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Abstract 

Tumour mass dormancy and cancer cell quiescence represent the two facets 

of cancer dormancy and play key roles in cancer development and 
progression. Quiescence describes the reversible, proliferative arrest of 

individual cancer cells that has been observed as a contributing factor of 
resistance to chemotherapy and other treatments targeting cycling cells. In 

contrast, tumour mass dormancy describes the state of no net tumour 
growth, which can arise due to inadequate tumour vascularisation or anti-

tumour immune response, during which tumours can acquire additional 
mutations and establish a microenvironment permissive for growth. Currently, 

both dormancy states remain poorly characterised. This thesis presents 
computational frameworks for evaluating the two states and comprehensively 

profiles their abundance and associated genomic and cellular features across 
31 solid cancers from the Cancer Genome Atlas. Using machine learning 

approaches, I demonstrate that cancer cell quiescence preferentially arises 
in less mutated tumours with intact TP53 and DNA damage repair pathways. 

I also highlight novel genomic dependencies, such as CEP89 amplification, 

which drive an impairment of quiescence. Similarly, mutations within CASP8 

and HRAS oncogenes are shown to be enriched and positively selected in 
samples with tumour mass dormancy. I also highlight an association between 

APOBEC mutagenesis and both dormancy states. Moreover, tumour mass 
dormancy is shown to be associated with infiltration with macrophages and 

cytotoxic and regulatory T cells but a decreased infiltration with Th17 cells. 
Lastly, using single-cell data, I demonstrate that quiescence underlies 

resistance to a wide range of therapies, including treatments targeting cell 
cycle regulation, proliferative kinase signalling and epigenetic regulation. 

Ultimately, this analysis sheds light on the underlying biology of cancer 
dormancy states, potentially highlighting vulnerabilities that can be targeted 

in the clinic. It also provides a transcriptional signature of therapy-tolerant 
quiescent cells that could be explored further in the clinic to monitor patient 

therapy response. 
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Impact statement 
 
Cancer cell quiescence and tumour mass dormancy are two key neoplastic 
processes that are poorly characterised, despite their contribution to the early 

stages of primary tumour and metastasis development, cancer progression 
and relapse. Accumulating evidence indicates that quiescence contributes to 
resistance to treatments that target rapidly dividing cancer cells. On the other 

hand, during periods of tumour mass dormancy, cancer cells have been 
shown to acquire mutations which expand the tumour neoplastic processes. 

However, further exploration of the two cancer dormancy states is currently 
limited by the lack of suitable experimental models and ways to quantify these 

states reliably. 
 

In this work, I have developed methods to evaluate tumour mass dormancy 
and cancer cell quiescence from transcriptomic data. Notably, the 

quiescence scoring method was robustly validated experimentally and in 
single-cell data. Given the importance of tumour mass dormancy and 

quiescence in cancer development and progression, these methodologies 
should be of high interest to the research community. Specifically, it will allow 

further exploration of the two states in a variety of scenarios using the many 
publicly available tumour transcriptomic datasets.  

 
The thesis also highlights previously unreported genomic and cellular 

dependencies of cancer cell quiescence and tumour mass dormancy. For 
example, oncogenic mutations within the CEP89 gene are shown to drive an 

impairment of quiescence. At the same time, broader processes such as 
APOBEC mutagenesis are shown to be associated with both cancer 

dormancy states. These findings potentially highlight novel biomarkers of 
patient therapy response. They also shed light on the evolutionary context, 

the underlying biology, and the unique vulnerabilities of quiescent cancer 
cells and those within dormant, non-expanding tumours. This knowledge 

could potentially be used to target these states in the clinic therapeutically.  
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Finally, I also show that cancer cells utilise the quiescent state as a survival 

mechanism against a broad range of chemotherapy and molecular targeted 
therapy agents. As such, the quiescence transcriptomic signature developed 

within this work could potentially be further explored for use in the clinic to 
monitor the emergence of resistance to various treatment modalities. 

 
The research output presented in this thesis has been disseminated to the 

research community through the following publications: 
 

Wiecek, A.J.*, Jacobson, D.H.*, Lason, W.* & Secrier, M. Pan-Cancer Survey 
of Tumor Mass Dormancy and Underlying Mutational Processes. Frontiers in 

Cell and Developmental Biology 9, 1820 (2021). 

Wiecek, A.J. et al. Genomic hallmarks and therapeutic implications of cancer 
cell quiescence. bioRxiv, 2021.11.12.468410 (2022). 

 

The methodologies used to assess quiescence in transcriptomic data have 
also been used to assess other cancer processes, such as the epithelial-to-

mesenchymal transition, which can be used by malignant cells to initiate 
metastasis. This work has not been detailed within the thesis; however, it has 

also been made available to the scientific community via the following 
publication: 

 
Tagliazucchi, G.M.*, Wiecek, A.J.*, Withnell, E. & Secrier, M. Genomic and 

local microenvironment effects shaping epithelial-to-mesenchymal 
trajectories in cancer. bioRxiv, 2021.07.23.453584 (2022). 

 
*joint first authorship 

  



 6 

Research Paper Declaration Form: referencing the 

doctoral candidate’s own published work(s) 
 

Research declaration for referencing work published in Wiecek et al 
Front. Cell Dev. Biol., (2021)1 

 
1. For a research manuscript that has already been published (if not 

yet published, please skip to section 2): 

a) Where was the work 
published? (e.g., journal name) 

Frontiers in Cell and Developmental 
Biology  
 

b) Who published the work? 
(e.g., Elsevier/Oxford University 
Press):   

Frontiers in Cell and Developmental 
Biology  
 

c) When was the work 
published? 09/07/2021 

d) Was the work subject to 
academic peer review? Yes  

e) Have you retained the 
copyright for the work? Yes 

[If no, please seek permission from the relevant publisher and check the 
box next to the below statement]: 

☐ 
I acknowledge permission of the publisher named under 1b to 
include in this thesis portions of the publication named as included in 
1a. 

2. For a research manuscript prepared for publication but that has 
not yet been published (if already published, please skip to section 3): 

a) Has the manuscript been 
uploaded to a preprint server? 
(e.g., medRxiv): 

 If yes, which 
server?  

b) Where is the work intended to 
be published? (e.g., names of 
journals that you are planning to 
submit to)  

 

c) List the manuscript’s authors 
in the intended authorship 
order: 

 

d) Stage of publication  Please select. 



 7 

3. For multi-authored work, please give a statement of contribution 
covering all authors (if single-author, please skip to section 4): 

This paper details an analysis which explored the state of tumour mass 
dormancy in primary solid tumours and has also been presented in chapter 
7. In this thesis, I have only presented analysis and sections of text which 
were carried out and written by myself. However, I would like to 
acknowledge that the curation of gene expression for T cell exhaustion and 
immunological and angiogenic dormancy, detailed in table 7.1 of this thesis, 
was a joint effort by all authors of the paper, namely myself, Daniel Hadar 
Jacobson, Wojciech Lason and Dr Maria Secrier. Moreover, the content of 
table 7.1 was based on tables presented in a Master’s project thesis 
submitted by Wojciech Lason. However, as presented in this thesis and the 
published paper, this table has been largely rewritten and edited by Dr 
Maria Secrier. I would also like to acknowledge that the order and workflow 
of the analysis presented in the published paper and in this thesis are based 
on a Master’s project presented by Wojciech Lason. Daniel Hadar 
Jacobson performed the identification of APOBEC mutagenesis clusters, 
random forest modelling of APOBEC-mutagenesis-gene expression 
associations, calculation of hypoxia scores and survival analyses presented 
in the published manuscript. However, these analyses were not presented 
in this thesis.  Lastly, the study presented in this thesis and the published 
paper was supervised by Dr Maria Secrier. Dr Maria Secrier, also performed 
editing of the text written for the final manuscript and was involved in writing 
the introduction and discussion parts of the paper.  
 
4. In which chapter(s) of your thesis can this material be found? 

The figures and data from the paper have been presented in chapter 7 of 
this thesis and in appendices 3-6. Similarly, early drafts of the paper have 
been used as a basis for the text presented in chapter 7. Text detailing the 
analysis methods I performed in the published manuscript has also been 
included in chapter 2 of this thesis. 
 
5. e-Signatures confirming that the information above is accurate 

(this form should be co-signed by the supervisor/ senior author unless 
this is not appropriate, e.g., if the paper was a single-author work): 

Candidate:  Date: 09/09/2022 

Supervisor/ 
Senior Author    Date: 09/09/2022 

  



 8 

Research declaration for referencing work published in Wiecek et al 
bioRxiv (2021)2 

 
 
1. For a research manuscript that has already been published (if not 

yet published, please skip to section 2): 

f) Where was the work 
published? (e.g., journal name)  

g) Who published the work? 
(e.g., Elsevier/Oxford University 
Press):   

 

h) When was the work 
published?  

i) Was the work subject to 
academic peer review?  

j) Have you retained the 
copyright for the work? Yes 

[If no, please seek permission from the relevant publisher and check the 
box next to the below statement]: 

☐ 
I acknowledge permission of the publisher named under 1b to 
include in this thesis portions of the publication named as included in 
1a. 

2. For a research manuscript prepared for publication but that has 
not yet been published (if already published, please skip to section 3): 

e) Has the manuscript been 
uploaded to a preprint server? 
(e.g., medRxiv): 

Yes  If yes, which 
server? bioRxiv 

f) Where is the work intended to 
be published? (e.g., names of 
journals that you are planning to 
submit to)  

Genome Biology  
 

g) List the manuscript’s authors 
in the intended authorship 
order: 

Anna J. Wiecek, Stephen J. Cutty, 
Daniel Kornai, Mario Parreno-
Centeno, Lucie E. Gourmet, 
Guidantonio Malagoli Tagliazucchi, 
Daniel H. Jacobson, Ping Zhang, 
Lingyun Xiong, Gareth L. Bond, 
Alexis R. Barr, Maria Secrier.   
 



 9 

h) Stage of publication  Undergoing revision after peer 
review 

3. For multi-authored work, please give a statement of contribution 
covering all authors (if single-author, please skip to section 4): 

This paper details an analysis which explored the state of cellular 
quiescence in primary solid tumours and has also been presented in 
chapters 3,4, and 5. In this thesis, all of the presented analysis and text 
have been performed and written by myself unless specified below. Firstly, 
I would like to acknowledge that the experimental validation of CEP89, 
described in section 4.3, and the validation of the quiescence scoring 
methodology, described in chapter 3.3, were performed by Dr Stephen 
Cutty and supervised by Dr Alexis Barr. Both Dr Stephen Cutty and Dr 
Alexis Barr wrote the details of the methods for the corresponding 
experiments, as detailed in sections 2.3 and 2.5. I would also like to 
acknowledge that the demonstration of the TP53 mutational status of TCGA 
cohort patient samples, described in chapter 4.2, was performed by Ping 
Zhang and Lingyun Xiong and supervised by Dr Gareth Bond. Ping Zhang, 
Lingyun Xiong and Dr Gareth Bond co-wrote the corresponding methods 
description of the analysis in section 2.2. Furthermore, the identification of 
APOBEC mutagenesis enriched clusters within the TCGA cohort, described 
in chapter 4.4, was performed by Daniel Hadar Jacobson. The breast 
cancer-specific random forest feature selection model, also described in 
section 4.4, was created by Dr Mario Parreno-Centeno. Dr Guidantonio 
Malagoli Tagliazucchi contributed to developing the code for batch effect 
correction and for PCA mapping of single-cell data on a reference dataset, 
described in section 2.11 and 2.6, respectively. Daniel Kornai performed 
the inference of the minimal signature of dormancy applicable in single-cell 
data; however, while this data was presented in the published manuscript, 
it was not included in this thesis. Similarly, Lucie Gourmet performed 
positive selection analysis to identify genes positively selected in highly 
quiescent tumours; however, this data was not presented in this thesis. 
Lastly, the computational analyses presented in this thesis and the 
published paper was supervised by Dr Maria Secrier. Dr Maria Secrier also 
performed editing of the text written for the final manuscript submitted for 
publication.     
 
4. In which chapter(s) of your thesis can this material be found? 

The figures and data from the paper have been presented in chapters 3,4 
and 5 of this thesis. Similarly, early drafts of the manuscript have been 
used as a basis for the text presented in these chapters. Text detailing the 
analysis of the methods performed in the manuscript has also been 
included in chapter 2 of this thesis.  
 



 10 

5. e-Signatures confirming that the information above is accurate 
(this form should be co-signed by the supervisor/ senior author unless 
this is not appropriate, e.g., if the paper was a single-author work): 

Candidate:   Date: 09/09/2022 

Supervisor/ 
Senior Author    Date: 09/09/2022 

  



 11 

Acknowledgements  
 

First and foremost, I would like to thank my supervisor Dr Maria Secrier 
without whom this work could not have been completed. Thank you for giving 

me the opportunity, skills, support, and encouragement to explore my 
scientific interests. Your immense knowledge and enthusiasm have always 
been motivational. Thank you for investing so much of your time and energy 

in helping me develop as a scientist.   
 

I am also particularly grateful to my external collaborators, particularly Dr 
Alexis Barr and Dr Stephen Cutty. Thank you for your infectious enthusiasm 

and your partnership throughout my PhD.  
 

Thanks to my thesis committee, namely Prof Chris Barnes and Dr Nischalan 
Pillay, for your discussions and the invaluable insight that enriched this work.  

 
I would also like to thank my friends and colleagues at the Secrier group, 

including Dr Guidantonio Malagoli Tagliazucchi, Dr Mario Parreno-Centeno, 
Daniel Jacobson, Anna-Leigh Brown, Samuel Bryce-Smith, Rachel Wellman, 

Dr Shi Pan, Dr Helen Curely, Eloise Withnell, Jurgita Kaubryte, Lucie Gourmet, 
Daniel Kornai, Xinchen Zou and Victor Konstantellos. You have made my PhD 

journey truly enjoyable and memorable.  
 

I am extremely grateful for the support from my family and friends. In 
particular, I want to thank my parents, Katarzyna and Robert Wiecek, for 
being my role models and providing me with an extraordinary level of love, 

support and encouragement. Thank you for your unwavering faith in my ability 
and for helping me snap out of work-induced funks. Also, thanks to my sister, 

Iwona Wiecek, for always being there for a supportive chat.  
 

Last but certainly not least, I would like to thank my fiancé, George Bates. 
Your constant supply of emotional support, hugs and tea kept me going! 



 12 

Thank you for helping me stay sane during my PhD journey and the pandemic, 
all the while you pursued a PhD of your own. I am truly grateful to have you 

in my life! 
 

 
  



 13 

Table of Contents 
DECLARATION OF OWNERSHIP ........................................................................... 2 
ABSTRACT ............................................................................................................... 3 
IMPACT STATEMENT ............................................................................................. 4 
RESEARCH PAPER DECLARATION FORM: REFERENCING THE DOCTORAL 
CANDIDATE’S OWN PUBLISHED WORK(S) ......................................................... 6 
ACKNOWLEDGEMENTS ....................................................................................... 11 
TABLE OF CONTENTS .......................................................................................... 13 
LIST OF ABBREVIATIONS .................................................................................... 15 
CHAPTER 1 – INTRODUCTION ............................................................................ 20 

1.1 CANCER DEVELOPMENT AND DORMANCY ......................................................... 20 
1.2 THE QUIESCENCE STATE IN EUKARYOTIC ORGANISMS ....................................... 22 
1.3 QUIESCENCE IN RELATION TO OTHER CELL CYCLE STAGES ............................... 24 
1.4 SIGNALS GOVERNING QUIESCENCE-PROLIFERATION DECISION .......................... 27 
1.5 TRANSCRIPTIONAL FEATURES OF QUIESCENT CELLS ......................................... 29 
1.6 QUIESCENT CANCER CELLS DIFFER FROM OTHER SLOW PROLIFERATING CELL 
TYPES ................................................................................................................... 31 
1.7 QUIESCENT CANCER CELLS CONTRIBUTE TO CANCER PROGRESSION AND 
THERAPY RESISTANCE ........................................................................................... 32 
1.8 STRATEGIES USED TO TARGET QUIESCENT CELLS ............................................. 35 
1.9 METHODOLOGY USED TO STUDY CANCER CELL QUIESCENCE AND CURRENT GAPS 
IN KNOWLEDGE ..................................................................................................... 37 
1.10 TUMOUR MASS DORMANCY REPRESENTS A KEY STAGE OF CANCER 
DEVELOPMENT ...................................................................................................... 41 
1.11 METHODOLOGY TO STUDY TUMOUR MASS DORMANCY AND CURRENT GAPS IN 
KNOWLEDGE ......................................................................................................... 45 
1.12 SEQUENCING TECHNOLOGIES USED TO PROFILE TUMOUR SAMPLES ................ 46 
1.13 PHD PROJECT AIMS ...................................................................................... 50 

CHAPTER 2 – METHODS ...................................................................................... 52 
2.1 INTRODUCTION ................................................................................................ 52 
2.2 MULTI-OMICS TCGA COHORT ......................................................................... 52 
2.3 CANCER CELL QUIESCENCE QUANTIFICATION ................................................... 55 
2.4 MUTATIONAL SIGNATURE ANALYSIS ................................................................ 59 
2.5 MODELLING GENOMIC DEPENDENCIES QUIESCENCE ......................................... 61 
2.6 QUIESCENCE SUBTYPE DETERMINATION .......................................................... 65 
2.7 QUIESCENCE IMPACT ON SURVIVAL AND THERAPY RESPONSE ANALYSIS ........... 66 
2.8 CELL-CELL INTERACTION ANALYSIS ................................................................. 67 
2.9 QUANTIFYING THE DORMANCY, EXHAUSTION AND APOBEC PROGRAMMES ...... 68 
2.10 EVALUATION OF GENOMIC AND CELLULAR CONTEXT OF TUMOUR MASS 
DORMANCY ........................................................................................................... 70 
2.11 DIMENSIONALITY REDUCTION ANALYSIS ........................................................ 72 
2.12 GENE LISTS ................................................................................................... 73 
2.13 DATA VISUALIZATION AND BASIC STATISTICS .................................................. 73 
2.14 CODE AVAILABILITY ....................................................................................... 74 

CHAPTER 3 – EVALUATION OF CANCER CELL QUIESCENCE FROM 
TRANSCRIPTOMIC DATA ..................................................................................... 75 



 14 

3.1 INTRODUCTION ................................................................................................ 75 
3.2 DEVELOPMENT OF METHODOLOGY FOR QUANTIFYING QUIESCENCE ................... 77 
3.3 VALIDATION OF THE QUIESCENCE SCORING METHOD ......................................... 81 
3.4 DISCUSSION .................................................................................................... 91 

CHAPTER 4 – EVALUATION OF CANCER CELL QUIESCENCE AND 
ASSOCIATED MUTATIONAL FEATURES IN BULK-SEQUENCED TUMOURS . 95 

4.1 INTRODUCTION ................................................................................................ 95 
4.2 PAN-CANCER EVALUATION OF QUIESCENCE ...................................................... 98 
4.3 IDENTIFICATION OF GENOMIC FEATURES ASSOCIATED WITH QUIESCENCE ........ 105 
4.4 CANCER TYPE SPECIFIC GENOMIC FEATURES LINKED TO QUIESCENCE ............. 124 
4.5 PAN-CANCER CHARACTERISATION OF INDIVIDUAL QUIESCENCE PROGRAMMES 129 
4.6 DISCUSSION .................................................................................................. 135 

CHAPTER 5: EVALUATION OF THE THERAPEUTIC RELEVANCE OF CANCER 
CELL QUIESCENCE ............................................................................................. 138 

5.1 INTRODUCTION .............................................................................................. 138 
5.2 PROGNOSTIC IMPACT OF THE QUIESCENCE TRANSCRIPTIONAL SIGNATURE IN 
BULK-SEQUENCED PRIMARY TUMOURS ................................................................ 140 
5.3 IMPACT OF QUIESCENCE ON THERAPY RESPONSE IN CANCER CELL LINES ........ 142 
5.4 DISCUSSION .................................................................................................. 152 

CHAPTER 6: EVALUATION OF INTERACTIONS BETWEEN QUIESCENT 
CANCER CELLS AND THE TUMOUR MICROENVIRONMENT ......................... 156 

6.1 INTRODUCTION .............................................................................................. 156 
6.2 CELL-CELL INTERACTION ANALYSIS IN SINGLE-CELL PRIMARY TUMOUR DATASETS
 ........................................................................................................................... 158 
6.3 DIFFERENTIAL T CELL INTERACTIONS OF PROLIFERATING AND QUIESCENT CANCER 
CELLS .................................................................................................................. 164 
6.4 DISCUSSION .................................................................................................. 170 

CHAPTER 7: EVALUATION OF TUMOUR MASS DORMANCY AND 
UNDERLYING MUTATION PROCESSES ............................................................ 174 

7.1 INTRODUCTION .............................................................................................. 174 
7.2 PAN-CANCER QUANTIFICATION OF ANGIOGENIC, IMMUNOLOGICAL AND TUMOUR 
MASS DORMANCY ................................................................................................ 176 
7.3 CHARACTERISATION OF THE GENOMIC BACKGROUND OF TUMOUR MASS 
DORMANCY ......................................................................................................... 188 
7.4 CHARACTERISATION OF THE TUMOUR MICROENVIRONMENT FEATURES OF 
DORMANT TUMOURS ............................................................................................ 204 
7.5 DISCUSSION .................................................................................................. 208 

CHAPTER 8: DISCUSSION .................................................................................. 212 
8.1 SUMMARY ..................................................................................................... 212 
8.2 LIMITATIONS OF THE CURRENT APPROACHES AND FUTURE DIRECTIONS .......... 214 
8.3 PERSPECTIVES .............................................................................................. 225 

BIBLIOGRAPHY .................................................................................................... 227 
APPENDIX ............................................................................................................. 248 

 

  



 15 

List of abbreviations 
 
ACC Adrenocortical carcinoma 
AD Angiogenic dormancy 
aHSC Active hematopoietic stem cells 
ALL Acute lymphoblastic leukaemia 
Alt_NHEJ Alternative non-homologous end joining 
Amp Amplification 
ANOVA Analysis of variance 
APC Anaphase-promoting complex 
ATCC American Type Culture Collection 
ATP Adenosine triphosphate 
AUC Area under the curve 
BER Base excision repair 
BH Benjamini-Hochberg 
BLCA Bladder urothelial carcinoma 
BMP4 Bone morphogenetic protein 4 
BMP7 Bone morphogenetic protein 7 
BRCA Breast invasive carcinoma 
BrdU Bromodeoxyuridine 
BSA Bovine serum albumin 
CCLE Cancer Cell Line Encyclopedia 
CDE Cell cycle-dependent element 
CDK Cyclin-dependent kinase 
cDNA Complementary DNA 
CD31 Cluster of differentiation 31 
CESC Cervical squamous cell carcinoma and endocervical 

adenocarcinoma 
c-FLIP Cellular FLICE-like inhibitory protein 
CFSE Carboxyfluorescein diacetate succinimidyl ester 
CHOL Cholangiocarcinoma 
CHR Cell cycle genes homology region 
CLE CHR-like element 
CAN Copy number alteration 
CNV Copy number variation 
COAD Colon adenocarcinoma 
COSMIC Catalogue Of Somatic Mutations In Cancer 
CPF Checkpoint factor 
CPTAC Clinical Proteomic Tumour Analysis Consortium 
CR Chromatin remodelling 
CRISPR Clustered regulatory interspaced short palindromic 

repeats 
CS Chromosome segregation 
CTCs Circulating tumour cells 
CXCL9 C-X-X motif chemokine ligand 9 
CXCL10 C-X-C motif chemokine ligand 10 
DC Dendritic cell 



 16 

dHSCs Dormant hematopoietic stem cells 
DKFZ Deutsches Krebsforschungszentrum 
DMEM Dulbecco’s Modified Eagle Medium 
DNA Deoxyribonucleic acid 
DREAM Dimerization partner, RB-like, E2F and multi-vulval class B 
DTCs Disseminated tumour cells 
DYRK1A Dual-specificity tyrosine phosphorylation regulated kinase 

1A 
DTT Dithiothreitol 
eCFP Enhanced cyan fluorescent protein 
ECL Electrochemiluminescence 
EdU 5-ethynyl-2’deoxyuridine 
EGFR Epidermal growth factor receptor 
EMEM Eagle’s Minimum Essential Medium 
EMT Epithelial-to-mesenchymal transition 
ERK Extracellular signal-regulated kinase 
ER+ Oestrogen receptor-positive 
ESCA Oesophageal carcinoma 
FA Faconi anaemia pathway 
FACS Fluorescence-activated cell sorting 
FBS Foetal bovine serum 
FDR False discovery rate 
FOV Field of view 
FOXO Forkhead box-O 
FPKM Fragments per kilobase of transcript per million mapped 

reads 
FUCCI Fluorescent Ubiquitination-based Cell Cycle Indicator 
GAS6 Growth arrest specific-6 
GBM Glioblastoma multiforme 
GDSC Genomics of Drug Sensitivity in Cancer 
GEO Gene Expression Omnibus 
GSVA Gene Set Variation Analysis 
HDAC Histone deacetylase 
HER2 Human epidermal growth factor receptor 2 
HIF1 Hypoxia-inducible factor 1 
HIV Human immunodeficiency virus 
HNSC Head and neck squamous cell carcinoma 
KICH Kidney chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
HRP Horseradish peroxidase 
HSCs Hematopoietic stem cells 
ICGC International Cancer Genome Consortium 
ID Immunological dormancy 
IL-12 Interleukin 12 
IL-2 Interleukin 2 
INF-γ Interferon gamma 
JAK Janus kinase 



 17 

LGG Brain lower grade glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LumA Luminal A 
LumB Luminal B 
LUSC Lung squamous cell carcinoma 
mAb Monoclonal antibody 
MAF Mutation annotation format 
MAPK Mitogen-activated protein kinase 
MBC Metastatic Breast Cancer 
MCC Matthew’s Correlation Coefficient 
MCM Minichromosome maintenance 
MDA Multiple displacement amplification 
MDACC MD Anderson Cancer Center 
MESO Mesothelioma 
METABRIC Molecular Taxonomy of Breast Cancer International 

Consortium 
MHC Major histocompatibility complex 
MMR Mismatch repair 
MPAS MAPK pathway activity score 
mRNA Messenger RNA 
MSI Microsatellite unstable 
MSKCC Memorial Sloan Kettering Cancer Center 
MSS Microsatellite stable 
MTOC Microtubule organising centre 
Mut Mutant 
NER Nucleotide excision repair 
NHEJ Non-homologous end joining 
NK Natural killer 
NOD-SCID Nonobese diabetic/ severe combined immunodeficiency 
NR No response 
NSCLC Non-small cell lung cancer 
NTC Non-targeting control 
OncoSG Singapore Oncology Data Portal 
OS Overall survival 
OV Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PBS Phosphate-buffered saline 
PC Principal component 
PCA Principal component analysis 
PCNA Proliferating cell nuclear antigen 
PCPG Pheochromocytoma and paraganglioma 
PCR Polymerase chain reaction 
PD-L1 Programmed death-ligand 1 
PD1 Programmed cell death protein 1 
PFS Progression free survival 
PHATE Potential of Heat-diffusion for Affinity-based Trajectory 

Embedding 



 18 

phospho-RB Phosphorylated RB 
PI3-kinase Phosphoinositide 3-kinase 
PKC Protein kinase C 
PRAD Prostate adenocarcinoma 
PVDF Polyvinylidene fluoride 
QCMG Queensland Centre for Medical Genomics 
QF Quiescent fraction 
qNSCs Quiescent neural stem cells 
QS Quiescence score 
RB Retinoblastoma protein 
READ Rectum adenocarcinoma 
RNA Ribonucleic acid 
RNA-seq RNA-sequencing 
ROC Receiver operating characteristic 
ROS Reactive oxygen species 
RPKM Reads per kilobase of transcript per million mapped reads 
RT Reverse transcription 
SAHF Senescence-associated heterochromatin foci 
SARC Sarcoma 
SASP Senescence-associated secretory phenotype 
SBS Single-base substitution  
scRNA-seq Single-cell RNA-sequencing  
SDS Sodium dodecyl sulphate 
SHAP Shapley additive explanations 
siRNA Small interfering RNA 
SKCM Skin cutaneous melanoma 
SMC Samsung Medical Center 
SNV Single nucleotide variant 
ssGSEA single sample Gene Set Enrichment Analysis 
STAD Stomach adenocarcinoma 
STAT Signal transducer and activator of transcription 
SUMO Small ubiquitin-like modifier 
TARGET Therapeutically Applicable Research to Generate Effective 

Treatments 
TBS Tris-buffered saline 
TCGA The Cancer Genome Atlas 
TCR T cell receptor 
TdT Terminal deoxynucleotidyl transferase 
TGCT Testicular Germ Cell Tumours 
TGFB2 Transforming growth factor beta 2 
THCA Thyroid carcinoma 
THYM Thymoma 
Th17 T helper 17 cells 
TLS Translesion synthesis  
TM Telomere maintenance 
TMB Tumour mutational burden 
TMD Tumour mass dormancy 
TME Tumour microenvironment 



 19 

TSPs Thrombospondins 
t-SNE t-distributed stochastic neighbour embedding 
TPM Transcript per million 
UCEC Uterine Corpus Endometrial Carcinoma 
UCS Uterine Carcinosarcoma 
UMAP Uniform Manifold Approximation and Projection  
UR Ubiquitylation response 
UV Ultraviolet 
UVM Uveal melanoma 
VEGF Vascular endothelial growth factor 
WGD Whole genome duplication 
WT Wild type 
5-FU 5-flurouracil 
  

 

  



 20 

Chapter 1 – Introduction 
 
1.1 Cancer development and dormancy 

Cancer development is a multi-step evolutionary process driven by inherited 

germline mutations and by the accumulation of somatically acquired 
mutations.3 Initially, completely healthy cells acquire mutations due to 

exposure to intrinsic mutational processes and environmental risk factors 
such as tobacco smoke or ultraviolet (UV) light exposure.4 Most of the 

mutations that arise during cell division are repaired by various DNA repair 
mechanisms.5 However, some mutations escape this regular control and 

persist in the newly divided cell.5 Most accumulated mutations are neutral, 
but some modifications give the cells a proliferative advantage.3 These 

somatic changes can include single nucleotide variants (SNVs) and indels, 
but also larger structural changes in the genome such as gene deletions, 

amplifications, inversions, translocations, and whole genome duplications.6 
As the descendent cells divide, they become more malignant due to the 

continued accumulation of mutations within genes and non-coding regions 
of the genome that can give them further proliferative advantages.3 Genetic 
alterations further selected during evolution are referred to as driver 

alterations.3 In contrast, alterations that do not increase the cell fitness at a 
particular point during cancer development are referred to as passenger 

mutations.3  

Because the acquisition of genetic alterations during cancer development is 
essentially a stochastic process, there is a large amount of genetic 

heterogeneity between tumour genomes from different patients, referred to 
as inter-tumour heterogeneity.7 Moreover, after the initial tumour precursor 

cell has acquired enough driver mutations to undergo malignant 
transformation, its daughter cells continue to gain genetic alterations at each 

cell division stochastically. This can result in heterogeneity of genetic 
alterations between cells within an individual tumour, referred to as intra-

tumour heterogeneity.8 Over time, tumour samples show dynamic changes in 
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the proportion and spatial distribution of the genetically distinct tumour 
subclones.9 The tumour subclones can also evolve separately to create 

branched trajectories.8,9 

Recent sequencing efforts have enabled us to understand tumorigenesis 
driver mutational events better. These events are now documented in publicly 

available databases such as the Catalogue Of Somatic Mutations In Cancer 
(COSMIC).10 In addition, driver events can also be analysed using resources 

such as the Cancer Genome Atlas (TCGA) and the International Cancer 
Genome Consortium (ICGC).11 These resources comprise large cohorts of 

patient samples profiled using high-throughput sequencing technologies. As 
such, they allow detailed profiling of molecular changes that occur during 

cancer development, including mutational, gene expression, protein level, 
copy number variation and DNA methylation changes. 

In 2000 Weinberg and Hanahan12 suggested that driver alterations allow 
cancer development by conferring one or more of the following broad traits 

or “hallmarks”: the ability to sustain proliferation in the absence of growth 
signals; the ability to achieve limitless replicative potential; the ability to evade 

anti-growth signals; the ability to induce angiogenesis; the ability to resist 
apoptosis; and the ability to metastasise and invade other tissues. In 2011,13 

the list of cancer hallmarks was expanded to include the following: genomic 
instability; the ability to evade destruction by the immune system; the ability 

to establish an inflammatory immune microenvironment which promotes 
tumour growth; and the ability to deregulate tumour cell metabolism. The 

conceptual list of hallmark traits acquired by malignant cells during cancer 
continues to be further refined. As such, in 2022, cancer cell plasticity and 

disrupted differentiation were highlighted as important capabilities.14 

The trajectory of tumour evolution is shaped by constantly changing internal 

and external forces, such as exposures to different mutagenic factors, genetic 
alterations acquired by tumour cells and the tumour microenvironment 

features.3,9,15 Often, these forces only act on the tumour genome at specific 
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times during cancer development. Cellular plasticity, defined as the ability of 
the cells to change their phenotype through non-mutational mechanisms, 

allows cancer cells to adapt and survive such rapidly changing tumour 
environments.16 The epithelial-to-mesenchymal transition (EMT) represents 

one of the best-described examples of cancer cellular plasticity.16 During 
EMT, polarized epithelial cells transcriptionally reprogramme and undergo 

several molecular changes, which allow the cells to lose cell adhesion and 
adopt a more migratory mesenchymal phenotype. This transition is used by 

normal cells and is essential for embryonic development and wound healing 
processes. However, in the context of cancer, EMT can be used by malignant 

cells to initiate the process of metastasis. Cancer cell phenotypic plasticity 
has also recently been acknowledged as a characteristic enabling the 

acquisition of driver alterations contributing to the key hallmarks of cancer.14 
Tumour dormancy explains how tumour plasticity contributes to the early 

stages of tumour development, cancer progression and metastatic 
dissemination.17-19 The two key aspects of cancer dormancy include cancer 

cell dormancy and tumour mass dormancy (TMD). Cancer cell dormancy 
occurs when individual cancer cells enter a state of reversible proliferative 

arrest, often referred to as “quiescence”.18 In turn, TMD refers to a state when 
a tumour shows no net growth because a balance is achieved between the 
net rate of cancer cell proliferation and death.20-22 Overall, further insights into 

how TMD and cancer cell dormancy are used by cancer cells to cope with 
selective pressures encountered during cancer development might illuminate 

ways in which these states can be targeted therapeutically. 

1.2 The quiescence state in eukaryotic organisms 
 
Quiescence is a widely conserved state of reversible cell cycle arrest in 

eukaryotic cells, during which cells maintain minimal basal activity and 
upregulate genes and pathways involved in the stress response.23 Importantly 

quiescent cells remain capable of re-entry into the proliferative cell cycle upon 
encountering a suitable stimulus. Despite increasing evidence suggesting 

tumour cells can enter quiescence,18,24-31 its role in cancer is still poorly 
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defined. However, quiescence has been shown to play an essential role in 
ensuring eukaryotes' normal development and homeostasis.23 It has also 

been studied more extensively in various organisms, including mice and 
yeast.32-34 

 
In mammals, the ability of a wide variety of cells to enter and exit quiescence 

in response to an appropriate stimulus underpins the functioning of crucial 
biological processes. For example, in response to tissue injury, the regulated 

quiescence exit of different stem cells, such as muscle stem cells35-37 and 
differentiated cells such as fibroblasts, allows for tissue regeneration.38 The 

re-activation of hepatic stellate cells in response to the stress caused by 
tissue injury, infections, or lifestyle factors such as alcohol consumption, 

allows for regeneration of the liver tissue.39,40 Similarly, to maintain the 
homeostasis level of differentiated blood cells, a small proportion of 

quiescent hematopoietic stem cells readily exit quiescence and resume 
proliferation.41 Moreover, the exit from quiescence of T cells following the 

binding of their T cell receptors to a cognate antigen is a critical step for 
launching an adaptive immune response.42 The regulation of appropriate entry 

and maintenance of quiescence by various cell types also plays an equally 
important part. For example, T cells' ability to remain quiescent until they 
encounter strong activation signals prevents the formation of inappropriate 

autoimmune responses.42,43 
 

In unicellular eukaryotic organisms such as yeast, even within a genetically 
identical population, there is heterogeneity in the average cell proliferation 

rates.34 This heterogeneity can be explained by a proportion of cells residing 
for varying amounts of time in the quiescent state. Since the quiescent cells 

are more resistant to unpredictable conditions of internal and environmental 
stress, this proliferative heterogeneity is thought to function as a "bet-

hedging" mechanism which allows for the long-term survival of the entire cell 
population.44 
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1.3 Quiescence in relation to other cell cycle stages 
 

In relation to other cell cycle stages, cells most often enter quiescence before 
the S phase, during which cells commit to replicating their DNA ahead of the 

subsequent cell division45 (Figure 1.1). This quiescent resting phase is often 
referred to as the G0 state. Importantly, G0 represents a distinct state from 

G1, occupied by actively proliferating cells. The differences between G0 and 
G1 can be seen at the transcriptional level. Most notably, cells occupying the 
G0 state, but not the G1 state, show downregulation of genes involved in cell 

cycle regulation.46,47 
 

Quiescence entry, maintenance and exit are regulated by the interactions of 
key cell cycle regulator proteins (Figure 1.1). These include cyclin-dependent 

kinases (CDKs), which promote progression through different cell cycle 
stages upon activation by binding to their corresponding cyclins.48 For 

example, CDK4/6 and CDK2 bound to cyclin D and cyclin E, respectively, 
promote the G1/S progression.49,50 CDK4/6 and CDK2 achieve this by 

phosphorylating the retinoblastoma protein (RB), a member of the pocket 
family of proteins. RB plays a crucial role in regulating the transcription of 

genes involved in the S phase of the cell cycle, including genes necessary for 
DNA replication and repair.51 It does this by binding and repressing members 

of the E2F family of transcription factors, specifically E2F1-3.52 
Phosphorylation of RB by CDK4/6-cyclin D and CDK2-cyclin E complexes 

during G1 allows the release of E2F1-3 and cell-cycle entry.52 
 

Cell cycle progression also depends on the levels of CDK inhibitor proteins 
such as p21, p27 and p57, which oppose the activity of cyclin-CDK 
complexes and promote entry into quiescence. High levels of CDK inhibitors 

usually characterise quiescent cells; in experimental settings, their depletion 
or genetic deletion can lead to quiescence exit.53-58 Aside from controlling the 

G1/S transition by regulating the activity of the E2F1-3 transcription factors, 
RB also regulates the activity of the p27 CDK inhibitor.59 In quiescent cells, 

hypo-phosphorylated RB associates with the anaphase-promoting complex 
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(APC/Cdh1), which allows the degradation of the negative regulator of p27, 
Skp2.59 In turn, this allows the accumulation of p27. 

 
Overall, RB acts as a key bistable switch regulating entry into the S phase 

and a subsequent cell cycle.60 Cells which enter G0 instead of progressing to 
the S phase show downregulation of cell cycle-related genes, including those 

involved in G1.46,47 Along with RB, the central transcriptional repressor of cell 
cycle signalling genes, an essential factor for entering quiescence is the 

dimerisation partner, RB-like, E2F and multi-vulval class B (DREAM) pocket 
protein complex61. By binding E2F or E2F/CHR-like element (CLE) promoters 

and cell cycle genes homology region (CHR) or cell-cycle dependent element 
(CDE)/CHR promoters, the complex represses the expression of genes 

involved in the G1, S, G2 and M phases of the cell cycle.62 Within the G1 cell 
cycle phase of actively proliferating cells, CDK4/6 and CDK2, bound to their 

respective cyclins, can phosphorylate the p130 pocket protein component of 
the DREAM complex.63,64 This causes p130 to be released from the complex 

and undergo proteasomal degradation. Consequently, DREAM activation 
during quiescence can be achieved by inhibition of CDKs. 

 
Although most cells enter quiescence before the G1/S transition, single-cell 
imaging experiments have revealed that a much smaller proportion of cells 

can arrest in the G2 phase.45 This state of cell cycle arrest is poorly 
understood. However, it can be prevalent in some cell types, such as 

quiescent neural stem cells (qNSC).65 Within a drosophila model system, G2 
arrested qNSC showed faster reactivation for haemostasis neuron generation 

than those arrested in G0.65 
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Figure 1.1: Regulation of quiescence entry and exit. Most cells enter 
quiescence in G0 prior to the G1/S transition. CDK2-cyclin E and CDK4/6-
cyclin D complexes promote the G1/S transition by phosphorylating RB, 
thereby stimulating the transcription of genes involved in the S phase. 
Quiescence is characterised by the inhibition of CDK-cyclin complexes by 
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CDK inhibitors and the transcriptional repression of cell cycle related genes 
by RB and the DREAM complex. Quiescence entry in response to DNA 
damage depends on the stabilisation of p53 and the increased transcription 
of the CDK inhibitor p21. Abbreviations used in the figure are given as follows: 
CDK, cyclin-dependent kinase; CHR, cell cycle genes homology region; DNA, 
deoxyribonucleic acid; DREAM, the dimerization partner, RB-like, E2F and 
multi-vulval class B complex; RB, retinoblastoma protein. 
 
1.4 Signals governing quiescence-proliferation decision 
 

The quiescence-proliferation decision is made by cells after integrating both 
intracellular signals and extracellular signals from the cell niche. Intracellular 

signals may involve the extent of DNA damage incurred during the previous 
cell division.53,55,66 In contrast, extracellular signals may include the availability 

of growth factor molecules, the presence of quiescence-inducing soluble 
factors and the type of cell-cell contacts made with other cells in the 

microenvironment. Such signals usually influence the cell’s proliferation 
decision by triggering changes in cyclin and CDK inhibitor levels, thereby 

affecting CDK activity. For example, cells can convert extracellular growth 
factor (mitogen) availability signals into quiescence-proliferation decisions 

through mitogen signalling pathways, such as the Raf-Erk-MAPK cascade.67 
This usually leads to the activation of multiple transcription factors 
responsible for the synthesis of cyclin D, which, through association with 

CDK4/6 and CDK2, promotes the hyperphosphorylation of RB and cell cycle 
entry. Similarly, entry into quiescence due to naturally occurring DNA damage 

incurred during the S-phase of the cell cycle referred to as spontaneous 
quiescence, is dependent on the stabilisation of p5368 (Figure 1.1). In turn, 

increased p53 levels stimulate the transcription of its downstream target, the 
CDK2 inhibitor p21, during the G2 phase of the cell cycle.55 The levels of p21 

usually do not reach the threshold necessary to inhibit CDK2 in G2.55 
However, if the DNA damage is not repaired, p21 is passed down to the 

daughter cells, where its levels continue to increase and cause cell cycle 
arrest.55 
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Cells integrate the different quiescence or proliferation promoting signals 
detected across all cell cycle stages. For example, recent studies suggest 

that the proliferation-quiescence decision in human cells can be influenced 
by competing mother cell memories of variable mitogen levels and DNA 

damage stress signals in dividing daughter cells.69 These two signals are 
passed down to daughter cells in the form of p53 and messenger RNA 

(mRNA) encoding cyclin D. In turn, in the G1 phase of the daughter cell, the 
overall ratio of cyclin D to p21 protein levels determines the cells’ decision to 

enter quiescence.45,69 
 

In the experimental setting, cells can be driven into quiescence using a range 
of stimuli such as serum starvation, contact inhibition and loss of 

adhesion.46,47 These conditions mimic the quiescence-stimulating cues cells 
might encounter in their microenvironments in vivo. Interestingly, cells from 

the same cell line driven into quiescence using different induction stimuli 
show reproducible differences at the transcriptional level.46,47 Therefore, it has 

been suggested that quiescence represents not one but a range of states that 
cells can enter in response to various induction stimuli.46,47 

 
In the context of cancer, while most of the cells within tumours have a high 

proliferation capacity, there is increasing evidence that during cancer 
development under stress conditions, malignant cells can become arrested 

in the G0.24-29 Similarly to non-malignant cells, the quiescence-inducing 
factors encountered by cancer cells include cell-intrinsic factors like 

replication stress and stress caused by excessive oncogene activation.70,71 In 
addition, cytotoxic stress caused by commonly used chemotherapies, along 

with the inhibition of proliferative signalling utilised by cancer cells through 
targeted molecular therapy, has also been suggested to drive cancer cells 

into quiescence.24-29 In turn, during the process of metastatic seeding, 
disseminated tumour cells (DTCs) cells at pre-metastatic sites persist in the 

quiescence while they adapt to their new microenvironment.18,72,73 Their entry 
into quiescence is usually triggered by the absence of proliferative signalling 
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which the cells relied on within the primary tumour. For example, 
disseminated breast cancer cells were shown to enter quiescence after failing 

to detect signals of adhesion via interaction with integrin β1,73,74 which were 
required to activate the proliferative extracellular signal-regulated kinase 

(ERK) pathway signalling. Moreover, quiescence of DTCs can be triggered by 
soluble factors present at the pre-metastatic site. This can be illustrated by 

the high concentrations of growth arrest specific-6 (GAS6), transforming 
growth factor beta 2 (TGFB2) and bone morphogenetic protein 7(BMP7) 

molecules in the bone marrow triggering quiescence of disseminated 
prostate cancer cells.75-77 Similarly, high concentrations of bone 

morphogenetic protein 4 (BMP4) within lung tissue were shown to drive 
disseminated breast cancer cells into quiescence.78 GAS6, TGFB2, BMP7 

and BMP4 all induce quiescence by activating the p38/mitogen-activated 
protein kinase (MAPK) pathway, which normally conveys signals of stress to 

the cell, thereby triggering cell cycle arrest. Lastly, the ability and propensity 
of cancer cells to enter quiescence can be influenced by the genomic 

changes acquired throughout cancer development. For example, the 
frequently acquired amplification of the MYC gene decreases the likelihood 

of quiescence entry. Instead, it promotes cell cycle progression by increasing 
the expression of cyclin proteins and inhibiting the activity of CDK inhibitors, 

such as p15, p21 and p27.79 
 

1.5 Transcriptional features of quiescent cells  
 

Previous studies transcriptionally profiled quiescent cells to gain insight into 
their underlying biology. In line with quiescence representing a range of 

states, the changes in gene expression upon entry into quiescence were 
highly variable and dependent on the cell type, induction method and the time 

spent by cells in quiescence.46,47,56 However, several general transcriptional 
changes were reported in numerous publications. 

 
As expected, quiescent cells showed downregulation of genes involved in cell 

cycle progression. This included genes encoding cyclins and mitotic signal 



 30 

transduction pathway components. Similarly, genes encoding proteins 
responsible for cell cycle arrest, such as CDK inhibitors, showed upregulation 

in quiescence.46,47 Due to the lack of active cell division, quiescent cells have 
reduced metabolic needs compared to proliferating cells. As such, they 

generally showed downregulation of genes involved in synthesising 
nucleotides, proteins, carbohydrates, and lipids, such as POLD2, POLR2I, 

EIF3S9 and HARS.46 The reduced metabolic need was also reflected in the 

reduced number of mitochondria.80 Due to the reduced demand for adenosine 

triphosphate (ATP) production, quiescent cells often switch from 
mitochondrial oxidative phosphorylation to the less efficient glycolysis 
pathway as the main metabolic pathway.80 

 
The reduced metabolic rate and the reduced use of oxidative phosphorylation 

have been suggested to be used by quiescent cells to reduce the production 
of reactive oxygen species (ROS).23 ROS can damage organelles and other 

cellular components.81 Therefore, by reducing ROS production, quiescent 
cells are thought to protect themselves from accumulating damage incurred 

during inactivity, which ensures their viability and ability to proliferate after 
their exit from quiescence. Consistently, quiescent cells show upregulation of 

genes that neutralise free radicals such as SOD3 and FOXO1.46,47 In addition, 

they also upregulate genes involved in the detoxification of drugs such as 
EPHX1 and ADLH1A3.46,47 Moreover, as reflected by the increased number 

and size of their lysosomes, cells within quiescence increase the expression 
of genes involved in the autophagy-lysosome pathways.56 This change in the 

lysosomal function was shown to play a crucial part in maintaining 
quiescence by protecting cells from oxidative stress caused by ROS.56 

 
Additionally, in order to maintain their long-term proliferation potential, 

quiescent cells downregulate the expression of genes involved in the 
induction and execution of apoptosis, such as BAK1.46 They also show 

upregulation of genes which function to prevent entry into terminally 
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differentiated cell states such as those belonging to the Notch and Wnt 
signalling pathways.46  

  
Interestingly, numerous studies have reported the upregulation of 

extracellular matrix receptors and genes involved in intercellular 
communication by quiescent cells.46,47 These findings suggest that cell cycle 

arrested cells differ in the way they interact with their extracellular 
environment compared to proliferating cells. It also suggests that, at least to 

some extent, quiescence may be a collective cell behaviour. 
 

1.6 Quiescent cancer cells differ from other slow proliferating cell 
types 
 

Quiescent cancer cells are distinct from other types of tumour cells showing 
low proliferation rates, such as cancer stem cells.82,83 They also differ from 

senescent cells, which have irreversibly exited the cell cycle.50,53 
 

Tumour cells vary in their capacity for self-renewal.84,85 According to the 
cancer stem cell hypothesis, cancer stem cells represent a rare 

subpopulation of multipotent cells with a high capacity for self-renewal that 
sit at the top of the tumour cell differentiation hierarchy.85 This contrasts with 

quiescent cells, which can readily resume their proliferative state and are 
equipotent with actively dividing cells. Cancer stem cells have been identified 

in numerous cancer types, including breast, prostate, colon, and ovarian 
cancer.86,87 However, despite cancer stem cells often showing slow 

proliferation rates, there is no evidence that cancer stem cells undergo cell 
cycle arrest and enter quiescence.86 Nonetheless, it is possible that the two 
cell states are not mutually exclusive.88  

 
Other studies have also provided evidence that quiescence represents a 

separate cell state from senescence.50,53 In particular, the characteristic 
reversibility of quiescence appears to be ensured by the activation of 
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pathways that prevent the entry into the irreversible cell-cycle states and by 
downregulation of the cellular senescence pathway.46,47 

 

1.7 Quiescent cancer cells contribute to cancer progression and 
therapy resistance 
 

The presence of subpopulations of quiescent cells within tumours has been 
observed as one of the contributing factors of resistance to treatments that 
instead target actively dividing cells such as cytotoxic, cytostatic, and 

genotoxic therapies24-26 (Figure 1.2). Experimental cancer cell line models 
have also illustrated the increased resistance of quiescent cells to commonly 

used targeted molecular therapies, which block proliferative signalling used 
by cancer cells. For example, quiescent but not proliferating KRAS(G13C)-

mutant lung adenocarcinoma cells were shown to be resistant to treatment 
with a KRAS(G12C)-specific inhibitor.28 Similarly, quiescent epidermal growth 

factor receptor (EGFR)-mutant lung adenocarcinoma cells and BRAF-mutant 
melanoma cells preferentially survived therapy with an epidermal EGFR 

inhibitor or BRAF inhibitor, respectively.89,90 Aside from the characteristic lack 
of cell division, the increased resistance of quiescent cells to commonly used 

medicines may be partly due to the upregulation of genes and pathways 
involved in the stress response.46,47 These include genes involved in drug 

detoxification and the reduction of cellular ROS levels.46,47 While quiescent 
cells show a survival advantage during stressful conditions, it is still debated 

whether cancer cell quiescence is selected for or induced by commonly used 
therapies. Recent live single-cell imaging experiments by Min and Spencer 

suggest both scenarios occur.47 
 
Importantly, quiescence is a reversible phenotype that allows cancer cells to 

survive and rapidly respond to commonly used anti-proliferative therapies 
without needing mutations that enable permanent therapy resistance.28,91 

Tumour samples often show high levels of intra-tumour genetic heterogeneity 
at diagnosis.8 Therefore, it has been suggested that tumour cell subclones 

with specific genomic features might have increased resistance to 
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chemotherapy and are selected during treatment.8 Recently, Turati et al 

transplanted patients' acute lymphoblastic leukaemia (ALL) cells to create 
multiple mice xenograft models with almost identical genetic backgrounds.91 

Using this approach, they could sequence ALL tumour cells before and after 
chemotherapy treatment at single-cell resolution, thereby providing insight 

into the types of features selected by treatment.91 Interestingly, chemotherapy 
treatment did not select for ALL cells with specific genomic features, and 

there was no reduction of intra-tumour heterogeneity.91 However, treatment 
did reduce the transcriptional heterogeneity of tumour cells.91 In particular, 

cells predicted to exist in the quiescent state showed preferential survival to 
treatment, thereby highlighting the importance of the quiescent 

transcriptional state as a way for cancer cells to escape treatment induced 
cell death.91 Furthermore, quiescent cells can undergo transcriptional 

reprogramming during the time spent in cell cycle arrest to acquire features 
which confer resistance to the stress caused by treatment. For example, 
quiescent lung adenocarcinoma cells carrying the KRAS(G12C) mutation 

upregulate the expression of EGFR and aurora kinase signalling pathways 
after treatment with a KRAS(G12C)-specific inhibitor.28 This transcriptional 

reprogramming causes KRAS to be maintained in an activated and drug 
insensitive form, thereby allowing cells to exit quiescence and continue 

proliferating despite continuous treatment with the targeted molecular 
therapy. 

 
Furthermore, several studies report that cancer cells can accumulate 

mutations during the time spent in quiescence.71,92,93 DNA replication is a 
significant source of somatically acquired mutations, which raises the 

question of how mutations can arise during dormancy. A recent study in yeast 
also confirmed that unicellular haploid quiescent yeast cells accumulate 

mutations in a DNA-replication-independent manner as a linear function of 
time.94 Interestingly, the landscape of mutations acquired by yeast cells 

during quiescence significantly differed from that of proliferating yeast cells. 
Specifically, mutations acquired during quiescence showed a lower bias 
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towards affecting A/T base pairs and showed a more significant proportion 
of indels and deletions. The study's authors suggest that while quiescent cells 

do not accumulate mutations because of errors made during DNA replication, 
they could be exposed to other sources of mutations, such as DNA repair 

errors or environmental mutagens. The DNA lesions incurred during 
quiescence could then become converted to mutations when the cells exit 

quiescence and resume proliferation. Previous literature also shows that 
yeast and bacteria cells can undergo stress-induced mutagenesis.95 During 

this state, cells increase the rate at which they acquire mutations by 
downregulating the expression of genes involved in DNA repair processes 

such as DNA mismatch repair (MMR) and upregulating the expression of 
error-prone DNA polymerases. This process increases the genetic diversity 

of the cell population, which in turn allows for the selection of mutations that 
confer growth advantage under stress conditions. Recently a similar 

mechanism has been described for colorectal cancer cells treated with 
various targeted molecular therapies.96 As such, it is possible that quiescent 

cancer cells similarly increase their mutagenesis rates. The mutations 
accumulated by quiescent cells could eventually create permanent resistance 

to anti-proliferative therapies. They could also help to expand further the 
neoplastic processes of the tumour, all of which can lead to tumour 
progression eventually once the cells start dividing again. 

 
Lastly, metastasis is the leading cause of cancer-related death. DTCs at pre-

metastatic sites are believed to cause metastatic tumours.18 This is because, 
during dormancy, they remain refractory to therapies by avoiding the S-phase 

of the cell cycle, during which cells are most vulnerable to traditional 
chemotherapy and radiotherapy treatments. DTCs could also help explain the 

long time between termination of therapy and recurrence that can be seen in 
some cancers.97 
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Figure 1.2: Quiescent tumour cell subpopulations contribute to 
resistance to commonly used anti-proliferative drug treatments. 
Quiescent cells show increased resistance to anti-proliferative drugs due to 
their characteristic lack of division and upregulation of stress response 
pathways. The quiescent cells are selected during treatment, however, upon 
therapy withdrawal can regrow into a tumour cell population with varying 
proliferation rates. Furthermore, during the time spent in quiescence, cancer 
cells continue accumulating mutations, which eventually can give rise to 
permanent resistance to the administered therapies. 
 

1.8 Strategies used to target quiescent cells  
 

There have been increasing efforts to tailor patient therapy to reduce the risk 
of resistance and relapse posed by quiescent cancer cells. Currently used 

therapeutic strategies targeting quiescent cancer cells broadly aim to achieve 
one of the following: prevent the re-entry of quiescent cells into the 

proliferative cell cycle over a long period of time, force the quiescent cells 
back into the proliferative cell cycle where they are more sensitive to anti-

proliferative drugs commonly administered to patients, or selectively kill 
quiescent cells based on current understanding of their unique vulnerabilities.  
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Strategies that aim to prevent quiescent cells from re-entering proliferative 
cell cycles usually do so by suppressing pathways that are required for cell 

proliferation or by maintaining dormancy pathways. The former can be 
illustrated by the administration of adjuvant anti-oestrogen therapy consisting 

of oestrogen receptor antagonists, such as tamoxifen, for oestrogen 
receptor-positive (ER+) breast cancer patients.98,99 An example of the latter 

includes the use of CDK4/6 inhibitors to directly reduce the ability of 
quiescent cells to transition to the S phase of the cell cycle.100 However, a 

significant disadvantage of this class of therapies is that they require life-long 
treatment, as discontinuation might allow quiescent cells to resume 

proliferation, thereby potentially allowing relapse. 
 

Alternatively, some therapies aim to trigger quiescent cell proliferation to 
increase their susceptibility to anti-proliferative drugs. For example, this is the 

rationale for administering dual-specificity tyrosine phosphorylation regulated 
kinase 1A (DYRK1A) inhibitors alongside the commonly used kinase inhibitor 

imatinib for treating gastrointestinal stromal tumours.101 DYRK1A has been 
shown to be essential in regulating the quiescence entry of several cancer 

cell lines by phosphorylating LIN25.102 This, in turn, allows the assembly of 
the DREAM complex – the main repressive complex responsible for the 
downregulation of cell cycle-related genes.61 However, this type of therapy 

also poses critical challenges. For example, it is possible that the reactivation 
of quiescent cells could lead to a more aggressive cancer phenotype. 

Moreover, if not all quiescent cancer cells become reactivated, patients would 
still be left with residual cancer cells capable of inducing future relapse. 

 
Lastly, several studies aimed to develop treatments that eradicate quiescent 

cancer cells by exploiting their unique vulnerabilities. For example, as shown 
by Kurppa et al,89 EGFR-mutant lung adenocarcinoma cell lines driven into 

quiescence by treatment with an EGFR inhibitor depend on YAP/TEAD 

signalling for survival. As such, the authors suggest that a combinational 
therapy with both EGFR and TEAD inhibitors could prevent the emergence of 
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residual quiescent tumour cells. Future studies are likely to shed more light 
on the genomic features of quiescent cells and the molecular features 

allowing their survival under stress conditions, thereby highlighting other 
novel targets for therapy. 

 

1.9 Methodology used to study cancer cell quiescence and 
current gaps in knowledge 
 
The initial structure of the cell cycle, comprising the G1, S, G2 and M 

proliferative stages and a G0 arrest stage, was developed using a collection 
of biochemical and genetics experiments.103 Notably, cell cycle progression 

was found to depend mainly on post-transcriptional modifications of key cell 
cycle regulators such as cyclins and CDK inhibitors, including changes in the 

protein turnover, cellular localisation, and post-translational modifications.104 
More recently, data-driven approaches have been used to shed light on the 

cell cycle's structure and explain the heterogeneity in the molecular changes 
and length of different cell cycle stages.45 For example, a study by Stallaert et 

al45 used time-lapse microscopy to observe cell cycle progression of non-

transformed human retinal pigmented epithelial cells expressing fluorescent 
cell cycle reporter proliferating cell nuclear antigen (PCNA)-mTurquioseT2. 

PCNA is highly expressed during the S phase, where its function as a 

processivity factor for DNA polymerase δ is essential for DNA replication. 
Following the time-lapse experiments, the cells were subjected to highly 

multiplexed immunofluorescence imaging of key cell cycle regulator proteins. 
Manifold learning using the resulting data was used to project the resulting 

data into two dimensions to visualise the continuous cell trajectories through 
the cell cycle. Such experiments not only broadened the body of knowledge 

on the cell cycle's structure but also gave insight into the signature of 
quiescent cells at the protein level. For example, the lack of RB 

phosphorylation could distinguish quiescent cells from other cell cycle 
stages. Quiescent cells were also characterised by high levels of CDK 
inhibitor proteins such as p21 and p27. 
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A greater understanding of the protein-level signature of quiescent cells led 
to the development of several strategies to experimentally identify quiescent 

cancer cells in vitro and in vivo. These include using reporter proteins 

introduced into cells using lentiviral vectors, such as fluorescently labelled 
p27 mutant lacking CDK inhibitory activity.105 A separate strategy involves the 

use of label-retaining assays. These include proliferation-sensitive lipophilic 
cell membrane dyes such as carboxyfluorescein diacetate succinimidyl ester 

(CFSE).106,107 Similarly, labels such as bromodeoxyuridine (BrdU) and 5-
ethynyl-2'deoxyurine (EdU), which can become integrated into a cell's DNA 

during DNA replication, can mark cells which have undergone cell division 
during a set period of time. The quiescence status of cells can also be probed 

by directly staining cells for quiescence-specific labels such as lack of RB 
phosphorylation.45 In particular, fluorescent proliferation-sensitive labels have 

allowed the separation of proliferating and quiescent cells using technologies 
such as fluorescence-activated cell sorting (FACS).107 This, in turn, has 
allowed the characterisation and comparison of quiescent and proliferating 

cells at the transcriptional level by identifying differentially expressed genes 
and pathways, in many cases at the single-cell level, thereby giving insight 

into the underlying biology of quiescent cells.107 
 

However, despite the availability of methods to label quiescent cells 
experimentally, a key challenge in the field is the lack of markers to identify 

quiescent cancer cells uniquely and reliably from transcriptomic data. This is 
partly because quiescence represents multiple states resulting from various 

inducing stimuli.46,47 Quiescent cells show a large amount of heterogeneity at 
the transcriptional level depending on the experimental conditions, such as 

the type of cells that are profiled, the amount of time the cells have spent in 
quiescence, and the quiescence induction method.46,47,56 In some cancer 

types studies, the expression of secreted molecules at pre-metastatic sites 
has been linked with the presence of quiescent DTCs.75-78,108,109 This promoted 

the authors to suggest the use of such molecules' expression as a quiescence 
marker. However, currently, no reported gene markers or transcriptomic 
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signatures can specifically identify quiescent cells across a wide variety of 
cancer types. In many single-cell RNA-sequencing (scRNA-seq) studies 

profiling tumour samples and cancer cells in vitro, quiescent cells are labelled 

based on the low expression of proliferation markers.28 However, this 
approach does not accurately distinguish quiescence from other cell cycle 

phases, e.g., G1. For example, the MKI67 gene, encoding the commonly used 

proliferation marker Ki67, is expressed downstream of the E2F promoter 
during the S phase of the cell cycle.110 Its expression remains low in both G1 

and G0 stages, thus preventing the unique identification of quiescent cells.110 
Moreover, many reliable markers of quiescence, such as the phosphorylation 
status of RB, cannot be detected from transcriptomic data. 

 
The lack of a universal transcriptomic quiescence signature has hindered 

further exploration of the prevalence of quiescence across cancer tissues and 
the underlying biology of quiescent cancer cells using large-scale cancer 

genomic databases such as TCGA. In particular, it has prevented the 
extensive identification of genomic features associated with quiescence 

during cancer development. Some genes involved in proliferation-quiescence 
decisions have been identified experimentally through clustered regularly 

interspaced short palindromic repeats (CRISPR)/CAS9 and small interfering 
RNA (siRNA) screens. For example, p21-/- immortalised breast epithelial cells 

show impaired ability to enter quiescence in response to genotoxic stress.47 
However, the extent to which cancer cell quiescence is enacted through 

genetic control is unknown. Due to a large amount of heterogeneity of 
genomic aberrations that occur during cancer development, many patient 

samples are required to identify the full scope of genomic features associated 
with the propensity of cancer cells to enter quiescence. Such analysis is 

currently only feasible in large bulk transcriptome datasets with matched 
mutational data, such as the TCGA. Overall, identifying quiescence-liked 

genomic alterations would not only provide potential biomarkers of patient 
response to anti-proliferative therapies but also shed light on the underlying 
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biology of quiescent cells, which in turn could highlight novel vulnerabilities 
that could be targeted in the clinic. 

 
A quiescence transcriptomic signature would also enable the exploration of 

the cellular state in the growing number of tumour and cancer cell line scRNA-
seq datasets. For example, previous literature has shown the selective 

survival of quiescent cancer cells to commonly used chemotherapy and 
targeted molecular therapies.24-26,28,89,90 However, applying the transcriptomic 

signature to scRNA-seq datasets from cancer models sampled at various 
timepoints during the treatment with a plethora of therapeutic compounds 

would provide a more complete picture of the array of commonly used cancer 
therapy drugs to which quiescence offers a survival advantage.  

 
Lastly, few published studies have attempted to profile whether quiescent 

and proliferating cancer cells differ in how they interact with other cells in the 
surrounding tumour microenvironment (TME).75-77,108 This question has mostly 

been explored in in vivo experimental models.75-77,108 An example approach 
involves the lentiviral transduction of fluorescent reporter proteins, capable of 

discriminating cells with quiescence, into cancer cell lines.108 The transduced 
cancer cells can then be injected into animal cancer models, such as 

nonobese diabetic/severe combined immunodeficiency (NOD-SCID) 
immunocompromised mice.108 Such experiments are often coupled with 

various microscopy techniques, such as confocal microscopy or two-photon 
excitation microscopy,108,111 and the transcriptional profiling of quiescent 

cancer separated using FACS.108,109 Based on these techniques, it has been 
demonstrated that microenvironmental features can influence tumour cell 

quiescence status. For example, interferon gamma (IFN-γ) secreted by natural 
killer (NK) in the liver has been shown to maintain disseminated breast cancer 

cells in the quiescent state.108 It has also been shown that quiescent and 
proliferating cancer cells show differences in how they initiate interactions 

with other cell types within the TME. For example, quiescent cells have been 
suggested to evade NK cells' immune surveillance by downregulating NK 
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ligands' expression.112 However, most experimental studies have focused on 
profiling DTCs at pre-metastatic sites. As a result, little is known about how 

quiescent cancer cells interact with the TME within primary tumours. 
Moreover, because of the use of immunocompromised mice models, it is 

unknown whether cancer cells show differences in how they interact with 
immune cells based on their quiescence/proliferation status. Any potential 

differences could have clinical implications, for example, regarding the 
application of immunotherapy treatments. 

 

1.10 Tumour mass dormancy represents a key stage of cancer 
development 
 

TMD represents the other facet of cancer dormancy investigated in this 

thesis, which represents a separate state from cancer cell dormancy. 
Specifically, TMD arises when there is no net growth of a tumour because the 

net rate of tumour cell proliferation is counterbalanced by the net rate of 
tumour cell death.20-22,113 This contrasts with cancer cell dormancy which 

describes a state of cell cycle arrest of individual cancer cells. Several 
microenvironmental factors have been shown to maintain TMD. For example, 

TMD can arise due to insufficient vascularisation of the tumour because of 
the inability of the tumour cells to remodel the existing vasculature and 

stimulate the formation of new blood vessels.114 This is referred to as 
angiogenic dormancy. In addition, tumour growth can become limited by the 

immune response mounted against immunogenic tumour cells, in a process 
referred to as immunological dormancy.21,22 Overall, both immunological and 

angiogenic dormancy can contribute to the development and maintenance of 
TMD. 

 
Tumour growths larger than a few millimetres cannot be supported by normal 

tissue vascularisation due to the limited supply of oxygen and nutrients to 
tumour cells.115 In response to low oxygen levels (hypoxia), tumour cells 
stimulate the development of new blood vessels (angiogenesis) to overcome 

this limitation. This usually involves increased expression of the hypoxia-
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inducible factor 1 (HIF1), a master regulator of the cellular response to 

hypoxia involved in sensing low oxygen levels and triggering the expression 
of pro-angiogenic factors.116 However, if the rate of angiogenesis is 

insufficient to sustain the momentum of tumour growth, the state of hypoxia 
persists in the tumour and leads to cell death116. Eventually, this leads to the 

emergence of angiogenic dormancy, where the hypoxia state limits the 
tumour's net growth. Angiogenic dormancy is characterised by a balance 

between pro-angiogenic factors such as vascular endothelial growth factor 
(VEGF), and angiogenic factors such as angiostatin, endostatin and 

thrombospondin.19,21,117,118 Interruption of this balance in favour of pro-
angiogenic signalling is required to continue tumour growth and is referred to 

as the angiogenic switch.21 Acquisition of oncogenic mutations capable of 
increasing pro-angiogenic and hypoxia-response transcriptional 

programmes is responsible for the interruption of angiogenic dormancy. This 
can be illustrated by the upregulation of pro-angiogenic VEGF factors and the 
downregulation of anti-angiogenic thrombospondins (TSPs) by tumour cells 

following the acquisition of activating mutations within the RAS oncogenes.119 

 
The concept of immunological dormancy can be described by the "3Es of 

immunoediting", namely elimination, equilibrium, and escape120. During the 
"elimination" stage, immunogenic malignant cells within a developing tumour 

are eradicated by the immune response mounted against the tumour. The 
anti-tumour immune response mostly depends on the action of the adaptive 

immune system, including CD4+ and CD8+ effector T cells22. It also largely 
depends on the cytotoxic activity triggered by pro-inflammatory cytokines 

such as IFN-γ and interleukin 12 (IL-12).22 During the equilibrium stage, the 
expansion of the surviving tumour cells is contained by the cytotoxic immune 

response. Highly immunogenic tumour cells are eliminated. At the same time, 
cells which have acquired mutations that enable them to evade immune 

detection and offer increased resistance to immune attack are selected.120 An 
example of such a change is the downregulation or loss of major 
histocompatibility complex (MHC) components involved in antigen 
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presentation.121 Overall, during this stage, the immune system and the 
malignant cells establish a dynamic equilibrium which sees no change in net 

tumour size. However, prolonged exposure to inflammatory signalling 
eventually can cause cytotoxic T cells to become inactive.120,122,123 This 

process is referred to as T cell exhaustion and can cause progression into the 
final "escape" stage, during which the immune surveillance no longer limits 

tumour growth. The escape stage can also be escalated by the expression of 
immune checkpoint molecules, such as programmed death-ligand 1 (PD-L1) 

by cancer cells, which induce exhaustion and apoptosis of CD8+ T cells.124-
126 Overall, immunological dormancy represents the equilibrium stage of 

immunoediting. It is usually responsible for the lag time between the 
emergence of the first malignant tumour cell and the onset of clinical 

symptoms. 
 

TMD can develop from both immunological and angiogenic dormancy. The 
two states are also potentially linked. For example, tumour infiltration with 

CD4+ T cells responsible for anti-tumour immune response can cause the 
release of anti-angiogenic chemokines C-X-C motif chemokine ligand 9 

(CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10), thereby limiting 
tumour growth by decreasing the production of new supporting 
vasculature.127 It is also important to highlight that TMD represents a separate 

state from quiescence. However, TMD and quiescence are not mutually 
exclusive, and there is evidence that microenvironmental factors maintaining 

TMD can also induce quiescence. For example, activation of the p38/MAPK 
pathway in response to stress or stabilisation of p53 in response to DNA 

damage can trigger entry into quiescence, stimulate the expression of anti-
angiogenic TSP, and repress the expression of pro-angiogenic VEGF.21 

Similarly, pro-inflammatory INF-y has also been shown to induce 
quiescence.22   

 
Overall, TMD is not a simple dysfunction but represents a critical stage of 

cancer development. During the period of dormancy, tumours can acquire 
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further mutations, which allow to expand the existing hallmark capacities. In 
turn, this allows the tumour to establish a microenvironment permissive for 

tumour growth. 
 

 
 

Figure 1.3: Microenvironmental factors maintaining tumour mass 
dormancy. TMD is defined by a balance between overall proliferation and 
apoptosis rates of cancer cells. This state can be maintained by insufficient 
vasculature and, therefore, supply of oxygen and nutrients to the tumour 
(angiogenic dormancy) or the anti-tumour immune response (immunological 
dormancy). Abbreviations used in the figure are given as follows: MHC, major 
histocompatibility complex. 
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1.11 Methodology to study tumour mass dormancy and current 
gaps in knowledge 
 

Experimental models have illustrated the molecular mechanisms underlying 
angiogenic and immunological dormancy. Angiogenic dormancy has been 

explored mainly by monitoring the angiogenesis-dependent growth of cancer 
cell lines in syngeneic or immunodeficient mouse models.20,128,129 Within such 

models, the density of microvessels surrounding the developed lesion could 
be visualised using staining for endothelial cell-specific markers such as 

cluster of differentiation 31 (CD31).128 Many studies monitored tumour cell 
growth kinetics through bioluminescence by using cancer cell lines 

expressing the luciferase enzyme.128 Furthermore, tumour cell proliferation 
rates could be monitored through BrdU or PCNA staining.20 In turn, the 
terminal deoxynucleotidyl transferase (TdT) method could be used to monitor 

the tumour cell apoptosis rate in situ.20 The effect of specific pro-angiogenic 

and anti-angiogenic factors on tumour growth could be investigated by 
retroviral transduction of specific factors into the cancer cell lines or through 

the use of exogenous angiogenesis inhibitors.20,128,129 In vivo mouse models 

were also used to evaluate the involvement of specific immune system 
components in maintaining immunological dormancy.120 Specifically, the 

susceptibility of mice to develop tumour spontaneously or in response to 
chemical mutagenic factors was evaluated after inhibiting the function of 

specific immune components.120 This was usually achieved through the use 
of transgenic mouse models or by the administration of blocking antibodies 
specific to particular components of the immune system.120 

 
Despite the exploration of immunological and angiogenic dormancy in 

experimental mouse models, these states remain unexplored in patient 
tumour samples. This is mainly due to the difficulty in detecting and obtaining 

samples displaying TMD because of the transient nature of this tumour state. 
As such, many aspects of TMD remain unexplored, including its prevalence 

across different cancer types. It also remains to be explored whether 
immunological and angiogenic dormancy can co-occur within tumours, or 
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whether the two states are mutually exclusive. Previous literature has 
described TMD in the context of early-stage tumours. However, it is unknown 

whether TMD can occur at other stages of cancer development. Moreover, to 
date, no studies have systematically evaluated transcriptomic data from 

large-scale multi-omics datasets such as the TCGA for evidence of TMD. This 
has prevented further characterisation of the genomic and cellular context in 

which TMD can develop. Due to the large amount of inter-tumour genetic 
heterogeneity across all cancer types, exploration of TMD in such cohorts is 

necessary to identify the full range of associated genomic features.  Such 
knowledge could provide unique therapeutic opportunities by providing 

insight into how TMD arises and how cancer cells escape this state to resume 
tumour expansion.  

 

1.12 Sequencing technologies used to profile tumour samples 
 
The molecular mechanisms driving cancer development, progression, and 

therapy resistance, such as cellular quiescence and TMD, can be profiled at 
the RNA and DNA level using next-generation sequencing technologies. 

 
Gene transcription and mRNA stability are usually tightly regulated within 
normal cells. In turn, cancer development is associated with aberrant gene 

expression regulation, which often involves overexpression of oncogenes and 
downregulation, for example, through epigenetic silencing, of tumour 

suppressor genes. Tumour transcriptome data can also indicate the presence 
of certain mutational events, such as gene fusions or changes in gene splicing 

patterns.130 Aside from highlighting mechanisms that might be driving tumour 
development and progression, variation in gene expression patterns between 

tumour samples can be used to infer the presence of different tumour 
subtypes and the presence of specific tumour cell populations associated 

with therapy resistance,131-133 such as quiescent cells. 
 

Tumour transcriptomes are most commonly profiled using bulk RNA-
sequencing (RNA-seq) technologies. This involves pooling together and 
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sequencing many cells, resulting in an averaged gene expression readout 
across all cells within the sample. Most routinely used RNA-seq experiments 

profile mRNA libraries using single-end short read sequencing, which can be 
used to gain information about the expression of protein-coding genes. 

However, this approach does not offer information about the levels of other 
RNA species, such as long-noncoding RNAs. It also does not capture 

changes in gene expression regulation enacted through alterations such as 
alternative splicing, which instead depend on the use of paired-end longer 

read sequencing on whole transcriptome libraries. Overall, the utility of bulk 
RNA-seq technologies lies in their low cost and relative ease of protocol, 

which has allowed the assessment of tumour transcription profiles across 
large cohorts of samples, as illustrated by the TCGA database. However, their 

major limitation lies in the inability to capture the large amount of 
transcriptional heterogeneity that exists between tumour cells, even within 

individual tumour samples.134 This transcriptional heterogeneity can be 
reflective of variation in intra-tumour somatic mutations, the interactions 

between different tumour cells and components of the TME, and the presence 
of transcriptionally distinct tumour cell populations that can arise due to 

tumour plasticity. Moreover, non-malignant cell contamination of tumour 
samples can contribute to expression signals reported by bulk sequencing 
technologies. 

 
The above limitations have led to the development of scRNA-seq 

technologies capable of profiling tumour transcriptomes at single-cell 
resolution.135 Although bulk and single-cell RNA-seq protocols share many 

similarities, they mostly deviate in their sample preparation approaches. 
During scRNA-seq experiments, cells are first isolated from a tumour sample 

using micro-dissection, microfluidic platforms, flow cytometric cell-sorting or 
droplet-based methods. The isolated cells are then lysed, and the released 

mRNA is captured using poly(T )primers that bind to the poly(A) tails at the 3’ 
ends of mRNAs. After a reverse transcription (RT) step, the generated 

complementary DNA (cDNA) is amplified, usually by means of polymerase 



 48 

chain reaction (PCR) or in vitro transcription. Primers used in the RT steps 

often include additional nucleotide adaptor sequences, which allow the 
identification of PCR amplified DNA originating from a single mRNA molecule. 

They also denote information about the cell of origin of each mRNA molecule, 
which is essential for determining gene expression levels for individual cancer 

cells.136 Lastly, the cDNA libraries from individual cells are pooled together 
and subjected to next-generation sequencing similar to RNA-seq protocols. 

However, despite the ability of scRNA-seq to assess tumour cell 
transcriptomic heterogeneity, the technology still faces significant limitations. 

Firstly, it cannot be disregarded that the procedures used to dissociate 
individual cells from solid tumour samples can alter the cell transcriptional 

profile, for example, by triggering stress signalling within cells or disturbing 
cell-cell communication pathways present within the tumour. Secondly, 

during the RT step of scRNA-seq protocols, not all mRNA molecules are 
efficiently captured by poly(T) primers and converted to cDNA.137 As a result, 
scRNA-seq experiments often fail to detect low-expression genes within 

individual cells. This limitation, referred to as gene dropout, can result in 
sparse data and a small number of genes with reported expression per cell. 

Lastly, the use of scRNA-seq protocols is also limited by significantly higher 
costs and level of technical noise, which can be challenging to distinguish 

from real biological variations between cells. 
 

Importantly, both bulk RNA-seq and scRNA-seq cannot capture spatial 
information about the positioning of different cells within a tumour.  Cancer 

cells communicate with each other and the surrounding TME in a spatially 
dependent manner.  These interactions impact the tumour cell transcriptome 

and play a crucial part in influencing cancer development and progression.  
In particular, as illustrated above, tumour cell interactions with the TME have 

been shown to impact both proliferation-quiescence decisions and the 
establishment of TMD.  Newly developed methods, such as the 10X 

Genomics Visium spatial transcriptomics platform, are capable of capturing 
both spatial and transcriptome information from tumour tissue slides.  The 
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10X spatial transcriptomics platform achieves this by combining microarray 
technology and a barcoding approach similar to that used in scRNA-seq.  

Specifically, during sample preparation, a tumour tissue section is placed on 
an array slide covered in oligo capture probes.  Each probe contains an 

integrated nucleotide sequence which denotes its location within the array.  
Upon tissue permeabilization, RNA released from each cell binds to the 

nearby, adjacent oligos and during the RT step, the spatial barcode becomes 
integrated into the cDNA.  Lastly, through denaturation, cDNAs can be 

removed from the slide and used to create libraries for sequencing.  Other 
methods for assessing spatial tumour transcriptomic information have also 

been reported, for example, using single-molecule RNA fluorescence in situ 

hybridization.138 However, all spatial transcriptomics approaches are currently 
affected by similar limitations, including labour-intensive protocols and 

prohibitive experimental costs.  Most notably, spatial transcriptomics 
datasets have not yet been able to reach a single-cell resolution across the 
entire tissue, although considerable progress has been made by Nanostring 

with their recent CosMX platform. 
 

Lastly, whole-genome and whole-exome sequencing technologies have also 
started to be applied at a single-cell resolution. Compared to bulk 

sequencing, these methods utilise single-cell isolation methods similar to 
those described for scRNA-seq protocols. DNA isolated from individual cells 

is then subjected to whole genome amplification in order to create a sufficient 
amount of material for sequencing through methods such as single-cell 

comparative genomic hybridisation, multiple displacement amplification 
(MDA), or a combination of displacement pre-amplification and PCR 

amplification.139 However, due to the prohibitively high costs of these 
technologies, single-cell whole-genome and whole-exome sequencing are 

not routinely used to profile tumour samples. Instead, these technologies are 
primarily applied in small studies aiming to characterise intra-tumour 

heterogeneity and infer tumour cell evolution paths.140 
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1.13 PhD project aims 
 
My PhD has aimed to better understand the underlying biology of cancer cell 

quiescence and TMD by making use of large sequencing resources available 
to date. Currently, the lack of transcriptional signatures for the two states has 

hindered their exploration within publicly available large-scale genomic 
databases, such as the TCGA. Consequently, many aspects of the cancer 
dormancy states remain unexplored, including their prevalence across 

different cancer types and the tumour genomic backgrounds that favour or 
hinder their development. In order to address these questions, within this 

thesis, I firstly aimed to develop methodologies to capture signals of TMD and 
quiescence from primary tumour transcriptomic data. After applying these 

methods to the bulk-sequenced tumour sample TCGA catalogue, I then 
aimed to identify mutational features associated with the two states. Both 

TMD and cancer cell quiescence play key roles in cancer development and 
tumour progression. In particular, cancer cell quiescence has been 

increasingly observed as a contributing factor of resistance to chemotherapy, 
radiotherapy and other treatments that instead target cycling cells.24-26,28 

Therefore, a greater understanding of which genomic features are linked with 
cancer cell quiescence could shed light on the possible ways quiescent cells 

could be specifically targeted in the clinic. It could also help predict which 
patients will respond poorly to therapy. Moreover, within this thesis, I 

hypothesised that tumours contain various levels of quiescent cells, and in 
turn, this determines their ability to overcome therapies targeting cycling 

cells. This PhD project aimed to evaluate this assumption by investigating the 
clinical relevance of the transcriptomic cancer cell quiescence signature in 
predicting the long-term survival of patients within the TCGA cohort. Similarly, 

I also aimed to assess the relevance of quiescence to responses to a range 
of commonly used therapeutic agents using single-cell datasets from cancer 

cell lines. Lastly, the crosstalk between the TME and quiescent cancer cells 
remains relatively unexplored. Little is known about the ability of the TME to 

impact cancer cell proliferation-quiescence decisions and, vice versa, the 
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ability of quiescent cells to reshape the TME. Within this thesis, I aimed to 
explore these questions by predicting the differences in the way quiescent 

and proliferating cancer cells interact with the TME using single-cell 
transcriptome data from primary tumour samples. Overall, the main aims of 

the thesis are summarised as follows: 
 

1. Development and validation of a method for the quantification of cancer 
cell quiescence from transcriptomic data 

2. Evaluation of cancer cell quiescence and associated mutational features 
in bulk-sequenced tumours 

3. Evaluation of the therapeutic relevance of cancer cell quiescence 
4. Evaluation of the interactions between quiescent cancer cells and the 

tumour microenvironment  
5. Evaluation of tumour mass dormancy and underlying mutational 

processes in bulk-sequenced tumours 
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Chapter 2 – Methods 
 
2.1 Introduction 
 
Methods described within this chapter have previously been reported in 
Wiecek et al bioRvix, (2022)2 and Wiecek et al Front. Cell Dev. Biol., (2021),1 

on which I am the sole first and co-first author respectively. However, I would 
like to acknowledge that the experimental validation of CEP89, described in 

section 2.5, and the validation of the quiescence scoring methodology 

described in section 2.3 were performed by Dr Steve Cutty and supervised 
by Dr Alexis Barr. Both Dr Steve Cutty and Dr Alexis Barr wrote the details of 

the methods for the corresponding experiments. I would also like to 
acknowledge that the determination of the TP53 mutational status of TCGA 

cohort patient samples, detailed in section 2.2, was performed by Ping Zhang 
and Lingyun Xiong and supervised by Dr Gareth Bond. Ping Zhang, Lingyun 

Xiong and Dr Gareth Bond co-wrote the corresponding methods description 
of the analysis.  Furthermore, the identification of APOBEC mutagenesis 

enriched clusters within the TCGA cohort, described in section 2.4, was 
performed by Daniel Jacobson. Lastly, the breast cancer-specific random 

forest feature selection model, described in section 2.5, was created by Dr 
Mario Parreno-Centeno. 

 
2.2 Multi-omics TCGA cohort 
 

Data download and processing 

 
Fragments per kilobase of transcript per million mapped reads (FPKM) 

normalised RNA-sequencing expression data, copy number variation (CNV) 
gene-level data, as well as mutation annotation files aligned against the 

GRCh38 human reference genome from the Mutect2 and Muse pipelines 
were downloaded using the TCGABiolinks R package141 for 9,712 TCGA 

primary tumour samples across 31 solid cancer types.  The above data was 
downloaded for the following cancer types: ACC (adrenocortical carcinoma); 
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BLCA (bladder urothelial carcinoma); BRCA (breast invasive carcinoma); 
CESC (cervical squamous cell carcinoma and endocervical adenocarcinoma); 

CHOL (cholangiocarcinoma); COAD (colon adenocarcinoma); ESCA 
(oesophageal carcinoma), consisting of oesophageal adenocarcinoma 

(ESCA-AD) and oesophageal squamous cell carcinoma (ESCA-SC); GBM 
(glioblastoma multiforme); HNSC (head and neck squamous cell carcinoma); 

KICH (kidney chromophobe), KIRC (kidney renal clear cell carcinoma); KIRP 
(kidney renal papillary cell carcinoma); LGG (brain lower grade glioma); LIHC 

(liver hepatocellular carcinoma); LUAD (Lung adenocarcinoma); LUSC (lung 
squamous cell carcinoma); MESO (mesothelioma); OV (ovarian serous 

cystadenocarcinoma); PAAD (pancreatic adenocarcinoma); PCPG 
(pheochromocytoma and paraganglioma); PRAD ( prostate adenocarcinoma); 

READ (rectum adenocarcinoma); SARC (sarcoma); SKCM (skin cutaneous 
melanoma); STAD (stomach adenocarcinoma); TGCT (testicular germ cell 

tumours); THCA (thyroid carcinoma); THYM (thymoma); UCEC (uterine corpus 
endometrial carcinoma); UCS (uterine carcinosarcoma); UVM (uveal 

melanoma). For patients with multiple samples available, one RNA-seq 
barcode entry was selected for each individual patient resulting in 9,631 total 

entries. All expression data were log-transformed for downstream analysis. 
During quiescence score calculation only, the expression data were scaled 
according to tumour purity estimates reported by Hoadley et al142 to account 

for potential confounding quiescence signals coming from non-tumour cells 

in the microenvironment. Tumour purity estimates reported by Hoadley et al 
were calculated using the ABSOLUTE computational method based on 

segmented tumour CNV data, obtained using matched DNA-sequencing.  
The expression data were regressed on the tumour purity estimates using the 

MOFA R package. Quiescence scores were only calculated for samples with 

purity estimates higher than 30%, leaving 8,005 samples for downstream 
analysis. Clinical data for the TCGA cohort samples were downloaded from 

the cBioPortal database.143,144 
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Tumour sample mutational rate calculation 

 
The mutation rates of all TCGA primary tumour samples were determined by 

log-transforming the total number of mutations in each sample divided by the 
length of the exome capture (38Mb).   
 

Tumour sample TP53 mutational status 

 
TP53 functional status was assessed based on somatic mutation and copy 

number alterations as described in Zhang et al.145 TP53 mutation and copy 

number data for the TCGA tumours were downloaded from cBioPortal.143,144 
Tumours with TP53 oncogenic mutations (annotated by OncoKB) and copy-

number alterations (GISTIC score ≤-1) were assigned as TP53 mutant and 

CNV loss. Tumours without these TP53 alterations were assigned as TP53 

wild type. The effects of the TP53 mutation status on the quiescence score 

were then determined with a linear model approach with the quiescence 
score as a dependent variable and mutational status as an independent 

variable. The p-values were false discovery rate (FDR-)adjusted. 
 

TCGA genomic instability, telomerase activity and stemness scores 

 

Aneuploidy scores and whole genome duplication events across TCGA 
samples were obtained from Taylor et al.146 Microsatellite instability status for 

uterine corpus endometrial carcinoma, as well as stomach and colon 
adenocarcinoma samples were obtained from Cortes-Ciriano et al.147 

Telomerase enzymatic activity “EXTEND” scores were obtained from 

Noureen et al.148 Expression-based cancer cell stemness indices were 
obtained from Malta et al.149 Centrosome amplification transcriptomic 

signature (CA20) scores were obtained from Almeida et al.150 
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2.3 Cancer cell quiescence quantification 
 

Selection of cancer cell quiescence marker genes 

 

Generic quiescence markers: 

Differential expression analysis results comparing cycling immortalised, non-
transformed human epithelial cells and cells in five different forms of 

quiescence (spontaneous quiescence, contact inhibition, serum starvation, 
CDK4/6 inhibition and MEK inhibition) were obtained from Min and Spencer.47 

A total of 195 genes were differentially expressed in all five forms of 
quiescence under an adjusted p-value cut-off of 0.05. This gene list, reflective 

of a generic quiescence phenotype, was subjected to the following 
refinement and filtering steps: (1) selection of genes with a unidirectional 

change of expression across all five forms of quiescence; (2) removal of genes 
involved in other cell cycle stages included in the “KEGG_CELL_CYCLE” 

gene list deposited at MSigDb; (3) removal of genes showing low standard 
deviation (<1) and low levels of expression within the TCGA dataset (<0.5 log2 
FPKM); (4) selection of genes upregulated and downregulated in quiescence 

which showed positive and negative correlation respectively with the pan-
cancer expression of the transcriptional targets of the DREAM complex 

across the TCGA cohort. The resulting 139-gene signature is presented in the 
Appendix (Appendix 1). Gene set enrichment analysis using the 139 

quiescence biomarker genes was carried out using the ReactomePA R 

package. 
 

Quiescence subtype-specific markers: 
Gene lists representing spontaneous quiescence, contact inhibition, serum 

starvation, CDK4/6 inhibition and MEK inhibition programmes were obtained 
using genes differentially expressed in each individual quiescence form using 

an adjusted p-value cut-off of 0.05. Then, the gene lists were subjected to 
filtering steps 2 and 3 described above. Following the refinement steps, ten 

upregulated and ten downregulated genes with the biggest log2 fold changes 
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were selected for each quiescence type. The resulting 20 gene signatures are 
presented in the Appendix (Appendix 2). 

 

Quiescence score calculation 

 

The GSVA R package was used to implement the combined z-score,151 single 
sample Gene Set Enrichment (ssGSEA)152 and Gene Set Variation Analysis 

(GSVA)153 gene set enrichment methods. Furthermore, the singscore single-
sample gene signature scoring method154 was implemented using the 

singscore R package. In addition to these, a mean scaled quiescence score 

was calculated based on the refined list of genes upregulated and 
downregulated in quiescence, as well as a curated housekeeping genes from 

the “HSIAO_HOUSEKEEPING_GENES” list deposited at MSigDb, as follows: 
 

 

QS = 	
1
n∑𝐺! −	

1
n∑𝐺"

1
n∑𝐺#

 

QS = mean scale quiescence score 
GU = expression of genes upregulated in quiescence 
GD = expression of genes downregulated in quiescence 
GH = expression of housekeeping genes 
n = number of genes in each gene set 
 

TCGA pan-cancer quiescence group determination 

 
Quiescence scores for the TCGA cohort were derived from expression data 

scaled by tumour purity estimates. In addition, the pan-cancer TCGA samples 
were also classified into “high” or “low” quiescence groups based on k-

means clustering (k=2) on the expression data of 139 quiescence biomarker 
genes, following the removal of tissue-specific expression differences using 

the ComBat function from the sva R package.155 

 

 



 57 

Measuring the depth of cancer cell quiescence 

 

The GSE124109 dataset from Fujimaki et al56 was employed where the 

expression data of rat embryonic fibroblasts was profiled as the cells moved 
from shallow to deep quiescence over time in the absence of growth signals. 

The derived quiescence scores calculated using the z-score methodology 
increased from shallow to deep quiescence. 

 

Validation of quiescence scoring methodologies 

 

Single-cell RNA-sequencing validation datasets: 
Datasets were obtained from the ArrayExpress and Gene Expression 

Omnibus (GEO) databases through the following GEO Series accession 
numbers: GSE83142, GSE75367, GSE137912, GSE139013, GSE90742 and 

E-MTAB-4547. Quality control analysis was standardised using the 
SingleCellExperiment156 and scater157 R packages. Normalisation was 

performed using the scran158 R package.  

 
Bulk RNA-sequencing validation datasets:  

Datasets were obtained from the GEO and Sequence Read Archive 

databases through the following accession numbers: GSE93391, 
GSE114012, GSE131594, GSE152699, GSE124854, GSE135215, 

GSE99116, GSE124109, GSE147150 and PRJNA5766606. GSE114012 
count data were normalised to transcript per million (TPM) values using the 

GeoTcgaData R package. All normalised datasets were log-transformed 

before further analysis.  
 
The accuracy with which the quiescence scoring methods could separate 

proliferating and quiescent samples within the validation datasets was 
determined by calculating the area under the receiver operating characteristic 

(ROC) curves, using the plotROC R package.  
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Experimental validation in lung adenocarcinoma cell lines 

The average fraction of cancer cells spontaneously entering quiescence was 
estimated for nine lung adenocarcinoma cell lines (NCIH460, A549, 

NCIH1666, NCIH1944, NCIH1563, NCIH1299, NCIH1650, H358, L23) using 
EdU and phosphorylated RB (phospho-RB) staining proliferation assays.  

 
Cell lines were obtained from American Type Culture Collection (ATCC) or 

Sigma and regularly checked for mycoplasma. A549 and NCIH460 were 
cultured in Dulbecco’s Modified Eagle Medium (DMEM) (Gibco). NCIH358, 

NCIH1299 and NCIH1563 were maintained in RPMI-1640 (Gibco) 
supplemented with 5mM sodium pyruvate and 0.5% glucose. NCIH1944, 

NCIH1666, NCIH1650 and L23 were grown in RPMI-1640 ATCC formulation 
(Gibco). A427 were cultured in Eagle’s Minimum Essential Medium (EMEM) 

(ATCC). A549, NCIH460, H358, NCIH1299, NCIH1563, and A427 were 
supplemented with 10% heat-inactivated foetal bovine serum (FBS). 
NCIH1666 with 5% heat-inactivated FBS and all other cell lines with 10% 

non-heat-inactivated FBS. All cell lines had penicillin-streptomycin (Gibco) 
added to 1%. Cells were maintained at 37°C and 5% CO2. To calculate the 

quiescent fraction, A549 and NCIH460 cells were plated at a density of 500 
cells/well, and all other cell lines at a density of 1000/well, in 384well 

CellCarrier Ultra plates (PerkinElmer) in the relevant media. 24h later, 5μM 
EdU was added, and cells were incubated for a further 24h before fixing in a 

final concentration of 4% formaldehyde (15 min, Room Temperature), 
permeabilization with phosphate-buffered saline (PBS)/0.5% Triton X-100 (15 

min at room temperature) and blocking with 2% bovine serum albumin (BSA) 
in PBS (60 min at room temperature). The EdU signal was detected using 

Click-iT chemistry, according to the manufacturer’s protocol (ThermoFisher). 
Cells were also labelled for phospho-Ser807/811 RB using Rabbit 

monoclonal antibody (mAb) 8516 (CST) at 1:2000 in blocking solution 
overnight at 4°C. Unbound primary antibody was washed three times in PBS 

and secondary Alexa-conjugated antibodies were used to detect the signal 
(ThermoFisher, 1:1000, 1h at room temperature). Finally, nuclei were labelled 
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with Hoechst 33258 (1 μg/ml, 15 min at room temperature) before imaging on 
a high-content widefield Operetta microscope, 20x N.A. 0.8. Automated 

image analysis (Harmony, PerkinElmer) was used to segment and quantify 
nuclear signals in imaged cells. Quiescent cells were defined by the absence 

of EdU or phospho-RB staining, determined by quantification of their nuclear 
expression. 

 
The quiescence scores for cancer cell lines were calculated using 

corresponding log-transformed reads per kilobase of transcript per million 
mapped reads (RPKM) normalised bulk RNA-seq data from the Cancer Cell 

Line Encyclopedia (CCLE) database.159 

 

Cancer stem cell division estimates 

 

The mean stem cell division estimates for different cancer types used in this 
study were obtained from Tomasetti and Vogelstein.160 

 

2.4 Mutational Signature Analysis  
 

TCGA cohort mutational signature estimation 

 

Mutational signature contributions were inferred using deconstructSigs,161 
and the choice of signatures was further informed using results from 

SigProfiler.162 Only samples with at least 50 mutations were employed in the 

analysis, for a total of 6,410 samples.  

 
SigProfiler was used to infer mutational signatures from TCGA whole-exome 

sequencing data. For each TCGA study of interest, input mutational matrices 
were generated using the SigProfilerMatrixGeneratorR function using all 

samples containing at least 50 mutations and aligning the mutation 

annotation format (MAF) files to the hg38 genome build. SigProfilerExtractorR 

was used to extract de novo mutational signatures for each cancer type. For 
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each study, the solution with the greatest number of mutational signatures 
was chosen, for which also the sum of the solution stability (calculated 

average silhouette coefficient) and minimum stability exceeded 1, and the 
minimum stability value did not fall below 0.4. For the selected solutions, the 

identity of the mutational signatures was determined by calculating cosine 
similarities with COSMIC v3.1 mutational signatures.  

 
Mutational signatures from whole-exome sequencing data were also inferred 

using the deconstructSigs R package. MAF files were aligned against the 

hg38 genome build, and the COSMIC v3.1 mutational signatures were 
employed in the analysis. For each cancer type, the contribution of all 

signatures within the deconstructSigs solution was set to 0, apart from SBS1, 
SBS5, signatures identified in the corresponding SigProfiler solution, as well 

as signatures which contribute on average at least 5% of mutations across 

all samples within the deconstructSigs solution. For cancer types where 

SigProfiler did not result in a stable solution, the deconstructSigs solution was 
used with the contribution of all signatures set to 0, apart from SBS1, SBS5 

as well as signatures which contribute at least 5% of mutations across 
samples within the deconstructSigs solution.  

 

Identification of APOBEC mutagenesis enriched samples 

 

APOBEC mutagenesis enriched samples were determined through pan-
cancer clustering of mutational signature contributions as described in 
Wiecek et al.1 Dimensionality reduction with t-distributed stochastic neighbor 

embedding (t-SNE)163 using the Rtsne R package, followed by expectation-

maximisation clustering using the EMCluster R package, was performed on 

the mutational signature profiles for the 6,410 samples with at least 50 
mutations. The optimal number of clusters was determined to be 10, as this 

was the number associated with the highest increase in log-likelihood, which 
did not result in the segmentation of the cluster of APOBEC-enriched samples. 

Next, the APOBEC mutagenesis cluster was defined as the cluster with the 
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highest mean SBS2 and SBS13 contribution. This procedure was repeated 
100 times. Each time the optimal number of clusters was assumed to be 10. 

Only samples which appeared in the APOBEC cluster at least 50 times were 
counted as being APOBEC enriched. 

 

2.5 Modelling genomic dependencies quiescence 
 

Pan-cancer ensemble elastic net regression model 

 
The COSMIC database was used to source a list of 723 known drivers of 

tumorigenesis (Tiers 1+2).10 Genes within the Tier 1 curated list have a 
documented activity relevant to cancer and have been shown to be frequently 

mutated in the context of cancer. Additionally, the change in gene activity 
because of mutation has been shown to be linked with oncogenic 

transformation. Genes within the Tier 2 curated list have strong indications of 
having activity relevant to cancer, but less extensive evidence is available. 

Using Fisher’s exact tests, 286 oncogenes and tumour suppressors from this 
curated list of 723 genes showed a significant enrichment or depletion of 

mutations or copy number variants in samples classed as highly quiescent 
either pan-cancer or within individual TCGA studies. Only missense, 

nonsense, non-stop, frameshift deletion/insertion, and inflame 
insertion/deletion mutations were considered in the analysis. Fisher’s exact 

tests within individual TCGA studies were only carried out for genes altered 
in more than 5% of samples of the cancer type of interest. The p-values were 
adjusted using the Benjamini-Hochberg (BH) procedure to accommodate 

multiple testing. 
 

To classify dormant from fast proliferating tumours, the 286 genes out of the 
723 COSMIC-reported cancer driver genes with enrichment of somatic 

alterations in highly quiescent samples (as described above) were used as 
input features for an ensemble elastic net regression model along the tumour 

mutational rate, whole-genome doubling estimates, ploidy, aneuploidy 
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scores, and 15 mutational signatures, which showed a significant correlation 
with quiescence scores either pan-cancer or within individual TCGA studies. 

The caret R package was used to build an elastic net regression model 1000 

times on the training dataset of 3,753 TCGA primary tumour samples (80% 
of the total dataset). Only samples with at least 50 mutations were used in the 

model, for which mutational signatures could be reliably estimated. For each 
of the 1000 iterations, 90% of the samples were randomly selected from the 

training dataset to build the model. Only features which were included in all 
1000 model iterations were selected for further analysis. To test the 

performance of our approach, a linear regression model was built using the 
reduced list of genomic features, and their corresponding coefficients 

averaged across the 1000 elastic net regression model iterations. The linear 
regression model was then applied to the internal validation dataset of 936 

samples. 
 

SHAP values for the linear regression model 

 

Shapley additive explanations (SHAP) values for the linear regression model 
used to predict quiescence scores were obtained using the fastshap R 

package. 
 

Gene enrichment and network analysis of quiescence linked features 

 

Gene set enrichment analysis was carried out using the ReactomePA R 

package, as well as GeneMania164 and ConsensusPathDB.165 Interactions 
between Cep89 and other cell cycle components were inferred using the list 

of cell cycle genes provided in cBioPortal143,144 and GeneMania to reconstruct 
the expanded network with direct interactors (STAG1, CCND2, STAT3). 

Networks were visualised using Cytoscape.166 
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Validation of genomic features of cancer cell quiescence 

 

For elastic net model feature validation, RNA-seq data was downloaded for 

six cancer studies from cBioPortal,143,144 along with patient-matched whole-
genome, whole-exome, and targeted sequencing data. The six datasets used 

comprise breast cancer (Samsung Medical Center (SMC)167 and Molecular 
Taxonomy of Breast Cancer International Consortium (METABRIC)168) 

paediatric Wilms’ tumour (Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET)),169 bladder cancer, prostate adenocarcinoma 
and sarcoma (Memorial Sloan Kettering Cancer Center (MSKCC))170-172 

studies. The data were processed and analysed in the same manner as the 
TCGA data. In addition, RNA-seq data for 27 MCF7 cell line strains, alongside 

cell line growth rates and targeted mutational sequencing data were obtained 
from Ben-David et al.173 

 

CEP89 experimental validation in lung adenocarcinoma cell lines  

 

CEP89 was depleted by ON-Target siRNA Pool from Horizon. NCI-H1299 

cells were reverse transfected in 384 well plates with 20nM of non-targeting 
control (NTC) or CEP89-targeting siRNA using Lipofectamine RNAiMax 

(ThermoFisher), according to the manufacturer’s instructions. Cells were left 
for 24h before 5μM EdU was added for the final 24h, and then cells were 

processed as above to determine the quiescent fraction. To determine the 
level of Cep89 depletion by western blot, cells were reverse transfected with 

siRNA in 24 well plates. 48h after transfection, cells were lysed directly in 1x 
sodium dodecyl sulphate (SDS) sample buffer with 1mM dithiothreitol (DTT) 

(ThermoFisher). Samples were separated on pre-cast 4-20% Tris-Glycine 
gels, transferred to polyvinylidene fluoride (PVDF) using the iBlot2 system and 

membranes blocked in blocking buffer (5% milk in tris-buffered saline (TBS)) 
for 1h at room temperature. The membrane was then cut, and the upper half 

was incubated in 1:1000 Cep89 antibody (Sigma, HPA040056), the bottom 
half in B-actin antibody 1:2000 (CST; 3700S) diluted in blocking buffer 
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overnight at 4’C. Membranes were washed three times in TBS-0.05% 
TritonX-100 before being incubated in secondary anti-rabbit (Cep89) or anti-

mouse (B-actin) horseradish peroxidase (HRP) conjugated antibodies (CST 
7074P2 and CST 7076P2, respectively) diluted 1:2000 in blocking buffer for 

1h at room temperature. Membranes were washed three times again and 
signal was detected using Clarity ECL solution (BioRad) and scanned on an 

Amersham ImageQuant 800 analyser.   
 

CEP89 associated drug sensitivity in cancer cell lines 

Cancer cell line drug sensitivity area under the dose-response curve (AUC) 

measurements were downloaded from the Genomics of Drug Sensitivity in 
Cancer (GDSC) database. 

 

Breast cancer specific ensemble elastic net regression model 

 

The ensemble elastic net regression approach described above was also 
used to identify genomic features associated with quiescence within the 
TCGA breast cancer study alone. Compared to the pan-cancer model, the 

mutational status of oncogenes and tumour suppressors was only included 
in the breast cancer-specific model if the genes showed an enrichment or 

depletion of mutations across the entire TCGA cohort or only across the 
breast cancer study. Similarly, only mutational signatures contributions were 

included for signatures showing correlation with quiescence scores either 
pan-cancer or across the breast cancer study. Genomic instability measures 

included in the pan-cancer model were also included. The breast cancer-
specific ensemble elastic net regression model was run, as described above, 

using a training dataset of 402 samples and a test dataset of 100 samples. 
 

Breast cancer specific random forest model 

 

Using the same starting features as the breast cancer-specific ensemble 
elastic net regression model, an analysis of variance (ANOVA)-based feature 
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importance classification was used to identify 30 genomic features most 
discriminative of samples with lower and higher than average quiescence 

scores. A random forest model was then built using the identified features 
and correctly classified samples according to their quiescence state with a 

mean accuracy of 74% across five randomly sampled test datasets from the 
cohort.  

 

2.6 Quiescence subtype determination 
 

TCGA cohort studies 

 

Samples with evidence of dormancy characterised by a generic quiescence 
score >0 were further subclassified based on the most likely form of 

quiescence exhibited, among CDK4/6 inhibition, contact inhibition, MEK 
inhibition, spontaneous quiescence or serum starvation, using subtype-
specific expression signatures. A conservative approach was used and each 

dormant sample was classed into a specific quiescence subtype if the 
quiescence score for the corresponding programme was higher than one 

standard deviation of the distribution across the TCGA cohort, and if the 
score was significantly higher than for the remaining programmes when 

assessed using a Student’s t test. Samples which could not be classified into 
any of the five quiescence states characterised in this study were classified 

as “uncertain”.  
 

Single-cell RNA seq treatment response datasets 

 

The quiescence subtype of individual single cells was inferred by mapping 
such individual cells onto the reference dataset of MCF10A cells reflecting 

different forms of quiescence obtained from Min and Spencer.47 The ComBat 

R package155 was used to remove the study batch effect between the 
expression data to be classified and the reference bulk RNA-seq data. 

Principal component analysis (PCA) dimensionality reduction analysis was 
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then used on the combined datasets using the prcomp R function. Finally, for 

each patient sample or single-cell expression data entry, a k-nearest 
neighbour algorithm classification was performed using the knn function from 

the class R package. During the classification thee nearest reference bulk 

RNA-seq data points were considered, with two nearest neighbours with 
identical classes needed for classification.  

 

2.7 Quiescence impact on survival and therapy response analysis 
 

Survival analysis 

 

Multivariate Cox Proportional Hazards analysis was carried out using the 

coxph function from the survival R package. Survival curves were calculated 

using the Kaplan–Meier formula and plotted using the survminer R package. 

An optimal score cut-off value of 2.95 for the generic quiescence score was 
determined using the surv_cutpoint function during the pan-cancer analysis 

across the TCGA cohort. Optimal quiescence score cut-offs were also 
determined separately when the Multivariate Cox Proportional Hazards 

analysis was performed for individual cancer-type TCGA studies. Lastly, the 
surv_cutpoint function was also used to determine the optimal cut-offs for the 

CDK4/6 inhibition, contact inhibition, MEK inhibition, serum starvation and 

spontaneous quiescence scores.  
 

Treatment response scRNA-seq data 

 

Datasets have been obtained from the GEO database through the following 
GEO Series accession numbers: GSE134836, GSE134838, GSE134839, 

GSE137912, GSE149224 and GSE139944. The umap R package was used 
for dimensionality reduction with a constant seed for reproducibility.  
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2.8 Cell-Cell interaction analysis 
 

Single cell data processing 

 

Single-cell RNA-seq data described in Kim et al,174 Li et al,175 Chung et al,176 

and Wu et al177 were retrieved from the Gene Expression Omnibus using the 

following accession codes: GSE131907, GSE81861, GSE75688 and 
GSE176078. Single-cell sequencing data from Qian et al178 and Bassez et al179 

were obtained from an interactive web server provided by the authors 
(http://blueprint.lambrechtslab.org/). Quality control analysis and 

normalisation of the raw gene matrices provided by Qian et al,178 Kim et al,174 

Wu et al177 and Bassez et al179 were performed using the Seurat R package.180 

Matrices were filtered by removing cells with <200 and >6000 expressed 
genes, as well as cells with >15% of reads mapping to mitochondrial RNA. 
Dimensionality reduction, based on the expression of the 139 quiescence 

biomarker genes, was performed for each dataset using the umap R package 

with a constant seed for reproducibility. 
 

Cell-cell interaction analysis 

 

Cell-cell interaction analysis was performed using CellphoneDB,181 using 
normalised gene expression matrices from each scRNA-seq dataset as input, 

along with reported cell type annotation. Cancer cells were further stratified 
into proliferating and quiescent cells based on the quiescence scores derived 

from the transcriptome data. Cancer cells with quiescence scores lower than 
0 were classified as proliferating, while cancer cells with a quiescence score 

greater or equal to 0 were classified as quiescent. Analysis on the data 
deposited by Qian et al,178 Wu et al,177 and Bassez et al179 was run on a patient-

by-patient basis.  
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Immunotherapy response analysis 

 
Collated non-small cell lung cancer (NSCLC) and skin cutaneous melanoma 

patient tumour sample pre-treatment transcriptome data and clinical therapy 
response Information reported by Liu et al,182 Cho et al,183 Gide et al184 and 

Huang et al,185 were downloaded from Lee et al,186 Survival curves were 

calculated using the Kaplan–Meier formula and plotted using the survminer R 

package. An optimal LGALS9 expression value was determined using the 
surv_cutpoint. 

 

Bulk RNA-seq breast cancer datasets 

 

Bulk-sequenced RNA-seq data was downloaded for four breast cancer 
(Clinical Proteomic Tumor Analysis Consortium (CPTAC),187 Metastatic Breast 

Cancer (MCB) project,188 Molecular Taxonomy of Breast Cancer International 
Consortium (METABRIC),168 Samsung Medical Center (SMC)167) studies from 

the cBioPortal database.143,144 These data were processes and analysed in the 
same manner as the TCGA breast cancer study.   

 

2.9 Quantifying the dormancy, exhaustion and APOBEC 
programmes  
 
Mean log-transformed expression values of genes deemed to be associated 

with a given program by manual curation of the literature were used to 
produce per-sample program scores for TMD, immunological/angiogenic 

dormancy, exhaustion and APOBEC activity. Genes that have been 
associated with immunological and angiogenic dormancy, rather than generic 

immunity or angiogenesis processes, have been specially selected to ensure 
that any associations identified downstream are likely to be TMD-related.  

 
The APOBEC and exhaustion program scores were calculated by taking the 
mean expression of genes within the respective programs, as all genes in the 

programs were expected to be upregulated in the respective states. 
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The angiogenic and immunological dormancy (AD/ID) program scores, as well 

as the TMD scores, were calculated using two different approaches: 
 

Scaled Difference of Means 

 

For every sample in the cohort, a score S was derived by subtracting the sum 
of expression values of downregulated genes (Ed) in the respective program 

from the sum of expression values of upregulated genes (Eu) and dividing by 

the total number of genes within the program (Nu + Nd, where Nu is the total 

number of upregulated genes and Nd is the total number of downregulated 

genes): 

S = 	
∑ 𝐸$,&
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Principal Component Analysis (PCA) 
 

Principal component analysis was performed across the pan-cancer dataset 

using the up- and down-regulated gene signature of the respective program. 
The dormancy score was extracted as the coordinate of the first principal 

component (PC1). The PCA R function from the FactoMineR package was 

used to perform the PCA analysis. 
 
The proliferation/apoptosis ratio was calculated by dividing the average 

expression of E2F target genes [including MKI67, a classical proliferation 

marker],110 obtained from the “HALLMARK_E2F_TARGETS” gene list, by the 
average expression of genes involved in apoptosis from the 

“HALLMARK_APOPTOSIS” gene list. Both gene lists are part of the “H: 
hallmark gene sets” collection deposited at MSigDB. 

 
Samples with high TMD were identified as being within the upper quartile of 

the TMD program score range and presenting a ratio of 
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proliferation/apoptosis <1. Dormant samples were further classified as having 
immunological and/or angiogenic dormancy based on whether they were in 

the upper quartile of the angiogenic (AD) and/or immunological dormancy (ID) 
program score range, respectively. Samples with no evidence for TMD 

(expanding tumours, marked as ‘NO’) were identified as being in the lower 
quartile of the TMD program score range and showing a ratio of 

proliferation/apoptosis > 1. The remaining samples (‘MID’ category) were 
classed as having middle levels of expansion with some weak potential 

evidence of dormancy but biologically unlikely to be dormant. 
 

Assessing the Robustness of the AD/ID Program Scores 

 

To assess the relative robustness of the three methodologies employed to 
calculate the TMD and AD/ID scores, took two approaches were taken: 

 
(1)  One gene was systematically removed from the respective program at a 

time, and the scores were recalculated. 
(2)  A small amount of random noise was added to the expression of each 

gene in the signature, measured in each sample and scores were 
recalculated. The jitter R function was used to introduce variable amounts of 

noise in the data by changing the factor variable level between 1 and 200. 
The approach was repeated 100 times for each noise level. 

The overall variability of the fold changes in the new score compared to the 
original scores was compared between the ‘scaled difference of means’ and 

PCA-based methods.  
 

2.10 Evaluation of genomic and cellular context of tumour mass 
dormancy 
 
Association Between Cancer Driver Mutations and TMD 

 

The COSMIC database10 was used to source a list of 723 known drivers of 
tumorigenesis (Tiers 1 + 2). COSMIC genes mutated in at least 1% of samples 
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across all solid primary tumour samples were tested for enrichment or 
depletion of mutations between samples with high and low TMD using 

Fisher’s exact test. Only missense, nonsense, non-stop, frameshift 
deletion/insertion and inframe insertion/deletion mutations were considered 

in the analysis. For HRAS, KRAS, and NRAS, a Fisher’s exact test was also 

performed to test for enrichment or depletion of specific recurrent hotspot 
mutations, reported by the cBioPortal data hub and based in part on 

methodology from Chang et al189 and Gao et al.190 The analysis was also 

repeated on a cancer-by-cancer basis, where COSMIC genes mutated in at 
least 5% of samples within the cancer- specific study sample were tested for 
enrichment or depletion of mutations with TMD samples. The p-values were 

corrected using the BH procedure to accommodate for multiple testing.  

 
To identify genes that are positively selected in the context of TMD, a 

maximum-likelihood dN/dS method was applied separately for high and low 
TMD samples using the dNdScv R package,191 run with default parameters.  

 

Validation datasets 

 

For validation, RNA-seq and matched whole-genome sequencing data were 
downloaded for 12 cancer studies from the ICGC Data Portal,11 accompanied 

by RNA-seq and matched targeted sequencing from cBioPortal143,144 for the 
following datasets: bladder cancer (MSKCC);171 breast cancer (METABRIC);168 

prostate adenocarcinoma (MSKCC);172 sarcoma (MSKCC),170 whole-genome 
sequencing from paediatric rhabdoid tumours (TARGET) and prostate cancer 
(Deutsches Krebsforschungszentrum (DKFZ)),192 and whole-exome 

sequencing from: breast cancer (SMC);167 lung adenocarcinoma (Singapore 
Oncology Data Portal (OncoSG));193 pancreatic adenocarcinoma (Queensland 

Centre for Medical Genomics (QCMG));194 prostate adenocarcinoma 
(Broad/Cornell);195 upper tract urothelial carcinoma (Cornell/Baylor/MD 

Anderson Cancer Center (MDACC));196 paediatric Wilm’s tumour (TARGET).169 
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The data were processed and analysed in the same manner as the TCGA 
data.  

 

Assessing the Robustness of APOBEC Associations 

 

Correlations between the mean expression of APOBEC-related genes and 
random gene expression programs were calculated by randomly selecting an 

equal number of genes to that found in the TMD signatures (35) from the 
genome and assessing the mean expression correlation with APOBEC 
activity. 1,000 iterations were performed.  

 

Tumour Microenvironment Deconvolution From Bulk RNA-Seq Data 

 

The tumour microenvironment cell infiltration scores were calculated using 
the ConsensusTME R package197 based on gene sets from Bindea et al.198 

Cell abundance was estimated from the TCGA bulk RNA- seq data using 
singe sample Gene Set Enrichment Analysis (ssGSEA). Broader categories 

(cytotoxic cells, T helper cells and dendritic cells) were scored by combining 
the expression across subtype-specific markers.  

 

2.11 Dimensionality Reduction Analysis 
 

PCA dimensionality reduction 

 

Throughout the thesis, the prcomp R function, or the PCA R function from the 

FactoMineR package, has been used to perform PCA analysis. 

 

UMAP dimensionality reduction 

 

Throughout the thesis, the umap R package was used to perform Uniform 

Manifold Approximation and Projection (UMAP) dimensionality reduction with 

a constant seed for reproducibility. 
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PHATE dimensionality reduction 

 

The phateR R package199 was used to perform Potential of Heat-diffusion for 
Affinity-based Trajectory Embedding (PHATE) dimensionality reduction with 

a constant seed for reproducibility. The ComBat function from the sva R 

package200 was used to remove tissue-specific expression patterns from the 
TCGA RNA-seq data.  

 

2.12 Gene lists 
 

The following list of curated genes was downloaded from the MSigDb 

database: housekeeping genes labelled “HSIAO_HOUSEKEEPING_GENES”, 
genes associated with the G1 stage of the cell cycle labelled 

“REACTOME_G1_PHASE”, genes associated with serum starvation labelled 
“REACTOME_CELLULAR_RESPONSE_TO_STARVATION”, E2F target 

genes labelled “HALLMARK_E2F_TARGETS”, genes involved in apoptosis 
labelled “HALLMARK_APOPTOSIS”. Genes associated with the senescence-

associated secretory phenotype were obtained from Basisty et al.201 Lists of 

genes making up the various DNA damage repair pathways were derived from 
Pearl et al.202 MEK inhibition was assessed based on the activity of the MAPK 

pathway as determined using an expression signature (MAPK pathway 
activity score (MPAS)) consisting of 10 downstream MAPK transcripts.203 

Genes associated with contact inhibition were obtained from the curated 
“contact inhibition” gene ontology term. The list of immune checkpoint genes 

was obtained from Hu et al.204  

 

2.13 Data visualization and basic statistics 
 
Graphs were generated using the ggplot2 and ggpubr R packages. As 

appropriate, groups were compared using the Student’s t test, Wilcoxon 
rank-sum test or ANOVA. 
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Pairwise correlations were calculated using the Pearson correlation statistics. 
The corrplot R package was used to analyse and visualise the correlation 

matrices. As appropriate, groups were compared using the Student’s t-test, 

Wilcoxon rank-sum test or Kruskal–Wallis test. Multiple testing correction was 

applied using the BH method. The significance threshold was taken as p < 
0.05.  

2.14 Code availability 

The code which was developed for analysis that was submitted for 

publication in academic journals is publicly available. This includes analysis 

in chapters 3,4, and 5, for which code is available at the following repository: 
https://github.com/secrierlab/CancerCellQuiescence. It also includes 

analysis in chapter 7, for which code is available in the following repository: 
https://github.com/secrierlab/tumourMassDormancy/tree/v1.0. 
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Chapter 3 – Evaluation of cancer cell quiescence 

from transcriptomic data 
 

3.1 Introduction 
 

In this chapter, I aim to develop a computational framework that would allow 
the detection of quiescence signals from cancer transcriptome data, which 

are widely available and comprise multiple tissues.   
 

Currently, quiescence remains a poorly defined cell cycle state within cancer 
cells. This is partially due to the existence of multiple quiescence subtypes 

resulting from various initiating stimuli.23,46 Canonically, cells can be forced 
into quiescence by external stresses and the removal of extracellular 

mitogens.46  Intracellular stress, such as naturally occurring DNA damage or 
replication stress incurred during the S-phase of the cell cycle, has also been 
shown to trigger this state of proliferative arrest.66 Moreover, in the context of 

disseminated tumour cells (DTCs) at pre-metastatic sites, quiescence can be 
induced by the interaction of tumour cells with the microenvironment.75-78,108 

In numerous cancer types, the expression of secreted molecules at the 
specific pre-metastatic sites has been linked with the presence of quiescent 

DTCs.75-78,108,109 However, there is no published universal gene signature that 
can accurately and reliably detect the full range of heterogenous quiescence 

states from transcriptomic data across various cancer types in both primary 
tumour and metastatic samples. Instead, quiescent cancer cells are currently 

defined by low expression of proliferation markers rather than markers 
specific to the quiescent stage. However, this approach does not accurately 

distinguish quiescence from other cell cycle phases, e.g., G1. This lack of a 
universal transcriptomic quiescence signature has hindered the exploration 

of the underlying biology of this cellular state in cancer using the available 
large-scale genomics databases such as the Cancer Genome Atlas (TCGA).  

Quiescence has often been observed in cancer as a contributing factor of 
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resistance to chemotherapy, radiotherapy and other treatments targeting 
cycling cells.24-26,28 Therefore, the identification of genomic features 

associated with quiescence may reveal novel biomarkers of patient response 
to commonly used cancer therapies. It may also reveal unique vulnerabilities 

of quiescent cells, which could be targeted in the clinic.  
 

To better delineate the differences and common transcriptomic features 
shared across quiescence subtypes, Min and Spencer47 characterised the 

transcriptomes of spontaneously quiescent immortalised, non-transformed 
human epithelial cells along with cells forced into quiescence by serum 

starvation, contact inhibition as well as pharmacological inhibition of MEK and 
CDK4/6. By identifying genes differentially expressed across the different 

quiescence subtypes, this approach aimed to identify common features of 
quiescent cells and exclude genes whose expression changes reflect the 

inducing stimuli.  Therefore, it is likely to highlight pathways involved in the 
downstream consequences of G0 entry, which could serve as novel 

biomarkers of quiescent cells.  
 

Based on the data published by Min et al,47 in section 3.2, I aimed to define a 
list of genes whose expression could be used to evaluate the quiescent 

potential of tumour samples from transcriptome data. In section 3.3, I 
assessed the ability of several gene set scoring techniques to utilise the 

expression of the quiescence biomarkers and quantify cancer cell quiescence 
in publicly available single-cell and bulk transcriptome datasets, where 

cycling and quiescent cells have been independently profiled.  The material 
from this chapter has been used in Wiecek et al bioRvix (2022), on which I am 

the sole first author.2 However, I would like to thank and acknowledge Dr 

Steve Cutty and Dr Alexis Barr for performing and supervising, respectively, 
the experimental validation of the quiescence scoring method in lung 

adenocarcinoma cell lines, detailed in section 3.3.  
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3.2 Development of methodology for quantifying quiescence  
 

Based on RNA-seq data, a list of 195 genes differentially expressed across 
five distinct forms of quiescence in immortalised, non-transformed human 

epithelial cells (MCF10A cell line) has been previously identified and published 
by Min et al.47 This study aimed to utilise this gene list to identify a smaller 

panel of genes whose expression could be used as a universal biomarker of 
various forms of quiescence across diverse cancer types. Previous studies 

have shown that genes differentially expressed across quiescence states 
depend on experimental conditions, including the type of induced cells. In 

fact, the identified list of 195 biomarker genes was reported to show low 
overlap with genes differentially expressed across primary human 

fibroblasts46 driven into quiescence through mitogen withdrawal, contact 
inhibition or loss of adhesion in cell culture (an overlap of 6 out of 195 (3.1%) 

genes). The list of 195 quiescence biomarker genes was defined using 
expression data from human breast tissue epithelial cells. As such, this raised 

concern that the list might not be able to reflect the quiescence status of cells 
from other cell types, particularly those not of epithelial origin. However, pan-

cancer, 85% of carcinomas originate from epithelial tissues,205 and their 
quiescence status could potentially be captured using this list. As such, the 

195 genes were further investigated as potential biomarkers of cancer cell 
quiescence in solid cancer types only. This consideration, and a lack of 

published RNA-seq datasets characterising different forms of quiescence 
across various cancer types, was a deciding factor for using the 195 gene list 
from breast epithelial cells as a basis for exploring quiescence pan-cancer in 

this study. 
 

The list of quiescence-specific genes was subjected to further refinement and 
filtering steps to select those most suitable to function as transcriptional 

biomarkers (Methods section 2.3, Figure 3.1a). Firstly, only genes that 
showed a unidirectional expression change across all five forms of 

quiescence were selected. Genes involved in other cell stages were removed 
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to minimise the inclusion of those whose expression depends on cell-cycle 
phase differences. Similarly, genes showing low levels of expression pan-

cancer within the TCGA cohort were removed. This step was performed to 
ensure that the expression of the quiescence biomarker genes could be easily 

detected within tumour sample transcriptomic datasets. Ideally, genes used 
as biomarkers would show high variation in their expression across tumour 

samples. Therefore, genes which showed a low standard deviation of 
expression values across the TCGA cohort were also removed. Lastly, genes 

were removed if they showed low pan-cancer correlation, across the TCGA 
cohort, with the transcriptional targets of the DREAM complex, which 

functions during the G0 phase to repress cell-cycle dependent expression.61 
This resulted in 139 genes which were used to define a generic quiescence 

transcriptional programme (Appendix 1). This list was largely made up of 
genes downregulated in quiescence (80.6% of genes), most of which 

functioned in processes such as RNA Polymerase II-mediated transcription 
and mRNA processing (Figure 3.1b). These findings align with the reported 

lower metabolic, transcriptional, and translational activity of quiescent cells.23 
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Figure 3.1: Transcriptomic biomarkers of quiescence. (a) Refinement 
steps used to derive the list of 139 quiescence biomarker genes, based on 
the list of 195 genes differentially expressed across five forms of quiescence, 
reported by Min and Spencer.47 (b-c) Reactome pathways significantly 
enriched in biomarker genes downregulated (b) and upregulated (c) in 
quiescence. The list of 195 genes was originally sourced from Min and 



 80 

Spencer.47 Abbreviations used in the figure are given as follows: c-FLIP, 
cellular FLICE-like inhibitory protein; DREAM, dimerization partner, RB-like, 
E2F and multi-vulval class B; FOXO, forkhead box-O; FPKM, fragments per 
kilobase of transcript per million mapped reads; HIV, human 
immunodeficiency virus; mRNA, messenger RNA; TCGA, The Cancer 
Genome Atlas. 
 
Using the assumption that the 139 genes would show a coordinated pattern 

of expression in quiescent cells, five gene-set scoring techniques were used 
to evaluate quiescence levels from transcriptomic data based on the 
expression of the biomarker genes. The five techniques included Gene Set 

Variation Analysis (GSVA),153 combined z-scores,151 Singscore154 and single-
sample Gene Set Enrichment Analysis (ssGSEA)152 and mean scaled score. 

The latter evaluated the quiescent potential of tumour samples based on the 
expression of the quiescence biomarker genes, as well as using a curated list 

of housekeeping genes: 
 

 

QS = 	
1
n∑𝐺! −	

1
n∑𝐺"

1
n∑𝐺#

 

QS = mean scale quiescence score 
GU = expression of genes upregulated in quiescence 
GD = expression of genes downregulated in quiescence 
GH = expression of housekeeping genes 
n = number of genes in each gene set 
 

The combined z-score is a parametric approach that firstly standardises each 
gene's expression into a standard normal distribution (z-distribution) across 

all inputted samples. The standardised expression values for all genes in the 
gene list of interest are then summed and divided by the square root of the 

number of genes within the list. GSVA, Singscore and ssGSEA are non-
parametric approaches. ssGSEA scores are calculated by comparing the 
distribution of gene expression ranks of quiescence biomarker genes and 

other reported genes within each sample using the Kolmogorov-Smirnov test. 
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GSVA functions similarly to ssGSEA. However, it first standardises each 
gene's expression by performing kernel density estimation. Lastly, Singscore 

calculates a mean gene expression rank for the quiescence biomarker genes 
for each inputted sample. The rank is then normalised based on the 

theoretical minimal and maximum values, which depend on the number of 
genes reported in the inputted dataset. Because the 139 quiescence 

biomarker genes represent a bidirectional gene signature, the GSVA, 
combined z-scores, Singscore and ssGSEA methods were applied separately 

using biomarkers upregulated and downregulated in quiescence. The scores 
for upregulated and downregulated genes were then subtracted from each 

other to obtain the final quiescence score estimate.   
 

3.3 Validation of the quiescence scoring method 
 

Quiescence score validation in publicly available single-cell and bulk-

sequenced datasets 

To validate the ability of the five quiescence scoring methodologies to 
separate tumour samples according to their quiescence levels, seven publicly 

available single-cell and bulk-sequenced datasets were used where cycling 
and quiescent cells have been independently profiled28,88-90,106,107,206 (Table 

3.1). Across the validation datasets, quiescent cancer cells were separated 
using CFSE membrane-lipid label-retaining assays, or they were induced into 

the G0 state through external or internal stresses. The inducing factors 
included the inhibition of proliferative signalling, which the cells previously 

relied on, through the inhibition of EGFR, KRAS or BRAF. Inhibition of 
proliferative signalling resulting from other commonly activated driver 

oncogenes could also potentially result in quiescence induction. However, 
due to the lack of published RNA-seq datasets with evidence of cells entering 

quiescence due to the inhibition of other driver genes, this study was limited 
to using RNA-seq data following EGFR, KRAS and BRAF inhibition as 

validation datasets. In addition, cancer cells were also induced into 
quiescence through the acidification of cell line culture media. Because 
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quiescent cells can often be mistaken for senescent cells or cells occupying 
a prolonged G1 cell cycle state, several criteria were used when selecting 

datasets that could be used for validation of the quiescence scoring 
methodologies. Firstly, cells proposed to exist in a quiescent state had to be 

shown to exist in a non-proliferative state, which involved the downregulation 
of genes involved in cell cycle regulation. Secondly, the non-proliferative state 

needed to be shown to be reversible. These criteria were used to increase the 
likelihood that specifically quiescent cells were profiled and were met by the 

seven datasets listed in Table 3.1. 
 
Accession 

code 
Model Cancer type Profling 

method 
Quiescence 

profiling 
method 

Sample 
size 

Reference 

 
GSE114012 

 
Non-adherent 

spheroid 
culture 

(DLD-1, HCT-
15, HT-55, 

SW948, RKO 
and SW48 cell 

lines) 
 

 
Colorectal 

cancer 

 
Bulk 

RNA-seq 

 
CFSE 

proliferation 
sensitive 
labelling 

 

 
48 

 
Buczacki 

et al 2018, 
J Exp Med 

 
GSE131594 

 
Cancer cell 

lines 
(PC-9, 

HCC827, 
HCC4006) 

 

 
NSCLC 

 
Bulk 

RNA-seq 

 
Quiescence 
induced by 

loss of EGFR 
signalling 

 
24 

 
Kurppa et 
al 2020, 
Cancer 

Cell 
 

 
GSE137912 

 
Cancer cell line 

(H358) 

 
Lung 

adenocarcino-
ma 

 
scRNA-

seq 

 
Quiescence 
induced by 

KRAS 
inhibition 

 
1910 

 
Xue et al 

2020, 
Nature 

 
 

GSE152699 
 

Cancer cell 
lines 

(A-375 and 
M14) 

 
Melanoma 

 
Bulk 

RNA-seq 

 
Quiescence 
induced by 

BRAF 
inhibition 

 
12 

 
Grigore et 
al 2020, 

Neoplasia 
 

 
GSE75367 

 
Circulating 

tumour cells 
from patient 

samples 

 
ER+/HER2- 

breast cancer  

 
scRNA-

seq 

 
Proliferation 

heterogeneity 
correspondin

g to HER2 
expression 

levels  
 

 
71 

 
Jordan et 
al 2016, 
Nature 

 
 

 
GSE83142 

 
Patient-derived 

xenografts 

 
Acute 

lymphoblastic 
leukaemia 

 
scRNA-

seq 

 
CFSE 

proliferation 
sensitive 
labelling  

 
48 

 
Ebinger et 
al 2016, 
Cancer 

Cell 
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GSE93991 

 
Cancer cell 

lines 
(TG1 and 
TG1_C1) 

 
Glioblastoma  

 
Bulk 

RNA-seq 

 
Quiescence 
induced by 
acidification 
of medium 

 

 
15 

 
Aulestia et 

al 2018, 
Sci Rep 

 

 

Table 3.1: Summary of external quiescence score validation datasets. 
Abbreviations used in the figure are given as follows: CFSE, 
carboxyfluorescein diacetate succinimidyl ester; EGFR, epidermal growth 
factor receptor; ER+, oestrogen receptor positive; HER2-, human epidermal 
growth factor receptor 2 negative; NSCLC, non-small cell lung carcinoma; 
scRNA-seq, single-cell RNA-sequencing.  
 

Quiescence estimates were calculated for each of the validation datasets 
using each of the five scoring methodologies described above (Figure 3.2a). 

As such, this resulted in 5 quiescence scores for each sample across all 
validation datasets. The Matthew’s Correlation Coefficient (MCC) method 

was then employed to determine the accuracy with which each of the scores 
could distinguish samples labelled as proliferating from samples labelled as 

quiescent. Overall, the quiescence scores calculated using the combined z-
score approach could separate quiescent samples more accurately than the 

four gene-set scoring approaches (Figure 3.2b). The combined z-scores 
approach also provided an intuitive score output, with positive scores 
indicating relatively quiescent samples with a higher relative expression of 

genes usually upregulated in quiescence than genes downregulated in 
quiescence.  Similarly, negative scores indicated relatively proliferative 

samples, with higher relative expression of genes usually downregulated in 
quiescence than genes commonly upregulated in quiescence. As such, it was 

used to assess quiescence levels from transcriptomic data in the downstream 
analysis. Using receiver operating characteristic curves, the combined z-

score method was deemed to be highly accurate in detecting signals of 
quiescence, classifying cells as quiescent or cycling with an average 

accuracy of 91% (Figure 3.2c). It also outperformed markers of cell cycle 
progression commonly used in literature, including the expression of targets 

of the DREAM complex, CDK2, MKI67 and mini-chromosome replication 

maintenance protein complex genes, which are involved in the initiation of 
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eukaryotic genome replication (Figure 3.2d). Importantly, the combined z-
score approach identified quiescent samples with high accuracy across 

validation datasets from a variety of cancer types and experimental models, 
thus demonstrating its versatility (Table 3.1). In order to investigate whether 

the quiescence scores can reflect quiescence depth, i.e. the length of time 
cells have spent in quiescence, a dataset published by Fujimaki et al56 was 

used where rat embryonic fibroblasts were transcriptionally profiled after 

various lengths of time in serum starvation. Notably, the combined z-score 
distinguished cells in both shallow and deep quiescence from proliferating 

cells, which have not been included into quiescence through serum 
starvation, with 100% accuracy (Figure 3.2e). Due to the imbalanced number 

of samples induced (n=27) and not induced (n=3) into quiescence, Matthew’s 
Correlation Coefficient, a more balanced measure, was also calculated, which 

resulted in a score of 7.26. Higher quiescence scores were calculated for cells 
occupying deep quiescence, compared to shallow quiescence, indicating 
that the quiescence scores do reflect quiescence depth. Interestingly, two 

samples induced into quiescence for four days showed negative quiescence 
scores, indicating a relatively proliferative cell state. The scores for these two 

samples were also lower than those for cells induced into quiescence for 2-3 
days. This potentially stems from experimental variation; however, it could 

also indicate an element of stochasticity involved in the proliferation-
quiescence cell decision. 
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Figure 3.2: Cancer cell quiescence quantification methodology. (a) 
Workflow for evaluating cancer cell quiescence levels in transcriptomic data. 
A list of 139 differentially expressed genes in multiple forms of cellular 
quiescence were employed to score quiescence from transcriptomic data. (b) 
Boxplot comparison of the classification accuracy measured using the MCC 
of the combined z-score quiescence scoring approach compared to the other 
scoring methods over the seven single-cell and bulk RNA sequencing 
validation datasets. (c) Receiver operating characteristic curves illustrating 
the accuracy of the combined z-score methodology when separating actively 
proliferating and quiescent cells from the seven single-cell and bulk RNA 
sequencing validation datasets. Datasets used for validation are denoted by 
their corresponding GEO series accession number and the AUC for each 
dataset is specified. (d) Boxplot comparison of the classification accuracy of 
the combined z-score approach compared to commonly used cell cycle 
markers over the seven single-cell and bulk RNA-seq validation datasets. (e) 
Quiescence levels of embryonic fibroblast cells under serum starvation for 
various amounts of time. Data was obtained from Fujimaki et al.56 Replicates 
are depicted in the same colour. Abbreviations used in the figure are given as 
follows: AUC, area under the curve; CDK, cyclin-dependent kinase; DREAM, 
the dimerization partner, RB-like, E2F and multi-vulval class B complex; GEO, 
Gene Expression Omnibus; GSVA, Gene Set Variation Analysis; MCC, 
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Matthews Correlation Coefficient; MCM, minichromosome maintenance; 
ssGSEA, single sample Gene Set Enrichment Analysis. 
 

Quiescence score experimental validation in lung adenocarcinoma cell 

lines 

Validation was also performed using data from the Barr lab at Imperial College 
London, reporting experimental measurements of the proportion of cells 

occupying the quiescent phase across nine different lung adenocarcinoma 
cell lines (NCI-H460, A549, NCI-H1666, NCI-1944, NCI-H1563, NCI-H1299, 

NCI-H1650, H358, COR-L23). The fraction of quiescent cells was estimated 
using qualitative, single-cell imaging of phospho-Ser807/811-Rn (phospho-

RB, which labels proliferative cells) and 24-hour EdU proliferation assays 
(Figure 3.3a-b). Cells that were negative for either phospho-RB or EdU were 

defined as quiescent. The lung adenocarcinoma cell lines showed large 
variations in their propensity to enter quiescence, which reflects differences 

in their genomic background. Overall, quiescence scores calculated for the 
corresponding cell lines using transcriptomic data from the Broad Institute 

Cancer Cell Line Encyclopaedia (CCLE)159 showed a significant correlation 
with the proportion of cells entering quiescence, as estimated using EuD 
proliferation staining assays (Figure 3.3d). An even stronger association was 

observed between the predicted quiescence scores and the fraction of 
quiescent cells assessed by the lack of RB phosphorylation. Phosphorylation 

and inactivation of the retinoblastoma protein is often used to define the 
boundary between G0 and G1, and was specifically shown to distinguish the 

G0 state recently by Stallaert et al.45 For each of the lung adenocarcinoma 

cell lines, a G1 score was also calculated in the same way as the quiescence 
score but using a published list of genes whose expression is associated with 

the G1 phase of the cell cycle. Importantly, the G1 signature was not 
associated with the experimental measures of quiescence (Figure 3.3c-d), 

providing further evidence that cells labelled as phospho-RB and EdU 
negative were quiescent and did not occupy a prolonged G1 phase of the cell 

cycle.  
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Figure 3.3: Experimental quiescence score validation in lung 
adenocarcinoma cell lines. (a) Representative images of lung cancer cell 
lines immunostained and analysed to detect the quiescent fraction. Hoechst 
(labels all nuclei) is in blue, phospho-RB in green and EdU in red in merged 
image. White dashed circles highlight quiescent cells that are negative for 
both phospho-RB and EdU signals. Scale bar: 100 µm. (b) Graphs show 
single cell quantification of phospho-RB and EdU intensities taken from 
images and used to define the cut-off to calculate the quiescent fraction (QF; 
green boxes). Images in (a) and graphs in (b) are taken from the A549 cell line. 
(c-d) Correlation between theoretical estimates of quiescence of G1 state and 
the fraction of cells entering quiescence in nine lung adenocarcinoma cell 
lines, as assessed through- (c) phospho-RB assays and (d) EdU assays. Mean 
of n = 3 is shown for the average percentage of quiescent cells. Abbreviations 
used in the figure are given as follows: EdU, 5-ethynyl-2’deoxyuridine; 
phospho-RB, phosphorylated RB; QF, quiescent fraction. 
 

The correlations between the quiescence scores and the fraction of cells 
entering quiescence in the nine lung adenocarcinoma cell lines also appeared 

robust to random removal of individual genes from the quiescence signature 
(Figure 3.4a-b). Similarly, the quiescence scoring method remained highly 

discriminative of quiescent cells across the seven external single-cell and 
bulk RNA-seq validation datasets (Figure 3.4c). This suggested that no single 
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gene out of the 139 quiescence biomarkers had an inordinate impact on the 
final quiescence estimates. Also, it suggested that the quiescence scoring 

approach would be suitable for use across a wide variety of tumour sample 
transcriptomic datasets, where the expression of the complete set of 139 

genes might not be available.  
 

Quiescence score validation in publicly available HSC and metastatic 

cancer model datasets 

Overall, the quiescence scoring method proved to be accurate in classifying 
quiescent cells in primary tumour model datasets (average accuracy of 91%, 

Figure 3.2d). However, to assess the utility of the approach in broader 
settings, the method was also applied to three published scRNA-seq 

transcriptomic datasets207-209 where dormant and activated hematopoietic 
stem cells (HSC) were independently profiled. HSCs have a high potential to 

self-renew and are capable of replenishing the entire blood and immune cell 
populations.41 Dormant HSC (dHSC) sit at the top of the differentiation 

hierarchy. They are highly quiescent and can divide to produce differentiated 
cells only in response to stress signals such as tissue injury or infection.210,211 

In turn, activated HSCs (aHSC) show lower differentiation potential and divide 
slowly to achieve homeostasis levels of differentiated cells.212 In comparison 

to dHSCs, aHSCs show upregulation of biosynthetic processes along with 
Myc targets.208 They are also primed for cell cycle entry, as shown by higher 

CDK6 expression levels.208 A variable performance was observed when the 
quiescence scoring approach was used to classify aHSCs and dHSCs across 

the three datasets, with an average accuracy of 69.0% that ranged between 
48.1% and 94.6% (Figure 3.4d). It is likely that the method cannot capture 

quiescence signals in this context accurately, as the quiescence biomarker 
genes were developed using transcriptome data from epithelial cells. 
Moreover, aHSCs are only slowly proliferating cells which could contribute to 

the limited ability of the method to distinguish them from dHSC. 
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The ability of the scoring technique to identify quiescent cancer cells within 
metastatic sites was also investigated. In the context of DTCs at pre-

metastatic sites, accumulating evidence suggests that interactions between 
tumour cells and components of the tumour microenvironment, along with 

external secreted signals, play a sizeable role in the induction and 
maintenance of dormancy. For example, INF-γ secreted by NK cells has been 

shown to maintain breast cancer cell quiescence in the liver.108 Similarly, 
secreted GAS6,75 TGFB276 and BMP777 molecules have been shown to induce 

dormancy of prostate cancer cells in the bone marrow, while secreted BMP478 
has been shown to induce breast cancer cell dormancy within lung tissues. 

In contrast, the quiescence scoring method has been developed based on 
genes differentially expressed within cells which entered dormancy in 

response to external and internal stress conditions. In order to assess the 
performance of the scoring method in the metastatic context, two published 

scRNA-seq datasets were utilised where disseminated prostate213 and breast 
cancer108 tumour cells were separated and transcriptionally profiled. Overall, 

the technique showed a mean classification accuracy of 87.2% (Figure 3.4e), 
indicating that it can capture a substantial amount of the DTC-specific signal 

that we expect to see at pre-metastatic or metastatic sites. However, until 
more datasets with transcriptionally profiled DTCs become publicly available 
for validation, there is more substantial evidence for the use of the method in 

the primary tumour setting. 
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Figure 3.4: Breadth of quiescence scoring method application. (a-b) 
Mean correlation between computationally inferred quiescence scores after 
randomly removing a variable number of genes from the dormancy signature 
and the fraction of cells entering quiescence in nine lung adenocarcinoma cell 
lines, as assessed through an EdU (a) or phospho-RB (b) staining assay. (c) 
Mean classification accuracy across seven bulk and single-cell RNA-seq 
validation datasets (Table 3.1) after randomly removing a variable number of 
genes from the quiescence signature. (d) Receiver operating characteristic 
(ROC) curves illustrating the accuracy of the combined z-score methodology 
when separating dormant and proliferating hematopoietic stem cells from 
three publicly available single-cell RNA-seq datasets. Datasets used are 
denoted by their corresponding GEO series accession number and the area 
under the curve (AUC) for each dataset is specified. (e) Receiver operating 
characteristic (ROC) curves illustrating the accuracy of the combined z-score 
methodology when separating dormant and proliferating disseminated 
tumour cells collected from premetastatic sites from two publicly available 
single-cell RNA-seq datasets (Table 3.2). Datasets used are denoted by their 
accession numbers and the area under the curve (AUC) for each dataset is 
specified. Abbreviations used in the figure are given as follows: AUC, area 
under the curve; EdU, 5-ethynyl-2’deoxyuridine; GEO, Gene Expression 
Omnibus; NSCLC, non-small cell lung cancer; phospho-RB, phosphorylated 
RB; ROC, receiver operating characteristic.  
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Accession 
code 

Model Cancer 
type 

Sequencing 
method 

Quiescence 
profiling 
method 

Sample 
size 

Reference 

 
PRJNA57660 

 
Cancer cell 
line (MDA-
MB-231) 
implanted 
into NOD-
SCID mice 

 

 
Breast 
cancer 

 
Bulk RNA-

seq 

 
Quiescent 

DTCs identified 
in liver based 
on expression 
of luciferase-
tdTomato and 
mVenus-p27K- 

reporter 
proteins 

 

 
24 

 
Correia et 
al 2021, 
Nature 

 
GSE147150 

 
Cancer cell 
line (RM1) 
implanted 

into 
C57BL/6 

mice 

 
NSCLC 

 
Bulk RNA-

seq 

 
Quiescent 

DTCs identified 
in the bine 

using a 
luciferase-

eCFP reporter 
protein and a 

PKH26 
membrane-due 
label retaining 
proliferation 

assay 
 

 
57 

 
Owen et al 

2020, 
EMBO 

Reports 
 

 

Table 3.2: Summary of external quiescence score validation datasets 
from disseminated tumour cell samples. Abbreviations used in the figure 
are given as follows: DTC, disseminated tumour cells; eCFP, enhanced cyan 
fluorescent protein; NOD-SCID, Nonobese diabetic/ severe combined 
immunodeficiency; NSCLC, non-small cell lung cancer.  
 

3.4 Discussion  
 
Overall, this study developed a novel computational method for quantifying 

cancer cell quiescence based on a compiled list of quiescence-specific 
genes. The combined z-score quiescence scoring approach was able to 

accurately separate quiescent from proliferating cells across various cancer 
models. It also outperformed many of the proliferation markers currently used 

in the literature, thus making the methodology a potentially useful resource 
for capturing signals of quiescence in primary tumours from single-cell RNA-

seq and bulk transcriptome data. 
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Aside from the combined z-score approach, four other enrichment/rank-
based scoring methods were considered for assessing quiescence from 

transcriptome data. Methods which normalised the expression of every single 
gene across all inputted samples included GSVA, ssGSEA and the combined 

z-score approach. The normalisation steps employed by each of the methods 
created comparable distributions of expression values across samples in the 

dataset of interest for all reported genes. These techniques had an underlying 
assumption that all biomarker genes contribute equally to the final score 

estimate, regardless of the log-fold changes in their expression across the 
samples. In addition, when using these methods, the final quiescence scores 

were dependent on the inputted sample composition because of the 
normalisation step. In contrast, the mean scale score and singscore methods 

produced reproducible scores regardless of the number of samples included 
in the analysis and their composition. The combined z-score approach 

proved optimal for identifying quiescent cells when tested across seven 
publicly available transcriptome datasets where quiescent and proliferating 

cells have been separated and independently profiled (Figure 3.2b, Table 3.1). 
The performance of the combined z-score method also remained highly 

discriminative of quiescent cells even after the random removal of genes from 
the quiescence signature. This suggests that none of the 139 quiescence 
biomarkers is substantially more predictive of quiescence than the other 

genes. As such, this supports using the normalisation step during quiescence 
score calculation by the combined z-score approach. However, future work 

could focus on exploring whether weighing the importance of the expression 
of each of the 139 quiescence biomarker genes can improve the performance 

of the quiescence scoring approach presented in this chapter. Moreover, 
although the output of the combined z-score method depends on the sample 

composition, the authors of the technique report that the sample scores are 
highly stable in datasets with over 25 samples. 

 
Across the publicly available validation datasets, quiescent cells were 

identified and separated from proliferating cells using a variety of 
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experimental approaches (Table 3.1). Each of the approaches had unique 
advantages and disadvantages. For example, within datasets where 

quiescent cells were induced into quiescence through media acidification or 
the inhibition of EGFR, KRAS or BRAF proliferative signalling, cancer cells 

were subjected to strong intracellular and environmental stresses. The CFSE 
label-retaining assay was less intrusive and did not require the induction of 

cells into quiescence. Also, in contrast to other commonly used techniques, 
it did not depend on the induction of reporter proteins and did not require cell 

permeabilization. However, during the assay, cells which exited quiescence 
and resumed proliferation shortly before sample collection might have 

retained enough dye label to be mistaken for quiescent cells. As such, due to 
the potential shortcomings of each of the experimental approaches, the 

quiescence scoring method was validated across a range of seven datasets, 
which employed varied quiescent cell separation techniques. 

 
The transition from a proliferative state to quiescence has previously been 

associated with multiple transcriptional changes. These include the 
upregulation of the mitophagy and autophagy-lysosome pathways, apoptosis 

inhibitors and genes involved in the protection from reactive oxygen species 
and environmental insults. In turn, apart from the downregulation of genes 
involved in cell-cycle progression, the quiescent state is associated with 

decreased biosynthetic activity and the downregulation of genes involved in 
DNA damage repair. In this study, decreased biosynthetic activity, and in 

particular, the downregulation of genes involved in RNA Polymerase II-
mediated transcription and mRNA processing, was found to be a universal, 

discriminative feature of quiescent cancer cells at the transcriptional level. 
Previous literature has shown that specific changes at the post-

transcriptional level can also characterise quiescent cells. For example, many 
genes involved in proliferation, splicing, transcription, translation and 

metabolism have shown increased intron-retention in quiescent cells. 
Similarly, inhibitory phosphorylation of the retinoblastoma protein is often 

used to define the boundary between G0 and G1, and was specifically shown 
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to distinguish the G0 state recently by Stallaert et al.45 Such post-

transcriptional modifications could potentially also be used as biomarkers of 
quiescent cells. Furthermore, some of the most reliable markers of 

quiescence to date, such as p27, are best captured at the protein level.  
However, proteome data is sparsely measured for tumour samples. The 

quiescence scoring method developed in this study has unique value given 
the relatively low cost of performing gene expression analysis and the large 

volume of publicly available tumour sample transcriptomic datasets. 
 

The versatility of the quiescence scoring method developed in this study was 
demonstrated by its ability to accurately classify quiescent cells across a 

variety of solid cancer tissues, including colorectal cancer, breast cancer, 
lung adenocarcinoma, melanoma and glioblastoma. More variable 

performance was observed when the method was applied to HSC. This result 
was expected as the technique was not designed to capture signals of 
dormancy in this context. Lastly, although the quiescence scoring method 

appeared to accurately classify quiescent DTCs, more extensive validation is 
required to confirm the method's suitability for assessing quiescence in 

metastatic samples. 
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Chapter 4 – Evaluation of cancer cell quiescence and 

associated mutational features in bulk-sequenced 

tumours 
 

4.1 Introduction 
 

In this chapter, I aim to systematically assess the relative levels of quiescent 
cancer cells within primary tumour samples across different cancer types. I 

also seek to understand the genetic background that favours cancer cell 
quiescence by identifying genomic changes associated with this process. 

 
Cancer evolution is often driven by various genomic events, ranging from 

single base substitutions to larger-scale copy number variation and 
rearrangements of genomic segments. Tumour proliferation is one of the main 

hallmarks of cancer development.12 Although occasionally, under stress 
conditions, some tumour cells will become arrested temporarily in the G0 

phase of the cell cycle, most cells within a tumour have a high proliferative 
capacity. Therefore, it is reasonable to expect that many of the genomic 
aberrations accumulated by the cancer cells might enable a more proliferative 

phenotype, impairing the ability of cells to enter quiescence. 
 

Correspondingly, cancer cells frequently accumulate somatic mutations 
which activate mitogenic pathways typically triggered by growth factors. For 

example, across various tumour types, activating mutations within the 
catalytic subunit of the phosphoinositide 3-kinase (PI3-kinase), along with 

loss-of-function mutations within the PTEN phosphatase, result in the 
amplification of proliferative PI3-kinase signalling.214,215 The commonly 

occurring MYC amplification event directly promotes cell cycle progression 

by increasing the expression of cyclin proteins.79 It also inhibits the activity of 
cyclin-dependent kinase (CDK) inhibitors, such as p15, p21 and p27, which 

act as cell-cycle breaks79. Similarly, tumour suppressor genes such as TP53, 
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which mediate proliferation-quiescence decisions, are frequently altered 
during cancer development. In response to cell-intrinsic factors such as 

replication stress, p53 triggers the inhibition of cyclin-CDK complexes by 
activating p21.55,68 This triggers cell entry into quiescence by allowing the 

assembly of the DREAM complex - a key effector responsible for the 
repression of cell cycle-dependent gene expression.61 

 
On the contrary, genomic events accumulated during cancer development 

might trigger entry into quiescence as a temporary adaptive mechanism to 
extreme stress levels. This can be exemplified by glioblastoma cancer 

development, where cells have been shown to enter dormancy after acquiring 
a loss-of-function mutation within the NF1 gene.71 The NF1 encoded protein 

neurofibromin acts as a Ras GTPase-activating protein.216 Therefore, 

defective neurofibromin allows hyperactivation of the Ras signalling pathway. 
In turn, this promotes a state of stress that can lead to the accumulation of 
p53 and p16, thereby triggering cell cycle arrest.216 

 
Although some of the pathways involved in proliferation-quiescence 

decisions have been uncovered, the extent to which cancer cell quiescence 
is enacted through genetic control is unknown. This is because tumour 

quiescence levels and the associated mutational processes and genomic 
changes have not been systematically profiled across tissues. Also, there is 

much heterogeneity in the mutations acquired during cancer development; 
however, due to tissue-specific differences, certain driver events are more 

frequent in specific cancer types. For example, mutations within the BRAF 

gene are found within 7-15% of all human cancers, but they are found in 
~40% of human melanomas.217 Therefore, it remains to be investigated 

whether such tissue-specific genomic events play a role in influencing 
proliferation-quiescence decisions within individual cancer types. 
 
Importantly, the quiescent state allows cancer cells to evade treatments such 

as chemotherapy, which target actively dividing cells, thereby contributing to 
treatment resistance.24-26 Moreover, a variety of other pre-existing or acquired 
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resistance scenarios have been explained by a drug-tolerant “persister” cell 
state represented by slow cycling or entirely quiescent cells.18,27 

Understanding the genomic features associated with dormancy might help 
predict which patients are likely to have high levels of cancer cell quiescence 

and who would respond poorly to therapy. Evidence for this can be seen in 
in vitro cell line experiments. Specifically, human breast tissue epithelial cells 

unable to express p2147 and colorectal cancer cells with mutations in the 

TP53 gene218 could not enter dormancy in response to genotoxic treatment. 

In turn, these cells displayed worse survival than cells with functional p21 and 
p53 proteins. Therefore, patients with tumours containing mutations 
predicted to limit the ability of cancer cells to enter or maintain quiescence 

could potentially show a better response to commonly used treatments. 
 

Aside from highlighting which patients might respond better to 
chemotherapy, understanding what genomic features are associated with 

dormancy might enable the development of therapies to target quiescent 
cells specifically. Several widely used treatments aim to prevent quiescent 

cells from re-entering proliferative cell cycles through suppressing pathways 
that are required for the proliferation of the cells or maintaining the activation 

of dormancy pathways. This is exemplified by the use of adjuvant anti-
oestrogen therapy with ER antagonists for patients with ER+ breast 

cancers,98,99 or by the use of CDK4/6 inhibitors.100 However, such treatments 
do not fully eradicate quiescent cancer cells and require the patients to 

undergo life-long therapy. Alternatively, some therapies aim to drive 
quiescent cells back into the cell cycle to increase their susceptibility to anti-

proliferative drugs. This is the rationale for using DYRK1A inhibitors to treat 
gastrointestinal stromal tumours.101 DYRK1A is essential for entry into 

quiescence in several cancer cell lines.102 By phosphorylating LIN25, DYRK1A 
allows the assembly of the DREAM complex and, therefore, the 

downregulation of genes involved in cell cycle progression.61 However, such 
treatments could result in a more aggressive phenotype of the reactivated 
cells, and not all quiescent cells could become reactivated. Lastly, several 
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studies aimed to develop treatments that eradicate quiescent cancer cells by 
exploiting their unique vulnerabilities. For example, a study by Kurppa et al,89 

showed that increased YAP/TEAD activity can allow quiescent cell survival 

following EGFR inhibition in EGFR-mutant lung adenocarcinoma cell lines. 
Therefore, the authors suggest simultaneous inhibition of TEAD and EGFR to 

effectively eradicate quiescent cancer cells. In the future, further 
understanding of the genomic and molecular features associated with 

quiescence is likely to highlight additional potential therapeutic targets. 
 

Previously in chapter 3, I developed and validated a novel method to uniquely 
and reliably quantify tumour cell quiescence from transcriptomic data. In this 

chapter, within section 4.2, I applied the quiescence scoring method to 
systematically quantify the levels of cancer cell quiescence within primary 

tumour samples from the TCGA cohort of 8,005 tumours from 31 solid cancer 
tissues. In sections 4.3 and 4.4, I employed machine learning approaches to 
identify genomic features associated with cancer cell quiescence pan-cancer 

and across individual tissues. Lastly, in section 4.5, I explored the range of 
different cancer quiescence states encountered within individual tissues. The 

material from this chapter has been used in Wiecek et al bioRvix (2022) on 

which I am the sole first author. However, I would like to thank and 
acknowledge the following: Dr Mario Parreno-Centeno for performing the 

random forest modelling and feature section analysis within the breast cancer 
cohort, as presented in section 4.4; Dr Steve Cutty and Dr Alexis Barr for 

conducting the experimental validation of the association between CEP89 

and quiescence in lung adenocarcinoma cell lines, detailed in section 4.3; and 
Daniel Jacobson for identifying TCGA samples showing enrichment of 
APOBEC associated mutations, as presented in section 4.4. 

 
4.2 Pan-cancer evaluation of quiescence 

 
The quiescence scoring technique was applied to 8,005 bulk-sequenced 
samples across 31 solid cancer types from the TCGA database to evaluate 



 99 

the spectrum of quiescence across various malignancies. Previous studies 
have demonstrated that quiescent cells from various cancer types, induced 

into quiescence by a range of stimuli, show transcriptional changes in 
common pathways and processes.46,47 However, they have also shown 

heterogeneity in the genes differentially expressed within the quiescent cells, 
depending on the cell type.46,47 As shown in section 3.3, the quiescence gene 

signature was derived from epithelial cells and was less capable of detecting 
signals of dormancy within hematopoietic stem cells. Therefore, 

haematological cancers were not included in the analysis. In addition, to 
account for potential confounding signals coming from the tumour 

microenvironment, the tumour sample expression data was scaled for tumour 
purity before the quiescence score calculation, as described in section 2.3. 

Samples with purity estimates lower than 30% were also excluded. 
 

Exploration of quiescence score variation across different cancer 

tissues 

Overall, the 8,005 tumours ranged from highly dormant to highly proliferating 
(Figure 4.1). Because the expression data was obtained from bulk sequenced 

samples, the quiescence scoring method could not predict the precise 
number of quiescent cells within each sample. However, it could capture the 

relative levels of quiescent cells within each sample compared to the entire 
TCGA cohort. PHATE (Potential of Heat-diffusion for Affinity-based Trajectory 

Embedding) dimensionality reduction199 was used to visualise the expression 
patterns of the 139 quiescence-specific genes across all 8,005 patient 

samples. In contrast to PCA (Principal Component Analysis) dimensionality 
reduction, PHATE is a non-linear technique. It can be used to accurately 

represent the structure of expression data in two dimensions because it 
preserves both local and global patterns of the high-dimensional data. Also, 
compared to other commonly used dimensionality reduction methods such 

as UMAP (Uniform Manifold Approximation and Projection for Dimensionality 
Reduction)219 or t-SNE (t-Distributed Stochastic Neighbour Embedding),163 it 

can visualise denoised continuous trajectory data patterns. This feature was 
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useful when visualising the quiescence spectrum across the 8,005 samples 
due to the continuous nature of this phenotype. Overall, a gradient of 

quiescence score estimates could be observed across samples within 
individual cancer types (Figure 4.1a). However, each tissue also showed 

distinct differences in the expression of the quiescence biomarker genes. If 
tissue-specific expression patterns were removed, as described in section 

2.11, a single gradient of quiescence scores was observed across all samples 
(Figure 4.1b).  

 

 
Figure 4.1: Variation in quiescence biomarker gene expression across 
the TCGA cohort. PHATE dimensionality reduction plots across 8,005 
primary tumour TCGA samples, based on the expression of 139 genes 
differentially expressed across different quiescence programmes before (a) 
and after (b) the removal of tissue-specific expression patterns. Each primary 
tumour sample is coloured by its corresponding tissue of origin (right) or the 
corresponding quiescence score (left). All analysis in the figure was 
performed using data from the TCGA cohort. Abbreviations used in the figure 
are given as follows: TCGA, The Cancer Genome Atlas; PHATE, Potential of 
Heat-diffusion for Affinity-based Trajectory Embedding. TCGA cancer type 
abbreviations are listed in the abbreviations section (pg. 15). 
 
Correspondingly, an investigation into the distribution of quiescence scores 

across the TCGA cohort revealed systematic differences in quiescence 
estimates across cancer types (Figure 4.2a). However, all studies showed a 

similar score distribution when the expression data was adjusted for the 
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tissue of origin (Figure 4.2b). This raised the question of whether the 
differences in quiescence estimates could reflect batch effects between 

TCGA studies or fundamental biological differences in the average proportion 
of cancer cells occupying the quiescent state within different cancer types. 

Tissues in which cells show a greater propensity to enter quiescence would 
be expected to have slower average cell division rates. Indeed, there was a 

significant correlation between the mean quiescence scores for various 
cancer types, estimated from unadjusted expression data, and published 

stem cell division rates from the corresponding tissues160 (Figure 4.2c). 
However, no significant correlation was observed when the expression data 

was adjusted for tissue type (Figure 4.2d). Also, cancer types previously 
reported to show high levels of quiescence, such as glioblastoma,24,88 were 

highly ranked in terms of estimated quiescence scores when the expression 
data was unadjusted (Figure 4.2a). Together, this suggests that the variation 

in mean quiescence scores reflects real biological differences in the relative 
dormancy levels. Therefore, in the downstream analysis, quiescence scores 

were calculated from expression data in which tissue-specific expression 
patterns were not removed.   
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Figure 4.2: Variation in quiescence propensity across cancer tissues. (a-
b) Variation in cancer cell quiescence across different cancer tissues when 
calculated from expression data with (b) and without (a) the removal of tissue-
specific patterns. (c-d) Correlation between stem cell division estimates for 
various cancer types and the corresponding mean quiescence scores 
calculated using expression data with (d) and without (c) the removal of 
tissue-specific patterns. All analysis in the figure was performed using data 
from the TCGA cohort. Stem cell division estimates were obtained from 
Tomasetti and Vogelstein.160 The abbreviations used in the figure are given as 
follows: TCGA, The Cancer Genome Atlas. TCGA cancer type abbreviations 
are listed in the abbreviations section (pg. 15). 
 

Exploration of expression and genomic patterns of quiescence and its 

association with other cellular phenotypes 

Quiescent cells are distinct from other cell states showing low proliferation 
rates, such as cancer stem cells. They also differ from senescent cells, which 

have irreversibly exited the cell cycle. To confirm that the quiescence scoring 
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method does not capture signals from either senescent or cancer stem cells, 
potential associations between markers of these cells and the quiescence 

scores were investigated within the TCGA cohort. Malta et al,149 previously 

utilised a one-class logistic regression machine learning approach to identify 
a transcriptomic stemness signature by comparing expression data from non-

transformed pluripotent stem cells and the corresponding differentiated cell 
types.  The pan-cancer quiescence scores negatively correlated with this 

stemness signature (Figure 4.3a). Previous reports also propose that 
continuously dividing cancer stem cells maintain high telomerase activity to 

avoid telomerase crisis and the resulting senescence148. In line with this 
hypothesis, there was a strong negative association between the quiescence 

scores and a published telomerase activity transcriptional signature148 (Figure 
4.3b). Senescent cells can be identified by abundant levels of lysosomal β-

galactosidase enzyme. 220,221 They are also characterised by the secretion of 
a wide range of cytokines, chemokines, growth factors and proteases, which 
together have been described as the senescence-associated secretory 

phenotype (SASP).201 The quiescence scores did not strongly correlate with 
the expression of the GLB1 gene (Figure 4.3c), which is transcribed into 

lysosomal β-galactosidase. Moreover, the quiescence scores showed only a 

slight negative association with the mean expression of genes encoding 
SASP components (Figure 4.3d). As such, the quiescence scoring 

methodology captured a cellular state separate from both cancer stem cells 
and senescent cells. Reassuringly, the quiescence scores showed a strong 

inverse correlation with the expression of other proliferation markers 
independent of the 139 genes used to evaluate quiescence (Figure 4.4a).  
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Figure 4.3: Pan-cancer association between cancer cell quiescence and 
other cellular phenotypes. (a-d) Correlation between quiescence scores 
and (a) a stemness expression index, (b) telomerase activity “EXTEND” score 
measure, (c) the expression of GLB1 and (d) the expression of senescence-
associated secretory phenotype (SASP) gene expression, across all TCGA 
solid cancer samples. All analysis in the figure was performed using data from 
the TCGA cohort. Abbreviations used in the figure are given as follows: SASP, 
senescence-associated secretory phenotype; TCGA, The Cancer Genome 
Atlas. 
 
Lastly, while the molecular changes enabling the transition to quiescence 

remain largely unknown, this phenomenon has been widely described in the 
literature as dependent on the activation p53/p21/DREAM axis.55,66,68 

Stabilisation and activation of p53 occur in response to DNA damage and a 
broader range of stimuli such as environmental stresses, oncogene activation 

and hypoxia.222 This, in turn, activates the transcription of the CDKN1A gene, 
which encodes the cyclin-dependent kinase inhibitor p21. By binding and 

inhibiting CDK1 and CDK2 complexes, p21 allows the stabilisation of the 
DREAM pocket protein complex, the main transcriptional repressor of cell 

cycle signalling genes.61 Indeed, cancer samples lacking deleterious SNVs or 
copy number losses within the TP53 gene showed significantly higher 

quiescence scores across numerous tissues (Figure 4.4b). Moreover, p53 has 
been shown, both in vivo and in vitro, to play a role in preventing the 

occurrence of larger structural events and polyploidy,223-225 explaining the 

persistently lower quiescence estimates observed in tumour samples with 
reported whole genome duplication events in this study (Figure 4.4c). 

Similarly, lower quiescence scores were observed in samples with low p21 
expression (Figure 4.4d) and samples with deleterious mutations affecting 

components of the DREAM complex (Figure 4.4e). 
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Figure 4.4: Expression and genomic patterns of quiescent tumours. (a) 
Correlation coefficients between the pan-cancer dormancy scores and 
commonly used proliferation markers as well as telomerase activity “EXTEND 
score” and cancer cell stemness “Stemness Index” metrics. (b) Consistently 
higher levels of quiescence are detected in samples with functional p53 (TP53 
WT). (c) Pan-cancer higher quiescence scores are observed in human 
tumours with one or two whole genome duplication events. (d) Consistently 
higher levels of quiescence are detected in samples with high CDKN1A 
expression (encoding p21, upper quartile of expression distribution) 
compared to samples with low expression (lower quartile of the expression 
distribution) across TCGA cancer types. (e) Consistently higher levels of 
quiescence are detected in samples with a functional DREAM complex. 
TCGA studies where mutational within at least one of the DREAM 
components could be detected in at least ten patients are shown. All analysis 
in the figure was performed using data from the TCGA cohort. Abbreviations 
used in the figure are given as follows: CDK, cyclin-dependent kinase; CNV, 
copy number variation; DREAM, dimerization partner, RB-like, E2F and multi-
vulval class B; MCM, minichromosome maintenance; MUT, mutant; TCGA, 
The Cancer Genome Atlas; WT, wild type. TCGA cancer type abbreviations 
are listed in the abbreviations section (pg. 15). 
 

4.3 Identification of genomic features associated with quiescence  
 

After calculating quiescence scores for all 8,005 primary tumour samples 
within the TCGA cohort, the patient-matched whole-exome sequencing and 
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copy number variation data was used to identify novel genomic features 
associated with cancer cell quiescence. In turn, it can be assumed that some 

of these features could play a role in influencing the quiescence/proliferation 
decisions. 

 

Initial identification of genomic events associated with quiescence 

First, this study aimed to identify whether mutations or copy number changes 
in any known cancer driver genes are associated with the primary tumour 

quiescent potential. To achieve this, pan-cancer TCGA samples were 
classified into two groups based on k-means clustering on the expression 

data for the 139 quiescence biomarker genes following the removal of tissue-
specific expression differences. The clustering analysis resulted in two 

groups labelled as “slowly cycling” and “fast proliferating”, which contained 
similar distribution of samples from different cancer types (Figure 4.5a). The 

Fisher’s exact test statistic was then used to identify which of the known 
oncogenes and tumour suppressor genes reported by the COSMIC database 

showed a significant enrichment or depletion of SNVs or CNVs in the two 
groups. This approach was repeated across individual cancer types to 

identify genomic features, which may be associated with dormancy only 
within specific tissues. Overall, 286 cancer driver genes were preferentially 

altered (via mutations or copy number alterations) within slow-cycling or fast 
proliferating tumours, either pan-cancer (Figure 4.5b) or within individual 

cancer tissues. Reassuringly, this list included genes previously implicated in 
driving cellular quiescence-proliferation decisions, such as TP53 and 

MYC.68,79  
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Figure 4.5: Identification of cancer driver genes preferentially altered in 
slow cycling or highly proliferative tumour samples. (a) PHATE 
dimensionality reduction plots across 8,005 primary tumour TCGA samples, 
based on the expression of 139 genes differentially expressed across 
different quiescence programmes after the removal of tissue-specific 
expression patterns. Patient samples are coloured by their group 
membership, determined by clustering of the expression data. (b) Oncogenes 
and tumour suppressors with depleted mutations or copy number variation in 
dormancy pan-cancer as identified by a Fisher’s exact test. All analysis in the 
figure was performed using data from the TCGA cohort. Abbreviations used 
in the figure are given as follows: PHATE, Potential of Heat-diffusion for 
Affinity-based Trajectory Embedding; SNV, single nucleotide variant; TCGA, 
The Cancer Genome Atlas. 
 

The somatic alterations within the genomes of malignant cells result from 
multiple mutational processes. These include the intrinsic infidelity of the DNA 

replication machinery, exogenous mutagen exposures, including tobacco 
smoke or UV-light radiation, and endogenous mutagen exposures, such as 
defective DNA repair. These processes generate unique patterns of base 

substitutions within a trinucleotide context, which are referred to as 
mutational signatures.4,226 By investigating potential associations between the 

relative quiescent potential of primary tumour samples and the 49 single base 
substitution mutational signatures characterised up to the point when the 

study was conducted226 (including only signatures with a likely biological 
origin and excluding signatures which are possible sequencing artefacts), it 
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is possible to describe broader processes associated with quiescence. This 
study used the deconstructSigs161 tool to estimate the mutational signature 

contributions within the TCGA cohort and to look for possible links with 
quiescence. Using a multiple linear regression approach, deconstructSigs 

can identify the best linear combination of previously reported mutational 
signatures that can explain the mutational profiles of tumour samples. Only 

samples harbouring more than 50 SNVs were included in the analysis to 
ensure that the mutational signatures could be accurately assigned. 

Mutational signatures were also separately estimated using the SigProfiler226 
tool, as described in section 2.4. In comparison to DeconstructSigs, 

SigProfiler uses non-negative matrix factorisation to perform de novo 

signature extraction. In this way, results from SigProfiler were used to provide 
further evidence about which mutational processes were active in each 

tissue. Results from deconstructSigs were used in the downstream analysis. 
However, for each cancer type, the contribution of signatures which 
SigProfiler did not independently identify was set to 0. Moreover, for each 

cancer type, signatures not identified by SigProfiler but estimated by 
deconstructSigs to account for more than 5% of all mutations were not 

removed. Ageing-related signatures, SBS1 and SBS5, were detected across 
all cancer types in previous studies.226 As such, the contribution of these 

signatures was not removed from the results of this analysis. Overall, these 
steps were performed to reduce the potential overfitting of signatures by the 

deconstructSigs approach. Ultimately the contribution of 15 mutational 
signatures showed a significant correlation with the calculated quiescence 

scores, either within individual cancer studies or pan-cancer (Figure 4.6).  
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Figure 4.6: Mutational signatures associated with quiescence. 
Quiescence score correlations with mutational signatures across the TCGA 
cohort. Associations were tested between quiescence scores and all 
mutational signatures (SBS1, SBS2, SBS3, SBS4, SBS5, SBS6, SBS7a, 
SBS7b, SBS8, SBS10a, SBS10b, SBS13, SBS14, SBS15, SBS16, SBS17b, 
SBS20, SBS22, SBS28, SBS30, SBS36, SBS39, SBS40 and SBS44) 
detected across the TCGA cohort. Cancer-wise associations were tested 
between sample quiescence scores and the contribution of all mutational 
signatures detected in the given cancer type. Only significant correlations are 
displayed (Pearson’s correlation p-value < 0.05). As such, the absence of 
specific mutational signatures in the figure does not necessarily indicate a 
lack of attributable mutations across the TCGA cohort. Abbreviations used in 
the figure are given as follows: SBS, single-base substitution; TCGA, The 
Cancer Genome Atlas. TCGA cancer type abbreviations are listed in the 
abbreviations section (pg. 15).  
 

Identification of quiescence dependencies through a pan-cancer 

ensemble elastic net regression feature selection model 

Following the initial feature prioritisation, an ensemble elastic net feature 

selection approach, similar to the one described by Pich et al,227 was applied 

to identify the most significant associations between cancer cell quiescence 
levels and the selected SNVs, CNVs and mutational signatures (Figure 4.7a). 
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More general features of the tumour samples, such as the tumour mutational 
rate and measures of genomic instability were also added to the model 

(Figure 4.7a). The measures of genomic instability included the total number 
of whole-genome duplication events and aneuploidy scores reported by 

Taylor et al,146 which denote the total number of chromosome arms with arm-

level copy number alterations in each tumour sample. Lastly, variables 
indicating the cancer type of the tumour samples were included to account 

for tissue-specific differences in the propensity of cancer cells to enter 
quiescence. The ensemble elastic net approach was applied to 4,689 tumour 

samples for which information about all input features was complete (Figure 
4.7a). In particular, only samples with at least 50 mutations were used, for 

which mutational signatures could be reliably estimated. Initially, 1000 elastic 
net models were trained on an internal training dataset of 3,753 samples 

(Figure 4.7a).  Through the use of L1 and L2 regularisation, elastic net 
regression decreased the complexity of each of the 1000 regression models 
by shrinking the coefficients of the features with low predictive value to zero, 

effectively eliminating unimportant features from the model. Overall, 57 
features were included in all 1000 elastic net regression models, including 

SNVs and copy number losses in 17 cancer genes and amplifications of 10 
cancer genes. To test the performance the ensemble elastic net regression 

model, a linear regression model was built using the reduced list of genomic 
features  and their corresponding coefficient averaged across the 1000 elastic 

net regression model iterations. The resulting linear regression model 
performed well on the internal validation dataset of 936 samples, showing a 

strong correlation between the observed and predicted quiescence scores 
(Figure 4.7b). This confirmed the strong association of the 57 features with 

quiescence. 
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Figure 4.7: Pan-cancer elastic net regression feature selection model 
design and performance. (a) Schematic of the initial feature selection and 
the ensemble elastic net regression model used to search for genomic 
features associated with cancer cell quiescence. (b) Correlation between the 
observed quiescence scores within the internal test dataset and scores 
predicted by the linear regression model using the selected pan-cancer 
features. All analysis in the figure was performed using data from the TCGA 
cohort. Abbreviations used in the figure are given as follows: CNA, copy 
number alteration; QS, quiescence score; SNV, single nucleotide variant; 
TCGA, The Cancer Genome Atlas; TMB, tumour mutational burden. 
 
As demonstrated in section 4.2, samples from different cancer types show 

systematic differences in mean quiescence score estimates. Therefore, as 
expected, the pan-cancer model identified tissue type to be a major 

determinant of quiescence levels (Figure 4.8). Reassuringly, TP53 mutations, 

MYC amplifications and the overall mutational burden in the genome were 
negatively linked with quiescence (Figure 4.8). Highly quiescent tumours also 

displayed less aneuploidy. Additionally, the model uncovered new potential 
dependencies, such as CEP89 and LMNA amplifications observed in fast 

cycling tumours or ZMYM2 deletions prevalent in dormant samples (Figure 

4.8). ZMYM2 has recently been described as a novel binding partner of B-
MYB and has been shown to be important in facilitating the G1/S cell cycle 

transition.228 p16 (CDKN2A) deletions, one of the frequent early events during 

cancer evolution, were enriched in dormant tumours.229,230 Interestingly, RB1 

deletions and amplifications were both associated with a reduction in tumour 
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dormancy. This potentially could reflect the dual role of RB1 in regulating 

proliferation and apoptosis.231  
 

 
Figure 4.8: Genomic features and cancer types associated with cancer 
cell quiescence. Features associated with cancer cell quiescence ranked 
according to their importance in the pan-cancer ensemble elastic net 
regression model (highest to lowest). Each point depicts an individual tumour 
sample, coloured by the value of the respective feature. For discrete variables 
purple indicates the presence of the feature and green its absence. The SHAP 
values represent the impact of individual feature values on the model 
quiescence score prediction. All analysis in the figure was performed using 
data from the TCGA cohort. Abbreviations used in the figure are given as 
follows: SBS, single-base substitution; SHAP, shapley additive explanations; 
SNV, single nucleotide variant; TCGA, The Cancer Genome Atlas. TCGA 
cancer type abbreviations are listed in the abbreviations section (pg. 15).  
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Further exploration of pan-cancer genomic dependencies of dormancy 

Overall, the genomic dependencies of dormancy comprised genes found to 
be largely involved in cell cycle pathways, p53 regulation and ubiquitination 

(most likely of cell cycle targets), as expected, but also SMAD4 transcriptional 
activity and RUNX2/3 regulation (Figure 4.9).  
 

 
Figure 4.9: REACTOME pathways significantly altered in cancer cell 
dormancy. Abbreviations used in the figure are given as follows: SAHF, 
senescence-associated heterochromatin foci; SUMO, small ubiquitin-like 
modifier. 
 
By highlighting mutational signatures associated with dormancy, the 

ensemble elastic net regression model also calls attention to broader 
mutational processes associated with cancer cell quiescence. Such 

processes showed fairly weak and heterogenous correlations with cancer cell 
quiescence within individual tissues (Figure 4.6), but their contribution 

becomes substantially clearer pan-cancer once other genomic sources are 
accounted for (Figure 4.8). In particular, it identified an association between 

dormancy and the activity of AID/APOBEC family of cytosine deaminases (as 
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denoted by signature SBS2).226 As highlighted by Mas-Ponte and Supek,232 
APOBEC/AID driven mutations tend to be directed towards early-replicating, 

gene-rich regions of the genome, inducing deleterious events on several 
genes, including ZMYM2, which has been shown to be linked with higher 

cancer cell quiescence levels by the pan-cancer ensemble model. In turn, 

defective DNA mismatch repair (SBS44, SBS20, SBS15, SBS14, SBS6)226 
was enriched in fast cycling tumours. Microsatellite instability is a condition 

caused by defective DNA mismatch repair, associated with hypermutation of 
short tandem repeats due to unrepaired DNA polymerase slippage, as well as 

a generally higher frequency of SNVs.233 Uterine corpus endometrial 
carcinoma, as well as colon and stomach adenocarcinomas have been 

recognised as microsatellite instability prone cancers.147 Using microsatellite 
instability status, experimentally determined for TCGA primary tumour 

samples for the aforementioned cancer types, significantly higher quiescence 
levels were observed in the microsatellite stable stomach adenocarcinoma 
and uterine corpus endometrial carcinoma tumours compared to 

microsatellite unstable tumours147 (Figure 4.10a). Previous studies have 
observed increased levels of various DNA damage markers within quiescent 

cells.47 Similarly, this shows that DNA damage repair deficiencies are 
inauspicious to the emergence of cancer cell quiescence.  Specifically, 

dormant tumours were depleted of alterations across all DNA damage repair 
pathways (Figure 4.10b).  
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Figure 4.10: DNA damage repair deficiencies are inauspicious to the 
emergence of cancer cell quiescence. (a) Dormancy levels are significantly 
reduced in microsatellite unstable (MSI) samples in stomach adenocarcinoma 
(STAD), uterine corpus endometrial carcinoma (UCEC) but not colon 
adenocarcinoma (COAD). (b) Mutations and copy number alterations are 
depleted across DNA repair pathways during dormancy. Orange circles 
represent odds ratios and vertical lines represent confidence intervals for 
each of the individual tests. All analysis in the figure was performed using 
data from the TCGA cohort. Abbreviations used in the figure are given as 
follows: Alt_NHEJ, alternative non-homologous end joining; BER, base 
excision repair; CS, chromosome segregation; CPF, checkpoint factor; CR, 
chromatin remodelling; FA, Faconi anaemia pathway; MMR, mismatch repair; 
MSI, microsatellite unstable, MSS, microsatellite stable; NER, nucleotide 
excision repair; NHEJ, non-homologous end joining; p53, p53 pathway; 
TCGA, The Cancer Genome Atlas; TLS, translesion synthesis; TM, telomere 
maintenance; UR, ubiquitylation response. TCGA cancer type abbreviations 
are listed in the abbreviations section (pg. 15). 
 

When checking for the same dependencies in individual cancer tissues within 
the TCGA cohort, 24 out of the 25 genes identified by the model appeared to 

be significantly associated with dormancy in at least one tissue, most 
prominently in breast, lung and liver cancers (Figure 4.11a, top panel). Most 

of these genomic insults were associated with a decrease in dormancy. In 
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external validation datasets with patient-matched expression and mutational 
data, these associations feature most prominently in breast cancer. In 

particular, deletions in PTEN, LRP1B, CYLD, RECQL4, SIRPA, STAG1, 

ZMYM2, BCL3 and FHIT, as well as amplifications in MYC, CEP89, SDHA, 

ETV6, PLAG1, PRRX1 and LMNA were associated with an impairment of 
dormancy in breast cancer in both the TCGA cohort and external validation 

datasets (Figure 4.11a, bottom panel). Experimental data from 27 MCF7 
breast cancer cell line strains, obtained from Ben-David et al,173 was used for 

additional validation. This dataset contained information about strain 

doubling times, as well as both expression and mutational data. Importantly, 
across the 27 MCF7 strains, there was a good correlation between the level 

of cell line quiescence scores, estimated from the expression data, and the 
level of experimentally measured doubling times – with slower doubling time 

being linked to higher quiescence (Figure 4.11b). This provided additional 
validation of the quiescence scoring method described in sections 3.2 and 

3.3. Lower quiescence score estimates also coincided with depletion of PTEN 
mutations highlighted by the pan-cancer elastic net regression model, thus 

providing further evidence for the association of PTEN mutational status with 

cancer cell quiescence (Figure 4.11b). 
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Figure 4.11: Exploration and validation of pan-cancer model features 
across the TCGA and external datasets. (a) Tissue-specific changes in 
mean quiescence score estimates between samples with/without 
quiescence-associated deletions (blue), amplifications (red) and SNVs 
(brown) within the TCGA cohort (top) and external validation datasets 
(bottom). (b) Dormancy is increased in MCF7 cancer cell line stains (data from 
Ben-David et al)173 with slow doubling times, which also show a lower 
prevalence of PTEN mutations. Abbreviations used in the figure are given as 
follows: MUT, mutant; SNV, single nucleotide variant; TCGA, The Cancer 
Genome Atlas; WT, wild type. TCGA cancer type and validation dataset 
abbreviations are listed in the abbreviations section (pg. 15).  
 

Validation of associations highlighted by the pan-cancer regression 

model in cancer cell line models 

To gain more insight into the underlying biology of cellular dormancy this 

study aimed to experimentally validate associations highlighted by the pan-
cancer regression model in cancer cell lines. Initially, the impact of CEP89, 

ZMYM2 and BCL3 mutational status on quiescence-proliferation decisions 

was prioritised for experimental validation. CEP89 amplification status was 

prioritised due to its high ranking in the ensemble elastic model, the relatively 
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unexplored links between CEP89 and cell cycle control, the good levels of 

CEP89 expression across a variety of cancer cell line models and the, as well 

as its association with quiescence across a variety of cell lines (Figure 4.12a-
c). Moreover, interestingly, within the TCGA cohort, CEP89 expression was 

prognostic across multiple cancer tissues (Figure 4.12d). CEP89 expression 

was also associated with the toxicity of several cancer compounds in cell line 
models (Figure 4.12e).  

 

 
Figure 4.12: CEP89 expression is associated with quiescence and has 
prognostic value. (a-c) CEP89 expression is negatively correlated with 
quiescence scores in lung (a), pancreas (b) and thyroid (c) cancer cell lines 
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(data from the CCLE). (d) Compounds with selective toxicity on cell lines with 
high CEP89 expression. The volcano plot shows the Pearson correlation 
coefficients and the corresponding p-values for associations between CEP89 
expression and the Area Under the dose-responsive Curve (AUC) for each 
compound across cell lines from the CCLE.  (e) Cox proportional hazards 
analysis estimates of the log hazards ratio for the impact of CEP89 expression 
on patient disease-specific survival within individual TCGA cancer studies, 
after considering the tumour stage. Patients with high expression of CEP89 
show significantly worse prognosis within ACC, LUSC, LIHC, KIRC and 
STAD, but significantly better prognosis within HNSC, PAAD and KIRP 
studies. Abbreviations used in the figure are given as follows: AUC, area 
under the curve; CCLE, Cancer Cell Line Encyclopedia; TPM, transcript per 
million. TCGA cancer type abbreviations are listed in the abbreviations 
section (pg. 15). 
 

The function of CEP89 is not well characterised, however, the encoded 
protein has been proposed to function as a centrosomal-associating 

protein.234,235 Centrosomes function as a major microtubule-organising 
centres (MTOC) of the cells, which play a fundamental role during cell division 

by allowing the separation of replicated chromosomes into daughter cells 
using the attached microtubule spindle.236 Experiments in human cells and 

other eukaryotic models suggest that centrosomes also play a part in mitotic 
entry signalling by providing a platform for concentrating signalling molecules 

and amplifying the activity of cell cycle proteins such as cyclin B/Cdk1.237 
Similarly, centrosomes have been reported to function as a site of ubiquitin-

mediated proteolysis of cell cycle targets238 and members of several growth 
signalling pathways, such as Wnt and NF-kB, have been shown to localise to 

the structures.239,240 Interestingly, CEP89 has been shown to interact 

genetically with several key cell cycle proteins, including cyclin D2241 (Figure 
4.13a). Based on the output of the pan-cancer elastic net regression model, 

CEP89 amplification is predicted to be associated with fast cycling tumours. 
Centrosome amplification is a common feature of tumours with high 

proliferation rates and high genomic instability,150 which is reflected by the 
strong negative correlation between quiescence levels and previously 

reported centrosome amplification transcriptomic signature (CA20)150 scores 
in the TCGA cohort (Figure 4.13b). Previous studies have shown that 
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overexpression of centrosome proteins can lead to alterations in centriole 
structure.242-245 Correspondingly, significantly higher CA20 scores can be 

observed within tumours containing CEP89 amplifications (Figure 4.13c).  

 

 
Figure 4.13: Centrosome amplification is associated with lower tumour 
quiescence. (a) Network illustrating CEP89 interactions with cell cycle genes. 
Edge colour indicates interaction type, with green representing genetic 
interactions, orange representing predicted interactions and purple indicating 
pathway interactions. Edge width illustrates interaction weight. (b) Pan-
cancer relationship between CA20 scores and tumour quiescence across the 
TCGA cohort. (c) CA20 scores are significantly increased in TCGA primary 
tumours containing an CEP89 amplification. The abbreviations used in the 
figure are given as follows: TCGA, The Cancer Genome Atlas. 
 

The Cep89 target was validated at the Alexis Barr lab by Dr Steve Cutty within 
the lung adenocarcinoma cell line NCI-H1299 showing high levels of CEP89 

amplification. Cep89 depletion via siRNA knockdown caused a consistent 

increase in the fraction of quiescent cells as measured by phospho-RB and 
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EdU assays (Figure 4.14). Cep89 depletion also caused a consistent increase 
in the fraction of quiescent cells in the non-transformed but immortalised 

human retinal pigment epithelial, hTERT RPE-1, cell line lacking CEP89 

amplification (data not shown). Thus, CEP89 appears to function as a 

potentially novel cell proliferation regulator that may be exploited in certain 
scenarios to control tumour growth. 

 

 
Figure 4.14: Cep89 is a novel potential cancer cell proliferation regulator. 
(a) Western blot showing depletion of Cep89 protein 48hr after siRNA 
transfection of NCI-H1299 cells. Mock is lipofectamine only, NTC is non-
targeting control siRNA. B-actin is used as a loading control. (b) Graphs show 
that Cep89 depletion in NCI-H1299 cells leads to a reduction in nuclear 
number and an increase in the fraction of quiescent cells, measured by an 
increase in the percentage of EdU negative (24h EdU pulse) and phospho-
Ser 807/811 RB negative cells. One-way ANOVA, *p<0.05, **p<0.01, Mean of 
n=3. Abbreviations used in the figure are given as follows: ANOVA, analysis 
of variance; EdU, 5-ethynyl-2’deoxyuridine; FOV, field of view; NTC, non-
targeting control; pRb, phosphorylated RB; siRNA, small interfering RNA. 
 

Similarly, the effect of ZMYM2 and BCL3 mutational status on the fraction of 

cancer cells occupying the quiescent state was also explored experimentally 
in lung adenocarcinoma cell lines by Dr Stephen Cutty. According to the pan-

cancer ensemble elastic net regression model, deletions in ZMYM2 and BCL3 
are associated with an increased and decreased quiescence propensity, 

respectively (Figure 4.8). ZMYM2 has been reported to play a key role at the 
G1/S cell cycle transition by interacting with B-MYB.228 Its knockdown in a 

human liver cancer cell line has been shown to impair the G1/S transition.228 
In this study, ZMYM2 expression negatively correlated with quiescence 

estimates across cancer cell lines from a variety of tissues (Figure 4.15), thus 



 122 

highlighting a potential involvement of ZMYM2 in the quiescence commitment 

decision. Similarly, as predicted by the ensemble elastic net regression 
model, the expression of BCL3 was positively correlated with quiescence 

estimates across the cell line data (Figure 4.16). BLC3 functions as a 

transcriptional regulator of NF-kB genes.246 However, it can activate or 
repress transcription depending on the cell type and inter- and intra-cellular 

signals.246 As such, numerous publications have reported contrasting effects 
of BCL3 expression on cell cycle progression.246 For example, overexpression 

of BCL3 stimulates cell cycle progression by increasing the cyclin-D 

transcription in breast epithelial cells.246 In contrast, high BCL3 expression 

reduces the proliferation of T cells following stimulation of the T cell receptor 
(TCR).246 Overall, despite the associations between ZYMY2 and BCL3 with 

quiescence propensity across the cell lines and the TCGA cohort, their 

depletion via siRNA knockdown did not cause a significant change in the 
fraction of quiescent cells within lung adenocarcinoma cell lines. 
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Figure 4.15: ZMYM2 expression is negatively associated with 
quiescence. (a-d) ZMYM2 expression is negatively correlated with 
quiescence scores in bone (a), breast (b), lung (c) and skin (d) cancer cell 
lines (data from CCLE). Abbreviations used in the figure are given as follows: 
CCLE, Cancer Cell Line Encyclopedia; TPM, transcript per million. 
 

 
 

Figure 4.16: BCL3 expression is positively associated with quiescence. 
(a-e) BCL3 expression is negatively correlated with quiescence scores in 
endometrium (a), oesophagus (b), large intestine (c), liver (d) and lung (e) 
cancer cell lines (data from CCLE). Abbreviations used in the figure are given 
as follows: CCLE, Cancer Cell Line Enclyclopedia; TPM, transcript per million. 
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4.4 Cancer type specific genomic features linked to quiescence 
 

As described in section 4.2, malignant cells originating from different tissues 
vary in their propensity to enter the quiescent state. The pan-cancer 

ensemble elastic net feature selection model described in section 4.3 was 
used to identify genomic features that are universally associated with 

dormancy across different cancer types. Also, by integrating data from a large 
cohort of 4,689 samples, the model had increased power to identify potential 

associations with quiescence. However, the extremely diverse genomic 
background for cancer development in different tissues might mean that 
certain genetic alterations may lead to a higher or lower propensity of 

dormancy in an individual tissue only. This section focuses on investigating 
the genomic features associated with quiescence specifically within breast 

cancer tumour samples. The breast tissue was used as a case study because 
it represents the largest cancer dataset available from the TCGA, where there 

is still adequate power and balance of dormant/cycling phenotypes to 
uncover tissue-specific markers of dormancy. 

 

Breast cancer-specific ensemble elastic net regression feature selection 

model 

The ensemble elastic net approach described in section 4.3 functions as a 

feature selection model. This is because, through L1 and L2 regularisation, it 
can shrink the coefficients of features with low predictive value to zero, 

effectively removing them from the regression models. This ensemble 
approach was also applied to a training dataset consisting of 80% of breast 

cancer primary tumour samples within the TCGA. This accounted for a 
training dataset size of 402 samples. Starting features included in the breast 

cancer-specific ensemble elastic net regression model included the 
mutational status of cancer driver genes which were found to be preferentially 

altered (via mutations or copy number alterations) in slow-cycling or fast 
cycling tumours across the entire TCGA cohort. In addition, the mutational 

status of driver genes altered in at least 5% of breast cancer patients, which 
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also showed preferential alteration in fast cycling or slow-cycling breast 
cancer samples, was included. Lastly, the mutational signature contributions 

were included for signatures showing correlation with quiescence scores 
either pan-cancer or across the breast cancer cohort.  These steps aimed to 

minimise the ratio of the number of input features to the number of patient 
samples used in the model. Overall, ten features were retained in all 1000 

elastic net regression models (Figure 4.17a).  However, the model did not 
show a good internal validation performance (Figure 4.17b).  

 

 
Figure 4.17: Ensemble elastic net feature selection and performance 
within the breast cancer TCGA cohort. (a) Features associated with cancer 
cell quiescence ranked according to their importance in the breast cancer-
specific ensemble elastic net regression model (highest to lowest). Each point 
depicts an individual tumour sample, coloured by the value of the respective 
feature. For discrete variables, purple indicates the presence of the feature 
and green its absence. The SHAP values represent the impact of individual 
feature values on the model quiescence score prediction. (b) Correlation 
between the observed quiescence scores within the internal test dataset and 
scores predicted by the linear regression model using the selected breast 
cancer features. All analysis in the figure was performed using data from the 
TCGA cohort. Abbreviations used in the figure are given as follows: SHAP, 
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shapley additive explanations; SNV, single nucleotide variant; TCGA, The 
Cancer Genome Atlas. 
 
Breast cancer-specific random forest feature selection model 

An alternative random forest approach was also used by Dr Mario Pareno-

Centeno within the Secrier lab to identify breast cancer-specific markers of 
quiescence. Firstly, an ANOVA-based feature importance classification was 

used to identify 30 features most discriminative of samples with lower and 
higher than average quiescence scores. A random forest model was then built 

using the identified features and correctly classified samples according to 
their quiescence groups with a mean accuracy of 0.74 (Figure 4.18a). This 

model also recovered the associations with SBS2, TP53 mutation, as well as 
MYC, KLF6, LMNA, ETV6 and RAD21 amplification already seen in the pan-

cancer model (Figure 4.18b). All additional associations were validated in the 
METABRIC cohort and were also observed in a few other cancers, particularly 

bladder, lung, and lower grade glioma (Figure 4.18c).  
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Figure 4.18: Genomic landscape of breast cancer dormancy. (a) ROC 
curve illustrating the mean performance of the quiescence prediction random 
forest model in breast cancer based on nine randomisations. (b) Impurity 
criterion information gain for the top-ranked predictive genomic features of 
quiescence in the TCGA breast cancer cohort, modelled using random 
forests. Features also appearing in the pan-cancer model are highlighted in 
purple. (c) Tissue-specific changes in quiescence estimates between 
samples with and without quiescence-associated amplifications (red) and 
SNVs (purple), identified by the breast cancer-specific random forest model, 
within the TCGA cohort (top panel) and external validation datasets (bottom 
panel). All analysis in the figure was performed using data from the TCGA 
cohort. The abbreviations used in the figure are given as follows: amp, 
amplification; AUC, area under the curve; ROC, receiver operating 
characteristic; SNV, single nucleotide variants; TCGA, The Cancer Genome 
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Atlas; WGD, whole genome duplication. TCGA cancer type and validation 
dataset abbreviations are listed in the abbreviations section (pg. 15). 
 

Further exploration of breast cancer-specific genomic dependencies of 

quiescence 

Since APOBEC/AID activity has been linked with dormancy in both the pan-
cancer elastic net regression model and the breast cancer-specific random 

forest model, its role in breast cancer was further investigated, especially 
since this is one tissue type in which the associated mutational signature 

SBS2 is prevalent. A significant correlation was observed between the 
fraction of mutations contributed by the SBS2 process and cancer cell 

quiescence within the breast cancer cohort. Daniel Jacobson within the 
Secrier group classified breast cancer samples showing enrichment of 

APOBEC mutations, defined as mutations attributed to SBS2 and SBS13, 
using an expectation-maximization clustering approach described in section 

2.4. Overall, samples enriched in APOBEC-associated mutations showed 
significantly higher quiescence levels (Figure 4.19a). Across breast cancer 

subtypes, the Her2+ subtype had the highest incidence of APOBEC-
associated mutational events, suggesting it may be the most susceptible to 
APOBEC-linked quiescence (Figure 4.19b-c). 

 

 
Figure 4.19: Quiescent breast cancer cells show enrichment of APOBEC 
mutagenesis. (a) Quiescence scores are significantly higher in APOBEC 
mutation-enriched breast cancer samples. (b) APOBEC-linked SBS2 
mutational burden compared between breast cancer subtypes. (c) 
Association between quiescence scores, APOBEC enrichment and breast 
cancer subtypes in the TCGA. All analysis in the figure was performed using 
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data from the TCGA cohort. Abbreviations used in the figure are given as 
follows: HER2+, human epidermal growth factor receptor 2 positive; LumA, 
luminal A; LumB, luminal B; SBS, single-base substitution; TCGA, The Cancer 
Genome Atlas. TCGA cancer type abbreviations are listed in the abbreviations 
section (pg. 15). 
 

4.5 Pan-cancer characterisation of individual quiescence 

programmes 
 

Validation of individual quiescence programme scores 

While the previous sections of this chapter examined a generic dormancy 

programme, cancer cells can enter quiescence due to different stimuli, which 
may inform its aetiology and manifestation. Using expression data reported 

by Min and Spencer,47 previously used to derive gene markers of a generic 
quiescence phenotype, the primary tumour samples from the TCGA cohort 

were re-scored based on the expression of genes differentially expressed 
specifically in serum starvation, contact inhibition, MEK inhibition, CDK4/6 

inhibition and spontaneously induced quiescence (see Methods section 2.6). 
Reassuringly, a good correlation was observed between the quiescence 

estimates representing the individual quiescence programmes and the 
expression of genes associated with the corresponding forms of quiescence 

in the literature (Figure 4.20, Figure 4.21a-e). CDK4/6 inhibition scores 
showed a good correlation with the mean expression of CDK4 and CDK6. 
Contact inhibition and serum starvation quiescence levels also showed a 

good correlation with a curated list of genes making up the “contact 
inhibition” gene ontology annotation term and with genes from the 

REACTOME pathway database that were associated with cellular response 
to starvation, respectively. MEK inhibition quiescence levels showed a strong 

inverse correlation with the expression of 13 genes used to calculate a 
transcriptional MAPK pathway activity score (MPAS).247 Spontaneous 

quiescence, usually triggered by cell-intrinsic factors such as naturally 
occurring DNA damage incurred during the S-phase of the cell cycle, is 

dependent on the increased transcription of p21. However, this is not a 
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requirement for other forms of quiescence, such as serum starvation.55 
Correspondingly, across the TCGA cohort, the spontaneous quiescence 

estimates show a stronger correlation with p21 expression than the 
quiescence scores characterising other quiescence states.  
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Figure 4.20: Quiescence type-specific dormancy score validation. (a-e) 
Correlation between quiescence score estimates and (a) mean expression of 
CDK4/6, (b) the mean expression of curated contact inhibition genes, (c) 
MPAS scores, (d) mean expression of curated serum starvation genes and 
(e) CDKN1A expression, across individual TCGA cancer studies and pan-
cancer. All analysis in the figure was performed using data from the TCGA 
cohort. Abbreviations used in the figure are given as follows: CDK, cyclin-
dependent kinase; MPAS, MAPK pathway activity score; TCGA, The Cancer 
Genome Atlas. TCGA cancer type abbreviations are listed in the abbreviations 
section (pg. 15). 
 

CDK4/6 inhibition quiescence scores were further validated using external 
bulk RNA-seq datasets from cancer cell lines and xenograft mice sequenced 
before and after treatment with a CDK4/6 inhibitor Palbociclib (Figure 4.21f, 

Table 4.1).248,249 Overall, estimates for a general quiescence phenotype were 
most discriminative of cells treated with Palbociclib, confirming the ability of 

the general quiescence scoring methodology to capture a wide range of 
quiescence phenotypes. However, CDK4/6 inhibition scores were found to 

be more discriminative of treated cells compared to scores representative of 
other specific quiescence types. Interestingly, cells before and after treatment 

also showed significant differences in spontaneous quiescence scores. 
Indeed, p21 activity has been linked with the Palbociclib mechanism of 

action,250,251 and this analysis suggests potential similarities between CDK4/6 
inhibition and p21-dependent quiescence phenotypes. 
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Table 4.1 Summary of external datasets from cell line and mouse 
xenograft models before and after CDK4/6 inhibition. 
 
 

 
Figure 4.21: Pan-cancer characterisation of individual quiescence 
programmes. (a-e) Boxplot comparison of correlation coefficients between 
quiescence programmes scores and (a) mean expression of CDK4 and 
CDK6, (b) mean expression of curated contact inhibition genes, (c) MPAS 
scores, (d) mean expression of curated serum starvation genes, (e) CDKN1A 
expression, across individual TCGA cohort studies. The correlations 
expected to be strongest are denoted by an asterisk. (f) Boxplot comparison 
of quiescence programme scores between untreated and palbociclib treated 
cancer cell lines across three validation studies (Table 4.1). Datasets used for 
validation are denoted by their corresponding GEO series accession number. 
(g) Predicted quiescence type composition of samples estimated to be 
dormant across individual TCGA studies. Abbreviations used in the figure are 
given as follows: CDK, cyclin-dependent kinase; GEO, Gene Expression 
Omnibus; MPAS, MPAS pathway activity score; TCGA, The Cancer Genome 
Atlas. TCGA cancer type abbreviations are listed in the abbreviations section 
(pg. 15). 
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Pan-cancer characterisation of individual quiescence programmes 

After validating the framework for quantifying stimulus-specific quiescence 
programmes, this analysis aimed to estimate the dominant form of 

quiescence within samples showing evidence of dormancy (general 
quiescence score > 0) across distinct cancer tissues, as described in section 
2.6 (Figure 4.21g). Interestingly, this analysis suggested that a range of 

quiescence aetiologies can be found across most tissues within the TCGA 
cohort.  However, a minority of cancers were dominated by a single form of 

quiescence, e.g., serum starvation in all quiescent pheochromocytomas and 
paragangliomas, contact inhibition in 88% of head and neck carcinomas, and 

CDK4/6 inhibition in 80% of quiescent adrenocortical carcinomas. This 
analysis does not suggest that the state of cell cycle arrest will have 

necessarily been induced by the actual predicted stimulus (impossible in the 
case of CDK4/6 or MEK inhibition, as the analysed samples are all treatment-

naïve). However, it does suggest that the downstream signalling cascade may 
resemble that triggered by such stimuli, e.g., via CDK4/6 or MEK loss of 

function mutations. Amongst these states, spontaneous quiescence 
appeared most strongly dependent on p53 functionality (Table 4.2). This 

points to common transcriptional features of drug-tolerant quiescent cells in 
different cancer settings that could be employed in designing ways to 

eradicate these cells in the future.  
 

 
 
 

 
 

 
 

 
 
 
 



 134 

 
 

CDK4/6 
inhibition  

 
Contact 

inhibition 

 
MEK inhibition 

 
Serum 

starvation 

 
Spontaneous 
quiescence 

Cancer 
type 

QS 
change 

P-
value 

QS 
change 

P-
value 

QS 
change 

P-
value 

QS 
change 

P-
value 

QS 
change 

P-
value 

ACC -1.92 3.46E-
02 

      
-1.23 8.11E-

03 
BLCA -1.55 2.76E-

07 

      
-1.57 2.30E-

12 
BRCA -1.95 7.19E-

28 
0.41 7.04E-

10 

  
-0.67 1.09E-

11 
-0.58 9.44E-

11 
CESC 

  
-1.43 8.79E-

04 

  
0.81 3.66E-

02 
-1.05 3.48E-

03 
CHOL 

          

COAD -0.29 7.33E-
03 

  
0.41 1.77E-

05 
0.35 4.61E-

03 
-0.71 6.64E-

08 
ESCA-

AC 

          

ESCA-
SC 

          

GBM 
        

-0.57 2.03E-
02 

HNSC 
      

0.35 1.58E-
02 

0.43 3.46E-
02 

KICH 
          

LGG 
  

-0.27 2.12E-
06 

  
0.15 2.29E-

02 

  

LIHC -1.94 9.63E-
11 

    
-0.4 1.23E-

03 
-1.45 7.66E-

14 
LUAD -2.48 3.26E-

16 

    
-0.53 1.66E-

05 
-1.04 3.89E-

09 
LUSC 

          

MESO 
          

OV 
    

0.32 4.35E-
02 

    

PAAD 
  

0.78 2.61E-
02 

    
0.36 4.39E-

02 
PRAD 

    
-0.59 9.74E-

15 

    

READ 
        

-0.89 1.79E-
03 

SARC -1.14 2.32E-
04 

-0.26 1.25E-
02 

    
-0.85 1.45E-

04 
SKCM 

          

STAD -0.31 2.72E-
02 

      
-0.4 1.45E-

02 
THYM 

          

UCEC -1.3 5.07E-
08 

  
0.9 1.57E-

11 

  
-1.35 3.04E-

17 

 
Table 4.2: Changes in quiescence between p53 proficient and deficient 
cancers, stratified by quiescence subtype and cancer study. The 
quiescence score (QS) change depicts the difference in median quiescence 
scores between p53 wild-type and mutant samples. Only significant 
differences are shown. All analysis in this table was performed using data 
from the TCGA cohort. Abbreviations used in the figure are given as follows: 
CDK, cyclin-dependent kinase; QS, quiescence score; TCGA, The Cancer 
Genome Atlas. TCGA cancer type abbreviations are listed in the abbreviations 
section (pg. 15). 
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4.6 Discussion 
 
In this chapter, the quiescence scoring methodology developed in chapter 3 
was used to assess quiescence levels across 8,005 TCGA primary tumour 

solid cancer samples and, for the first time, provide a pan-cancer view of 
cellular quiescence. Using machine learning approaches, this study also 

sheds light on the genomic processes associated with this state, which could 
potentially act as biomarkers for predicting patient response to therapies 

targeting cycling cells in the clinic. 
 

The mutational status of TP53 was found to be the most important feature 
when predicting quiescence according to the pan-cancer and breast cancer-

specific models detailed in sections 4.3 and 4.4. This supports the developing 
view that in addition to mediating cell cycle arrest in response to DNA damage 

through its transcriptional target p21, p53 may also play a much more 
significant role in inducing entry into quiescence as a result of a broader range 

of stimuli, for example, due to oncogene activation and environmental 
stresses such as hypoxia.222 Both the ensemble elastic net and random forest 

models also identified mutational events affecting various other genes such 
as PTEN, CEP89, CYLD, LMNA and RECQL4 that appear unfavourable to cell 

cycle arrest, thus potentially implicating them in influencing quiescence-

proliferation decisions. Many of the other genes highlighted by our model also 
have previous links with the cell cycle, which warrants their further 

investigation. For example, RECQL4 encodes a DNA helicase which plays a 
key role in the imitation of DNA replication, and its depletion has been shown 

to impact replication origin firing efficiency and cell proliferation. In particular, 
this study highlights CEP89 amplification as a novel biomarker of non-small 

cell lung primary tumours with low quiescence capacity. Further experimental 

validation across a broad range of cancer cell line models is required to 
determine if CEP89 acts as a proliferation regulator across a wide variety of 

cancer types. Genomic alterations enriched in dormant tumours, such as p16 
or ZMYM2, were rare and predominantly captured pan-cancer. These events 
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could mark elevated genomic stress that renders cells more prone to cell 
cycle arrest. Such targets should be further validated and could be exploited 

to either counteract dormancy or induce it. Lastly, although depletion of 
ZMYM2 and BCL3 did not affect the quiescence-proliferation decision within 

the lung adenocarcinoma cell line used in this study, more extensive 

validation must be carried out using a range of cell lines across different 
cancer types. This is because the ability of these genes to influence cell 

quiescence entry and maintenance may depend on tissue type. Moreover, 
recently, a genomic analysis of 106 cancer cell lines grown in culture revealed 

extensive clonal diversity and transcriptional diversity within individual cell 
lines, which markedly affected cell traits such as proliferation rates173. 

Therefore, due to the heterogeneous landscape of cancer cell lines, additional 
dependencies influencing proliferation-quiescence decisions are hard to 

account for and compare. 
 
The broader mutational processes identified by the pan-cancer and breast 

cancer-specific models could also potentially impact patient prognosis and 
help clarify aspects of cancer evolution. In general, dormancy was found to 

be associated with more stable, less mutated genomes with intact DNA 
damage repair pathways. Interestingly, APOBEC mutagenesis also appeared 

strongly linked with higher dormancy levels. Mas Ponte and Supek show that 
APOBEC/AID-driven mutations are likely to have deleterious functional 

consequences as they tend to be directed towards early-replicating, gene-
rich regions of the genome.232 In particular, the authors highlight an 

enrichment of APOBEC-generated oncogenic mutations in several genes 
highlighted by our pan-cancer ensemble models, including ZMYM2 and 

NCOR1. Furthermore, APOBEC/AID-related mutations are related to better 

immunotherapy patient outcomes.252 
 

Rather than representing a single cellular state, quiescence describes a range 
of states of cellular dormancy resulting from various initiating stimuli. It 

remains to be investigated whether the different quiescence subtypes show 
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unique genomic dependencies. Supporting evidence for this assumption was 
provided by Barr et al.55 The authors showed that despite the crucial role of 

p53 in initiating quiescence in response to DNA damage acquired during the 

S-phase of the cell cycle, cells induced into quiescence by serum starvation 
did not require functional p53. In addition to developing a generic quiescence 

scoring method described in chapter 3, this study also developed a 
framework for quantifying stimulus-specific quiescence programmes. The 

quiescence estimates representing the individual quiescence programmes 
correlated well with the expression of genes associated with the 

corresponding forms of quiescence in the literature. Moreover, the CDK4/6 
inhibition score accurately was highly discriminative of cancer cells treated 

with the CDK4/6 inhibitor Palbociclib across three external datasets. 
However, before searching for potential genomic associations, the 

quiescence subtype-specific scores should undergo further validation in 
external datasets with independently profiled proliferating cells and cells 
induced into the specific quiescence subtypes once more datasets become 

publicly available. 
 

Lastly, a significant limitation of the study stems from the use of bulk-
sequenced primary tumour samples. Such datasets report averaged 

transcriptome signals across all cells within each tumour sample, which 
prevents the identification and calculation of the exact number of quiescent 

cells. However, due to the low abundance of quiescent cells within tumour 
samples and the large heterogeneity of genomic aberrations that occur during 

cancer development, many patient samples are required to identify features 
influencing the tumour quiescence propensity. As such, currently, the 

identification of large-scale genomic associations with quiescence is only 
feasible in bulk datasets such as the TCGA. In the future, the increasing 

availability of single-cell multi-omics datasets might enable the application of 
the machine learning methods from this chapter on data from individually 

sequenced cancer cells. 
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Chapter 5: Evaluation of the therapeutic relevance of 

cancer cell quiescence 
 

5.1 Introduction 
 

In this chapter, using the quiescence scoring methodology developed in 
chapter 3, I aimed to assess the impact of cancer cell quiescence on therapy 

response using bulk-sequenced transcriptome data from patient samples 
and scRNA-seq data from cancer cell lines. 

 
Sub-populations of quiescent cancer cells have been observed as one of the 

contributing factors of resistance to the commonly used cytotoxic, cytostatic 
and genotoxic therapies, which instead target rapidly proliferating cells.24-26 

Similarly, across several cancer cell line models, the quiescent state was 
shown to offer resistance against targeted molecular therapies which block 

proliferative signalling used by cancer cells.28,89,90 This is demonstrated by the 
resistance of quiescent KRAS(G12C)-mutant lung adenocarcinoma cell lines 
in response to treatment with a KRAS(G12C)-specific inhibitor.28 The 

increased resistance of quiescent cells to commonly used treatments may be 
partly due to the upregulation of genes and pathways involved in the stress 

response, allowing them to survive strenuous internal and environmental 
conditions.46,47 This includes the upregulation of genes involved in protection 

against free radicals such as FOXO1 and genes involved in detoxifying 

environmental chemicals such as ADLH1A3.46,47 It is still debated whether 

quiescent cancer cells form a pre-existing sub-population within tumour 
samples, which becomes selected upon treatment. Alternatively, the stress 

caused by the therapies given to patients could induce a quiescent state. 
Both mechanisms may be valid as recent live-cell imaging experiments by 
Min and Spencer47 suggest that in response to various stress signals, 

including genotoxic and oxidative stress, both pre-existing quiescent cells 
and cells that entered the quiescent state shortly after treatment showed 
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increased survival.47 Moreover, as the neoplastic cells evolve, the quiescent 
stage can be used by cancer cells to facilitate immune evasion, partly due to 

the downregulation of ligands for NK cells.112 
 

The quiescent state is a reversible phenotype which allows cancer cells to 
survive treatment with anti-proliferative agents without acquiring mutations 

that enable permanent therapy resistance.28,91 However, cancer cells can 
transcriptionally reprogramme to adapt to the quiescence-inducing stress 

signal during the time spent in quiescence.28 For example, in KRAS(G12C)-
mutant lung adenocarcinoma cells treated with a KRAS(G12C)-specific 

inhibitor, the upregulation of EGFR and aurora kinase signalling pathways 
during quiescence was shown to maintain KRAS in an activated and drug-

insensitive form.28 In turn, this thus allowed the cells to continue proliferating 
despite continuous treatment. Furthermore, the quiescent state can be used 

by cancer cells to accumulate further mutations.71,92,93 This is potentially 
facilitated by the downregulation of genes involved in DNA damage repair and 

the upregulation of error-prone DNA polymerases.96 The accumulated 
mutations could give rise to permanent resistance to anti-proliferative drugs 

or help expand the neoplastic processes of the tumour. Consequently, this 
can lead to tumour progression and/or recurrence once the cells start dividing 
again.  

 
Accumulating evidence suggests that subpopulations of quiescent cancer 

cells drive therapy resistance in cancer.28,89,90 Therefore, I hypothesised that 
primary tumours contain variable levels of quiescent cells, and, in turn, this 

determined their ability to overcome therapies targeting cycling cells. As 
such, in section 5.2, I aimed to assess the prognostic value of the quiescence 

scoring method, developed in chapter 3, on long-term patient prognosis 
within the TCGA cohort. Moreover, in section 5.3, I aimed to use single-cell 

data from cancer cell line models to evaluate whether the quiescent state is 
utilised by cancer cells to survive treatment by a wide array of commonly used 
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cancer therapy drugs. The material in this chapter has been extensively used 
in Wiecek et al bioRvix (2022), on which I am the sole first author.2 

 

5.2 Prognostic impact of the quiescence transcriptional signature 

in bulk-sequenced primary tumours 
 

The impact of the relative level of primary tumour cancer cell quiescence on 

long-term patient survival was investigated in the large cohort of 8,005 TCGA 
patient samples. The gene set enrichment approach described in chapter 3 

was used to calculate a quiescence score for each sample from the bulk 
transcriptome data, based on the expression of genes reflecting generic 
characteristics of quiescent cells. Overall, high quiescence score estimates 

appeared to be beneficial for patient survival within 15 years of follow-up 
(Figure 5.1a). Specifically, using a Cox proportional hazards analysis and 

accounting for confounding factors, patients with elevated cancer cell 
quiescence estimates in their primary tumours before treatment showed 

significantly better disease-specific survival (Figure 5.1b). Presumably, this is 
because slower-growing tumours would have a higher chance of being 

eradicated earlier in the disease. The pan-cancer trend is also consistent with 
the reported worse prognosis of patients with less stable, more mutated 

genomes and high tumour cell proliferation rates, as assessed by the 
expression of proliferative markers such as Ki-67.253 As expected, quiescence 

levels were increased in stage 1 tumours, although later stages also exhibited 
this phenotype occasionally (Figure 5.1c). In addition, the outcomes varied by 

tissue, with lung, colon and oesophageal carcinoma patients displaying 
worse prognosis in the context of high tumour cell quiescence (Figure 5.1d). 

Lastly, as shown in chapter 4.5, the TCGA samples were also re-scored 
based on the gene expression programmes specific to serum starvation, 

contact inhibition, MEK inhibition, CDK4/6 inhibition or spontaneously 
occurring quiescence. Interestingly, the outcomes also varied depending on 

the quiescence subtype, with worse survival after contact inhibition (Figure 
5.1e). 
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Figure 5.1: Impact of cancer cell quiescence on long-term patient 
prognosis. (a) Disease-specific survival based on the relative levels of 
primary tumour cancer cell quiescence for patients from the TCGA cohort 
within 15 years of follow-up. Patients with high cancer cell quiescence levels 
showed significantly better prognoses than patients with low dormancy. (b) 
Multivariate Cox Proportional hazards analysis of the disease-specific 
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survival in the TCGA cohort, modelled on cancer cell quiescence estimates 
(binarised by optimised survival cut-off into high, here score > 2.95; and low, 
where score <= 2.95) and potential confounding factors. (c) Quiescence 
scores in TCGA cancers compared across tumour stages. (d-e) Hazard ratio 
ranges illustrate the impact of different tissues (d) and forms of quiescence 
(e) on patient prognosis after considering potential confounding factors, 
across the TCGA cohort. In (d), due to differences in mean quiescence scores 
across different cancer types, samples from each cancer were binarised in 
high and low quiescence groups based on an optimal quiescence score cut-
off value that resulted in a most significant prognostic difference between the 
two groups. As such, quiescence score cut-offs differed across cancer types. 
All analysis in the figure was performed using data from the TCGA cohort. 
Abbreviations used in the figure are given as follows: CDK, cyclin-dependent 
kinase; TCGA, The Cancer Genome Atlas. TCGA cancer type abbreviations 
are listed in the abbreviations section (pg. 15). 
 

5.3 Impact of quiescence on therapy response in cancer cell lines 
 
Impact of quiescence on therapy response in bulk-sequenced cancer 

cell line datasets 

While quiescence may confer an overall survival advantage in most cancers, 

it can also provide a pool of cells capable of developing resistance to therapy. 
Using the quiescence scoring methodology, an increase in quiescence levels 

was observed in cancer cell lines following treatment with EGFR, BRAF and 
CDK4/6 inhibitors, and conventionally used chemotherapies, such as 5-

Fluorouracil (5-FU) in multiple publicly available bulk RNA-seq datasets 
(Figure 5.2, Table 5.1). 
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Figure 5.2: Impact of cancer cell quiescence detected in RNA-seq data 
on cancer cell line therapy response. Change in quiescence scores inferred 
from bulk RNA-seq across breast, pancreatic, colorectal and skin cancer cells 
in response to treatment with the CDK4/6 inhibitor palbociclib, 5-FU or the 
BRAF inhibitor vemurafenib. The x-axis indicates GEO accession codes for 
the datasets used in the analysis displayed in this figure.  Abbreviations used 
in the figure are given as follows: CDK, cyclin-dependent kinase; 5-FU, 5-
fluorouracil.  
 

Furthermore, through the use of single-cell transcriptome data, it is possible 
to investigate the impact of quiescence on response to various therapies with 

greater granularity than is allowed by bulk transcriptome data. To observe 
quiescence-proliferation decisions following conventional chemotherapy 

treatments, quiescence scores were calculated using single-cell RNA-seq 
data from RKO and SW480 colon cancer cell lines treated with 5-FU, 
published by Park et al218 (Figure 5.3, Table 5.1). Cells with quiescence scores 

greater than 0 were estimated to be highly quiescent. Within the p53 

proficient RKO cell line, the estimated fraction of quiescent cells increased 
from 41% to 93% after treatment with a low dose (10 μM) of 5-FU and 

persisted at high doses (Figure 5.3a-b). In contrast, a comparable increase 
was not observed in TP53 mutant SW480 cells (Figure 5.3c-d), further 

emphasizing the critical role of p53 as a regulator of quiescence. This implies 

that although TP53 mutations confer a more aggressive tumour phenotype, 
TP53 wild-type tumour cells are more likely to be capable of entering a 
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quiescent “persistent” state associated with drug resistance. Furthermore, 
SW480 cells showed higher apoptotic activity following treatment than RKO 

cells (Figure 5.3e), particularly within actively cycling cells (Figure 5.4f), further 
corroborating that cells capable of entering quiescence may be less 

vulnerable to this therapy. 

 
 
Figure 5.3: Impact of quiescence on cancer cell line response to 5-FU 
chemotherapy. (a-b) UMAP plot illustrating the TP53-proficient RKO 
colorectal cancer cell line response to various 5-FU doses and the 
corresponding proportion of cells predicted to be quiescent/proliferating. 
Each dot is an individual cell, coloured according to its dormancy level. (c-d) 
The same as previous, but for the TP53-deficient SW480 cell line.  (e) The 
average expression of apoptosis genes compared between TP53 wild-type 
RKO and TP53 mutant SW480 colorectal cancer cell lines in response to 
various 5-FU treatment doses. (f) The average expression of apoptosis genes 
compared between quiescent and cycling cells within the TP53 WT RKO and 
TP53 MT SW480 cell lines. All analysis in the figure was performed using data 
from Park et al.218 Abbreviations used in the figure are given as follows: MT, 
mutant; UMAP, Uniform Manifold Approximation and Projection; WT, wild 
type; 5-FU, 5-fluorouracil. 
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Impact of quiescence on therapy response in single-cell cancer cell line 

datasets 

Similarly, the quiescence scoring method was applied to data provided by 

Aissa et al29 from a Non-Small Cell Lung Cancer (NSCLC) cell line containing 
activating mutations in the receptor tyrosine kinase gene EGFR following 

treatment with an EGFR inhibitor for varying lengths of time (Figure 5.4, Table 

5.1). Overall, the quiescence scoring approach predicted that 40% of cells 
were likely to exist in a dormant state within this model before treatment 

(Figure 5.4a-b). Following EGFR inhibition, the number of profiled cells 
significantly decreased (Figure 5.4c). This is likely due to proliferating cells 

dying off as cells predicted to be cycling showed a significant increase in the 
expression of apoptosis genes after one day of treatment (Figure 5.4d). 

Moreover, out of the cells which survived the treatment, 96% of cells were 
predicted to be quiescent, indicating a selection advantage of dormant cells 

during tyrosine kinase inhibition (Figure 5.4a-b). Interestingly, during a more 
extended treatment course, the percentage of proliferating cells gradually 

increased to a similar level observed prior to treatment. In order to predict the 
type of quiescence exhibited by the dormant cells following EGFR inhibition, 
batch-effect correction and dimensionality reduction were applied on the cell 

line scRNA-seq data combined with bulk-RNA seq data provided by Min and 
Spencer previously used to calculate scores for individual quiescence states. 

The two datasets were superimposed, and a k-nearest neighbour algorithm 
was applied to predict the most likely quiescent subtype occupied by the 

dormant NSCLC cells. Overall, using this approach, the surviving dormant 
NSCLC cells following the tyrosine kinase inhibition treatment were predicted 

to reside in a state most resembling serum starvation rather than spontaneous 
quiescence or contact, MEK or CDK4/6 inhibition induced dormancy (Figure 

5.4e-f). Both EGFR kinase inhibitors and serum starvation have been shown 
to trigger autophagy, which may explain the convergence between this 

inhibitory trigger and the type of quiescence response. After 11 days of 
treatment, most of the remaining quiescent cells appeared in a state similar 

to that preceding the treatment (Figure 5.4e-f). 
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Figure 5.4: Impact of quiescence on cancer cell line response to EGFR 
inhibition. (a-b) UMAP plot illustrating the response of individual PC9 NSCLC 
cells to the EGFR inhibitor Erlotinib across several time points and the 
corresponding proportion of cells predicted to be quiescent/proliferating. (c) 
The number of NSCLC cells sequenced during the EGFR inhibition treatment 
time course. (d) The average expression of apoptosis genes compared 
between quiescent and cycling cells at different time points during EGFR 
inhibition treatment. (e) Principal component analysis illustrating the 
superimposition of scRNA-seq profiles (circles) of quiescent NSCLC cells 
before/after EGFR inhibition onto the bulk RNA-seq reference data (triangles) 
for MCF10A cells occupying various quiescence states. (f) The proportion of 
NSCLC cells in (e) predicted to occupy different quiescence states across 
several time points. All analysis in the figure was performed using data from 
the Aissa et al.29 Abbreviations used in the figure are given as follows: EGFR, 
epidermal growth factor receptor; NSCLC, non-small cell lung cancer; PC, 
principal component; scRNA-seq, single-cell RNA-sequencing; UMAP, 
Uniform Manifold Approximation and Projection.  
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The granularity of the presented single-cell analysis showcases the potential 
of detecting dormancy-linked treatment resistance across various cancer 

types (Figure 5.5, Table 5.1). For example, a similar increase in the percentage 
of cells occupying the quiescent state was also observed in melanoma cancer 

cells in response to BRAF inhibition (Figure 5.5a,d) and lung adenocarcinoma 
cells in response to KRAS inhibition (Figure 5.5c-d). Therefore, this suggests 

a common feature of cancer cells involving either selection of dormant cells 
or induction of the dormant cells upon various treatment modalities, including 

broad-acting chemotherapy agents and targeted molecular inhibitors of the 
Ras/MAPK signalling pathway. 

 

 
Figure 5.5: Relevance of quiescence on cancer cell response to targeted 
molecular therapies across various cancer types. (a) Response of 
melanoma cancer cells to BRAF inhibition treatment across several time 
points, illustrated using UMAP plots coloured by the quiescence scores of 
individual cells. (b) Response of NSCLC cells to EGFR inhibition via Erlotinib 
across several time points, illustrated using UMAP plots coloured by the 
quiescence scores of individual cells. (c) Response of lung adenocarcinoma 
cancer cells to KRAS inhibition treatment across several time points, 
illustrated using UMAP plots coloured by the quiescence scores of individual 
cells.  (d) The percentage of cells illustrated in (a-c) predicted to be quiescent 
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across the treatment time course. All analysis in the figure was performed 
using data from Xue et al28 and Aissa et al.29 Abbreviations used in the figure 
are given as follows: EGFR, epidermal growth factor receptor; NSCLC, non-
small cell lung cancer; UMAP, Uniform Manifold Approximation and 
Projection. 
 

Quiescence dynamics upon various treatment modalities 

The potential contribution of cancer cell quiescence to therapy resistance 

following treatment with a broader range of therapeutic agents was also 
assessed using data from Srivatsan et al.254 Specifically, quiescence scores 

were calculated for single-cell massively multiplexed chemical transcriptomic 

data from breast cancer and lung adenocarcinoma cell lines before and after 
treatment with 188 small molecule inhibitors (Figure 5.6, Table 5.1). Overall, a 

significant increase in quiescence was observed following treatment with 
compounds targeting cell cycle regulation, such as the aurora kinase inhibitor 
Hesperadin. The number of quiescent cells also increased following treatment 

with compounds targeting tyrosine kinase signalling, including trametinib and 
TAK-901, consistent with the previous results. Furthermore, treatment with 

compounds modulating epigenetic regulation, such as histone deacetylase 
(HDAC) inhibitors, also increased the proportion of cancer cells entering 

quiescence. Examples of such compounds include Quisinostat and 
Panobinostat. Interestingly, some drugs were found to decrease the 

proportion of quiescent cells. These compounds largely functioned by 
regulating cellular metabolism and Protein Kinase C (PKC) signalling. They 

include the PKCβ inhibitor Enzastaurin, which caused the most significant 

reduction in quiescence within both MCF7 and A549 cell lines, and Disulfiram, 

which regulates aldehyde dehydrogenase activity. The use of such 
compounds, either alone or in combination with other anti-neoplastic drugs, 

could potentially reduce the risk of the emergence of quiescent drug-tolerant 
subpopulation of tumour cells during treatment. 
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Figure 5.6: Quiescence dynamics upon various treatment modalities. (a-
b) Percentage of quiescent MCF7 (a) and A549 (b) cells following 24-hour 
treatment with selected compounds. Treatments highlighted in blue and red 
indicate the 30 compounds that showed the highest decrease and increase 
in quiescence levels, respectively, compared to the control, shown in grey. 
(c-d) The average percentage of quiescent MCF7 (c) and A549 (d) cells 
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following a 24-hour treatment with compounds affecting specific pathways. 
Pathways in blue and red indicate an average decrease and increase in 
quiescence, respectively, compared to the control, shown in grey. All analysis 
in the figure was performed using data from the Srivatsan et al.254 
Abbreviations used in the figure are given as follows: BMP, bone 
morphogenetic protein; HIF, hypoxia-inducible factor; JAK, Janus kinase; 
PLC, protein kinase C; STAT, signal transducer and activator of transcription; 
TGF, transforming growth factor. 
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Accession 

code 
Model Cancer type Sequencing 

method 
Treatment Sample 

size 
Reference 

 
GSE137912 

 
Cancer 

cell lines 
 

 
Lung 

adenocarcinoma 

 
scRNA-seq 

 
KRAS 

inhibition 

 
4,059 

 
Xue et al 

2020, 
Nature 

 
GSE134836 

 
Cancer 

cell lines 
 

 
NSCLC 

 
scRNA-seq 

 
Tyrosine 
kinase 

inhibition 

 
15,235 

 
Aissa et al 

2021, 
Nature 

Commun 
 

 
GSE134838 

 
Cancer 

cell lines 
 

 
Melanoma 

 
scRNA-seq 

 

 
BRAF 

inhibition 

 
8,295 

 
Aissa et al 

2021, 
Nature 

Commun 
 

 
GSE134839 

 
Cancer 

cell lines 
 

 
NSCLC 

 
scRNA-seq 

 
Tyrosine 
kinase 

inhibition 

 
2,949 

 
Aissa et al 

2021, 
Nature 

Commun 
 

 
GSE124854 

 

 
MCF7-

xenograft 
mice 

 

 
Breast cancer 

 
Bulk RNA-
seq 

 
CDK4/6 
Inhibition 

 
21 

 
Hafner et 
al 2019, 

Cell Chem 
Biol 

 
GSE135215 

 
Cancer 

cell lines 

 
Pancreatic 

cancer 

 
Bulk RNA-

seq 

 
CDK4/6 
inhibition 

 
24 

 
Salvador-
Barbero et 

al 2020, 
Cancer 

Cell 
 

GSE99116 
 

Cancer 
cell lines 

 
Breast cancer 

 
Bulk RNA-

seq 

 
CDK4/6 
inhibition 

 
44 

 
Hafner et 
al 2019, 

Cell Chem 
Biol 

 
 

GSE152699 
 

Cancer 
cell lines 

 
Melanoma 

 
Bulk-RNA-

seq 

 
BRAF 

inhibition 

 
12 

 
Grigore et 
al 2020, 

Neoplasia 
 

 
GSE178839 

 
Cancer 

cell lines 

 
Colorectal 

cancer 

 
Bulk-RNA 

seq 

 
5-FU 

 
9 

 
Therizols 

et al, 2020, 
bioRxiv 

 
 

GSE149224 
 

Cancer 
cell lines 

 
Colon cancer 

 
scRNA-seq 

 
5-FU 

 
8,115 

 
Park et al, 
2020 , Cell 

Rep 
 

 
GSE139944 

 
Cancer 

cell lines 

 
Breast cancer, 

NSCLC 

 
scRNA-seq 

 
Library of 
188 small 
molecule 
inhibitors 

 

 
435,025 

 
Srivatsan 

et al, 2020, 
Science 
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Table 5.1: Summary of external cancer cell line treatment response 
data. Abbreviations used in the figure are given as follows: CDK, cyclin-
dependent kinase; NSCLC, non-small cell lung cancer; scRNA-seq, single-
cell RNA-sequencing; 5-FU, 5-fluorouracil.  
 
 
5.4 Discussion 
 

 
Using single-cell transcriptomic data, the results in this chapter showcase the 

efficacy/benefits of quiescence as a survival mechanism for cancer cell lines 
with variable mutational backgrounds in response to multiple therapies. 

 
Across the TCGA cohort, this work highlights a better prognosis for patients 

with higher primary tumour dormancy levels. This likely reflects that many of 
the features associated with quiescence, such as the presence of stable and 

less mutated genomes, are linked with a better overall prognosis. In contrast, 
higher proliferation rates and genomic instability can result in faster 

acquisition of the hallmark capabilities required for the expansion of 
neoplastic progresses and result in a more aggressive cancer progression 

trajectory. However, the better disease-specific survival for patients with 
tumours predicted to be highly dormant is also likely to reflect a limitation of 
the quiescence scoring approach in distinguishing between slow-dividing 

cells in a long G1 phase and truly quiescent cell phenotypes using bulk 
transcriptome data. Within section 3.3, computationally derived quiescence 

scores for lung adenocarcinoma cell lines showed a good correlation with 
experimental measures of quiescence, such as EdU and phospho-RB 

staining. In turn, a poor correlation was observed with the expression of G1 
signature genes reported in the literature. This suggests that the quiescence 

scoring technique used in this chapter preferentially captures G0 rather than 
G1 stage of the cell cycle. Nonetheless, further validation across a broader 

range of cancer cell lines from various cancer types would be required to 
assess whether the method also distinguishes G0 and G1 across a variety of 

other tissues. 
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Within the single-cell RNA-seq datasets, quiescence appeared to be 

commonly used by various cell types to avoid a selection of therapies 
targeting the cell cycle, kinase signalling and epigenetic signalling. 

Interestingly, treatment with HDAC inhibitors resulted in large increases in the 
proportion of breast and lung cancer cells occupying the quiescent state. 

Deregulation of HDAC expression has been observed to drive tumour 
development across various cancer types.255,256 By removing post-

translational acetylation modifications on both histone and non-histone 
proteins, HDACs regulate a wide variety of cellular processes, such as gene 

transcription and cell cycle progression.257 Consistent with the findings in this 
chapter, previous studies have also reported induction of cell cycle arrest in 

response to HDAC inhibitors. For example, treatment with the HDAC inhibitor 
Quisinostat was shown to induce cell cycle arrest by allowing activation of 

the p53 signalling pathway through direct acetylation of p53.258,259 Moreover, 
HDAC inhibition results in increased histone acetylation, which allows 

increased transcription of numerous tumour suppressor genes whose 
expression was previously suppressed by HDAC activity.257 These include 

genes such as CDKN1A, encoding p21, which mediate cell cycle arrest.257  
 

This work highlights the relevance of the quiescent state to drug resistance 
across different cancer types. This likely reflects the intrinsic resistance of 

quiescent cells to anti-proliferative drugs. However, quiescent cells have also 
been previously reported to utilise a variety of mechanisms to achieve drug 

resistance, including upregulation of stress-induced intracellular signalling 
pathways, immune evasion, increased expression of anti-apoptotic BCL-2 

family members and increased expression of anti-reactive oxygen species 
programme genes. Further studies are required to determine if these 

mechanisms are utilised by cancer cells within specific cancer tissues or in 
response to specific stress stimuli. Similarly, it remains to be determined if 

some of the mechanisms are employed explicitly by cancer cells within 
individual quiescence types. 
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Based on cancer cell line data used in this chapter, the quiescence scores 

calculated from transcriptomic data obtained before treatment are poorly 
predictive of response to therapy. However, the transcriptomic signature can 

be used to monitor cancer cell response to commonly used therapies. 
Interestingly, quiescence appears to be a short-lived phenotype. Therefore, 

such monitoring, for example, through the use of liquid biopsies or targeted 
gene panels, would have to be undertaken shortly after therapy 

administration. In the setting where the emergence of quiescent cells is 
observed, combination therapies could potentially be used to try and target 

the unique vulnerabilities of quiescent cells. 
 

Within this chapter, TP53 wild-type and deficient RKO and SW480 cancer cell 
lines were estimated to show similar levels of quiescence. However, after 

treatment with the commonly used 5-FU chemotherapy, the TP53 wild-type 
RKO cells showed an enrichment of quiescent cells. This further illustrates 

the critical function of p53 in regulating entry into quiescence, as described 
in the literature and highlighted by the pan-cancer ensemble elastic net 

regression model in chapter 4. It remains to be investigated whether, by 
taking into account the mutational background of primary tumours, in 
particular focusing on genes shown to be associated with quiescence in 

chapter 4, it is possible to predict the propensity of cancer cells to enter 
quiescence in response to treatment and therefore patient therapy response. 

 
Moreover, a key open question remains: does quiescence drive resistance in 

a Darwinian fashion, as a pre-existing population that is selected for upon 
treatment, or is it instead an acquired phenotype? Previous live single-cell 

imaging experiments in cancer cell lines subjected to various types of 
genotoxic and cytotoxic stress indicate that both scenarios might take 

place47. Because individual cancer cells could not be sequenced across 
multiple time points across the single-cell datasets used in this chapter, the 

analysis in this thesis cannot exclude either scenario. However, the increased 
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expression of apoptosis genes in cells predicted to be proliferating after 
treatment suggests the preferential apoptosis of cells that were not in 

quiescence at the time of treatment or did not enter quiescence shortly after 
treatment started.  

 
Overall, aside from highlighting the therapeutic relevance of cancer cell 

quiescence, this chapter also highlights that the emergence of quiescent, 
therapy-tolerant cancer cells during and after treatment is highly dependent 

on the mutational background of the cancer cells as well as the specific 
treatment modality used. 
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Chapter 6: Evaluation of interactions between 
quiescent cancer cells and the tumour 
microenvironment 
 

6.1 Introduction 
 

The tumour microenvironment plays a crucial role in the development of a 
tumour, cancer progression and patient therapy response.13 Therefore, in this 

chapter, I aimed to investigate whether quiescent and proliferating cancer 
cells present within primary tumours differ in the way they interact with their 

surrounding environment, with the idea that differential presence of clinically 
relevant interactions might inform therapy decisions for patients with highly 
proliferating or highly quiescent tumours. 

 
Previous studies have highlighted that the tumour microenvironment can 

directly influence the proliferation status of cancer cells. In particular, there is 
accumulating evidence that at pre-metastatic sites, the interactions with 

molecules secreted in the niche can cause the induction of quiescence in 
DTCs. For example, disseminated breast cancer cells in the liver have been 

shown to be maintained in a quiescent state by INF-y secreted by NK cells.108 
In turn, the disturbance of this signalling can allow quiescent cancer cells to 

resume proliferation and result in metastasis formation. The tumour 
microenvironment components able to maintain cancer cell quiescence may 

differ depending on the cancer type and the pre-metastatic location. For 
example, secreted GAS6,75 TGFB2,76 and BMP777 molecules have been 

shown to induce dormancy of prostate cancer cells in the bone marrow. In 
contrast, high levels of secreted BMP4 in the lung tissues have been shown 

to induce breast cancer cell dormancy.78 Intracellular signalling triggered by 
GAS6, TGFB2, BMP7 and BMP4 all result in the activation of the p38/MAPK 

pathway which normally signals stress to the cells, thereby triggering cell 
cycle arrest. Quiescent and proliferating cancer cells have also been reported 
to show differences in how they initiate interactions surrounding non-

malignant cells. For example, in lung and breast cancer models, the 
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downregulation of cell-surface ligands for NK cells allows quiescent cells to 
survive for long periods of time by evading NK-cell mediated immune 

surveillance.112 
 

Previously most studies highlighting how dormant cells interact with the 
tumour microenvironment have focused on metastatic dormancy.75-78,108 

However, little is known about the interactions between quiescent cells and 
the surrounding non-malignant cells in primary tumour samples. Furthermore, 

most of our current knowledge comes from experimental models.108 These 
include using lentiviral transduction of reporters such as the fluorescently 

labelled p27 mutant protein lacking its CDK inhibitory activity into cancer cell 
lines to identify quiescent cells.108 Such engineered cell lines are then 

implanted into immunodeficient mice, where they can be visualised at 
metastatic sites using fluorescence microscopy. The fluorescent reporters 

also allow the separation of quiescent cancer cells using technologies such 
as FACS, which in turn allows the transcriptional profiling of the cells to follow. 

However, in such models, the use of immunocompromised mice means that 
the entire repertoire of interactions formed between quiescent cells or 

proliferating cancer cells and the TME cannot be assessed. 
 
In recent years the increasing availability of scRNA-seq datasets and the 

expansion of ligand-receptor interactions reported in publicly available 
protein-protein interaction databases has led to the development of tools 

capable of predicting cell-cell interactions from transcriptome data.260 
Currently available tools predict the presence of interactions between 

different cell types based on the coordinated expression of ligand and 
receptor pairs. In particular, the identification of the cell types which are 

mediating specific interactions is enabled by performing the analysis using 
transcriptome data at single-cell resolution. Such analysis has been widely 

used to understand the role of cellular communication during a wide range of 
processes such as tissue healing261 and haematopoietic stem cell fate 

determination.262  Recently, such approaches have also been used to better 
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understand the crosstalk between tumour cells and the surrounding 
microenvironment.263-265  

 
Within this chapter, I aimed to use the available cell-cell interaction prediction 

methods to perform the first-to-date systematic profiling of the differences in 
how quiescent and proliferating cells interact with their tumour 

microenvironment within primary tumours, with the aim of potentially 
highlighting clinically relevant differences. In section 6.1, I curated a list of 

publicly available scRNA-seq datasets from primary tumour patient samples 
profiling cancer cells and the surrounding microenvironment.174-179 The tumour 

cell quiescence status in each dataset was determined using the combined 
z-score quiescence scoring methodology developed in chapter 3. The 

interactions between quiescent cells, proliferating cells, and non-malignant 
cell types were predicted computationally using a cell-cell interaction analysis 

tool called CellphoneDB.181 In section 6.2, I investigated whether proliferating 
and quiescent cells differ in their ability to interact with surrounding T cells via 

inhibitory checkpoint interactions. I specifically focused on these because of 
the potential therapeutic implications of the findings regarding the application 

of checkpoint inhibition therapy. 
 

6.2 Cell-cell interaction analysis in single-cell primary tumour 
datasets 
 

In order to investigate the differential way quiescent and proliferating cells 
interact with non-malignant cells, cell-cell interaction analysis was performed 

on publicly available scRNA-seq tumour sample datasets containing 
information about both cancer cells and the tumour microenvironment. 
Firstly, data from 103,080 cancer cells and 284,396 normal cells were 

obtained from breast, colorectal, lung, and ovarian primary tumour 
samples174-179 (Figure 6.1, Table 6.1). These four tissues were chosen as the 

focus of the analysis because of the relative abundance of publicly available 
scRNA-seq datasets from the corresponding cancer types. All nine datasets 

used in the analysis were from treatment naïve tumours to remove any 
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potential confounding factors from the therapies given to patients. Moreover, 
the single-cell RNA sequencing protocols described for the nine datasets did 

not involve steps aiming to enrich particular cell types. This was a key 
selection criterion for the inclusion of the nine datasets in this study to ensure 

that there were no biases introduced into the analysis, aside from those which 
might have arisen due to the different tissue dissociation and sequencing 

protocols used by the authors of the original publications (Table 6.1). Cell type 
annotation was obtained for individually sequenced cells from the original 

publications (Table 6.1). Across each dataset, quiescence scores were 
calculated for all cancer cells. Based on these quiescence score estimates, 

cancer cells were labelled as proliferating or quiescent using a score cut-off 
of 0 (Figures 6.1-6.2). 

 
Cell-cell interactions between different cell types were estimated using the 

CellphoneDB tool.181 This approach relies on a literature-curated list of 
interacting proteins.  For each possible interaction, CellphoneDB calculates 

the mean expression of the gene encoding the receptor in one cell group and 
the mean expression for the gene encoding the ligand in a different cell group. 

This is repeated for all possible cell type pair combinations. The tool also 
performs a group label permutation step to assess the cell type specificity of 
each possible interaction. This also allows the evaluation of the significance 

of each predicted interaction. Datasets published by Qian et al,178 Bassez et 

al,179 and Wu et al177 contained patient annotation and reported a sufficient 

number of cells from each patient sample (>100) to run the analysis on a 
patient-by-patient basis.  
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Dataset Cancer 

cell 
number 

Normal 
cell 

number 

Number 
of 

patients 

Sequencing 
protocol 

Cell type annotation method 

 
Qian et al 

2020 (Breast) 

 
13,154 

 
25,581 

 
14 

 
10X 

Genomics  
 

Illumina 
NextSeq/ 

HiSeq4000/ 
NovaSeq6000 

 
 
 

 
Cells were clustered based on 

the expression of highly 
variable genes.  

 
The expression of literature-
reported marker genes was 

used to annotate the clusters. 
 
 

 
Qian et al 

2020 
(Lung) 

 
10,647 

 
52,439 

 
8 
 

 
Qian et al 

2020 (Colon) 

 
7,079 

 
17,685 

 
7 

 
Qian et al 

2020 (Ovary) 
 

 
12,498 

 
19,365 

 
5 

 
Bassez et al 

2021 
(Breast) 

 
28,661 

 
56,193 

 
31 

 
Chung et al 

2017 
(Breast) 

 
206 

 
138 

 
9 

 
Fluidigm C1 

 
Illumina 

HiSeq 2500 
platform 

 
Malignant cells were separated 

from normal cells based on 
copy number inference.  

 
Immune and stromal cells 

identified based on the 
expression of stromal and 

immune gene sets.  
 

Immune cells were further 
divided based on non-negative 
factorisation using expression 
of immune cell type markers 

 
 

Wu et al 2021 
(Breast) 

 
23,569 

 
75,024 

 
26 

 
10X 

Genomics 
 

Illumina 
NextSeq 500 

 

 
Cells were clustered based on 

the expression of highly 
variable genes.  

 
The expression of canonical 
lineage markers was used to 

annotate the clusters 
 

Malignant and normal epithelial 
cells were separated based on 

copy number inference 
 

 
Kim et al 

2020  
(Lung) 

 
7,270 

 
37,879 

 
11 

 
10X 

Genomics 
Illumina 

HiSeq2500 

 
Li et al 2017 

(Colon) 

 
272 

 
92 

 
11 

 
Fluidigm C1 

 
Illumina 

HiSeq 2000 
platform 

 

 
Single-cells were projected 

onto a reference consisting of a 
range of bulk RNA-seq 

datasets from a variety of 
tissues and cell types. 

 
 

Table 6.1: Summary of scRNA-seq datasets used for the cell-cell 
interaction analysis 
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Figure 6.1: Analysis flowchart. (1) Data was collected from 103,080 cancer 
cells and 284,396 normal cells across nine published breast, colorectal, lung 
and ovarian cancer scRNA-seq datasets. (2) Cancer cells were labelled as 
proliferating or highly quiescent based on quiescence scores derived from 
the corresponding transcriptome data. (3) Cell-cell interactions between 
different cell type groups within each dataset were estimated using 
CellphoneDB. Abbreviations used in the figure are given as follows: NT, non-
tumour; scRNA-seq, single-cell RNA-sequencing; T, tumour. 
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Figure 6.2: Cell type composition of scRNA-seq datasets. UMAP 
dimensionality reduction plot illustrating the cell type composition of the nine 
scRNA-seq datasets used for cell-cell interaction analysis. Each point 
represents an individually sequenced cell, which is coloured by its 
corresponding cell type, as detailed in the original publication. Tumour cells 
were further based on their quiescence score estimates (cells with 
quiescence scores > 0 were labelled as quiescent, and cells with quiescence 
scores <= 0 were labelled as proliferating). All analysis in the figure was 
performed using data from Qian et al,178 Chung et al,176 Bassez et al,179 Wu et 
al,177 Kim et al174 and Li et al.175 Abbreviations used in the figure are given as 
follows: DC, dendritic cell; NK, natural killer; scRNA-seq, single-cell RNA-
sequencing; UMAP, Uniform Manifold Approximation and Projection. 
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Overall, cancer cells predicted to exist in the quiescent phase across the four 
tissue types were estimated to form fewer unique interactions with all other 

cells making up the tumour microenvironment (Figure 6.3a-b). However, 
quiescent cells formed interactions with a similar spectrum of different cells 

compared to proliferating cells (Figure 6.3c). 
 

 
Figure 6.3: Quiescent cancer cells are predicted to form fewer unique 
interactions with the tumour microenvironment. (a) A heatmap of the 
number of interactions estimated to occur between proliferating or quiescent 
cells and other cells within the tumour microenvironment within each scRNA-
seq dataset. (b) The total number of unique interactions estimated to be 
formed by quiescent and proliferating cancer cells within each scRNA-seq 
dataset. (c) Percentage of the interactions formed by quiescent cells or 
proliferating cells and other interaction partners. All analysis in the figure was 
performed using data from Qian et al,178 Chung et al,176 Bassez et al,179 Wu et 
al,177 Kim et al174 and Li et al.175 Abbreviations used in the figure are given as 
follows: DC, dendritic cell; NK, natural killer; scRNA-seq, single-cell RNA-
sequencing. 
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6.3 Differential T cell interactions of proliferating and quiescent 
cancer cells  
 

Exploration of differential inhibitory checkpoint interactions between T 

cells and proliferating and quiescent cancer cells 

As shown in the previous section, quiescent cells were predicted to form 
fewer interactions with surrounding T cells (Figure 6.2, 6.3a-b). Frequently, 

tumour cells upregulate the expression of evolutionarily conserved negative 
regulators of T cell activation called “checkpoint molecules”.266 Usually, these 

molecules function to fine-tune immune responses and prevent 
hyperactivation of T cells, thereby ensuring the self-tolerance of the immune 

system. One of the most potent examples of a checkpoint molecule is PD-1, 
which becomes expressed on T cells after TCR stimulation.267,268 The binding 

of PD-1 to its ligand, PD-L1, results in inhibition of T cell signalling, along with 
T cell apoptosis or exhaustion.267,268 PD-L1 is expressed constitutively on 
antigen-presenting cells, and during a prolonged immune response, its 

expression can be induced in non-haematopoietic cells within tissues by pro-
inflammatory cytokines.267,268 Cancer cells can exploit such mechanisms, for 

example, by upregulating the expression of PD-L1 in order to induce T cell 
exhaustion and generate a tumour microenvironment permissive for tumour 

growth.124-126 Currently, in the clinic, a line of therapy called checkpoint 
blockade uses antibodies against molecules such as PD1 to unleash the T 

cell response against malignant cells. Therefore, differences in the checkpoint 
molecule-mediated interactions between T cells and quiescent or 

proliferating cancer cells were investigated due to their potential therapeutic 
relevance.  

 
Interestingly, across all scRNA-seq datasets, quiescent cells were predicted 

to form fewer inhibitory interactions with T cells, via immune checkpoint 
proteins, than proliferating tumour cells (Figure 6.4, 6.5a-b). Similarly, cancer 

cells predicted to be highly quiescent showed less frequent expression of 
inhibitory checkpoint genes (Figure 6.5c). This suggests that quiescent and 
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proliferating cells potentially differ in how they respond to checkpoint 
inhibition blockade therapy. 

 

 
Figure 6.4: Quiescent cells are predicted to form fewer unique 
interactions with T cells within the TME. The total number of unique 
interactions estimated to be formed with T cells by quiescent and proliferating 
cancer cells within each scRNA-seq dataset. All analysis in the figure was 
performed using data from Qian et al,178 Chung et al,176 Bassez et al,179 Wu et 
al,177 Kim et al174 and Li et al.175 Abbreviations used in the figure are given as 
follows: scRNA-seq, single-cell RNA-sequencing; TME, tumour 
microenvironment.  
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Figure 6.5: Quiescent cancer cells are predicted to form fewer inhibitory 
checkpoint interactions with T cells. (a-b) Dotplots indicate predicted 
interactions and their strength between T cells and tumour cells estimated to 
be either proliferating or quiescent. (a) shows interactions where the inhibitory 
checkpoint ligand is expressed by cancer cells and (b) shows interactions 
where the inhibitory checkpoint receptor is expressed by the T cells. 
Interactions coloured in blue indicate those predicted to exist only between 
proliferating tumour cells and T cells in individual datasets. Interactions 
coloured in red indicate those predicted to exist only between quiescent 
tumour cells and T cells in individual datasets. No inhibitory checkpoint 
interactions between T cells and cancer cells were detected in the dataset 
published by Li et al175. (c) Percentage of proliferating and quiescent cancer 
cells across all scRNA-seq datasets showing expression of individual 
inhibitory checkpoint ligands. All analysis in the figure was performed using 
data from Qian et al,178 Chung et al,176 Bassez et al,179 Wu et al,177 Kim et al174 
and Li et al.175 Abbreviations used in the figure are given as follows: scRNA-
seq, single-cell RNA-sequencing.  
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Differential LGALS9-mediated interactions between T cells and 

proliferating and quiescent cancer cells 

Across the nine scRNA-seq datasets,174-179 interactions with T cells via 

LGALS9 checkpoint ligand expression on cancer cells appeared to be highly 
enriched in proliferating cells. In particular, LGASL9 mediated specific 

interactions between T cells and proliferating cancer cells in 77.8% (7 out of 

9) datasets presented in this chapter (Figure 6.5).  This was the highest 
percentage out of all inhibitory checkpoint ligands and receptors. 

Interestingly, previous literature suggests links between the expression of 
LGAS9 and the proliferation status of cancer cells.269 Specifically, Galectin-9 

encoded by LGALS9 has previously been shown to be secreted to the surface 

of leukaemia cells, where it influenced cancer cell proliferation.269 A separate 
checkpoint molecule called TIM-3 is co-secreted with Galectin-9 and has 

been proposed as a potential trafficker for the latter.270 The interaction of 
Galectin-9 with TIM-3 at the cell surface membrane was shown to form an 

autocrine loop which allows the cells to self-renew. Both TIM-3 and Galectin-
9 have also previously been shown to cause suppression of anti-cancer 

immune surveillance.270 High Galectin-9 expression contributes to cytotoxic 
T cell apoptosis and impairs the functioning of natural killer cells.270 Similarly, 

secreted TIM-3 has been shown to reduce the production of interleukin 2 (IL-
2), which is required to activate both natural killer and cytotoxic T cells.270 

Previous research has also highlighted Galectin-9 as a promising target for 
immunotherapy.271 Interestingly, high LGALS9 expression was associated 

with a better response to anti-PD1 therapy across published non-small cell 
lung carcinoma (NSCLC) and skin cutaneous melanoma (SKCM) 

immunotherapy clinical trials182-185 (Figure 6.6a-c). In the SKCM 
immunotherapy trial published by Gide et al,184 patients with high expression 

of both CD274 (encoding PD-L1) and LGALS9 showed a better response to 

anti-PD1 therapy than patients who showed high expression of only one of 

the genes or neither of the genes (Figure 6.6d). This indicates that there could 
be value in using both LGALS9 and CD274 expression to predict patient 

immunotherapy response. Therefore, although Galectin-9 suppresses anti-
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cancer immune surveillance paradoxically, patients with higher LGALS9 

expression show better immunotherapy response. One potential explanation 
for this could be that PD-1 expressed on exhausted T cells has been shown 

to prevent the binding of Galectin-9, thereby preventing exhausted T cell 
apoptosis.271 Therefore, anti-PD1 treatment could allow the selective killing of 

exhausted T cells via Galectin-9. 
 

 
 

Figure 6.6: High LGALS9 expression is associated with better 
immunotherapy response. (a) Non-small cell lung carcinoma (NSCLC) and 
skin cutaneous melanoma (SKCM) patients showing response to anti-PD1 
therapy across three immunotherapy trials show higher expression of 
LGALS9 than non-responders. (b-c) Progression-free survival (PFS) and 
overall survival (OS) for cutaneous skin melanoma (SKCM) patients in two 
anti-PD1 immunotherapy clinical trials. Patients with high expression of 
LGALS9 showed significantly better prognosis than patients with low 
expression of LGALS9 (patients were binarised according to the optimal 
LGALS9 expression cut-off). (d) Overall survival for skin cutaneous melanoma 
patients across an anti-PD1 immunotherapy trial. Patients with high 
expression of both CD274 and LGALS9 showed significantly better 
prognoses than patients with high expression of only one or neither of the 
genes. All analysis in the figure was performed using data from Cho et al, Gide 
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et al, Hwanget et al and Liu et al. Abbreviations used in the figure are given 
as follows: NR, no response; OS, overall survival; PD1, programmed cell 
death protein 1; PFS, progression free survival. Cancer type abbreviations are 
listed in the abbreviations section (pg. 15). 
 

Differential PD-L1 mediated interactions between T cells and 

proliferating and quiescent cancer cells 

Lastly, the interaction between PD-1 and PD-L1 (CD274), commonly targeted 

by immunotherapies, was predicted specifically between proliferating cancer 

cells and T cells, but not quiescent cancer cells, across four separate breast 
cancer cohorts (Figure 6.5b). It cannot be ruled out that the interaction 

between PD-1 and PD-L1 never exists between quiescent cancer cells and T 
cells. However, there is no evidence for this interaction in the breast cancer 

datasets used in this study. Moreover, a higher percentage of proliferating 
cancer cells showed expression of CD274 compared to quiescent cancer 

cells across all breast cancer scRNA-seq datasets used in this chapter (Figure 
6.7a). Furthermore, cancer cell quiescence was also associated with lower 

expression of CD274 in publicly available bulk sequenced RNA-seq datasets 

(Figure 6.7b). This indicates that tumour cell quiescence could have relevance 
to anti-PD-1 immunotherapy response in breast cancer patients.  
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Figure 6.7: Quiescent breast cancer cells show high expression of 
CD274. (a) Percentage of quiescent and proliferating cancer cells showing 
expression of CD274 across all scRNA-seq breast cancer datasets. The 
scRNA-seq datasets were obtained from Bassez et al,179 Chung et al,176 Qian 
et al178 and Wu et al.177 (b) Boxplot comparison of CD274 expression levels 
across bulk sequenced breast cancer samples, classified as proliferating or 
highly quiescent. Overall, data from CTPAC, MBC Project, METABRIC, SMC 
and TCGA was used. Abbreviations used in the figure are given as follows: 
scRNA-seq, single-cell RNA-sequencing; TCGA, The Cancer Genome Atlas. 
Study name abbreviations are listed in the abbreviations section.   
 

6.4 Discussion 
 

Based on cell-cell interaction analysis using publicly available scRNA-seq 
data from primary tumour samples, quiescent cells were predicted to form 

fewer interactions with all non-malignant cell types. Significantly, quiescent 
cancer cells were also predicted to interact less with T cells via inhibitory 

checkpoint molecules, suggesting that patients with highly quiescent and 
proliferating tumours might respond differently to checkpoint blockade 

therapy. 
 

A significant limitation of the analysis presented in this chapter is the use of 
transcriptomic data to predict interactions between cells that are enacted at 

the protein level. Cell-cell interaction prediction methods rely on the 
assumption that the expression of protein-coding genes accurately reflects 
the abundance of the corresponding proteins in the cell. In turn, the methods 

also assume that the abundance of proteins is sufficient to predict the 
presence and strength of protein-protein interactions between cells. 

However, these assumptions ignore the importance of post-transcriptional 
regulation steps such as the regulation of protein mRNA-cleavage, cellular 

localisation and addition of post-translational modifications in modifying 
protein activity and their ability to interact with other cellular proteins. 

Furthermore, cell-cell interaction predictions are based on literature-curated 
lists of interacting proteins reported in publicly available protein-protein 

interaction databases. However, many of the protein-protein interactions 
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reported in such databases have not been validated experimentally, for 
example, through yeast two-hybrid assays, co-immunoprecipitation and 

visualising the interactions using X-ray crystallography. As such, inferring 
protein-protein interactions from transcriptome data can lead to the 

emergence of false-positive predictions. Nonetheless, the estimation of cell-
cell interactions within tumour samples from transcriptome data compared to 

proteome data has key advantages. For example, such data is more readily 
available for patient tumour samples and often is available at single-cell 

resolution. Therefore, despite the limitations of cell-cell interaction prediction 
methods, they can have utility in generating hypotheses about what type of 

interactions occur between different cell types within tumour samples that 
can be further tested and explored experimentally. 

 
Currently, most of the available computational methods used to predict 

intercellular communication function by calculating binary or continuous 
communication scores between cells for each receptor-ligand pair based on 

the expression of the corresponding proteins. Binary scores are usually 
calculated by thresholding the expression of ligand and receptor genes or by 

identifying genes differentially expressed within individual cell type groups. 
An interaction is predicted if pairs of ligand and receptor genes are 
differentially expressed in a particular cell type pairing or their expression 

exceeds a certain threshold. Alternatively, continuous communication scores 
are calculated by multiplying the expression values of the paired genes or by 

measuring the correlation between their expression profiles across cell type 
pairings. The former continuous score calculation strategy is employed by the 

CellphoneDB tool used throughout this chapter. Compared to other available 
cell-cell interaction prediction tools, such as CellChat,272 CellTaker273 and 

ICELLNET,274 CellphoneDB has key advantages. For example, unlike many 
available tools, CellphoneDB integrates information about the multisubunit 

structure of many protein complexes involved in intercellular 
communications, thereby allowing better representation of complex 

intercellular interactions. Moreover, unlike other commonly used methods, 
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CellphoneDB employs a cell type label permutation step during the analysis, 
which allows the determination of whether ligand-receptor pair interactions 

show significant cell type specificity. 
 

Within section 6.3, quiescent cancer cells were predicted to form fewer 
inhibitory interactions with T cells via checkpoint molecules. In particular, the 

interaction between PD-1 and PD-L1, commonly targeted by 
immunotherapies, was detected specifically between T cells and proliferating 

cancer cells within breast cancer studies.  However, due to the limitations 
outlined above, further analysis is required to determine the clinical relevance 

of these findings. Firstly, additional evidence for the presence of inhibitory 
checkpoint interactions with proliferating cancer cells could be obtained by 

demonstrating the co-localisation of T cells and proliferating cancer cells 
expressing the relevant ligand-receptor pair genes using tumour sample 

spatial transcriptomic datasets.275 Similarly, the co-localisation of the ligand-
receptor pair molecules at the protein level could be demonstrated within 

patient tumour tissue slides using multispectral fluorescence microscopy 
coupled with single-cell fluorescence in situ hybridisation of the molecules of 

interest. The functional relevance of the PD-1 interaction with PD-L1, 
predicted to occur between proliferating breast cancer cells and T cells, could 
be assessed using microfluidic well array device approaches similar to that 

described by Tu et al.276  This would involve initially separating quiescent and 

proliferating cancer cells from breast cancer cell line models based on 
fluorescent reporter proteins, such as those described in section 1.9. The 

cytotoxicity of T cells isolated from mice against either proliferating or 
quiescent cells could then be assessed by mixing cells within the microfluidic 

well array device and measuring the rate of cancer cell death using 
fluorescent ethidium homodimer dye staining, which selectively labels dead 

cells.  This approach could be repeated with and without the addition of 
antibodies against PD-1 to elude whether proliferating or quiescent cells use 

the expression of PD-L1 to evade T cell cytotoxicity. Moreover, the impact of 
quiescence on patient response to commonly used checkpoint blockade 
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therapies targeting CTLA-4 and PD-1 could then be assessed in the recently 
curated database by Litchfield et al,277 summarising data from over 1000 

patients treated with checkpoint blockade.277 Within this dataset, a 

multivariate prediction model could be employed to determine the impact of 
tumour cell quiescence on the patient response while also accounting for the 

expression of all checkpoint inhibition molecules highlighted in this chapter, 
including LGALS9, and considering previously reported predictors of patient 

response. These, for example, include the total tumour mutational burden and 

immune infiltration levels of tumour samples.277 
 
Interestingly, the inhibitory interaction between PD-1 and PD-L1, commonly 

targeted in the clinic using antibodies against PD-1, was found specifically 
between proliferating cancer cells and T cells across all breast cancer 

datasets analysed in this chapter. Traditionally checkpoint blockade therapy 
has been used to treat more highly immunogenic solid tumours such as 

melanoma or colorectal cancer. However, recently the use of PD-L1 inhibition 
combined with chemotherapy agents has been approved for use as a first-

line treatment for triple-negative breast cancer patients.278 Due to the recent 
routine use of checkpoint inhibition treatments in breast cancer patients, 

there are few publicly available transcriptome datasets with matched clinical 
data on which the predive value of tumour quiescence could be assessed. 

However, in the future, the emergence of such datasets will clarify whether 
the relative tumour quiescence levels could be used to inform breast cancer 

patient immunotherapy outcomes. 
 

Overall, the analysis in this chapter provides a summary of the differential way 
quiescent and proliferating cells interact with the TME. It also paves the way 

for further exploration of the tumour quiescence status as a potential 
biomarker of patient response to checkpoint blockade. 
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Chapter 7: Evaluation of tumour mass dormancy and 

underlying mutation processes  
 

7.1 Introduction 
 

Tumour mass dormancy (TMD) describes a state where there is no net 
change in the size of a tumour because the rate of apoptosis counterbalances 

the rate of cancer cell proliferation.20-22,113 Several microenvironmental factors 
have been shown to maintain TMD. For example, tumour growth can become 

constrained by inadequate tumour vascularisation, which can arise due to the 
limited ability of the cancer cells to recruit new blood vessels and remodel the 

existing vasculature.114 This state is referred to as angiogenic dormancy and 
is often characterised by VEGF inhibition and the presence of anti-angiogenic 

factors such as angiostatin, endostatin and thrombospondin.19,21,117,118 
Moreover, tumour growth can become limited by the immune response 

mounted against immunogenic tumour cells.21,22 This anti-tumour immune 
response mainly involves cytotoxic CD8+ and CD4+ T cells and results in a 

tumour growth arrest state called immunological dormancy.22 Overall, both 
immunological and angiogenic dormancy can contribute to the development 
of TMD.21 The two states are also potentially linked. For example, the 

presence of CD4+ T cells at the tumour site can cause the release of anti-
angiogenic chemokines CXCL9 and CXCL10, thereby limiting tumour growth 

by decreasing the production of new supporting vasculature.127 
 

Importantly, TMD is not a simple dysfunction, but it represents a key stage of 
cancer development during which cancer cells can acquire further mutations, 

expand their neoplastic capacity, and establish a tumour microenvironment 
permissive for tumour growth. During the period of immunological dormancy, 

highly immunogenic tumour cells are removed.120 In turn, cells with acquired 
mutations that enable them to evade immune detection, for example, through 

the downregulation or loss of MHC components involved in antigen 
presentation, show a selective advantage.121 Furthermore, prolonged 
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exposure to inflammatory signalling can cause cytotoxic T cells to become 
inactive.120,122,123 This process is referred to as T cell exhaustion, and it can be 

escalated by the expression of immune checkpoint molecules, such as PD-
L1 by the cancer cells.124-126 These changes eventually allow the cancer cells 

to overcome immune surveillance mechanisms and enable further tumour 
growth.120 Similarly, during angiogenic dormancy, the acquisition of mutations 

capable of increasing pro-angiogenic signalling allows further tumour 
expansion. This can be illustrated by the upregulation of pro-angiogenic 

VEGF factors and the downregulation of anti-angiogenic TSP by tumour cells 
following the acquisition of activating mutations within the RAS oncogenes.119 

 
Despite the critical role TMD plays in cancer development, many aspects of 

this state, such as its prevalence, are currently unknown. This is primarily 
because of the lack of markers for this state and suitable experimental models 

to study the system.279 It remains to be investigated whether angiogenic and 
immunological dormancy contributing to TMD are mutually exclusive. 

Furthermore, TMD has been described in the context of early forming tumours 
and micrometastases.21,120 However, it is unclear whether TMD can occur at 

other stages of cancer development. The genomic constraints of TMD also 
remain largely unexplored. Understanding which genomic features are 
associated with TMD might give further insight into how TMD arises and how 

cancer cells escape tumour mass dormancy. It could also offer unique 
therapeutic opportunities by illustrating how TMD can be induced or 

maintained. Lastly, accurately classifying patients displaying evidence of 
TMD might inform patients' responses to various therapies. For example, 

patients who lack immunological dormancy could potentially benefit more 
strongly from immunotherapies attempting to reactivate T cells, such as 

immune checkpoint blockade. 
 

In this chapter, I aimed to explore TMD in primary solid tumours. To achieve 
this, I firstly developed a method to assess the prevalence of TMD using a 

manually curated list of gene biomarkers associated with angiogenic and 
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immunological dormancy from the literature. Using this methodology, as 
shown in section 7.2, I aimed to survey signals of TMD across the TCGA 

collection of 9,361 tumours from 31 tissues. Lastly, I also aimed to explore 
the genomic context of TMD, described in chapter 7.3, and the tumour 

microenvironmental factors associated with this state of dormancy, as 
detailed in chapter 7.3. The work in this chapter has been published in Wiecek 

et al Front. Cell Dev. Biol (2021),1 on which I am a co-first author with Daniel 

Jacobson and Wojciech Lason. I have only presented an analysis which was 
carried out by myself within this thesis chapter. However, I would like to 

acknowledge that the curation of gene expression biomarkers for T cell 
exhaustion and immunological and angiogenic dormancy, detailed in table 

7.1, was a joint effort by all authors of the paper. The content of table 7.1 was 
based on tables in a Master’s project thesis submitted by Wojciech Lason. 

The two tables were largely rewritten and edited by Dr Maria Secrier. Also, I 
would like to acknowledge that the order and workflow of the analysis shown 
in this chapter are based on a Master’s project presented by Wojciech Lason. 

 

7.2 Pan-cancer quantification of angiogenic, immunological and 

tumour mass dormancy 
 
Development of angiogenic, immunological and tumour mass dormancy 

gene expression scores 

Both inadequate vascularisation and immunosurveillance can limit the rate of 
cancer cell proliferation within primary tumours and therefore contribute to 

the development and maintenance of tumour mass dormancy.21 In order to 
assess the activity of these processes within the tumour samples, genes 

whose expression levels could act as biomarkers of immunological or 
angiogenic dormancy were curated from literature based on previously 

reported associations (Table 7.1). The immunological and angiogenic 
dormancy levels were estimated for 9,631 solid cancer primary tumour 

samples from the TCGA database using two different methodologies based 
on the curated biomarker list. The “scaled difference of means” approach 
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(Methods section 2.9) was dependent on the differences between the 
expression of upregulated and downregulated genes in each programme as 

follows:  
 

𝑆 =
∑ 𝐸$,&
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& − ∑ 𝐸(,)

'"
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S = scaled difference of means score 
Eu = expression of upregulated genes 
Ed = expression of downregulated genes 
Nu = number of upregulated genes 
Nd = number downregulated genes 
 

In contrast, the "PCA" approach (Methods section 2.9) involved the 
application of a principal component analysis using each respective 

programme's up- and down-regulated signature. A score was then extracted 
as the coordinate of the first principal component (PC1).   
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Gene Direction Type Annotation 
CD8A up immunologic Classical markers of CD8+ T cells. CD8+ T cells are key 

in the immunological dormancy process through the 
elimination of cancer cells that limits tumour growth. 
21,22,280 

CD8B up immunologic 

CD4 up immunologic Classical marker of CD4+ T cells. These cells would act 
in conjunction with the CD8+ T cell to generate 
antitumour responses specific of the TMD stage of 
cancer development.21 An increased ratio of CD8/CD4 
T cells is indicative of immunological dormancy.22 

IFNG up immunologic Interferons are important activators anti-tumour 
response. However, accumulation of interferon gamma 
tumour microenvironment leads to immunosuppression 
and upregulation of PD1 ligand on CD8+ T cells.281 
Moreover, it was shown that longstanding interferon 
gamma signalling in tumour cells leads to acquisition of 
epigenetic modifications leading to the expression of 
more interferon-stimulated genes as well as the 
expression ligands for multiple T cell inhibitory 
receptors.282 

STAT1 up immunologic STAT1 mediates the activation of cell cycle inhibitors, 
p21 WAF1/CIP1 and p27 KIP1, which results in a 
reduction of cell proliferation.283 

IL12A up immunologic IL-12 is critical for IFN-γ production and its inhibition 
was shown to induce tumour growth in sarcoma.284 

ITGB1 down immunologic Integrins drive a cascade of Ras/ERK activation which 
sustains cell proliferation. Downregulation of integrins 
has been shown to induce dormancy.285,286 ITGA5 down immunologic 

EGFR down immunologic EGFR is upregulated as a result of uPAR activation, 
which regulates tumour growth. Blocking this pathway 
induces growth arrest and dormancy.287 

PTK2 down immunologic FAK (PTK2) acts downstream of uPAR to activate 
mitogen signalling and cell proliferation. Blocking it has 
been shown to induce dormancy.288  

ERBB2 down immunologic uPAR also triggers mitogenic signalling of ERBB2, 
inducing tumour growth. Blocking ERBB2 has been 
stipulated to be a likely target switch for manipulating 
tumour dormancy.21 

GAS6 up immunologic GAS6 and BMP7 have been shown to induce dormancy 
in bone cancers by activating TAM kinase signalling and 
p38, respectively.19 BMP7 up immunologic 

DKK1 up immunologic Inhibition of Wnt signalling by DKK1 has been shown to 
induce quiescence.112  

IFNB1 up immunologic Type I interferons, such as interferon beta, are known 
regulators of cancer immunity, and immune response in 
general. They bind to interferon receptor (IFNAR) and 
activate the transcription of many genes through the 
activation of intracellular transcription factors, such as 
IRF7. It was shown that chemotherapy induces a type I 
IFN response in tumour cells as a result of MDSC 
signalling. This results in a self-sustained 
overexpression of IRF7 and consequently, IFN-β, which 
triggers the dormancy programme.289 

IDO1 up immunologic Interferon-gamma mediates dormancy in tumour-
repopulating cells via the IDO1/p27 axis.22  
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TGFB2 up immunologic TGF-beta 2 was found to decrease the ERK/p38 
signalling ratio and induce cells into dormancy through 
DEC2 expression.22 

DIRAS3 up immunologic ARHI (DIRAS3) expression leads to cell death and 
dormancy through inhibition of PI3K signalling.290  

VEGFA down angiogenic VEGFA, VEGFB and KDR are major regulators of 
angiogenesis.291 VEGFB down angiogenic 

KDR down angiogenic 

CXCL8 down angiogenic CXCL8 stimulates VEGF expression and 
vascularization.292 

CXCR1 down angiogenic Molecules expressed on endothelial cells. Their 
knockdown was shown to inhibit endothelial cell 
proliferation.293 CXCR2 down angiogenic 

THBS1 up angiogenic Thrombospondin 1 is a potent angiogenesis inhibitor.294 

SPP1 down angiogenic Osteopontin has been shown to induce angiogenesis 
through PI3K/AKT and ERK activation.295 

CXCL9 up angiogenic Antiangiogenic chemokines released by immune cells 
have been reported to act as a bridge between immune 
dormancy and angiogenic dormancy [107]. CD4+ T cells 
were shown to release CXCL9 and CXCL10, which 
inhibit vascularization processes in the growing tumour, 
indirectly contributing to the induction of cancer 
dormancy [5]. 

CXCL10 up angiogenic 

ITGAV down angiogenic ITGAV has been shown to promote angiogenesis and 
cancer progression.296 

COL18A1 up angiogenic Endostatin is a potent inhibitor of angiogenesis.297 

ADGRB1 up angiogenic Angiogenesis inhibitor whose expression inversely 
correlates with metastatic spread.298 

PLG down angiogenic Plasminogen degrades extracellular matrix proteins 
thereby facilitating cell migration, and has been shown 
to play a role in angiogenesis.299 

PLAUR down angiogenic The urokinase plasminogen activator surface receptor 
(uPAR) modulates VEGF-induced angiogenesis.300 

SERPINE1 up angiogenic SERPINE1 inhibits uPA, thereby inhibiting 
angiogenesis.301 

HIF1A up angiogenic HIF1A is a master transcriptional regulator of hypoxia.302 

CTLA4 up exhaustion CTLA4 and PD-1 (PDCD1) are well characterised 
inhibitory receptors expressed on the surface of the 
immune cells. Antibodies directed against those ligands 
are currently used in the clinic.303 

PDCD1 up exhaustion 

TIGIT up exhaustion TIGIT is an immunoglobulin superfamily member shown 
to be expressed on CD8+ tumour infiltrating T cells and 
natural killer cells.304 In human cancers, TIGIT acts in 
conjunction with PD-1 to inhibit effector T cells, hence 
enabling progression of cancer. Tigit–/– mice do not 
exhibit NK cell exhaustion and show fewer metastases 
and improved survival, thereby further highlighting the 
key role of TIGIT in regulating cancer 
immunosurveillance.305  

LAG3 up exhaustion LAG3 is one of the known inhibitory receptors (IRs) 
expressed on the surface of the T cells. The exact 
signalling mechanisms downstream of LAG3 and 
interplay with other IRs remains unknown due to LAG3’s 
structure which is unique and distinct from other IRs.306 
However, in vivo blockade of the PD1 and LAG3 IRs 
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together led to a greater reversal of T cell exhaustion 
and viral control compared to blockade of either one of 
those pathways alone.306 

HAVCR2 up exhaustion TIM3 (HAVCR2) is expressed on CD8+ T cells in the 
tumour microenvironment in mouse models of solid 
tumours. They co-express PD1 and exhibit a severe 
exhausted phenotype.307 Very recently, TIM3 was linked 
to myeloid derived suppressor cells, which trigger the 
TIM3+ CD8+ T cells through a Gal9 receptor in human 
studies, causing T cell exhaustion.308,309  

EOMES up exhaustion EOMES and TBET are paralogous transcription factors 
and master regulators of cytotoxic T cell lineage 
commitment and exhaustion programme 
activation.310,311 EOMES is required for induction of 
effector CD8+ T cells by IFN-γ induction in CD8+ T cells 
310 and is upregulated, along with PD1, in chronic viral 
infections in vivo.312 This points to its role in T cell 
exhaustion. TBET, similarly to BLIMP1, promotes 
differentiation of cytotoxic T cells at the early stages of 
infection.313 Persistent antigenic stimulation causes 
downregulation of TBET, which competes for genomic 
binding sites with EOMES and causes an exhaustion 
phenotype.310,313 

TBX21 up exhaustion 

BTLA up exhaustion BTLA is a well-known exhaustion marker in cancer.314 

CD274 up exhaustion PD-L1 (CD274) is one of the central regulators of T cell 
exhaustion.315   

PTGER4 up exhaustion Implicated in T cell exhaustion in metastases of 
melanoma patients.316 

CD244 up exhaustion Demonstrated to have an inhibitory role leading to 
exhaustion of CD8+ T cells and NK cells.317 

CD160 up exhaustion CD160 binds to MHC class I molecules and delivers a 
co-stimulatory signal necessary for CD8+ T cell 
activation.318 However, prolonged CD160 signalling 
seems to lead to inhibition of TCR signalling and, 
consequently, T cell exhaustion. CD8+ T-cell 
populations expressing CD160 have reduced 
proliferation capacity and perforin expression in vitro. 
Conversely, the blockade of CD160 interaction with its 
ligand restores the proliferation of CD8+ T cells.319 

 

Table 7.1: Gene expression markers of T cell exhaustion and tumour 
immunological and angiogenic dormancy. Abbreviations used in the table 
are defined in the abbreviations section (pg. 15). 
 

An overall tumour mass dormancy score was calculated for each patient 
using both methodologies based on the gene expression associated with 

both dormancy types (Figure 7.1-7.2). 
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Figure 7.1: Variation in tumour mass dormancy (TMD) scores calculated 
using the scaled difference of means score method.  Each dot represents 
a patient sample from the pan-cancer TCGA cohort. Patient samples are 
coloured by the scaled difference of means TMD scores which are calculated 
based on the expression of genes upregulated (mean expression shown on 
the x-axis) and downregulated (mean expression shown on the y-axis) 
involved in the angiogenic and immunological dormancy programmes. All 
analysis in the figure was performed using data from the TCGA cohort. 
Abbreviations used in the figure are given as given as follows: TCGA, The 
Cancer Genome Atlas; TMD, tumour mass dormancy. 
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Figure 7.2: Variation in tumour mass dormancy scores (TMD) based on 
PCA. (a) PCA plot based on the pan-cancer expression of genes involved in 
the angiogenic and immunological dormancy signatures. Each dot represents 
a patient from the pan-cancer TCGA cohort coloured by their corresponding 
TMD score derived from the first principal component Variation across the 
first two principal components is shown. (b) Percentage of variance in TMD-
related genes within the TCGA cohort explained by the first 10 principal 
components. All analysis in the figure was performed using data from the 
TCGA cohort. Abbreviations used in the figure are given as follows: PC, 
principal component; PCA, principal component analysis; TCGA, The Cancer 
Genome Atlas; TMD, tumour mass dormancy. 
 
The robustness of the two scoring methods to changes in the gene signature 

or small variations in gene expression was assessed (Figure 7.3). The “scaled 
difference of means” approach was comparatively more stable to such 

fluctuations; therefore, this method was used in the downstream analysis. 
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Figure 7.3: Robustness of tumour mass dormancy (TMD) scoring 
methodologies. (a) The mean pan-cancer fold change in TMD score per 
sample when randomly removing one gene at a time from the signature. (b) 
The mean pan-cancer fold change in TMD score per sample when introducing 
an increasing amount of noise to the measured gene expression data. The 
mean-based scoring technique appears to be more robust to variations in 
gene signatures or gene expression. All analysis in the figure was performed 
using data from the TCGA cohort. Abbreviations used in the figure are given 
as follows: PCA, principal component analysis; TCGA, The Cancer Genome 
Atlas; TMD, tumour mass dormancy. 
 

Exploration of the prevalence of angiogenic, immunological and tumour 

mass dormancy across the TCGA cohort 

The variation in the expression of tumour mass dormancy genes and scores 

across the TCGA cohort was visualised using PHATE dimensionality 
reduction. (Figure 7.4a-c). Overall, a spectrum of tumour mass dormancy 

estimates could be observed, with some samples appearing highly dormant 
and some highly expanding (Figure 7.4a-c). Tumour mass dormancy is 

thought to emerge when apoptosis balances tumour cell proliferation.20 
Therefore, primary tumour samples with high tumour mass dormancy 

programme scores (upper quartile of the score range), which also showed a 
proliferation/apoptosis ratio below 1 (Methods section 2.9), indicative of 

limited primary tumour lesion expansion, were classified as showing evidence 
of tumour mass dormancy (Figure 7.4d). Overall, 16% of samples across 
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different tissues exhibited substantial evidence for tumour mass dormancy 
(with up to 33% prevalence in certain cancers). These samples could be 

further subdivided into those indicating angiogenic dormancy (4.4%), 
immunological dormancy (5%), or both (7%) (Figure 7.4e, Table 7.2). Breast, 

bladder, head and neck cancers, sarcomas and lung adenocarcinomas were 
among the cancers with the highest levels of TMD. Angiogenic dormancy was 

most widespread in breast, head and neck and prostate adenocarcinomas, 
while immune-mediated dormancy prevailed in kidney renal clear cell 

carcinoma, thyroid carcinoma and pancreatic adenocarcinoma. The 
systematic differences in TMD programme scores across different tissues 

(Fig 7.4e-f) suggest that the tissue environment may impact the ability of the 
tumour to enter a TMD state. Across the board, immune-mediated dormancy 

levels appeared higher than those of angiogenic dormancy (Figure 7.4f), 
suggesting a dominant role for immune surveillance in determining TMD. 
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Figure 7.4: The pan-cancer landscape of tumour mass dormancy (TMD): 
(a-d) PHATE dimensionality reduction applied to 9,631 primary tumour 
samples based on the expression of genes within the TMD and exhaustion 
programmes before (a) and after (b-d) removal of tissue-specific expression 
patterns. The maps are coloured by their corresponding tissue type (a-b), 
TMD score (c) and TMD status (d). (e) Relationship between immunological 
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and angiogenic programme scores within individual TCGA cancer tissues. 
Samples are coloured by their angiogenic (orange, AD), immunological 
(purple, ID) and tumour mass (green, A/ID) dormancy status. Samples 
showing no evidence of TMD (NO) are coloured in dark grey, and slowly 
expanding tumours in light grey (MID). Horizontal and vertical lines represent 
the upper quartile of the pan-cancer angiogenic and immunological 
dormancy program scores, respectively. KICH was not plotted because it 
lacked TMD samples. (f) Variation in TMD, immunological and angiogenic 
scores across primary tumour TCGA samples stratified by tissue type. The 
tissues are sorted by their TMD levels. All analysis in the figure was performed 
using data from the TCGA cohort. Abbreviations used in the figure are given 
as follows: AD, angiogenic dormancy; IM, immunological dormancy; PHATE, 
Potential of Heat-diffusion for Affinity-based Trajectory Embedding; TCGA, 
The Cancer Genome Atlas; TMD, tumour mass dormancy. TCGA cancer type 
abbreviations are listed in the abbreviations section (pg. 15). 
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Cancer type TMD frequency AD frequency ID frequency AD+ID 
frequency 

Pan-cancer 16.5% 4.4% 5% 7% 
KICH 0 0 0 0 
READ 0.006 0 0.006 0 
GBM 0.019 0 0.013 0.006 
KIRP 0.024 0.003 0.010 0.010 
LGG 0.027 0.002 0.023 0.002 

COAD 0.035 0.009 0.020 0.007 
UCS 0.036 0 0 0.036 
ACC 0.063 0.025 0.013 0.025 
LIHC 0.067 0.032 0.013 0.022 
CHOL 0.083 0 0.056 0.028 
TGCT 0.087 0.020 0.013 0.053 
UVM 0.088 0.013 0.013 0.063 
CESC 0.089 0.010 0.036 0.043 
KIRC 0.100 0.008 0.066 0.026 
PRAD 0.137 0.107 0.002 0.028 
ESCA 0.143 0.075 0.012 0.056 
BLCA 0.159 0.047 0.015 0.098 
PAAD 0.169 0.011 0.107 0.051 
UCEC 0.173 0.009 0.099 0.064 
LUSC 0.178 0.014 0.088 0.076 
SKCM 0.194 0.029 0.049 0.117 
THCA 0.209 0.006 0.151 0.052 
STAD 0.216 0.064 0.027 0.125 

OV 0.217 0.024 0.083 0.110 
LUAD 0.220 0.025 0.113 0.082 
MESO 0.233 0.035 0.070 0.128 
BRCA 0.257 0.138 0.009 0.109 
SARC 0.316 0.073 0.077 0.166 
HNSC 0.322 0.134 0.034 0.154 
THYM 0.327 0 0.042 0.29 
PCPG 0.331 0.039 0.213 0.079 

 

Table 7.2: Prevalence of tumour mass dormancy, angiogenic dormancy 
and immunological dormancy in different tissues and pan-cancer across 
the TCGA cohort. Abbreviations used in the table are given as follows: AD, 
angiogenic dormancy; IM, immunological dormancy; TCGA, The Cancer 
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Genome Atlas; TMD, tumour mass dormancy. TCGA cancer type 
abbreviations are listed in the abbreviations section (pg. 15). 
 

7.3 Characterisation of the genomic background of tumour mass 

dormancy 
 

Alterations in cancer driver genes associated with tumour mass 

dormancy 

 

Identification of cancer drivers with enrichment or depletion of SNVs in 

samples with TMD 

The work in this chapter aimed to gain insight into what type of genomic 
background favours or hinders the development of tumour mass dormancy. 

Initially, this question was addressed by profiling potential associations 
between the tumour mass dormancy scores and the mutational status of 

known drivers of tumorigenesis.  Overall, 15 genes showed a statistically 
significant depletion or an enrichment of mutations within samples classified 

as showing evidence of tumour mass dormancy across the 31 solid cancer 
tissues (Fisher’s exact test p<0.05, Figure 7.5a, Table 7.3). Most of the genes 
identified by the pan-cancer analysis play critical functions in regulating cell 

proliferation, cell death, pro/anti-angiogenic signals and tumour immune 
escape, thus highlighting the key influence of these processes on the tumour 

mass dormancy equilibrium (Table 7.3).21,116,320 Furthermore, mutations in 
MUC4, a gene involved in angiogenesis and metastasis,321 were enriched in 

stomach adenocarcinoma (Figure 7.5b). Similarly, mutations within the EGFR, 

FAT3/4, LRP1B and KAT6B genes, whose functions are linked to cell 

proliferation and immune response,322-325 were depleted in colon cancer 
(Figure 7.5c, Table 7.3). The association between tumour mass dormancy and 

the mutational status of the CASP8, KRAS, DCC, HRAS, TP53 and KDM6A 

genes could also be observed in an external ICGC validation dataset (Figure 
7.6). 
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Figure 7.5: Cancer driver genes associated with tumour mass dormancy. 
(a-b) Genes presenting an enrichment or depletion of mutations within high 
TMD samples across all TCGA samples (a) or within the stomach 
adenocarcinoma (b) and colon adenocarcinoma (c) cohorts only. Blue circles 
represent odds ratios on a log2scale, and the confidence intervals for each of 
the individual Fisher’s exact tests are depicted. All analysis in the figure was 
performed using data from the TCGA cohort. Abbreviations used in the figure 
are given as follows: TCGA, The Cancer Genome Atlas; TMD, tumour mass 
dormancy.  
 

Gene Odds ratio Adjusted 
p-value 

Annotation 

APC 0.24 2.56e-12 -Suppresses tumour growth though repression of 
the Wnt signalling pathway326  
-Promotes apoptosis by downregulating the 
expression of survivin327  

 
 
 

TP53 

 
 
 

0.52 

 
 
 

1.09e-08 

-Transcription factor which coordinates signals of 
stresses caused by a variety of stresses including 
DNA damage and aberrant growth signalling and 
induces cell cycle arrest, apoptosis, senescence, 
DNA repair and/or changes in metabolism328,329  
-Inhibits angiogenesis by upregulating maspin 
expression330  
-Stimulates the innate immune system to suppress 
tumorigenesis by inducing senescence and 
SASP331  

 
KRAS 

 
0.32 

 
1.48e-08 

-Activating mutations of the small GTPase cause 
hypersensitivity to external growth-simulating 
factors resulting in increased signalling though 
PI3K, MEK/ERK and other pathways regulating 
proliferation332  

 
FAT4 

 
0.52 

 
4.43e-03 

-Cadherin protein which inhibits cell proliferation 
by suppressing the phosphorylation and nuclear 
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accumulation of Yap member of the Hippo 
signalling pathway333  

 
CASP8 

 
4.93 

 
4.60e-03 

-A cysteine-aspartic acid protease which plays a 
central role in the execution of apoptosis by 
cleaving and thereby activating caspase 3 and 
caspase 7334  
-Following NF-kB activation it promotes 
angiogenesis by enhancing VEGF expression 
-CASP8 inactivation allows cancer cells to evade 
apoptosis initiated by T and NK immune cells335  

 
KMT2D 

 
0.50 

 
6.58e-03 

-A histone-lysine N-methyltransferase whose KO 
results in cell cycle arrest in oesphageal squamous 
cell carcinoma cell lines336  

 
DCC 

 
0.44 

 
6.94e-03 

-Encodes the Nectin-1 receptor, which when 
bound by nectin-1 triggers caspase-9 dependent 
apoptosis. Production of nectin-1 at the base of 
villi within the gastrointestinal track inhibits 
apoptosis of the epithelial cells until they reach the 
tip of the villus337  

 
HRAS 

 
5.47 

 
6.94e-03 

-Activating mutations of the small GTPase cause 
hypersensitivity to external growth-simulating 
factors resulting in increased signalling though 
PI3K, MEK/ERK and other pathways regulating 
proliferation332  

 
KDM6A 

 
0.35 

 
1.92e-02 

--An oxygen-sensitive histone methylase which 
functions to demethylase H3K27 residues, under 
normoxia conditions338  
-Slow-cycling glioma cells are dependent on 
KDM6A epigenetic regulation339  
-KDM6A activates Th1-type chemokines needed 
for T cell migration in mouse and human 
medulloblastoma models 338 

 
IDH1 

 
0.32 

 
2.20e-02 

-Encodes isocitrate dehydrogenase 1, an enzyme 
which catalyses the oxidative decarboxylation of 
isocitrate to α-ketoglutarate within the Krebs cycle. 
-Mutations in codon 132 result production of 2-
hydroxyglutarate which results in changes of 
specific histone marks and extensive DNA 
hypermethylation, which result in the 
downregulation of leukocyte chemotaxis 
factors340,341  
-Angiogenesis is inhibited by 2-hydroxyglutarate, 
which by regulating the activity of α-ketoglutarate 
dependent dioxygenases causes the ubiquitination 
and proteasomal degradation of HIF1A342  

PRDM16 0.30 2.20e-02 -A transcriptional coactivator and corepressor 
which is associated with evasion of apoptosis in 
prostate cancer343,344  
-In renal cancer it suppresses the expression of a 
HIF target semaphorin 5B, which normally 
promotes tumour growth345  
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FGFR3 0.29 2.45e-02 -A tyrosine-protein kinase receptor for fibroblast 
growth factors which plays an essential role in 
regulating cell proliferation and apoptosis. 
-Ectopic expression of FGFR3 results in increased 
cell proliferation and lower levels of apoptosis in 
myeloma346  

NCOA1 0.27 3.00e-02 -A transcriptional coactivator for steroid and 
nuclear hormone receptors, which upregulates 
VEGF α in breast cancer tumours347  

FBXW7 0.50 3.05e-02 -A ubiquitin ligase which regulates quiescence by 
mediating ubiquitin-dependent proteolysis of key 
cell cycle proteins including cyclin E1 and c-Myc348  

NRAS 0.28 3.40e-02 -Activating mutations of the small GTPase result in 
hypersensitivity to external growth-simulating 
factors and increased signalling though PI3K, 
MEK/ERK and other pathways regulating 
proliferation332  

 
Table 7.3: Tumour drivers with enrichment or depletion of SNVs within 
primary tumour TCGA samples exhibiting tumour mass dormancy. 
Abbreviations used in the table are defined in the abbreviations section (pg. 
15). 
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Figure 7.6: Association between the mutational status of cancer driver 
genes and tumour mass dormancy across the ICGC dataset. (a-f) The 
TMD score is compared between tumours harbouring nonsynonymous 
mutations (red) in (a) CASP8, (b) HRAS, (c) DCC, (d) KRAS, (e) TP53 or (f) 
KDM6A and those without mutation in the respective gene (blue). **** 
p<0.00001; *** p<0.0001; ** p<0.001; * p<0.05. All analysis in the figure was 
performed using data from the ICGC cohort. Abbreviations used in the figure 
are given as follows: ICGC, International Cancer Genome Consortium; MT, 
mutant; TMD, tumour mass dormancy; WT, wild type.  
 
The CASP8 gene showed around 5-fold enrichment of mutations in patients 

classified as showing evidence of tumour mass dormancy. This gene 
encodes a cysteine-aspartic acid protease involved in the execution of 

apoptosis by cleaving and thereby activating caspase-3 and caspase-7.334 
CASP8 loss of function would be predicted to impair the ability of cancer cells 

to initiate apoptosis. However, the silencing of CASP8 in breast cancer cell 
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lines has been shown to decrease cancer cell growth by delaying G0/G1- to 
S-phase transition and increasing the expression of CDK inhibitors p21 and 

p27.349 The HRAS gene showed a similarly high enrichment of mutations 

within highly dormant patients. Interestingly, the oncogenic activation of the 
Ras protein has been associated with pro-angiogenic signalling through 

induction of VEGF and repression of the anti-angiogenic factor, TSP.119 
However, it has been suggested that while distinct oncogenic Ras alterations 

might have similar abilities to promote cell cycle progression, they might have 
different abilities to induce the pro-angiogenic programme.21 This could 

potentially explain the large enrichment of point mutations within the HRAS 
gene in TMD samples and the depletion of point mutations within the KRAS 

and NRAS genes. Specifically, HRAS hotspot mutations at the Q61 and G13 

positions were enriched across all solid primary tumour samples showing 

evidence of tumour mass dormancy (Figure 7.7a). In contrast, in the same 
samples, there was a depletion of KRAS G13 and G12, as well as NRAS Q61 

hotspot alterations (Figure 7.7b-c).  
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Figure 7.7: Oncogenic Ras mutations linked with tumour mass 
dormancy. Hotspot mutations within the (a) HRAS, (b) KRAS and (c) NRAS 
oncogenes that are significantly enriched or depleted in samples with high 
tumour mass dormancy across the TCGA solid primary tumour samples. Blue 
circles represent odds ratios, and vertical lines represent confidence intervals 
for each of the individual Fisher’s exact tests. All analysis in the figure was 
performed using data from the TCGA cohort. Abbreviations used in the figure 
are given as follows: TCGA, The Cancer Genome Atlas. 
 
Many genes with depletion of point mutations within dormant samples 

identified by the analysis have key functions in regulating cell proliferation. 
This is exemplified by APC, which suppresses tumour growth through 

repression of the Wnt signalling pathway,326 or TP53, which coordinates 

signals of stress such as DNA damage and aberrant growth signalling and 
can induce cell cycle arrest or apoptosis.328,329 Moreover, both APC and DCC 

genes, which promote apoptosis by downregulation of the Survivin protein327 
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and caspase-9 cleavage,337 respectively, show a depletion of mutations in 
samples with tumour mass dormancy. Angiogenic dormancy, a pivotal 

contributor to tumour mass dormancy, is defined by a balance between pro- 
and anti-angiogenic factors,116,320 which is reflected in the responses induced 

by the genes identified in the analysis. Both TP53 and PRDM16 inhibit 

angiogenesis by inducing the TSP anti-angiogenic factor128 and suppressing 
the expression of a HIF target semaphorin 5B,345 respectively. In contrast, the 

NCO1A transcriptional coactivator can upregulate the expression of the 

VEGFα pro-angiogenic factor.347  Mutations in the IDH1 gene, shown to be 
depleted in samples with TMD, result in the production of a 2-

hydroxyglutarate metabolite which regulates the activity of α-ketoglutarate-
dependent dioxygenases and causes the ubiquitination and proteasomal 

degradation of HIF1A,342 an essential protein in sensing hypoxia and initiating 
angiogenesis. Moreover, 2-hydroxyglutarate can also result in the 

downregulation of leukocyte chemotaxis factors,340,341 which could contribute 
to the ability of tumour cells to escape immunological dormancy through 

immune system evasion.  
 

Identification of signals of positive selection within TMD 

In addition to the enrichment analysis, using a maximum-likelihood dN/dS 

method,191 signals of positive selection for mutations were detected within 
CASP8 and HRAS pan-cancer in samples with tumour mass dormancy but 

not in expanding tumour samples (Figure 7.8a). In contrast, IDH1 and NRAS, 

both of which showed a depletion of mutations within TMD samples, showed 
signals of positive selection pan-cancer only in expanding tumours (Figure 

7.8a). However, since the prevalence of TMD is predicted to vary depending 
on the cancer type (Figure 7.4e-f), this raised the question of whether results 

of the selection analysis are cofounded by the frequency with which different 
oncogenes and tumour suppressors are altered in different tissue types. To 

determine the extent to which the results were influenced by cancer type, the 
analysis was repeated after randomly selecting the same number of TMD and 

non-TMD samples from each cancer type. Overall, largely similar results were 
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obtained after ensuring the same distribution of cancer types in the two 
groups, with CASP8 and HRAS still showing signals of positive selection in 

TMD samples, and IDH1 and NRAS still showing signals of positive selection 

in expanding tumours (Figure 7.8b). As such, these findings support the 

importance of CASP8, HRAS, NRAS and IDH1 mutational status in the 
context of TMD. 
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Figure 7.8: Pan-cancer signals of positive selection within dormant and 
expanding primary tumours. (a) shows results of the selection analysis on 
the entire TCGA cohort, while (b) shows results of the selection analysis on a 
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reduced TCGA cohort (n=1815) in which non-TMD and TMD groups were 
balanced for cancer type composition. Genes showing signals of positive 
selection in samples with high (purple) and low (black) TMD, as well as across 
both groups (yellow). All analysis in the figure was performed using data from 
the TCGA cohort. Abbreviations used in the figure are given as follows: TCGA, 
The Cancer Genome Atlas; TMD, tumour mass dormancy. 
 
No copy number alteration events (amplifications and deletions) were 

enriched explicitly in tumours with TMD (Table 7.4, Table 7.5), potentially 
because such events would be preferentially selected for in fast-growing 
tumours. Samples with evidence of TMD did not show large differences in the 

total mutational burden compared to expanding tumour samples without 
evidence of TMD (Figure 7.9a). However, if samples with fewer than 750 

mutations were removed, tumours with evidence of immunological dormancy 
only or evidence of both angiogenic and immunological dormancy showed 

statistically lower mutational burden levels than expanding tumours (Figure 
7.9b). 

 

Genes Odds 
ratio 

p-value Adjusted 
p-value 

Lower 
confidence 

interval 

Upper 
confidence 

interval 
PRDM1 1.86 0.07 0.10 0.97 3.87 
VTI1A 1.49 0.26 0.32 0.80 2.95 
SIX1 1.42 0.35 0.41 0.72 3.02 

ARHGAP2
6 

1.39 0.26 0.32 0.81 2.49 

HIF1A 1.39 0.38 0.44 0.74 2.76 
APC 1.38 0.43 0.50 0.70 2.94 

FGFR4 1.37 0.14 0.18 0.90 2.13 
PWWP2A 1.32 0.32 0.38 0.77 2.33 
KDM6A 1.28 0.54 0.60 0.66 2.64 

JUN 1.26 0.40 0.46 0.75 2.18 
GOPC 1.24 0.57 0.63 0.68 2.37 
FLT4 1.24 0.37 0.43 0.81 1.92 
TLX3 1.20 0.44 0.51 0.76 1.95 
NPM1 1.20 0.44 0.51 0.76 1.95 
FOXO3 1.20 0.66 0.71 0.64 2.35 
ROS1 1.18 0.67 0.72 0.64 2.27 
BIRC3 1.17 0.53 0.60 0.76 1.84 
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AFF4 1.16 0.67 0.73 0.64 2.19 
TCF7L2 1.16 0.67 0.73 0.64 2.19 
EPHA7 1.15 0.74 0.79 0.57000000 2.48000000 

 

Table 7.4: Tumour drivers with strongest enrichment of amplifications 
within primary tumour TCGA samples exhibiting tumour mass dormancy. 
No genes showed statistically significant enrichment. The abbreviations used 
in the table are given as follows: TCGA, The Cancer Genome Atlas. 
 

Genes Odds 
ratio 

p-value Adjusted 
p-value 

Lower 
confidence 

interval 

Upper 
confidence 

interval 
SRGAP3 1.58 0.14 0.20 0.87 3.04 

TMPRSS2 1.49 0.17 0.23 0.86 2.72 
CDH1 1.48 0.22 0.28 0.81 2.87 
VHL 1.42 0.27 0.34 0.77 2.75 

CBFB 1.38 0.37 0.44 0.72 2.85 
FANCD2 1.36 0.34 0.41 0.75 2.58 

CTCF 1.26 0.56 0.62 0.68 2.47 
REL 1.22 1.00 1.00 0.29 7.18 

CCR4 1.19 0.58 0.64 0.66 2.24 
PPARG 1.15 0.77 0.81 0.62 2.21 
TOP1 1.15 0.77 0.81 0.62 2.21 
BTG1 1.14 0.78 0.82 0.63 2.14 
MAF 1.11 0.80 0.84 0.66 1.93 

CCND3 1.10 0.85 0.89 0.50 2.60 
SDC4 1.09 0.87 0.90 0.55 2.29 

TGFBR2 1.09 0.80 0.84 0.64 1.93 
PTPRT 1.09 0.89 0.92 0.62 1.99 
ERG 1.08 0.89 0.91 0.59 2.05 

MLH1 1.08 0.80 0.84 0.65 1.86 
MACC1 1.07 1.00 1.00 0.52 2.33 

 

Table 7.5: Tumour drivers with strongest enrichment of deletions within 
primary tumour TCGA samples exhibiting tumour mass dormancy. No 
genes showed statistically significant enrichment. The abbreviations used in 
the table are given as follows: TCGA, The Cancer Genome Atlas. 
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Figure 7.9. Tumour mutational burden across TMD subtypes. Tumour 
mutational burden is compared between samples with angiogenic dormancy 
(AD), immunological dormancy (ID), both angiogenic and immunological 
(A/ID) and samples without TMD (NO) before (A) and after (B) excluding 
samples with less than 750 mutations. All analysis in the figure was performed 
using data from the TCGA cohort. Abbreviations used in the figure are given 
as follows: AD, angiogenic dormancy; IM, immunological dormancy; TCGA, 
The Cancer Genome Atlas; TMD, tumour mass dormancy. 
 

Broad mutational processes associated with tumour mass dormancy 

 
In chapter 4.3, mutational signature analysis was conducted to survey the 

effect of known mutagenic processes and risk factors on the genomes of 
primary tumours within the TCGA cohort. This chapter investigated potential 

associations between broader mutational processes and tumour mass 
dormancy using the previously estimated mutational signature contributions. 

The prevalence of individual mutational signatures was also correlated with a 
score reflective of T cell exhaustion, which was calculated in the same way 

as the tumour mass dormancy score using a manually curated list of genes 
associated with the process (Table 7.1, Methods section 2.9). T cell 

exhaustion can develop following extensive pro-inflammatory signalling 
within the tumour, for example, through extended signalling via cytokines 
such as interferon gamma.120,122,123 Associations with the exhaustion 

programme were also investigated in this chapter because this state is likely 
to emerge following periods of immunological dormancy. Overall, exposure 

to signatures SBS1 and SBS5, linked with ageing-induced deamination of 5-
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methylcytosines,350 SBS16, linked with alcohol consumption,226 and SBS22, 
linked with aristolochic acid exposure,351 decreased as TMD and exhaustion 

increased. In contrast, smoking (SBS4) and polymerase epsilon activity 
(SBS10b) were associated with increased TMD scores (Figure 7.10).226 Finally, 

there was a consistently strong correlation between mutational signatures 2 
and 13, associated with APOBEC mutagenesis,226 and tumour mass 

dormancy and exhaustion (Figure 7.10). The association with APOBEC 
mutagenesis signatures was observed both pan-cancer and across individual 

cancer, including bladder, breast, cervical and head and neck cancers (Figure 
7.10). As expected, SBS2 and SBS13 also strongly correlated with the mean 

expression of enzymes within the AID/APOBEC family of cytidine 
deaminases. 

 

 
Figure 7.10: Association between mutational signatures and the tumour 
mass dormancy and exhaustion programmes. Matrices depicting the 
Pearson correlation between mutational signatures and the TMD, exhaustion 
and APOBEC programmes, both pan-cancer (first 3 columns) and within 
individual cancer tissues. Statistically significant correlations (p < 0.05) are 
highlighted with an asterisk. Pan-cancer associations were tested between 
quiescence scores and all mutational signatures (SBS1, SBS2, SBS3, SBS4, 
SBS5, SBS6, SBS7a, SBS7b, SBS8, SBS10a, SBS10b, SBS13, SBS14, 
SBS15, SBS16, SBS17b, SBS20, SBS22, SBS28, SBS30, SBS36, SBS39, 
SBS40 and SBS44) detected across the TCGA cohort. Cancer-wise 
associations were tested between sample quiescence scores and the 
contribution of all mutational signatures detected in the given cancer type. 
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Only signatures with at least one significant correlation (Pearson’s correlation 
p-value < 0.05) are shown. As such, the absence of specific mutational 
signatures in the figure does not necessarily indicate a lack of attributable 
mutations across the TCGA cohort. All analysis in the figure was performed 
using data from the TCGA cohort. Abbreviations used in the figure are given 
as follows: SBS, single-base substitution; TCGA, The Cancer Genome Atlas; 
TMD, tumour mass dormancy. TCGA cancer type abbreviations are listed in 
the abbreviations section (pg. 15). 
 

Dormancy and exhaustion programmes correlate with APOBEC enzyme 

expression 

 

Tumours with a high proportion of APOBEC-associated mutations and 
increased expression of genes belonging to the APOBEC/AID family have 

been shown to respond better to checkpoint inhibition blockade 
immunotherapy and have higher infiltration of T lymphocytes.252,352 To further 

assess whether APOBEC mutagenesis is also associated with the 
maintenance of tumour mass dormancy, the correlation between expression 

of APOBEC/AID family genes and the dormancy programme scores was 
investigated. Across all cancers, there was a significant correlation between 

the activity of the APOBEC, TMD and exhaustion programmes (Figure 7.11a-
d). These associations were stronger than expected by chance (Figure 7.12), 

and they were also captured in external datasets from ICGC and cBioPortal 
(Appendix 3-6). In particular, there was a strong association between 

APOBEC mutagenesis and immunological dormancy. Therefore, it can be 
hypothesised that increased APOBEC/AID activity and associated 

mutagenesis may precede or come in conjunction with immune exhaustion, 
the latter showing the strongest correlation. Moreover, a positive correlation 
was observed between most genes included in the immunological, 

angiogenic and exhaustion programmes on the one side, and the expression 
of the AID/APOBEC enzyme family members, on the other (Figure 7.11h). 

Overall, this analysis suggests an interplay between the increased activity of 
the APOBEC/AID family of enzymes and the tumour immune environment.  
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Figure 7.11: TMD and exhaustion programmes correlate with APOBEC 
family mRNA expression. (A-D) Pan-cancer correlation between the activity 
of the APOBEC programme, measured as the mean expression of the genes 
constituting the APOBEC family, and (A) tumour mass dormancy, (B) 
immunological dormancy, (C) angiogenic dormancy and (D) exhaustion 
programmes. (E-G) Tumour mass dormancy, APOBEC (measured as the 
mean expression of the genes constituting the APOBEC family) and 
exhaustion programme scores compared between samples with angiogenic 
dormancy (AD), immunological dormancy (ID), both angiogenic and 
immunological dormancy (A/ID) and samples without TMD. (H) Pan-cancer 
correlation between individual genes in the dormancy and exhaustion 
programmes and the mean APOBEC/AID enzyme family gene expression. 
Genes upregulated in immunological and angiogenic dormancy programmes 
are shown in red. All analysis in the figure was performed using data from the 
TCGA cohort. Abbreviations used in the figure are given as follows: AD, 
angiogenic dormancy; IM, immunological dormancy; TCGA, The Cancer 
Genome Atlas; TMD, tumour mass dormancy. TCGA cancer type 
abbreviations are listed in the abbreviations section (pg. 15). 
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Figure 7.12: Correlations between APOBEC activity and the average 
expression of 35 randomly selected genes (matching the size of the TMD 
signature). (a) Pearson correlation coefficient distributions across 1000 
repeats (mean correlation = 0.144, 89% highest posterior density interval: [-
0.12,0.44]. (b) Distribution of corresponding p-values across 1000 iterations. 
The small p-values are hypothesized to reflect the size of the dataset. All 
analysis in the figure was performed using data from the TCGA cohort. 
Abbreviations used in the figure are given as follows: TCGA, The Cancer 
Genome Atlas; TMD, tumour mass dormancy.  
 

7.4 Characterisation of the tumour microenvironment features of 

dormant tumours 

 

TMD is dependent on immune surveillance.21 To confirm this assumption and 
potentially identify novel components of the cancer cell microenvironment 

which are permissive to tumour mass dormancy, immune infiltration scores 
were calculated for the samples within the TCGA cohort. The scores were 

calculated based on expression-based enrichment of cell-type specific 
markers, as detailed in section 2.9. The tumour mass dormancy, angiogenic 

dormancy, immunological dormancy, APOBEC and exhaustion programmes 
all correlated with the infiltration of cytotoxic cells such as CD8+ and CD4+ T 

cells (Figure 7.13a-b, Table 7.6). They also correlated with the infiltration of 
tumour-promoting regulatory cells and macrophages (Figure 7.13a, Table 
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7.6). Treg and macrophages suppress the immune response, and, in the 
context of cancer, they inhibit the antitumour response. As such, the 

correlation between these two cell types and signals of TMD across the TCGA 
can be seen as contradictory. However, since the exhaustion phenotype likely 

immediately follows TMD, the correlation with Tregs and macrophages could 
indicate an overlap between TMD and exhaustion within TCGA samples. In 

particular, due to the bulk nature of the samples analysed, it may be possible 
that within individual tumours, while some parts are maintained in TMD, other 

sections have already achieved the exhaustion phenotype.  In addition to their 
cytotoxic activity, CD8+ and CD4+ T cells have been previously shown to limit 

tumour growth through secretion of anti-proliferative cytokines, such as IFN-
γ, which can stimulate the expression of p21 and p27 cell cycle 

inhibitors,283,353 and antiangiogenic chemokines, such as CXCL9 and 
CXCL10.354 Compared to Th1 and Th2 cells, NK cells showed a weaker 

correlation with dormancy programmes (Figure 7.13a, Table 7.6), consistent 
with reports of tumour growth control by the immune system mainly being 

associated with adaptive T cell response.355 Overall, cytotoxic cells, Th cells 
and dendritic cells appeared most enriched in tumours with evidence of both 

immunological and angiogenic dormancy (Figure 7.13b-e). Interestingly, 
samples displaying signals of angiogenic dormancy were more enriched in 
Th2 instead of Th1 cytotoxic cells (Figure 7.13e). Lastly, the 

microenvironment of samples with high tumour mass dormancy was also 
depleted in inflammatory Th17 signals (Figure 7.13a).  
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Figure 7.13: Tumour microenvironment activity correlates with the TMD 
programme. (A) Correlation between immune infiltration estimates and the 
APOBEC, exhaustion and dormancy programme scores across the TCGA 
primary tumour samples. Non-significant associations are indicated with red 
crosses. (B-D) PHATE dimensionality reduction of 9,631 primary tumour 
samples, based on the expression of genes driving the tumour mass 
dormancy and exhaustion programmes, with the removal of tissue-specific 
expression patterns and coloured by (B) Cytotoxic cell immune score, (C) Th 
cell immune score and (D) Dendritic cell immune score. (E) Cytotoxic T cell, 
Th1/Th2 and dendritic cell abundance compared between samples with 
angiogenic dormancy (AD), immunological dormancy (ID), both angiogenic 
and immunological dormancy (A/ID) and samples without TMD.   All analysis 
in the figure was performed using data from the TCGA cohort. Abbreviations 
used in the figure are given as follows: AD, angiogenic dormancy; IM, 
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immunological dormancy; NK, natural killer; pDC, plasmacytoid dendritic cell; 
PHATE, Potential of Heat-diffusion for Affinity-based Trajectory Embedding; 
TCGA, The Cancer Genome Atlas; TCM, central memory T cell; TEM, effector 
memory T cell; Th, T helper cell; TMD, tumour mass dormancy; Treg, T 
regulatory cell.   
 
 

TME component APOBEC Exhaustion ID AD TMD 
B cells 0.44 0.61 0.45 0.35 0.49 

γδ T cells -0.2 0.05 0.07 0.11 0.11 
Th1 cells 0.34 0.53 0.48 0.22 0.44 
Th2 cells 0.29 0.24 0.15 0.39 0.32 
Th17 cells -0.06 0 -0.07 -0.05 -0.07 
Treg cells 0.49 0.59 0.38 0.49 0.52 
TCM cells -0.01 0.08 0.05 0.14 0.11 
TEM cells 0.05 0.25 0.2 0.15 0.22 

CD8+ T cells 0.07 0.23 0.34 0.17 0.32 
NK cells 0 0.05 0.18 0.19 0.22 

pDC -0.03 0.18 0.19 0.06 0.16 
Macrophages 0.26 0.43 0.31 0.05 0.23 
Neutrophils 0.27 0.39 0.11 -0.12 0 
Eosinophils -0.23 -0.11 -0.03 -0.07 -0.06 
Mast cells 0.04 0.14 -0.02 0.1 0.04 

Cytotoxic cells 0.47 0.71 0.54 0.37 0.56 
Th cells 0.12 0.21 0.26 0.26 0.31 

Dendritic cells 0.42 0.48 0.26 0.22 0.3 
 
Table 7.6: Correlation between immune infiltration estimates and the 
APOBEC, exhaustion and dormancy programme scores across the 
TCGA primary tumour samples. Boxes shaded in grey indicate non-
significant associations. Abbreviations used in the table are given as follows: 
AD, angiogenic dormancy; IM, immunological dormancy; NK, natural killer; 
pDC, plasmacytoid dendritic cell; TCGA, The Cancer Genome Atlas; TCM, 
central memory T cell; TEM, effector memory T cell; Th, T helper cell; TMD, 
tumour mass dormancy; Treg, T regulatory cell.   
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7.5 Discussion 
 

In this chapter, I evaluated the signals of TMD across a wide variety of cancer 
types and identified the genomic and microenvironmental features associated 

with this state.  
 

TMD was estimated to be a frequent event in some cancer types such as 
breast cancer, sarcoma, head and neck squamous cell carcinoma and 

thymoma. In turn, some cancer types, including kidney chromophobe, rectum 
adenocarcinoma and glioblastoma, showed little or no evidence of TMD. 
Samples with evidence of TMD usually showed signals of both angiogenic 

and immunological dormancy. However, in some cancer types TMD 
appeared to be driven by only one of the dormancy programmes.  

 
A significant limitation of evaluating TMD within the TCGA cohort is that each 

patient sample has been profiled using bulk sequencing methods from an 
individual section of the tumour. As a result, it remains unknown whether TMD 

can affect small regions of tumours while the other areas continue to expand. 
In addition, bulk sequencing averages the cellular signal across the entire 

tumour sample and therefore does not allow the assessment of the 
heterogeneity of TMD biomarker gene expression. In the future, the greater 

availability of single-cell and multi-regional sequencing datasets will provide 
more information about the diversity of TMD. Similarly, TMD represents a 

transient phenotype. Ideally, the assessment of TMD signals in longitudinally 
profiled tumour samples will provide information about the dynamics of this 

state. 
 

Additionally, the TMD phenotype is challenging to study experimentally, and 
there are few model systems for this state. This is largely because of the 
transient nature of TMD and because its existence depends on key 

microenvironmental constraints. As such, in the absence of experimental 
validation datasets, it was impossible to assess the accuracy of the TMD 
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scoring approach used in this study. It was also impossible to determine the 
optimal TMD score cut-offs that should be used to classify samples showing 

evidence of TMD. Moreover, despite the comprehensive literature review 
performed in this study, it is likely that the list of TMD biomarker genes that 

was could be further expanded. Similarly, it is unknown whether TMD 
biomarkers might differ between different tissues. Future datasets from 

experimental TMD models might highlight more comprehensively the 
transcriptional changes occurring specifically in dormant samples. Ideally, 

such studies would involve monitoring and longitudinally profiling the 
transcriptome of spontaneously developing tumours in immunocompetent in 

vivo mouse models. The rate of spontaneous tumour development in such 

models could be increased through the use of genetically engineered mice 
carrying mutations in tumour suppressors and oncogenes involved in the 

early stages of cancer development within the tissue of interest. Alternatively, 
tumour development could be stimulated by the exposure of mice to chemical 

or mechanical carcinogens. The rates of tumour cell turnover, proliferation, 
apoptosis, and microenvironmental tumour features, such as the density of 

microvessels, could be monitored using techniques described in section 
1.11. These measurements would allow TMD status determination of the 

profiled tumour samples. Directly comparing transcriptional profiles of 
expanding and dormant tumours within genetically identical mouse models 

would further highlight transcriptional features specific to TMD. Currently, to 
overcome the above challenges, a conservative approach was used when 

classifying samples as showing evidence of TMD in this study. This involved 
selecting samples with the most extreme TMD score values, which are likely 

to reflect this state. It also involved the selection of samples which showed 
greater expression of genes involved in apoptosis than those involved in 

proliferation, thus indicating limited tumour growth.  
 

Overall, the pan-cancer analysis confirmed some of the features of tumour 
mass dormancy reported in the literature. For example, across the TCGA 
cohort, high TMD scores were associated with lower mutational burden and 
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higher estimated infiltration of CD8+ regulatory and helper T cells.280 In 
addition, TMD scores were also strongly linked with T cell exhaustion, which 

is expected to follow TMD.  
 

Moreover, the analysis highlights novel genomic hallmarks of TMD. Highly 
dormant samples showed an enrichment of mutations and signals of positive 

selection within the HRAS and CASP8 genes. The same associations were 

observed in an external ICGC dataset. It is possible that mutations within 
these genes may confer an advantage in terms of maintaining TMD, or they 

could enable cells to escape TMD and expand further. In terms of broader 
mutational patterns, a strong correlation was observed between TMD the 

SBS2 mutational signature associated with AID/APOBEC cytosine 
deaminase mutagenesis. Consistent with this, dormant samples had higher 

expression of genes within the AID/APOBEC family. In particular, the 
immunological dormancy scores were highly associated with APOBEC 
activity. High levels of APOBEC-related mutations have been linked with 

better patient response to checkpoint inhibition blockade immunotherapy.252 
Therefore, it could be that APOBEC mutagenesis increases neoantigen 

presentation in tumours that, in turn, triggers a response from cytotoxic T 
cells and contributes to immunological dormancy. Alternatively, the 

expression of APOBEC/AID genes has been shown to be triggered by pro-
inflammatory INF-immune response signalling.356 Therefore, increased 

APOBEC activity itself could be triggered by the state of immunological 
dormancy. Further experimental evidence is needed to verify the biological 

nature of these associations. This could involve profiling longitudinally and 
measuring immune cell infiltration of spontaneously developing tumours in 

immunocompetent mice with or without ectopically inducing the expression 
of APOBEC/AID enzymes in order to stimulate APOBEC-mediated 

mutagenesis. Similarly, the impact of HRAS and CASP8 mutational status on 
TMD could be investigated by comparing mouse models with and without 

genetically engineered mutations within the two cancer drivers. 
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Overall, the analysis in this chapter highlights the mutational features 
associated with TMD, which can now be subjected to more detailed 

mechanistic exploration. It also presents a novel method for the evaluation of 
TMD, which can be used in the future to further explore the state in 

transcriptomic datasets, for example, by investigating the links between TMD 
and other dormancy states, such as cancer cell quiescence. TMD represents 

a key stage of cancer development, which has been associated with better 
overall patient prognosis.1 Therefore in the future, the ability to readily identify 

TMD within patient samples can provide a unique clinical opportunity. 
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Chapter 8: Discussion 
 

8.1 Summary 
 

Both tumour mass dormancy (TMD) and cancer cell quiescence states play 
key roles in cancer development and progression. This thesis provided an 

overview of the two dormancy states across 31 solid cancer tissues.  
 
Focusing first on exploring cancer cell quiescence, in chapter 3, I identified a 

list of genes whose expression forms a universal cancer cell quiescence 
signature, which has been robustly validated experimentally and in single-cell 

data. Importantly, these findings show that despite the existence of numerous 
quiescence subtypes and the wide variety of transcriptional changes 

displayed by quiescent cells that depend on inducing factors, cell type and 
quiescence duration, quiescent cells can be characterised by the expression 

of a small subset of genes. Most quiescence biomarker genes were 
downregulated in quiescence and involved in processes such as transcription 

and mRNA processing. This is consistent with previous reports of reduced 
metabolic activity in quiescent cells, thereby highlighting the reduction in 

biosynthetic activity as one of quiescence's most universal transcriptional 
features. Interestingly, despite the broad functions of the biomarker genes, 

they proved to be highly discriminative of quiescent cells, and their 
expression did not correlate with markers of other non-proliferative cell states 

such as senescence.   
 

Based on the list of quiescence biomarker genes, I developed a 
computational framework for evaluating cancer cell quiescence in bulk and 

single-cell transcriptomic data. This quiescence scoring methodology was 
then used to survey the relative levels of dormant cancer cells in a multi-omics 
cohort of 8,005 primary tumour samples in chapter 4. The propensity of 

tumour cells to enter quiescence was estimated to depend on tissue type. 
This raises the question of whether the quiescence state is used by tumour 
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cells to evade therapy more readily in specific cancer types where quiescence 
is estimated to arise more frequently. Also, using an ensemble elastic net 

regression machine learning approach, I identified genomic events 
associated with quiescence/proliferation decisions, uncovering CEP89 as a 

novel putative modulator of this process. As expected, most of the genes 

highlighted by the ensemble model were found to be involved in cell cycle 
and p53 regulation pathways. However, the genomic dependencies of 

quiescence also comprised of genes involved in other processes such as 
RUNX2/3 regulation. Both RUNX2 and RUNX3 have been linked to EMT,357,358 

thereby highlighting potential similarities between the regulation of 
quiescence and other forms of plasticity within cancer cells. Also, 

unexpectedly, the deletion of CDKN2A, encoding the CDK inhibitor p16, was 
enriched in highly dormant tumours pan-cancer. p16 has previously been 

shown to reduce cycle progression. Therefore, the association highlighted by 
the ensemble model warrants further exploration of the role of p16 in 

mediating cell cycle arrest, specifically within cancer cell line models. 
 

In chapter 5, I demonstrated the therapeutic relevance of quiescent cancer 
cells to commonly used chemotherapy and targeted molecular therapy 

agents. Unexpectedly, using single-cell data, quiescent cells were shown to 
selectively survive treatment with a much more comprehensive range of 

therapeutic agents than previously reported in the literature. This included 
epigenetic regulators, such as HDACs, which potentially could induce cancer 

cell quiescence entry by reversing transcriptional repression of tumour 
suppressor genes such as CDKN1A.257 These findings highlight the broad 

utility of the quiescence signature developed in this thesis for monitoring 
patient response to a wide range of therapies. 

 
Also, in chapter 6, I showed that compared to proliferating cells, quiescent 

cells show differences in how they interact with the TME, which could 
potentially be therapeutically exploited. Specifically, quiescent cancer cells 

were predicted to form fewer inhibitory checkpoint interactions with T cells. 
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These predictions are in line with the analysis presented in chapter 4, whereby 
highly proliferative tumours were shown to have higher mutational rates. This 

would be predicted to result in higher tumour cell immunogenicity and more 
significant interactions with infiltrating T cells, which in turn could select for 

higher checkpoint gene expression. 
 

Lastly, in chapter 7, I explored signals of tumour mass dormancy in a multi-
omics cohort of 9,631 primary tumour samples and highlighted the 

associated genomic and microenvironmental features. Tumour samples 
displaying evidence of TMD showed enrichment of mutations within HRAS 

and CASP8 oncogenes, suggesting that mutations within these genes could 

offer a survival advantage to cancer cells by allowing the development of TMD 
or by allowing cells to escape this state and continue their expansion. The 

analysis also confirmed previously reported links between TMD and tumour 
infiltration with cytotoxic T cells, regulatory T cells and macrophages. 

 

8.2 Limitations of the current approaches and future directions 
 

Methods used to assess cancer cell quiescence and TMD 

 
One of the key outcomes of this thesis is the development of methodologies 

for assessing cancer cell quiescence and TMD from transcriptomic data in 
chapters 3 and 7. However, it is essential to highlight the limitations of these 

methods.   
 

The quiescence scoring methodology relies on the expression of 139 
quiescence biomarker genes, which have been selected due to their 

differential expression across several quiescence subtypes in a dataset 
reported by Min and Spencer.47 In this dataset, the cell cycle state of the 

quiescent cells was visualised by monitoring the expression of a replication 
licencing factor, geminin, using a Fluorescent Ubiquitination-based Cell Cycle 

Indicator (FUCCI). Moreover, only quiescent breast tissue cells residing in the 
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G0 stage of the cell cycle were separated and profiled. As highlighted in 
section 1.3, quiescent cells can also undergo cell cycle arrest in G2 after 

replicating their DNA during the S phase of the cell cycle.65 This type of 
quiescence is likely to be triggered by excessive DNA damage during the 

G2/M checkpoint.359 Overall, G2 arrest is rare as quiescent cells usually arrest 
in G0.45 Therefore, little is known about the transcriptional features of G2 

quiescence. Importantly, it remains unknown whether the quiescence scoring 
method developed in chapter 3 can also capture signals of G2 arrested cells. 

This question could potentially be addressed in the future if transcriptome 
datasets of cells arrested specifically in G2 become publicly available. 

Previous literature has highlighted methods which could be used to 
specifically isolate G2 cell cycle arrested cells, for example, the combined use 

of FUCCI and pH3 fluorescent markers.65 Coupling such methods with 
transcriptional profiling of the identified G2 cells could provide a valuable 

resource for assessing the ability of the quiescence methodology to 
discriminate G2 cells. 

 
Chapter 3 validated the quiescence scoring method on publicly available 

datasets where quiescent cells were transcriptionally profiled separately from 
proliferating cells. As discussed in section 3.4, within these datasets, 
quiescent cells were identified experimentally using label-retaining assays or 

the cells were induced into quiescence through subjection to strong 
intracellular and environmental stresses.28,88-90,106,107,206 Each of the approaches 

has specific advantages and disadvantages. For example, label-retaining 
assays are a less invasive method that does not require forced induction of 

quiescence. In turn, this allows the identification of quiescent cells which 
enter this state spontaneously, for example, due to intrinsic cell factors such 

as accumulated DNA damage. However, when using this approach, cells that 
resumed proliferation shortly before transcriptional profiling could have 

retained enough dye to be mistakenly classified as quiescent cells. Overall, 
the quiescence scoring methodology developed in chapter 3 was validated 

on seven external datasets and experimentally in lung adenocarcinoma cell 
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lines to limit the impact of the shortcomings of the individual experimental 
quiescence identification methods. However, the greater availability of such 

datasets will allow more robust validation in the future. 
 

Moreover, the method developed to assess TMD from transcriptional data in 
chapter 7 could not be validated in external datasets. As described in section 

1.11, angiogenic and immunological dormancy have been largely studied 
using in vivo models where the growth of cancer cell lines is monitored in 

syngeneic and immunodeficient mouse models after inhibiting specific pro-

and anti-angiogenesis factors or after inhibition of specific immune 
components.20,120,128,129 However, currently, there is a lack of datasets 

comparing the transcriptome of expanding tumours and those undergoing 
TMD. Moreover, TMD has not been characterised in patient tumour samples 

mainly because of its transient nature. As such, the accuracy of the method 
developed in section 7.2 to identify TMD could not be determined. Similarly, 
the optimal TMD score cut-off that should be used to classify samples 

showing evidence of TMD remains unknown. Therefore, in this thesis, a 
conservative approach was taken, and samples were only classified as 

showing TMD if they showed the most extreme TMD scores, and they 
displayed higher expression of genes involved in apoptosis than those 

involved in proliferation. However, in the future, upon the emergence of 
suitable validation datasets, the TMD score cut-offs used to classify samples 

could be refined.   
 

Exploration of cancer cell quiescence and TMD in bulk-sequenced 

datasets 

 
Within this thesis, both cancer cell quiescence and TMD were surveyed 

across the large-scale multi-omics TCGA cohort. However, a significant 
limitation of this approach is the bulk-sequenced nature of the patient 

samples. Using bulk-sequenced rather than scRNA-seq data, it is impossible 
to precisely determine the number of quiescent cells within each tumour. As 
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shown in section 3.3, within lung adenocarcinoma cell lines, the 
computationally determined quiescence scores showed a good correlation 

with the percentage of individual cells determined to reside in quiescence, 
based on experimental measures such as EdU and BrdU staining. However, 

in bulk-sequenced data, it is impossible to determine whether samples with 
a positive quiescence score contain a few cancer cells in a deep quiescent 

state, a moderate number of cancer cells in shallow quiescence or whether 
the tumour consists of mostly very slowly proliferating cells. Therefore, all of 

the genomic features identified to be associated with cancer cell quiescence 
by the ensemble elastic net regression approach in chapter 4.3 should 

undergo further validation in cancer cell line models to determine if they 
impact quiescence-proliferation decisions or whether they are mostly 

involved in regulating the rate of tumour cell proliferation. The impact of the 
mutational status of CEP89, ZMYM2 and BCL3 genes on the propensity of 

cells to enter quiescence was assessed in this thesis. However, this validation 
should be extended to include the full range of identified genomic features.  

 
Moreover, there is a continued increase in the number of published single-

cell multi-omics datasets from tumour samples. As discussed in section 1.9, 
due to a large amount of inter-tumour heterogeneity across most cancer 

types, the systematic identification of genomic features associated with 
quiescence is currently only feasible in large bulk-sequenced datasets such 

as the TCGA. This is because of the lack of large single-cell datasets with 
matched profiling of both DNA and RNA of individual cells. However, in the 

future, the ensemble elastic net approach could potentially be applied to 
single-cell multi-omics datasets with a sufficiently large number of profiled 

patients. 
 

Association between other molecular features and cancer dormancy 

 

Analyses in chapters 4 and 7 focused on identifying mutational features 
associated with cancer cell quiescence and TMD. Specifically, across the 
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TCGA cohort, associations were investigated between the two states, the 
mutational status of cancer driver genes, and broader mutational patterns 

indicated by mutational signatures. However, these analyses could be 
expanded to explore other molecular changes associated with TMD and 

quiescence, such as epigenetic modifications and chromatin conformation 
changes. Previous literature has indicated that a sustained quiescent state 

largely depends on epigenetic regulation mechanisms. This is supported by 
the reported deregulation of KDM5,360 KDM6,339 and TET225 activity in 

dormant cells. It has also been hypothesised that the reversibility of 
quiescence indicates the involvement of epigenetic mechanisms.361 If such 

features are found to be highly discriminative of quiescent cells, their inclusion 
in the ensemble elastic net regression model could potentially lead to 

improved classification accuracy.  
 

This thesis also did not consider the impact of more extensive structural 
changes in the genome on quiescence-proliferation decisions. Therefore, the 

approaches in chapters 4 and 7 could be expanded to include information 
from other omics technologies to understand the full range of cellular changes 

within quiescent cells and dormant tumours. The information from other 
sequencing technologies could shed light on whether the genes highlighted 
by the ensemble elastic net regression approach are also regulated by other 

mechanisms within quiescent and proliferating cells. For example, genes with 
enrichment of deletions within quiescent cancer cells, such as ZMYM2, 

ZFHX3, and CCNB1IP1, could also potentially be silenced during quiescence 

through epigenetic modifications leading to reduced chromatin accessibility 

and thereby reduced transcription at the gene locus. 
 

Therapeutic relevance of cancer cell quiescence 

 

Chapter 5 shows that across the TCGA cohort, patients with estimated high 
levels of cancer cell quiescence show better long-term prognoses than 

patients with low quiescence scores. However, quiescence appears to 
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provide a survival mechanism for a wide range of commonly used 
chemotherapy agents and targeted molecular therapies in cancer cell line 

models. This disparity likely reflects the limitation of assessing quiescence in 
bulk-sequenced TCGA patient tumour samples. Within this cohort, samples 

with positive quiescence scores are more likely to show slower proliferation 
rates. Also, as highlighted in section 4.3, tumours with low quiescence score 

estimates tend to have more stable and less mutated genomes. These factors 
are associated with less aggressive cancers. Potentially tumours with high 

levels of cancer cell quiescence could show a slower rate of progression. 
However, they could also contain a more significant proportion of cells 

capable of surviving certain therapies. 
 

Moreover, as discussed in section 5.4, it remains to be determined whether 
quiescence drives therapy resistance in a Darwinian fashion, whereby pre-

existing quiescent tumour cell subpopulations are selected upon treatment. 
Alternatively, the stress imposed by therapy administered to patients could 

be triggering the entry of cells into quiescence. If the latter is true, it could be 
that pre-treatment tumour sample quiescence score estimates have limited 

value in predicting patient therapy response. This question could potentially 
be addressed in the future using single-cell transcriptome data from patient 
tumours sampled longitudinally during treatment. Unfortunately, such 

datasets are sparse because, for most patients, primary tumour samples are 
surgically removed before therapy. However, data could be obtained from 

patient tumours treated with neoadjuvant chemotherapy.362 Suppose the 
analysis in such datasets suggests that patient therapy response is hindered 

by the emergence of quiescent cancer cell populations during treatment. In 
that case, the transcriptomic quiescence signature could potentially be used 

to monitor patient response through the use of liquid biopsies or targeted 
gene panels after therapy administration. Circulating tumour cells (CTCs) are 

readily shed from primary tumours into the blood, where they can be detected 
using liquid biopsies. The transcriptional profiling of CTCs has been mainly 

limited by the relative scarcity of CTCs and the high abundance of blood cells 
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within the collected patient samples. However, recently developed scRNA-
seq technologies, such as Hydro-Seq, can achieve high CTC capture and 

contamination removal through size-based cell capture, which exploits the 
larger size of CTCs compared to blood cells.  

 
Still, a major challenge associated with using scRNA-seq data in general 

remains, namely the high percentage of gene dropout, which could impact 
the ability to evaluate the quiescence of CTC using the full 139 gene signature 

in the clinic. Section 3.2 suggests that the quiescence scoring methodology 
remains robust to random removal of genes from the quiescence signature 

and should remain suitable for assessing quiescence in transcriptome 
datasets where the complete set of 139 genes is not detected. However, 

further steps could be taken to optimise the quiescence signature presented 
in this thesis for use in scRNA-seq datasets. This could involve applying 

machine learning approaches to scRNA-seq datasets presented in chapter 3, 
where quiescent and proliferating cells have been independently profiled. 

Specifically, the aim would be to identify a minimal list of genes that can 
separate the two cell types with high accuracy and shows low dropout levels 

in scRNA-seq data. Overall, the 139 gene list signature or, in the future, an 
optimised minimal expression signature, could be employed to track and 
further study emerging quiescence-induced resistance in various therapeutic 

scenarios. Hypothetically, under circumstances where the emergence of 
quiescent cancer cells is observed, patient treatment could be supplemented 

with additional therapies targeting the unique vulnerabilities of such cells. 
 

Experimental validation of genomic features associated with cancer cell 

quiescence in vitro 

 
In this thesis, the in vitro validation of the genomic features highlighted to be 

associated with quiescence by the ensemble elastic net regression model in 

section 4.3 was limited to investigating the impact of CEP89, ZMYM2 and 

BCL3 mutational status on quiescence-proliferation decisions. As discussed 
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in section 4.3, these features were chosen because of their high ranking in 
the ensemble elastic net model and the relatively unexplored links between 

these cancer drivers and cell cycle control. Furthermore, analysis in the CCLE 
database indicated a good correlation between the expression of these genes 

and the estimated quiescence scores. Ideally, the siRNA screens shown in 
this thesis would be expanded to include a wider range of cancer cell lines 

with different genomic backgrounds and from across different cancer tissues. 
This would help to identify whether the influence of these genes on 

proliferation-quiescence decisions depends on tissue type or the mutational 
status of other genes associated with quiescence, such as TP53. Such 

experiments might highlight why siRNA depletion of ZMYM2 and BCL3 did 

not result in a significant change in the fraction of quiescent lung 
adenocarcinoma cells, despite predictions by the ensemble elastic net 

regression model. Also, compared to siRNA screens which knock down 
protein expression at the mRNA level, CRISPR-Cas9 screens block protein 

expression more effectively by knocking out gene function at the DNA level. 
During siRNA screens, a small fraction of the targeted protein may remain in 

cells and confound the findings. In order to rule out the possibility that low 
remaining levels of ZMYM2 and BCL3 were confounding the results of the 

siRNA screens, knockdown experiments of the two genes should also be 

performed using the CRISPR-Cas9 technology. Furthermore, the 
siRNA/CRISP-Cas9 screens could be expanded to include all of the genes 

identified by the ensemble elastic net approach. Cancer drivers for which 
siRNA depletion is shown to drive a reduction in quiescence could potentially 

represent novel therapeutic targets for the eradication of quiescent cancer 
cells in the clinic. In turn, genes whose depletion increases the quiescent 
fraction of cells could be targeted to induce and actively maintain quiescence 

in a scenario where this is favourable. 
 

Furthermore, suppose a tumour's genomic background determines the 
propensity of cancer cells to enter quiescence upon patient treatment. In that 

case, the genomic features identified by the pan-cancer ensemble elastic net 
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regression model could potentially have predictive value regarding patient 
therapy response. This could be further investigated experimentally in cancer 

cell lines by calculating the proportion of cells surviving exposure to 
chemotherapy treatments without or after siRNA/CRISPR-Cas9 mediated 

depletion of specific cancer drivers. Similarly, the growth and the metastasis-
initiating activity of cancer cell lines with or without CRISP-Cas9 mediated 

depletion of a quiescence-associated gene could be monitored in 
immunodeficient mouse models subjected to various chemotherapy or 

targeted treatment agents. 
 

Exploration of individual quiescence subtypes 

 

As shown in section 5.3, NSCLC cells containing activating mutations within 
the receptor tyrosine kinase gene EGFR resided in a quiescent state most 

resembling serum starvation following treatment with an EGFR inhibitor. 

Currently, it remains unexplored whether treatment with specific therapies 
selects for or induces specific sub-types of quiescence. In addition, different 

forms of quiescence could also differ in their genomic dependencies. For 
example, the increased transcription of p21 is required for spontaneous 
quiescence entry in response to DNA damage incurred during the S phase of 

the cell cycle. However, this is not a requirement for other forms of 
quiescence, such as serum starvation.55 Within section 4.3, genomic features 

associated with the generic quiescence signature have been profiled using 
the ensemble elastic net regression approach. However, this analysis should 

also be repeated while looking for associations with transcriptional scores 
representing individual quiescence states described in section 4.5. By 

highlighting the differences in the genomic dependencies of the individual 
quiescence subtypes, such analysis would give further insight into these 

states' underlying biology and potential therapeutic vulnerabilities.  
 

This analysis has not been performed within this thesis because, despite 
developing the transcriptomic signatures to describe the individual states, 
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these signatures remain poorly validated. The validation approach used in this 
thesis involved calculating the correlations between the individual quiescence 

subtype scores calculated for the TCGA cohort patient samples and the 
expression of genes described in previous literature to be associated with the 

corresponding quiescence programme. In addition, CDK4/6 inhibition 
quiescence scores were also further validated using external bulk RNA-seq 

datasets from cancer cell lines and xenograft mice profiled before and after 
treatment with a CDK4/6 inhibitor Palbociclib.248,249 However, there is a lack 

of external validation datasets which would allow the assessment of the ability 
of the other transcriptomic signatures to precisely capture spontaneous 

quiescence, MEK inhibition induced quiescence, serum starvation and 
contact inhibition induced quiescence. In the future, the emergence of 

additional validation datasets will allow the application of the ensemble elastic 
net approach to study individual forms of quiescence. Similarly, other 

machine learning approaches, such as random forests, should also be 
explored in case they better capture genomic differences between 

proliferating cells and cells in individual quiescence subtypes. 

 

Longitudinal assessment of cancer cell quiescence and TMD 

 

Both cancer cell quiescence and TMD are transient phenotypes. Therefore, 
in the future, applying the methodology to evaluate signals of TMD, 

developed in chapter 7, to tumour samples profiled longitudinally during 
cancer development could offer unique insight into this state. For example, 

assessing the duration of angiogenic and immunological dormancy that 
arises at different disease time points would be possible. Similarly, applying 

the quiescence and TMD scoring methodologies to metastatic sample 
datasets, such as the MET500 cohort,363 would enable the assessment of how 
the prevalence of these two states changes during cancer development. 

Comparison of positive gene selection signals and genomic features enriched 
and depleted in highly dormant and quiescent metastatic samples compared 

to primary tumour samples could reveal whether the genomic dependencies 
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of these two processes change dynamically and whether this is linked to 
therapeutic resistance or overall prognosis. 

 

Spatial context of cancer cell quiescence and TMD 

 
Further insights into the cancer dormancy states of TMD and cellular 

quiescence could be obtained by applying the transcriptional scoring 
methodologies developed in chapters 3 and 7 to tumour sample spatial 

transcriptomics datasets profiled using recently developed technologies such 
as the Visium Spatial platform provided by 10X Genomics.275 For example, 

this approach would be able to solve the question of whether TMD usually 
affects the entire tumour mass or whether it can affect only small regions of 

tumours due to local restrictive microenvironmental factors while other areas 
of the tumour continue to expand. This question could not be answered within 

the thesis due to the bulk-sequenced nature of TCGA tumour samples. 
Alternatively, multiplexed immunohistochemistry approaches could be used 

by staining for quiescence and TMD-specific protein markers.  
 

Moreover, analysis in chapter 6 suggests that quiescent cells form fewer 
inhibitory checkpoint interactions with T cells within the TME. Within spatial 

transcriptomic datasets, T cell-rich tumour sections can be identified using 
model-based probabilistic cell type inference methods such as 

Stereocope.364 In turn, tumour cell-rich areas could be subjected to 
quiescence scoring to predict the cell proliferation status. With these two 
forms of information, it would be possible to observe whether the differences 

in predicted interactions from scRNA-seq data translate to visible differences 
in T cell infiltration of highly quiescent versus proliferating tumours or sections 

of tumours. 
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Interplay between cancer cell quiescence and TMD 

 
Within this thesis, the cancer dormancy states of TMD and cellular 

quiescence have been explored separately across the TCGA cohort within 
chapters 4 and 7. As described in section 1.11, these two dormancy states 
are conceptually different. However, their occurrence within tumour samples 

is potentially not mutually exclusive. For example, there is evidence that 
microenvironmental factors maintaining TMD, such as the presence of pro-

inflammatory IFN-γ signalling, can also induce quiescence. Therefore, to 
further explore the links between TMD and cancer cell quiescence, the 

analysis presented in this thesis could be expanded by analysing the co-
occurrence of transcriptomic signatures of the two states within the TCGA 

cohort. Furthermore, through the use of spatial transcriptomic datasets, the 
co-localisation of the two signatures within regions of tumour samples could 

be measured. Lastly, the transcriptional signatures developed in this thesis 
could be correlated with other signatures of plastic cancer cell phenotypes, 

such as the EMT transition. This would give further insight into the context in 
which cancer dormancy develops and help to understand the interplay 

between the different forms of cancer plasticity. 
 

8.3 Perspectives 
 

Both forms of cancer dormancy, namely cancer cell quiescence and TMD, 
play essential roles in cancer development and progression. However, to 

date, their prevalence and mutational drives have remained poorly 
understood. Additionally, while cancer cell quiescence has increasingly been 

linked to resistance to anti-proliferative patient therapies, routine assessment 
of this therapy resistance-associated state in patient tumour samples has 
been limited by the lack of markers that can uniquely and reliably identify 

quiescent cells from transcriptomic data. This thesis developed robust 
transcriptomic signatures capable of detecting, for the first time, TMD and 

cellular quiescence across a range of solid cancer tumours in order to start 
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addressing these questions. Both states of cancer dormancy were found to 
be prevalent across various solid cancer types. Importantly, using both 

single-cell RNA-seq data, this thesis demonstrated that quiescence is used 
by various cancer types as an acute survival mechanism response to a wide 

range of chemotherapy and targeted molecular treatments commonly used 
in the clinic. Therefore, the cancer cell quiescence signature could be further 

investigated for therapeutic use in order to track patients' therapy responses 
and risk of relapse in the clinic. Notably, the thesis also provides a pan-cancer 

view of TMD and cancer cell quiescence and their evolutionary constraints, 
underlying mutational dependencies and microenvironmental interactions. 

These findings contribute to the understanding of the aetiology of TMD and 
quiescence. They could also be relevant in highlighting the vulnerabilities of 

these cell types that can be explored in the clinic. Ideally, early detection of 
emerging therapy-tolerant quiescent cell subpopulations, enabled through 

the use of the transcriptomic signature, would allow targeting of these cells 
after administration of first-line therapy. In conclusion, the insights in this 

thesis can be used in future studies as building blocks for exploring the 
underlying mechanisms of cancer cell quiescence and TMD in emerging 

scRNA-seq, longitudinal and spatial transcriptomic datasets. They also 
highlight a novel transcriptional signature of therapy tolerant quiescent cells 
that can be further explored for use in the clinic.  
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Appendix 
 

 

Downregulated genes Upregulated genes 
NCAPD2 PRPF19 HMGA1 GPS1 CFLAR 
PTBP1 PTGES3 MDC1 PA2G4 CALCOCO1 

MPHOSPH9 CPSF6 HADH HCFC1 YPEL3 
NUCKS1 SRSF3 ARHGDIA SLC19A1 CST3 
TCOF1 TCERG1 PRCC ETV4 SERINC1 
SART3 SMC4 HDGF RAD23A CLIP4 
SNRPA EIF4G1 SF3B4 DCTPP1 PCYOX1 
KIF22 ZNF142 UBAP2L RCC1 TMEM59 

HSP90AA1 MSH6 ILF2 EWSR1 RGS2 
WBP11 MRPL37 PARP1 ALYREF YPEL5 

CAD SFPQ LBR PTMA CD63 
SF3B2 STMN1 CNOT9 HMGB1 KIAA1109 
KHSRP ARID1A PPRC1 POM121 CDH13 
WDR76 PROSER1 SSRP1 MCMBP GSN 
NUP188 DDX39A CCT5 TEAD4 MR1 

HSP90AB1 EXOSC9 DLAT CHAMP1 CYB5R1 
HNRNPM USP22 HNRNPU TOP1 AZGP1 
SMARCB1 DEK LARP1 PRRC2A ZFYVE1 

PNN DUT SCAF4 RBM14 DMXL1 
RBBP7 ILF3 RRP1B HMGB1P6 EPS8L2 
NPRL3 DNMT1 RRP1 POM121C PTTG1IP 
USP10 NASP CHCHD4 UHRF1 MIR22HG 
SGTA HMGB1P5 GMPS  PSAP 

MRPL4 SRRM1 RFC4  GOLGA8B 
PSMD3 GNL2 SLBP  NEAT1 
KPNB1 RNF138 PSIP1  TXNIP 
CBX1 SRSF1 HNRNPK  MTRNR2L12 

LRRC59 TRA2B SKA3   
TMEM97 SMPD4 DIS3L   

NSD2 ANP32B USP39   
 

 

Appendix 1: List of 139 quiescence biomarker genes, separated by genes 
upregulated and downregulated in quiescence.  
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CDK4/6 Inhibition Contact Inhibition 
↓ ↑ ↓ ↑ 

NRM SAA2 FAM167A CPE 
FOXM1 GJB2 CRY1 IGSF9 
CDCA3 SPINK5 SLC2A8 AIM1L 
MYBL2 OAS2 HOXA9 ADSSL1 
KIF20A MEGF6 PXYLP1 SPRR2D 
MKI67 TMC6 EID2 GRHL1 
HJURP KCNK15 CBX6 NDRG1 
CENPA PI3 DHODH TMEM45A 
TYMS LOC105369635 GSTM4 CLDN4 

STMN1 S100A8 SETD1A NOTCH3 
    

MEK Inhibition Serum Starvation 
↓ ↑ ↓ ↑ 

DUSP4 PROM2 STAMBPL1 RGCC 
SPRY2 CNTNAP2 FABP5 LZTS3 
THBS1 IFI44 ZBED2 KLHDC8B 

RPS6KA2 ARHGEF37 ASF1B HDAC5 
CMTM7 HSPB1 MILR1 RORC 
PCED1B GNAO1 PAG1 C1R 
CPNE2 MFAP5 NMU FBXO32 
NT5E NPR3 ARHGAP25 GAB2 

TOR4A HSD11B2 FGFBP1 KDR 
ADAM19 CXCL14 SCD CRLF1 

    
 Spontaneous Quiescence  
 ↓ ↑  
 SPC25 PLAU  
 RMI1 PGF  
 TRAIP VSTM2L  
 HIRIP3 PHLDB3  
 CHTF18 F5  
 PAXIP1 RPS27L  
 EYA2 FN1  
 NUP35 CYSRT1  
 NQO2 SLAMF7  
 CABLES2 PSCA  

 

Appendix 2: List of biomarker genes upregulated and downregulated within 
5 different quiescence programmes. 
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Appendix 3: Correlations between TMD and APOBEC activity in multiple 
cancers from ICGC. The x and y axes depict the per-sample expression score 
for the respective programmes. All analysis in the figure was performed using 
data from the ICGC cohort. Abbreviations used in the figure are given as follows: 
ICGC, International Cancer Genome Consortium; TMD, tumour mass dormancy.  
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Appendix 4: Correlations between immunological dormancy and APOBEC 
activity in multiple cancers from ICGC. The x and y axes depict the per-
sample expression score for the respective programmes. All analysis in the 
figure was performed using data from the ICGC cohort. Abbreviations used in 
the figure are given as follows: ICGC, International Cancer Genome Consortium. 
 

 
Appendix 5: Correlations between angiogenic dormancy and APOBEC 
activity in multiple cancers from ICGC. The x and y axes depict the per-
sample expression score for the respective programmes. All analysis in the 
figure was performed using data from the ICGC cohort. Abbreviations used in 
the figure are given as follows: ICGC, International Cancer Genome Consortium. 
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Appendix 6: Correlations between TMD and APOBEC activity in multiple 
studies from cBioPortal. The x and y axes depict the per-sample expression 
score for the respective programmes. blca_mskcc_solit_2012 = Bladder Cancer 
(MSKCC, J Clin Onco 2013); brca_metabric = Breast Cancer (METABRIC, 
Nature 2012 & Nat Commun 2016); brca_smc_2018 = Breast Cancer (SMC 
2018); GIS031 = Lung adenocarcinoma (GIS, Nat Genet 2019); 
paad_qcmg_uq_2016 = Pancreatic Adenocarcinoma (QCMG, Nature 2016); 
prad_broad = Prostate Adenocarinoma (Broad/Cornell, Nat Genet 2012); 
prad_mskcc = Prostate Adenocarcinoma (MSKCC, Cancer Cell 2010); 
prostate_dkfz_2018 = Prostate Cancer (DKFZ, Cancer Cell 2018); 
rt_target_2018_pub = Pediatric Rhabdoid Tumor (TARGET, 2018); sarc_mskcc 
= Sarcoma (MSKCC/Broad, Nat Genet 2010); utuc_cornell_baylor_mdacc_2019 
= Upper Tract Urothelial Carcinoma (Cornell/Naylor/MDACC, Nat Commun 
2019); wt_target_2018_pub = Pediatric Wilm’s Tumor (TARGET, 2018). All 
analysis in the figure was performed using data from studies reported on 
cBioPortal. Abbreviations used in the figure are given as follows: TMD, tumour 
mass dormancy. 


