is done for two reasons. Firstly, a player’s payoff is a direct result of the ac-
tions taken by the other members of the group, and secondly, individually observ-
ing each and every member’s reputation can become costly, especially when groups
become large. Instead, observing the group’s nature itself is arguably much more
easily achievable and practical than observing each member’s behaviour. Reputa-
tional information therefore acts as a measure of cooperativeness within the group:
the higher the cooperation, the greater the average reputation, and the higher the
likelihood that the group will cooperate in the upcoming OPGG round. This ap-
proach has been taken before in Suzuki and Akiyama (2005) where they explored a
variation of the image scoring norm (individual image scores are incremented and
decremented in the usual way, the behavioural strategy is to cooperate if the average
image score of the other members of the group is sufficiently high, defect otherwise)
and in Li et al. (2013) where they explored the effect of player memories of group
reputations. Furthermore, effects of group reputation have been observed between

1It is important to note that while we define cooperation to be good behaviour within the scope
of the group, it does not have to be good behaviour in a moral sense. For instance, cooperating in a
criminal organisation is morally reprehensible but would still be viewed as positive behaviour within
the organisation.
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young children (Engelmann, Herrmann, and Tomasello, 2018), increasing individual
donations to the group when either their individual or the group contributions were
public rather than private.

This is in contrast to earlier implementations where actions directly depend on the
level of observed cooperation (Boyd and Richerson, 1988b) or in particular the num-
ber of cooperators whose reputation is good (Suzuki and Akiyama, 2007a,b, 2008a,b).
These are defined in terms of the DISCk strategy - cooperate if there are at least k peo-
ple who have cooperated. However, such an approach is intrinsically linked to the
size of the group n so that there will always be n + 1 strategies. When n becomes
large, there is little to no qualitative difference between the rules DISCk and DISCk+1.
Using the average reputation of the group instead alleviates this issue, allowing only
a reasonably finite range of strategies to exist within the bounds of the worst (-1) and
best (1) reputation of the group.

We introduce conditional strategies that allow players to react to two different repu-
tational environments, of the form Xkmin , Y. Here, X and Y represent the primary and
secondary actions where X, Y ∈ {C, D, L}. Action X is taken if the average reputa-
tion in the group is at least kmin where kmin ∈ {−1, 0}, with action Y taken otherwise.
While it is technically feasible that kmin ∈ {−1, 0, 1} or kmin ∈ [−1, 1], we consider
only the two possible reputations2, and generalise later in Chapter 5. This is firstly
because the larger the size of the strategy set, the longer simulations would have to
be to give all strategies a reasonable presence in the population, and the larger the
population required. Secondly, we thought the condition would be too strict and un-
likely to be a realistic strategy. However, this may also have been an oversight since
Suzuki and Akiyama (2007a) considers strategies that cooperate if and only if each
of the opponents in the group have a good reputation (DISCn−1), which turns out to
be an evolutionarily stable strategy, sustaining cooperation with more difficulty as
the size of the group increases.

See Table 4.4 for the complete list of behavioural strategies that we explore. In the
present study, C0,D therefore represents a strategy that will cooperate if the average
reputation of the other members of the group is at least 0, but if not, will defect.

The baseline case - model B - is the traditional OPGG in Hauert (2002) with three
unconditional strategies of cooperation (C), defection (D), and loner (L). Model P
incorporates punishment with a total of 24 strategies: the eight cooperative variants
(CNNN, CPNN, CNPN, CNNP, CPPN, CPNP, CNPP, CPPP), the eight defection variants (DNNN, . . . ,
DPPP), and the eight loner variants (LNNN, . . . , LPPP). Model R implements strategies
that incorporate a social norm, with an additional eight conditional strategies to the
baseline three unconditional strategies: C-1,D, C0,D, C-1,L, C0,L, D-1,L, D0,L, L-1,D, and L0,D

2We did not include it because given the starting point of the OPGG which is very little cooperation,
having a strategy that does action A if everyone else is good is the equivalent of always doing action
B (since average reputation is always below one). That said, in setups where both punishment and
reputation are possible, it would indeed make a lot of sense to consider kmin = 1.
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Strategy X kmin Y Description

C C - C Unconditionally cooperate
D D - D Unconditionally defect
L L - L Unconditionally abstain

C-1,D C -1 D Cooperate if the average reputation of the group exceeds -1, defect otherwise.
C0,D C 0 D Cooperate if the average reputation of the group exceeds 0, defect otherwise.
C-1,L C -1 L Cooperate if the average reputation of the group exceeds -1, abstain otherwise.
C0,L C 0 L Cooperate if the average reputation of the group exceeds 0, abstain otherwise.
D-1,L D -1 L Defect if the average reputation of the group exceeds -1, abstain otherwise.
D0,L D 0 L Defect if the average reputation of the group exceeds 0, abstain otherwise.
L-1,D L -1 D Abstain if the average reputation of the group exceeds -1, defect otherwise.
L0,D L 0 D Abstain if the average reputation of the group exceeds 0, defect otherwise.

TABLE 4.4: Conditional behavioural strategies. An unconditional
strategy will always cooperate, defect or abstain regardless of the av-
erage reputation of their group. A conditional strategy will choose
action X if the average reputation of the other members of the group
is at least kmin, and will choose action Y otherwise. While there are
more permutations of these strategies possible, we reject all strategies
that were illogical in nature, for instance, we ignore the L-1,C strategy
which instructs cooperation if everyone in the group has a bad repu-
tation, and abstention otherwise. These are all the strategies that are
possible in the R model, while each strategy (not punishing by de-
fault) has an seven additional variants accounting for different pun-

ishments towards others.

for a total of 11 strategies. Finally, the RP model incorporates both reputation and
punishment, allowing strategies of the form C-1,D

NPN or C0,D
NNP that both behave condition-

ally and punish behaviours they deem to be undesirable, adding seven punishment
variations to each of the 11 strategies in model R, resulting in a total of 88 strategies.
For each of these models, and for each social norm in the R and RP models (10 pos-
sible cases in total), we repeat a large number of simulations (following the process
summarised in Fig. 4.1) for a fixed number of time-steps, varying their parametri-
sations and explore the dynamics of the strategies and the corresponding average
levels of cooperation, punishment, and payoffs within the population.

4.3 Results

Due to the presence of multiple strategies and the known cyclic dynamics of the
baseline OPGG, we process our results in the following way. The levels of coop-
eration over the second half of a simulation are averaged, with each of our figures
showing the average and standard deviations of 100 repeats of each parameter set.
For clarity, suppose that Πt

c represents the proportion of actions that were cooper-
ative in the tth time-step. We calculate the time-averaged frequency of cooperation
within a single simulation as

1
T/2

T

∑
t=T/2

Πt
c

, and then average this result over multiple simulations. Note that we use T = Tmax

for brevity. An example of what the result of a single simulation looks like is in



4.3. Results 133

START
Initialise popula-

tion, strategy subset

t < Tmax?

Partition population
into groups of n players

Play one round of the
OPGG in each group

Update payoffs

Update reputations

Enact punishments

Evolution round

Mutation round

END

t = 1

NO

YES

YES → Ω

NO → 1 − Ω

t = t + 1

FIGURE 4.1: Simulation flowchart. This outlines the major stages of
a single simulation that utilises early convergence. The YES → Ω and
NO → 1 − Ω labels refer to the YES and NO events occurring with

probability Ω and 1 − Ω respectively.
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Fig. B.15 where we display the relative frequency of actions within the OPGG, and
of the strategies within the population.

For each of our ABM simulations, we typically used a population size of 1000 agents,
group size of 5, a public good multiplier of 3, a loner’s payoff of 1, 2 × 105 time-
steps, punishment cost and penalty of 1 and 2 respectively, an evolutionary mixing
probability of 0.95, random mutation probability of 0.1, and a 10/11 probability of
further rounds of the OPGG.

We begin by verifying the known results of the literature. Model B which aims at
replicating the results of Hauert (2002) in order to be sure that our implementation
can qualitatively replicate their results. This model is visualised in blue in Fig. 4.2,
where there are only the three unconditional strategies: UC, UD, and UL. We ob-
serve roughly 20% cooperation, slightly more defection, with around half of the
population electing to abstain from the OPGG. If we introduce the full set of pun-
ishment strategies including both pro-social and anti-social punishment as in Rand
and Nowak (2011), Fig. 4.2 (in orange) shows a drop in cooperation and defection,
with now close to 80% of the population acting as loners. Neither of these models
are particularly successful at fostering cooperation in the population. The transition
matrices are reported in Fig. B.11.

4.3.1 Reputation only

Anti-Defector Social Norm First we analyse the model that implements four pos-
sible reputation-based social norm with conditionally behaving agents. Represented
in green in Fig. 4.2, we see that of the four social norms, only the AD norm is able
to sustain a moderate level of cooperation. In the absence of reputation (model B),
the three strategies are able to sustain around 20% cooperation, while the AD norm
is able to sustain a little over 40% cooperation. The AN social norm achieves similar
levels of cooperation to the baseline case, whereas cooperation is harmed by the in-
troduction of reputation in the AL and AB social norms, with both presenting lower
levels of cooperation than the baseline. We find that this ranking of the social norms
is preserved when studying more complex setups in Chapter 5.

Within this model, the AD social norm is able to sustain moderate levels of coopera-
tion, the best performance out of the four social norms we examine. The cooperation
here is sustained largely by conditional strategies, abandoning their unconditional
variants. Interestingly, the increase in cooperation is fuelled largely by loners, ex-
hibiting a much greater drop in frequency than defection. At least for the AD norm,
the introduction of reputation provides an incentive to participate in interactions, in-
stead of abstaining. Each of the social norms were able to improve upon the average
payoff of the baseline (Fig. B.10), but the AD norm displayed greatest improvement
while the others were very similar.
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FIGURE 4.2: Overview of cooperation in all models. Cooperation is
strongest in the OPGG in the presence of reputation when defecting
is seen to be the morally worst action, regardless of whether or not
punishment is available. When punishment is not possible, only the
AD norm is able to sustain a moderate level of cooperation, but if
it is possible, then high levels of cooperation can be sustained by all
norms except for the one that views abstention morally worse than
defection. Simulations here use N = 1000, n = 5, r = 3, σ = 1, m =
0.95, Ω = 10/11, T = 2 × 105, and also γ = 1, β = 2 if punishment is

available. Error bars represent standard deviations.
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Two strategies in particular dominate the population (panel A of Fig. 4.3) under
the AD norm: C0,L and D0,L. Both instruct players to abstain from the OPGG if the
average reputation is (strictly) below 0, suggesting both are risk-averse in adverse
reputational conditions. However, under more amenable conditions, C0,L chooses
to cooperate and enjoy the collaboration of their peers while D0,L chooses to free-
ride and exploit them. We can see from Figs. B.1 and B.8 that each of the other
strategies never exceed 10% of the population while C0,L reaches roughly a third of
the population, while D0,L reaches 20% (Fig. B.9).

Panel C of Fig. B.14 illustrates first the evolution of the strategies and second the
levels of cooperation, defection and abstention in a single illustrative simulation.
We observe that the frequencies of C0,L and D0,L players in the population generally
move directly against each other - confirmed by Figs. 4.3 and B.1. The frequen-
cies of actions in the population however shows a stable and low level of defection
throughout the simulation, alongside small fluctuating frequencies of both C and L
actions. This occurs because when C0,L players are faced with OPGG groups with
too low a reputation, which suggests they are likely to be exploited, they will choose
to abstain from the game. D0,L reacts similarly where they obtain the lower loner’s
payoff instead of successfully exploiting the public good. However, because they
can abstain when they are unlikely to be profitable when free-riding, they are able
to more easily avoid invasion by other strategies.

Crucially, this dynamic relies specifically on the AD social norm, particularly the
assignment of a bad reputation on acts of defection while assigning a moderate
reputation on abstention. Having distinct reputational values for both actions al-
lows C0,L players to distinguish between groups dominated by defectors and groups
dominated by loners, letting them selectively cooperate when the environment is
sufficiently friendly. All of this together suggests that reputation, allows the contin-
uation of the cyclical dynamics of domination by cooperators, defectors and loners,
albeit with the loner actions subsumed as the secondary behaviours of the other
two strategies. This can be difficult to identify because the loner action is an inte-
gral component of both strategies, but also because of the presence of multiple other
strategies that are invaded and then re-emerge through random mutation, leading
to other temporary transitions adding a significant level of noise to the dynamics of
this model.

Anti-Loner, Anti-Neither, and Anti-Both Norms Each of the other three social
norms manage either similar or weaker levels of cooperation when compared against
the baseline model. Under these norms, populations are dominated by uncondi-
tional and conditional strategists who abstain either as their only action, or as one of
their primary or secondary behaviours (Figs. 4.3 and B.1 to B.4). Cyclical dynamics
are observed in Fig. B.15 for each norm, like those observed in Rand and Nowak
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FIGURE 4.3: If people are not allowed to punish, then moderate
levels of cooperation can be sustained but only under the social
norm that views defection as the worst behaviour. Under this norm,
the population is dominated by two strategies: conditional coopera-
tors, and conditional defectors, both choosing to opt-out as their sec-
ondary actions. Populations under the other social norms are typi-
cally dominated by loners. For example, in the top left panel titled
Anti-Defector, consider the heatmap square in row D0,L, and column
C0,L, pointing to a value of "8.1" (the highest value in the heatmap).
This says that 8.1% of all between-strategy transitions happened from

strategy D0,L to strategy C0,L.
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(2011). Additionally, each norm displayed lower average payoffs than the AD social
norm (Fig. B.10).

There are two key reasons why these norms cannot sustain cooperation. Loners are
inherently independent, and by definition do not participate in the OPGG. There-
fore, attributing them a bad reputation does not inflict onto them any direct dam-
age (and actually increases their presence in the population). Behavioural strategies
strictly use the reputation of the other members of the OPGG group, and so the pay-
offs of loners are unaffected. However, regarding them too lowly - as in the AL
and AB norms - prevents them from being used as a temporary safe haven against
exploitation, but is instead used as a long-term strategy since the interaction envi-
ronment is, and will remain too susceptible to free-riders. Furthermore, when the
members of a population are not able to discern between those who are likely to
defect and those who are likely to abstain, the ability of cooperative strategists to
discriminate between the two is hampered, thereby exposing them more readily to
defectors, harming cooperation. The full transition matrices are reported in Figs. B.1
to B.4, and the relative frequencies of each strategy within each social norm is re-
ported in Figs. B.8 and B.9.

4.3.2 Reputation and Punishment

Now that we have considered the effect reciprocal strategies with a social norm has
on cooperation within the OPGG, we can explore what happens when people are
allowed to punish. Owing to the previously discussed ubiquity of anti-social pun-
ishment in human societies, Rand and Nowak (2011) allowed for punishment to
be directed towards all types of individuals instead of only towards defectors. In
doing so, they found that anti-social punishment significantly damaged a popula-
tion’s ability to incentivise cooperation (Herrmann, Thoni, and Gächter, 2008; Rand
and Nowak, 2011), but this was in the presence of punishment alone. We replicated
this in model P in Fig. 4.2 (in orange). We find that when reputation is included
alongside punishment, the population dynamics change dramatically and we ob-
serve greatly increased levels of cooperation associated to greatly reduced levels of
anti-social punishment.

Focusing only on the AD social norm initially, we see that much higher levels of
cooperation are observed in populations with both reputation and the full host of
punishment strategies (Fig. 4.2). This norm is able to sustain average levels of co-
operation (∼ 72%) that is greater than not only populations which are only able to
punish (∼ 13%), but also populations which only use reputation (∼ 43%). As be-
fore, the increased frequency in cooperation is matched with an equal but opposite
drop in frequency of abstention, similar to the reputation only model. A brief look
over the time series of the proportions of actions in a few randomly chosen simu-
lations (Fig. B.23) reveals a pattern of cyclic behaviour very close to those observed
in Hauert (2002) with unconditional cooperators, defectors and loners, as well as in
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Rand and Nowak (2011) with cooperators who punish defectors, defectors who pun-
ish loners, and loners who punish cooperators. Here, while the cyclic behaviour is
not evident in the proportions of strategies in the population - since these are much
more difficult to uncover with conditional strategies that can behave in multiple
ways depending on the reputational environment - the cyclic behaviour is clearly
evident in the proportions of actions in the population as a whole. In fact, this is not
unique to the AD norm; the same pattern is clear to see in the AL, AN, and AB social
norms (in Figs. B.24 to B.26).

Cooperators are dominant in the presence of both reputation and punishment. The
four conditional strategies (ignoring the punishment variants for now) of C-1,D, C0,D,
C-1,L, and C0,L each maintain roughly similar proportions within the population be-
tween 12-20% (panel A of Fig. 4.4), alongside unconditional cooperators. The fre-
quency of strategy updates between these five strategies are roughly equivalent
judging from the transition matrix. Since they all generally cooperate in what seems
to be a largely cooperative environment, we observe transitions that are the result
of simple drift more so than deliberate evolution due to the systematic differences
in payoff among the different strategies. The overall cooperativeness of the envi-
ronment fostered by the conditional strategists is also part of the reason why un-
conditional cooperators are also able to represent a non-insignificant proportion of
the population without being selected out of the population. The rest of the reason
pertains to the utilisation of punishment within each of these strategies.

It would be reasonable to assume that the success of reputation alongside punish-
ment in sustaining high levels of cooperation is a result of pro-socially punishing
conditional cooperators, forming an effective incentive against free-riding. How-
ever, this is incorrect. By deconstructing the population into not only behavioural
strategies, but also their punishment variants in Fig. 4.5, we can see that each strat-
egy that comes to dominate the population mostly consists of variants that do not
punish. We display each punishment variant as a proportion of all the individuals
using the behavioural strategy. Each non-punishing variant (NNN) of the five co-
operative strategies account for at least 75% of all the variants of that strategy. The
remaining make-up of the strategy consists mostly of pro-social punishers (those
who punish defection, abstention or both: NPN, NNP, NPP) with very low levels
of anti-social punishers (those who punish cooperation in any combination: PNN,
PPN, PNP, PPP). Furthermore, the transition levels in Fig. 4.5 and Table B.1 show the
strongest transitions are consistently from punishing variants to non-punishing vari-
ant3. The second most significant transitions occur from the non-punishment vari-
ants to the pro-social punishers and importantly, no transitions towards anti-socially
punishing variants. Thus players evolve towards strategies that do not punish and
away from strategies that do, unless when required to punish deviators from the

3Here, we ignore all transitions between strategies (i.e. from C-1,D
PNN to C-1,L

NNP or from C0,L
NNN to C0,D

PNN)
but focus specifically on those within the same strategy but to a different punishment variant (i.e. C-1,D

NPP
to C-1,D

NNN)
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FIGURE 4.4: When the option to punish is available, high levels
of cooperation can be sustained as long as being a loner is not the
only least reputable action. Cooperation is sustained by conditional
cooperators, each with similar characteristics and payoffs in a largely
cooperative environment. The AL norm is dominated by loners, and
is only able to sustain similar levels of cooperation to the baseline
model without reputation or punishment. For example, in the bottom
right panel titled Anti-Both, consider the heatmap square in row C0,L,
and column C-1,L, pointing to a value of "5.0" (the highest value in
the heatmap). This says that 5.0% of all between-strategy transitions
happened from strategy C0,L to strategy C-1,L. We include transitions
between all punishment variants of the labelled strategies (transitions
like C0,L

NNP to C-1,L
PPN) and transitions between the punishment variants of

the same strategy are ignored.
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FIGURE 4.5: When anyone can punish, usually no one does, but
when they do, it is pro-social and rarely anti-social. Nodes represent
the proportions of the strategy that are composed of each punishment
variant. These are calculated over the latter half of a simulation, and
then averaged over several simulations. The directed edges represent
the transitions between variants, normalised by the total number of
transitions between all punishment variants of the strategy. Variants
that do not punish are most common, the variants that punish de-
fectors or loners appear occasionally, while the variants that punish

cooperators are rare.

norm. From this, we can conclude that when reputational norms coexist alongside
punishment, the former acts as a substitute for the former when defection is seen
to be socially worse than abstention (AD social norm), which has the side effect of
significantly lowering the proportion of punishment that is used in the population.

Our findings hold when considering the AN and AB social norms alongside the AD
norm (Fig. 4.4). Both are able to establish and sustain stable levels of cooperation, al-
beit to a slightly lesser extent. Both norms provide very similar dynamics to the AD
norm, with similar population compositions, transition matrices, and levels of pro-
social punishment. The key difference of the AN and AB norms is shorter periods of
domination by cooperators when compared to the AD norm. The AL norm does ex-
hibit the same cyclic behaviour but these simulations tend to be led by loners. After
AD, the strongest levels of cooperation are achieved by the AN norm, followed by
the AB social norm. The AL norm fails to sustain any further cooperation from the
baseline case, but does manage to improve upon the punishment only model. Such
populations exhibit large fluctuations of cooperation levels, high proportions of lon-
ers, and the lowest payoffs amongst each of the social norms regardless of whether
or not punishment is involved (Fig. B.10). The large standard deviations observed in
Fig. 4.2 for the Reputation and Punishment model can be attributed to the very long
periods of cyclic behaviours (see Appendix B.3 and Figs. B.23 to B.26). To reduce
the standard deviations, simulations could be run with identical conditions but over
more than 2 × 105 time-steps.

By analysing the frequency of punishment variants in the populations (and ignoring
the behavioural strategies) in Fig. 4.6, we can compare the relative proportions of
punishment behaviours within the populations with and without each social norm,
and explore the tendency of populations to punish pro- or anti-socially, or even not



142 Chapter 4. Reputation and Punishment sustain Cooperation in the OPGG

0.0 0.2 0.4 0.6 0.8 1.0

No Norm

Anti-Defector

Anti-Loner

Anti-Neither

Anti-Both

S
o

ci
al

N
or

m

Does not punish Pro-social Anti-social

FIGURE 4.6: Proportions of strategies that punish anti-socially vs
pro-socially vs no punishment. Anti-social punishment is reduced
in all cases where players are guided by the reputations of others.
With the exception of the AL social norm, the frequency of pro-social

punishments increase.

punish at all. Here, we compare the Punishment-only model (with no reputational
mechanism, labelled "No Norm") with the Reputation & Punishment models under
each of the four social norms. For the AD, AL, and AB norms, the proportions of
non-punishing strategists in the population decrease, while the AN norm increases
slightly when compared to the Punishment-only model. Additionally, the addition
of the reputation mechanism reduces the levels of anti-social punishment exhibited
in the population for all social norms.

Comparing the social norms in more detail, we can see that the AD norm clearly
exhibits the lowest levels of anti-social punishers (see Fig. B.12 for a detailed break-
down) of the four norms as well as in the absence of a social norm. Initially, it looks
as if the increase in reputation attributed to defectors (from -1 to 0) over the social
norms (AD → AB → AN), the levels of pro-social punishment increase to compen-
sate for the increased levels of defection in the population. But this does not fully
capture the observed levels of punishment. The actual corresponding factors are
the relative difference between the reputations attributed to defectors and loners.
The four norms in order of increasing cooperation levels are AL, AB, AN and AD
where the reputations assigned to loners are -1, -1, 0, and 0 respectively. We can see
that as the reputability of loners increases when compared to defecting, the level of
cooperation also increases.

4.3.3 Sensitivity Analyses

Each of the parameters within our model have been analysed to determine their
impact on cooperation within the four models Table 4.1. We restrict our analyses to
the AD social norm because each of the AD, AN and AB social norms exhibit very
similar qualitative behaviours, albeit to differing extents. For each of the analyses,
we display the exact parameter values used in each set of experiments in Table B.2.
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OPGG multiplier We explored the impact of the OPGG multiplier (Fig. 4.7) for
values of 1 ≤ r ≤ 5 within a group of n = 5. Unsurprisingly, each model exhibited
stronger cooperation as r increases. Greater multipliers r > 5 are not considered
since a cooperator in a group with four other defectors would have a non-negative
payoff which trivialises the social dilemma. For low synergy factors, each model
sustains little to no cooperation. For intermediate factors, the reputation and pun-
ishment model exhibits the greatest increase in cooperation with the lowest increase
in r (a similar level of cooperation under the reputation only model is achieved but
not until r = 5). Near maximum levels of cooperation are achieved at r = 4 for the
reputation and punishment model, with decreasing marginal returns are observed
for r = 5. For the highest multiplier r = 5, we find that the level of cooperation
sustained by the reputation only model is for the first time less than the level sus-
tained by the punishment only model. This suggests that at such a high r, the payoffs
earned from cooperating in the OPGG is enough to sustainably finance the pro-social
punishment of defectors and loners, in line with Rand and Nowak (2011) where it
was found that increasing r always increased cooperation while decreasing anti-
social punishment.
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FIGURE 4.7: As r increases, cooperation increases for each model.
When both reputation and punishment is used, the highest levels of

cooperation can be sustained with the lowest OPGG multiplier.

Loner’s payoff The loner’s payoff σ has a slightly different behaviour compared
to r in Fig. 4.8. To preserve the social dilemma, we require that 0 < σ < (r − 1)c, or
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0 < σ < 2. If σ = 0, only the RP model is able to sustain a moderate level of coop-
eration, with each of the other models obtaining similar levels to model B. This case
is equivalent to the compulsory PGG since there is no payoff to being a loner and so
it is immediately invaded and only remains in the population through ongoing ran-
dom mutation. Unsurprisingly, σ > 2 leads to no cooperation because it is always
more profitable to avoid the OPGG and remain as a loner indefinitely. The greatest
cooperation is reached when σ = 1 with c = 1, r = 3, andn = 5.
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FIGURE 4.8: If being a loner is too profitable, then there is no incen-
tive to cooperate and cooperation disappears. Cooperation is best

sustained at moderate loner payoffs.

Punishment cost and penalty For most of our experiments, the cost of enacting
punishment was kept at γ = 1, except for Fig. 4.9 which shows the variable’s im-
pact on the corresponding levels of cooperation. For this experiment, the penalty
incurred by being punished was kept constant at β = 2 so it is expected that there
are no differences in behaviour once γ > 2 since here it becomes too costly to punish
and so the population migrates to avoiding punishment. The optimal level of pun-
ishment occurred at γ = 0.1, a 20:1 penalty to cost ratio. Furthermore, Fig. 4.10 looks
at modifying the punishment penalty while keeping the punishment cost fixed at
γ = 1. We see that as the punishment becomes harsher, the punishment only model
appears to suffer and sustain less cooperation, likely because of increased harm in-
duced by anti-social punishments, while the reputation and punishment model ex-
hibits stronger levels of cooperation for 1 ≥ β ≥ 3 at which point there is little to no
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additional gains in cooperation from further increases in punishment penalty.

Consider a situation where you have to pay some cost for making someone else pay
for bad behaviour. For example, calling the police at the risk of being caught by
the offender and risking retaliation, or the annoyance that comes with dealing with
lengthy official procedures. The penalty is what you impose upon others with your
behaviour: if by calling the police you are sure the felon will be swiftly condemned,
then you are more likely to call. Otherwise, if you know the police won’t come or
will arrive late, or won’t do anything, then you give up. If the penalties imposed
are too harsh, relative to the cost, then our model implies that the cooperativeness of
the population will be harmed through anti-social punishing. With the example of
the police, this is somewhat unlikely, but would be appropriate in more symmetrical
interactions.
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FIGURE 4.9: The presence of punishment is a better indicator of co-
operation levels than the particular cost of punishment. A small cost
is sufficient for the best chances for cooperation. Here, punished in-

dividuals pay a penalty of β = 2.

Group size The size of interacting OPGG groups can have a significant effect on
our model. Figure 4.11 shows that cooperation within our model is generally favoured
in smaller groups although in the wider literature, the impact of group size on co-
operation is debated. For each model under the AD social norm, for n ≤ 20, co-
operation decreases as the group size increases. Interestingly, there is a change for
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FIGURE 4.10: Cooperative levels are only slightly affected when the
punishment penalty increases. For a cost of γ = 1, increasing the
penalty harms cooperation in the absence of reputation, but improves

it when players are guided by the reputation of others.

the reputation and punishment model where we return to moderate levels of co-
operation at around 40% at the largest possible group size of n = 50, albeit with
a high degree of variation. Each of the other three models exhibit close to zero co-
operation. In all group sizes, the reputation and punishment model can sustain the
greatest level of cooperation out of the other models, offering the best chances in
larger groups. The generally weaker cooperation observed in the reputation models
are due to the fact that - in larger groups - the average reputation provides less and
less information about the individuals about the group.

Evolutionary mixing During the group-selection based evolution stage, individu-
als could either mimic strategies of individuals either within their own group (with
probability 1 − m), or outside of their group (with probability m) and in the general
population. Parametrised by m and displayed in Fig. 4.12, we see that the level of
cooperation sustained is an increasing function with higher m for all models. The
greatest increases are sustained by the reputation and punishment model, while
the reputation model is deviates and improves from the baseline only for m > 0.6.
Therefore we find that frequent mixing during selection provides greater chances for
higher cooperation.
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FIGURE 4.11: For all models, cooperation is more difficult to achieve
in larger groups, with the exception of the RP model. While this re-
lationship holds true up to n = 20, for n = 50 we observe again
moderate levels of cooperation, but with a large standard deviation.
For all group sizes, the RP model exhibits the best chances for coop-

eration over all models.

In human social groups, this result suggests that regardless of the mechanism at
work, whether it is neither, one, or both of reputation and punishment, the ability to
learn from outside of one’s own social group is beneficial. This makes intuitive sense
since there can be an extraordinary amount of diversity in a population. We find that
by restricting the learning to the immediate interacting group - at least according to
our model - restricts the spread of cooperation and of cooperative behaviour.

Likelihood of further interactions For the baseline model in Fig. 4.13, coopera-
tion decreased gradually as a greater number of OPGG rounds were played, none
showing significant levels of cooperation. The punishment model does not behave
very differently with significantly less cooperation at the outset with only one round
per time-step, but does display a small but present increase in cooperation towards
Ω → 0.95, after which cooperation drops back down to zero. The reputation model
shows similar levels of cooperation for most values of Ω until Ω ≥ 0.7 at which
point we observe roughly a 20% increase in cooperation. The RP model however
exhibits interesting behaviour. The frequency of games within each time-step seems
to have little impact on the levels of cooperation, except the jump from one round
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FIGURE 4.12: Recall that m represents the probability that a player
chooses to imitate another individual from outside their group. We
see that more frequent mixing can improve the frequency of cooper-
ative behaviour. The best benefit is afforded to the RP model for all
values of m, while in the absence of punishment, the R model only

deviates from the baseline for m close to 1.

per time-step to multiple rounds per time-step. When only single rounds are played,
we observe the same level of cooperation as the reputation model and a similar level
to the baseline model. However, increasing the probability of further interactions
to just Ω = 0.1, meaning that only once every ten time-steps on average a second
round of the OPGG is played, induces a 30% increase in cooperation. Thus we find
that cooperation in the RP model depends on the presence of an occasional second
or third round of the OPGG. Further rounds do not seem to offer significant benefits.

With only single rounds of the OPGG, cooperation is maintained purely by indirect
reciprocity since reputations are formed in different groups. However, even rare sec-
ondary rounds use elements of direct reciprocity where individuals are able to react
and respond to the immediate behaviours of their group members. This suggests
that it is a combination of both direct and indirect reciprocity that is a significant
contributing factor for the success of the reputation and punishment model in sus-
taining cooperation.

This is a reasonable finding within human social groups. It is easier to foster cooper-
ation in the presence of punishment when the same group of people interact repeat-
edly than a person interacting with several different groups of people serially. With
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FIGURE 4.13: The reputation and punishment model relies on oc-
casional repeated rounds for the best chances of sustaining coop-
eration. If reputation is not used but punishment is available, then
repeated games has no significant effect on improving cooperative
behaviour unless Ω ≈ 1. The combination of repeated games and the
option to punish provides the best environment for sustaining high
levels of cooperation. The exact value of Ω seems to be less impor-

tant than it being non-zero.



150 Chapter 4. Reputation and Punishment sustain Cooperation in the OPGG

multiple interactions with the same group members, bad behaviours can be pun-
ished multiple times disincentivising defection and/or deviations from the norm,
even if the repeated punishments are only occasionally enacted. Without repeated
interactions, if you are to be punished by an individual, then that punishment is only
enacted once, at which point you move to a new group with potentially fewer or no
punishers. This does not serve enough of a punishment since it is always temporary
and easily forgotten. Thus, occasional repeated interactions with punishers serves
as a deterrent from repeated bad behaviour.

Mutation rate Finally in Fig. 4.14, the rate at which random mutants with ran-
dom strategies enter the population have interesting and differentiated behaviours
in each of our models. The strongest performance is achieved by the reputation and
punishment model when mutants are introduced to the population fairly often, be-
tween one and four mutants every ten time-steps. Increasing mutation to this point
increases cooperation, but if increased too far so that mutation is too frequent, co-
operation drops down to the original levels, yet still at greater levels than each of
the other models. The reputation model is stable and optimal for low mutation rates
ϵ ≥ 10−2, at which point cooperation is impacted and drops. The baseline model
gradually increases in cooperation to around 20-30% cooperation for faster mutation
rates, however, the punishment model shows stranger behaviours. Cooperation is
best at the fastest mutation rates (almost once a time-step), and second best at mod-
erate mutation rates ([10−3, 10−2]). In summary, higher mutation rates are preferred
for cooperation when reputation and punishment is at play, but reputation alone is
preferable with low mutation rates.

4.4 Discussion

Cooperation is not easily achieved in the OPGG. Populations composed of uncondi-
tional cooperators, defectors and loners create cyclical dynamics where each strategy
is invaded by the next. Largely cooperative environments attract defectors, which
makes opting out of interactions more beneficial when the population becomes too
saturated by defection. In such cases, the independence of the loners paves the way
for altruists to risk cooperating again, thus restarting the cycle. While breaking the
deadlock of defection that is prevalent in the compulsory PGG, cooperation is only
slightly improved, with abstention remaining the primary action.

Similar behaviours are evident when introducing punishment into the foray. While
pro-social punishment solely aimed at defection does effectively curb incentives for
free-riding and breaks the domination of loners, the more realistic and complete set
of punishment strategies reverts the OPGG back to the same baseline levels of co-
operation with similar cyclic dynamics. The possibility of anti-social punishment
narrowed the prospects of cooperation with each strategy electing to punish their
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FIGURE 4.14: The best chances for cooperation when punishment is
not available is when mutation rates are low, but if punishment is
available, then high mutation rates (around ϵ = 0.1) lead to highly
cooperative populations. If mutation becomes too frequent, then the
RP model does suffer and exhibits a drop in cooperative behaviour.

would-be invaders. The rock-paper-scissors cycles would rotate between cooper-
ators who punish defectors, defectors who punish loners, and loners who punish
cooperators. Thus, punishment under these constraints is understood not to be a
tool for cooperation, but a weapon of self-preservation. Reputation however, can
improve this state of affairs.

Our work contributes to the literature on the interaction of punishment and rep-
utation and while it is difficult to map our models to a realistic human or animal
scenario in a one-to-one manner, it is important as an analytical exercise to explore
the types of behaviour that naturally emerge. These findings can be explored within
the context of scenarios that involve strong reputational social norms similar to the
form that we have explored here, with and without the effects of punishment. While
it is easy for us to proclaim (for example) that the costs of punishment and of being
punished are γ and β, many situations call for nuanced and subtle kinds of punish-
ment with delayed or no economical/social impact. The findings - with more fo-
cused experiments and research - could potentially be applied into these situations
to maximise the chances of fostering cooperation in a real-world setting.
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Finding 5 Cooperation is strongest under a social norm that views defecting as strictly less
reputable than abstaining.

Our main finding is that cooperation is improved to moderate levels when introduc-
ing a reputation-based social norm into the OPGG that views defection to be strictly
worse than abstention. In other words, while cooperating is always the most highly
respected action, not participating in the OPGG is better than participating and not
contributing to the public good. The presence of the AD social norm allows altru-
istic individuals to gauge the level of cooperativeness within OPGG groups, letting
them condition their actions to the likelihood that their goodwill will be recipro-
cated. Additionally, it reduces the attractiveness of abstention, yet not so much as
to discourage those who would otherwise prefer to cooperate, providing shelter for
when the environment becomes too harsh and cooperation is too risky.

In such populations, two conditional strategies present themselves to dominate the
population in significant proportions: C0,L and D0,L. They are joined by their de-
cision to abstain from playing in the OPGG when the group environments become
harsh (low group average reputation) with more individuals leaning towards defect-
ing than cooperating or abstaining. However, their approach to the game in more
friendly environments differ. While C0,L aims to contribute to the public good, D0,L

hopes to exploit it. While the secondary loner action offers protection from exploita-
tion to the conditional cooperators, the benefits are equally enjoyed by conditional
defectors. These players are able to ruthlessly exploit reputation, and the coopera-
tive nature of others to selfishly improve their own payoffs, all the while protecting
themselves against selection when there is an absence of altruistic targets and there-
fore a lower likelihood of making a profit. Such a strategy is evolutionarily stronger
than even unconditional defectors, the typical and ubiquitous threat to cooperation
in the literature.

The result is that a heterogeneous population equilibrium is reached. Both domi-
nant strategies remain in the population, with the cooperative variant slightly more
represented in the population. The population also consists of a medley of lesser
strategies in constant flux, none reaching the same standing in the population as the
two are able to. Both strategies typically obtain similar successes and similar aver-
age payoffs leading to transitions between them following no clear patterns other
than the temporary weaknesses of each strategy and the state at that point of the
interaction environment.

Finding 6 The highest levels of cooperation is achieved with a combination of both reputa-
tion and punishment under the anti-defector social norm.

Higher levels of cooperation are observed when in addition to the reputational mech-
anism, costly punishment becomes possible between any two individuals. In such
cases, the best chances for cooperation emerge for all social norms that do not con-
sider defection to be morally better than abstention. Each of these social norms offer
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high levels of cooperation however - like the reputation-only model - the AD social
norm performs the best. In each of these norms (AD, AN, and AB), cooperation is
facilitated through a heterogeneous amalgamation of the four conditionally cooper-
ative strategies, and unconditional cooperators. In environments where defection
and abstention are rare, these strategies face largely similar outcomes, presenting
little to no difference between them during selection. This is especially true for the
unconditional cooperators, evolutionarily the weakest and most susceptible to de-
fectors. However, they are able to thrive in these conditions through the well-mixed
equivalent of the clustering effects found in similar spatial models of the PD, PGG,
and OPGG (Helbing et al., 2010a,b; Lindgren and Nordahl, 1994; Nowak and May,
1993).

Finding 7 If players are able to punish and act conditionally on reputation, most of the time
there is no punishment. When it does arise, then it is pro-social and rarely anti-social.

Upon closer scrutiny - despite the possibility of punishment and the high preva-
lence of anti-social punishments harming cooperation in previous studies - the co-
existence of both reputation and punishment results in a peculiar infrequency of all
kinds of punishment, while anti-social behaviours in particular are virtually non-
existant. The majority of populations are composed of the non-punishment variants
of each conditional strategy. The rare instances of punishment that do occur are pre-
dominantly pro-social in nature, fuelled by the regular influx of mutant strategies
helping to negate the second-order free-riding problem and preventing the rise of
the cyclic dynamics weakening the population’s resistance against defection. This
partially explains the increase in levels of cooperation for the RP model (blue line in
Fig. 4.14) as the mutation rate increases. Since punishing almost always results in a
lower payoff than not punishing, the population of punishers is an ever dwindling
group. A high mutation rate is thus required to replenish the punishing population
to sustain the pro-social punishments enacted upon defectors. This reaches an op-
timal rate around 10−1. Quicker mutation rates overcome the rate at which players
can move towards cooperative strategies, and thus the population begins to have
a more random composition, purely through mutation. Another reason is that due
to the rock-paper-scissor nature of cooperator, defector and loner cycles (Figs. B.23,
B.25 and B.26), a higher mutation rate makes it more likely that the domination of
a single behaviour is overridden by the next dominant behaviour. In doing so, the
typical longest periods are held by cooperators, so a higher mutation rate makes the
next period dominated by cooperators come more quickly. When the decision to
punish is removed (in the AD norm), populations tend to converge on the two dom-
inant strategies C0,D C0,L quite quickly (Fig. B.19), and so increasing mutation rates
likely tries to pull the population away from this equilibrium point. Therefore, high
mutation rates lead to less effective strategies that are not able to sustain cooperation
in the long run.

Our findings concerning the integration of punishment alongside social norms match
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those of the experimental literature, particularly Gächter and Herrmann (2009, 2011)
and Herrmann, Thoni, and Gächter (2008) who each maintain a strict separation
between individual choices regarding actions and punishments from concerns of
reputation. This is similar to Rand and Nowak (2011) which uses Amazon Mechan-
ical Turk - an online virtual marketplace for sourcing workers for tasks requiring
human intelligence or in their case, subjects. More recently, Pancotto, Takács, and
Righi (2021) ran an experiment using citizens from the same villages/towns. While
they maintained anonymity among the individual participants, subjects were in-
formed that they would be interacting with others from their villages/towns. Their
corresponding analyses found insignificant levels of anti-social punishment and sig-
nificant levels of pro-social punishment, showing an implicit dependence on social
norms.

The work of Ohtsuki, Iwasa, and Nowak (2009) is very closely aligned with ours
in the questions we aim to answer in this chapter. Namely, how does costly pun-
ishment interact with reputation-based social norms? They conclude that in most
cases, the population is better off not punishing, with only a slim parameter region
where punishment leads to an efficient equilibrium. This result is in contrast with
our main finding where the option of punishment is crucial to sustaining the highest
levels of cooperation. However, their work differs from ours in a number of ways.
Firstly, they explore the two-person compulsory indirect reciprocity game instead of
the n-person Optional PGG. The introduction of the Loner strategy can significantly
impact dynamics of competing strategies in the public goods game (Hauert, 2002;
Hauert et al., 2002). Secondly, their model combines the behavioural and punish-
ment actions into a single decision; a player can only cooperate, defect or punish
in any given interaction. Our model rigidly separates the behavioural decisions
(a player can only cooperate, defect or abstain), and the punishment decisions (a
player can either punish or not punish), with all the possible combinations of the
two decisions. Thirdly, their model implements a second-order social norm, bas-
ing the reputations of individuals on both their behaviour and the reputations of
their opponents. Our model on the other hand is purely a first-order social norm,
taking only the behaviour of the individual into account. Differences in norms can
also lead to significantly different evolutionary outcomes (Ohtsuki and Iwasa, 2007).
Taken together, it becomes difficult to appropriately compare our findings with Oht-
suki, Iwasa, and Nowak (2009), however we do observe a few commonalities. Their
key finding is similar to ours, in that punishment is usually not the best option for
the population, which is mirrored in our population’s lack of punishment most of
the time (Fig. 4.6). Despite this, punishment is a necessary evil when levels of defec-
tion in the population begin to rise, at least for a small proportion of the population
as observed by occasional strategy transitions to pro-socially punishing cooperators
(Fig. B.5). Finally, and perhaps unsurprisingly, costly punishment does indeed lower
the population’s average payoff (Fig. B.10) with respect to reputation.
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Taken together, we find that reputational information is used in the OPGG as a
cheap substitute for costly punishment. The positive reputation gained from coop-
erative interactions have high worth, encouraging mutually beneficial interactions
with new and unknown, but reputable partners. Importantly, pro-social punishers
are able to advantageously reinforce reputational information, enforcing and elicit-
ing higher levels of cooperation in the instances where reputation is unable to alone.
Crucially, while anti-social punishment was previously able to overcome coopera-
tive efforts in the punishment model, it is unable to do the same as long as condi-
tional strategies interact under a common social norm that does not view abstention
worse than defection. This result is linked to an opposite result of Gurerk, Irlen-
busch, and Rockenbach (2006) which found that an institutional punishment mech-
anism is experimentally superior to reputational mechanisms for the compulsory
PGG, posing doubt to whether this result can be extended to experiments in which
the OPGG is played.

Finally, our work aimed to recreate the social reputation system and punishment
mechanism that is characteristic of complex societies. We show that these two planes
interact in a non-trivial manner, uncovering substantial levels of cooperation de-
spite a never-ending threat of free-riding, exploitation and anti-social punishment.
We contribute to the discussion of cooperation by identifying the conditions under
which collective actions can sustain cooperation when it is possible to opt-out of the
social dilemma.

4.4.1 Possible criticisms

Our model was able to capture the broad outcomes of the punishment model ex-
plored by Rand and Nowak (2011), but had certain variations in the exact levels
of cooperation, defection and loner actions. This variation is due to a difference of
approach. Primarily, their work used a probabilistic approach considering all the
possible group combinations and enactments of punishments to derive the payoffs,
transition probabilities and evolutionary stability of strategies. Following the same
approach for our work would have been extremely difficult, especially with strate-
gies that act conditional on the average reputation of a group of individuals. Our
simulation method allowed us to arrive at the same qualitative conclusions as Rand
and Nowak (2011) and in a more flexible manner.

Furthermore, each of our simulations only considered a single starting configura-
tion of the population: a random and uniform distribution of all the strategies in the
model such that each strategy has a roughly equal presentation in the population at
the outset of a simulation. While this was necessary to avoid biasing any particular
strategy to doing better in evolution, it would have been interesting and somewhat
useful to explore the impact of negatively biasing the population to "stress test" cer-
tain groups of strategies. This may have also changed the evolutionary outcome. For
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instance, a population dominated by DNPN (defectors that punish loners) could pre-
vent cooperation by blocking the growth of loners. Future studies stemming from
our work would do well to explore these cases. For instance, when punishment is
not possible, what are the possible evolutionary outcomes when C0,L mutants are
introduced into a population of D0,L? These are of course the two dominant strate-
gies when punishment is not possible. When it is, the previous example specifically
making the spread of cooperation as difficult as possible would be useful to explore:
considering a population of DNPN where any strategy has an equal chance of mutat-
ing into the population.

4.4.2 Further work

Following the culmination of this initial exploration of reputation and punishment
within the OPGG, a number of ensuring questions arise. In the same spirit as Chap-
ter 3, what happens when we impose a network topology onto the population? Do
different sets of dominant strategies emerge? Do we see shield-like behaviours of
punishers protecting cooperators as in Szolnoki and Perc (2017)? Or do we see sim-
ilar wave-like dynamics, akin to the cyclic evolution as in the punishment model?
Spacial extensions of initially well-mixed populations are commonplace and inter-
esting in the field of cooperation, and would definitely provide a venue for further
studies with models similar to ours.

Remaining under the well-mixed assumption and motivated by an increasingly in-
terconnected world, we acknowledge that interactions often take place between in-
dividuals or groups of individuals of different cultures. Since we observe that popu-
lation social norms can have drastically different effects on levels of cooperation and
on the strategies that emerge dominant, it would be interesting and relevant in ex-
ploring how these two dimensions co-evolve. Specifically, what would population
dynamics look like if selection could occur over social norms in the same manner as
it does over behavioural strategies? How would cooperative behaviour evolve in a
world where people could have conflicting views on what constitutes good and bad
behaviour?

Next, our model assumes that players are only able to perceive reputations in a bi-
nary manner: if kmin = −1, then groups are either filled with bad people, or at least
one person without a bad reputation, if kmin = 0, then the group is either generally
good on average, or generally bad on average. Additionally, we only consider a re-
stricted set of behavioural strategies to make the search of the strategy space more
practical. Other strategies that we deem illogical, may actually exhibit interesting
behaviours. To solve these two issues, a more dynamic approach to defining strate-
gies should be used, particularly an approach that allows for multiple responses to
various reputational environments. Thus people can not only behave in one way to
a group that are generally good and another if the group is generally bad, but also
in multiple ways depending on the extent to which the group is good or bad.
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Finally, the largest drawback to the conclusions in this chapter is that they are of
course drawn from an agent-based model. Theoretical results can offer predictions
on how humans may cooperate, but there is always the chance that huamn human
beings in practise are guided by different factors, affected by some other mechanism
that is not yet explored or accounted for.

Therefore to validate our findings, we can draw more concrete conclusions on how
reputation-based social norms and views of punishment interact using experimental
studies with human subjects. These would take into account behavioural decision
making based upon the average reputability of a player’s OPGG group, and punish-
ment decisions that are separate from behavioural decisions.
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Chapter 5

Complexity of Behavioural
Strategies in the OPGG

In the previous chapter, we have discussed how populations that utilise both a repu-
tational social norm and a costly punishment mechanism coexist and are particularly
successful in sustaining cooperation. However, we find that when punishment is not
possible, cooperation levels are lower, and its success is subject to more restrictions
in terms of the social norms that sustain it and its model parameters. This implies
the existence of additional mechanisms enhancing cooperation in human societies
where punishment opportunities are not readily available.

Here, we hypothesise that humans in particular base their behaviours on a more
complex classification process than the one explored and modelled in Chapter 4.
Humans are incredibly adaptable, are able to filter relevant pieces of information
and are capable of complex decision making. As such, we pose the question: can a
more complex behavioural strategy extend the scope for successful cooperation in
the presence of a reputation-based social norm, and importantly, can it be sustained
in the absence of the punishment mechanism?

5.1 Introduction

As in Chapter 4, we study this problem through a variant of the PGG that accounts
for voluntary or optional play. While with the compulsory PGG levels of free-riding
increase as rounds progress (Marwell and Ames, 1981), the introduction of the loner
strategy in the OPGG presented cyclical dynamics of cooperators, defectors and lon-
ers, crucially breaking the deadlock of defection in the PGG (Hauert, 2002; Hauert
et al., 2002). However, resulting levels of cooperation were still limited with long
periods dominated by loners, and only short intermittent bursts of cooperation. The
resulting average payoff within the population throughout this cycle was no better
than electing to remain as a loner indefinitely.

Cooperation is difficult to achieve in the compulsory PGG or n-person PD; no finite
mix of pure strategies can be stable without additional efforts, but if a reputational
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system is used, then cooperation can be sustained through reciprocal strategies that
use both direct and indirect reciprocity (Axelrod and Hamilton, 1981; Nowak, 2006).
However, in the OPGG, introducing social norms which allow individuals to dis-
tinguish the cooperative nature of an OPGG group did in fact improve cooperation
levels slightly. While this was a small improvement over the traditional OPGG, it
was still only able to sustain a little over 40% cooperation (Fig. 4.2) and only under
specific reputational rules that differentiated between non-participants, and people
who were actively free-riding.

Complexity within indirect reciprocity is not a new idea and has been heavily ex-
plored. Previous works in this area have typically only considered complexity of so-
cial norms, largely within 2-person games. A more complex social norm is one that
uses additional sources of information in order to assign a reputation. For instance,
consider players A and B immediately after interacting within a social dilemma. Im-
age scoring (Nowak and Sigmund, 1998a,b) - a first-order social norm - uses only an
individuals action to assign their reputation: A and B are good if they cooperate, bad
if they defect. Ohtsuki and Iwasa (2007) considered all possible second-order norms,
meaning that in order to decide A’s new reputation, both A’s action and B’s reputa-
tion are now considered. Ohtsuki and Iwasa (2004) further considered all possible
third-order social norms, where A’s new reputation depends on three sources of in-
formation: A’s action, B’s reputation, and A’s reputation. The same occurs from B’s
point of view, using B’s action, A’s reputation, and B’s reputation. An exploration
up to fourth-order social norms (using A’s previous reputation as well as his present
reputation to decide their new reputation) was undertaken by Santos, Santos, and
Pacheco (2018) asking whether there was a positive correlation between the levels of
cooperation and complexity. In fact they found the opposite result, concluding that
simple moral principles can elicit cooperation even in complex environments. Addi-
tionally, they found that the social norm that fostered the highest cooperation with
the lowest complexity, did not discriminate on the basis of previous reputations.
Thus, cooperation is favoured under simpler reputation assignment rules.

The complexity of behavioural strategies has not undergone the same rigorous ex-
ploration as social norms. However, this is understandable since it makes less sense
to consider behavioural rules that use multiple sources of information like the so-
cial norms. For instance, second-order behavioural strategies of the L8 (Ohtsuki
and Iwasa, 2004) used only A and B’s reputation in order to decide A’s action (and
vice versa to decide B’s action). What might a third-order strategy look like? Also
considering past reputations or past actions are possible, and have been explored
under direct reciprocity through TFT-like strategies utilising memory (Hilbe et al.,
2017; Posch, 1999). Under indirect reciprocity, reputations are themselves formed
away from direct experience, and requiring multiple levels of third-party informa-
tion can seem unrealistic. For an n-person game, it is more difficult to conceive of
potential higher-order behavioural strategies and so an alternative approach must
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be discussed.

Social dilemmas involving multiple interacting individuals cannot use the same def-
initions of behavioural strategies as those used in the PD. Obtaining and using the
reputations of each individual within a group can be feasible when the groups re-
main small, but become increasingly more difficult as they become larger. Addi-
tionally, the number of possible strategies grows exponentially as the size of the
group increases. 2-person games have four possible combinations of reputations be-
tween them that each behavioural strategy must prescribe an appropriate action for:
GG, BB, GB, and BG. 3-person games have eight combinations possible: GGG, GGB,
GBG, BGG, GBB, BGB, BGG, and BBB. An n-person game would have 2n possible
kinds of interaction, and this grows rapidly. The space of all behavioural strategies
that are able to account for all possible reactions to these interactions grow even
larger. Each combination of player reputations has two potential actions that can be
taken in response (cooperate or defect), so there are 24 = 16 possible strategies for
a 2-person game and 28 = 256 for the 3-person game. If abstaining from these in-
teractions become possible then there are 34 = 81 and 38 = 6561 possible strategies
respectively. Searching the set of all possible strategies in even slightly larger groups
becomes computationally intractable very quickly.

We acknowledge that accounting for each particular combination of player repu-
tations within a group is an infeasible approach, especially since any social norm
similar to those in Ohtsuki and Iwasa (2004) would imply that the ordering of the
group’s reputations is somehow relevant when there are more than two players.
Instead, we propose that in an environment consisting of multiple interacting indi-
viduals, the average reputation of the group is what matters most. Under the social
norms of Chapter 4, reputation is bounded between -1 and 1 regardless of the par-
ticular social norm used (Table 4.3, based on the binary image scoring social norm
but adapted to account for a third reputational value attributed to loners). A more
complex behavioural strategy should therefore be able to react to multiple possi-
ble average reputations within this range. The simplest would be analogous to an
unconditional strategy, behaving in a particular manner regardless of where the av-
erage reputation of the group lay in the range of -1 to 1. Increasing the complexity
slightly would allow individuals to respond in two potentially different ways, for
example behaving as a loner if the average reputation of the group is below 0, and
cooperating otherwise. This would be exactly equivalent to the C0,L strategy that was
the best performer (Fig. B.8) under the AD social norm of the reputation only model
of Chapter 4.

Increasing the complexity or number of segmented behaviours within a strategy
can provide a more effective method of adapting and preparing for many situa-
tions at once without a significant change in behavioural strategy. While mutation
is practically similar (as different behaviours are introduced and reintroduced to
the population), they are conceptually different and perform different roles within
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our model. Increasing the mutation rate of players - implying rapidly changing be-
havioural strategies - may not result in the best action for a given situation. Instead,
mutation serves an evolutionary process, intended to prevent selection from moving
towards a locally optimal strategy, thereby failing to recognise the global optimum.
In human societies, this may be likened to a willingness to have new experiences,
deviating from the usual way of doing things in order to discover better options.

By following this pattern and partitioning the range of possible reputations into an
arbitrary number of segments, we can conceptualise behavioural strategies of ar-
bitrary complexity, each of which are able to digest and tailor their responses to a
varying number of interaction environments.

Using the average reputation of a group of individuals instead of their individual
reputations can help simplify the issue of evaluating a group of individuals and
whether or not it is in a player’s interest to cooperate. They can analyse a single
value instead of the reputational values of each member of the group, which clearly
can become very difficult as the size of the group increases. In doing so however,
we lose knowledge of the distribution of reputations within the group which can
be useful in better understanding how cooperative the group has been in the past.
Additionally, the assumption that everyone in the population abides by the same so-
cial norm becomes even more necessary. Consider an establishment’s reviews and
ratings on "Google Maps" left by individuals of the general public, each of whom
evaluate their experience on the same criteria, but value different things and there-
fore abide by different social norms. One factor that may cause individual A to leave
a very low rating could very well cause individual B to leave a very high rating. Such
a distinction would then make an averaged reputation much less meaningful.

Such a framework of strategies still has a significant shortcoming that makes explo-
ration difficult. Searching through the number of potential strategies to find those
best suited towards both fostering cooperation and minimising free-riding can very
quickly become intractably large. Since there are three possible behaviours in re-
sponse to any particular reputation band, a strategy of length p would have 3p pos-
sible strategies to test. Methodically searching such a space of strategies in the same
manner as Ohtsuki and Iwasa (2004, 2007) would be challenging, and very time con-
suming. However, the tools provided to us by genetic algorithms can help alleviate
this problem.

Genetic algorithms are inspired by nature (Sumida et al., 1990). Similarly to stan-
dard evolutionary models, they follow the rules of evolution, namely Darwin’s sur-
vival of the fittest. GAs follow the three principles of evolutionary algorithms: se-
lection, crossover and mutation. Broadly speaking, it is a method of optimisation
over possible genes over a large number of generations. Following the terminol-
ogy of Katoch, Chauhan, and Kumar (2021), we find the genes with the greatest fit-
ness (selection), combine them with other successful genes to create new genes that
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are potentially superior (single-point crossover), and then mutating them slightly
to introduce variation into the gene pool (bit-flipping mutation). We represent our
behavioural strategies as chromosomes by way of a value encoding mechanism (Fox
and McMahon, 1991), and considering them as strings of C, D and L characters, each
referred to as an allele instructing a single behaviour for a unique reputation band of
the OPGG group.

GAs are a natural method of optimisation that have been used in many fields like
environmental modelling (Burn and Yulianti, 2001; Cho, Seok Sung, and Ryong Ha,
2004; Maier et al., 2019), operation management, and image processing among oth-
ers. Their main benefit lies in the dynamic search of a large multi-dimensional strat-
egy space. By mimicking the three principles of evolution, we are able to intelli-
gently search for the best behavioural strategies by learning from the strategists with
the greatest payoffs in each generation, combining their chromosomes to create new
and potentially improved solutions, and then adding in slight random variations
to avoid getting trapped in local optima. This is an efficient search method for the
best performing strategies which avoids the limitations that accompany a system-
atic or methodical search. However, there is no guarantee that every strategy would
be reached and its evolution tested through this method and therefore numerous
long-running Monte-Carlo simulations must be used to minimise the chance of this
happening.

The use of GAs are understated in the literature. Frequently, their use is not ex-
plicitly declared. However, the underlying principles of Darwinian evolution and
of the survival of the fittest are frequently captured by a plethora of works based
on ABMs. For instance, Nowak and Sigmund (1992) discusses the selection mecha-
nism of the evolutionary process, slowly transitioning over many generations from
a widely scattered population of strategies to a smaller, more strategic population
of strategies. The frequencies of these strategies in subsequent generations are de-
cided by their fitnesses or payoffs in the previous generation. While certain elements
like crossover may be occasionally put aside (for instance when exploring uncondi-
tional behavioural strategies), the selection and mutation mechanisms are certainly
present.

Formally, only a handful use the GA to explore cooperation within the context of re-
peated dyadic (Browning and Colman, 2004) or one-shot ultimatum games (Calderón
and Zarama, 2006) and fewer still have used them explicitly to explore reputation-
based indirect reciprocity. The key difference is that we (and a few others) use GAs as
the evolutionary mechanism, substituting it for other population-level mechanisms
like the replicator equation or the copy-the-better update rule. Tanimoto and Sagara
(2015) in particular evolve strategies for the 2 × 2 PD while Yamamoto et al. (2017)
implements gene-knockout into their model, a technique inspired from genetic en-
gineering where individual genes are made ineffective to study their impact of their
presence. This latter study uses the elements of the GA to explore the evolution of
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social norms, identifying the necessary requirements a norm must satisfy to be able
to sustain cooperation.

In what follows, we explore the juxtaposition of strategy complexity within indirect
reciprocity. Spurred by the work of Santos, Santos, and Pacheco (2018), we restrict
ourselves to a simple range of first-order social norms based on image scoring (the
same as the previous chapter), while varying the complexity of the underlying be-
havioural strategies. In doing so, we allow agents to learn to respond to different
reputational environments within the OPGG, replying with the appropriate actions
to maximise their own payoffs. In order to learn these strategies in a time-efficient
manner, we utilise the GA which provides a dynamic and flexible method of op-
timising over a large strategy space. Our primary research question is this: does
increased complexity of behavioural strategies improve the chances of cooperation under a
reputation-based social norm? To the best of our knowledge, while the complexity of
reputation dynamics or social norms has been previously explored, the complexity
of behavioural strategies has not.

5.2 Methodology

Consider a well-mixed population of N players. We simulate an ABM where in each
time-step, the population is partitioned into groups of n players to play the OPGG.
Players cooperate by contributing c to the public good, defectors participate but con-
tribute nothing, while loners abstain from the game entirely. The contributions to the
public good are summed, multiplied by a synergy factor r, and then redistributed
amongst each of the participants which include the cooperators and defectors. Lon-
ers receive the loner’s payoff σ. This OPGG round is repeated with probability Ω, or
equivalently, the round ends with probability 1 − Ω.

Players have one of three possible reputations following their decisions to cooperate,
defect or abstain from the OPGG. We assign the numerical value of 1 to individuals
who cooperate, no matter the norm, representing a good reputation. We then vary
the reputations assigned to those who defect and those who abstain from the OPGG,
exactly like the social norm setup of Chapter 4 which are summarised in Table 4.3.
As a reminder, the AD social norm assigns -1 to defectors and the more moderate
0 to loners, the AL social norm reverses this assigning -1 to loners, and the 0 to
defectors. The remaining AN and AB norms both assign the same reputation to
defection and abstention but with different severity, assigning 0 and -1 respectively.
The naming scheme of these four norms describe the action which is attributed the
heaviest social punishment. For example, the AD and AL norms assign the worst
reputations to defectors and loners respectively, the AN norm assigns no one the
worst reputation, while the AB norm assigns both defectors and loners the worst
reputation.
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FIGURE 5.1: Reputation and evolution mechanisms. Left panel: This
describes first an example strategy chromosome when p = 4. The
chromosome DLLC corresponds to the instruction to defect if the av-
erage group reputation −1 ≤ kavg < −0.5, abstaining if −0.5 ≤
kavg < 0 or 0 ≤ kavg < 0.5, and cooperating if 0.5 ≤ kavg ≤ 1. The
right side of this panel depicts the general case for any p. Right panel:
We show the stages of the GA: selection, crossover and mutation. We
generate the following generation’s population by: (1) terminating ζ
of the population with the worst payoffs, (2) choosing two parents
probabilistically by their payoffs, (3) choosing a random crossover
point in their strategy chromosomes, swapping them and recombin-
ing them to create two new potential strategies, (4) choosing one of
them at random, (5) starting mutation with probability ϵ1 whereby
each allele is randomly assigned with probability ϵ2, and then repeat-
ing steps (2)-(5) until the population is regenerated. Individuals that
were not initially terminated form the initial members of the follow-

ing generation.

In order to allow players to condition their behaviours with these reputations, we
formalise behavioural strategies represented as genetic chromosomes in line with
the GA vernacular, generalising the strategies of Section 4.2. These strategy chro-
mosomes function as look-up tables which take in the average of the reputations of
the other group members within the OPGG, and then convert it to either a decision
to cooperate, defect or abstain. They are represented through a value-encoding rule
(Katoch, Chauhan, and Kumar, 2021) as a vector si ∈ {C,D,L}p where the ith element
or allele is the corresponding prescribed action when the average reputation of the
other members of the group is in

[
−1 +

2i
p

,−1 +
2(i + 1)

p

)
, i = 0, 1, . . . p − 2,

[
−1 +

2i
p

,−1 +
2(i + 1)

p

]
, i = p − 1.

We refer to each of these reputation ranges as a reputation band and so a strategy
complexity of p encodes an action to each of the p bands (see Table 5.1). The left
panel of Fig. 5.1 explains this visually when p = 4. The strategy DLLC corresponds
to the four actions that a player would take when the average reputation of the group
lies in the ranges [−1,−0.5), [−0.5, 0), [0, 0.5), [0.5, 1] respectively. Note that each re-
spective band is left inclusive, and right exclusive, with the exception of the highest
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Lower Upper

-1 0
0 1

p = 2.

Lower Upper

-1 -0.5
-0.5 0

0 0.5
0.5 1

p = 4.

Lower Upper

-1 -2/3
-2/3 -1/3
-1/3 0

0 1/3
1/3 2/3
2/3 1

p = 6.

Lower Upper

-1 -0.75
-0.75 -0.5
-0.5 -0.25

-0.25 0
0 0.25

0.25 0.5
0.5 0.75

0.75 1

p = 8.

Lower Upper

-1.0 -0.9
-0.9 -0.8
-0.8 -0.7
-0.7 -0.6
-0.6 -0.5
-0.5 -0.4
-0.4 -0.3
-0.3 -0.2
-0.2 -0.1
-0.1 0

0 0.1
0.1 0.2
0.2 0.3
0.3 0.4
0.4 0.5
0.5 0.6
0.6 0.7
0.7 0.8
0.8 0.9
0.9 1.0

p = 10.

TABLE 5.1: Example reputation bands. Only p = 2, 4, 6, 8, 10 bands
are displayed but higher complexities are easily possible. Recall that
each band is left inclusive, and right exclusive with the exception of
the final band (representing the best reputations) where both the left

and right bounds are inclusive.

reputation band where both boundaries of the range are inclusive. This method al-
lows us to devise strategies of arbitrary complexity, able to respond to any potential
average reputation of the group with a specific action, and importantly, serves as a
generalisation of the behavioural strategies described in Chapter 4.

Within this strategy framework, we have assumed that each reputational band is of
equal width, but it does not have to be. Consider an equally feasible strategy LDC
which instructs abstaining when the average reputation of the group is in [−1, 0),
defecting when the average reputation of the group is in [0, 0.5), and cooperating
when the average reputation of the group is in [0.5, 1]. Here, the reputation bands
are not uniform in size but still could feasibly describe real-life behaviours, but be-
come more difficult to analyse if we allow different strategies to have different and
independent reputation band sizes. Arguably, these could be represented - and the-
oretically be learned through the GA - as LDDC with p = 4 and the reputation bands
defined in the usual way. For the purposes of this study, we identify this difference
but choose to keep the reputation bands equally segmented.

Each simulation begins by fixing p and the social norm for the population. We ini-
tialise the members of the population with randomly generated strategy chromo-
somes. The population are partitioned into groups of n individuals each time-step,
with every group playing one round of the OPGG, updating their payoffs and their
reputations under the rules of the social norm after each action. Rounds are then
repeated until the time-step ends with probability 1 − Ω. This way, every individ-
ual plays the same number of OPGG rounds within each time-step, allowing us to
consider payoffs that are cumulative, without needing to average. This part of the
model is precisely the same as in the model of Chapter 4, except for the fact that now
p can be different from 2.
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START Initialise population

Fix norm, p and
initialise chromosomes

t < Tmax?

Partition population
into groups of n players

Play one round of the
OPGG in each group

Update payoffs

Update reputations

Order population
by payoff, termi-

nate bottom ⌊ζN⌋

Selection

Crossover

Mutation

END

t = 1

NO

YES

YES → Ω

NO → 1 − Ω

ϵ1

t = t + 1

N − ⌊ζN⌋ times

FIGURE 5.2: Simulation flowchart. This outlines the major stages of
a single simulation that utilises early convergence. The YES → Ω and
NO → 1 − Ω labels refer to the YES and NO events occurring with
probability Ω and 1 − Ω respectively. The ϵ1 refers to the probability
with which mutation takes place, wherein each allele is individually

switched with probability ϵ2.
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Once the rounds of a time-step end, the evolutionary stage begins (right panel of
Fig. 5.1). Modelled from a GA, the first stage is selection. We rank the popula-
tion in order of payoff such that ⌊ζN⌋ individuals are removed from the population
(mimicking a speed of evolution parameter from models that do not use a GA), with
the remainder forming the initial members of the subsequent generation’s popula-
tion. We rebuild the population by repeatedly sampling two parents from those that
remain, chosen proportionally to their payoffs such that individuals with a higher
payoff are more likely to be chosen than individuals with a lower payoff. The strat-
egy chromosomes of the two parents are then split at a single randomly chosen lo-
cus, describing a position between two neighbouring alleles. The tail portions of
each parent chromosome are swapped to create two new child chromosomes, one
of which is chosen at random to populate the subsequent generation after mutation
which occurs with probability ϵ1. If mutation is triggered, then each of the alleles of
the chromosome have probability ϵ2 of randomly switching to one of C, D or L, inde-
pendent of its previous action. This is similar to bit-switching in other GA literature
(Katoch, Chauhan, and Kumar, 2021). Once the strategy has completed this step, it is
added to the new generation. This process is repeated a total of N − ⌊ζN⌋ times un-
til the subsequent generation’s population consists of the previous rounds 1 − ⌊ζN⌋
strategists, and the new N − ⌊ζN⌋ new genetic variants, to return to a population of
N individuals. Once the population has completed their evolution, a new time-step
where the population is formed into newly partitioned groups and the process starts
anew. A high level overview of the simulation algorithm is shown in Fig. 5.2.

In line with Ohtsuki and Iwasa (2004), we subject our model to two types of error.
Execution error describes the situation in which a player intends to behave accord-
ing to their strategy, but behaves randomly with probability α instead. The other,
assignment error β, describes the situation in which a player plays action x, but is
observed to be playing action y instead with their reputation being changed accord-
ingly.

5.2.1 Effective complexity limited by group size

An interesting link exists between the behavioural strategy complexity p and the
size of the interacting group n. Since each agent has one of the three possible rep-
utations in {1, 0,−1}, there are always a finite number of average reputations that
are possible when looking through each combination of possible reputations of the
other members of the group. For a group of size n, there are 2n − 1 possible av-
erage reputations1. Note that these are the possible combinations of reputations of
the n − 1 players since players ignore their own reputations when calculating the
average reputation of the group.

1As an example, suppose n = 3, then the average reputations that are possible by summing over
all possible combinations of three individuals with one of three possible reputations are: -1, 0.5, 0, 0.5,
and 1 where the corresponding number of arrangements to achieve that average reputation are 1, 2, 3,
2, and 1.
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Avg. Rep.

-1
-0.5

0
0.5
1

n = 3.

Lower Upper

-1 -0.6
-0.6 -0.2
-0.2 0.2
0.2 0.6
0.6 1

p = 5.

Lower Upper

-1 -2/3
-2/3 -1/3
-1/3 0

0 1/3
1/3 2/3
2/3 1

p = 6.

TABLE 5.2: Possible average reputations and feasible complexities.
For a group size of three, all the possible combinations of the reputa-
tions of two people are displayed in the first table. The second and
third tables show reputation bands for complexities that are and are
not in the valid range p ≤ 2n − 1. The stricken row corresponds to

the reputation band that is unused given n = 3 and p = 6.

We can therefore identify the limitation imposed on p by the group size n. Namely
that once

p > 2n − 1, (5.1)

additional complexity simply adds additional alleles to the strategy chromosome,
none of which would ever be used. In such cases, it would be impossible for the av-
erage reputation of the group ever fall within the range of certain loci. We illustrate
this in Table 5.2. Suppose n = 3 which means that the average reputations when
calculated by a member of the group would be one of -1, -0.5, 0, 0.5, and 1 (all pos-
sible values for the average reputation of two players). If p = 5, then the reputation
bands of the strategy chromosome are: [-1.0, -0.6), [-0.6, -0.2), [-0.2, 0.2), [0.2, 0.6),
[0.6, 1.0]. We can see that each band contains one of the possible average reputations
of the group. However, if p = 6, then the reputation boundaries of the strategy chro-
mosome are: [-1.0, -2/3), [-2/3, -1/3), [-1/3, 0), [0, 1/3), [1/3, 2/3), [2/3, 1]. Here,
the [-1/3, 0) band is never accessed since the average reputation never falls within
its range. By using strategies of a higher complexity than the group size allows, we
introduce inefficiencies to the evolutionary process, wasting computation time and
resources for unnecessary optimisation.

5.2.2 Exploration summary

We explore the impact on cooperation when manipulating the key variables of our
model. We run twenty simulations for each unique parameter set under each social
norm, primarily for even behavioural strategy complexities p (see Section 5.3.1 for
discussion on why only even p is considered), but also the size of the population
N, the size of the OPGG groups n, the proportion of the population replaced each
time-step ζ, the frequency of repeated games Ω, the frequency ϵ1 and intensity ϵ2 of
mutation, the likelihood of assignment α and execution β errors, the cost of cooper-
ation in the OPGG c, the group synergy factor r, and finally the loner’s payoff σ. We
present the default values for each of these simulations in Table 5.4.
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5.3 Results

In line with the presented results of Chapter 4 but not Chapter 32, we first calculate
the average frequency of C, D and L actions over the second half of a simulation,
and then average together the time-averages of each of the 20 simulations3. This is
then repeated for each unique parametrisation and social norm. Each of the specific
parameter values for each experiment and figure are listed in Table 5.4.
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FIGURE 5.3: Cooperation is more successful with more complex
strategies when the social norms clearly differentiate between de-
fection and abstention. The social norms that do not make this dis-
tinction (AN and AB) are not able to achieve any more than 50% co-
operation in the population. The vertical dashed line represents the
baseline results of the traditional OPGG with only UC, UD, and UL
players. The shadows on each subplot represent the levels of coop-
eration for each of the other social norms, in order to aid visual com-

parison between them. This figure assumes n = 5.

Figure 5.3 displays the average frequency of actions (cooperation in blue, defection
in orange, and abstention in green) dependent on the strategy complexity p in the
OPGG with groups of five individuals (n = 5). We first replicate the findings of
the traditional OPGG (Hauert et al., 2002) with no additional reputation mechanism
with p = 1 (vertical dashed line in Fig. 5.3). Such strategy chromosomes have no
ability to change their behaviour depending on the average reputation of the group
and therefore act unconditionally, regardless of the social norm. In such cases, we
observe very low levels of cooperation, coupled with low rates of defection and high
rates of abstention by loners.

2where we presented the results in the final time-step of the simulation only.
3To make this perfectly clear, example simulations are displayed in Fig. C.1. We calculate the

time-averaged proportion of C/D/L actions over all time-steps in [100000, 200000], repeat this ex-
act parametrisation multiple times, and then calculate the simulation-average over each of the time-
averages.
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The reputation model of Chapter 4 is replicated when p = 2. In relation to the base-
line p = 1, we observe no substantial difference in any of the norms, but note that the
Anti-Defector social norm does exhibit the best chances for cooperation. We do no-
tice that levels of cooperation fall short of the roughly 40% observed in Fig. 4.2, how-
ever we attribute this to the inherent differences between the group-selection based
mechanism in the previous chapter, and the genetic evolution mechanism used here.

In each social norm, as the complexity of behavioural strategies increase from p = 2
to p = 8 (or p = 10 depending on the norm), the resulting frequency of coopera-
tion sustained by the cooperation also increases. The levels of cooperation sustained
across the four norms falls generally into two groups: those that can eventually sus-
tain cooperation well, and those that can only sustain moderate cooperation. The AD
and AL social norms are able to sustain around 80% cooperation if strategy complex-
ity is sufficiently high, while the AN and AB norms at best can only achieve around
50% cooperation. Additionally, while the AD and AL norms are able to sustain the
same level of cooperation as each other, the AD norm is able to achieve it at a lower
complexity threshold than AL (at p = 8 as opposed to p = 10). Furthermore, in-
creases in complexity above the threshold do not result in greater cooperation, with
levels remaining mostly stable. The other norms, AN and AB, both behave similarly
in that there are no further increases in cooperation once the maximal cooperation is
reached at p = 10.

The social norms that are capable of sustaining high levels of cooperation (AD and
AL) each make a clear distinction between the moral values attributed to acts of
defection and abstention. The norms that do not make this distinction (AN and AB,
see Table 4.3) are not able to sustain any more than moderate levels of cooperation.
While both of these norms recognise no moral differences between defectors and
loners, the AN norm assigns them each a more moderate reputation than the AB
norm. In either case, if the strategies are sufficiently complex, at most roughly half
of the population will cooperate according to our simulations. Interestingly, like
AD and AL, the AN and AB norms exhibit differing complexity thresholds at which
they reach maximal cooperation. While the AN norm reaches their best cooperation
at p = 10, the AB norm is able to reach similar levels almost as early as p = 6. The
key difference between them of course is that AB has a much harsher view on acts
other than cooperation than the AN norm.

The effect of group size on the levels of cooperation sustained through the OPGG has
been lengthily debated in the literature. While many assert that larger groups in ex-
periments elicit stronger levels of cooperation (Isaac and Walker, 1988; Isaac, Walker,
and Williams, 1994), others allege the opposite, observing more difficulty in achiev-
ing cooperation despite the use of reputation and indirect reciprocity (Suzuki and
Akiyama, 2005, 2007a). Our primary finding displayed in Fig. 5.3 assumes OPGG
groups of five individuals n = 5. To explore how group size is affected under the
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framework of our model, we instigated two experiments that explore the level of
cooperation for multiple groups and multiple strategy complexities.

The first, visualised in the first column of panels of Fig. 5.4, maintain twenty groups
at all times. Naturally, this means that the size of the population N grows propor-
tionally to the size of the Group n so we have

(n, N) ∈ {(5, 100), (10, 200), (20, 400), (25, 500)}.

Our model confirms that cooperation is more difficult to sustain in larger groups for
any fixed p, providing further evidence in support of Isaac and Walker (1988) and
Isaac, Walker, and Williams (1994). Groups composed of more than ten individuals
n > 10, appear to be incapable of sustaining even moderate levels of cooperation.
However, we find that in moderately large groups with n = 5 or n = 10, higher
cooperation is achievable if the behavioural strategies are sufficiently complex.

We visualise the second experiment concerning complexity and group size in the
second column of panels of Fig. 5.4. While the first experiment maintained a constant
number of groups and therefore a variable population size, this experiment varies
the number of groups in order to maintain a constant population size so we have

(n, N, g) ∈ {(5, 100, 20), (10, 100, 10), (20, 100, 5), (25, 100, 4)},

where g represents the number of groups in the population. While we do see a
small level of increased cooperation across each of the groups, the overall results
are largely similar to the previous case. The strategies that are sufficiently complex
to sustain cooperation in smaller groups (p ≥ 6, n = 5)are unable to do the same
when groups become larger where simpler strategies (p ≤ 4, n ≥ 10) are favoured.
Essentially, the relative success of more complex strategies with respect to simpler
ones reverses as we increase the group size.

Let us focus on the AD social norm and view the differences in population size in
the first row of panels of Fig. 5.4. Consider the strategy complexities p = 10 and
p = 12 with group size n = 10 across the two experiments. Interestingly, we see that
stronger cooperation is sustained when the OPGG is played in a larger population
with the same number of groups. This is made more clear in the third column of
panels of Fig. 5.4 where we display the excess cooperation sustained by the popula-
tion when allowed to vary (N = 20n) over when the population is held constant at
N = 100. While there are no significant differences in the other social norms like in
the AD norm, we find that larger groups have a slight advantage when interacting
in a smaller population.

The behaviour when considering groups n ≤ 5 - displayed in Fig. 5.5 - are in agree-
ment when n = 4. With n = 3, once complexity exceeds the limit p > 5 (according
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FIGURE 5.4: Cooperation fares better when groups are small and
strategies are complex. If a bar is transparent, then this indicates that
it violates Eq. (5.1) and its corresponding level of cooperation needs to
be considered carefully. In this case, we argue that occasionally high
levels of cooperation when faded suggest that conditions were suffi-
ciently favourable for genetic evolution to overcome the inefficiencies
of an excessively complex strategy, whereas in certain cases, like the
weaker social norms, the lower levels of cooperation suggest an in-
ability to overcome the inefficiencies. See Appendix C.1 for examples

of time series for p = 2, 8, n = 5, 10, 20 and for all social norms.
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FIGURE 5.5: Results hold for group size smaller than five. Note that
the group size of n = 2 was also simulated but was omitted from the
figure because for each social norm, they displayed complete cooper-
ation with no variance. If a bar is transparent, then this indicates that
it violates Eq. (5.1) and its corresponding level of cooperation needs

to be considered carefully.
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to Eq. (5.1)), cooperation collapses as increased p simply increases the noise and in-
efficiencies of the strategy chromosome. For n = 2, while not displayed, full cooper-
ation was observed for all complexities and social norms with almost no deviation.
Since such interactions are only focused on the reputability of the lone opposing
partner, strategies are able to directly discriminate opponent reputations, with no
remaining uncertainty in the average reputation since it fully reveals the nature of
the opponent.

We have seen that increased complexity generally improves cooperation within the
population for small or moderate OPGG groups. However, this is not a guarantee
that the increased complexity is genuinely used by the agents. The specific alleles
used within each strategy depend on the emergent levels of cooperation, the preva-
lence of other strategies and their dominance within the population. We explore
whether not chromosomes are being fully utilised in two ways. First, we consider
the average number of times each allele is used in a population parametrised by
complexity p. The left panel of Fig. 5.6 shows that the proportion of the chromo-
somes that are used generally increase in line with the total number of alleles avail-
able to players (according to p), but only for p ≤ 8. After this point, we observe
that each norm (with the exception of AL) uses only 4-5 alleles once they have at
least 8 alleles available to them, or equivalently, have a strategy complexity of at
least p = 8. The AL norm however shows the greatest utilisation of the four norms
at p = 8, after which we observe a drop in usage corresponding to the transition
between low to high cooperation in the population (see Fig. 5.3 or the dotted series
in the right panel of Fig. 5.6) between p = 8 and p = 10. The AL norm adheres to
almost full usage of their strategy chromosomes, as visualised by the dashed line
indicating full utilisation of strategies.

More complex strategies allow players to respond to multiple different interaction
environments as categorised by the average reputation of the group, and as such
it is possible that they are not all used equally. To explore this potential imbalance
of active alleles, we consider the Gini index of these strategies in the right panel of
Fig. 5.6. A high coefficient corresponds to a large inequality of the alleles used by
players, suggesting that players repeatedly face the same interaction environment
(but providing no information on the kind of environment) and respond in the same
way. A low coefficient however corresponds to a large equality of the use of alleles,
suggesting that players experience the full breadth of interaction environments. We
observe two phases of behaviour in relation to the complexity parameter p. First,
for p ≤ 8, we find low cooperation (5-15%) and a lower Gini coefficient (> 0.45)
presenting high levels of inequality within the use of alleles of player strategies
which suggests that players are facing harsh reputational environments which in-
duce them to abstain from the OPGG to protect themselves from likely exploitation
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panel describes the number of alleles activated as a function of the
total number of alleles the agents have available to use. The grey
dashed line indicates the point at which agents reach full utilisation of
their strategies. The right panel describes both the frequency of coop-
erative behaviour (dashed lines), with the corresponding gini index
(solid lines). Recall that a high coefficient implies a large inequality in
active alleles (agents repeatedly face similar situations), while a low
coefficient implies a large equality (agents face a variety of reputa-
tional environments). These simulations considered groups of five

individuals.

(see Appendix C.1 for examples of time series displaying the evolution of cooper-
ative, non-cooperative and loner actions throughout several simulations, in multi-
ple group sizes and strategy complexities). In he second phase for the AD and AL
norms, we see high cooperation (∼ 80%) and a low Gini index (∼ 0.5), but only
moderate cooperation (∼ 50%) and a low Gini index (∼ 0.5) for the AN and AB
norms. For the AD and AL norms, this suggests that players are facing a wide range
of OPGG reputational environments, utilising a large extent of their strategy chro-
mosomes to face these different environments, and are subsequently able to protect
themselves in harsh environments, and cooperate freely in more friendly environ-
ments. The same applies in the AN and AB norms however since both of these
norms do not recognise a difference between abstaining and defecting, it is difficult
for players to recognise whether they are facing people who are indifferent and will
withdraw from the OPGG or will actively try to exploit them. Thus, inequality in
strategy chromosome use increases as players repeatedly face the same (low) repu-
tational environments and subsequently abstain more often than not.

5.3.1 Even vs odd complexity

Throughout our analyses, we have restricted p to be even. This was done because
of an outlier that emerges under the AD norm. Visualised in Fig. 5.7, we see that
when p = 5, we observe a sudden jump in cooperation levels. This occurs due to
the difference between reputation bands when p is even vs when p is odd.
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FIGURE 5.7: Behavioural complexity when p is odd for n = 5. By
segmenting the range of average reputations possible, odd p implies
that the reputation band corresponding to the zero reputation ac-
counts for both slightly good and slightly bad behaviour, while even
p will only consider 0 one or the other (see Table 5.3). The average
reputation of the population - at least initially - is 0, which drastically
changes the behaviour of the population, specifically for lower p. As
it becomes larger, the reputation bands become narrow and this effect

is muted.
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Lower Upper

-1 -0.5
-0.5 0

0 0.5
0.5 1

p = 4.

Lower Upper

-1 -0.6
-0.6 -0.2
-0.2 0.2
0.2 0.6
0.6 1

p = 5.

Lower Upper

-1 -2/3
-2/3 -1/3
-1/3 0

0 1/3
1/3 2/3
2/3 1

p = 6.

TABLE 5.3: Reputation bands for p = 4, 5, 6. For each band, the
strategy of length p would prescribe an action. The band that would
be used in an interaction would depend on the average reputation of

the other members of the interacting group.

The average reputation of the population at the outset of a simulation is zero because
everyone’s reputations are initially randomised. When p = 4 or p = 6 and indeed
for all even p, the zero falls at the boundary between reputation bands. Consider the
[0, 0.5) band for p = 4 underneath the AD social norm in Table 5.3. This reputation
band encompasses both individuals with moderate reputation (exactly zero) and
individuals who are generally good (greater than zero). Consider the reputation
band in which zero falls for an odd p, say p = 5 in Table 5.3. Here, [−0.2, 0.2) which
groups together individuals that are slightly disreputable, slightly reputable, and
those with a moderate reputation, with one action corresponding to each group of
behaviours.

Our goal is to explore strategies that are able to clearly differentiate between groups
that are largely cooperative and groups that are not. Encoding actions that respond
identically to conflicting states of the group for odd p complexities makes explor-
ing the results of our simulations more obscure, and more difficult to interpret. The
variation introduced in our results when considering the full range of p is significant
only rarely. In fact, the variation decreases as p gets larger, and the range of conflict-
ing behaviours the zero reputation band encompasses gets narrower. Despite this,
we note the impact of odd p values within our model and restrict them from our
analyses.

5.3.2 Sensitivity Analyses

In order to ensure our model’s findings are robust in a wide range of scenarios and
are not partial to a single parametrisation, we perform sensitivity analyses on each
of the important model parameters. Each of the below experiments stem from the
same basic parametrisation, where we moderate the values of a single parameter to
examine its impact on the model. The default value of each variable considered in
the main set of results above are highlighted with a vertical grey line. All parameter
values are displayed in Table 5.4. We consider resulting levels of cooperation, calcu-
lated in the same way as described earlier at the start of this section, for each of the
four social norms at both p = 2 and p = 8, which we will refer to as low and high
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complexity respectively. In line with Fig. 5.3, we typically note very low levels of
cooperation for all norms at low complexity (p = 2), but high levels of cooperation
for the AD norm, low levels for the AL and AN norms, and a moderate level for the
AB norm.

Cost of cooperation We find in Fig. 5.8 that for low complexity, only minimal levels
of cooperation (< 20%) are able to survive regardless of whether it is cheap or ex-
pensive to contribute to the public good. However, increasing the complexity along
with the cost of cooperation imposes a large improvement to cooperation on the AD
and AB norms. The other norms show little to no difference from the base cost of
c = 1.
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FIGURE 5.8: If cooperation is expensive, then only the AD and AB
norms can sustain cooperation for more complex strategies. Coop-
eration does not persist for simple strategies. For c ≥ 1.5, a high
level of cooperation is sustained for the AD and AB norms, but only
low levels for the AL and AN norms. Between AD and AB, the AD

exhibits slightly better performance.

Note that we did not observe any cooperation under any parametrisation when c =
0, nor would we expect to. If c = 0, then even if everyone cooperated, the public
good would always remain empty. Recall that the condition that must be satisfied
to maintain a non-trivial social dilemma within the OPGG is 0 < σ < (r − 1)c. For
Fig. 5.8, we kept σ = 1 and r = 3 and so we have 0 < 1 < 2c or c > 1

2 . Therefore, we
only observe non-zero cooperation once the cost of cooperation reaches c = 1 (since
we consider increments in c of size 0.5). Otherwise, the best action is to always be a
loner.

Group synergy factor Generally, we observe that p = 8 is able to sustain greater
cooperation for most r values in the upper panels of Fig. 5.9. However, we also find
the opposite result for a small range of r for the AD and AN social norms. Only very
low levels of cooperation are considered, but nevertheless, we see that strategies of
lower complexity sustain better cooperation for 2 < r < 2.4 and 2 < r < 3.1 for the
AD and AN social norms respectively. This slight advantage for low r stems from
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the mild reputational penalty attributed to loners by these norms. Since additional
complexity requires more evolutionary effort in order to sustain cooperation, given
a sufficiently low r, agents can find it easier and more convenient to simply abstain
from the OPGG, despite the cost of a lower reputation. If we consider the excess
cooperation sustained in a more complex world in the lower panel of Fig. 5.9, we
see that the social norms that attribute loners the worst reputation (AL and AB)
consistently have a positive excess regardless of the value of r, providing evidence
for this interpretation.
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FIGURE 5.9: Complex strategies lower the threshold at which high
levels of cooperation can be sustained compared to simple strate-
gies. We observe largely similar behaviour to cooperation’s depen-
dence on the cost of cooperation. For simple strategies, only a very
high OPGG multiplier can sustain cooperation, but complex strate-
gies greater levels of cooperation at lower r values. This effect is only
true of the AD and AB social norms. The other two norms again can
sustain the highest cooperation levels but only at the highest OPGG
multipliers. For 2 ≤ r ≤ 3, we see that simpler strategies are (very

slightly) better off than more complex strategies.

Loner’s payoff Cooperation is stronger when strategies are more complex in Fig. 5.10.
This holds true for all values of σ except for the AN norm at σ = 0.05 where strate-
gies of lower complexity are able to sustain slightly more cooperation than more
complex strategies. The optimal level of cooperation is found when σ = 0.05 for the
AD and AB social norms. Varying σ from its baseline does not significantly impact
cooperation levels in the population.

Proportion of population replaced Interpreted as the speed of evolution or rate
of learning of the genetic algorithm, ζ controls how much of the population is re-
placed with genetic variants of the remaining population. We see that in Fig. 5.11,
for low complexity there is little substantial improvement in cooperation from the
baseline regardless of ζ. However, for higher complexity, the results are slightly
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FIGURE 5.10: A small loner’s payoff used by more complex strate-
gies has the best chances for cooperation. For simple strategies, a
generally low level of cooperation can be sustained, for 0 < σ < 2.
For complex strategies, σ = 0.5 allows the best levels of cooperation -
identically so in the AD and AB norms. The other two norms remain

unable to sustain any more than 20% cooperation.

more nuanced. For the AL and AN norms, the results are largely equivalent to the
low complexity case. The optimal points for the AD and AB norms however are
strangely reversed, with the AD norm sustaining the strongest cooperation with a
fairly low learning rate where 0.2 < ζ < 0.3, while AB requires a fairly high rate of
ζ ∼ 0.8 to achieve the best cooperation.
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FIGURE 5.11: Complex strategies rely on low population replace-
ment rates for the AD and AB norms. For simple strategies, low
cooperation levels around 20% is all that can be sustained. More com-
plex strategies under the AD and AB can sustain high levels of coop-
eration. For the AD norm the optimal point is ζ = 0.2 and for the AB
norm it is ζ = 0.8. Complex strategies under the AL and AN norms

are largely unchanged from the case with simple strategies.

Probability of further OPGG Rounds The parameter Ω in Fig. 5.12 controls the
degree to which direct reciprocity plays a part within our model. If Ω → 0, then
typically only a single round of the OPGG will be played each time-step where the
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reputations observed by players are formed outside of the group. However, if Ω →
1, then the players frequently play further rounds in the same group within each
time-step where reputations are reformed and directly observed.

Complexity and reciprocity are clearly linked according to Fig. 5.12. For low com-
plexity, only the AD norm is able to sustain moderate levels of cooperation, albeit
with a lot of variation. Here, indirect reciprocity is favoured, with a drop in coop-
eration if there are enough repeated games within each time-step. However, worlds
of more complex strategies require a high degree of repeated games for cooperation
to be sustained at any level. If Ω is sufficiently high, then cooperation is favoured
most strongly by the AD norm, moderately by the AB norm, and weakly by the AL
and the AN norms.
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FIGURE 5.12: Simple strategies fare better with rare or no repeated
rounds, while complex strategies prefer frequent rounds within the
same time-step. In the simple case, only the AD social norm is able to
sustain a moderate level of cooperation, with each of the other three
norms exhibiting near zero cooperation. When strategies are more
complex, then the AD norm can best utilise the additional frequency
of OPGG rounds, then followed by the AB, AL and AN norms. Gen-
erally, for complex strategies, the more frequent the rounds, the better

it is to encourage cooperative behaviour.

Implementation and assignment error We consider two kinds of error within our
model. The first, implementation error α (Fig. 5.13a) is exhibited through the likeli-
hood of an agent acting randomly (either cooperating, defecting or abstaining with
equal probability between them), despite their desire to behave in a particular man-
ner. As α → 1, players essentially ignore social norms, reputations, and their strate-
gies and interact randomly. Thus, of the actions in the population, only roughly a
third are cooperative regardless of complexity.

For more reasonable rates of implementation error, we see that surprisingly, worlds
of lower complexity perform worse when they behave according to their strategies
and that the increased behavioural error in fact increases cooperation to moderate
levels. This is likely due to the absolute lack of incentives for cooperation at low
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(A) Complex strategies can withstand small rates of accidental behaviours and still sustain high
levels of cooperation, but simple strategies cannot. When cooperation is possible, it is restricted to
the AD social norm, with either a moderate level by the AB norm, and low levels of the other two
social norms. As the error rate increases to 1, players behave entirely randomly, so they cooperate on

average a third of the time.
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(B) Complex strategies can withstand small rates of mislabelled reputations, but simple strategies
cannot. The pattern of behaviour is largely identical to the implementation error. If reputations are
meaningless, then players end up cooperating only a fifth of the time when strategies are complex, and

slightly less often if strategies are simple.

FIGURE 5.13: Implementation and assignment errors. Generally,
complex strategies can sustain a high level of cooperation as long as
the error rates remain sufficiently low, and defecting is attributed the

worst possible reputation.
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complexity, and thus the only cooperative actions that remain are the ones that oc-
cur accidentally. For more complex worlds, only the AD and AB norms are able to
sustain high levels of cooperation for low implementation error rates, while the AL
and AN norms perform poorly in the absence of error, and show slight improve-
ments when the error rate increases.

The second source of error within our model (Fig. 5.13b) is reputation assignment
error. This is the likelihood that the reputation assigned following an interaction
is not formed correctly through the social norm, but set randomly instead. This
reputational error takes affect before the reputation is broadcast so that the whole
population will accept the incorrect reputation as the true value. For low complexity,
we observe little to no change in reputation assignment error, suggesting that the
strategies that remain dominant largely ignore reputation. For higher complexity,
low reputation assignment rates are preferred, even over the absence of error. As
β → 1, all reputations are assigned randomly and the differences between the social
norms vanish, leading to an overall 20% cooperation rate.

Mutation Finally, mutation is implemented in two ways in our model. First, we
consider the rate of mutation in Fig. 5.14a. For low complexity, very low mutation
rates in the order of ∼ 10−5 allow the best chances for cooperation among the four
norms, with no strong preference between them. Additional increases in mutation
rate decrease the chances for cooperation until ϵ1 = 0.1, at which point the AD and
AN norms perform slightly better, the AL norm remains the same, and the AB norm
suffers even further in terms of cooperation exhibited in the population. For a more
complex world, a moderately high rate of mutation is required for substantial levels
of cooperation. The optimal mutation rate is roughly 10−3 < ϵ1 < 10−1 for both the
AD and AB norms, although the AD norm performs better at most mutation rates.
The AD norm also performs better particularly at extremely quick mutation rates.

The other implementation of mutation within our model acts as an intensity factor
in Fig. 5.14b. The strategy chromosomes considered within our model consist of p
individual alleles, each of which have an independent and identical probability of
switching randomly to cooperation, defection or abstention regardless of its previ-
ous action. For mutation intensities of ϵ2 < 10−4, complexity makes little difference
to the level of cooperation sustained. For higher intensities however, low complexity
strategies suffer and exhibit much lower levels of cooperation all social norms. The
AD and AB norms in more complex worlds are capable of sustaining better cooper-
ation as ϵ2 → 1 (with a preference as usual for AD over AB), while the AL and AN
norms exhibit a much lower level of cooperation.

In summary, it appears that the best chances for cooperation are a moderate rate of
mutation in which strategies are completely randomised, as long as the strategies
themselves are sufficiently complex. More simple worlds have better chances for
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(A) For simple strategies, cooperation can be sustained by any norm if mutation rates remain suf-
ficiently low. Complex strategies interacting under the AD or AB norms require a higher mutation
rate to sustain high levels of cooperation. Complex strategies interacting under the AL or AN norms
cannot exceed roughly 30% cooperation, regardless of the frequency of mutation. The best performer
is the AD social norm for rates between 10−2 and 10−1. These simulations consider ϵ2 = 1 so that

entire strategies are randomised.
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(B) Cooperation is improved at higher mutation intensities for the AD and AB norms, if strategies
are complex. Simple strategies have generally low to moderate levels of cooperation, with the best
chances occurring at ϵ2 ≈ 10−3 while complex strategies under the AD and AB norms prefer entire
strategies to be entirely randomised. The AL and AN norms behave similarly to themselves if they

used simpler strategies.

FIGURE 5.14: Complex strategies prefer higher mutation rates
where entire strategies are randomised, to sustain the best levels
of cooperation under the AD and AB norms. The AL and AN norms
find it difficult to reach moderate levels of cooperation, and the same

is true when strategies are simple.
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Figure Variable N n t p c r σ Norm ω ϵ1 ϵ2 ζ α β

Fig. 5.3 Behavioural complexity (even values) 100 5 2 × 105 ∗ 1 3 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.4 Group size vs complexity ∗ ∗ 2 × 105 ∗ 1 3 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.5 Group size vs complexity ∗ ∗ 2 × 105 ∗ 1 3 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.6 Actual allele use & Gini index 100 5 2 × 105 ∗ 1 3 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.7 Behavioural complexity (odd values) 100 5 2 × 105 ∗ 1 3 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.8 Cost of cooperation 100 5 2 × 105 2, 8 ∗ 3 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.9 Group synergy factor 100 5 2 × 105 2, 8 1 ∗ 1 ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.10 Loner’s payoff 100 5 2 × 105 2, 8 1 3 ∗ ∗ 0.91 0.1 1 0.1 0 0
Fig. 5.11 Proportion of population eliminated 100 5 2 × 105 2, 8 1 3 1 ∗ 0.91 0.1 1 ∗ 0 0
Fig. 5.12 Probability of further rounds 100 5 2 × 105 2, 8 1 3 1 ∗ ∗ 0.1 1 0.1 0 0

Fig. 5.13 (A) Implementation error 100 5 2 × 105 2, 8 1 3 1 ∗ 0.91 0.1 1 0.1 ∗ 0
Fig. 5.13 (B) Assignment error 100 5 2 × 105 2, 8 1 3 1 ∗ 0.91 0.1 1 0.1 0 ∗
Fig. 5.14 (A) Mutation frequency 100 5 2 × 105 2, 8 1 3 1 ∗ 0.91 ∗ 1 0.1 0 0
Fig. 5.14 (B) Mutation intensity 100 5 2 × 105 2, 8 1 3 1 ∗ 0.91 0.1 ∗ 0.1 0 0

TABLE 5.4: Parametrizations for each figure. This table describes
the parameters used in the simulations used to generate the results in
each figure of this paper. The asterisks denote wildcards where the

respective variables takes on a range of values.

cooperation if the mutation rate remains as low as possible, with alleles only occa-
sionally randomised.

5.4 Discussion

The study of cooperation is important. Understanding the incentives behind co-
operation and defection can aid the design of incentive systems that can success-
fully foster cooperation in large collective action problems, while still remaining re-
silient towards attempts at free-riding or defection. Cooperation is difficult in the
OPGG, both theoretically (Hauert, 2002) and experimentally (Marwell and Ames,
1979, 1981). While we never reach the full loss of cooperation predicted by the strong
free-riders hypothesis, levels of cooperation observed experimentally are not sub-
stantial nor are they a realistic representation of cooperation in human or animal so-
cieties. Letting people withdraw from the social dilemma instead of forcing them to
choose between cooperation and defection helps prevent the long-term domination
of defection, but inevitably results in periodic cycles of the three strategies which
typically stay loner-dominated for long periods with only brief bursts characterised
by cooperation (Hauert et al., 2002). In the end, the resulting situation is ultimately
no better or worse than if everyone was always a loner, permanently opting out of
all situations.

Our work in the Chapter 4 found that certain social norms (those that value abstain-
ing from the OPGG to be no worse than defecting) and the threat of punishment is
able to successfully foster cooperation. However, when the punishment mechanism
is not available, cooperation is only possible through the reputational mechanism
alone under more restrictive circumstances. Under such parameters, only the social
norm that values defection to be strictly worse than abstention is able to sustain any
modicum of cooperation at all. The agents in the experiments of Chapter 4 were able
to categorise each OPGG group as either ‘mostly good’ or ‘mostly bad’ depending
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on whether the average group reputation of the other members was greater of less
than zero, able to respond to each situation with a certain action.

We conjectured that cooperation through the reputational mechanism alone would
be possible, if behaviours were able to be more precisely guided by observations of
the relative reputability of the interaction environment. Thus by building on this
work, we developed an ABM to explore the evolution of strategies that are able to
fine-tune their responses to a more granular range of interaction environments. By
considering the same social norms (Table 4.3), actions were attributed moral values
which were observable and provided information to help guide future players on
their behaviours depending on the reputability of their game environment.

We accomplished this by implementing a genetic algorithm using chromosomes to
represent behavioural strategies. Each allele of the chromosome represents an action
in response to a particular range of values of the average reputation of the OPGG
group (bounded between -1 and +1). Longer chromosomes suggest more complex
strategies as they can respond with a wider range of actions to the same range of
reputational values. This approach allowed us to explore conditionally cooperative
behavioural strategies of arbitrary complexity and is the complement of the study of
complexity of social norms in Santos, Pacheco, and Santos (2021) and Santos, Santos,
and Pacheco (2018). In their context, a social norm that was more complex used ad-
ditional information of past behaviour in order to assign reputation. They showed
that increasing social norm complexity improved cooperation but only to a certain
point. Further increases in complexity did not result in any better chances for co-
operation. Our work is among the first to consider the complexity of behavioural
strategies in this way.

Finding 8 Increasing complexity of behavioural strategies improves cooperation for all so-
cial norms, but only up to a certain point after which additional complexity does not improve
cooperation.

The principle result from our investigation is that increasing the complexity of be-
havioural strategies under a reputation-based social norm, improves the chances of
cooperation but only to a certain extent. For each social norm (Fig. 5.3), there ex-
ists a complexity threshold after which more complex strategies do not improve the
levels of cooperation sustained in the population. Pondering this result alongside
the finding of Santos, Santos, and Pacheco (2018), seems to imply that reputation-
based social norms and complexity act as substitutes for the other. We only consider
first-order social norms based on the binary image scoring norm of Nowak and Sig-
mund (1998a), which has shown that it is not capable of sustaining high levels of
cooperation due to its inability to identify justified defection. A sufficiently complex
behavioural strategy, allowing a more elaborate handling of reputational informa-
tion, does in fact allow a high level of cooperation to be sustained. Our finding par-
tially mirrors the outcome of Santos, Santos, and Pacheco (2018) where they found
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that the stern-judging and judging assessment rules, second and third-order norms
respectively, outperformed higher-order social norms. Thus, some complexity was
best, but further complexity was wasted.

While our results can be considered alongside the findings of the previous chapter,
and remain qualitatively similar, not all aspects of the previous set of results could
be replicated exactly. For instance, the reputation model considered in the previous
chapter was able to reach ∼ 40% cooperation (Fig. 4.2) whereas the present model
for a similar parametrisation and identical complexity (with p = 2) was only able
to reach ∼ 20% (Fig. 5.3). However, this is unavoidable due to the fundamental dif-
ferences between the underlying selection mechanisms (Righi and Takács, 2017a). A
similar instance arose in Uchida et al. (2018) where they observed completely differ-
ent quantitative outcomes when comparing genetic algorithms to replicator dynam-
ics where both selection mechanisms were in the presence of the stern-judging social
norm Table 2.3.

The reputation model in Chapter 4 implemented a group-selection mechanism wherein
individuals evolve in two stages, first considering whether to imitate a member in-
side or outside of their own OPGG group, and then to probabilistically update their
strategies according to the difference of their payoffs. The sheer size of strategy
spaces within our framework here makes such an approach impossible. With strate-
gies of a lower complexity, say p = 2, there are no real problems since there are only
32 = 9 possible behavioural strategies. However, if we consider p = 10, then we start
to face difficulty since there are now 310 = 59, 049 potential strategies each of which
need to be considered. In fact, greater complexities p = 20 would result in around 3.5
billion possible behavioural strategies. A population composed of these would ei-
ther have to be larger than this to account for an even representation of each strategy
at the outset of simulations, or they would have to be exceptionally long simulations
to give each strategy a chance to invade the population through mutation. Clearly,
a different approach was needed due to the computational challenges of such sim-
ulations, even with the availability of high-performance computing clusters or dis-
tributed computing. Implementing a genetic algorithm utilising an evolution-based
selection mechanism allows a much more practical method of searching extremely
large strategy spaces, without the unnecessary computation that would be required
with the more methodical approach that was taken in Chapter 3 or Chapter 4. Specif-
ically implementing the genetic recombination of strategy chromosomes allowed the
best strategies of each generation to grow and spread from an initially randomised
population, each able to naturally learn the optimal responses to a wide range of
possible interaction environments in terms of the average of other people’s reputa-
tions. Of course, we must then consider the traits of the social norms that are most
effective in sustaining cooperation.

Finding 9 A social norm that makes a distinction between defection and abstention is more
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likely to encourage higher levels of cooperation in populations than a norm that doesn’t. How-
ever, if strategies are sufficiently complex, then at least 50% cooperation can be sustained,
even if the norm views abstention to be morally worse than or equal to defection.

The social norms that presented a clear distinction between the moral values at-
tributed towards defection and abstention (AD and AL) were the best performers
in terms of cooperation. By making this distinction, players were able to more ef-
fectively judge their interaction environments, associating with it a more accurate
reputation, which in turn is able to more realistically relate to the likelihood that
their cooperation will be reciprocated.

The norms that attribute the same moral values to both defection and abstention fail
to make this distinction, introducing uncertainty into most OPGG games limiting
players from recognising whether their group consists largely of defectors or loners.
Thus, situations that lead to an average reputation anywhere near 0 or -1 for the
AN and AB norms, individuals essentially guess the composition of their groups
resulting in at best, a 50% likelihood of cooperation.

Finding 10 The Anti-Defector social norm creates the environment most conducive to-
wards fostering cooperation.

The AD social norm consistently sustained the largest frequencies of cooperation
(with the exception of some particular parameter ranges r > 3.5 in Fig. 5.9, 0.7 < ζ <

0.9 in Fig. 5.11) in our simulations. Both AD and AL clearly differentiate between
the moral value attributed to defectors and to loners, but the AD norm is the better
performer due to both greater levels of cooperation and comparable cooperation at
lower complexities. While the AL norm can sustain a high degree of cooperation
under the default parametrisation at p = 10, the AD norm can sustain the same
level at just p = 8.

Both norms only differ in the numerical value attributed towards defection and ab-
stention. Their principal purpose is to divide the two behaviours, and so their nu-
merical values are largely irrelevant. The most popular behavioural strategies in the
AD and AL norms would be the same once the numerical values attributed to the
two actions are swapped. Thus, if p = 3, a strategy under the AD norm may be
LDC, but simply DLC in the AL norm. We see the same actions mapping to different
reputation ranges as the numerical values attributed to defection and abstention are
switched.

Finding 11 Cooperation is more difficult to achieve in larger groups, regardless of whether
groups are part of a proportionally larger population or of a constant-sized population. Ad-
ditionally, when groups are large, simple strategies are best but with far worse overall levels
of cooperation.
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So far, we have shown that allowing players a more varied selection of responding
actions within the OPGG lets them (eventually) respond more efficiently to the av-
erage reputation of the group. In essence, this acts as a proxy of the cooperativeness
of the interaction environment. Since such collective action problems are inherently
group-based dilemmas, it is important to consider how the results are affected when
faced with a variety of group sizes.

Generally speaking, as the size of the OPGG groups grow (Fig. 5.4), cooperation is
more difficult to achieve for a given constant complexity. This is not an uncontested
result but is common in the literature. Simpler strategies can sustain cooperation
more easily in larger groups because of the decreasing impact of bad reputation.
The behaviour of a single individual is more or less insignificant when observed in
a large group. Individual behaviours and their corresponding reputations are aver-
aged out, essentially lost in the crowd. There is no benefit to players using highly
complex strategies in such scenarios because the behaviour of such large groups are
- on average - simple. In such situations, highly complex strategies harm cooper-
ation, increasing the evolutionary effort required to reach a successful and coop-
erative strategy. Here, a large p corresponds to strategies predominantly trying to
over-explain and respond to simple behaviour in a complex manner. The additional
evolutionary effort stems from an increased number of alleles of the strategy chro-
mosome that needs to be optimised or learnt, despite there being less to learn from,
because the average reputation is inherently less informative about the nature of
the individuals composing the group. Such complexity is more well-suited towards
smaller groups, where the additional variation of behaviours within the group can
be identified more easily and exploited by players to achieve better and more opti-
mal behavioural strategies.

Interestingly, certain scenarios do display the opposite of their expected behaviour.
Typically we have seen that as the population size increases, the difficulty in sus-
taining cooperation also increases. By also considering the case where the size of the
population is kept constant, we can account for this observed difficulty. It turns out
that in some cases - usually smaller groups and higher complexities - interacting in
a larger population than a smaller one, keeping group size and complexity constant
is able to sustain more cooperation.

Overall, we have seen how complexity and social norms coexist, substituting for
one another if circumstances for one aren’t quite suitable to sustain cooperation. For
instance, many independent parametrisations are capable of high levels of cooper-
ation. For instance, the AD norm with n = 5 and p = 8 is able to achieve a high
degree of cooperation while the AB norm is only capable of sustaining a moderate
level, with all other parameters equal. However, by increasing the group synergy
factor, or increasing the proportion of the population replaced each time-step, or
even by lowering the loner’s payoff slightly, the AB norm is now capable of achiev-
ing a very similar level of cooperation to the AD norm. Increased complexity can
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improve chances for cooperation if key OPGG variables like the synergy factor or
loner’s payoff are less than ideal for sustaining cooperation, and conversely, if the
values for the same variables are more favourable, then a lower complexity will be
capable of achieving the same level of cooperation.

In summary, we have shown that a punishment mechanism is not required to achieve
a high level of cooperation, as long as players are able to comprehend and respond
to the OPGG reputational environment in a sufficiently precise manner. By allow-
ing players to observe their interaction environments and respond accordingly, all
norms are capable of achieving at least moderate levels of cooperation. Complex-
ity acts as a substitute for less than ideal circumstances of the OPGG. Norms that
view defection to be worse than abstention have better chances for cooperation than
norms that view them to be morally equivalent. Similarly, among these norms,
when the reputational penalties attributed to such players are harsher, coopera-
tion is stronger. Interactions within smaller groups fare better with more complex
strategies able to respond to the variety of possible emergent behaviours, whereas
simpler strategies are preferred in larger groups where individual actions matter
less. Our work shows that considering strategy complexity and its interplay with
reputation-based indirect reciprocity can be beneficial in explaining cooperation, es-
pecially when players are cognitively capable of more complex behaviours, able to
comprehend and appropriately respond to a variety of reputational environments.

5.4.1 Subsequent studies

When considering potential directions for future work, many concepts come to mind.
We have demonstrated that if reputations can be perceived in a nuanced enough
way, punishment is not absolutely necessary to maintain cooperation in the OPGG.
However, if the option to punish is available, to what extent does it presumably im-
prove cooperation? How would a punishment mechanism and by association the
possibility of pro-social and anti-social punishment impact the level of complexity
required to sustain a high degree of cooperation? Does this improve the chances
for cooperation in larger groups? While punishment in general has been widely
explored and examined, its complexity has not. Some works do explore continu-
ous levels punishment but these are usually explored more in experimental studies
(where subjects were able to choose for themselves how much they want to punish
someone as in Fehr and Gächter (2002), Gächter and Herrmann (2011), Herrmann,
Thoni, and Gächter (2008), and Yamagishi (1986)) as opposed to a fixed and discrete
punishment penalty and cost in agent-based models (Hauser, Nowak, and Rand,
2014; Rand and Nowak, 2011; Rand, Ohtsuki, and Nowak, 2009). More recently,
graduated punishment - the increasing severity of punishment depending on the
level of cooperation observed - has been of interest (Couto, Pacheco, and Santos,
2020; Iwasa and Lee, 2013; Quan et al., 2023; Shimao and Nakamaru, 2013) follow-
ing many legal systems around the world (Chu, Hu, and Huang, 2000; Mungan,
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2010) that punish repeat offenders more harshly than first time offenders. There is
certainly a large gap in the literature for more complex strategies of punishment that
are more alike to those found in the real world.

Lastly, the co-evolution of social norms along with behavioural strategies can also be
considered in tandem with the costs of complexity. The focus would be on assess-
ing the trade-offs that emerge between their relative complexities as they emerge
through evolution.



193

Chapter 6

Conclusion

This thesis has explored how the interaction between reputation and the locality of
information transfer, the option to punish anyone, and increased behavioural com-
plexity acts to sustain or impede cooperation through indirect reciprocity. We pre-
sented the diverse strands of literature that grounded our work within this field, dis-
cussed the major findings within indirect reciprocity, and how they were explored
using various social dilemmas like the prisoner’s dilemma and the public goods
game. Apart from reputation, the other major mechanism for enforcing cooperation
- punishment - was discussed. We considered its merits and impediments, the major
issues that emerged from its use, and how these problems had been mitigated. We
mentioned evolutionary graph theory, looking at how cooperation was impacted
when enforcing a strict network-based topology where the presence or absence of
a certain structural trait could completely change the evolutionary outcome. Each
of these topics was thoroughly interrogated, under the umbrella of reputation and
cooperation, to ask three main questions.

The first, considered the leading eight which were effective at sustaining coopera-
tion on the assumption that reputational and evolutionary information was public
knowledge. We asked whether relaxing the assumptions of global information and global
evolution to local information and local evolution impacted their capability to maintain co-
operation and to which degree. We showed that they remained capable of sustaining a
high degree of cooperation under a wide range of scenarios with local information
and local selection. In fact, we found that local evolution is able to sustain coop-
eration in a wider range of scenarios than global evolution while local reputation
was just as effective as global reputation. The four social norms that could support
the highest levels of cooperation shared the trait of not rewarding acts of legitimate
defection by bad individuals where by enforcing this restriction, they were more
resilient to free-riders under a wider range of harsh interaction environments.

We then moved from changing how reputations were transferred, to changing how
they interacted with other mechanisms, primarily punishment and the option to
withdraw from social dilemmas involving more than just two people. If reputations
were ignored but the option to punish in the OPGG was available to everyone, then
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cooperation stagnated, presenting perpetual cyclic dynamics, with high levels of
anti-social punishment and low overall levels of cooperation in the population. We
asked whether the choice to base one’s actions on the reputations of others could increase
the likelihood of cooperation in a society where anyone could punish anyone they chose. We
found this to be true. The social norm that believed defection as being clearly and
morally worse than abstention offered the best chances for cooperation, though all
norms that did not see abstention as the morally worst course of action were nearly
as strong. However, we found that despite everyone having the option to punish,
rarely did anyone choose to do so. The most common punishment strategies of the
few that were present, chose to punish pro-socially and never anti-socially.

The traits that enabled cooperation in the OPGG under both the punishment and
reputation mechanisms were not as effective when the option to punish was no
longer available. When this was removed, only the social norm that viewed absten-
tion to be morally better than defection was capable of sustaining cooperation, albeit
only at a moderate level. We questioned whether increasing the capacity of behavioural
strategies in the OPGG to evaluate and respond appropriately could increase the likelihood
of cooperation when being guided by the reputations of others. In the previous study, a
player’s capacity in evaluating their reputational environment was limited, guided
by whether the group was generally good, or whether the group was generally bad.
Indeed we found that increasing the complexity of behavioural strategies by letting
them perceive the degree to which their OPGG groups were either good or bad, uni-
laterally improved chances for cooperation in all social norms, even those that were
previously limited by the not being able to punishment. However, if the social norm
could clearly distinguish between abstaining from the OPGG and defecting from it,
it was more likely to support high levels of cooperation than norms that could not
make the distinction, which could only support a moderate level of cooperation. We
found that larger groups were better off approaching situations with more simplistic
strategies, while smaller groups offered situations that were best able to exploit the
additional strategy complexities - but only up to a certain point, after which there
were no additional improvements to be had. However, larger groups found it much
harder to maintain cooperation overall.

We were able to arrive at the answers of our hypotheses by developing a series
of agent-based models through which we could examine reputation-based indirect
reciprocity. Through extensive simulations we were able to explore common so-
cial dilemmas through the analogue of the prisoner’s dilemma and optional public
goods game for two-person and n-person interactions respectively. We showed that
reputational mechanisms are extremely adaptable to their situations, and in particu-
lar, the implications of such mechanisms are extensive in an increasingly connected
world.

The first study in Chapter 3 uncovered the effects of restricting and enhancing the
mechanisms responsible for transferring reputation, exploring the acquisition of the
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reputability of those they interact with, and the strategies they are guided by. Social
networks relying on such reputational information are ubiquitous in modern day life
from academia to professional social networks. The reach of a single person on the
internet is tremendous, capable of connecting to anyone, anywhere on the planet.
While this is extraordinary compared to our capabilities even a few decades ago,
this extended reach weakens the transfer of reputational information, increasing the
level of noise and interference involved in the process. Such noise has the poten-
tial to mislead or distract, allowing free-riders to build a valuable but undeserved
and unearned positive reputation, which can later be used to exploit and deceive
large groups of people. Social media ’bots’ are frequently cultivated and sold for
large sums, contributing to the creation of a verifiable and trustable online personas,
which have been used in the spread of fake news or for other nefarious purposes.
Unscrupulous online sellers often fraudulently purchase a positive reputation in the
form of online reviews, each rating increasing the likelihood of deceiving and prof-
iting from unsuspecting consumers. Our work suggests that a strong and effective
reputational mechanism is crucial in supporting the ongoing existence of good and
pro-social behaviour, while disincentivising bad and anti-social behaviour. We iden-
tify the norms that are able to successfully sustain and protect cooperative systems
under a wide range of conditions. The norms that punish bad behaviour harshly
and make regaining a good reputation after losing it more challenging are those
that are most effective at fostering cooperation. Finally, we present evidence that
modelling our behaviour after those closest to us is more effective at maintaining
cooperative behaviour than learning from widely accepted knowledge in a world
where it is challenging to trust the reputation of others. However, we must consider
these results in the context of our model. To serve as analogies for real-world situ-
ations, a number of simplifying assumptions are necessary to explore and analyse
complex situations, reducing their accuracy. We compared the leading eight rela-
tive to the stability conditions derived in Ohtsuki and Iwasa (2004, 2006) in terms of
the benefits/cost ratio, and the frequency of implementation and assignment error.
Our methodology inserted unconditional defectors into the population, analysing
- among other things - whether the leading eight were resilient to occasional free-
riding, and whether the altruism of the leading eight could spread when initially
rare in the population. Our interpretation is more realistic and also justifies the need
to consider the individual social norms, the transmission of reputational informa-
tion, and the learning of strategies in the local rather than the global setting.

Besides allowing the leading eight to resist invasion from defectors under a wider
set of conditions than previously thought, reputational systems also complement
punishment mechanisms, strengthening incentives to cooperate and removing the
scope of anti-social punishers. When used in isolation, the threat of punishment (to-
wards anyone) is not enough to enforce cooperation in the optional public goods
game (Rand and Nowak, 2011). We show that if people additionally use reputation
to guide their behaviours, cooperation is substantially improved. This result is in
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contrast to Gurerk, Irlenbusch, and Rockenbach (2006) which finds that people in-
evitably choose a sanctioning society over a sanction-free society, without the need
of any reputational mechanism at all. Thus, it is unclear whether their results can be
extended to the public goods game when participation is voluntary.

Our work helps to clarify why cooperation can persist even in the presence of anti-
social punishment. While the literature surrounding anti-social punishment (Gächter
and Herrmann, 2009, 2011; Herrmann, Thoni, and Gächter, 2008) places a strict sep-
aration between the decision to punish and reputational concerns, we find that in-
troducing reputational concerns alongside anti-social punishment allows the return
of cooperation. This is in line with experiments run in person in Pancotto, Takács,
and Righi (2021) which found that individuals - when knowing they were interact-
ing with other members of their towns - decided not to punish anti-socially, sug-
gesting the implicit use of reputation throughout their interactions. Such findings
intuitively support the use of average reputations in place of individual reputations
for a group-based social dilemma. Thus, social norms matter, and have the poten-
tial of removing the scope of anti-social punishment. We showed that knowledge
of individual reputations of a group of people is not necessary to elicit cooperation,
and the simple proxy of the average reputation - of being aware of how cooperative
the group is on the whole - provides enough information for players to successfully
conditionally cooperate, provided they have a sufficient capacity to process the in-
formation. Stricter norms supported more cooperation, with the lowest complexity
requirements. When interactions occur in smaller groups, complex strategies were
able to efficiently exploit reputational information to safely cooperate without fear of
exploitation. Larger groups however showed simpler strategies to be optimal, since
individual behaviours were less impactful to the overall outcome of the game. Our
results show that accounting for complexity in terms of behaviours and not neces-
sarily social norms can be beneficial in explaining the successes of cooperation when
individuals are capable of a wider range of behaviours when responding to differ-
ent situations. In this sense, if a social group is composed of individuals that are
sufficiently capable of discerning the reputations of others, then even simple social
norms can effectively sustain cooperation.

Following our work, we can consider the conclusions of our simulations outside
of agent-based models and back in real-life. The work of Chapter 3 suggests that
mechanisms of local reputation should be emphasized. By relying on global reputa-
tion systems, we depend on supposedly independent and supposedly trustworthy
third-parties. Often, the intentions of the custodians of such systems are not pure.
For instance, the reputability of Facebook has been damaged in their sale of user
data to Cambridge Analytica. By violating user privacy (Isaak and Hanna, 2018),
there is now potential for doubt when trusting Facebook’s labels of whether certain
news articles are marked as verified and trustworthy. By developing local systems
of reputation, we move towards a decentralised system in which social norms can
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more effectively and with with more transparency promote cooperation in a wider
range of circumstances.

From Chapter 4, collaborative platforms where a combination of both reputation and
punishment as mechanisms for promoting cooperation are encouraged. This may
involve creating systems where individuals are both rewarded for good behaviour,
and penalised by their peers for negative behaviour. Alternatively, such platforms
could also enforce strict social norms, viewing abstaining from interactions as strictly
more reputable than defecting. In doing so, they would empower individuals to act
conditionally on reputation, rather than replying solely on punishment. This could
also involve creating opportunities for individuals to build and maintain positive
reputations, such as engaging in pro-social behaviours, and activities that build trust
with others through collaborative problem solving tasks which also builds on the
findings of Chapter 5. In situations where groups of individuals frequently work
collaboratively, increased training or education on more effective communication,
conflict resolution and other skills can help individuals to better identify situations
in which there is potential for their cooperation to be exploited so that they can act
accordingly and protect themselves.

Following this thesis, further study can be taken in three principal directions. Firstly,
we have seen that the L8 were strong social norms able to sustain cooperation even
when information was transferred locally. Yet, this analysis was only taken within
the scope of a single social norm, using a single behavioural strategy, pitted against
the influx of unconditional defectors. In a modern world, with high levels of con-
nectivity across geographical and cultural lines, individuals following different and
often conflicting social norms frequently interact. In such cases, numerous questions
emerge about the relative strengths of such social norms. By considering heteroge-
neous populations that consisted of conflicting social norms in parallel would help
to answer how reputations are assigned following interactions by different groups
of people, with different interpretations of what defines good behaviour.

In a similar manner, future studies should work to understand how the trade-off
between social norms and behavioural strategies evolves under the pressure of evo-
lution, especially if the population pays a cost to increase either the complexity of
the social norm, or their own ability to discern reputation. Additionally, while we
have exclusively considered worlds in which the option to withdraw from the so-
cial dilemma was possible, many situations of course require participation. There-
fore, subsequent investigations could consider a PGG with mandatory participation,
where strategy complexity can improve conditional behaviours in response to repu-
tational information.

In our models, we found that the simple threat of punishment is enough to raise
cooperation when used alongside a strong social norm. With simple strategies in
this setting, only the most conventional social norm which views defection to be the
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morally worst action is able to support a moderate level of cooperation when the
group size becomes very large. It would be interesting to explore how the complex-
ity of a behavioural strategy would fare in such extraneous circumstances, and in
the presence of punishment.

Considering the findings over each chapter and the potential directions of future
study, the most important real-world trait that was not captured by this thesis would
be of concurrent and conflicting social norms. Social norms are intrinsically linked
with cultural norms which can also depend on geography. In modern times, cross
cultural communication and collaboration is increasing in its frequency, particularly
aimed at social and environmental issues like global warming. In many cases, there
is a large degree of overlap which can foster amazing feats of international coopera-
tion, but also, we know there are many conflicts such as views on punishment, men-
tal health, and politics. There are innumerable questions that arise as a consequence
of concurrent social norms. How do conflicting social norms arise, and what factors
contribute to their persistence or resolution over time? What are the conditions un-
der which different social norms can coexist, and how do these conditions affect the
level of cooperation within a group? How do social norms and strategies for cooper-
ation evolve in response to changes in the social and ecological environment? What
about changes to the environment? How do mechanisms such as reputation, pun-
ishment, and social learning influence the coevolution of conflicting social norms
and the evolution of cooperation? By improving our understanding of these ques-
tions, we can only improve the likelihood of fostering high levels of cooperation, in
an increasingly global and diverse world.

In summary, we have explored the successes of reputation in combination with re-
alistic interpretations of information transfer, alongside the option to punish the be-
haviour of others - whichever actions they may take - and with different levels of be-
havioural complexity. All of our work contributes to the study of reputation-based
indirect reciprocity, adding to the body of work that identifies the conditions and
the mechanisms through which cooperation and altruistic behaviour can not only
survive, but can thrive.
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Appendix A

Local Reputation, Local Selection
and the L8 Norms Supp.

A.1 Network Explorations

A.1.1 Erdős-Rényi Random network
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FIGURE A.1: Erdős-Rényi cooperation against network density p.
Under global evolution, the L8 are unaffected by changing network
density, but group II suffers in denser environments under local evo-
lution. There is little difference comparing between global and local

reputation.
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A.1.2 Regular Random Lattices
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FIGURE A.2: d-RRL cooperation against degree d. Little changes
from the findings from Fig. A.1 where all L8 strategies are able to sus-
tain cooperation, except for group II strategies under local evolution

where they struggle in denser networks.
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A.1.3 Watts-Strogatz small-world
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FIGURE A.3: WSSW cooperation against initial cyclic degree k and
rewiring probability p. There is no dependence on either k or p
on the level of cooperation that a WSSW network is able to sustain
over any combination of global or local reputation or evolution. The
findings of the failure of group II strategies under local evolution
within ER and RRL networks is likely not witnessed here because
the network density required to elicit that level of stress is not pos-
sible within WSSW networks while still satisfying the criterion to re-
main a WSSW. Here, k = 10 corresponds to a density of 0.0334 (av-
eraged over 1000 randomly generated graphs where p = 0.01, other
p values were not considered as they do not add or take away from
the total number of edges in the graph) which is lower than the ob-
served threshold of the weakening of group II under local evolution

in Fig. A.1.
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A.1.4 Barabási-Albert networks

0.90

0.92

0.94

0.96

0.98

1.00
F

re
q
.

of
C

o
op

er
at

io
n

GrGe LrGe

2 4 6 8 10

m

0.90

0.92

0.94

0.96

0.98

1.00

F
re

q
.

of
C

o
op

er
at

io
n

GrLe

2 4 6 8 10

m

LrLe

Strategy

1

2

3

4

5

6

7

8

FIGURE A.4: BA cooperation against the preferential attachment
parameter m. There is no dependence of m on any combination of
global or local reputation or evolution. Like Fig. A.3, the failure of
group II under local evolution is likely not observed here because
m = 10 still creates a graph that is fairly low in density. Indeed we
see that the density of a BA graph with N = 300 and m = 10 gives
a density of 0.0647 (averaged over 1000 randomly generated graphs)
which is much lower than the threshold at which group II starts to

fail in Fig. A.1.
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A.2 Robustness checks

A.2.1 Probability of reputation broadcast
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FIGURE A.5: δ effect on cooperation with local reputation. The low-
est value of δ that shows non-zero cooperation is δ = 0.1. Here, only
group III strategies under local evolution show very small levels of
cooperation. When 0.1 < δ ≤ 0.18, group III becomes stronger under
local evolution, while both groups I and III show minute levels of co-
operation under global evolution. When δ = 0.22, global evolution
allows groups I and III to sustain moderate levels of cooperation, but
it is not until δ ≥ 0.26 that group I strategies are able to sustain any
cooperation under local evolution. It is not until δ = 0.3 and δ = 0.4
that group II strategies show moderate levels of cooperation under
global and local evolution respectively. At higher δs, all strategies
show increasing levels of cooperation until δ = 0.54 at which point
all strategies are able to sustain cooperation regardless of whether the

population evolves globally or locally.
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A.2.2 Speed of evolutionary update
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FIGURE A.6: Speed of evolution. Group III strategies are the most re-
silient towards quick strategy changes, followed by group I and then
group II. Local evolution offers better chances for all strategies but

exhibits the greatest benefit for group III.
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A.2.3 Observation Error
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FIGURE A.7: Cooperation against observation error. Local evolution
improves the maximum likelihood of observation errors that popula-
tions are able to sustain before collapsing to zero cooperation. No-
tably, s8 is weaker under local evolution than in global reputation, in
the latter it reaches zero cooperation at ν = 0.6 where in the former
it is only ν = 0.5. Regardless of mechanism, only group III is able to

sustain any level of cooperation at ν ≥ 0.2.
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A.2.4 Mutation rate
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(A) Micro-level mutation rate
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(B) Macro-level mutation rate

FIGURE A.8: Mutation rate on cooperation. At low levels of mu-
tation α < 1, there is very little difference between global and local
evolutionary mechanisms (see panel A3 of Fig. 3.11) but it is clear
to see that at potentially unreasonable rates of UD mutations, global
evolution is superior to local evolution. Globally, a large number of
disparate UD agents would collectively have a weaker average payoff
since they would be quickly identified and the number of profitable
interactions they participate in would decline leading to a lower av-
erage payoff. However in local settings, the reach of a successful UD
agent has a potentially greater impact on their neighbours, enticing

them to switch to the UD strategy for a stronger payoff.
does this make sense?
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A.2.5 Initial proportion of UD
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FIGURE A.9: Initial UD proportion on cooperation. Group II strate-
gies are better off evolving locally than globally when the population
consists of large numbers of UD players. Despite this, they still have
the weakest resilience to defectors out of the three groups of strate-
gies. Furthermore, groups I and III are better of under global evo-
lution when the population is almost fully composed of UD players.
Since the average payoff of UD agents here will be close to zero, the
payoffs of L8 strategists under global evolution will be more impact-
ful and will induce a greater number of players to switch strategy
than under local evolution. The same mechanism that prevents the
quick growth of UD strategists is the same that prevents the growth
of L8 strategists under local evolution. There is no effect of global or

local reputation on cooperation.
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A.2.6 Simulation Length
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FIGURE A.10: Simulation length on cooperation. Globally evolving
strategies take longer to reach the highest levels of cooperation than
locally evolving strategies with roughly 20K time-steps globally as

opposed to roughly 5K locally.
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A.2.7 Network Size
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FIGURE A.11: Network size on cooperation. Globally evolving
strategies are able to sustain decreasing levels of cooperation as the
size of the networks increase. Group II strategies are particularly sus-
ceptible to this, decreasing at a quicker rate than group I or III strate-
gies which behave similarly to each other. Locally evolving strategies
can sustain cooperation and are unaffected by network size. There is
no effect of global or local reputation on the levels of sustained coop-

eration.
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Appendix B

Reputation & Punishment in the
OPGG Supp.

B.1 Social Norm Alternatives

B.1.1 Anti-Defector Transition Matrices
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FIGURE B.1: When punishment is not possible, cooperation is sus-
tained by conditional cooperators and conditional defectors, but if it
is possible, then cooperation is sustained by unconditional and con-
ditional cooperators. In this latter case, each strategy composition
and transition sums over the punishment variants. Values in the ma-
trix represent the frequency of transitions relative to all transitions
between strategies and ignoring those within punishment variants of

the same strategy.
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B.1.2 Anti-Loner Transition Matrices
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FIGURE B.2: Regardless of whether or not punishment is possible, the
final population will tend to be dominated by unconditional loners,
with the addition of a conditional defector who abstains as their sec-

ondary action when punishment is not available.
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B.1.3 Anti-Neither Transition Matrices
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FIGURE B.3: Without punishment, high levels of cooperation are not
possible and the population are dominated by unconditional and con-
ditional loners. When punishment is possible, results are qualita-
tively similar to the AD norm: unconditional and conditional cooper-
ators dominate the population, although with higher levels of uncon-

ditional and conditional loners.
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B.1.4 Anti-Both Transition Matrices
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FIGURE B.4: For the AD social norm when punishment is not pos-
sible, there is a strong presence of unconditional loners, conditional
cooperators and conditional defectors. It is clear however that the
dominant behaviour is of the loner action. When punishment is pos-
sible, conditional cooperators who abstain as their secondary action
are the most popular strategies along with unconditional loners. The
increased reputational penality applied to the loner action improves

their frequency in the population.
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B.1.5 Intra-strategy Transition Matrices
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FIGURE B.5: For the RP model, we ignore the transitions of play-
ers between different strategies, and instead focus on the transitions
within the same strategy, but to a different punishment variant, i.e.
when a cooperator who punishes defectors decides to stop punishing
defectors represented as CNPN to CNNN. Overall all conditionally co-
operative strategies, the dominant behaviour is of moving away from
punishing. We do observe some transitions towards pro-socially pun-
ishing variants, but not any towards anti-socially punishing variants.
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FIGURE B.6: For the RP model, we find that very similar behaviour
is observed to the case as with cooperators. Some strategies do not
exhibit any transitions their punishment variants, because they are
likely to be very weak under selection and players almost move im-
mediately away from them. The most significant transitions here ap-
pear to be the movement of players away from variants that punish

defectors and loners.
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FIGURE B.7: For the RP model, very little data is present for the tran-
sitions within each of the loner punishment variants. This is likely be-
cause these transitions are rare since players of these strategies tend
to switch rapidly to other better-performing strategies. Most loner

strategies do not exhibit any punishment variant transitions.
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B.1.6 Population Composition
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FIGURE B.8: We display the average population frequency of each
strategy within each model and social norm. The AD social norm
provides the best environment for cooperators, while AL provides
it for loners. The AB norm encourages the presence of conditional
cooperators when punishment is not possible. However, across both
the AN and AB norms, the best chances for cooperation require the

option to punish.
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B.1.7 Population Composition Alternative
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FIGURE B.9: Both means and standard deviations are provided of
the average proportions of each strategy over the second half of each
simulation. R represents the reputation-only case while R&P imple-
ments punishment alongside reputation. We observe generally low
deviations for the strategies that do not appear frequently in the pop-
ulations, with larger deviations for the strategies that are dominant
under the right conditions. Overall, if a population implements pun-
ishment, then they are more likely to have more variability in their

population composition.
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B.1.8 Payoffs

Anti-Both Anti-Defector Anti-Loner Anti-Neither
Social Norm

15

10

5

0

5

10

W
ei

gh
te

d 
Pa

yo
ff 4.69

7.97

2.0

5.18

Strategy
C
D
L
C 1, D

D0, L

C0, D

C 1, L

C0, L

D 1, L

L 1, D

L0, D

Anti-Both Anti-Defector Anti-Loner Anti-Neither
Social Norm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

W
ei

gh
te

d 
Pa

yo
ff

12.2

14.45

11.54 11.99

Strategy
C
D
L
C 1, D

D0, L

C0, D

C 1, L

C0, L

D 1, L

L 1, D

L0, D

Punishment Baseline
Model

10

5

0

5

10

W
ei

gh
te

d 
Pa

yo
ff

0.86

11.47

Strategy
C
D
L

FIGURE B.10: The AD social norm allows the sustenance of coopera-
tion with the highest average payoff, both when punishment is and is
not available. The AL norm harms cooperation the most, exhibiting
the lowest average payoffs in both punishment cases. All situations

however improve on the punishment-only model.
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B.1.9 Baseline OPGG - with and without Punishment
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line and punishment models. These populations are typically domi-

nated by loners, with generally low levels of cooperation.
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B.2 Punishment Patterns

B.2.1 Overview
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FIGURE B.12: We break down levels of punishment firstly by its type
- whether it is pro- or anti-social - and then by the particular punish-
ment variant. We see that all norms lower levels of anti-social punish-
ment. All norms except for AL increases the frequency of pro-social
punishment in relation to the total level of punishment. We find that
costly punishment compensates for weaker social norms as shown by
the increased pro-social punishment as we move from the AD to the

AN social norms.
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B.2.2 Detailed Breakdown
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FIGURE B.13: This figure elaborates on the previous one, now break-
ing down the levels of punishment by each individual strategy. We
see again that the non-punishing variants are most popular among
the strategies that are able to sustain cooperation. it should be noted
that the punishment levels of the conditional loners are skewed be-
cause of their rarity within the population. The observed levels are
the cause of mutation, followed by players immediately transitioning

away from the strategy.
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B.2.3 Transitions to and from strategies with and without Punishment

To

Non-Punishing Punishing

From

AD
Non-Punishing 113945 (47.9%) 39562 (16.6%)
Punishing 74846 (31.4%) 9714 (4.1%)

AL
Non-Punishing 80875 (53.2%) 12033 (7.9%)
Punishing 58639 (35.6%) 607 (0.4%)

AN
Non-Punishing 93443 (45.2%) 34749 (16.8%)
Punishing 66390 (32.1%) 12315 (6.0%)

AB
Non-Punishing 104659 (67.1%) 9008 (5.8%)
Punishing 42109 (27.0%) 240 (0.2%)

TABLE B.1: Overall, it is clear that the dominant behaviour is to refuse
to punish with the most transitions either between non-punishing
strategies, or towards a non-punishing strategy from a punishing
strategy. Very few transitions take place between punishing strate-

gies.
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B.3 Illustrative Time Series

B.3.1 Anti-Defector Social Norm

FIGURE B.14: Each panel show a single simulation, visualising the
dominant strategies and their frequencies as well as the frequency of
cooperative, non-cooperative, and loner actions in the population for

each mode under the AD social norm.



226 Appendix B. Reputation & Punishment in the OPGG Supp.

B.3.2 Reputation only

FIGURE B.15: Each panel now shows the reputation-only model but
over the four social norms. Only the AD norm is capable of sustaining
cooperation through conditional cooperators and conditional defec-
tors. The other norms are typically dominated with loners, exhibiting

some periodic behaviour.
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B.3.3 Reputation & Punishment

FIGURE B.16: Cooperation is more likely when punishment is avail-
able. For the AD norm, populations typically converge quickly onto
full cooperation, sustained by conditional cooperators. Each of the
other norms display elements of periodic behaviour between the lev-
els of cooperative, non-cooperative, and loner actions. The AL and
AB social norms both attribute the worst reputation to loners, but the
AB norm also considers defectors to be the same. However, the for-
mer norm is unable to sustain cooperation, while the latter is, provid-
ing further evidence that as long as being a loner is not the morally

worst action, then cooperation is possible alongside punishment.
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B.3.4 Additional Simulations for each Model and Norm
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Appendix C

Strategy complexity in the OPGG

C.1 Time Series

C.1.1 Overview
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FIGURE C.1: Example simulations under the AD norm. We can see
that generally, as p increases, cooperation becomes more and more
stable, able to persist for longer periods without being invaded by

defectors or loners.
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C.1.2 Further examples
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FIGURE C.2: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.3: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.4: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.5: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.6: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.7: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.8: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.9: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.10: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.11: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.12: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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FIGURE C.13: Blue lines represent cooperative actions, orange repre-
sents non-cooperative, and green represents loners. Parameters are
the same as for Fig. 5.3 with a constant population size at N = 100.
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