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Abstract

This thesis presents the first global analysis of parton distribution

functions (PDFs) at approximate N3LO in the strong coupling con-

stant αs, extending beyond the current highest NNLO achieved in

PDF fits. To achieve this, a general formalism for the inclusion of

theoretical uncertainties from missing higher orders (MHOs) in a PDF

fit is established. By using the currently available knowledge sur-

rounding the next highest order (N3LO) in αs, consistent, justifiable

and explainable approximate N3LO (aN3LO) PDFs are constructed,

including estimates for missing higher order uncertainties (MHOUs).

Specifically, N3LO approximations for splitting functions, transition

matrix elements, coefficient functions and K-factors for multiple pro-

cesses are introduced. Crucially, these are constrained to be consistent

with the wide range of already available information about N3LO

to match the complete result at this order as accurately as possible.

Using this approach, this thesis includes results from a fully consistent

approximate N3LO global fit within the MSHT framework. This relies

on an expansion of the Hessian procedure used in previous MSHT fits

to allow for sources of theoretical uncertainties. These are included as

nuisance parameters in a global fit, controlled by knowledge and intu-

ition based prior distributions. The differences between these aN3LO
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PDFs and the standard NNLO MSHT20 PDF set are investigated, as

well as the impact of using aN3LO PDFs on the LHC production of

a Higgs boson at this order. Alongside this, guidelines are provided

on how these PDFs should be be used in phenomenological investiga-

tions. Finally, the effect of fitting to recent high-x datasets currently

not included as standard in the MSHT20 global fit is discussed, with a

focus on aN3LO PDFs at high-x.
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Impact Statement

The work presented in this thesis is concerned with extending our accuracy and

understanding of the fundamental structure of the proton.

The precision of data from the Large Hadron Collider (LHC) is now at a point

where developing a more accurate and in-depth theory of the proton is unavoidable.

The plethora of final states observed at the LHC (and future iterations of hadron

colliders) provides a conveyor belt of particles, some of which we know well and

others that lie waiting to be discovered. Therefore, to be able to fully saturate the

capabilities of particle colliders, one must look to extend our theoretical descriptions

to new levels.

The doctoral work discussed in this thesis is concerned with an essential ingredient

in mathematically describing particle collisions involving a hadron in the initial state,

such as a proton. Specifically, this work contributes towards extending the accuracy

of parton distribution functions (PDFs) which describe the internal sub-structure

of a proton (i.e. quarks and gluons). An increase in the accuracy and theoretical

understanding of PDFs will allow physicists to be able to make more precise, robust

and reliable predictions about the behaviour of matter when collided together at

current experiments, for example at the LHC, and also future collider experiments.
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The particle physics community has a track record of developing innovative new

technologies that have multiple applications outside of the field. The contributions

made here are directly concerned with theoretical descriptions that inform the planning

of future particle physics experiments and therefore are a driving factor in pushing

the wider community to develop these novel technologies.
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Chapter 1.

Introduction

The Standard Model of Particle Physics is one of the most precise theories in modern

science. The Standard Model has withstood decades of onslaught from the world’s best

experimental measurements by adapting and evolving to explain ever more mysteries

inside the infinitely large, minute realm of particles. However, despite the theory’s

unprecedented success, we also know that the Standard Model is at least incomplete

and at most, fundamentally incorrect. Its failures in explaining phenomena such as

baryon asymmetry, dark energy/matter and neutrino oscillations are what motivate us

to push the precision of experimental measurements used to test the Standard Model

to new depths.

In recent years, the level of precision achieved at the Large Hadron Collider (LHC)

has reached far beyond what was once thought possible. This has initiated a new era of

high precision phenomenology that has pushed the need for a robust understanding of

theoretical uncertainty to new levels. A primary focus of the precision phenomenology

program at the LHC is to investigate and provide insight into the internal structure

1



2 Introduction

of the proton. The theoretical description of this internal structure is formulated

with parton distribution functions (PDFs). PDFs are non-perturbative quantities

which, at present, cannot be derived from first principles and are therefore determined

from a global QCD analysis of experimental data. PDFs and their uncertainties are

essential ingredients for precision measurements involving hadronic initial states.

Therefore improving the determination of PDFs, their uncertainties and our overall

understanding of the internal structure of the proton is heavily motivated by the high

impact potential for fundamental discoveries e.g. the origin of mass and spin or the

properties of cosmic neutrinos. Furthermore with current and future experiments

pushing measurements to the point where any small deviation from SM predictions

may signal new physics, a robust understanding of all sources of PDF uncertainties is

essential. PDF uncertainties arise from; experimental uncertainties (propagated from

the fact that PDFs are determined from experimental data that are characterised by

both statistical and systematic uncertainties), the fitting methodology (such as from the

specific chosen form of parameterisations of PDFs) and also theoretical uncertainties

which will be a primary focus of this thesis.

Due to the perturbative nature of calculations in Quantum Chromodynamics

(QCD), with respect to the strong coupling constant αs, a leading theoretical uncertainty

arises from the truncation of perturbative expansions [1, 2]. The current state of the

art for PDFs is next-to-next-to leading order (NNLO) [3–8]. However, these PDF

sets do not generally include theoretical uncertainties arising from the truncation

of perturbative calculations that enter the fit. The consideration of these so-called

Missing Higher Order Uncertainties (MHOUs), and how to estimate them, is the topic

of much discussion among groups involved in fitting parton distribution functions

(PDFs) [9–13].
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More recently, a method of utilising a scale variation approach to estimating these

uncertainties has been included in an NLO PDF fit [9]. This approach is based upon the

fact that to all orders, a physical calculation must not depend on any unphysical scales

introduced into calculations. Therefore varying the factorisation and renormalisation

scales is, in principle, a first attempt at estimating the level of theory uncertainty from

missing higher orders (MHOs). Motivated by the renormalisation group invariance of

physical observables, this method is theoretically grounded to all orders. However,

the method of scale variations has been shown to be less than ideal in practice [10, 14].

An obvious difficulty is the arbitrary nature in the chosen range of the scale variation,

as well as the choice of central scale. Expanding on this further, even if a universal

treatment of scale variations was agreed upon, these variations are unable to predict the

effect of various classes of logarithms (e.g. small-x, mass threshold and leading large-x

contributions) present at higher orders. As an example, studies of fits including small-

x resummation have recently been done [15, 16], showing significant PDF changes.

Since it is these contributions that are often the most dominant at higher orders, this

is an especially concerning pitfall in the use of scale variations to estimate MHOUs.

Rather more subtle are the challenges encountered when considering and accounting

for correlations between fit and predictions using PDFs [10, 12]. These aspects are

considered further in Chapter 5, alongside a brief description of structure function

results with scale variations using MSHT20 PDFs. The rest of this thesis will then

focus on an alternative method to the above based on parameterising the missing

higher orders with a set of nuisance parameters, using the available (albeit incomplete)

current knowledge [17, 18].

In this thesis, the inclusion of approximate N3LO (aN3LO) components into a

global PDF fit will be described within the MSHT20 framework. In particular, we first

consider approximations to the N3LO structure functions and DGLAP evolution of
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the PDFs, including the relevant heavy flavour transition matrix elements. We make

use of all available knowledge to constrain an approximate parameterisation of the

N3LO theory, including the calculated Mellin moments, low-x logarithmic behaviour

and full results where they exist. For the case of hadronic observables (where less

N3LO information is available), we include approximate N3LO K-factors which are

guided by the size of known NLO and NNLO corrections. Based on the uncertainty

in our knowledge of each N3LO function, we obtain a theoretical confidence level

(C.L.) constrained by a prior. The corresponding theoretical uncertainties are therefore

regulated by our theoretical understanding (or lack thereof). Applying the above

procedure, we have performed a full global fit at approximate N3LO, with a corre-

sponding theoretical uncertainty (from MHOs) included within a nuisance parameter

framework. At present we assume that the majority of this uncertainty is due to the

missing information at N3LO, but that some is associated with orders even beyond

this, most obviously further effects due to small-x resummation. We will discover that,

indeed, the results support this interpretation. As will be discussed, adopting this

procedure allows the correlations and sources of uncertainties to be easily controlled.

The preferred form of the aN3LO corrections is determined from the fit quality to data,

subject to theoretical constraints from the known information about higher orders.

This study is the first of its kind and has been submitted to a journal for publication,

however all text and figures (unless stated otherwise) within this thesis have been

written/produced by the author.

The outline of this thesis is as follows. Chapters 2 to 4 lay the foundations for

the work undertaken in this thesis by providing a general overview of the Standard

Model, describing the relevant aspects of Deep Inelastic Scattering (DIS) theory and

finally assessing the current landscape of modern PDF sets, with a particular focus on

MSHT20. Building on these discussions, in Chapter 5 we breifly explore a scale varia-
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tion approach to theoretical uncertainties and subsequently present a formalism for

the inclusion of these uncertainties via nuisance parameters in a PDF fit. In Chapter 6

we describe the structure functions up to N3LO and their role in QCD calculations. In

Chapter’s 7, 8 and 9 we present our approximations for the N3LO splitting functions,

transistion matrix elements and coefficient functions, while in Chapter 10 we present

the K-factors at aN3LO. In Chapter 11 we present the MSHT aN3LO PDFs with theo-

retical uncertainties and analyse the implications of the approximations in terms of

a full MSHT global fit. Chapter 12 contains examples of using these aN3LO PDFs in

predictions up to N3LO. In addition, Chapter 13 provides an analysis of aN3LO PDFs

with currently available dijet LHC data, in contrast to inclusive jet data in the standard

MSHT20 aN3LO set and explores the effect of SeaQuest data [19] at high-x. Finally in

Chapter 14 recommendations for how to best utilise these PDFs will be presented, and

the work presented in this thesis is summarised in Chapter 15.
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Chapter 2.

The Standard Model

The Standard Model of Particle Physics (SM) is an evolving theory which describes

the universe from its fundamental constituents. Over the course of the 20th century,

significant advances were made in the formulation of the SM which have elicited a

wealth of discoveries. From JJ Thompson’s discovery of the electron at the turn of the

20th century [20], the timeline of the particle physics developed with Rutherford’s

early atomic model around a decade later [21], shortly followed by Bohr’s improved

model [22] which led to the development of Quantum Mechanics by some of the

greatest minds of the century. With the next 50 years seeing a boom in particle physics

experiments fuelling the further development of the SM, by the 1970’s the modern

description of QCD was presented [23].

The particles outlined in Fig. 2.1 summarise the modern day picture of the SM

and are mathematically described by Quantum Field Theory (QFT) which in many

ways forms the backbone of the SM. The general idea of QFT (i.e. describing quantum

fields) can be achieved via a path integral formalism of Lagrangian mechanics and the

7
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0.1 SM

Quarks :

✓
u
d

◆ ✓
c
s

◆ ✓
t
b

◆

Leptons :

✓
e
⌫e

◆ ✓
µ
⌫µ

◆ ✓
⌧
⌫⌧

◆

Vector Bosons : �, W±, Z0, g

Scalar Bosons : H

1

Figure 2.1.: Summary of constituents which make up the Standard Model (SM). The top two
lines contain the three generations of fermionic matter present in the SM arranged
into doublets. Note that the list of antifermions is not listed here, these are denoted
by f̄ for all quarks and neutrinos and by an opposite charge in the case of the
electron, muon and tau leptons. The bottom two lines display the bosonic matter
contained within the SM which facilitate the interactions and dynamics between
particles.

canonical quantisation of Hamiltonian mechanics. More specifically, one can describe

the scattering amplitude as

final〈φb|φa〉initial = 〈φb|Ŝ |φa〉 (2.1)

where |φa〉 and |φb〉 are the observed initial and final states of the system and Ŝ is a

scattering operator which enables the transition from |φa〉 to |φb〉. The form of this

scattering operator (also called a Dyson-Wick operator) and the states it acts on then

depend on the Lagrangian density L of the system. In particular, in the case where

we define the states and operators as evolving via the non-interacting Hamiltonian

densityH0 (directly proportional to the non-interacting part of the Lagrangian density

L0), (2.1) can be shown to be,

〈φb|Ŝ |φa〉 = 〈φb|T
[

exp
(
− i

∫
d4x : HI :

)]
|φa〉, (2.2)
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where T[. . . ] ensures the proper time ordering1 of states demanded by the Dyson-Wick

expansion, : · · · : defines the normal ordering convention2 and HI is the interacting

Hamiltonian density. The above expression is true in the so-called ‘interaction picture’

which essentially assumes that we have free fields (evolving with H0) involved in the

occasional interaction assumingHint is small.

From (2.2), the relevant Feynman rules can be constructed via the use of Green’s

functions. The essential ingredient for this mathematical description of nature is the

Lagrangian density L. This is where the physics of the SM resides.

An extensive analysis of LSM is beyond the scope of this thesis, however we are

able to uncover some of the general features of the relevant interactions to this work

by considering the free fermionic action describing a spin-1
2 particle via a spinor field

ψ:

Sψ =
∫

d4xψ̄(iγµ∂µ −m)ψ. (2.3)

The SM is built on the principle of gauge symmetries, whereby the action of a

system is invariant under particular phase transformations. It is trivial to see that under

a global phase transformation (assuming a global U(1) type symmetry) ψ → eiαψ

(ψ̄ → ψ̄e−iα), the action Sψ is unchanged. However when we consider a local U(1)

1In very simple terms, the proper time ordering ensures that we account for the ambiguity of integra-
tion variables when evolving over time. For example, if we evolve with two integration variables t1
and t2, one must consider the case of t1 or t2 being the later time and therefore define a time ordered
product.

2Normal ordering ensures that any terms that are identically 0 due to the contractions of annihilation
operators acting on the vacuum are ignored.
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Figure 2.2.: The leading order vertex in QED which represents the electromagnetic coupling of
the fermion and photon fields.

transformation (where α→ α(x)) Sψ is no longer invariant:

S′ψ =
∫

d4xψ̄e−iα(x)(iγµ∂µ −m)eiα(x)ψ (2.4)

=
∫

d4x{ψ̄(iγµ∂µ −m)ψ− ψ̄γµψ∂µα(x)} (2.5)

= S−
∫

d4xψ̄γµψ∂µα(x) 6= Sψ. (2.6)

The problematic term here is the derivative which therefore requires modification to

demand invariance. Considering a redefinition ∂µ → Dµ = ∂µ + igAµ where Aµ is a

vector field added to allow for gauge invariance, one can show that Sψ is locally phase

invariant under the condition that Aµ → Aµ + ∂µα(x)/g. However, before we adapt

the action Sψ we must also consider any other potential terms which are allowed by

the local gauge symmetry. By considering the commutator of the covariant derivative

Dµ one can show that,

[Dµ, Dν] = ig(∂µ Aν − ∂ν Aµ) = igFµν. (2.7)

where Fµν is a field strength tensor and is also an invariant quantity.
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By constructing a Lorentz-invariant quantity from Fµν, we are able to rewrite our

action as:

SQED
ψ =

∫
d4x

(
ψ̄(iγµ∂µ −m)ψ− 1

4
FµνFµν − gψ̄γµ Aµψ

)
(2.8)

which defines the action for quantum electrodynamics where this mathematically

required vector field Aµ is labeled a gauge boson and can be interpreted as the photon.

From left to right in (2.8) we have the kinematic term of the fermion, the dynamics

of the electromagnetic field (i.e. Mawell’s equations) and an interaction term which

results in diagrams such as that shown in Fig. 2.2.

Extending this same procedure to non-abelian gauge symmetries, such as the SU(3)

symmetry which describes QCD, one must consider the generators of the group more

carefully. In this case, our original local gauge transformation becomes more generally

ψ→ ei ∑N
i αiTi ψ where Ti are the set of generators corresponding to the particular gauge

symmetry (N = 32 − 1 = 8 generators for SU(3)).

Demanding local gauge invariance once again results in the redefinition:

Dµ = ∂µ + igAi
µTi (2.9)

under the condition that,

Ai
µ → Ai

µ + ∂µαi − g f ijk Aj
µαk (2.10)
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Figure 2.3.: The leading order diagrams for the allowed strong force couplings in QCD. Left is
the diagram displaying the coupling of the gluonic and fermionic fields, whereas
the middle and right diagrams represent the three and four point self-interactions
that define the gluonic field strength.

where f ijk are the structure constants for SU(3) defined by [Ti, Tj] = i fijkTk. Finally,

following the same procedure as for the abelian QED case one can find that,

[Dµ, Dν] = ig
(

∂µ Ai
νTi − ∂ν Ai

µTi − g f ijk Aj
µ Ak

νTi
)
= igGi

µνTi (2.11)

where this new field strength tensor allows for three and four point interactions

between the vector fields Ai
µ when constructing the Lorentz invariant quantity Gi

µνGµν
i .

These interactions are represented in the centre and right diagrams of Fig. 2.3.

Using these ingredients one can construct the QCD gauge invariant action SQCD
ψ as,

SQCD
ψ =

∫
d4x

(
ψ̄(iγµ∂µ −m)ψ− 1

4
Gi

µνGµν
i − gψ̄Tiγµ Ai

µψ

)
(2.12)

where similar to the QED case, from left to right we have the kinematics of the fermion

field, the QCD field strength and an interaction term between the fermionic and

gluonic fields (represented in the left diagram of Fig. 2.3).
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In the context of SU(3), these vector fields/gauge bosons are interpreted as the

set of allowed 8 variations of gluons (for each allowed combination of colour charge).

Furthermore, the three and four point self-interactions of these gluons are what give

rise to the asymptotic nature of the strong force and are ultimately the foundation of

why QCD predictions are currently unable to be calculated from first principles.

At this point in the discussion we have provided a general overview of the proce-

dures involved in deriving the form of the fermionic content of the SM Lagrangian by

demanding gauge invariance under U(1) and SU(3) which describe QED and QCD

respectively. In performing these exercises, we saw the introduction of the photon

(Aµ) and a set of gluons (Ai
µ) to facilitate the local gauge invariances as gauge bosons.

However, to complete our discussion of fermionic interactions within the SM we

must also consider the third force which enters the SM, namely the eletroweak force

(described by SU(2)⊗U(1)). For a more in-depth discussion the reader is referred to

the following references [24–26]. Following the familiar form of gauge transformations,

a fermion field transforms as,

ψ→
(

e−iτkωk(x) + e−iYα(x)
)

ψ (2.13)

where τk (a set of 2× 2 matrices) and Y (a constant) are the generators of SU(2) and

U(1) respectively. Following convention, we will define the covariant derivative with

two new vector fields,

DEW
µ = ∂µ − igτkWk

µ(x)− ig′YBµ(x) (2.14)

W i
µ →W i

µ + ∂µωi − gεijkW j
µωk (2.15)
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Bµ → Bµ + ∂µα (2.16)

where Wµ
k and Bµ are the gauge fields corresponding to the SU(2) and U(1) groups

respectively and εijk are the structure constants for SU(2) defined by [τi, τj] = iεijkτk
3.

The EW Lagrangian density is then:

LEW = ψ̄(iγµDEW
µ −m)ψ− 1

4
Wk

µνWµν
k −

1
4

BµνBµν (2.17)

Summing up (2.8), (2.12) and (2.17) we can construct the Lagrangian density for a

fermion field ψ which interacts with the three forces described by the SM.

So far we have neglected any gauge boson mass terms of the form m2 Aµ Aµ in

writing the Lagrangian densities. The reason for this is that terms of this form break

the local gauge invariance required and contradict experimental observations. In order

to allow for these terms to exist mathematically, we must consider the presence of

a scalar field φ (namely, the Higgs field) which has gauge invariant transformations

under SU(2)×U(1). In its vacuum state, this field can be described by a conventional

choice of phase (the unitary gauge) as:

〈φ〉 = 1√
2




0

v


 (2.18)

3εijk is the Levi-Civita symbol.
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where v is the vacuum expectation value of the Higgs field. From here we can introduce

excitations h(x) about the minimum of the vacuum,

〈φ〉 = 1√
2




0

v + h(x)


 . (2.19)

Expanding the kinetic term for this field under the EW covariant derivative
∣∣∣DEW

µ φ
∣∣∣
2
,

one is able to naturally uncover interactions of the gauge boson fields with the vac-

uum state of the Higgs field. The gauge boson mass terms then arise from
∣∣∣DEW

µ φ
∣∣∣
2

evaluated at the vacuum expectation value:

LHiggs =
1
2

∂µh ∂µh +
1
4
(v + h)2(g′ 2BµBµ + g2Wk

µWµ,k − 2g′gBµWµ,3)

− 1
8

λ(h2 + 2vh)2 (2.20)

where we can further interpret the mass eigenstates of the vector bosons as:

W ±
µ =

1√
2
(W1

µ ∓ iW2
µ) with mass mW = g

v
2

(2.21)

Zµ =
1√

g2 + g′2
(gW3

µ − g′Bµ) with mass mZ =

√
g2 + g′2

v
2

(2.22)

Aµ =
1√

g2 + g′2
(g′W3

µ + gBµ) with mass mA = 0. (2.23)

With these redefinitions, the covariant derivative becomes,

Dµ = ∂µ − i
g√
2
(W+

µ T+ + W−µ T−)− i√
g2 + g′2

Zµ(g2T3 − g′2Y)

− i
gg′√

g2 + g′2
Aµ(T

3 + Y) (2.24)
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where the electromagnetic interaction is defined by the electric charge e = gg′/
√

g2 + g′2

and the quantum number Q = T3 + Y, where Q = −1 for the electron.

Essentially by introducing a scalar field and choosing a vacuum expectation value,

we are able to spontaneously break the electroweak gauge symmetry and uncover

gauge invariant mass terms for the vector bosons. Furthermore, the extra terms added

onto (2.20) from the excitation h(x) then describe interactions of the Higgs field with

itself i.e. HH → HH, the mass of the Higgs boson mh =
√

λv and the interactions

with vector bosons i.e. ZZ → H, ZZ → HH, W+W− → H or W+W− → HH.

With the mass of the gauge bosons reconciled, in general we also gain terms of the

form gHψ̄ψφ which can resolve the invariance of fermion masses. However, before

we tackle terms involving fermions we must discuss the chirality of the SU(2)⊗U(1)

gauge group. For the purposes of this thesis, the upshot of this is that the weak

force only couples to fields with a particular projection value of the spin onto the

momentum unit vector. This property is called handedness with the left and right

handed states corresponding to the two possible projections i.e. against or with the

direction of momentum. Weak interactions violate parity invariance meaning that left

and right handed particles are treated differently and therefore belong to different

representations of the SU(2)L group. Due to this, Leptons and Quarks transform as a

left-handed weak doublet and right-handed weak iso-singlet representations. If we

restrict our discussion to the electron e and a massless neutrino νe, we can build these

representations as:

ψL =




νe

eL


 ψR = eR (2.25)
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where the subscripts denote the left (L) and right (R) handedness of the particles. The

covariant derivative displayed in (2.14) under these representations then becomes:

DEW
µ ψL(x) =

(
∂µ − igτkWk

µ(x)− ig′YBµ(x)
)

ψL(x) (2.26)

DEW
µ ψR(x) =

(
∂µ − ig′YBµ(x)

)
ψR(x) (2.27)

Since the left and right handed particles have this behaviour, in order to recover a

mass term in the Lagrangian, we must consider a gauge invariant interaction with the

Higgs field as,

Le,φ = −
√

2λe

[
ψ̄L(x)φ(x)ψR(x) + ψ̄R(x)φ†(x)ψL(x)

]
(2.28)

= −λe(v + h(x)) [ēL(x)eR(x) + ēR(x)eL(x)] = −λe(v + h(x))eē (2.29)

where as before, an interaction of the electron with the vacuum expectation value

reveals a mass term with me = λev, as well as an interaction with the Higgs field.

Extending this treatment to the quark representations, we have the left and right

handed quarks as:

ψ1
L =




u

d




L

ψ2
L =




c

s




L

ψ3
L =




t

b




L

(2.30)

ψ1+
R = uR ψ2+

R = cR ψ3+
R = tR (2.31)

ψ1−
R = dR ψ2−

R = sR ψ3−
R = bR (2.32)
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where all 3 families of quark representations have an identical treatment but with

different masses. Analogous to (2.28) we can also then write,

Lquark,φ = −
√

2
N=3

∑
i,j

[
ψ̄i

Lη−ij φψ
j,−
R + ψ̄i

Lη+
ij φcψ

j,+
R

+ψ̄
j,−
R η∗−ji φcψi

L + ψ̄
j,+
R η∗+ji φψi

L

]
(2.33)

where φc = iσ2φ† and ηij describes the mixing of flavour states i.e. across quark

generations into mass eigenstates. Using (2.18), we are able to define the mass matrices

~m± = v~η± which can be diagonalised by bi-unitary transformations of the flavour

eigenstates. It is this mixing of weak interaction states which yields the Cabibbo-

Kobayashi-Maskawa (CKM) matrix [27,28]. Note that a similar derivation can be done

for the leptons when considering neutrinos as massive particles which gives rise to

the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [29, 30].

Thus far this overview has revealed general features of the SM which will form

the foundation of the theory that is relevant to this thesis. Specifically, this work

is primarily concerned with the quark content of the SM and their corresponding

couplings to gauge bosons facilitating the weak nuclear force (W ± , Z) and strong

force (g). In particular for Deep Inelastic Scattering (DIS), discussed in Chapter 3, the

QCD couplings of the quarks and gluons coming from the definitions of (2.9) and

(2.11) give rise to the splitting functions. From these vertices one can build a picture of

how higher order diagrams i.e. next-to-leading order (NLO), next-to-next-to-leading

order (NNLO) in the strong coupling constant αs can be built up. These diagrams are

of particular importance, as one of the main goals of this thesis is to parameterise and

estimate the effects from unknown higher orders in QCD perturbation theory.
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Finally, to conclude this chapter we will revisit the colour self-interactions discov-

ered in the form of Gµν (see (2.11)). As mentioned, the purely gluonic interactions

give rise to an extra term in the QCD potential which facilitates the confinement and

asymptotic freedom properties of the strong force. To help understand this, we can write

a toy equation as

V(r) ∝
α

r
+ kr with r > 0, (2.34)

where r is the separation distance between two strongly interacting partons (i.e. quarks

and gluons). Without self-interactions we recover a force much like that found for QED

in (2.7) whereby the potential falls off as described by the first term in (2.34). However

when self-interactions are considered, the second term in (2.34) must be taken into

account. This extra term with k > 0 can be physically interpreted as demanding an

infinite amount of energy to separate two strongly interacting partons, a phenomenon

termed confinement. On the other side of the spectrum, at very short distances (high

energies), (2.34) becomes more Coulomb-like (∝ 1/r). However, at these high energies,

the colour charge is suppressed (α� 1) and the quarks become ‘free’, which gives rise

to asymptotic freedom.

Interpreting this behaviour in terms of energy i.e. short distances→ high-Q2 and

long distances→ low-Q2, one can also gain some understanding as to how logarithmic

divergences can occur in QCD in the ultra-violet (UV) and infra-red (IR) regimes. For

example, when considering higher order integrals of the form ∝
∫ ∞

0 dQ21/Q2 → ∞

without any regularisation of the high energy (UV) limit. Conversely if we consider

a radiative correction to a cross section (as will be done in Chapter 3 in the case of

a quark emitting a gluon), these higher order corrections include terms of the form

∝ dκ21/κ2 where κ can be interpreted as a tranverse momentum scale, which diverge
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as κ → 0. Since the limit of κ → 0 is in the low energy domain, these are termed

IR divergences (or equivalently collinear/soft divergences due to the collinear/soft

nature of the emission).

Renormalisation is a common procedure to regularise the UV divergences in the

SM which involves regulating the theory by introducing a non-physical scale termed a

renormalisation scale µR. As this variable is non-physical, observables such as cross

sections or structure functions (discussed in Chapter 3) are forbidden to depend on

this scale4. Within the procedure of renormalisation, parameters of the SM such as the

gauge couplings inherit a scale dependence governed by the renormalisation group

equation (RGE). In terms of the strong coupling constant αs, this can be written as:

Q2 ∂αs

∂Q2 = β(αs) (2.35)

where β(αs) is a perturbatively calculable quantity currently known up to N3LO in αs.

After renormalisation, one can show that for an SU(3) gauge coupling,

β(αs) = −2
(

11− 2
3

n f

)
α2

s
4π

(2.36)

where for n f < 16, β(αs) < 0, which without any regularisation from massive gauge

bosons, leads to the properties of confinement and asymptotic freedom described

above. Specifically, αs → ∞ as Q2 → 0 and αs → 0 as Q2 → ∞ yielding a decoupling

of the quarks and gluons at high-Q2.

Looking closely at the low-Q2 regime, we observe that our perturbation order

parameter αs becomes large and therefore leads to the breakdown of perturbative QCD.

As discussed earlier, the magnitude of energy needed to dissociate strongly coupled

4In practice there is a varying level of scale dependence left over in all physical observables due to the
truncation of perturbative calculations in QCD.
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αs(MZ
2) = 0.1179 ± 0.0009

August 2021

α s
(Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)
HERA jets (NNLO)

Heavy Quarkonia (NNLO)
e+e- jets/shapes (NNLO+res)

pp/p-p (jets NLO)
EW precision fit (N3LO)

pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 2.4.: A summary of experimental extractions of the strong coupling constant (αs) as a
function of energy [31].

partons at these long distances becomes so large that the energy of the incoming lepton

in DIS acts to spawn more coloured particles which then combine into stable hadronic

states (hadronisation). Note that for QED and electroweak couplings we find that β > 0

which means at low energy scales α� 1 and perturbation theory can be used without

concern.

There are many different experiments which contribute to the world average of

αs. The determinations from different experiments are extracted at different values

of Q2 and therefore experimentally describe asymptotic freedom and confinement

phenomena (at high and low Q2) as in Fig. 2.4. It is these results and the theoretical

prescriptions described above that emphasize the need for phenomenological models

of hadrons.
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In the next chapter, we focus on reviewing the theory of hadrons from a perspective

that will link together results from experiments and the fundamental theory discussed

in this chapter. We will begin our journey with a broad theoretical picture of deep

inelastic scattering (DIS) processes and move forward by motivating the necessity for

parton distribution functions (PDFs).



Chapter 3.

Deep Inelastic Scattering

The theory of hadronic matter such as protons and neutrons involves the notion

that these particles are not fundamental. In other words, hadrons are composite

particles which are constructed by combinations of quarks and gluons (as discussed

in Chapter 2). This concept naturally led to the influx of collision experiments in

particle physics as an attempt to break these hadrons apart and glimpse inside. To

this day, Deep Inelastic Scattering (DIS) experiments have remained one of the most

powerful tests of perturbative QCD. These processes are discussed within this chapter

and involve the inelastic collision of a lepton probe with a hadron (most commonly an

electron-proton collision) at such high energies that perturbative QCD is valid.

3.1. The Parton Model

To paint a clearer picture of how QCD interactions are dealt with, we consider the

case of deep inelastic lepton-proton scattering mediated by the exchange of a virtual

23
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photon γ:

e(p1) + H(K)→ e(p2) + X (3.1)

where H and X are the initial and final state protons respectively and the differential

cross section can be written as,

d3σ

d3p2
=

1
4E1M

1

(2π)32E2
∑
X

(2π)4 δ4(q + K− pX)
1
2∑|M|2. (3.2)

Using the usual Feynman rules, we can calculate the matrix element of the amplitude

as,

iM = (ie)2ū(p2)γ
µu(p1)i

−gµν

q2 〈X|J
ν
h |H(K)〉, (3.3)

where Jν
h is the hadronic current that transforms H into X, e is the coupling strength

of the leptonic current and q is the 4-momentum transfer carried by the γ probe.

Summing and averaging over spins and applying appropriate trace theorems we

arrive at,

∑
e−spins

|M|2 =
e4

(q2)2 Lµν〈H(K)|Jµ
h |X〉〈X|J

ν
h |H(K)〉 (3.4)

where Lµν is the leptonic tensor given by:

Lµν = 4(p1,µ p2,ν + p1,ν p2,µ − gµν p1 · p2). (3.5)
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Further to this, combining (3.2) and (3.4) we are able to collect all hadronic terms into

a hadronic tensor,

Wµν
H =

1
4π ∑

X
(2π)4δ4(q + K− pX)〈H(K)|Jµ

h |X〉〈X|J
ν
h |H(K)〉. (3.6)

When factoring the cross section in this way one can observe that Lµν describes a

clean leptonic signal, while Wµν
H encapsulates the more complicated electromagnetic

interaction with the proton H(K).

Analysis of the Lorentz structure of Wµν
H allows us to write a general form1:

Wµν
H =

(
−gµν +

qµqν

q2

)
W1 +

(
Kµ − K · q

q2 qµ

)(
Kν − K · q

q2 qν

)
W2, (3.7)

where all the necessary Lorentz invariance is accounted for in the pre-factors of

W1,2 which are completely general functions describing the structure of the hadron.

Furthermore, performing the contraction of LµνWµν
H we obtain,

LµνWµν
H = 4Q2W1 + 2m2

H(4E1E2 −Q2)W2, (3.8)

where Q2 = −q2, mH is the hadron mass and E1,2 are the incoming and outgoing

lepton energies. At this point it is useful to define the quantities:

ν = K · q, x =
Q2

2ν
, y =

ν

K · p1
(3.9)

1The true general form consists of 6 terms with different Lorentz pre-factors, however all but two
can be left out of this equation due to parity invariance, symmetry considerations and current
conservation at the vertex demanding qµWµν = qνWµν = 0.
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where in the hadronic rest frame ν is a measure of the energy transfer, x is the fraction

of the proton momentum carried by the parton involved in the collision and y is a

measure of the inelasticity (i.e. the fractional energy lost by the leptonic probe).

Rewriting (3.8) in terms of the variables x, y and ν reveals

LµνWµν
H = 8E1M

(
xyW1 +

1− y
y

νW2

)[
1 +O

(
M2

Q2

)]
. (3.10)

Moving forward, one is able to incorporate this result into (3.2) and write

d2σ

dxdy
=

4πα2

Q2 2ME1

(
xy2 F1(x, Q2) + (1− y) F2(x, Q2)

) [
1 +O

(
M2

Q2

)]
(3.11)

where F1(x, Q2) = W1(x, Q2) and F2(x, Q2) = νW2(x, Q2) are structure functions

which describe the structure of the proton as ‘seen’ by the virtual photon.

3.2. Electron-quark Scattering

In an attempt to provide some insight into the interpretation of these structure func-

tions, we can consider the case of electron-positron annihilation, whereby the differen-

tial cross section reads as,

dσ

dQ2 =
1

16πŝ2 2e2
qe4 t̂2 + û2

ŝ2 (3.12)

The above cross section is related to e−q → e−q scattering by a crossing symmetry.

Therefore by redefining the Mandelstam variables in (3.12), one can show

dσ

dt̂
=

1

16π t̂2 2e2
qe4 ŝ2 + û2

t̂2 (3.13)
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where ŝ = (p1 + ξK)2 = 2ξ p1K = ξQ2/xy, t̂ = (p1 − p2)
2 = q2 = −Q2, û =

(ξK− p2)
2 = ŝ(y− 1) and ξ is the proportion of proton momentum K carried by the

incoming parton. Writing (3.13) in terms of x and y we can write,

dσ

dy
=

2πe2
q

Q4 α2 2mHE1x
[
1 + (1− y)2

]
(3.14)

where α = e2/4π. Finally, x = ξ must be true in order to ensure the outgoing quark is

on-shell2. This allows (3.14) to be rewritten as

d2σ

dxdy
=

4πα2

Q4 2mHE1

[
xy2 + 2x (1− y)

] 1
2

e2
qδ(x− ξ) (3.15)

where comparing with (3.11) one can observe,

F1(x, Q2) =
1
2

e2
qδ(x− ξ),

F2(x, Q2) = x e2
qδ(x− ξ),

(3.16)

which in turn defines the Callan-Gross relation as F2 = 2xF1
3 [32].

The result in (3.16) can be interpreted as the structure functions providing infor-

mation about a single constituent quark at x = ξ. Furthermore, since the structure

functions contain a distribution across all momentum fractions of a quark constituent,

we can further generalise (3.16) to sum over all quarks weighted by the probability

distribution of each quark constituent:

F2(x, Q2) = 2x F1(x, Q2) = ∑
q,q̄

∫ 1

0
dξq(ξ)x e2

qδ(x− ξ) = ∑
q,q̄

e2
qxq(x) (3.17)

2Assuming a massless quark, p2
2 = (p1 + q)2 = q2 + 2p1 · q = −2p1 · q(x− ξ) = 0.

3This relation also confirms the spin-1/2 nature of partons.
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where q(x) are the parton distribution functions (PDFs) which describe the probability

of probing a particular constituent of the target proton.

Additionally the PDFs are subject to extra constraints with regards to the conserva-

tion of momenta and flavour,

∫ 1

0
dx ∑

i
x fi(x, Q2) = 1, (3.18)

∫ 1

0
dxuV(x, Q2) = 2

∫ 1

0
dxdV(x, Q2) = 1. (3.19)

The constraint in (3.18) demands that the momentum of all quarks and antiquarks

found inside the proton adds up to the total momentum of the proton, whereas (3.19)

demands the conservation of quark flavour number for the proton4.

3.3. The Improved Parton Model

In the previous section, the form of (3.17) mathematically defines the naive parton

model shown in Fig. 3.1. We observe the structure function describing a parton

fluctuating out of the proton with momentum fraction x before being involved in the

collision (described by (3.11) and depicted in Fig 3.1). In the lowest order description

(i.e. with an idealised point-like interaction) described by (3.17), the structure function

is fully characterised by the PDFs. However, as we dive deeper into this model, one

can realise that this idealised point-like interaction is a highly inaccurate representation

of a particle collision. To improve this ‘naive’ parton model, one can introduce the

4Note that for a neutron these constraints are flipped i.e.
∫ 1

0 dxdV = 2 and
∫ 1

0 dxuV = 1.
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Figure 3.1.: DIS naive parton model. A single parton fluctuates out of the proton with mo-
mentum fraction x of the total proton momentum K, while the other partons are
considered ‘spectators’. This parton is then involved in a hard interaction with a
virtual photon.

Figure 3.2.: DIS improved parton model.
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possibility of QCD interactions at the interaction vertex that are present at higher

orders. By generalising Fig 3.1 in this way, we transition to the ‘improved’ parton

model, as depicted in Fig. 3.2.

In this new interpretation, a parton fluctuates out of the proton with probabil-

ity f (x, Q2), evolves up to the hard interaction vertex with some non-zero splitting

probability and is subsequently involved in a process dependent collision defined

at all orders by a coefficient function C(x, Q2). The separation of these ingredients

is performed using the factorisation theorem [33] which allows for the PDFs to absorb

the non-perturbative regime below some defined factorisation scale µ f and for the

inclusion of perturbatively calculable splitting kernels P(x) to describe the evolution.

Similarly to the renormalisation scale µr, introduced to regularise UV divergences

in calculations, µ f is able to regularise the collinear IR divergences which occur at

timescales longer than O
(
1/ΛQCD

)5.

If we consider the case of a quark emitting a gluon before the interaction point in

Fig. 3.1 one can show that,

F2(x, Q2)

x
= ∑

i={q,q̄}
e2

i

∫ 1

x

dy
y

fi(y)

{
δ(1− x

y
) +

αs
4π

P
(

x
y

)
ln

Q2

κ2 + . . .

}
(3.20)

where κ is a lower cutoff scale which regularises the collinear divergences as κ → 0

and P(x) is the splitting function describing the probability for gluon emission. By

5The ‘hard’ scattering physics is defined at timescalesO(1/Q), due to this we assume a large separation
between the ‘hard’ and ‘soft’ physics.
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introducing an unphysical factorisation scale µ f we can rewrite the above as:

F2(x, Q2)

x
= ∑

i={q,q̄}
e2

i

∫ 1

x

dy
y

fi(y)

{
δ(1− x

y
) +

αs
4π

P
(

x
y

)
ln

Q2

µ2
f

+
αs
4π

P
(

x
y

)
ln

µ2
f

κ2 + . . .

}
(3.21)

where the second term in (3.20) has been factored into a calculable and singular part

(containing the IR divergence κ → 0). Since the bare PDF is not analytically calculable

we are able to absorb these divergences into the definition of the PDF:

fi(x, µ2
f ) = fi(x) +

αs
4π

∫ 1

x

dy
y

fi(y)P
(

x
y

)
ln

µ2
f

κ2 (3.22)

where this new renormalised PDF has a dependence on the unphysical scale µ f which

was introduced to factor out the collinear divergences. A rather subtle byproduct

of this definition is the ability to define a gluon PDF through the different types of

potential parton splittings that P(x) can define i.e. Pij(x) where i, j ∈ {q, q̄, g}. For

example from the bare quark PDF, one can define the emission of a gluon, however

we must also account for this emitted gluon to be subsequently probed by the hard

collision. Therefore at O(αs) one is able to define a renormalised gluon PDF.

Combining all this together we are able to write,

F2(x, Q2)

x
= ∑

i={q,q̄}
e2

i

∫ 1

x

dy
y

fi(y, µ2
f )

{
δ(1− x

y
) +

αs
4π

P
(

x
y

)
ln

Q2

µ2
f
+ . . .

}
(3.23)

where following from the RGE we demand that any dependence on µ f be cancelled

to all orders in perturbation theory. From (3.23) one is able to observe that by the

factorisation theorem described above, the PDFs no longer need to be defined at the

scale of a particular process Q2. The significance of separating any process dependent
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calculation from the definition of the PDFs is that parton distributions measured in

various different processes can be related. This universality is what enables PDF

fitting groups to be able to fit to a variety of different datasets that constrain different

regions of (x, Q2), resulting in extremely accurate descriptions of the protons internal

structure.

In order to complete our factorised picture of the structure function in (3.23), we

must also allow for the dynamics of the high-Q2 hard process physics to be factored

out in terms of a coefficient function.

F2(x, Q2) = ∑
i=q,q̄,g

Ci(x, Q2)⊗ fi(x, Q2) +O
(

Λ2/Q2
)

(3.24)

where µ2
f = Q2 and fi(x, Q2) is the renormalised PDF from (3.22). Fig. 3.2 displays

this factorisation of process-independent ( f (x, Q2)) and process-dependent (C(x, Q2))

parts which further demonstrates the universality of PDFs. For example, in a collision

such as the LHC the PDFs can be inserted into the cross section calculation as,

σpp′→X = ∑
i,j∈{q,q̄,g}

∫
dxpdxp′ fi(xp, Q2) f j(xp′ , Q2)σ̂pp′→X +O

(
Λ2/Q2

)
(3.25)

where σ̂pp′→X contains the process dependent theory and the PDFs fi(x, Q2) are uni-

versally determined and inserted here.
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3.4. Dokshitzer-Gribov-Lipatov-Alterelli-Parisi

(DGLAP)

As mentioned in the interpretation of renormalised PDFs, the universality of PDFs is

based upon the fact that PDFs can be evolved to a different scale to which that they

are extracted. In a global fit, data points will be extracted at various different energy

scales depending on what is experimentally accessible and the energy where different

processes occur. Due to this, we must also require a method to evolve the PDFs in

Q2. Conveniently in the previous section, we have already derived a description

of renormalised PDFs which now incorporate a scale dependence governed by the

renormalisation group equation (since this scale is fictitious and must vanish when

considering observable quantities). The PDF evolution is therefore achieved via the

Dokshitzer-Gribov-Lipatov-Alterelli-Parisi (DGLAP) equation [34–36],

µ2
f
∂ fi(x, µ2

f )

∂µ2
f

= ∑
i,j∈{q,q̄,g}

αs(µ
2
r )

4π

∫ 1

x

dz
z

Pij

(x
z

)
f j(z, µ2

f ). (3.26)

As discussed above, the DGLAP equation is a direct consequence of the renormali-

sation of soft divergences into the definition of PDFs in (3.22), where µ f is chosen at

some arbitrarily low scale and µr is similarly chosen at a much higher scale to cut off

UV divergences in the hard cross section and coupling constants.

Notice that in (3.26) we have an upgraded splitting function Pij which includes

the sum over multiple parton flavours. This new notation now incorporates potential

splittings between all partons including the gluon and it is clear that (3.26) is actually

a set of coupled differential equations where the potential splittings of the quark PDFs

bring about changes in the gluon and vice versa.
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The set of QCD splitting functions discussed here are perturbatively calculable

quantities currently known up to NNLO, and later parameterised up to approximate

N3LO in Chapter 7. However at leading order in αs, the individual splitting kernels

that facilitate the convolutions in (3.26) are

Pqq = CF

[
1 + x2

(1− x)+
+

3
2

δ(1− x)

]
, (3.27)

Pqg = TR

[
x2 + (1− x)2

]
, (3.28)

Pgq = CF

[
1 + (1− x)2

x

]
, (3.29)

Pgg = 2 CA

[
x

(1− x)+
+

1− x
x

+ x (1− x)
]

+

(
11
6

CA −
4
6

TF

)
δ(1− x), (3.30)

where CF = 4/3, CA = 3, TF = n f TR, TR = 1/2 and n f is the number of light quarks

kinematically allowed to exist6.

Tracking back to global PDF fits, the standard procedure is to parameterise initial

state PDFs at some low value of Q2 (as will be discussed in Chapter 4) and subsequently

evolve these using the DGLAP equation up (or down – although this is not likely given

the low initial scale) to the scale of the process being fit to. There is some ambiguity in

how this scale is chosen for certain observables, however a general rule is to choose an

6The matching of descriptions across the quark mass thresholds i.e. n f → n f + 1 as Q2 > m2
q, will be

discussed in the next section.
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appropriate kinematic quantity, for example in DIS fits µ2
f = µ2

r = Q2 is the typical

choice.

The application of the DGLAP procedure therefore allows us to truly unlock the

full constraining power in global PDF fits and ultimately gives rise to sets of precisely

determined universal PDFs which can be used in the particle physics community. The

details of these sets are further discussed in Chapter 4.

3.5. General Mass Variable Flavour Number Scheme

(GM-VFNS)

In this section we will outline the procedure taken for heavy flavour production in

DIS when the heavy quark mass mh is treated as a hard scale. We begin by fixing

the number of light quark flavours (n f ) and expressing all light quark PDFs (and the

gluon PDF) in the same manner as discussed above while absorbing the description of

heavy quark partons into a Fixed Flavour Number Scheme (FFNS) coefficient function.

Setting µ2
r = µ2

f = Q2 and rewriting (3.24) in this way gives,

F2(x, Q2) = ∑
α∈{H,q}

∑
i∈{q,q̄,g}

C
FF, n f
α,i (x, Q2, Q2/m2

H)⊗ f
n f
i (x, Q2) +O

(
Λ2/m2

H

)
(3.31)

where we have made the dependence on the heavy quark mass scale explicit in the

FFNS coefficient function.

By the factorisation theorem, the description in (3.31) must be equivalent to the

scenario where the quark mass is a soft scale and is therefore absorbed into the
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description of PDFs i.e. there are n f + 1 PDFs, now including a heavy quark PDF.

F2(x, Q2) = ∑
α∈{H,q}

∑
j∈{H,q,q̄,g}

C
ZM, n f +1
α,j (x, Q2)⊗ f

n f +1
j (x, Q2, Q2/m2

H) +O
(

Λ2/m2
H

)

(3.32)

This narrative is valid in the region that Q2 � m2
h, where the mass of the heavy quark

becomes negligible (or more robustly Q2 → ∞). If one relaxes this constraint on the

coefficient function, still describing n f + 1 flavours, one can define the General Mass

Variable Flavour Number Scheme (GM-VFNS) in exactly the same way as (3.32) but

with C
ZM, n f +1
α,j → C

VF, n f +1
α,j . This new description is valid across all Q2 and in the

limit that Q2 → ∞, must be identical to the ZM-VFNS coefficient function.

Considering (3.31) and (3.32) (in either the ZM-VFNS or GM-VFNS format), there

is one extra parton flavour to parameterise in the latter. Applying the factorisation

theorem again, one can describe a perturbatively calculable heavy quark via the

introduction of transition matrix elements [37, 38] which absorb logarithms in Q2/m2
H

as7

f
n f +1
j (x, Q2, Q2/m2

H) = Aji(Q
2/m2

H)⊗ f
n f
i (x, Q2). (3.33)

Ignoring higher twist corrections and equating (3.31) and (3.32) (also with (3.33)) one

can find the relation:

C
FF, n f
α,i (x, Q2, Q2/m2

H) = C
VF, n f +1
α,j (x, Q2)⊗ Aji(Q

2/m2
H) +O

(
Λ2/m2

H

)
(3.34)

7Strictly speaking, a new scale µ̃ is introduced into the transition matrix elements from the factorisation
theorem, much like how µ f was introduced for the PDFs. However since the scale at which evolution

begins can be chosen to be exactly µ̃2 = m2
H , the matching condition between subsequent flavours

reduces to a perturbative calculation in αs with no logarithms in (µ̃2/m2
H).
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It is the above equation that allows for new expressions to be defined for the coefficient

functions. The coefficient functions described by the GM-VFNS procedure allow

for the inclusion of smooth interpolations across heavy quark mass thresholds and

hold true in the asymptotic limits at each order in perturbation theory. In Chapter 9,

the description of the GM-VFNS coefficient functions will be extended beyond the

currently known NNLO to include approximate N3LO effects and later be included

into a global PDF fit.
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Chapter 4.

Parton Distribution Functions

The QCD parton model presented in Chapter 3 depends heavily on the inclusion

of PDFs into structure function calculations. As discussed in Chapter 3, PDFs are

non-perturbative quantities that (at present) cannot be derived from first principles1

and are therefore fit to experimental data.

4.1. Background

In the late 1960’s and early 1970’s simple models of PDFs were developed [39] by

employing limited experimental data, combined with multiple theory considerations.

However, as more experimental data became available, the idea of fitting PDFs to a

global collection of data emerged. By 1982 PDF fits had become sophisticated enough

to be able to determine the shape of the gluon [40, 41] and the foundations were well

1See [?] for a recent review of Lattice QCD which has potential for shedding light in this area. Or
more likely, being able to supplement the current data-driven approach with theoretical lattice
determinations for particular quantities in the least constrained (x, Q2) regions.

39
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established for the first LO PDF fits in 1984 [42, 43]. Due to the universality of PDFs,

over the next decade PDF fits enjoyed a wealth of data by adopting the global QCD

analysis strategy [44] along with an increase in theoretical understanding, with NLO

fits becoming the state-of-the-art in 1988 [44–48].

In 1992 the field of PDF fits saw its most influential experiment turn on, the HERA

collider at DESY. HERA allowed for an extensive analysis of previously inaccessible

regions in (x, Q2) by colliding 920 GeV protons with ' 27.5 GeV electrons in DIS

experiments. In 1994 this data was included in the release of the MRS(A) [49] and

CTEQ3 [50] PDFs which were then further updated with more precise data from HERA

and the Tevatron as and when these became available.

Since this time PDF sets have become more robust by incorporating: PDF un-

certainties [51–58], the treatment of heavy flavours [59–61] (see Chapter 3), NNLO

theory [62–66] and a wide range of advancements in fitting procedures [67–70] along

with a continuously increasing amount of data from global experiments. One source

of data which has become progressively more influential in recent years is the LHC,

with many LHC datasets now included as standard in modern PDF sets [3, 4, 6, 71].

As we will discuss in this thesis, several high precision datasets from the LHC are

extremely important in constraining PDFs especially when considering higher orders

than NNLO.

4.2. PDF Determination

In an ideal world one would hope to write down an analytic expression which could

describe the Bjorken x dependence of PDFs, whilst also being consistent with the

Q2 evolution predicted from perturbative QCD. However as discussed in previous
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MSHT20 Global fit Datasets

BCDMS µp F2 [72] CDF II W asym. [73]
BCDMS µd F2 [72] DØ II W → νe asym. [74]
NMC µp F2 [75] DØ II pp̄ incl. jets [76]
NMC µd F2 [75] ATLAS W+, W−, Z [77]
SLAC ep F2 [78, 79] CMS W asym. pT > 35 GeV [80]
SLAC ed F2 [78, 79] CMS W asym. pT > 25, 30 GeV [81]
E665 µd F2 [82] LHCb Z → e+e− [83]
E665 µp F2 [82] LHCb W asym. pT > 20 GeV [84]
NuTeV νN F2 [85] CMS Z → e+e− [86]
NuTeV νN xF3 [85] ATLAS High-mass Drell-Yan [87]
NMC µn/µp [88] Tevatron, ATLAS, CMS σtt̄ [89–101]
E866 / NuSea pp DY [102] CMS double diff. Drell-Yan [103]
E866 / NuSea pd/pp DY [104] LHCb 2015 W, Z [105, 106]
HERA ep Fcharm

2 [107] LHCb 8 TeV Z → ee [108]
NMC/BCDMS/SLAC/HERA FL CMS 8 TeV W [109]
[72, 75, 79, 110–112] ATLAS 7 TeV jets [113]
CCFR νN → µµX [114] CMS 7 TeV W + c [115]
NuTeV νN → µµX [114] ATLAS 7 TeV high prec. W, Z [116]
CHORUS νN F2 [117] CMS 7 TeV jets [118]
CHORUS νN xF3 [117] DØ W asym. [119]
HERA e+p CC [120] ATLAS 8 TeV Z pT [121]
HERA e−p CC [120] CMS 8 TeV jets [122]
HERA e+p NC 820 GeV [120] ATLAS 8 TeV sing. diff. tt̄ [123]
HERA e−p NC 460 GeV [120] ATLAS 8 TeV sing. diff. tt̄ dilep.

[124]
HERA e+p NC 920 GeV [120] ATLAS 8 TeV High-mass DY [125]
HERA e−p NC 575 GeV [120] ATLAS 8 TeV W + jets [126]
HERA e−p NC 920 GeV [120] CMS 8 TeV double diff. tt̄ [127]
CDF II pp̄ incl. jets [128] ATLAS 8 TeV W [129]
DØ II Z rap. [130] CMS 2.76 TeV jet [131]
CDF II Z rap. [132] CMS 8 TeV sing. diff. tt̄ [133]
DØ II W → νµ asym. [134] ATLAS 8 TeV double diff. Z [135]

Table 4.1.: Exhaustive list of all datasets included in the MSHT20 standard global fit [3]. The
fit results presented in this thesis will be obtained from a fit to all these data unless
stated otherwise.

chapters, this is not possible due to the non-perturbative nature of QCD in certain areas

of (x, Q2). In lieu of this idealised theoretical description, modern PDF determination

involves assuming an initial parameterisation at some Q2
0 starting scale and fitting

this parameterisation to data. Where as a general rule the value of Q2
0 should be large

enough such that αs(Q
2
0) remains small enough to preserve the validity of perturbative

QCD.
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Once these initial parameterisations are chosen, the DGLAP equations (discussed

in Chapter 3) are used to evolve the PDFs to different Q2 values, where the PDFs

are convoluted with relevant coefficient functions for each process and used to make

theoretical predictions for physical quantities such as structure functions. The results

for these physical quantities are then used to fit to experimental data sets to obtain an

overall global χ2 result. An exhaustive list of those included in the current MSHT20 fit

is included in Table 4.1.

By calculating the gradients of the χ2 with respect to the PDF parameters, one is

able to adjust the parameters of the fit in order to minimise the global χ2 value. In order

to achieve a final result, this process is iterated with the PDF parameters being altered

in the direction of a smaller global χ2 at each step. The resultant PDF parameterisations

are usually provided on computationally efficient (x, Q2) LHAPDF [136] grids. These

grids can be utilised in theoretical calculations to obtain the value of PDFs at any point

in (x, Q2) via interpolation, without the need for any further explicit evolution in Q2.

The choice of the initial parameterisation naturally represents a model uncertainty

in PDF extraction which as we will see, is also sensitive to the exact forms of any

aN3LO parameterisation. Although this sensitivity is washed out as the PDFs are

evolved to Q2 > Q2
0, remnants and indirect effects will likely remain. There are several

different groups which use variations of the general formalism above extracted with

different input parameterisations and methodological choices. The work presented

in this thesis is done within the MSHT20 framework which is summarised in the

following section.
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4.3. MSHT20 Framework

The latest major update from the Mass Scheme Hessian Tolerance (MSHT) collabora-

tion, the MSHT20 PDF set [3], supersedes the previous MMHT14 set [68]. An extended

parameterisation is introduced with this update, particularly for the d̄/ū and strange

quark, along with more eigenvector sets to accommodate the extra parameters. The

MSHT20 global fit also includes a variety of LHC data, final HERA and Tevatron data

and a variety of other datasets summarised in Table 4.1, with almost all included QCD

cross sections inserted at NNLO. In particular, all LHC jet data, Z pT distribution

data and top quark cross sections are included with theoretical calculations at NNLO

precision [137–139]. In addition to this, electroweak corrections are included wherever

possible/required, although these will not be discussed in this thesis.

The MSHT20 framework is built upon parameterising a set of PDFs for all x at an

input scale Q2
0 = 1 GeV2 and evolving these input PDFs across a range of Q2 using the

DGLAP evolution equations from Chapter 3. The DIS heavy flavour sector is obtained

using the general mass variable flavour scheme based on the TR scheme [60, 140, 141]

as described in Chapter 3.

The general form of these input distributions are:

x f (x, Q2
0 = 1 GeV2) = A(1− x)ηxδ

(
1 +

n

∑
i=1

aiT
Ch
i (y(x))

)
(4.1)

where TCh
i are the Chebyshev polynomials in y, with y = 1− 2

√
x. The latest update

to the MSHT framework in [3] uses n = 6 in general, with slight variations in the

parameterisations for the gluon and the strangeness asymmetry. For completeness
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these are:

uV(x, Q2
0) = Au(1− x)ηu xδu

(
1 +

6

∑
i=1

au,iTi(y(x))

)
(4.2a)

dV(x, Q2
0) = Ad(1− x)ηd xδd

(
1 +

6

∑
i=1

ad,iTi(y(x))

)
(4.2b)

S(x, Q2
0) = AS(1− x)ηS xδS

(
1 +

6

∑
i=1

aS,iTi(y(x))

)
(4.2c)

s+(x, Q2
0) = As+(1− x)ηs+xδs+

(
1 +

6

∑
i=1

as+,iTi(y(x))

)
(4.2d)

s−(x, Q2
0) = As−(1− x)ηs−

(
1− x0

x

)
xδs− (4.2e)

(
d̄/ū

)
(x, Q2

0) = Aρ(1− x)ηρ

(
1 +

6

∑
i=1

aρ,iTi(y(x))

)
(4.2f)

g(x, Q2
0) = Ag(1− x)ηg xδg

(
1 +

4

∑
i=1

ag,iTi(y(x))

)
− Ag−(1− x)ηg−xδg− (4.2g)

Here we see the familiar form outlined in (4.1) with a couple of exceptions due to the

lack of constraining power from data. The parameters Ai, ηi, δi, ai,j are left free and

determined from a mixture of constraints such as d̄/ū→ constant as x → 0, the sum

rules in (3.19) and (3.18) and most importantly, the fit quality to data. Additionally,

the form of the gluon PDF parameterisation includes an extra term which allows extra

freedom to the gluon at low-x and is included to improve the fit quality to small-x

data [142]. In total, the MSHT20 analysis includes 52 parton parameters contained

within (4.2).

With the parameterisation above and the inclusion of new LHC data in the MSHT20

analysis, an increase in the strange quark between x = 0.001− 0.3 is reported compared

to the previous iteration. Also due to the inclusion of precision jet data, the high-x

gluon exhibits a slight decrease which will be investigated further in Chapter 13 in the
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context of aN3LO. As will be seen, the initial parameterisation of the gluon is heavily

sensitive to the N3LO effects discussed in this thesis.

Considering the strong coupling constant, the MSHT20 NNLO PDFs prefer a value

of αs(M2
Z) = 0.1174± 0.0013 [143] where in general, jet data prefer a slightly lower

value of αs and the W, Z data prefer it slightly higher. MSHT20 also incorporates the

charm and bottom pole masses as mc = 1.4 GeV and mb = 4.75 GeV respectively.

The fitting procedure in the MSHT global fit follows a Hessian method whereby

the global minimisation statistic χ2 is assumed to be quadratic about its minimum.

This global minimum is found using the Levenburg-Marquardt method [144, 145] by

finding local gradients with respect to the PDF parameters and iteratively moving

towards the global minimum. Defining the set of n parameters as {a1, . . . , an} one can

write:

χ2 − χ2
0 =

n

∑
i,j=1

(ai − a0
i )Hij(aj − a0

j ) (4.3)

where any quantities denoted by 0 are related to the true minima of χ2 and the Hessian

matrix Hij is described by:

Hij =
1
2 ∑

n

∂2χ2
0

∂ai∂aj
(4.4)

Since in general, a derivative of an observable F({ai}) with respect to each PDF pa-

rameter ai is not easily ascertainable, standard linear error propagation is not preferred.

Instead the Hessian matrix is diagonalised to obtain eigenvectors and eigenvalues

which represent orthogonal linear combinations of the parameters ai. These eigenvec-
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tors are defined by

C vk = λkvk (4.5)

where λk and vk are a set of eigenvalues and eigenvectors and C = H−1 is the covari-

ance matrix.

Along with the central MSHT20 NNLO PDF value, the standard NNLO set includes

64 Hessian error PDFs for positive/negative eigenvector directions (i.e. 32 eigenvec-

tors), where pairs of eigenvector sets S±k can be used to span the χ2 hypersphere. The

size of the PDF uncertainties described by the error set e.g. for a 68% confidence level

(C.L.) are determined using a dynamical tolerance procedure which adapts the size

of ∆χ2 in accordance with the fit, rather than being set by some other means (i.e. by

hand in an idealised setting). The dynamical tolerance procedure is described in detail

in Section 6 of [64], where it was deduced that to accommodate a multitude of data

sets in conflict with one another when being included into a global fit, one typically

requires an elevated tolerance (i.e. T > 1) to produce an adequate level of variation in

the fit for a 68% confidence interval and therefore more reliable error estimates. The

dynamical tolerance procedure follows from assuming that each χ2
n for the nth dataset

follows a χ2 distribution with N degrees of freedom (N data points),

PN(χ
2) =

(χ2)N/2−1 e−χ2/2

2N/2Γ(N/2)
(4.6)

∫ ξ68

0
dχ2PN(χ

2) = erf(1/
√

2). (4.7)
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Starting from the central fit (i.e. at the global minimum χ2
0), one is able to move along

each eigenvector direction (± ek) by adjusting the relevant parameters via,

ai = a0
i ± t ek,i (4.8)

where ek,i is the ith value of the kth eigenvector, a0
i are the best fit parameters and t is

the tolerance factor to scan across (nominally chosen to be from t = 1, . . . , 6). Once a

new minima is found for each value of t, one can plot the change in χ2
n for each data

set n and assess its difference from the global minimum χ2
n,0. Note that due to the

interplay between datasets, the minima for each of the individual data sets will most

likely not line up with the global fit minimum. Therefore it is possible for χ2
n to be

smaller than χ2
n,0 at some value of t 6= 0.

The most probable value for the χ2 distribution in (4.6) is ξ50 ' N for a dataset

with N data points. As discussed, since the value of χ2
n,0 may be far away from ξ50 at

the global minimum χ2
0 (and potentially be outside the 68% confidence interval), it is

necessary to rescale χ2
n,0 before defining the 68% C.L. region as,

χ2
n <

(
χ2

n,0

ξ50

)
ξ68 (4.9)

which essentially states that we wish a tolerance value to be chosen as the highest

value possible without χ2
n exceeding the 68% C.L. for each dataset n.

By scanning across values of t in all eigenvector directions, one is able to charac-

terise a data set with its χ2
n values for each chosen t and its 68% C.L. limit obtained

from (4.7). Finally, for each of the eigenvector directions, we choose the value of t at

the point where (4.9) is minimally violated for a single dataset and define the final

tolerance values as T =
√

∆χ2
global at this value of t.
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Following from the above, uncertainties on a quantity F({ai}) may be calculated

with symmetric errors as,

∆F =
1
2

√
n

∑
k=1

(
F(S+

k )− F(S−k )
)2

(4.10)

or with asymmetric errors by

(∆F)+ =
1
2

√
n

∑
k=1

(
max

[
F(S+

k )− F(S0), F(S−k )− F(S0), 0
])2

(4.11)

(∆F)− =
1
2

√
n

∑
k=1

(
max

[
F(S0)− F(S+

k ), F(S0)− F(S−k ), 0
])2

(4.12)

where S0 is the central PDF set.

In this thesis, the MSHT20 fitting procedure will be expanded from the description

above to include 20 extra N3LO parameters which will parameterise the effects at

higher orders in perturbative QCD discussed in Chapter 3. The details of how this

expansion is achieved will be examined in detail in Chapter 5.

The later chapters included in this thesis present a selection of theory calculations

pertaining to the evolution of initial scale PDFs and the different processes included

in the MSHT20 global fit, all of which are extended to approximate N3LO. The quan-

tities discussed are primarily involved in various convolutions initially described in

Chapter 3 and explicitly extended to N3LO in Chapter 6. Inside the MSHT20 analysis,

Gaussian-Legendre Quadrature is the integration procedure which takes the PDFs,

defined on 96 logarithmically spaced points in xi, and facilitates the convolutions by
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computing a weighted sum to approximate an integral as

∫
dx f (x) '

96

∑
i=1

wi f (xi). (4.13)

Similarly, when performing the DGLAP evolution described in Chapter 3, the evo-

lution is performed using the same procedure but in Q2 (also on a logarithmic scale

containing 96 points).

When combining these two variables, we naturally have an (x, Q2) grid description

where the PDFs have been numerically calculated at 96 points in both directions. For

the PDF central value and for each eigenvector direction, these grids are distributed

and made available under the LHAPDF [136] configuration. All modern PDF sets are

distributed in this way and therefore LHAPDF provides a consistent and convenient

format to use multiple different types of PDFs, without the need for bespoke software

for each PDF set.

4.4. Other Modern PDF Sets

In this section we briefly describe the other PDF sets which are included in the latest

PDF4LHC21 combination [8], namely the CT18 [4] and NNPDF3.1 [5] PDF sets where

in the latter case these PDFs are now superseded by a more up-to-date NNPDF4.0

set [6].
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4.4.1. CT18

The latest release of general-purpose PDFs from the CTEQ-TEA (CT) collaboration are

the CT18 PDFs [4]. The CT18 NNLO fit includes a total of 3681 data points from 39

experiments including LHC 7 and 8 TeV data, HERA I+II combined data and other

default sets included in the previous CT14 release [65]. The approach of the CT18

collaboration is to prioritise including all data points in each dataset in order to provide

as wide a kinematic coverage as possible. In performing such an inclusive fit, the CT18

analysis is able to utilise the full constraining power of each dataset and additionally

identify regions of disagreement within the data.

The standard procedure for CT is to employ the SACOT-χ heavy quark scheme at

NNLO [146] with charm and bottom pole masses of mc = 1.3 GeV and mb = 4.75 GeV

respectively. Furthermore, the x-dependence of the CT18 PDFs is parameterised by

Bernstein polynomials combined by the customary xα and (1− x)β small and large-x

factors in order to control the overall parameterisation in these limits. For each parton

flavour the CT collaboration include 5-8 independent fitting parameters except for the

strangeness PDF which has 4. Additionally, the included parameters are such that the

PDFs at large-x are always non-negative to avoid the potential for negative differential

cross sections), while a handful of other parameters are constrained by sum rules. The

final form of these PDFs is based on 29 parameters and along with the central PDFs,

includes 58 Hessian error PDF sets for positive/negative eigenvector directions (i.e. 29

eigenvectors).

The parameterisation is subsequently fit via the minimisation of a global log-

likelihood function which quantifies the agreement of the form of the PDFs with the

data. Considerations regarding the quality of this global fit are manifested in the

overall size of the PDF uncertainties. By investigating the global χ2 landscape, the CT
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collaboration are then able to examine the consistency of fits through enhanced values

of χ2 in regions of (x, Q2) (a benefit of fitting to the entire kinematic range available

for each dataset). Further to this, the size of the uncertainties provided with the CT18

PDFs not only reflects the quality of the fit but is carefully decided based on a detailed

analysis of the spread of alternative PDF solutions (with varying functional forms).

Therefore the PDF uncertainty reported encapsulates an estimation for the uncertainty

on methodological choices made in the parameterisation.

CT18 PDFs are available in a selection of formats (full details can be found in [4]),

for example the CT18Z PDFs includes the ATLAS 7 TeV W/Z data [116] which was

left out of the main CT18 release due to tensions with other datasets. The CT18Z set

therefore exhibit an elevated strangeness at x = 0.02− 0.1 from CT18 and an enhanced

small-x gluon, where the latter is a result of choosing an x-dependent factorisation

scale which mimics the small-x resummation effects particularly relevant for the

combined HERA data. The CT collaboration also includes two other PDF sets which

include only the ATLAS 7 TeV W/Z data [116] and only the x-dependent factorisation

scale, intended as intermediaries between the standard CT18 set and CT18Z described

above.

4.4.2. NNPDF

The final global PDF set included in the PDF4LHC21 combination are the NNPDF3.1

PDFs [5] (now superseded by the NNPDF4.0 set [147]). As with MSHT and CT, the

NNPDF analysis incorporates many new LHC measurements alongside the combined

HERA measurements. As with the other PDF groups, NNLO in αs is standard for

almost all theoretical predictions included in the NNPDF fit. In an extensive determi-

nation of the strong coupling constant, the NNPDF collaboration reported a value of
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αs(MZ) = 0.1185± 0.0017 including all experimental, methodological and theoreti-

cal uncertainties (via scale variations) [148]. In the NNPDF analysis, the charm and

bottom pole masses are mc = 1.51 GeV and mb = 4.92 GeV respectively.

Of particular interest to the work in this thesis are two studies performed by

the NNPDF collaboration in relation to small-x resummation [15] and theoretical

uncertainty estimates [9]. The former study involved the supplementation of fixed

order NLO and NNLO PDFs with NLO + small-x NLL and NNLO + small-x NLL in

the DIS structure functions, similar to the additions made in this thesis work. It was

observed that the HERA inclusive and charm data displayed a marked improvement in

their corresponding χ2’s. The second study is related to the incorporation of MHOU’s

via scale variations, in which a general procedure for the inclusion of such uncertainties

into PDF determinations at NLO was presented and extensively studied to assess the

potential impact of higher order uncertainties.

The general fitting strategy employed by NNPDF involves converting experimental

data into an ensemble of artificial Monte Carlo (MC) replicas. The data replicas are

constructed via Gaussian distributions around each data point, characterised by the

corresponding experimental uncertainty. The law of large numbers then ensures that

given enough replicas, the generated pseudo data will encompass all experimental

information. Each initial state PDF (including the charm PDF) is then modelled via a

Neural Network (NN) multiplied by small and large x factors:

x fk(x, Q2
0; θ) = Ak x1−αk(1− x)βkNNk(x; θ) (4.14)

where k denotes the element of the flavour/evolution PDF basis (more information

in [147]). With this procedure, combined with the DGLAP evolution and the MC
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generated pseudo data described above, the NNPDF collaboration perform a global fit

using a validation set to prevent overfitting the NN’s via an early stopping technique.

In contrast to the Hessian based approaches discussed above, the PDF uncertainties

in the NNPDF analysis are found via a MC based approach by fitting to all replica

datasets. The PDF replicas are then used to define the uncertainty bands. However,

it has been shown that MC and Hessian based approaches have a good degree of

correspondence to one another [149–154] and therefore it is possible to sample a subset

of MC PDF replicas from NNPDF to produce a Hessian set similar to the MSHT and

CT sets (or vice versa). In the PDF4LHC21 combination MC replicas are created from

all PDF sets (MSHT, CT and NNPDF) in order to achieve the final combination.

4.4.3. Comparison with MSHT20

As discussed above, the methodologies of all three PDF fitting groups entering the

PDF4LHC21 combination differ significantly. For example, MSHT20 NNLO PDFs

adopt a parameterisation including Chebyshev polynomials and have a final PDF

ensemble based on 52 free parameters, compared to the CT collaboration who favour

Bernstein polynomials and 29 free parameters and NNPDF who employ neural net-

works and have an order of magnitude higher number of free parameters in their final

ensemble.

Other areas of methodology that differ between the groups are in the constraints

applied to parameterisations of the PDFs. In the MSHT framework the only constraint

employed is by the data (and required sum rules), allowing complete flexibility of the

parameterisation as long as the data is fit to a good standard. This means that it is

possible for the PDFs to take any shape in its final form (and indeed become negative).
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This is in direct contrast to other groups discussed, where in the CT procedure the

parameterisation is chosen such that the PDFs at large-x are non-negative and in

NNPDF, a direct constraint is applied directly to the minimisation procedure in order

to demand positivity of PDFs. Positive PDFs are desirable (but not required) because

they alleviate some risks in predicting unphysical negative observable quantities.

Having said this, negative observable quantities can still be predicted with positive

PDFs depending on how these are computed with other quantities (i.e. hard cross

sections) (see [155, 156] for an ongoing discussion).

Fig. 4.1 (taken from [8]) shows a direct comparison of the three PDF sets discussed

above (albeit with NNPDF 3.1 instead of NNPDF 4.0) at Q = 100 GeV. In this

comparison the charm and bottom pole masses are set to the MSHT20 choice of

mc = 1.4 GeV and mb = 4.75 GeV respectively. Therefore in this comparison (and

in the PDF4LHC21 combination) the MSHT20 NNLO set is the same as will be used

extensively for the rest of this thesis. The CT18 and NNPDF3.1 sets are modified to

this choice of the heavy quark pole masses and are termed CT18′ and NNPDF3.1′.

Although all three groups agree within uncertainties across most of the range of x

values shown, some noteable features which have relevance to later chapters in this

thesis can be observed. For instance in the gluon PDF, NNPDF3.1′ sees a reduction

around x∼ 0.2 which is not seen by the other two groups. The large-x behaviour of

the MSHT20 gluon at approximate N3LO is discussed in detail in Chapter 13.

Further to this, due to the exclusion of the ATLAS 7 TeV high prec. W, Z [116]

from the CT18 standard PDF set, a smaller strangeness central value is reported

above x∼ 10−3 when compared to MSHT20 and NNPDF3.1′ (although at even higher

x > 10−1, NNPDF3.1′ also prefer a further enhanced strange PDF than the other two

groups).
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Figure 4.1.: Comparison of the CT18′, MSHT20, and NNPDF3.1′ global sets, normalised to the
central value of MSHT20, as a function of x at Q = 100 GeV. The plots display
the PDF results for the u, d, d̄, s, c quarks and the gluon. In the cases of CT18′ and
MSHT20 the results shown are displaying the Monte Carlo representations of the
original Hessian sets where the error bands correspond to 68% CL uncertainties.
Figure is copied from [8].
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Finally, another expected prominent difference between NNPDF3.1′ and other PDF

sets can be see within the charm PDF due to the fact that the charm is fitted within

the NNPDF methodology, rather than perturbatively generated. The result of this

is a marked enhancement in the shape of the charm at large-x which remains up to

high-Q2 along with larger uncertainties than MSHT20 and CT18′ in this region, due to

the lack of constraining power (which originates from the gluon in the perturbative

case).

Throughout the remainder of this thesis, the PDF comparisons will be solely shown

within the MSHT20 ecosystem, predominantly building off the MSHT20 NNLO stan-

dard set introduced in this chapter. At various points reference will be made towards

the differences between different groups PDF sets, however care must be taken in

comparing theoretical predictions across misaligned orders in perturbation theory,

therefore no direct quantitative comparisons of the aN3LO PDFs presented here with

will be made with NNLO sets from other PDF groups.



Chapter 5.

Theoretical Uncertainties

In the modern world of science, a measurement’s uncertainty is equally important

as the measurement itself. The concept of providing an experimental uncertainty is

commonplace in many areas of physics, allowing scientists to quantify the degree of

confidence on the accuracy of a measurement. However, dealing with uncertainties in

theoretical predictions is, at present, a somewhat unfamiliar idea.

As we move into a new era of high precision measurements in high energy physics,

accompanied by advanced fitting methodologies for PDF fits, PDF uncertainties have

have reached a new level of accuracy. In more constrained regions, this PDF uncer-

tainty can easily reach below the few-percent level where theoretical uncertainties can

begin to have a substantial effect.

The concept of a theoretical uncertainty is much the same as an experimental

uncertainty i.e. providing a degree of uncertainty on a prediction or model. One of the

leading sources of theoretical uncertainty in QCD predictions is due to the truncation

of perturbative calculations expanded up to some order in the strong coupling constant

57
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αs. These unknown higher orders in perturbative calculations are commonly written

as + O(αn+1
s ) at the end of a perturbative expansion known up to n, but how can

one actually quantify this mysterious (and often ignored) term. These sources of

uncertainty are commonly termed Missing Higher Order Uncertainties (MHOUs).

In this chapter we will briefly assess a method of estimating MHOUs via scale

variations, then describe the mathematical procedures used in a novel approach to

implement N3LO approximations with theoretical uncertainties into a global PDF

fit. These procedures are discussed in terms of the Hessian minimisation method

employed by the MSHT fit and extended by theoretically grounded arguments to

accommodate theoretical uncertainties.

5.1. Scale Variations

A widely adopted method of estimating the effect of missing higher orders in fixed

order QCD calculations is by varying the factorisation and renormalisation scales (µ f

and µr) by some arbitrary factor – the conventional choice being a factor of 2 in either

direction of the central scale for a given process. As discussed in Chapters 2 and 3,

the dependence of a physical quantity on these intermediate scales must vanish as

we move to an all order description. The result of this provides smooth estimates for

MHOUs based on the principle of Renormalisation Group (RG) invariance.

RG invariance demands that a prediction to all orders is independent of any

intermediate scale. For this reason, calculations of physical observables must only

depend on the physical scale Q2 and so the µr and µ f dependencies must cancel out.
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A general RG invariant function C(αs(µ
2), µ2

Q2 ) is required to obey,

µ2 d

dµ2 C(αs(µ
2),

µ2

Q2 ) = 0. (5.1)

Let us also define two new variables for the convenience of this derivation as,

ξ = ln
Q2

Λ2 χ = ln
µ2

Q2 , (5.2)

where this change of variables yields,

d

dµ2 =
1

µ2
d

dχ
. (5.3)

With (5.1) in a simpler form, we can expand this equation out using the chain rule as

follows,

d
dχ

C(αs(ξ + χ), χ) =
d

dχ
αs(ξ + χ)

∂

∂αs
C(αs(ξ + χ), χ)

∣∣∣
χ
+

∂

∂χ
C(αs(ξ + χ), χ)

∣∣∣
αs

=
d

dξ
αs(ξ + χ)

∂

∂αs
C(αs(ξ + χ), χ)

∣∣∣
χ
+

∂

∂χ
C(αs(ξ + χ), χ)

∣∣∣
αs

=
∂

∂ξ
C(αs(ξ + χ), χ)

∣∣∣
χ
+

∂

∂χ
C(αs(ξ + χ), χ)

∣∣∣
αs

= 0 (5.4)

The above reveals a new relationship between the partial derivatives of an RG invariant

quantity with respect to our new variables. Taking our original quantity C(αs(ξ +χ), χ)

and performing a Taylor expansion around the point where µ2 = Q2 or χ = 0 reveals

the following expression,

C(αs(ξ + χ), χ) = C(αs(ξ + χ), 0) + χ
∂

∂χ
C(αs(ξ + χ), 0)

∣∣∣
αs

+
1
2

χ2 ∂2

∂χ2 C(αs(ξ + χ), 0)
∣∣∣
αs

+ . . . (5.5)
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where using (5.4) one can state,

C(αs(ξ + χ), χ) = C(αs(ξ + χ), 0)− χ
∂

∂ξ
C(αs(ξ + χ), 0)

∣∣∣
αs

+
1
2

χ2 ∂2

∂ξ2 C(αs(ξ + χ), 0)
∣∣∣
αs

+ . . . . (5.6)

In general, (5.6) displays how any RG invariant quantity can be described in terms of a

Taylor expansion. Reminding ourselves of the dependence of αs on µ2 (or equivalently

t) we can relate the above back to the running coupling of QCD using,

µ2 d

dµ2 αs(µ
2) =

d
dξ

αs(t) = β(αs(ξ)), (5.7)

d
dξ

C(αs(ξ), 0) =
dαs
dξ

∂

∂αs
C(αs(ξ), 0) = β(αs(ξ))

∂

∂αs
C(αs(ξ), 0) = O(αs) (5.8)

where the final equality is stated noting that β(αs) = O
(

α2
s

)
. Subsequently, with

each derivative of C with respect to ξ, we gain an extra power of αs due to the chain

rule. Tracking back to the expression in (5.6) and bearing in mind that the expression

C(αs, χ) is also expanded in powers of αs, one can match the two sides of this equation

order by order as,

C(0)(αs(ξ + χ), χ) = C(0)(αs(ξ + χ), 0), (5.9a)

C(1)(αs(ξ + χ), χ) = C(1)(αs(ξ + χ), 0)− χ
∂

∂ξ
C(0)(αs(ξ + χ), 0), (5.9b)

C(2)(αs(ξ + χ), χ) = C(2)(αs(ξ + χ), 0)− χ
∂

∂ξ
C(1)(αs(ξ + χ), 0)

+
1
2

χ2 ∂2

∂ξ2 C(0)(αs(ξ + χ), 0). (5.9c)
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Finally, the expressions for the theory uncertainties can be found by subtracting off

the central values C(n)(αs(ξ), 0) at each order n.

The form of the expressions in (5.9) reveal that at each increasing order, the leading

uncertainty from the order below is subtracted off by the term linear in χ in each case

(and the subleading uncertainties by the terms multiplying each subsequent power of

χn). This therefore ensures that the predicted MHOUs are reduced at each order as we

would expect from a valid perturbation theory. However, another prominent feature

one may notice is the dependence of the uncertainty predicted on the chosen variation

manifested in χ. As we will discuss, the lack of any universal truth guiding a sensible

choice of variation represents a significant shortcoming in the scale variation approach

to estimating MHOUs.

As previously discussed in Chapter 3, structure functions are physical quantities

calculated from hadronic processes which by definition, are RG invariant. Isolating the

coefficient function from (3.24) and following a derivation similar to the one described

above for a general quantity, the renormalisation scale dependence present in the

perturbative expansion of the coefficient function can be found as,

C(αs(Q
2)) = c(0) + αs(Q

2)c(1) + α2
s (Q

2)

{
c(2) − β0c(1) ln

(
µ2

r

Q2

)}
+ . . . . (5.10)

The above expression describes the origin of the dependence of a structure function

on the renormalisation scale, however we must also consider the same procedure with

the scale dependence in PDFs.

The PDFs evolve according to the splitting functions, which are calculated to a

finite order in a perturbative expansion. This truncation therefore gives rise to another
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source of MHOU in structure function calculations through the DGLAP equation,

µ2
f

d

dµ2
f

f (x, µ2
f ) = P(x, αs(µ

2
f ))⊗ f (x, µ2

f ). (5.11)

where the scale µ f is the factorisation scale. In order to provide a cleaner space for

the following derivation, we will opt to work in Mellin space via the application of a

Mellin transform (see [157,158] for more details). In Mellin space, convolutions mutate

into simple multiplications and therefore (5.11) can be written in Mellin space as,

µ2 d

dµ2 f (µ2) = γ(αs(µ
2)) f (µ2), (5.12)

where γ(αs(µ
2)) is now the anomalous dimension defined as the Mellin transform of

the x-space splitting functions. Solving the above expression and defining an initial

scale PDF f0 which is fitted to the data one can show,

f (µ2) = exp

(∫ µ2

µ2
0

dµ
′2

µ
′2

γ(αs(µ
′2))

)
f0, (5.13)

where we are permitted to ignore the lower limit of µ2
0 and absorb this into the fitting

procedure of f0.
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Adopting the change of variables outlined in (5.2), the expression for f (µ2) can be

rewritten as,

f (αs(ξ + χ), χ) = exp
(∫ ξ+χ

dξ
′
γ(αs(ξ

′
), χ)

)
f0

= exp
( [∫ ξ+χ

dξ
′
γ(αs(ξ

′
), 0)

]
− χγ(αs(ξ + χ), 0)

+
1
2

χ2 d
dξ

γ(αs(ξ + χ), 0) + . . .
)

f0

=

[
1− χγ(ξ + χ) +

1
2

χ2
(

γ2(ξ + χ)

+
d

dξ
γ(ξ + χ)

)
+ . . .

]
f (ξ + χ, 0) (5.14)

where f (ξ + χ, 0) = exp
(∫ ξ+χ dξ

′
γ(αs(ξ

′
), 0)

)
f0 is the initial central PDF, f0 is the

PDF parameterised in x at a fixed initial scale Q2
0 and the factorisation scale dependence

is defined explicitly outside of the PDF definition.

The two ingredients (5.10) and (5.14) are input into the definition of the structure

function via a convolution (see (3.24)) to achieve the full scale dependence of the

physical quantity at a specified order in perturbation theory. However in performing

this convolution, the individual scale dependencies are tangled up which leads to

issues regarding correlations between scales and also the presence of complicated

convolutions (some of which are provided analytically in Appendix A). In the next sec-

tion we investigate the effects of scale variations (as described above) on the F2(x, Q2)

structure functions using the MMHT14 PDF set.
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Figure 5.1.: Ratio of scale variations found from the non-singlet (left) and singlet (right) F2
structure functions at LO (top), NLO (middle) and NNLO (bottom) in αs. The
notation (aµ f

, aµr
) is used to label the results, where aµ f /r

are the factors that
multiply the central scale as µ f /r = aµ f /r

Q. All plots are displayed as a ratio to the
central scale.
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5.1.1. Structure Functions with Scale Variations

In this less than extensive study, a 3-point convention (aµ f
, aµr

) = (1, 1), (1/2, 1/2),

(2, 2) has been adopted from [9] where aµ f /r
are the factors which multiply the central

energy scale Q. Although the above choice of variation is employed here, we also

note that due to the arbitrary nature of scale variations, any choice is equally as valid.

Fig. 5.1 displays a selection of results from a study done with MMHT14 NLO and

NNLO PDFs [68] as input to non-singlet (left) and singlet (right) F2(x, Q2) structure

functions. In all plots, the ratio to the central structure function prediction with

(aµ f
, aµr

) = (1, 1) at the current order is shown (NLO - above, NNLO - below).

Moving down the individual plots shown in Fig. 5.1 for non-singlet and singlet

structure function quantities, one can appreciate the reduction in the scale variation

between orders. For example in the non-singlet results (left set of plots), most of

the uncertainty from LO is cancelled by the NLO, with the LO variation around

10%− 15% being reduced to around 1%− 3% at NLO. Similarly at NNLO, the resultant

perturbative expansion is more precise across the range of all valid x values. This

trend follows the expectation that estimates of MHOUs across subsequent orders are

reduced, as predicted from the RG equation discussed in the previous section.

As a sanity check, the central values of the next highest order prediction are plotted

where available in Fig. 5.1. In general there is good agreement between the predictions

at LO and NLO with scale variations and the next highest order central value, with

any notable disagreements occurring in the non-singlet case only where FNS
2 → 0.

Considering the bottom set of plots, it is apparent that the scale variations of the

NNLO singlet structure function become a lot smaller than those at NLO and no longer

surround the NNLO central value for a substantial region in x. As mentioned, the
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procedure of scale variation employed here is far from extensive, however this result

does highlight one of the potential shortcomings in using scale variations. Specifically,

the estimations of MHOUs are not guaranteed to lie above and below the central value

meaning a particular prediction may require additional processing of uncertainties to

ascertain a final MHOU.

We also must question the method of scale variations as a whole at this point. The

completely arbitrary choice of scale is a problem that has no natural solution and has

potential to predict highly inaccurate MHOUs. More examples of this behaviour can

be seen in a study by NNPDF [147] where a more extensive scale variation procedure

is used. Therefore while the theoretical procedures outlined in the previous section

provide an intuitive way of understanding how higher order effects can reduce the

dependence of a physical quantity on various scale choices, in practice it can be argued

that scale variations are not a good proxy for estimating MHOUs.

Complications also arise when considering correlations of scale variations between

fit and prediction [10, 12]. It has been shown that if scale variation is used to estimate

a MHOU on a PDF, then keeping this treatment consistent from the fit to prediction,

can lead to an overestimation of theoretical uncertainty. Whereas if scale variation is

only used at the time of fitting/prediction then it cannot account for the full extent of

MHOUs.

5.2. Hessian Method with Nuisance Parameters

More recently a different method of estimating theoretical uncertainties has been

proposed [17, 18] whereby all the uncertainties are estimated via nuisance parameters.

This method lends itself more competently to dealing with correlations between
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uncertainties. For example, the nuisance parameter for a splitting function can be

estimated independently from any coefficient nuisance parameter and so allows for

far greater control of the correlations of uncertainties. Although this method does still

contain some level of arbitrariness in the estimation of nuisance parameters, we are

now permitted to use our intuition and understanding to tackle this issue rather than

relying on any potential mechanical inaccuracies from scale variations.

At present, not all the ingredients necessary for full N3LO theory predictions

are known, where there is missing information the N3LO theory predictions will

therefore include additional theoretical nuisance parameters, allowing their variation

via an additional degree of freedom in specific theoretical pieces. These theoretical

nuisance parameters will be constrained via an additional χ2 penalty in the global

fit and will accommodate a level of uncertainty for each added approximate N3LO

ingredient (more information on how these prior variations are decided is included

in Section’s 6.2, 6.3 and 10.1). From this point, the fitting procedure remains similar

to previous MSHT fits with a number of extra theory nuisance parameters which are

treated in the same manner as experimental nuisance parameters inherent in PDF

fits i.e. they can be fit to the data via an expanded Hessian matrix. The remainder of

this chapter and this thesis will be discussing the implementation and results from

including this procedure in a global PDF fit.

Following the notation and description from [12], in the Hessian prescription, the

Bayesian probability can be written as

P(T|D) ∝ exp
(
−1

2
(T − D)T H0(T − D)

)
(5.15)

where H0 is the Hessian matrix and T = {Ti} is the set of theoretical predictions fit to

N experimental data points D = {Di} with i = 1, . . . , N. Note that in the above we
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assume that P(T) and P(D) follow the same Gaussian prior about the same unknown

true theory i.e. P(T|D) = P(D|T). In this section we explicitly show the adaptation of

this equation to accommodate extra theoretical parameters (with penalties) into the

total χ2 and Hessian matrices.

To adapt this equation to include a single extra theory parameter, we can make

the transformation T → T + tu = T′, where t is the chosen central value of the

theory parameter considered and u is some non-zero vector such that uuT is the theory

covariance matrix for t. In defining this new theoretical prescription T′, we are making

the general assumption that the underlying theory is now not necessarily identical to

our initial NNLO theory1 T.

We now seek to include a nuisance parameter θ, centered around t, to allow the

fit to control this extra theory addition. Demanding that when θ = t, T′ remains

unaffected with the theory addition unaltered from its central value t leads to the

expression,

T′ + (θ − t)u = T + tu + (θ − t)u. (5.16)

To maintain clarity in this derivation, we will absorb the central value t into the

nuisance parameter via a redefinition θ′ = θ − t, where θ′ is interpreted as the shift

from the central value and therefore centered around 0. To constrain θ′ within the

fitting procedure, we must also define a prior probability distribution P(θ′) centered

1For the aN3LO prescription defined in this paper this is indeed the case, although for any extra theory
parameters that do not inherently change the theory from T, this transformation still holds in the
case that t = 0.
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around 0 and characterised by some standard deviation σθ′ ,

P(θ′) =
1√

2πσθ′
exp(−θ′ 2/2σ2

θ′). (5.17)

Throughout this paper, we refer to the chosen variation of theory predictions in the

language of the standard deviation σθ′ presented here. A caveat to this however is that

technically speaking, this standard deviation is chosen with a level of arbitrariness

based on general assumptions and known information about the theory (we will show

how this is done in more detail in Section’s 6.2, 6.3 and 10.1). Although this definition

of σθ′ lacks the full extent of statistical meaning of a true standard deviation, the same

is also true for scale variations as well as various experimental systematic uncertainties,

which are often not strictly Gaussian. Furthermore, a more robust statistical meaning is

recovered for the constraints on various theoretical parameters after a fit is performed,

where we become less sensitive to a prior. Using this information and making the

redefinition u→ u/σθ′ (in order to normalise the covariance matrix), we can update

Equation (5.15) to be

P(T|Dθ) ∝ exp
(
−1

2
(T + tu +

(θ − t)
σθ′

u− D)T H0(T + tu +
(θ − t)

σθ′
u− D)

)
(5.18)

P(T′|Dθ′) ∝ exp

(
−1

2
(T′ +

θ′

σθ′
u− D)T H0(T

′ +
θ′

σθ′
u− D)

)
(5.19)

From here, Bayes theorem tells us

P(T′|Dθ′)P(θ′|D) = P(θ′|T′D)P(T′|D) (5.20)
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where our nuisance parameter θ′ is assumed to be independent of the data i.e. P(θ′|D) =

P(θ′). Integrating over θ′ gives

P(T′|D) =
∫

dθ′P(θ′|T′D)
︸ ︷︷ ︸

=1

P(T′|D) =
∫

dθ′P(T′|Dθ′)P(θ′). (5.21)

Combining Equations (5.17), (5.19) and (5.21) it is possible to show that,

P(T′|D) ∝
∫

dθ′ exp

(
−1

2

[
(T′ +

θ′

σθ′
u− D)T H0(T

′ +
θ′

σθ′
u− D) + θ′ 2/σ2

θ′

])
.

(5.22)

To make progress with this equation we consider the exponent and refactor terms in

powers of θ′,

(
uT H0u + 1

) θ′ 2

σ2
θ′

+ 2uT H0(T
′ − D)

θ′

σθ′
+ (T′ − D)T H0(T

′ − D). (5.23)

Defining M−1 = 1
σ2

θ
′

(
uT H0u + 1

)
one can complete the square by taking the first two

terms in (5.23) as M−1
[
θ′ 2 + 2

σ
θ
′
MuT H0(T

′ − D)θ′
]

and subsequently arriving at,

M−1
[

θ′ +
1

σθ′
MuT H0(T

′ − D)

]2

− 1

σ2
θ′

M
(

uT H0(T
′ − D)

)2

+ (T′ − D)T H0(T
′ − D). (5.24)

In Equation (5.24), we are able to simplify the first term by defining,

θ
′
(T, D) =

1
σθ′

MuT H0(D− T′). (5.25)
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Expanding the second term leaves us with,

(
uT H0(T

′ − D)
)2

= (T′ − D)T H0uuT H0(T
′ − D) (5.26)

The second and third term in Equation (5.24) can then be combined to give,

(T′ − D)T

(
H0 −

1

σ2
θ′

MH0uuT H0

)
(T′ − D). (5.27)

Further to this we note that the following is true:

(H−1
0 +uuT)

(
H0 −

1

σ2
θ′

MH0uuT H0

)
= 1+uuT H0−

1

σ2
θ′

MuuT H0−
1

σ2
θ′

MuuT H0uuT H0

= 1 + uuT H0 −
1

σ2
θ′

MuuT H0 −
1

σ2
θ′

Mu(σ2
θ′M

−1 − 1)uT H0 = 1. (5.28)

Using Equation (5.28) we are finally able to rewrite Equation (5.22) as,

P(T′|D) ∝
∫

dθ′ exp
(
−1

2
M−1(θ′ − θ

′
)2 − 1

2
(T′ − D)T(H−1

0 + uuT)−1(T′ − D)

)
.

(5.29)

At this point we can make a choice whether to redefine our Hessian matrix as H =

(H−1
0 + uuT)−1, or keep the contributions completely separate. By redefining the

Hessian we can include correlations between the standard set of MSHT parameters

included in H0 and the new theoretical parameter θ′ contained within uuT during

the diagonalisation procedure discussed in Chapter 4. However, by doing so we lose

information about the specific contributions to the total uncertainty i.e. one cannot

then decorrelate the theoretical and standard PDF uncertainties a posteriori. Whereas

for the decorrelated choice, although we sacrifice knowledge related to the correlations

between the separate sources of uncertainty, the sources can be treated completely
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separably. This is beneficial when attempting to decorrelate sources of uncertainty

from fit to prediction – a shortcoming of the scale variation approach outlined in the

previous section.

Interpreting Equation (5.29) as in Equation (5.15) we can write down the two χ2

contributions,

χ2
1 = (T′ − D)T(H−1

0 + uuT)−1(T′ − D) = (T′ − D)T H(T′ − D), (5.30)

χ2
2 = M−1(θ′ − θ

′
)2. (5.31)

Where χ2
1 is the contribution from the fitting procedure, χ2

2 is the posterior penalty

contribution applied when the theory addition strays too far from its fitted central

value and M is the posterior error matrix for this contribution. The form of these

central values and their corresponding uncertainties are discussed for each aN3LO

function in Chapter’s 7 to 9.

5.2.1. Multiple Theory Parameters

To accommodate multiple sources of MHOUs from the various perturbative expan-

sions discussed in Chapter 3, the discussion in the previous section must be extended

to multiple theory nuisance parameters.

In the case of multiple Nθ′ theory parameters, Equation (5.19) becomes

P(T′|Dθ′) ∝ exp


−1

2

Npts

∑
i,j

(
T′i +

N
θ
′

∑
α=1

θ′α
σθ′α

uα,i − Di

)
H0

ij

(
T′j +

N
θ
′

∑
β=1

θ′β
σθ′β

uβ,j − Dj

)


(5.32)
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where we have explicitly included the sum over the number of data points Npts in the

matrix calculation for completeness.

The prior probability for all N3LO nuisance parameters also becomes

P(θ′) =
N

θ
′

∏
α=1

1√
2πσθ′α

exp(−θ′ 2
α /2σ2

θ′α
). (5.33)

Constructing P(T′|D) using Bayes theorem as before, results in the expression,

P(T′|D) ∝
∫

dN
θ
′ θ′ exp

(
− 1

2

[ Npts

∑
i,j

(
T′i +

N
θ
′

∑
α=1

θ′α
σθ′α

uα,i − Di

)
H0

ij×

×
(

T′j +
N

θ
′

∑
β=1

θ′β
σθ′β

uβ,j − Dj

)
+

N
θ
′

∑
α,β

θ′α
σθ′α

θ′β
σθ′β

δαβ

])
. (5.34)

Following the same procedure as laid out in the previous section, defining M−1
αβ =

(δαβ + uα,iH
0
ijuβ,j)/σθ′α

σθ′β
and completing the square leaves us with,

(T′i − D′i)H0
ij(T

′
j − D′j) +

N
θ
′

∑
α,β

M−1
αβ





θ′α +

Npts

∑
i,j

N
θ
′

∑
δ=1

1
σθ′α

Mαδuδ,iH
0
ij(T

′
j − Dj)




2

−




Npts

∑
i,j

N
θ
′

∑
δ=1

1
σθ′α

Mαδuδ,iH
0
ij(T

′
j − Dj)




2

 , (5.35)

where the summation over the β index in M−1
αβ is implicit in the squared terms of the

squared bracket expressions.



74 Theoretical Uncertainties

As in the previous section for a single parameter, we can define,

θ
′
α(T
′, D) =

Npts

∑
i,j

N
θ
′

∑
δ=1

1
σθ′α

Mαδuδ,iH
0
ij(Dj − T′j ) (5.36)

Hij =



(

H0
ij

)−1
+

N
θ
′

∑
α=1

uα,iuα,j



−1

(5.37)

which leads to the final expression for P(T|D),

P(T′|D) ∝
∫

dN
θ
′ θ′ exp


−1

2




N
θ
′

∑
α,β

(
θ′α − θ

′
α

)
M−1

αβ

(
θ′β − θ

′
β

)

+

Npts

∑
i,j

(
T′i − Di

)
Hij
(
T′j − Dj

)



 . (5.38)

5.2.2. Decorrelated parameters

In the treatment above we investigated the case of correlated parameters whereby the

Hessian matrix was redefined in Equation (5.37). In performing this redefinition we

sacrifice information contained within uα,iuα,j in order to gain information about the

correlations between the original PDF parameters making up H0
ij and any new N3LO

nuisance parameters. In this case, we can perform a fit to find Hij but one is unable to

separate this Hessian matrix into individual contributions.

As will be discussed in later chapters, the K-factors we include in the N3LO ad-

ditions are somewhat more separate from other N3LO parameters considered. The
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reason for this is that not only are they concerned with the cross section data directly,

they are also included for processes separate from inclusive DIS2.

Thinking in terms of the process dependent and process independent contributions

to the DIS picture in Fig. 3.2 (or any other non-DIS process), the factorisation theorem

naturally separates these two ingredients. Therefore this decorrelation can be under-

stood and justified based on the argument that PDFs are universal and consequently

should not depend on the hard processes.

Hence, we have some justification to include the aN3LO K-factor’s nuisance param-

eters as completely decorrelated from other PDF parameters (including other N3LO

theory parameters). Of course, this procedure ignores some inevitable correlations

between non-DIS processes and the DGLAP evolution, however the dominant con-

straint on the aN3LO splitting functions arises from small-x DIS data, therefore this

approximation is assumed to be valid. The form of these aN3LO splitting functions

will be discussed in detail in Chapter 7. To perform the decorrelation we can rewrite

Equation (5.37) as,



(

H0
ij

)−1
+

N
θ
′

∑
α=1

uα,iuα,j +

Np

∑
p=1

NθK

∑
δ=1

up
δ,iu

p
δ,j



−1

=


H−1

ij +

Np

∑
p=1

K−1
ij,p



−1

= H′ij (5.39)

where Nθ′ → Nθ′ + NθK
, Kij,p defines the extra decorrelated contributions from the

N3LO K-factor’s parameters, stemming from Np processes; Hij is the Hessian matrix

including correlations with parameters associated with N3LO structure function the-

ory; and H′ij is the fully correlated Hessian matrix. It is therefore possible to construct

these matrices separately and perform the normal Hessian eigenvector analysis (de-

2It is true that we may still expect some indirect correlation with the parameters controlling the
N3LO splitting functions, which are universal across all processes. However, as we will show, these
correlations are small and can be ignored.
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scribed in Chapter 4) on each matrix in turn. In doing this, we maintain a high level

of flexibility in our description by assuming the sets of parameters (contained in H−1
ij

and Kij,p) to be suitably orthogonal.



Chapter 6.

Approximating N3LO

With the general procedure for estimating MHOUs explained in the previous chapter,

we must now turn our attention to where the leading MHO’s reside. Since a complete

theory is known up to NNLO for the neutral current structure function we consider

in this work, we require the extension of the perturbative ingredients discussed in

Chapter 3 to N3LO.

This chapter will describe the extension of the DIS F2(x, Q2) structure function

to N3LO in αs and summarise the known and unknown information at this order.

Following this, two methods of approximation will be presented which are used in

Chapter’s 7, 8 and 9 in order to estimate the various N3LO functions.

77
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6.1. Extension of DIS to N3LO

The general form of a structure function F(x, Q2) is a convolution between the PDFs

fi(x, Q2) and some defined process dependent coefficient function C(x, αs(Q
2)),

F(x, Q2) = ∑
i=q,q̄,g

[
Ci(αs(Q

2))⊗ fi(Q
2)
]
(x) (6.1)

where we have the sum over all partons i and implicitly set the factorisation and

renormalisation scales as µ2
f = µ2

r = Q2, a choice that will be used throughout this

thesis for DIS scales. We also note that the relevant charge weightings are implicit in

the definition of the coefficient function for each parton.

In Equation (6.1), the perturbative and non-perturbative regimes are separated

out into coefficient functions Ci and PDFs fi respectively. Since these coefficient

functions are perturbative quantities, they are an important aspect to consider when

transitioning to N3LO.

The PDFs fi(x, Q2) in Equation (6.1) are non-perturbative quantities. However,

their evolution in Q2 is perturbatively calculable. In a PDF fit, the PDFs are param-

eterised at a chosen starting scale Q2
0, which is in general different to the scale Q2 at

which an observable (such as F(x, Q2)) is calculated. It is therefore important that

we are able to accurately evolve the PDFs from Q2
0 to the required Q2 to ensure a

fully consistent and physical calculation. To permit this evolution, we introduce the

standard factorisation scale µ f .
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The flavour singlet distribution is defined as,

Σ(x, µ2
f ) =

n f

∑
i=1

[
qi(x, µ2

f ) + qi(x, µ2
f )
]

, (6.2)

where qi(x, µ2
f ) and qi(x, µ2

f ) are the quark and anti-quark distributions respectively, as

a function of Bjorken x and the factorisation scale µ2
f . The summation in Equation (6.2)

runs over all flavours of (anti-)quarks i up to the number of available flavours n f .

This singlet distribution is inherently coupled to the gluon density. Because of this,

we must consider the gluon carefully when describing the evolution of the flavour

singlet distribution with the energy scale µ f . The Dokshitzer-Gribov-Lipatov-Altarelli-

Parisi (DGLAP) [34] equations that govern this evolution are:

d f

d ln µ2
f
≡ d

d ln µ2
f




Σ

g


 =




Pqq n f Pqg

Pgq Pgg


⊗




Σ

g


 ≡ P⊗ f (6.3)

where Pij : i, j ∈ q, g are the splitting functions and the factorisation scale µ f is allowing

the required evolution up to the physical scale Q2. The matrix of splitting functions P

appropriately couples the singlet and gluon distribution by means of a convolution

in the momentum fraction x. We note here that Pqq ≡ Pq→gq is decomposed into

non-singlet (NS) and a pure-singlet (PS) parts defined by,

Pqq(x) = P+
NS(x) + PPS(x), (6.4)

where the P+
NS is a non-singlet distribution splitting function which has been calculated

approximately to four loops in [159]1. The non-singlet part of Pqq dominates at large-x

1In this discussion, we only consider the P+
NS non-singlet distribution as this is the distribution which

contributes to the singlet evolution. Other non-singlet distributions are briefly discussed in Chapter 7
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but as x → 0, this contribution is highly suppressed due to the relevant QCD sum

rules. On the other hand, due to the involvement of the gluon in the pure-singlet

splitting function (as described above), this contribution grows towards small-x and

therefore begins to dominate.

Turning to the splitting function matrix, each element can be expanded perturba-

tively as a function of αs up to N3LO as,

P(x, αs) = αsP
(0)(x) + α2

s P(1)(x) + α3
s P(2)(x) + α4

s P(3)(x) + . . . , (6.5)

where we have omitted the scale argument of αs(µ
2
r = µ2

f ) ≡ αs for brevity and P(0),

P(1), P(2) are known [34, 62, 63, 160–163]. P(3) are the four-loop quantities which we

approximate in Chapter 7 using information from [159, 164–172].

Considering Equation (6.1), Σ(Q2) and g(Q2) are the singlet and gluon PDFs

respectively, evolved to the required Q2 energy of the process via Equation (6.3). For

more information on the relevant formulae used in this convolution, the reader is

referred to [173].

Thus far, we have limited our discussion to only light quark flavours. However,

as we move through the full range of Q2 values, the number of partons which are

kinematically accessible increases. More specifically, as we pass over the charm and

bottom mass thresholds (where Q2 = m2
c,b) we must account for the heavy quark PDFs

and their corresponding contributions.

To deal with the heavy quark contributions to the total structure function, whilst

remaining consistent with the light quark picture described above, we consider

f
n f +1
α (x, Q2) =

[
Aαi(Q

2/m2
h)⊗ f

n f
i (Q2)

]
(x), (6.6)
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where we have an implied summation over partons i and Aαi are the heavy flavour

transition matrix elements [37, 38] which explicitly depend on the heavy flavour mass

threshold mh, where these contributions are activated2. We also denote the PDFs as

f
n f
i and f

n f +1
i to indicate whether the PDF has been evolved with only light flavours

(n f ) or also with heavy flavours (n f + 1). In this work we only consider contributions

at heavy flavour threshold i.e. where Q2 = m2
h. We then define the PDFs:

f
n f +1
q (x, Q2) =

[
Aqq,H(Q

2/m2
h)⊗ f

n f
q (Q2) + Aqg,H(Q

2/m2
h)⊗ f

n f
g (Q2)

]
(x) (6.7a)

f
n f +1
g (x, Q2) =

[
Agq,H(Q

2/m2
h)⊗ f

n f
q (Q2) + Agg,H(Q

2/m2
h)⊗ f

n f
g (Q2)

]
(x) (6.7b)

f
n f +1
H (x, Q2) =

[
AHq(Q

2/m2
h)⊗ f

n f
q (Q2) + AHg(Q

2/m2
h)⊗ f

n f
g (Q2)

]
(x) (6.7c)

where we have an implicit summation over light flavours of q and a generalised

theoretical description to involve heavy flavour contributions3. Equation (6.7a) and

Equation (6.7b) are the light flavour quark and gluon PDFs defined earlier, modified

to include contributions mediated by heavy flavour loops. Whereas in Equation (6.7c)

we describe the heavy flavour PDF, perturbatively calculated from the light quark and

gluon PDFs.

By considering the number of vertices (and hence orders of αs) required for each of

these transition matrix elements to contribute to their relevant ‘output’ partons, we

are immediately able to show:

2The indices here run as α ∈ {H, q, g} and i ∈ {q, g}, since n f is the number of light flavours.
3Note that the notation Aαi,H is exactly equivalent to Aαi. When H is not present in the final state of

matrix element interactions, we opt for the Aαi,H notation. This is to remind the reader that these
elements are considering only those interactions involving a heavy quark.
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Aqq,H = δ(1− x) + O(α2
s )

Aqg,H = O(α2
s )

Agq,H = O(α2
s )

Agg,H = δ(1− x) + O(αs)

AHq = O(α
2
s )

AHg = O(αs) (6.8)

where Aqq,H and Agg,H include LO δ-functions to ensure this description is consistent

with the light quark picture discussed earlier. It is therefore the AHg transition matrix

element which provides our lowest order contribution to the heavy flavour sector (i.e.

g→ HH).

The insertion of scale independent contributions to Aαi introduce unwanted discon-

tinuities at NNLO into the PDF evolution. In order to ensure the required smoothness

and validity of the structure functions across (x, Q2), these discontinuities must be

accounted for elsewhere in the structure function picture. Equating the coefficient

functions above the mass threshold m2
h (describing the total number of flavours in-

cluding heavy flavour quarks) and those below this threshold, discontinuities are able

to be absorbed by a suitable redefinition of the coefficient functions. This procedure

provides the foundation for the description of different number schemes.

There are two number schemes which are preferred at different points in the

Q2 range. Towards Q2 ≤ m2
h we adopt the Fixed Flavour Number Scheme (FFNS).

Towards Q2

m2
h
→ ∞, the heavy contributions can be considered massless and therefore

the Zero Mass Variable Flavour Number Scheme (ZM-VFNS) is assumed. In order

to join the FFNS and ZM-VFNS schemes seamlessly together, we ultimately wish to

describe the General Mass Variable Number Scheme (GM-VFNS) [59] (which is valid

across all Q2). This scheme can then account for discontinuities from transition matrix

elements and re-establish a smooth description of the structure functions.
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In [60] an ambiguity in the definition of the GM-VFNS scheme was pointed out

(namely the freedom to swap O(m2
h/Q2) terms without violating the definition of

the GM-VFNS). We note here that since [64], MSHT PDFs have employed the TR

scheme to define the distribution of O(m2
h/Q2) terms, the specific details of which are

found in [60, 140, 141]. The general method to relate the FFNS and GM-VFNS number

schemes is to compare the prediction for a result e.g. the F2 structure function in the

FFNS scheme:

F2(x, Q2) = F2,q(x, Q2) + F2,H(x, Q2)

= C
FF, n f
q,i ⊗ f

n f
i (Q2) + C

FF, n f
H,i ⊗ f

n f
k (Q2)

= C
FF, n f
q,q ⊗ f

n f
q (Q2) + C

FF, n f
q,g ⊗ f

n f
g (Q2)

+ C
FF, n f
H,q ⊗ f

n f
q (Q2) + C

FF, n f
H,g ⊗ f

n f
g (Q2) (6.9)

and the GM-VFNS scheme,

F2(x, Q2) = ∑
α∈{H,q,g}

(
C

VF, n f +1
q,α ⊗ Aαi(Q

2/m2
h)⊗ f

n f
i (Q2)

+C
VF, n f +1
H,α ⊗ Aαi(Q

2/m2
h)⊗ f

n f
i (Q2)

)
, (6.10)

where F2,q and F2,H are the light and heavy flavour structure functions respectively4.

CFF,n f and CVF,n f +1 are the FFNS (known up to NLO [174, 175] with some information

at NNLO [176–178] including high-Q2 transition matrix elements at O(α3
s ) [178–183])

and GM-VFNS coefficient functions respectively, and Aαi(Q
2/m2

h) are the transition

matrix elements. We note that the above also applies to other structure functions

and for clarity, in the following we consider the light and heavy structure functions

separately.

4The extra contribution from F2,H allows for the possibility of final state heavy flavours.



84 Approximating N3LO

6.1.1. F2,q

Expanding the first term in Equation (6.10) in terms of the transition matrix elements

results in,

F2,q(x, Q2) = C
VF, n f +1
q,H ⊗

[
AHq(Q

2/m2
h)⊗ f

n f
q (Q2) + AHg(Q

2/m2
h)⊗ f

n f
g (Q2)

]

+ C
VF, n f +1
q,q ⊗

[
Aqq,H(Q

2/m2
h)⊗ f

n f
q (Q2) + Aqg,H(Q

2/m2
h)⊗ f

n f
g (Q2)

]

+ C
VF, n f +1
q,g ⊗

[
Agq,H(Q

2/m2
h)⊗ f

n f
q (Q2) + Agg,H(Q

2/m2
h)⊗ f

n f
g (Q2)

]
,

(6.11)

which is valid at all orders. The first term in Equation (6.11) is the contribution to

the light quark structure function from heavy quark PDFs (since the term contained

within square brackets is exactly our definition in Equation (6.7c)). Due to this, the

coefficient function Cq,H describes the transition of a heavy quark to a light quark via

a gluon and is therefore forbidden to exist below NNLO. The second and third terms

here are the purely light quark and gluon contributions, with extra corrections from

heavy quark at higher orders.
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Using the definitions in Equation (6.8) we can obtain an equation for F2,q(x, Q2) up

to O(α3
s ) as,

F2,q(x, Q2) = CVF, (0)
q,q ⊗ fq(Q

2) +
αs
4π

{
CVF, (1)

q,q, n f +1 ⊗ fq(Q
2) + CVF, (1)

q,g, n f +1 ⊗ fg(Q
2)

}

+
( αs

4π

)2
{[

CVF, (2)
q,q, n f +1 + CVF, (0)

q,q ⊗ A(2)
qq,H

]
⊗ fq(Q

2) +

[
CVF, (2)

q,g, n f +1

+ CVF, (1)
q,g, n f +1 ⊗ A(1)

gg,H + CVF, (0)
q,q ⊗ A(2)

qg,H

]
⊗ fg(Q

2)

}

+
( αs

4π

)3
{[

CVF, (3)
q,q, n f +1 + CVF, (1)

q,q, n f +1 ⊗ A(2)
qq,H + CVF, (1)

q,g, n f +1 ⊗ A(2)
gq,H

+ CVF, (0)
q,q ⊗ A(3)

qq,H

]
⊗ fq(Q

2)

+

[
CVF, (3)

q,g, n f +1 + CVF, (1)
q,g, n f +1 ⊗ A(2)

gg,H + CVF, (1)
q,q, n f +1 ⊗ A(2)

qg,H

+ CVF, (2)
q,g, n f +1 ⊗ A(1)

gg,H + CVF, (0)
q,q ⊗ A(3)

qg,H

]
⊗ fg(Q

2)

+ CVF, (2)
q,H ⊗ A(1)

Hg ⊗ fg(Q
2)

}
+O(α4

s ) (6.12)

where CVF, (0)
q,q = δ(1− x) up to charge weighting. Equation (6.12) defines the light

quark structure function to N3LO including heavy flavour corrections5.

6.1.2. F2,H

Moving to the heavy quark structure function in Equation (6.9), as above the second

term in Equation (6.10) can be expanded in terms of the transition matrix elements to

5We also note that α
n f +1
s 6= α

n f
s and account for this, but omit in expressions such as Equation (6.12)

for simplicity
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obtain,

F2,H(x, Q2) = C
VF, n f +1
H,H ⊗

[
AHq(Q

2/m2
h)⊗ f

n f
q (Q2) + AHg(Q

2/m2
h)⊗ f

n f
g (Q2)

]

+ C
VF, n f +1
H,q ⊗

[
Aqq,H(Q

2/m2
h)⊗ f

n f
q (Q2) + Aqg,H(Q

2/m2
h)⊗ f

n f
g (Q2)

]

+ C
VF, n f +1
H,g ⊗

[
Agq,H(Q

2/m2
h)⊗ f

n f
q (Q2) + Agg,H(Q

2/m2
h)⊗ f

n f
g (Q2)

]
,

(6.13)

which is valid at all orders. Similar to Equation (6.11), we have a contribution from

the heavy flavour quarks, the light quarks and the gluon respectively. However in this

case, due to the required gluon intermediary, the coefficient functions associated with

the light quark flavours and gluon are forbidden to exist below NNLO. Considering

the CH,H function, we are able to choose this to be identically the ZM-VFNS light

quark coefficient function Cq,q up to kinematical suppression factors, since at Q2 → ∞

these functions must be equivalent [59, 141, 184].
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The full heavy flavour structure function then reads as,

F2,H(x, Q2) =
αs
4π

[
CVF, (1)

H,g + CVF, (0)
H,H ⊗ A(1)

Hg

]
⊗ fg(Q

2)

+

(
αs
4π

)2{[
CVF, (2)

H,q + CVF, (0)
H,H ⊗ A(2)

Hq

]
⊗ fq(Q

2)

+

[
CVF, (2)

H,g + CVF, (1)
H,g ⊗ A(1)

gg,H + CVF, (1)
H,H ⊗ A(1)

Hg + CVF, (0)
H,H ⊗ A(2)

Hg

]
⊗ fg(Q

2)

}

+

(
αs
4π

)3{[
CVF, (3)

H,q + CVF, (1)
H,g ⊗ A(2)

gq,H

+ CVF, (1)
H,H ⊗ A(2)

Hq + CVF, (0)
H,H ⊗ A(3)

Hq

]
⊗ fq(Q

2)

+

[
CVF, (3)

H,g + CVF, (2)
H,g ⊗ A(1)

gg,H + CVF, (1)
H,g ⊗ A(2)

gg,H + CVF, (2)
H,H ⊗ A(1)

Hg

+ CVF, (1)
H,H ⊗ A(2)

Hg + CVF, (0)
H,H ⊗ A(3)

Hg

]
⊗ fg(Q

2)

}

(6.14)

where combining Equation (6.12) and Equation (6.14), one can obtain the full structure

function F2(x, Q2). Equating the FFNS expansion from Equation (6.9) to the above

expressions in the GM-VFNS setting, one can find relationships between the two

pictures. In Chapter 9 we use this equivalence to enable the derivation of the GM-

VFNS functions at N3LO.

To summarise, we have identified the leading theoretical ingredients entering the

structure functions and detailed how these affect the PDFs. As we will discuss further,

when pushing these equations to N3LO, there is already some knowledge available.

For example, the N3LO ZM-VFNS coefficient functions are known precisely for n f = 3

from [185], as are a handful of Mellin moments [159, 171, 172, 179] and leading small

and large-x terms [164–170, 178, 180–182] associated with the splitting functions and

transition matrix elements at N3LO. Using this information, we approximate these
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functions to N3LO and incorporate the results into the first approximate N3LO global

PDF fit.

6.2. Approximation Framework: Discrete Moments

As discussed in Chapter 3 and more specifically in Sect. 6.1, there exists sets of splitting

functions and transition matrix elements which, along with the coefficient functions,

are primary sources of MHOUs.

In order to estimate the sources of MHOUs from N3LO splitting functions and

transition matrix elements, and ultimately include them into the multi-parameter

framework described in Chapter 5, one must acquire some approximation at N3LO.

Here we summarise how using available sets of discrete Mellin moments for each

function, along with any already calculated exact leading terms, can guide N3LO

estimations.

To perform the parameterisation of the unknown N3LO quantities, we follow a

similar estimation procedure as in [186, 187] following the form,

F(x) =
Nm

∑
i=1

Ai fi(x) + fe(x). (6.15)

In Equation (6.15), Nm is the number of available moments, Ai are calculable coeffi-

cients, fi(x) are functions chosen based on our intuition and theoretical understanding

of the full function, and fe(x) encapsulates all the currently known leading exact con-

tributions at either large or small-x. To describe this, consider a toy situation where we

are given four data points described by some unknown degree 6 polynomial. Along

with this information, we are told the dominant term at large-x is described by 2x6.
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In this case, one may wish to attempt to approximate this function by means of a set

of 4 simultaneous equations formed from Equation (6.15) equated to each of the four

data points (or constraints). The result of this is then a unique solution for each chosen

set of functions { fi(x)}. However, a byproduct of this is that for each { fi(x)}, one

lacks any means to control the uncertainty in these approximate solutions. In order to

allow a controllable level of uncertainty into this approximation, one must introduce

an extra degree of freedom. This degree of freedom will be introduced through an

unknown coefficient a ≡ ANm+1, which for convenience, will be absorbed into the

definition of fe(x)→ fe(x, a). In this toy example one is then able to choose to define

the functions fi(x) as,

f1(x) = x4,

f2(x) = x3

f3(x) = x2

f4(x) = 1 or x,

fe(x, a) = 2x6 + ax5, (6.16)

where we have prioritised approximating the large-x behaviour more precisely than

the small-x behaviour i.e. the small-x behaviour contains an inherent functional

uncertainty from the ambiguity in the choice of functions for f4(x). This could easily

be adapted and even reversed depending on which region of x we are most sensitive to.

Using these functions, one is then able to assemble a set of potential approximations to

the overall polynomial, each uniquely defined by a set of functions and corresponding

coefficients {Ai, a, fi}.

As mentioned, for the N3LO additions considered in this framework we use the

available calculated moments as constraints for the corresponding simultaneous equa-
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tions. In the case of the N3LO QCD splitting functions, from recent results considering

the four-loop splitting functions with the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equa-

tion [170], the small-x leading logarithm (LL) is known exactly for all Pij. Similarly for

the N3LO transition matrix elements, there is a mixture of small and large-x exact be-

haviours already known [180–183]. A summary of all the known and used ingredients

for all N3LO approximations is provided in Appendix C. The details of these known

quantities will be discussed in detail in Chapter 7 and Chapter 8. We also mention here

that towards the small-x regime, the leading terms present in the splitting functions

and transition matrix elements exhibit the relations,

Fgg(x → 0) 'CA
CF

Fgq(x → 0), (6.17a)

Fqq(x → 0) 'CF
CA

Fqg(x → 0), (6.17b)

where Fij ∈ {Pij, Aij,H} and CA, CF are the usual QCD constants. Although Equa-

tion (6.17) are exact at leading order, it is known that as we expand to higher orders,

these will break down due to the effect of large sub-leading logarithms. Due to this,

we do not demand this relation as a constraint in our approximations. Instead we

discuss the validity of Equation (6.17) in comparison with the aN3LO functions.

Following from [186,187], we must choose a set of candidate functions for each fi(x).

Our convention is to assign these functions such that at large-x, f1(x) is dominant,

while at small-x, fNm
(x) is dominant. With fi(x) ∀i ∈ {2, . . . , Nm − 1}, dominating

in the region between. This ensures enough scope to cover the full kinematic range

of x with the goal of achieving a full picture of the entire function, not just in one

specific region of x. The sets of functions assigned to each fi(x) are determined for

each N3LO function based on knowledge from lower orders and our intuition about

what to expect at N3LO.
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Analogous to our toy polynomial example, we allow the inclusion of an unknown

next-to-leading small-x logarithm (NLL) term (NNLL in the Pgg case) into the fe

function of our parameterisation. The coefficient of this NLL (NNLL) term is then

controlled by a variational parameter a. This parameter uniquely defines the solution

to the sets of simultaneous equations considered i.e. for each set of functions fi(x)

there exists a unique solution for every possible choice of a. The final step to consider

in this approximation is how to choose the prior allowed variation of a in a sensible

way for each N3LO approximation. To do this, we consider the criteria outlined below:

Criteria 1: At very small-x (x < 10−5), we require the asymptote of fe to

be contained within the uncertainty band of the N3LO approxi-

mation i.e. the full function cannot be in a large tension with

the small-x description.

Criteria 2: At large-x (x > 10−2) the N3LO contribution should have

relatively little effect. More specifically, we do not expect as

large of a divergence as we do at small-x. Due to this, we

require that the trend of the N3LO approximation follow the

general trend of the NNLO function at large-x.

The allowed variation in a gives us an uncertainty which, at its foundations, is

chosen via a conservative estimate based on all the available prior knowledge about

the function and lower orders being considered. To determine a full predicted un-

certainty for the function and allow for a computationally efficient fixed functional

form, the variation of a can absorb the uncertainty from the ambiguity in the choice

of functions fi(x) (essentially expanding the allowed range of a). Since the functions

are approximations themselves, increasing the allowed variation of a to encapsulate
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the total uncertainty predicted by the initial treatment described above is a valid

simplification.

A worked example following this procedure is provided for the P(3)
qg and A(3)

Hg

functions in Chapter’s 7 and 8 respectively.

6.3. Approximation Framework: Continuous

Information

In the previous section we described the approximation framework employed for

functions with discrete Mellin moment information, combined with any available

exact information. For the N3LO coefficient function approximations, we have access

to a somewhat richer vein of information than the discrete moments discussed for the

framework in Section 6.2. More specifically, approximations of the FFNS coefficient

functions at N3LO are known for the heavy quark contributions to the heavy flavour

structure function F2,H(x, Q2) at Q2 < m2
c,b [176–178] (discussed further in Chapter 6).

These approximations include the exact LL and mass threshold contributions, with an

approximated NLL term (the details of this are described in Chapter 9). Furthermore,

the N3LO ZM-VFNS coefficient functions are known exactly [185]. Both of these

contributions can then be combined with the transition matrix element approximations

to define the GM-VFNS functions in the Q2 ≤ m2
c , m2

b and Q2 → ∞ regimes (as

introduced in Chapter 3 and extended to N3LO in Chapter 6). Due to this, we base our

approximations for the C(3)
H,{q,g} functions on the known continuous information in the

low and high-Q2 regimes.
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To achieve a reliable approximation for C(3)
H,{q,g}, we first fit a regression model

with a large number of functions in (x, Q2) space made available to the model (in

order to reduce the level of functional bias in the parameterisation). This produces an

unstable result at the extremes of the parameterisation (large-x and low-Q2). However,

it provides a basis for manually choosing a stable parameterisation to move between

the two known regimes (low-Q2 and high-Q2).

Using the regression model predictions as a qualitative guide, we choose a stable

and smooth interpolation between the two Q2 regimes (low-Q2 and high-Q2) as given

in Equation (6.18). This interpolation is observed to mirror the expected behaviour

observed from lower orders, the regression model qualitative prediction having been

calculated independently of lower orders and the best fit quality to data. By definition,

we also ensure an exact cancellation between the coefficient functions and the transi-

tion matrix elements at the mass threshold energies as demanded by the theoretical

description in Chapter 3 and more specifically in Chapter 6.

For the contributions to the heavy flavour structure function F2,H the final interpo-

lations in the FFNS regime are defined as,

CFF, (3)
H, {q,g} =





CFF, (3)
H, {q,g}, low-Q2(x, Q2 = m2

h) e0.3 (1−Q2/m2
h)

+ CFF, (3)
H, {q,g}(x, Q2 → ∞)

(
1− e0.3 (1−Q2/m2

h)
)

, if Q2 ≥ m2
h,

CFF, (3)
H, {q,g}, low-Q2(x, Q2) , if Q2 < m2

h.

(6.18)

where CFF, (3)
H, {q,g}, low-Q2 are the already calculated approximate heavy flavour FFNS

coefficient functions at Q2 ≤ m2
h, and CFF, (3)

H, {q,g}(Q
2 → ∞) is the limit at high-Q2 found
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from the known ZM-VFNS coefficient functions and relevant subtraction terms. Both

of these limits will be discussed in detail on a case-by-case basis in Chapter 9.

For the heavy flavour contributions to F2,q, we have no information about the

low-Q2 N3LO FFNS coefficient functions. In this case, we use intuition from lower

orders to provide a soft (lightly weighted) low-Q2 target for our regression model in

(x, Q2). The chosen expected low-Q2 behaviour is again discussed on a case-by-case

basis in Chapter 9 for the relevant coefficient functions. However, since the overall

contribution is very small from these functions, the exact form of these functions is

not phenomenologically important at present. Further to this, our understanding

from lower orders is that these functions have a weak dependence on Q2 and so the

form of the low-Q2 description is even less important. As with the C(3)
H, {q,g} coefficient

functions, the regression results provide an initial qualitative guide which exhibits

instabilities in the extremes of (x, Q2). We therefore employ a similar technique as

before to ensure a smooth extrapolation across all (x, Q2) into the unknown behaviour

at low-Q2. For these functions, the ansatz used is given as,

CFF, (3)
q, {q,g} =





CFF, NS, (3)
q, q (x, Q2 → ∞)

(
1 + e−0.5 (Q2/m2

h)−3.5),

CFF, PS, (3)
q, q (x, Q2 → ∞)

(
1− e−0.25 (Q2/m2

h)−0.3),

CFF, (3)
q, g (x, Q2 → ∞)

(
1− e−0.05 (Q2/m2

h)+0.35),

(6.19)

where CFF, (3)
q,{q,g}(x, Q2 → ∞) is the known limit at high-Q2.



Chapter 7.

N3LO Splitting Functions

Splitting functions at N3LO allow us to more accurately describe the evolution of

the PDFs. These functions are estimated here and the resulting approximations are

included within the framework described in Chapter 6. In all singlet cases we set

n f = 4 before constructing our approximations and ignore any corrections to this from

any further change in the number of flavours1. In the non-singlet case, we calculate the

approximate parts of PNS, (3)
qq with n f = 4 however, there is a relatively large amount

of information about the n f -dependence included from [159]. Therefore in the final

result we choose to allow the leading n f -dependence to remain for the non-singlet

splitting function.

1An exception to this are the cases of Pqg and PPS
qq where we have already defined Pqg ≡ n f Pqg and

PPS
qq ≡ n f PPS

qq . Therefore the leading n f dependence is already taken into account.

95
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7.1. 4-loop Approximations

P(3)
qg

We begin by considering the four-loop quark-gluon splitting function. Here we provide

a more detailed explanation of the method described in Section 6.2 which will then

be applied to the remaining splitting functions considered in this section. Four even-

integer moments are known for P(3)
qg (n f = 4) from [171,172], along with the LL small-x

term from [164].

The functions we make available for the Pqg analysis are,

f1(x) =
1
x

or ln4 x or ln3 x or ln2 x,

f2(x) = ln x,

f3(x) = 1 or x or x2,

f4(x) = ln4(1− x) or ln3(1− x) or ln2(1− x) or ln(1− x),

fe(x, ρqg) =
C3

A

3π4

(
82
81

+ 2ζ3

)
1
2

ln2 1/x
x

+ ρqg
ln 1/x

x
, (7.1)

where ρqg is the variational parameter. This is varied between −2.5 < ρqg < −0.9,

which has been chosen to satisfy the criteria described in Section 6.2. The set of

functions in Equation (7.1) is chosen from the analysis of lower orders. Specifically,

following the pattern of functions from lower orders, it can be shown that at this order

we expect the most dominant large-x term to be ln4(1− x) and ln4 x to be the highest

power of ln x at small-x.

Fig. 7.1 displays an example of the variation found from the different choices of

functions that encapsulate the chosen range of ρqg. We also show the upper (A) and
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Figure 7.1.: Combinations of functions with an added variational factor (ρqg) controlling the
NLL term. Combinations of functions at the upper (left) and lower (right) bounds
of the variation are shown. The solid lines indicate the upper and lower bounds
for this function chosen from the relevant criteria. The coloured lines show the
candidate functions from each combination of functional forms in (7.1).

lower (B) bounds (at small-x) for the entire uncertainty (solid line) combining the

variation in the functions and in the variation of ρqg. The upper (P(3),A
qg ) and lower

(P(3),B
qg ) bounds are given by,

P(3),A
qg = 5.5219

1
x
+ 10.401 ln x− 6.5373 x2 + 0.0036299 ln4(1− x)

+
C3

A

3π4

(
82
81

+ 2ζ3

)
1
2

ln2 1/x
x

− 1.7
ln 1/x

x
, (7.2)

P(3),B
qg = 12.582 ln2 x + 5.3065 ln x + 1.7957 x2 − 0.0041296 ln4(1− x)

+
C3

A

3π4

(
82
81

+ 2ζ3

)
1
2

ln2 1/x
x

− 2.5
ln 1/x

x
. (7.3)



98 N3LO Splitting Functions

Using this information, a fixed functional form is chosen to be,

P(3)
qg = A1 ln2 x + A2 ln x + A3 x2 + A4 ln4(1− x)

+
C3

A

3π4

(
82
81

+ 2ζ3

)
1
2

ln2 1/x
x

+ ρqg
ln 1/x

x
(7.4)

and ρqg is allowed to vary as −2.5 < ρqg < −0.8. This fixed functional form identically

matches with the lower bound P(3),B
qg and the expansion of the variation of ρqg enables

(to within ∼ 1%) the absorption of the small-x upper bound uncertainty (predicted

from P(3),A
qg ) into the variation. In other areas of x there are larger deviations from the

upper bound (∼ 10%) when using this convenient fixed functional form. However, in

these regions the function is already relatively small, therefore any larger percentage

deviations are negligible. Also since the heuristic choice of variation found earlier is

intended as a guide, we are not bound by any solid constraints to precisely reconstruct

it with our subsequent choice of fixed functional form. Therefore it is entirely justified

to be able to slightly adapt the shape of the variation in less dominant regions.

PNS, (3)
qq

As discussed in Chapter 3, the quark-quark splitting function is comprised of a pure-

singlet and non-singlet contribution. We approximate each part independently, al-

though the final quark-quark singlet function will be almost completely dominated by

the pure-singlet, except at very high-x.

The four-loop non-singlet splitting function has been the subject of relatively exten-

sive research and is known exactly for a number of regimes. For example in [159], some

important exact contributions to the four-loop non-singlet splitting functions are pre-

sented, along with 8 even-integer moments for each of the + and − distributions [159].
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In this discussion we are exclusively approximating the non-singlet +-distribution,

as this is the part that contributes to the full singlet quark-quark splitting function.

The other relevant non-singlet distributions P(3), −
NS and P(3), sea

NS (described in [62]), are

set to the central values predicted from [159] since any variation in these functions

are negligible. All presently known information is used in this approximation, with

results similar to that seen in [159] but with our own choice of functions.

f1(x) =
1

(1− x)+
, f2(x) = (1− x) ln(1− x), f3(x) = (1− x) ln2(1− x),

f4(x) = (1− x) ln3(1− x), f5(x) = 1, f6(x) = x, f7(x) = x2, f8(x) = ln2 x,

fe(x, ρNS
qq ) = CFn3

c P(3)
L,0 (x) + CFn2

c n f P(3)
L,1 (x) + P(3)+

Ln f
(x) + ρNS

qq ln3 x

− 55.876 ln4 x− 2.8313 ln5 x− 0.14883 ln6 x− 2601.7− 2118.9 ln(1− x)

+ n f

(
4.6584 ln4 x + 0.2798 ln5 x + 312.16 + 337.93 ln(1− x)

)
(7.5)

where the functions CFn3
c P(3)

L,0 (x) + CFn2
c n f P(3)

L,1 (x) and P(3)+
Ln f

(x) can be found in Equa-

tion (4.11) and Equation (4.14) respectively within [159], and ρNS
qq is our variational

parameter. Note that the ansatz from Equation (6.15) has been extended to include 8

pairs of functions and coefficients, to accommodate 8 known moments. Within the

fe(x, ρNS
qq ) part of Equation (7.5), we have chosen to vary the coefficient of the most

divergent unknown small-x term (ln3 x) with the variation across 0 < ρNS
qq < 0.014.

Due to the high level of information and larger number of functions allowed to be

included, we ignore any functional uncertainty and explicitly define each function.

Therefore the only variation needed to be considered as an uncertainty stems from the

variation of ρNS
qq .
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The resulting approximation is then,

P(3), +
NS = A1

1
(1− x)+

+ A2 (1− x) ln(1− x) + A3 (1− x) ln2(1− x)

+ A4 (1− x) ln3(1− x) + A5 + A6 x + A7 x2 + A8 ln2 x + fe(x, ρNS
qq ), (7.6)

where no alterations are made to the allowed range of 0 < ρNS
qq < 0.014.

PPS, (3)
qq

We now restrict our analysis to focus on approximating the pure-singlet part of P(3)
qq ,

thereby providing a more accurate set of functions with a focus on the small-x regime.

To ensure the PPS, (3)
qq function does not interfere with the large-x regime (where the

non-singlet description dominates) the ansatz from Equation (6.15) is adapted to be:

P(3)
ij (x) =

{
A1 f1(x) + A2 f2(x) + A3 f3(x) + A4 f4(x)

}
(1− x) + fe(x, ρPS

qq ). (7.7)

This modified parameterisation guarantees that any instabilities in the pure singlet

approximation will not wash out the non-singlet behaviour at large-x.
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Using four available even-integer moments for n f = 4 [171, 172] and the exact

small-x information [164], the chosen set of functions for this approximation is,

f1(x) =
1
x

or ln4 x,

f2(x) = ln3 x or ln2 x or ln x,

f3(x) = 1 or x or x2,

f4(x) = ln4(1− x) or ln3(1− x) or ln2(1− x) or ln(1− x),

fe(x, ρPS
qq ) =

C2
ACF

3π4

(
82
81

+ 2ζ3

)
1
2

ln2 1/x
x

+ ρPS
qq

ln 1/x
x

, (7.8)

where ρPS
qq is varied as −0.7 < ρPS

qq < 0. For the variation produced from stable

combinations of these functions, we coincidentally end up with the same functional

form for both the upper P(3), A
PS and lower P(3), B

PS bounds. Therefore trivially, the fixed

functional form is defined as:

P(3)
PS =

{
A1

1
x
+ A2 ln2 x + A3 x2 + A4 ln2(1− x)

}
(1− x) +

C2
ACF

3π4

(
82
81

+ 2ζ3

)
1
2

ln2 1/x
x

+ ρPS
qq

ln 1/x
x

(1− x) (7.9)

where the variation of ρPS
qq is unchanged and the entire predicted variation is encapsu-

lated in this form.

P(3)
gq

As with the previous singlet splitting functions, four even-integer moments for n f = 4

are known [171, 172] along with the LL small-x information [165–167]. The set of
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functions we make available for the combinations in our approximation are stated as,

f1(x) =
ln 1/x

x
or

1
x

,

f2(x) = ln3 x,

f3(x) = x or x2,

f4(x) = ln4(1− x) or ln3(1− x) or ln2(1− x) or ln(1− x),

fe(x, ρgq) =
C3

ACF

3π4 ζ3
ln3 1/x

x
+ ρgq

ln2 1/x
x

, (7.10)

where ρgq is set as ρgq = −1.8. In this case, the variation from the choice of functions

is large enough to satisfy the criteria in Section 6.2 and encapsulate a sensible ± 1σ

variation without including any further variation in ρgq. Similarly to previous approx-

imations, for stable variations we estimate this variation with the fixed functional

form,

P(3)
gq = A1

ln 1/x
x

+ A2 ln3 x + A3 x + A4 ln(1− x) +
C3

ACF

3π4 ζ3
ln3 1/x

x
+ ρgq

ln2 1/x
x

(7.11)

where the allowed range of ρgq is expanded to −1.8 < ρgq < −1.5 to approximate the

variation from the choice of functions. As with the P(3)
qg fixed functional form, this new

range recovers a variation which is within ∼ 1% of the original, in the dominant areas

of x.

P(3)
gg

Finally we move to the approximation of the gluon-gluon splitting function, where

four available even-integer moments for P(3)
gg (n f = 4) are known from [171, 172]. The
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list of functions (including the known small-x LL and NLL terms from [165–169]) used

for the approximation is,

f1(x) =
1
x

or ln3 x or ln2 x,

f2(x) = ln x,

f3(x) = 1 or x or x2,

f4(x) =
1

(1− x)+
or ln2(1− x) or ln(1− x),

fe(x, ρgg) =
C4

A

3π4 ζ3
ln3 1/x

x
+

1

π4

[
C4

A

(
− 1205

162
+

67
36

ζ2 +
1
4

ζ2
2 −

11
2

ζ3

)

+ n f C3
A

(
− 233

162
+

13
36

ζ2 −
1
3

ζ3

)

+ n f C2
ACF

(
617
243
− 13

18
ζ2 +

2
3

ζ3

)]
1
2

ln2 1/x
x

+ ρgg
ln 1/x

x
, (7.12)

where ρgg is varied as −5 < ρgg < 15 and n f = 4. The fixed functional form is then

chosen to be,

P(3)
gg = A1 ln2 x + A2 ln x + A3 x2 + A4 ln2(1− x) +

C4
A

3π4 ζ3
ln3 1/x

x

+
1

π4

[
C4

A

(
− 1205

162
+

67
36

ζ2 +
1
4

ζ2
2 −

11
2

ζ3

)
+ n f C3

A

(
− 233

162
+

13
36

ζ2 −
1
3

ζ3

)

+ n f C2
ACF

(
617
243
− 13

18
ζ2 +

2
3

ζ3

)]
1
2

ln2 1/x
x

+ ρgg
ln 1/x

x
, (n f = 4) (7.13)

where we maintain the variation of ρgg from above, as the fixed functional form man-

ages to encapsulate the variation predicted, without any extra allowed ρgg variation.
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Figure 7.2.: Perturbative expansion up to aN3LO for the non-singlet splitting function PNS, +
qq

including any corresponding allowed ± 1σ variation (shaded green region). The
best fit value (blue dashed line) displays the prediction for this function determined
from a global PDF fit.

7.2. Predicted aN3LO Splitting Functions

Fig.’s 7.2, 7.3 and 7.4 show the perturbative expansions for each splitting function up

to approximate N3LO. Included with these expansions are the predicted variations

(± 1σ) from Section 7.1 (shown in green) and the aN3LO best fits (shown in blue – dis-

cussed further in Chapter 11). As a general feature, we observe that the singlet N3LO

approximations are much more divergent than lower orders due to the presence of

higher order logarithms at small-x, further highlighting the need for an understanding

of MHOUs which is not reliant on the NNLO central value.

Considering the non-singlet case shown in Fig. 7.2, we see a very close agreement

at large-x between PNS
qq expanded to NNLO and aN3LO. This is a general feature of
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Figure 7.3.: Perturbative expansions up to aN3LO for the quark singlet splitting functions
PPS

qq (top) and Pqg (bottom) including any corresponding allowed ± 1σ variation
(shaded green region). The best fit values (blue dashed line) display the predictions
for each function determined from a global PDF fit.
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Figure 7.4.: Perturbative expansions for the gluon splitting functions Pgq (top) and Pgg (bottom)
including any corresponding allowed ± 1σ variation (shaded green region). The
best fit value (blue dashed line) displays the prediction for this function determined
from a global PDF fit.
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the non-singlet distribution, since by design, this distribution is largely unaffected by

small-x contributions. The ratio plot in Fig. 7.2 provides clearer evidence for this, since

it is only towards small-x (where the non-singlet distribution tends towards 0) that

any noticeable difference between NNLO and aN3LO can be seen.

The contributions to PPS
qq , Pqg, Pgq and Pgg shown in Fig.’s 7.3 and 7.4 respectively,

display a much richer description at aN3LO. In all cases, the divergent terms (with

x → 0) present in the approximations have a large effect from intermediate-x (∼ 10−2)

down to very small-x values. The asymptotic relationships (red line) Equation (6.17)

defined using the best fit values of the aN3LO expansions (i.e. comparable to the blue

dashed line) are also shown in Fig.’s 7.3 and 7.4. As discussed earlier, these relations

are violated by large sub-leading small-x terms and are therefore provided here as

a qualitative comparison. Furthermore, we also observe a close resemblance to the

N3LO asymptotic results in Fig. 4 of [170]. Specifically for quark evolution, we show

that the data prefers a similar form (PPS
qq and Pqg) to the resummed splitting function

results in [170] whereas for gluon evolution, this agreement is less prominent.

Superimposed onto these variations in Fig.’s 7.3 and 7.4 are the best fit values for

the splitting functions, as predicted from a global fit of the full MSHT approximate

N3LO PDFs. The full fit results will be discussed in more detail in Chapter 11, however

we note here that the fit produces relatively good agreement with the prior allowed

variations for each of the splitting functions. For all functions except for Pgg, the best

fit results lie within their ± 1σ variation range. This result implies that constraints

from the data included in the global fit are in good agreement with the penalties

describing quark evolution (i.e. PPS and Pqg in Fig. 7.3). For the gluon evolution in

Fig. 7.4 we observe a small level of tension with the data pushing towards a slightly

harder small-x gluon than preferred by the penalty constraints for Pgg. An important
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caveat to these best fit results is that the data included in the fit is sensitive to all orders

in αs. Therefore by proxy, the best fit predictions are also sensitive to corrections at

all orders. This will certainly be a driving factor for any violations away from the

expected N3LO behaviour. However, since the ultimate goal of this investigation is to

provide a theoretical uncertainty, the violation from higher orders is manifested into

the defined penalties and therefore accounted for in the fit as a source of MHOU.

Finally, an important feature that can be seen across all these splitting function

plots are points of zero aN3LO uncertainty in the high-x regions. The regions where

these points occur are where the moments are constraining the chosen fixed functional

forms very tightly. In particular, for Nm moments (constraints) in Equation (6.15), we

are left with Nm − 1 points of zero uncertainty predicted from our approximations.

As stated, these points are dependent on the choice of our fixed functional form and

are therefore regions where the uncertainty has been underestimated when compared

to the functional uncertainty which the fixed form approximates. To provide a more

complete estimate of the uncertainty in these areas, it would be necessary to smooth the

uncertainty band out across these regions (or take into account several fixed functional

forms). However, this shortcoming only occurs towards large-x, where the uncertainty

is naturally smaller across these functions. Therefore if the uncertainty was smoothed,

the effect would be negligible for the MHOUs this work aims to include in a PDF global

fit. Further to this, these functions are ingredients in the DGLAP convolution where

any smaller details are washed out by more dominant features inside convolutions

with PDFs. For these reasons, we opt for computational efficiency and leave these

points as shown.



N3LO Splitting Functions 109

Moment LO NLO NNLO N3LO

PPS
qq

N = 2 −0.056588 −0.06362642 −0.06395712 −0.06412109
N = 4 −0.11104 −0.1261481 −0.12804822 −0.12835549
N = 6 −0.14329 −0.16188618 −0.16433013 −0.16470246
N = 8 −0.166448 −0.18751366 −0.19033329 −0.19074888

Pqg

N = 2 0.042442 0.05008496 0.04991043 0.04983007
N = 4 0.023342 0.02203438 0.02110201 0.02112623
N = 6 0.016674 0.01387744 0.01311037 0.01316929
N = 8 0.013086 0.00979920 0.00919186 0.00927006

Pgq

N = 2 0.056588 0.06362642 0.06395712 0.06412109
N = 4 0.015562 0.01903295 0.0195455 0.01965547
N = 6 0.008892 0.0112073 0.01158133 0.0116615
N = 8 0.006232 0.00801547 0.00831037 0.0083761

Pgg

N = 2 −0.042442 −0.05008496 −0.04991043 −0.04983007
N = 4 −0.242978 −0.26161441 −0.26280015 −0.26326763
N = 6 −0.32551 −0.35114066 −0.35335022 −0.35384552
N = 8 −0.38091 −0.41151668 −0.41447721 −0.41495604

Table 7.1.: Numerical moments of singlet and gluon splitting function moments up to N3LO
for αs = 0.2 and n f = 4.
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Figure 7.5.: The low-integer numerical Mellin moments of relevant singlet splitting functions
(excluding PNS, +

qq ) as a ratio between orders. In all cases the expected perturbative
convergence is demonstrated.

Moment Analysis

Tracking back to the moments found for the splitting functions [171, 172] (shown in

Table 7.1 and as a ratio in Fig. 7.5), we are able to identify the expected convergence

in the perturbative expansions up to N3LO. Fig. 7.5 illustrates the relative size of the

NNLO and N3LO contributions to the low even-integer moments.

Until recently (at the time of writing), there were only 3 moments available for

the functions Pgq and Pgg approximated here. However, in [172] an extra moment
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was published for these two gluon splitting functions. This extra information led to

our predictions at small-x being more in line with the resummation results in [170]

mentioned earlier. This is an example of how extra information can be added as and

when it is available to update any approximations and utilise our full knowledge of

the next highest order. By adopting this procedure, we immediately benefit from a

slightly increased precision (with a relevant theoretical uncertainty) instead of having

to delay the inclusion of higher order theory (for potentially decades) until a complete

analytical calculation of the next order in αs is known.

7.3. Numerical Results

We now consider the DGLAP evolution equations for the singlet and gluon shown

in Equation (6.3). We expand this equation to α4
s and investigate the effects of the

variation in the N3LO contributions.

For the purposes of this analysis, the approximate functions (7.14), taken from [63],

are used as sample distributions at an energy scale of µ2
f ' 30 GeV2, a scale chosen

due to its relevance to DIS processes included in the MSHT global fit.

xΣ(x, µ2
f = 30 GeV2) = 0.6 x−0.3(1− x)3.5(1 + 5x0.8) (7.14a)

xg(x, µ2
f = 30 GeV2) = 1.6 x−0.3(1− x)4.5(1− 0.6x0.3) (7.14b)

The expressions above are order independent and so provide a robust means to isolate

the effects arising from higher orders in the splitting functions. For convenience we
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Figure 7.6.: The flavour singlet quark distribution evolution equation Equation (6.3) shown for
orders up to the approximate N3LO (left). The relative shift between subsequent
orders of the flavour singlet evolution (right) where Σ̇ = d ln Σ/d ln µ2

f .

also assume

αs(µ
2
r = µ2

f = 30 GeV2) ' 0.2. (7.15)

where µr and µ f are the renormalisation and factorisation scales respectively.

Singlet Evolution

Fig. 7.6 demonstrates the result of including the respective N3LO expansions from

Section 7.1 in an analysis of the evolution equation. Towards small-x this variation

increases due to the larger uncertainty in the PPS
qq and Pqg splitting functions at aN3LO.

On the right of Fig. 7.6, the difference plot displays the respective shifts from the previ-
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ous order and demonstrates how this shift changes up to N3LO. These results predict

a reduction in the evolution of the singlet towards small-x from NNLO. Inspecting

Fig. 7.3, we can see that this reduction is stemming from the contribution of the gluon

with the Pqg function at 4-loops, which is the dominant contribution to the evolution.

Towards larger x values (10−2 < x < 10−1) we see a fractional increase in the quark

evolution, also following the shape of the Pqg function. These results can therefore

give some indication as to how we expect our gluon PDF to behave at N3LO; since

the structure functions are directly related to the quarks (through LO), the singlet

evolution should remain fairly constant. Therefore we can expect that the fit will prefer

a slightly harder gluon at small-x and a softer gluon between 10−2 < x < 10−1 relative

to NNLO.

Fig. 7.6 displays a good level of agreement between the allowed N3LO shift and

the evolution at NLO and NNLO (within ± 1σ variation bands from theoretical

uncertainties). Also shown in Fig. 7.6 is the evolution prediction using the best fit

results for P(3)
qq and P(3)

qg (red dashed). This prediction tends to follow slightly below

the center of the 1σ uncertainty band, where the data has balanced the two variations

and is more in line with the NLO evolution than NNLO due to a negative contribution

below 10−2. Considering the magnitude of shifts from each order, the predicted shift

from NNLO to aN3LO is slightly larger than that from NLO to NNLO, contradicting

what may be expected from perturbation theory. However, we remind the reader that

these best fit results are, to some degree, sensitive to all orders in perturbation theory

through the data constraint. Due to this, the resultant best fit can be thought of as

an approximate asymptote to all orders. Interpreting the approximation in this way,

restores our faith in perturbation theory and becomes an entirely plausible estimation

of the missing higher orders.
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Figure 7.7.: The gluon distribution evolution equation Equation (6.3) shown for orders up to
the approximate N3LO (left). The relative shift between subsequent orders of the
gluon evolution (right) where ġ = d ln g/d ln µ2

f .

Fig. 7.6 also exhibits an example of how the points of zero uncertainty (discussed in

Section 7.1) can affect the evolution predictions. We can see that at most the uncertainty

is being underestimated by < 1% and therefore, for the reasons discussed earlier, we

do not consider these regions further here.

Gluon Evolution

Fig. 7.7 displays the result of including the aN3LO splitting function contributions into

the gluon evolution equation. As with the singlet evolution case, this extra contribution

is currently inducing a notable variation at N3LO. The general trend at small-x is a

reduction in the value of the evolution equation due to the N3LO prediction for Pgg.
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On the right hand side of Fig. 7.7 we observe the respective shifts from lower orders

and how this shift changes up to N3LO.

In the gluon evolution, there is a large variation coming from the uncertainty in

the P(3)
gg function. Therefore when P(3)

gg is convoluted with the gluon PDF at small-x,

one could expect a potentially large shift from NNLO. The best fit gluon evolution

prediction in Fig. 7.7 is produced by utilising the best fit results for P(3)
gq and P(3)

gg

functions (red dashed). In this prediction we see that the fit prefers a reduction in

the evolution from NNLO, which is contained within the ± 1σ band until around

x . 10−4. Since at low-Q2, the quark and gluon are comparable at small-x, this

reduction is likely driven from the form of Pgq in Fig. 7.4. Combining this with the

smaller gluon PDF at low-Q2 therefore acts to slow the gluon evolution despite Pgg

increasing. Furthermore, the best fit is seemingly more in line with the perturbative

expectation of the evolution than the chosen variation2. Since this variation is chosen

from the known information about the perturbative expansions, this is a manifestation

of how the framework we present here can capture the relevant sources of theoretical

uncertainty (and account for these via a penalty in a PDF fit). This is encouraging,

as even with the large amount of freedom for this gluon evolution, it seems that the

data is constraining and balancing the two contributions from the splitting functions

in a sensible fashion. As discussed in the singlet evolution case, the relative shift

from NNLO to N3LO is slightly larger than one might hope for when dealing with

a perturbative expansion. However, since this best fit is impacted to all orders from

the experimental data (up to the leading logarithms at N3LO i.e. even higher orders

involve more divergent logarithms which are missed in this theoretical description),

2Due to the presence of more divergent higher order logarithms at this level, it is not certain or by any
means guaranteed that the shift at N3LO will follow the same trend outlined from lower orders.
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we can interpret this shift as an approximate all order shift and once again restore its

validity in perturbation theory.

As with the singlet case above, negligible points of non-zero uncertainty are dis-

played in Fig. 7.7. For the reasons discussed in the singlet case and in Section 7.1, these

are not an area of concern at the current level of desired uncertainty and are therefore

not considered further.



Chapter 8.

N3LO Transition Matrix Elements

Heavy flavour transition matrix elements, Aij, as described in Chapter 3, are exact

quantities that describe the transition of all PDFs with n f active flavours into a scheme

with n f + 1 active flavours. Due to discontinuous nature of Aij at the heavy flavour

mass thresholds, they are also present in the coefficient functions to ensure an exact can-

cellation of this discontinuity in physical quantities. This combination then preserves

the smooth nature of the structure function, as demanded by the renormalisation

group flows.

The general expansion of the heavy-quark transition matrix elements in powers of

αs reads,

Aij = δij +
∞

∑
`=1

α`s A(`)
ij = δij +

∞

∑
`=1

α`s

`

∑
k=0

Lk
µa(`,k)

ij , (8.1)

where at each order the terms proportional to powers of Lµ = ln(m2
h/µ2) are deter-

mined by lower order transition matrix elements and splitting functions. Therefore the

focus only needs to be on the a(`,0)
ij expressions, as the rest are not only known [37, 38],

117
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but are guaranteed not to contribute at mass thresholds due to the presence of Lµ.

These µ-independent terms can be decomposed in powers of n f as

a(3,0)
ij = a(3,0), 0

ij + n f a(3,0), 1
ij (8.2)

where a number of the n f -dependent and independent terms are known exactly. The

n f parts are however sub-leading and so as a first approximation, are set to zero in this

work. In keeping with the framework set out in Section 6.2, we will make use of the

available known information (even-integer Mellin moments [179] and leading small

and large-x behaviour [178, 180–183, 188]) about the heavy flavour transition matrix

elements to approximate the µ-independent contributions a(3,0)
ij . As discussed above,

we make the choice to completely ignore any terms that do not contribute at mass

threshold since not only are these sub-leading but can also be ignored by explicitly

setting µ2 = m2
h.

8.1. 3-loop Approximations

AHg

The A(3)
Hg function is still under calculation at the time of writing. Currently the first

five even-integer moments are known for the MS scheme A(3)
Hg [179], along with the

leading small-x terms [178].

The n f -dependent contribution to the 3-loop unrenormalised AHg transition matrix

element has also been approximated in [178], while all other contributions to A(3)
Hg(n f =

0) were already known. For this approximation we work in the MS scheme using the
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Figure 8.1.: Combinations of functions with an added variational factor (aHg) controlling the
NLL term. Combinations of functions at the upper (left) and lower (right) bounds
of the variation are shown. The solid lines indicate the upper and lower bounds
for this function chosen from the relevant criteria.

framework set out in Section 6.2. We then approximate the function using the set of

functions,

f1,2(x) = ln5(1− x) or ln4(1− x) or ln3(1− x) or ln2(1− x)

or ln(1− x),

f3,4(x) = 2− x or 1 or x or x2,

f5(x) = ln x or ln2 x,

fe(x, aHg) =

(
224 ζ3−

41984
27
− 160

π2

6

)
ln 1/x

x
+ aHg

1
x

(8.3)

where aHg is varied as 6000 < aHg < 13000. This variation is chosen from the criteria

outlined in Section 6.2 and is comparable to that chosen in [178]. Fig. 8.1 displays

the approximation of the MS A(3)
Hg with the variation from different combinations

of functions in Equation (8.3) at the chosen limits of aHg. Comparing with Fig. 3

in [178], we see a slightly larger range of allowed variation. A small proportion of this

difference can be accounted for by the difference in renormalisation schemes, with the

majority of this change being from the differences in the criteria from Section 6.2. The
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upper (A(3),A
Hg ) and lower (A(3),B

Hg ) bounds in the small-x region (shown in Fig. 8.1) are

given by,

A(3),A
Hg = 44.1703 ln5(1− x) + 268.024 ln4(1− x) + 45271.0 x− 68401.4 x2

+ 36029.8 ln x +

(
224 ζ3 −

41984
27
− 160

π2

6

)
ln 1/x

x
+ 12000

1
x

(8.4)

A(3),B
Hg = −18.9493 ln5(1− x)− 138.763 ln4(1− x)− 31692.1 x + 33282.3 x2

− 3088.75 ln2 x +

(
224 ζ3 −

41984
27
− 160

π2

6

)
ln 1/x

x
+ 6000

1
x

(8.5)

Using this information, we then choose the fixed functional form,

A(3)
Hg = A1 ln5(1− x) + A2 ln4(1− x) + A3 x + A4 x2 + A5 ln x

+

(
224 ζ3 −

41984
27
− 160

π2

6

)
ln 1/x

x
+ aHg

1
x

(8.6)

where the variation of aHg remains unchanged as it already encapsulates the predicted

variation to within the ∼ 1% level.

APS
Hq

The APS
Hq transition matrix element has been calculated exactly in [181]. Here we

attempt to qualitatively reproduce this result via an efficient parameterisation to an

appropriate precision.

Using the expressions for the small and large-x limits [181] and the known first six

even-integer moments converted into MS [179], we provide a user-friendly approxi-
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mation as,

APS, (3)
Hq = (1− x)2

{
− 152.523 ln3(1− x)− 107.241 ln2(1− x)

}

− 4986.09 x + 582.421 x2 − 1393.50 x ln2 x− 4609.79 x ln x

− 688.396
ln 1/x

x
+ (1− x) 3812.90

1
x
+ 1.6 ln5 x− 20.3457 ln4 x

+ 165.115 ln3 x− 604.636 ln2 x + 3525.00 ln x

+ (1− x)
{

0.246914 ln4(1− x)− 4.44444 ln3(1− x)− 2.28231 ln2(1− x)

− 357.427 ln(1− x) + 116.478
}

(8.7)

where the first two lines have been approximated and the last four lines are the

exact leading small and large-x terms. We note here that the approximated part of

this parameterisation is in a much less important region of x than the exact parts,

therefore any small differences in the approximated part from the exact function are

unimportant.

ANS
qq,H

Moving to the non-singlet ANS
qq,H function, we attempt to parameterise the work from

[180, 188]. Specifically, we make use of the known even integer moments up to

N = 14 [179], converted into the MS scheme, with the even moments corresponding

to the (+) non-singlet distribution.
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As for A(3)
Hg, the approximation is performed using the set of functions,

f1(x) = ln x, f2(x) = ln2 x,

f3,4(x) = 1 or x or x2 or ln(1− x),

f5(x) = 1/x, f6(x) = ln3(1− x), f7(x) = ln2(1− x),

fe(x, aNS
qq,H) = aNS

qq,H ln3 x (8.8)

where aNS
qq,H is varied as −90 < aNS

qq,H < −37. To contain this variation in a fixed

functional form we employ:

ANS, (3) +
qq,H = A1

1
(1− x)+

+ A2 ln3(1− x) + A3 ln2(1− x) + A4 ln(1− x) + A5

+ A6 x + A7 ln2 x + aNS
qq,H ln3 x (8.9)

where the variation of aNS
qq,H is unchanged.

Agq,H

The 3-loop Agq,H function has been calculated exactly in [182]. As with the APS
Hq

function above, we attempt to provide a simple and computationally efficient ap-

proximation to this exact form. To do this, we use the known even-integer moments

(converted to the MS scheme) and small and large-x information from [179, 182]. Gath-

ering a fixed set of functions fi(x) and omitting any variational parameter agq,H, due

to the higher amount of information available, the resulting approximation to the MS
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A(3)
gq,H is:

A(3)
gq,H = −237.172 ln3(1− x)− 201.497 ln2(1− x) + 7247.70 ln(1− x) + 39967.3 x2

− 22017.7− 28459.1 ln x− 14511.5 ln2 x

+ 341.543
ln 1/x

x
+ 1814.73

1
x
− 580

243
ln4(1− x)− 17624

729
ln3(1− x)

− 135.699 ln2(1− x) (8.10)

where the first two lines have been approximated and the last two lines are the exact

small and large-x limits.

Agg,H

Work is ongoing for the 3-loop contribution to Agg,H [189, 190]. Due to this, the entire

approximation of A(3)
gg,H presented here is based on the first 5 even-integer Mellin

moments [179]. To reduce the wild behaviour of this approximation from only using

the Mellin moment information (converted into the MS scheme), we introduce a second

mild constraint in the form of the relations in Equation (6.17). These relations are

closely followed by the gluon-gluon functions up to NNLO, but there is no guarantee

that this behaviour will continue at N3LO. This constraint is given as,

Agg,H(x → 0) ' CA
CF

Agq,H(x → 0). (8.11)

It can be expected that even though this relation may not be followed exactly, it should

not stray too far from this general ‘rule of thumb’. Due to this a generous contingency

of ± 50% is allowed when using this rule. Furthermore, to ensure this relation is

only used as a guide, we allow the variation to move beyond this rule as long as
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Figure 8.2.: Perturbative expansions for the transition matrix element ANS
qq, H including any

corresponding allowed ± 1σ variation (shaded green region). This function is
shown at the mass threshold value of µ = mh. The best fit value (blue dashed line)
displays the prediction for this function determined from a global PDF fit.

the criteria in Section 6.2 are still satisfied. As a result of this change in prescription

and because the allowed variation is now on a much larger scale than that of any

functional uncertainty, we choose a fixed functional form from the start and use the

criteria described above to guide our choice of variation.

A(3)
gg,H = A1 ln2(1− x) + A2 ln(1− x) + A3 x2 + A4 ln x + A5 x + agg,H

ln x
x

(8.12)

where −2000 < agg,H < −700.



N3LO Transition Matrix Elements 125

Figure 8.3.: Perturbative expansions for the transition matrix elements APS
Hq and AHg including

any corresponding allowed ± 1σ variation (shaded green region). These functions
are shown at the mass threshold value of µ = mh. The best fit values (blue dashed
line) display the predictions for these functions determined from a global PDF fit.
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Figure 8.4.: Perturbative expansions for the transition matrix elements Agq,H and Agg,H in-
cluding any corresponding allowed ± 1σ variation (shaded green region). These
functions are shown at the mass threshold value of µ = mh. The best fit values
(blue dashed line) display the predictions for these functions determined from a
global PDF fit.
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8.2. Predicted aN3LO Transition Matrix Elements

Fig.’s 8.2, 8.3 and 8.4 show the perturbative expansions for each of the n f -independent

contributions to the transition matrix elements at the mass threshold value of µ = mh.

Included with these expansions are the predicted variations (± 1σ) from Section 8.1

(shown in green) and the approximate N3LO best fits (shown in blue - discussed

further in Chapter 11).

ANS
qq,H in Fig. 8.2 behaves as expected with little variation from NNLO until the

magnitude of this function is very small. The approximations for the more dominant

APS
Hq and AHg functions in Fig. 8.3 exhibit some slight sporadic behaviour towards

large-x due to the increased logarithmic influence. However, since this is in a region

where the magnitude of these functions become small, any instabilities will have a

minimal effect on the overall result. The major feature prevalent across both these

functions is the large deviation away from the NNLO behaviour, especially at small-x

(and also mid-x for AHg).

Similarly for Agq,H in Fig. 8.4 (upper), we see some irregular behaviour towards

large-x. As with APS
Hq and AHg, this behaviour is in a region where the magnitude

of Agq,H is small. As discussed in Section 8.1, A(3)
gq,H is approximated without any

variation due to the range of available information being large1. Due to this, and the

fact that the region of potential instability (large-x) is highly suppressed, we can accept

this function with negligible effect on any results. As more information becomes

available about all these functions, it will be interesting to observe how the behaviour

across x changes.

1Although an exact expression has been calculated for A(3)
gq,H [182], this function is not yet available in

a computationally efficient format i.e. numerical grids.
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The Agg,H function shown in Fig. 8.4 (lower) displays the ± 50% bounds of vio-

lation we allow for the relation Equation (6.17). It follows that the allowed variation

is conservative enough to include a generous violation of Equation (6.17) at N3LO,

with the prediction that the function is positive at small-x. This is an area where

small-x information would clearly be very beneficial. With this information currently

in progress, it will be very interesting to compare how well this variation captures the

true small-x Agg,H behaviour.

The final best fit values shown in Fig.’s 8.2, 8.3 and 8.4 are determined from a global

PDF fit with various datasets seen to be constraining these functions within the ± 1σ

variations. As observed, we are able to show good agreement between the allowed

variations and the best fit predictions. The perturbative expansion predicted for Agg,H

is the least well constrained while also violating its expected relation with Agq,H

more than one may originally expect. Since the small-x region in all cases changes

dramatically at N3LO, one potential explanation is that this function is compensating

for an inaccuracy in another area of the theory. However, when comparing with

the relationship between AHg and APS
Hq, Equation (6.17) also exhibits a significant

violation at this order. This could suggest that for the N3LO transition matrix elements,

this relation may not be the best indicator of precision or consistency. Finally, we

remember that the best fit in this case may be feeling a larger effect from higher

orders, especially due to these functions only existing from NNLO. For example, in

Chapter 7 we observed a high level of divergence introduced at 4-loops in the splitting

functions. The best fit results shown here may therefore be sensitive to a similar level

of divergence further along in their corresponding perturbative expansions.
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Figure 8.5.: Heavy flavour evolution contributions to the heavy quark (H + H (left)) and
gluon (right) PDFs provided at µ ' 30 GeV2. These results include the µ = mh

contributions from APS
Hq, AHg, Agq,H and Agg,H transition matrix elements up to

aN3LO.

As previously discussed, this lack of knowledge is contained within our choice of

the predicted variations of these functions. Therefore this treatment only seeks to add

to the predicted level of theoretical uncertainty from MHOs, as one expects.

8.3. Numerical Results

For these results, the same toy PDFs presented in Section 7.3 are employed which

approximate the general order-independent PDF features at Q2 ' 30 GeV2. Note that

due to the higher Q2, these results are more representative of the b-quark. The left

plot in Fig. 8.5 shows the result of including the N3LO transition matrix element ap-

proximations we have determined into Equation (6.7c), which is describing the heavy

quark distribution (H + H)(x, Q2 = m2
h). The right plot in Fig. 8.5 is describing the

heavy flavour contribution to the gluon at (x, Q2 = m2
h) in Equation (6.7b) where the

delta function describing the leading order contribution to Agg,H has been subtracted
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out. The dominant contribution to the heavy quark (left plot) is stemming from the

AHg function. Whereas the dominant contribution to the gluon (right plot) is from the

Agg,H function. As one might expect, the predictions at N3LO are more divergent at

small-x, however it is also true that the general trend from NNLO is being followed

across most values of x.

The best fit functions predicted from a global fit show the preferred aN3LO con-

tributions for both scenarios. The predicted behaviour from the global fit follows the

results for the perturbative expansions in Section 8.2. For the (H + H)(x, Q2 = m2
h)

result (Fig. 8.5 left), the aN3LO result is positive across a much wider range of x.

Since this is a perturbatively calculated PDF, this is an encouraging result that could

potentially eliminate some of the more unphysical shortcomings at NNLO without

demanding positivity of the PDF a priori.



Chapter 9.

N3LO Coefficient Functions

The final set of functions considered are the NC DIS coefficient functions which, when

combined with the PDFs, form the structure functions discussed in Chapter 3.1 We

approximate the N3LO heavy quark coefficient functions which accompany the heavy

flavour transition matrix elements from Chapter 8 and also the N3LO light quark

coefficient functions. We note that our standard definition of the order of coefficient

functions includes the longitudinal coefficient functions at order αs at LO, at order

α2
s at NLO etc. This means we already include order α3

s coefficient functions for the

longitudinal coefficient functions at NNLO, whereas many groups only consider order

α2
s at NNLO. Since little is known about longitudinal coefficient functions at order α4

s ,

1Charged current structure function data is limited to relatively high-x values compared to NC data
and is either comparatively low statistics, high-Q2 proton target data from HERA or nuclear target
data (again often quite low statistics) on heavy nuclear targets. In both cases the effect of N3LO
corrections is small compared with uncertainties, especially when considering those involved with
nuclear corrections. Also, heavy flavour contributions are less well known at high orders for CC
structure functions. Hence, we do not include N3LO for these processes, except dimuon data, which
is particularly important for the poorly constrained strange quark, but which is a semi-inclusive
DIS process, and for which we parameterise N3LO corrections, as discussed in Chapter 10. An
improvement would be necessary for more precise proton data, from the EIC for example.

131



132 N3LO Coefficient Functions

and the data constraints from FL(x, Q2) are very much less precise than from F2(x, Q2),

we simply remain at the precisely known order α3
s in this study.

9.1. Low-Q2 N3LO Heavy Flavour Coefficient Functions

As previously mentioned in Chapter 3, the standard MSHT theoretical description of

NNLO structure functions includes approximations to the low-Q2 FFNS coefficient

functions C(3),FF
H,{q,g} from [176–178]. Within these functions are the precisely known

LL small-x terms and mass threshold information, along with an approximate NLL

small-x term added into the MSHT fit. In the NNLO fit these approximate NLL

parameters play a very small role due to not only being sub-leading, but also only

affecting the FFNS scheme below the mass thresholds. At NNLO they are therefore

heuristically set to a value that is theoretically justified and suits the NNLO best fit. At

N3LO these functions begin to directly affect the form of the full GM-VFNS scheme

across all (x, Q2). For this reason, these NLL parameters need to be considered as an

independent source of theoretical uncertainty. In the aN3LO fit, the NLL parameters

are left free and included into the nuisance parameter framework set out in Chapter 5.

The standard NNLO MSHT fit contains terms of the form,

C(3), NLL
H,i (Q2 → 0) ∝ −4

1
x

+ cLL
i

ln 1/x
x

,
(

cLL
g =

CF
CA

cLL
q

)
, (9.1)

where i = q, g and cLL
i is the precisely known leading small-x log coefficient. In the

aN3LO fit, the NLL coefficient is allowed to vary by ± 50% (± 1σ variation). This

conservative range is chosen to enable the release of tension with the variational

parameters associated with the N3LO transition matrix elements. Here we stress that
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this quantity is heuristically set even at NNLO, therefore our treatment is completely

justified with the added benefit of now accounting for an uncertainty for this choice.

9.2. 3-loop Approximations

CH,q

In this section the CH,q coefficient function is investigated. As discussed in Chapter 6,

CH,q contributes to the heavy flavour structure function F2,H. We begin by isolating

this function from Equation (6.14) and relating the FFNS and GM-VFNS schemes at all

orders from Equation (6.9) and Equation (6.13),

CFF
H,q =

[
CVF, NS

H,H + CVF, PS
H,H

]
⊗ APS

Hq + CVF
H,q⊗

[
ANS

qq,H + APS
qq,H

]
+ CVF

H,g⊗ Agq,H. (9.2)

Expanding this function we obtain:

O(αs) : CFF, (1)
H,q = 0 (9.3)

O(α2
s ) : CFF, (2)

H,q = CVF, (0)
H,H ⊗ APS, (2)

Hq + CVF, (2)
H,q ⊗ ANS, (0)

qq,H (9.4)

O(α3
s ) : CFF, (3)

H,q = CVF, (1)
H,H ⊗ APS, (2)

Hq + CVF, (0)
H,H ⊗ APS, (3)

Hq

+ CVF, (3)
H,q ⊗ ANS, (0)

qq,H + CVF, (1)
H,g ⊗ A(2)

gq,H

(9.5)

where we recall that ANS, (0)
qq,H = δ(1− x).
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NNLO

The first contribution from the heavy quarks appears at the O(α2
s ) level. Fortunately

there is a complete picture of this order [140] which provides some experience with

the behaviour of these functions before moving into unknown territory. Fig. 9.1 shows

the case for CVF, (2)
H,q converging onto CZM, (2)

H,q at high-Q2, as required by the definition

of the GM-VFNS scheme outlined in Chapter 3.

From Fig. 9.1, immediately some intuition can be built up surrounding the form of

these functions. It can be observed that the GM-VFNS function at low-Q2 is consistently

more positive than at high-Q2. However, the values at low and high-Q2 are of the

same order of magnitude which provides evidence that the behaviour should not

be substantially different across values of Q2 when estimating our N3LO quantities.

Further to this, as x → 0 the overall magnitude of C(2)
H,q becomes much larger, which is

consistent with an inherently pure singlet quantity.

N3LO

At O(α3
s ) the N3LO ZM-VFNS and low-Q2 FFNS functions are known [176–178, 185]

and parameterisations/approximations are available (up to the level of precision

discussed in Section 9.1). Nevertheless, there is no direct information on how the full

GM-VFNS function behaves at this order which is required for a full treatment of the

heavy flavour coefficients. Using Equation (9.5) to estimate the N3LO contribution,

we have

CVF, (3)
H,q = CFF, (3)

H,q − CVF, (1)
H,H ⊗ APS, (2)

Hq − CVF, (1)
H,g ⊗ A(2)

gq,H − APS, (3)
Hq . (9.6)
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Figure 9.1.: The NNLO GM-VFNS function CVF, (2)
H,q compared with the NNLO ZM-VFNS

function CZM, (2)
H,q across a variety of x and Q2 values. Mass threshold is set at the

charm quark level (m2
h = m2

c = 1.4 GeV2).
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where APS, (3)
Hq is the N3LO transition matrix element approximated in Section 8.1.

It must be the case that the discontinuities introduced into the heavy flavour PDF

from the transition matrix elements (at the threshold value of Q2 = m2
h) are cancelled

exactly in the structure function. The cancellation of APS, (3)
Hq is therefore guaranteed by

its inclusion into the GM-VFNS coefficient function in Equation (9.6). Since in practice

the transition matrix elements are convoluted with the PDFs separately to the coeffi-

cient functions, to ensure that this statement remains the case, the parameterisation

will be performed in the FFNS number scheme. By doing this, we can explicitly switch

to the GM-VFNS number scheme by including the subtraction term in Equation (9.6).

This procedure then ensures that APS, (3)
Hq is subtracted off exactly with no unphysical

discontinuity.

Following the methodology set out in Section 6.3, the two regimes we wish to

interpolate between are the approximate CFF, (3)
H,q (Q2 → 0) limit and

CFF, (3)
H,q (Q2 → ∞) = CZM, (3)

H,q + CVF, (1)
H,H ⊗ APS, (2)

Hq + CVF, (1)
H,g ⊗ A(2)

gq,H + APS, (3)
Hq , (9.7)

where CVF, (3)
H,q is replaced with CZM, (3)

H,q in the high-Q2 limit. Equation (6.18) is then

stable across all (x, Q2), exactly cancelling any discontinuity that would violate the

RG flow, whilst also demanding that the known FFNS approximation (for Q2 < m2
h) is

followed2.

2Since in practice the discontinuities from the transition matrix elements are added to PDFs regardless
of what order coefficient function they are convoluted with, discontinuities of even higher order (e.g.
α4

s and beyond) are also present in calculations. Because the order α3
s matrix elements are large these

even higher order discontinuities are not insignificant. Therefore we add the same contributions
to the unknown FFNS contributions below m2

h to impose continuity on structure functions. Such
corrections are extremely small, except right at the transition point where they eliminate minor
unphysical discontinuities.
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Figure 9.2.: N3LO GM-VFNS function CVF, (3)
H,q compared with the N3LO ZM-VFNS function

CZM, (3)
H,q across a variety of x and Q2 values (shown without the variation from

the low-Q2 NLL term discussed in Section 9.1). CVF, (3)
H,q is parameterised via

Equations (9.6), (9.7) and (6.18). Mass threshold is set at the charm quark level
(m2

h = m2
c = 1.4 GeV2).
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Fig. 9.2 shows the result of estimating CVF, (3)
H,q using the above approximation for

CFF, (3)
H,q and the relevant subtraction term from Equation (9.6). Note that this plot

ignores any variation from the low-Q2 NLL term discussed in Section 9.1, where this

is fixed to its central value.

CH,g

As with CH,q, using Equation (6.9) and Equation (6.13) to isolate CH,g and relate the

FFNS and GM-VFNS schemes,

CFF
H,g = CVF

H,g ⊗ Agg,H + CVF, PS
H,q ⊗ Aqg,H +

[
CVF, NS

H,H + CVF, PS
H,H

]
⊗ AHg (9.8)

O(αs) : CFF, (1)
H,g = CVF, (1)

H,g + CVF, (0)
H,H ⊗ A(1)

Hg (9.9)

O(α2
s ) : CFF, (2)

H,g = CVF, (2)
H,g + CVF, (0)

H,H ⊗ A(2)
Hg + CVF, (1)

H,H ⊗ A(1)
Hg (9.10)

O(α3
s ) : CFF, (3)

H,g = CVF, (3)
H,g + CVF, (1)

H,g ⊗ A(2)
gg,H + CVF, NS+PS, (2)

H,H ⊗ A(1)
Hg

+ CVF, (1)
H,H ⊗ A(2)

Hg + CVF, (0)
H,H ⊗ A(3)

Hg

(9.11)

we uncover a NLO contribution to the heavy flavour structure function. This lower

order contribution is a consequence of the gluon being able to directly probe the heavy

flavour quarks, whereas a light quark must interact via a secondary interaction (hence

the CH,q coefficient function beginning at NNLO).



N3LO Coefficient Functions 139

NLO & NNLO

The NLO and NNLO contributions to CH,g are known exactly [140]. To build some

experience and check our understanding, we can observe how the lower order GM-

VFNS functions converge onto their ZM-VFNS counterparts in Fig. 9.3 and Fig. 9.4.

At NLO and NNLO the magnitude of the functions is generally higher in the

low-Q2 limit than at high-Q2. In both cases, the function remains at the same order of

magnitude across all Q2. However, the relative change across Q2 is smaller at NLO,

and similar to that seen for C(2)
H,q at NNLO. Due to this, we can once again expect that

although more of a scaling contribution at N3LO may be present, it should not be too

substantial across the range of Q2.

N3LO

As with the C(3)
H,q function at O(α3

s ), the FFNS result at low-Q2 is known (up to the

level of precision discussed in Section 9.1), as well as the exact ZM-VFNS function at

high-Q2 [176–178, 185]. Considering the form of CVF, (3)
H,g , there is an extra complication

coming from the transition matrix element A(3)
Hg. As discussed in Chapter 8, the

A(3)
Hg function is not as well known as the A(3)

Hq function considered earlier and is

accompanied by the variational parameter aHg. Since it is a requirement for C(3)
H,g

to exactly cancel the PDF discontinuity introduced by A(3)
Hg, this variation must be

compensated for and included in the description,

CVF, (3)
H,g = CFF, (3)

H,g − CVF, (1)
H,g ⊗ A(2)

gg,H − CVF, NS+PS, (2)
H,H ⊗ A(1)

Hg

− CVF, (1)
H,H ⊗ A(2)

Hg − A(3)
Hg. (9.12)
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Figure 9.3.: The NLO GM-VFNS function CVF, (1)
H,g compared with the NLO ZM-VFNS function

CZM, (1)
H,g across a variety of x and Q2 values. Mass threshold is set at the charm

quark level (m2
h = m2

c = 1.4 GeV2).
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Figure 9.4.: The NNLO GM-VFNS function CVF, (2)
H,g compared with the NNLO ZM-VFNS

function CZM, (2)
H,g across a variety of x and Q2 values. Mass threshold is set at the

charm quark level (m2
h = m2

c = 1.4 GeV2).
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As in Section 9.2, transitioning to the FFNS number scheme ensures an exact cancel-

lation via the subtraction term in Equation (9.12). Using the exact information for

CFF, (3)
H,g (Q2 → 0) and the known high-Q2 limit,

CFF, (3)
H,g (Q2 → ∞) = CZM, (3)

H,g + CVF, (1)
H,g ⊗ A(2)

gg,H + CVF, NS+PS, (2)
H,H ⊗ A(1)

Hg

+ CVF, (1)
H,H ⊗ A(2)

Hg + A(3)
Hg (9.13)

where CVF, (3)
H,g is replaced with CZM, (3)

H,g in the high-Q2 limit. Applying the framework

set out in Equation (6.18), the resulting parameterisation is stable across all (x, Q2).

As A(3)
Hg and its variation is explicitly included in Equation (9.12) this ensures the

continuity of the structure function with exact cancellations of discontinuities at mass

thresholds.

Fig. 9.5 displays our approximation for the GM-VFNS coefficient function across

a range of (x, Q2) via a parameterisation for CFF, (3)
H,g and the relevant subtraction

term in Equation (9.12). Fig. 9.5 also contains the uncertainty in this approximation

stemming from A(3)
Hg (see Section 8.1). Note that Fig. 9.5 ignores any variation from

the low-Q2 NLL term discussed in Section 9.1, where this is fixed to its central value.

The uncertainty shown in Fig. 9.5 is suppressed as we move to high-Q2 owing to

the required convergence of the GM-VFNS onto the corresponding ZM-VFNS gluon

coefficient function at N3LO.

Included in Fig. 9.5 is the best fit prediction for CVF, (3)
H,g (corresponding to the best

fit of A(3)
Hg approximated in Chapter 8). Overall we see the resultant shape of C(3)

H,g is

within our predicted range and follows a sensible shape that matches with the known

high-Q2 FFNS behaviour. Contrasting this with NNLO, the shape across the range of

x values shown is less consistent. There is no guarantee that this should be the case,

since we do not know how the perturbative nature of QCD will behave. However, we
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Figure 9.5.: The N3LO GM-VFNS function CVF, (3)
H,g compared with the N3LO ZM-VFNS func-

tion CZM, (3)
H,g across a variety of x and Q2 values (shown without the variation

from the low-Q2 NLL term discussed in Section 9.1). CVF, (3)
H,g is parameterised via

Equations (9.12), (9.13) and (6.18). Mass threshold is set at the charm quark level
(m2

h = m2
c = 1.4 GeV2).
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do maintain the relatively consistent order of magnitude across the evolution in Q2,

therefore the exact form of the shape across Q2 will be less important in the resultant

structure function picture.

CNS
q,q

The light quark coefficient functions involve small heavy flavour contributions at

higher orders from heavy quarks produced away from the photon vertex. As discussed

in Chapter 6 the low-Q2 FFNS function in this case is unknown. However, since the

heavy flavour contributions to the light quark structure function F2,q(x, Q2) are very

small, any choice of sensible variation in Q2 has a near negligible effect on the overall

structure function. Further to this, as is apparent from lower order examples, it can be

expected that the light quark coefficient functions remain relatively constant across

Q2.

Using Equation (6.9) and Equation (6.11), the non-singlet coefficient function is

stated as,

CFF, NS
q,q = ANS

qq,H ⊗ CVF NS
q,q , (9.14)

O(α0
s ) : CFF, (0)

q,q, NS = CVF, (0)
q,q, NS

(9.15a)

O(α1
s ) : CFF, (1)

q,q, NS = CVF, (1)
q,q, NS

(9.15b)

O(α2
s ) : CFF, (2)

q,q, NS = CVF, (2)
q,q, NS + ANS, (2)

qq,H
(9.15c)

O(α3
s ) : CFF, (3)

q,q, NS = CVF, (3)
q,q, NS + ANS, (3)

qq,H + CVF, (1)
q,q, NS ⊗ ANS, (2)

qq,H . (9.15d)
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From Equation (9.15) the FFNS contribution at LO and NLO is identical to the GM-

VFNS and ZM-VFNS function at high-Q2. Physically for heavy quarks to affect light

quarks, a larger number of vertices than are allowed at LO and NLO must be present

to enable interactions involving heavy quarks. We therefore begin our discussion at

NNLO.

NNLO

At NNLO the functions included in Equation (9.15c) are known exactly [38, 186].

Assembling these together, we provide an example of how the GM-VFNS function

converges to the familiar ZM-VFNS function for the light quark. By performing this

exercise, expectations as to how CNS
q,q will behave at N3LO can be constructed.

From Fig. 9.6 CVF, (2)
q,q, NS quickly converges onto the ZM-VFNS function with the

difference between the low and high-Q2 being within 10% at large-x and within 0.01%

at small-x. This weak scaling with Q2 reinforces the statement that it is possible to

approximate the N3LO function relatively well without extensive low-Q2 information.

N3LO

Equation (9.15d) involves a mixture of functions known exactly (ZM-VFNS high-

Q2 limit [185]) and functions that are completely unknown (CFF, (3)
q,q, NS). This presents

an issue as it is no longer possible to rely on CFF, (3)
q,q, NS to constrain the low-Q2 limit.

Nevertheless, by utilising the experience gained from NNLO, it is feasible to choose

any sensible choice for the low-Q2 limit. In practice, due to the observed weak scaling

in Q2, the exact form at low-Q2 will not present any noticeable differences.
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Figure 9.6.: The NNLO GM-VFNS function CVF, (2)
q,q, NS compared with the NNLO ZM-VFNS

function CZM, (2)
q,q, NS across a variety of x and Q2 values. Mass threshold is set at the

charm quark level (m2
h = m2

c = 1.4 GeV2).
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A naive choice for heuristically placing the CFF, (3)
q,q, NS(Q

2 → 0) function would be

a constant value i.e. no scaling in Q2. We propose to use the intuition from NNLO

and the overall fit quality to give us potentially a more sensible and viable choice

for the GM-VFNS approximation3. By inserting the high-Q2 limit into the NS part of

Equation (6.19), the result is a crude approximation to CFF, (3)
q,q, NS(Q

2 → 0). Combining

this with Equation (9.15d), we obtain a GM-VFNS parameterisation which is relatively

constant across Q2 (similar to the NNLO behaviour) with any differences arising from

the subtraction terms which are known.

Fig. 9.7 shows the result of this approximation for the full CVF, (3)
q,q, NS function. We

notice that the behaviour is similar to that of NNLO across all (x, Q2) and appropriately

larger in magnitude to account for the extra contributions obtained at N3LO compared

to NNLO. By definition, the parameterisation converges well to the ZM-VFNS scheme

with the magnitude at high-Q2 (ZM-VFNS regime) remaining similar to that at low-Q2

for each specific value of x. This final point gives assurances that even if this low-Q2

guess is not entirely representative of the actual N3LO function, the effects of including

this approximation are virtually negligible in a PDF fit. Also shown in Fig. 9.7 is the

variation in the CVF, (3)
q,q, NS function stemming solely from the ANS, (3)

qq,H function.

CPS
q,q

To complete the light-quark GM-VFNS coefficient function picture the pure-singlet

contribution from Equation (6.9) and Equation (6.11) is described by,

CFF, PS
q,q = CVF, PS

q,q ⊗ APS
qq,H + CVF

q,g ⊗ Agq,H + CVF, PS
q,H ⊗ AHq (9.16)

3The differences in fit quality for sensible choices are < 0.05% compared to the overall χ2 for the light
quark NS coefficient function.



148 N3LO Coefficient Functions

Figure 9.7.: The N3LO GM-VFNS function CVF, (3)
q,q, NS compared with the N3LO ZM-VFNS func-

tion CZM, (3)
q,q, NS across a variety of x and Q2 values. CVF, (3)

q,q, NS is parameterised via
Equations (9.15d) and (6.19). Mass threshold is set at the charm quark level
(m2

h = m2
c = 1.4 GeV2).
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O(α0
s ) : CFF, PS, (0)

q,q = 0 (9.17a)

O(α1
s ) : CFF, PS, (1)

q,q = 0 (9.17b)

O(α2
s ) : CFF, PS, (2)

q,q = CVF, (2)
q,q, PS

(9.17c)

O(α3
s ) : CFF, PS, (3)

q,q = CVF, (3)
q,q, PS + CVF, (1)

q,g ⊗ A(2)
gq,H. (9.17d)

As with the non-singlet analysis the heavy flavour contributions to the pure-singlet

appear at higher orders to allow for the possibility of heavy quark contributions. In

the pure-singlet case, the heavy flavour contributions are pushed one order higher

than the non-singlet due to the requirement for an extra intermediary gluon.

N3LO

In the pure-singlet case, the FFNS function is non-existent up until N3LO. Because of

this, we choose to parameterise the pure-singlet with a weak constraint suppressing

the FFNS function CFF, PS, (3)
q,q across all x for very low-Q2. The reason for this is that the

coefficient functions acquire more contributions as they exist through higher orders.

If CFF, PS, (3)
q,q is beginning at this order, then one could expect the low-Q2 form to be

relatively small compared to the known ZM-VFNS function [185]. This is somewhat

justified by the low-Q2 kinematic restrictions for the singlet distribution which broadly

manifest into a suppression at low-Q2. We reiterate here that the low-Q2 form of this

function is still essentially around the same magnitude across all Q2. Therefore, as

with CFF, NS, (3)
q,q , it will be virtually negligible in the overall structure function.
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After constructing the approximation for CFF, PS, (3)
q,q with Equation (6.19), Equa-

tion (9.17d) is used to approximate the GM-VFNS function. The exact form of Equa-

tion (9.17d) is chosen based on intuition and where the best fit quality can be achieved4.

It can be seen from Fig. 9.8 that the overall magnitude of CVF, (3)
q,q, PS decreases substan-

tially towards large-x as one would expect from a pure-singlet function. Inspecting the

predicted values of CVF, (3)
q,q, PS , we can confirm that the non-singlet function from Fig. 9.7

begins to dominate at large-x. Conversely towards small-x, CVF, (3)
q,q, PS is much larger

than CVF, (3)
q,q, NS , thereby preserving the familiar interplay between quark distributions.

The suppression of the FFNS parameterisation towards low-Q2 is also seen to give

sensible results in terms of the expected percentage change in magnitude through the

range of Q2 values. Specifically we see < 10% difference in magnitude between low

and high-Q2. Since scale violating terms become more dominant at higher orders and

we are essentially at leading order in terms of heavy flavour contributions, a high level

of scaling with Q2 is not expected at this order.

Cq,g

Finally the gluon-light quark coefficient function is constructed from Equation (6.9)

and Equation (6.11) to be,

CFF
q,g = CVF

q,q ⊗ Aqg,H + CVF
q,g ⊗ Agg,H + CVF, PS

q,H ⊗ AHg (9.18)

4The differences in fit quality for sensible choices are < 0.1% compared to the overall χ2 for the light
quark PS coefficient function.
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Figure 9.8.: The N3LO GM-VFNS function CVF, (3)
q,q, PS compared with the N3LO ZM-VFNS func-

tion CZM, (3)
q,q, PS across a variety of x and Q2 values. CVF, (3)

q,q, PS is parameterised via
Equations (9.17d) and (6.19). Mass threshold is set at the charm quark level
(m2

h = m2
c = 1.4 GeV2).
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O(α0
s ) : CFF, (0)

q,g = 0 (9.19a)

O(α1
s ) : CFF, (1)

q,g = CVF, (1)
q,g (9.19b)

O(α2
s ) : CFF, (2)

q,g = CVF, (2)
q,g + A(2)

qg,H
(9.19c)

O(α3
s ) :

CFF, (3)
q,g = CVF, (3)

q,g + A(3)
qg,H + CVF, (1)

qg ⊗ A(2)
gg,H

+ CVF, (2)
q,H, PS ⊗ A(1)

Hg.
(9.19d)

For Cq,g, the FFNS function is non-existent up to NNLO, similar to CFF,(3)
q,q, NS. How-

ever, the Aqg,H contribution at NNLO is sub-leading in n f [38] and is therefore not

considered here.

N3LO

At N3LO in Equation (9.19d), no information is available for the CFF, (3)
q,g at low-Q2.

Whereas at high-Q2 the ZM-VFNS function is known [185]. To construct the parame-

terisation, we apply the same method described for CFF, (3)
q,q, PS . Specifically, by applying a

suppression to the FFNS parameterisation in the low-Q2 limit. After constructing the

parameterisation for CFF, (3)
q,g with Equation (6.19), Equation (9.19d) is used to approxi-

mate the GM-VFNS function. Since there is no information in the low-Q2 limit, the

parameterisation in Equation (6.19) is chosen roughly based on how the fit prefers the

evolution in Q2 to behave.

Fig. 9.9 illustrates the GM-VFNS function in Equation (9.19d) with Equation (6.19)

as CFF, (3)
q,g across a range of x and Q2. CVF, (3)

q,g increases in magnitude when moving to

smaller x and by definition converges onto the ZM-VFNS function. The convergence

in this case is chosen to be less steep than for the light quark convergences due to some
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Figure 9.9.: The N3LO GM-VFNS function CVF, (3)
q,g compared with the N3LO ZM-VFNS func-

tion CZM, (3)
q,g across a variety of x and Q2 values. CVF, (3)

q,g is parameterised via
Equations (9.19d) and (6.19). Mass threshold is set at the charm quark level
(m2

h = m2
c = 1.4 GeV2).
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minor tensions in the fit5. The magnitude of CVF, (3)
q,g across the entire range of Q2 is

still relatively constant, although less flat than the behaviour predicted for CVF, (3)
q,q, PS/NS.

However, considering Equation (9.19d), some justification for this behaviour can be

offered. When comparing the contributions to the FFNS functions in the NS, PS and

gluon cases (Equations (9.15d), (9.17d) and (9.19d) respectively), the AHg and Agg,H

contributions involved in CFF
q,g are much larger than the contributions from Agq,H,

AHq and ANS
qq,H. Therefore we can expect a larger difference across Q2 for the CVF, (3)

q,g

function. With this being said, the specific form at low-Q2 is not very important in

current PDF fits, only that the form is continuous and valid.

5The differences in fit quality for sensible choices of Equation (6.19) are < 0.5% compared to the overall
χ2 for the light quark gluon coefficient function.



Chapter 10.

N3LO K-factors

Thus far the primary concern has been the N3LO additions to the theoretical form

of the DIS cross section. However, to complement these changes it is necessary to

extend other cross section data to the same order. With these ingredients it is possible

to maintain a consistent approximate N3LO treatment across all datasets. At the

time of writing, K-factors which provide exact transformations for each dataset up

to NNLO are available1. Although there has been progress in N3LO calculations for

various processes including Drell-Yan (DY), approximate top production and Higgs

processes [191–204], there is still missing information on how these K-factors behave

above NNLO. In this section we investigate the effects of the K-factors for each dataset

when extended to N3LO. Five process categories are considered separately: Drell-Yan,

Jets, pT jets, tt̄ production and Dimuon data. Inside each of these process categories

we assume a perfect positive correlation between the behaviour of datasets i.e. all

Drell-Yan K-factor shifts from NNLO are positively correlated. Clearly this treatment

is a simplification, based on the expectation of a high degree of correlation between
1An exception to this is the CMS 7 TeV W + c [115] dataset where K-factors are available only up to

NLO.

155



156 N3LO K-factors

datasets concerned with the same processes. In practice, the uncertainty introduced

from including these K-factors is already relatively small compared to the other sources

of MHOUs already discussed, therefore any correction to this is guaranteed to be small

(this will be shown more clearly in Chapter 11).

10.1. Extension to aN3LO

The extension to aN3LO is parameterised with a mixture of the NLO and NNLO

K-factors. This allows control of the magnitude and shape of the transformation from

NNLO to aN3LO, using the known shifts from lower orders.

The basic idea is presented as,

KN3LO/LO = aNNLO KNNLO/LO + aNLO KNLO/LO, (10.1)

where KN3LO/LO, KNNLO/LO and KNLO/LO are the relevant K-factors with respect to

the LO cross section, and aN(N)LO are variational parameters controlling the mixture

of NNLO and NLO K-factors included in the N3LO K-factor approximation.2 Hence

we have 2 parameters for each of the five processes included in the fit, and now 20

theory nuisance parameters in total – 10 controlling aN3LO K-factors, 5 controlling

aN3LO splitting functions and 5 controlling heavy flavour aN3LO contributions.

To describe this formalism in terms of physical observables we consider the cross

section,

σ = σ0 + σ1 + σ2 + · · · ≡ σNNLO + . . . , (10.2)

2Where relevant, all K-factors are calculated with NNLO PDFs.
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where there is an implicit order of αp+i
s absorbed into the definition of σi beginning at

the relevant LO for each process, i.e. p = 0 for DY.

KNLO/LO is then the relative shift from σLO to σNLO,

KNLO/LO =
σ0 + σ1

σ0
= 1 +

σ1
σ0

. (10.3)

Similarly for NNLO we have,

KNNLO/LO =
σ0 + σ1 + σ2

σ0
= 1 +

σ1
σ0

+
σ2
σ0

. (10.4)

Moving to N3LO, we write

σ = σ0 + σ1 + σ2 + σ3 + · · · ≡ σN3LO + . . . , (10.5)

where σ3 = a1σ1 + a2σ2 is some superposition of the two lower orders, with (a1, a2) =

(0, 0) reproducing the NNLO case.

Pushing forward with this approximation and using the definitions for σ1,2 in terms

of K-factors (Equations (10.3) and (10.4)) we have,

σN3LO = σNNLO + a1σ1 + a2σ2 (10.6)

= σNNLO + a1σ0(K
NLO/LO − 1) + a2σ0(K

NNLO/LO − KNLO/LO) (10.7)
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since,

σ1 = σ0

(
KNLO/LO − 1

)
(10.8)

σ2 = σ0

(
KNNLO/LO − σ1 − σ0

)

= σ0

(
KNNLO/LO − KNLO/LO

)
. (10.9)

From here one can obtain,

KNNLO/LO − KNLO/LO =
σ2
σ0

=
σ2 + σ0

σ0
− 1 ≈ σ2 + σ1 + σ0

σ1 + σ0
− 1 = KNNLO/NLO − 1,

(10.10)

assuming σ1 � σ0, which is in general true for a valid perturbative expansion. Using

(10.10) σN3LO can be expressed by,

σN3LO ' σNNLO

(
1 + a1(K

NLO/LO − 1) + a2(K
NNLO/NLO − 1)

)
, (10.11)

where σ2 � σ1 � σ0.

This defines the proposed approximated N3LO cross section. It is given in terms

of extra contributions from lower order shifts, which are controlled by variational

parameters a1 and a2. It is also true that the contributions to N3LO are expected to

be suppressed by αs/π in the NNLO case and (αs/π)2 in the NLO case to account

for the strengths of each contribution. Currently this is taken into account within the

variational parameters a1, a2. However for the purpose of this description, it is more

appropriate to explicitly redefine a1, a2 = a2
s â1, as â2 where as = N αs and N is some



N3LO K-factors 159

normalisation factor. This then results in,

KN3LO/LO = KNNLO/LO
(

1 + â1N
2α2

s (K
NLO/LO − 1) + â2N αs(K

NNLO/NLO − 1)
)

.

(10.12)

where the LO cross section σ0 is cancelled and Equation (10.12) is written in terms

of the K-factor shifts only. (10.12) also implicitly includes the correct order O(α3
s ) in

the parameterisation through (10.3) and (10.4). We can then choose N in order to

set the approximate magnitude of our variational parameters â1, â2. Given αs∼ 0.1

for the processes considered, if we neglect N (i.e. choose N ∼ 1), then our order

by order reduction in the magnitude of the K-factors would be ∼ 10% for O(1) for

variational parameters, however from previous orders we see that typically K-factors

tend to be 30− 40% of the previous order, therefore we instead choose N ∼ 3. This

then ensures the natural scale of variation allowed is also of this order with O(1)

variational parameters describing the admixture of NLO and NNLO K-factors, with

conservative penalties applied accordingly.

Reflecting on this, it is worth noting that these fitted K-factors will be sensitive to

all orders, not just N3LO. Considering these K-factors as approximating asymptotic be-

haviour to all orders in perturbation theory when assessing the stability of predictions,

we can be less concerned with any somewhat large shifts from NNLO to aN3LO, as

we will specifically see in the case of Fig.’s 10.4 and 10.5. Finally, we remind the reader

that at higher orders, new terms with more divergent leading logarithms appear which

are missed by the current theoretical description. Due to this, the all-orders asymptotic

description will still remain approximate up to the inclusion of more divergent leading

logarithms in (x, Q2) limits at even higher orders.
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Figure 10.1.: K-factor expansion up to aN3LO shown for the LHCb 2015 W, Z dataset [105,106].
The K-factors shown here are absolute i.e. all with respect to LO (KNmLO/LO ∀ m ∈
{1, 2, 3}).

10.2. Numerical Results

Using this formalism for the aN3LO K-factors, we present the global fit results for each

of the five process categories considered.

Drell-Yan Processes

For the Drell-Yan processes (all calculated at µr, f = mll/2), a reduction of ∼ 1− 2%

in the K-factor shift is predicted across most of the corresponding datasets at aN3LO.

This is in agreement with recent work [192]. An example of this reduction is shown in

Fig. 10.1.

Conversely, Fig. 10.2 displays an example where the K-factor shift has much less of

a contribution at N3LO. This is a feature of the ATLAS datasets included in the fit due

to the impact of chosen pT cuts which reduce the sensitivity to higher orders.



N3LO K-factors 161

Figure 10.2.: K-factor expansion up to aN3LO shown for the ATLAS 7 TeV high precision W, Z
dataset [116]. The K-factors shown here are absolute i.e. all with respect to LO
(KNmLO/LO ∀ m ∈ {1, 2, 3}).



162 N3LO K-factors

DY Dataset χ2 ∆χ2 ∆χ2 from NNLO
from NNLO (NNLO K-factors)

E866 / NuSea pp DY [102] 209.2 / 184 −15.9 −11.0
E866 / NuSea pd/pp DY [104] 7.6 / 15 −2.7 −2.6

DØ II Z rap. [130] 16.8 / 28 +0.5 +0.3
CDF II Z rap. [132] 39.6 / 28 +2.4 +1.6

DØ II W → νµ asym. [134] 16.8 / 10 −0.5 +0.2
CDF II W asym. [73] 19.9 / 13 +0.9 +0.6

DØ II W → νe asym. [74] 29.2 / 12 −4.7 −5.1
ATLAS W+, W−, Z [77] 30.0 / 30 +0.1 +0.4

CMS W asym. pT > 35 GeV [80] 7.0 / 11 −0.8 −0.5
CMS W asym. pT > 25, 30 GeV [81] 7.5 / 24 +0.1 +0.0

LHCb Z → e+e− [83] 20.6 / 9 −2.1 −1.7
LHCb W asym. pT > 20 GeV [84] 12.9 / 10 +0.5 +0.9

CMS Z → e+e− [86] 17.3 / 35 −0.6 −0.6
ATLAS High-mass Drell-Yan [87] 18.5 / 13 −0.4 −1.2
CMS double diff. Drell-Yan [103] 137.1 / 132 −7.4 +12.3

LHCb 2015 W, Z [105, 106] 97.2 / 67 −2.2 −3.4
LHCb 8 TeV Z → ee [108] 27.1 / 17 +0.9 −0.1

CMS 8 TeV W [109] 12.0 / 22 −0.7 +0.3
ATLAS 7 TeV high prec. W, Z [116] 110.5 / 61 −6.2 −18.2

DØ W asym. [119] 8.6 / 14 −3.4 −2.5
ATLAS 8 TeV High-mass DY [125] 63.4 / 48 +6.3 +2.8

ATLAS 8 TeV W [129] 55.1 / 22 −2.3 −0.8
ATLAS 8 TeV double diff. Z [135] 80.8 / 59 −4.8 −2.4

Total 1044.8 / 864 −43.1 −30.5

Table 10.1.: Table showing the relevant DY datasets and how the individual χ2 changes
from NNLO by including the N3LO treatment of K-factors, and theoretical N3LO
additions discussed earlier. The result with purely NNLO K-factors included for
all data in the fit is also given.
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Table 10.1 demonstrates that in most cases, the new fitted DY aN3LO K-factors are

producing a slightly better fit with a substantial cumulative effect. We remind the

reader that we have included a total of 20 extra parameters into the fit (10 controlling

aN3LO K-factors, 5 controlling aN3LO splitting functions and 5 controlling heavy

flavour aN3LO contributions). These extra 20 parameters are fit across all datasets and

multiple processes, whereas the decrease here is for a subset of datasets corresponding

to the DY processes included in a global fit. Therefore this decrease in χ2 being

comparable to the number of extra parameters, even when only considering the DY

sets, is evidence that this extra N3LO information is helping the fit perform better in

general. This will be discussed further in Chapter 11 where a full global χ2 breakdown

is provided.

Across these datasets, the K-factors act to extend the description of these processes

to approximate N3LO. The result of including this procedure is a better fit in the DY

regime while also relaxing tensions with other processes included in the fit. Comparing

the ∆χ2 results with and without aN3LO K-factors, we can see the extent to which the

K-factors and all other N3LO additions are reducing the overall χ2.

In some individual cases, the dataset χ2 becomes slightly worse relative to NNLO

(e.g. ATLAS 8 TeV High-mass DY [125]), whilst in a few others the χ2 improvement

upon addition of the aN3LO splitting functions, transition matrix elements and coeffi-

cient function pieces is seen to deteriorate upon addition of the aN3LO K-factors, e.g.

such as for the ATLAS 7 TeV high prec. W, Z [116], which is observed to prefer N3LO

theory with NNLO K-factors. The addition of the aN3LO K-factors do nonetheless

result in a net reduction in χ2 and for a large number of cases the aN3LO K-factors

allow for a slight reduction in the individual χ2. The CMS double diff. Drell-Yan [103]

shows a particularly large reduction when these are added on top of the aN3LO theory,
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Figure 10.3.: K-factor expansion up to aN3LO shown for the CMS 7 TeV jets dataset (R =
0.7) [118]. The K-factors shown here are absolute i.e. all with respect to LO
(KNmLO/LO ∀ m ∈ {1, 2, 3}).

this is a dataset which shows some tension with the DIS N3LO additions which is then

eased by the addition of the aN3LO K-factors
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Jets Dataset χ2 ∆χ2 ∆χ2 from NNLO
from NNLO (NNLO K-factors)

CDF II pp̄ incl. jets [128] 68.4 / 76 +8.0 +0.9
DØ II pp̄ incl. jets [76] 113.6 / 110 −6.6 −3.6
ATLAS 7 TeV jets [113] 214.5 / 140 −7.1 +2.5

CMS 7 TeV jets [118] 189.8 / 158 +14.1 +13.9
CMS 8 TeV jets [122] 272.6 / 174 +11.3 +22.9

CMS 2.76 TeV jet [131] 113.9 / 81 +11.1 +13.3

Total 972.9 / 739 +30.8 +49.8

Table 10.2.: Table showing the relevant jet datasets and how the individual χ2 changes from
NNLO by including the N3LO treatment of K-factors. The result with purely
NNLO K-factors included for all data in the fit is also given.

Jet Production Processes

The jets processes (all calculated for µr, f = pjet
T ) show a general increase in the K-factor

shifts from NNLO as seen in Fig. 10.3, which displays the K-factor expansion up to

aN3LO for the CMS 7 TeV jets dataset [118]. It is apparent that there is a mild shift to

N3LO from the NNLO K-factor. This behaviour follows what one might expect for a

perturbative expansion considering the forms of the NLO and NNLO functions.

A χ2 summary of the Jets datasets is provided in Table 10.2. By combining the

N3LO structure function and DGLAP additions (Chapter’s 7 to 9) with NNLO K-

factors, the fit exhibits a substantial increase in the χ2 from Jets data. Including aN3LO

K-factors acts to reduce some of this tension with around half the initial overall χ2

increase still remaining. We note that in the case of the ATLAS 7 TeV jets [113], it is

well known that there are issues in achieving a good fit quality across all rapidity bins

(see [205] for a detailed study as well as [206] where the 8 TeV data are presented and

the same issues observed). In [205, 206] the possibility of decorrelating some of the
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systematic error sources where the degree of correlation is less well established, was

considered and indeed in our study we follow such a procedure, as described in [3].

Alternatively, however, it might be that the issues in fit quality could at least part be

due to deficiencies in theoretical predictions, such as MHOs. To assess this, we revert

to the default ATLAS correlation scenario and repeat the global fit. We find that the

χ2 deteriorates by +40.7 points to 256.6, which is very close to the result found in a

pure NNLO fit [3]. In other words, in our framework the impact of MHOUs does not

resolve this issue.

The χ2 results for datasets in Table 10.2 show evidence for some tensions with the

N3LO form of the high-x gluon. It is also apparent that the CMS data is in more tension

than ATLAS datasets with N3LO structure function and DGLAP theory. Therefore it

will be interesting to see how this behaviour changes when considering this data as

dijets in the global fit [207]. We do not consider the dijet data here, though this will be

addressed in a future publication.

Z pT & Vector Boson + Jets Processes

In the case of Z pT & vector boson + jet processes (all calculated at µr, f =
√

p2
T,ll + m2

ll),

the K-factor shift is almost completely dominated by the ATLAS 8 TeV Z pT dataset [121]

(due to the larger number of data points included in this dataset) shown in Fig. 10.4.

The gluon is less directly constrained than the quarks in a global fit. Therefore it

can be expected that the significant modifications at small-x will indirectly affect the

high-x gluon, where these processes are most sensitive. Considering the jet production

processes in Table 10.2, when performing separate PDF fits not including ATLAS 8

TeV Z pT data [121], we find a reduction of ∆χ2 = −7.0 in CMS 8 TeV jets data [122]

eliminating most of the tension for this dataset (similar to MSHT20 NNLO results in
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Figure 10.4.: K-factor expansion up to aN3LO shown for the ATLAS 8 TeV Z pT dataset [121].
The K-factors shown here are absolute i.e. all with respect to LO (KNmLO/LO ∀ m ∈
{1, 2, 3}).
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pT Jets Dataset χ2 ∆χ2 ∆χ2 from NNLO
from NNLO (NNLO K-factors)

CMS 7 TeV W + c [115] 12.3 / 10 +3.7 +1.3
ATLAS 8 TeV Z pT [121] 105.8 / 104 −82.7 −53.0

ATLAS 8 TeV W + jets [126] 19.1 / 30 +0.9 +0.3

Total 137.1 / 144 −78.1 −51.5

Table 10.3.: Table showing the relevant Z pT & Vector Boson jet datasets and how the indi-
vidual χ2 changes from NNLO by including the N3LO treatment of K-factors,
and theoretical N3LO additions discussed earlier. The result with purely NNLO
K-factors included for all data in the fit is also given.

Table 16 of [3]). Further to this, when not including HERA and ATLAS 8 TeV Z pT

data we find a reduction of ∆χ2 = −26.4 in CMS 8 TeV jet data [122] and ∆χ2 = −12.7

in CMS 2.76 TeV jet data [131].

Although the overall magnitude of the K-factor in Fig. 10.4 may seem large, this

new shift is contained within a 15% increase from NNLO (due to the NLO and NNLO

K-factors also being significant). Moreover, not only does the size of this shift have

some dependence on the central scale, but this shift may be more correctly interpreted

as the preferred all-orders cross section rather than simply the pure N3LO result.

The extent of the χ2 reduction in the Z pT datasets is shown in Table 10.3. Note that

around ∼ 60% of the improvement to the ATLAS 8 TeV Z pT [121] χ2 is due to the extra

N3LO theory included in the DGLAP and DIS descriptions. It is also known the ATLAS

8 TeV Z pT data [121] previously exhibited a significant level of tension with many

datasets (including HERA data) at NNLO [3]. This was investigated by performing a

global PDF fit with and without HERA data and comparing the individual χ2’s from

each dataset. At NNLO it was found that the ATLAS 8 TeV Z pT dataset [121] reduced

by ∆χ2 = −39.2 when fitting to all non-HERA data (see Table D.1). At N3LO we show
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Figure 10.5.: K-factor expansion up to aN3LO shown for the CMS 8 TeV single diff. tt̄
dataset [133]. The K-factors shown here are absolute i.e. all with respect to
LO (KNmLO/LO ∀ m ∈ {1, 2, 3}).

that the ATLAS 8 TeV Z pT dataset [121] actually increased by ∆χ2 = +12.8 when

fitting to all non-HERA data (see Table D.2). This therefore completely eliminates this

tension with the N3LO additions and confirms the issue previously observed when

attempting to fit the ATLAS 8 TeV Z pT dataset [121] was concerned with MHOs. This

is in contrast with the result observed for ATLAS 7 TeV jets [113] where the issues with

fit quality were not alleviated by the inclusion of MHO information.

Finally we remind the reader that the CMS 7 TeV W + c dataset [115] does not

include a K-factor at NNLO. To overcome this, we tie the overall N3LO K-factor shift

to the NLO value (KNNLO/NLO = 1 in Equation (10.12)), therefore contributing as an

overall normalisation effect.
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Top Dataset χ2 ∆χ2 ∆χ2 from NNLO
from NNLO (NNLO K-factors)

Tevatron, ATLAS, CMS σtt̄ [89–101] 14.2 / 17 −0.3 −0.7
ATLAS 8 TeV single diff. tt̄ [123] 24.7 / 25 −0.9 −0.1

ATLAS 8 TeV single diff. tt̄ dilep. [124] 2.1 / 5 −1.3 −0.8
CMS 8 TeV double diff. tt̄ [127] 23.9 / 15 +1.4 +4.9
CMS 8 TeV single diff. tt̄ [133] 8.4 / 9 −4.7 −5.5

Total 73.4 / 71 −5.9 −2.2

Table 10.4.: Table showing the relevant Top Quark datasets and how the individual χ2 changes
from NNLO by including the N3LO treatment of K-factors, and theoretical N3LO
additions discussed earlier. The result with purely NNLO K-factors included for
all data in the fit is also given.

Top Quark Processes

Moving to top quark processes, for the single differential datasets the scale choice

for µr, f is HT/4 with the exception of data differential in the average transverse

momentum of the top or anti-top, pt
T, pt̄

T, for which mT/2 is used. For the double diff.

dataset the scale choice is HT/4 and for the inclusive top σtt̄ a scale of mt is chosen.

Fig. 10.5 displays the K-factor shifts up to N3LO for the CMS 8 TeV single diff. tt̄

dataset [133], which shows the greatest reduction in its χ2. A familiar perturbative

pattern can be seen for this process’s K-factors, with the shift at aN3LO increasing

by around 3–4% from NNLO. This is in agreement with a recent ∼ 3.5% predicted

increase in the N3LO tt̄ production K-factor at 8 TeV in [194], whereby an approximate

N3LO cross section for tt̄ production in proton-proton collisions has been calculated

employing a resummation formalism [208–211].

The χ2 results in Table 10.4 display a mildly better fit for top processes, with most

datasets not feeling a large overall effect from the N3LO additions. Comparing with
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NLO NNLO aN3LO
aN3LO

(NNLO K-factors)

0.095 0.088 0.080 0.079
BR(D→ µ)

Table 10.5.: Table displaying dimuon branching ratios (BRs) at NLO, NNLO, aN3LO and
aN3LO with NNLO K-factors.

and without aN3LO K-factors, we see a slightly better fit overall, with most of the

reduction in overall χ2 stemming from CMS 8 TeV double diff. tt̄ data [127].

Semi-Inclusive DIS Dimuon Processes

The final set of results to consider in this Section are the aN3LO K-factors associated

with semi-inclusive DIS dimuon cross sections (with µ2
r, f = Q2). Although the dimuon

is associated with the DIS process described from our approximate N3LO structure

function picture, it is a semi-inclusive DIS process. Therefore it is sensible to treat

this process as entirely separate from DIS. The NNLO cross-sections used in this case

are a general-mass variable flavour number scheme extension of the results in [212],

as described in more detail in [3]. The K-factors shown in Fig. 10.6 (for the NuTeV

νN → µµX data [114]) are somewhat similar to NNLO. The reason for this is mostly

due to these datasets also including a branching ratio (BR(D→ µ)) which absorbs

any overall normalisation shifts. This behaviour is not a concern since in practice

these two work in tandem and when combined together it makes no difference where

the normalisation factors are absorbed into. Investigating the change in the BR’s

with the addition of N3LO contributions in Table 10.5, the BR at N3LO decreases

substantially from NNLO, with little difference from the addition of aN3LO K-factors.

The predicted dimuon BR at aN3LO is inside the allowed ± 1σ range of 0.092± 0.010.
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Figure 10.6.: K-factor expansion up to aN3LO shown for the NuTeV νN → µµX dataset [114].
The K-factors shown here are absolute i.e. all with respect to LO (KNmLO/LO ∀ m ∈
{1, 2, 3}).
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Dimuon Dataset χ2 ∆χ2 ∆χ2 from NNLO
from NNLO (NNLO K-factors)

CCFR νN → µµX [114] 69.2 / 86 +1.5 +2.9
NuTeV νN → µµX [114] 55.3 / 84 −3.1 −3.4

Total 124.6 / 170 −1.6 −0.5

Table 10.6.: Table showing the relevant Dimuon datasets and how the individual χ2 changes
from NNLO by including the N3LO treatment of K-factors, and theoretical N3LO
additions discussed earlier. The result with purely NNLO K-factors included for
all data in the fit is also given.

When performing a fit with the BR fixed at its central value (BR = 0.092), one is able to

observe the effect of manually forcing the normalisation into the K-factor variation

alone. The result of this is a worse global fit quality ∆χ2 = +11.2, where +3.9 units

arise from an increased penalty for the Dimuon K-factor description and +2.3 units

from a slightly worse fit to the Dimuon datasets listed in Table 10.6. The rest of the

observed increase in χ2
global is dominated by a +4.1 increase in the ATLAS 7 TeV high

prec. W, Z [116] data due to a smaller strange quark PDF (compensating the higher BR

in dimuon datasets). Returning to consider the case of the K-factors and BR together,

the predicted effect on dimuon datasets is very similar. However due to the errors

accounting for a larger allowed shift in the BR relative to the K-factors, the fit favours

moving the BR by a larger amount to reduce the penalty χ2 contribution from K-factors

which explains the results shown in Table 10.5.

Table 10.6 further confirms the expectation that the Dimuon datasets are not too

sensitive to N3LO additions. The results with and without a full treatment of aN3LO

K-factors are also similar in magnitude. It is therefore clear that the dimuon BR’s are

compensating for any indirect normalisation effects from the form of the PDFs in the

full aN3LO fit, as opposed to the aN3LO K-factors.
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Chapter 11.

MSHT20 Approximate N3LO Global

Analysis

With the inclusion of all N3LO approximations discussed in earlier sections resulting

in 20 extra free parameters from the NNLO MSHT20 fit, we now present the results for

the first approximate N3LO global PDF fit with theoretical uncertainties from MHOs.

This includes the results for the best fit for the nuisance parameters describing the

theoretical uncertainty. We remind the reader that these are parameterised specifically

to represent the missing uncertainty at N3LO, which is currently the dominant source

of uncertainty due to missing higher orders. However, the fit will also be influenced,

to a limited extent, by effects at even higher orders. Later in the Chapter we discuss

this in more detail.

175
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Dataset Npts χ2 ∆χ2 from
NNLO

BCDMS µp F2 [72] 163 174.4 −5.8
BCDMS µd F2 [72] 151 144.3 −1.7

NMC µp F2 [75] 123 121.5 −2.6
NMC µd F2 [75] 123 104.2 −8.4

SLAC ep F2 [78, 79] 37 31.6 −0.4
SLAC ed F2 [78, 79] 38 22.8 −0.2

E665 µd F2 [82] 53 63.9 +4.2
E665 µp F2 [82] 53 67.5 +2.9

NuTeV νN F2 [85] 53 35.7 −2.6
NuTeV νN xF3 [85] 42 34.8 +4.1
NMC µn/µp [88] 148 131.6 +0.8

E866 / NuSea pp DY [102] 184 215.4 −9.7
E866 / NuSea pd/pp DY [104] 15 8.4 −2.0

HERA ep Fcharm
2 [107] 79 143.7 +11.4

NMC/BCDMS/SLAC/HERA
FL [72, 75, 79, 110–112]

57 45.6 −22.9

CCFR νN → µµX [114] 86 68.3 +0.6
NuTeV νN → µµX [114] 84 56.7 −1.8

CHORUS νN F2 [117] 42 29.2 −1.0
CHORUS νN xF3 [117] 28 18.1 −0.3

HERA e+p CC [120] 39 49.7 −2.3
HERA e−p CC [120] 42 64.9 −5.3

HERA e+p NC 820 GeV [120] 75 84.3 −5.6
HERA e−p NC 460 GeV [120] 209 247.7 −0.6
HERA e+p NC 920 GeV [120] 402 474.0 −38.7
HERA e−p NC 575 GeV [120] 259 248.5 −14.5
HERA e−p NC 920 GeV [120] 159 243.0 −1.4

CDF II pp̄ incl. jets [128] 76 66.5 +6.1
DØ II Z rap. [130] 28 17.4 +1.0
CDF II Z rap. [132] 28 40.6 +3.4

DØ II W → νµ asym. [134] 10 16.5 −0.8
CDF II W asym. [73] 13 18.2 −0.8

Table 11.1.: Full breakdown of χ2 results for the aN3LO PDF fit. The global fit includes the
N3LO treatment for transition matrix elements, coefficient functions, splitting
functions and K-factor additions with their variational parameters determined by
the fit.
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Dataset Npts χ2 ∆χ2 from
NNLO

DØ II W → νe asym. [74] 12 30.7 −3.2
DØ II pp̄ incl. jets [76] 110 113.3 −6.9

ATLAS W+, W−, Z [77] 30 30.0 +0.1
CMS W asym. pT > 35 GeV [80] 11 6.7 −1.1

CMS W asym. pT > 25, 30 GeV [81] 24 7.9 +0.5
LHCb Z → e+e− [83] 9 23.2 +0.5

LHCb W asym. pT > 20 GeV [84] 10 12.6 +0.1
CMS Z → e+e− [86] 35 17.6 −0.4

ATLAS High-mass Drell-Yan [87] 13 18.4 −0.5
Tevatron, ATLAS, CMS σtt̄ [89–101] 17 14.3 −0.2

CMS double diff. Drell-Yan [103] 132 133.2 −11.3
LHCb 2015 W, Z [105, 106] 67 103.2 +3.8
LHCb 8TeV Z → ee [108] 17 30.3 +4.1

CMS 8 TeV W [109] 22 11.5 −1.2
ATLAS 7 TeV jets [113] 140 215.9 −5.6
CMS 7 TeV W + c [115] 10 10.8 +2.2

ATLAS 7 TeV high prec. W, Z [116] 61 119.3 +2.7
CMS 7 TeV jets [118] 158 186.8 +11.0
DØ W asym. [119] 14 12.2 +0.1

ATLAS 8 TeV Z pT [121] 104 108.4 −80.0
CMS 8 TeV jets [122] 174 271.3 +10.0

ATLAS 8 TeV sing. diff. tt̄ [123] 25 24.2 −1.4
ATLAS 8 TeV sing. diff. tt̄ dilep. [124] 5 2.7 −0.7

ATLAS 8 TeV High-mass DY [125] 48 62.8 +5.7
ATLAS 8 TeV W + jets [126] 30 18.8 +0.7

CMS 8 TeV double diff. tt̄ [127] 15 23.6 +1.0
ATLAS 8 TeV W [129] 22 53.0 −4.4
CMS 2.76 TeV jet [131] 81 109.8 +6.9

CMS 8 TeV sing. diff. tt̄ [133] 9 10.3 −2.9
ATLAS 8 TeV double diff. Z [135] 59 80.4 −5.2

Table 11.1.: (Continued) Full breakdown of χ2 results for the aN3LO PDF fit. The global fit
includes the N3LO treatment for transition matrix elements, coefficient functions,
splitting functions and K-factor additions with their variational parameters deter-
mined by the fit.
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Low-Q2 Coefficient

cNLL
q = −3.868 0.004 cNLL

g = −5.837 0.844

Transition Matrix Elements

aHg = 12214.000 0.601 aNS
qq,H = −64.411 0.001

agg,H = −1951.600 0.857

Splitting Functions

ρNS
qq = 0.007 0.000 ρgq = −1.784 0.802

ρPS
qq = −0.501 0.186 ρgg = 19.245 3.419

ρqg = −1.754 0.015

K-factors

DYNLO = −0.307 0.094 DYNNLO = −0.230 0.053
TopNLO = 0.041 0.002 TopNNLO = 0.651 0.424
JetNLO = −0.300 0.090 JetNNLO = −0.691 0.478

pTJetsNLO = 0.583 0.339 pTJetsNNLO = −0.080 0.006
DimuonNLO = −0.444 0.197 DimuonNNLO = 0.922 0.850

N3LO Penalty Total 9.262 / 20 Average Penalty 0.463

Total 4961.2 / 4363
∆χ2 from NNLO −160.1

Table 11.1.: (Continued) Full breakdown of χ2 results for the aN3LO PDF fit. The global fit
includes the N3LO treatment for transition matrix elements, coefficient functions,
splitting functions and K-factor additions with their variational parameters deter-
mined by the fit.

11.1. χ
2 Breakdown

Table 11.1 shows the global χ2 results for an aN3LO best fit, inclusive of penalties

associated with the new theory variational parameters (from Equation (5.31)). The

theory parameters are labelled as: AHg(aHg), Agg,H(agg,H), ANS
qq,H(aNS

qq,H) for the tran-

sition matrix elements; PNS
qq (ρNS

qq ), PPS
qq (ρ

PS
qq ), Pqg(ρqg), Pgq(ρgq) and Pgg(ρgg) for the

splitting functions; and cNLL
q and cNLL

g correspond to the NLL parameters discussed

in Section 9.1. These are supplemented by the 10 additional nuisance parameters for
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the NLO and NNLO K-factors for the five process categories. These 20 additional

parameters and their associated penalties are also shown in Table 11.1.

The extra N3LO theory and level of freedom introduced has allowed the fit to

achieve a total ∆χ2 = −160.1 compared to MSHT20 NNLO total χ2 (Table 7 from [3]).

Comparing with lower order PDF fits, we find a smooth convergence in the fit quality

which follows what one may expect from an increase in the accuracy of a perturbative

expansion (χ2/Npts = LO: 2.57, NLO: 1.33, NNLO: 1.17, N3LO: 1.14). In part, this is

due to the extra freedom in the K-factors, which will almost always act to reduce this

χ2 due to the minimisation procedure. However, even with this freedom, in most cases

the N3LO theory (non K-factor) contributions include large divergences from NNLO.

With this in mind, we must conclude that the fit is preferring a description different

from the current NNLO standard.

At NNLO (Table D.1), the tension between HERA and non-HERA datasets ac-

counted for ∆χ2 = −61.6 reduction in the overall fit quality when the former was

removed, with the majority of this tension between HERA and ATLAS 8 TeV Z pT [121]

data. Whereas comparing fit results with and without HERA data at N3LO, we find

∆χ2 = −48.0. Although the overall difference is not too substantial we do report a

substantial shift in the leading tensions, where most of the tension with HERA data is

now residing with NMC F2 [75] and CMS 8 TeV jets [122] data. Tensions with NMC

F2 [75] data are also seen to some extent at NNLO where we show a ∆χ2 = −20.6

in a fit omitting HERA data (combining the NMC F2 datasets shown in Table D.1).

However at N3LO, Table D.2 shows a ∆χ2 = −23.4 reduction from NMC F2 data in a

fit omitting HERA data. Therefore whilst the N3LO additions remove tensions with

Z pT data, it remains that the HERA data is preferring the high-x quarks to be lower

than favoured by NMC data. This is suggestive of higher twist effects for NMC data
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at low-Q2 (as we observe a worse fit to low-Q2 data). We also emphasise that when

conducting a fit at NNLO with Z pT data removed, an improvement of ∆χ2 = −41.3

is observed in the rest of the data, whereas at N3LO an improvement of ∆χ2 = −69.3

is observed in all other datasets without removing Z pT, therefore these results are not

purely an effect of removing any Z pT tension. Considering tensions with CMS 8 TeV

jets [122] data, as discussed in Chapter 10, in general the jets datasets show tensions

with the N3LO description (especially for CMS 8 TeV jets [122]), therefore it will be

interesting to observe how this picture evolves when considering this data in the form

of dijets. Some of the above observations are also made in [15, 16] where studies of

including small-x resummation results into a PDF fit have been reported.

Since a naturally richer description of the small-x regime is being included at

N3LO (again somewhat similar to similarly to studies in [15, 16]), which has a direct

effect on the HERA datasets, the reduction of important tensions from NNLO is even

further justification for the inclusion of the N3LO theory. The extra N3LO additions

are allowing the large-x behaviour of the PDFs to be less dominated by data at small-x,

while also producing a better fit quality at small-x (i.e. for HERA data).

Reflecting on the chosen prior distributions for each of the sources of N3LO

MHOUs, Table 11.1 confirms that no especially large penalties are being incurred

in this new description. These results therefore demonstrate that the fit is succeed-

ing in leveraging contributions (such as P(3)
qq and P(3)

qg in the quark evolution part of

Equation (6.3)) to produce a better overall fit.
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DIS Dataset χ2 ∆χ2 ∆χ2 from NNLO
from NNLO (NNLO K-factors)

BCDMS µp F2 [72] 179.9 / 163 −0.3 −0.9
BCDMS µd F2 [72] 143.1 / 151 −2.9 −1.2

NMC µp F2 [75] 118.7 / 123 −5.3 −7.0
NMC µd F2 [75] 106.2 / 123 −6.4 −10.0

SLAC ep F2 [78, 79] 32.0 / 37 +0.0 +0.6
SLAC ed F2 [78, 79] 21.9 / 38 −1.1 −1.4

E665 µp F2 [82] 64.7 / 53 +5.1 +6.0
E665 µd F2 [82] 67.5 / 53 +2.8 +3.1

NuTeV νN F2 [85] 38.7 / 53 +0.5 +2.1
NuTeV νN xF3 [85] 33.9 / 42 +3.2 +1.7
NMC µn/µp [88] 128.5 / 148 −2.3 −2.9

HERA ep Fcharm
2 [107] 134.7 / 79 +2.4 +6.4

NMC/BCDMS/SLAC/HERA
FL [72, 75, 79, 110–112]

45.5 / 57 −23.0 −23.2

CHORUS νN F2 [117] 32.7 / 42 +2.6 +2.6
CHORUS νN xF3 [117] 19.8 / 28 +1.3 +2.2

HERA e+p CC [120] 51.8 / 39 −0.1 +0.3
HERA e−p CC [120] 66.3 / 42 −3.8 −2.8

HERA e+p NC 820 GeV [120] 83.8 / 75 −6.0 −5.9
HERA e−p NC 460 GeV [120] 247.4 / 209 −0.9 −0.7
HERA e+p NC 920 GeV [120] 476.7 / 402 −36.0 −32.9
HERA e−p NC 575 GeV [120] 248.0 / 259 −15.0 −14.5
HERA e−p NC 920 GeV [120] 243.3 / 159 −1.0 −0.9

Total 2585.2 / 2375 −86.4 −79.3

Table 11.2.: Table showing the relevant DIS datasets and how the individual χ2 changes from
NNLO by including the N3LO contributions to the structure function F2(x, Q2).
The result within purely NNLO K-factors included for all data in the fit is also
given.

DIS Processes

To complement the discussions in Chapter 10, we isolate the χ2 results from DIS data

in Table 11.2. This data is directly affected by the N3LO structure functions constructed

approximately in Chapter’s 3 to 6. A substantial decrease in the total χ2 from NNLO

is observed across DIS datasets. Considering the results in Table 11.2 in the context
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of Table’s 10.1 to 10.6, a better fit quality is observed for all DIS and non-DIS datasets

than at NNLO with the inclusion of N3LO contributions. As the DIS data makes up

over half of the total data included in a global fit, it is the dominant force in deciding

the overall form of the PDFs, especially at small-x (discussed further in Section 11.4).

Table 11.2 further reinforces the point that the N3LO description is flexible enough

to fit to HERA and non-HERA data, without being largely constrained by tensions

between the small-x (HERA dominated) and large-x (non-HERA dominated) regions.

11.2. Correlation Results

The correlation matrix shown in Fig. 11.1 illustrates the correlations between extra

N3LO theory parameters and the subset of the MSHT20 parameters which are included

in the construction of Hessian eigenvectors (see Section 11.3 and [3] for details). It is

apparent that the correlations between K-factor parameters for each process (shown in

green) and other PDF and theory parameters are usually small, with some exceptions

e.g. for the TopNLO parameter. Due to this there is an argument that each process’ K-

factor parameters could be treated separately from all other parameters in the Hessian

prescription (see Section 6.2) which allows for a more flexible PDF set that can be

decorrelated from a process. By using the uncorrelated Hessian results for a process

NNLO hard cross sections can be transformed to aN3LO and therefore provide more

reliable predictions (more details in Chapter 14). This is a fairly intuitive result, since

most correlations are showing a natural separation between the process dependent and

process independent physics in the DIS picture 1. Mathematically, the K-factors are

directly associated with the hard cross section, whereas other N3LO theory parameters

(ρij and aij) are having a direct effect on the PDFs. Fig. 11.1 therefore begins to

1The same pattern can be seen for cNLL
{q,g} parameters which are involved in the DIS hard cross section.
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Figure 11.1.: Correlation matrix for all N3LO theory parameters included in the fit against the
subset of the MSHT20 parameters (shown in black) used in constructing the Hes-
sian eigenvectors. This is shown for the case where the K-factors correlations with
the first 42 parameters are included. N3LO theory parameters associated with
the splitting functions are coloured blue, the parameters affecting the transition
matrix elements and coefficient functions are in red and the K-factor parameters
are in green.
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motivate the inclusion of the ‘pure’ theory (splitting functions and transition matrix

elements) parameters within the standard MSHT eigenvector analysis [3], with the

decorrelation of the K-factor parameters, as discussed in Chapter 5. We investigate and

compare both treatments (complete correlation and K-factor decorrelation) throughout

the rest of this section. We show in Section 11.4 that while the decorrelation of K-

factors is not complete, both treatments result in similar uncertainty bands, therefore

confirming that the effect of making the assumption of full decorrelation is minimal

in practice. Note that although the cNLL
i parameters also show minimal correlation

with other parameters, we include these within the ‘pure’ theory group of parameters

(i.e. correlated with ρij and aij) as they are essential ingredients in the underlying DIS

theory.

11.3. Eigenvector Results

In the MSHT fitting procedure (described in [3]) the eigenvectors of a Hessian ma-

trix are found, which encapsulate the sources of uncertainties and corresponding

correlations. Combining these with the central PDFs, forms the entire PDF set with

uncertainties. In this eigenvector analysis a dynamical rescaling of each eigenvector ei

is performed via a tolerance factor t to encapsulate the 68% confidence limit (C.L.).

ai = a0
i ± tei, (11.1)

where a0
i is the best fit parameter. t is then adjusted to give the desired tolerance

T for the required confidence interval defined as T =
√

∆χ2
global (for 68% C.L.). In

a quadratic approximation, for suitably well-behaved eigenvectors, t = T is true.

Although for eigenvectors with larger eigenvalues, it is possible to observe significant
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deviations from t = T. The standard MSHT fitting procedure involves allowing

all relevant parameters from [3] to vary when finding the best fit, now including

all N3LO theory parameters (ρij, aij, cNLL
i , KNLO/NNLO) discussed in this work. After

accounting for high degrees of correlation between parameters (described in [64]), the

result is a Hessian matrix which in general, depends on a subset of the parameters

that were allowed to vary in a best fit and provides a set of suitably well-behaved

eigenvectors. The standard MSHT NNLO PDF eigenvectors are based on a set of 32

parameters, reduced from the 52 parameters allowed to vary in the full fit. In the

following analysis we are therefore concerned with a smaller number of parameters,

specifically the 32 parameters from the standard MSHT fitting procedure plus an extra

20 N3LO parameters (shown in Fig. 11.1).

A standard choice of tolerance T is T =
√

∆χ2
global = 1 for a 68% C.L. limit.

However, this assumes all datasets are consistent with Gaussian errors. In practice,

due to incomplete theory, tensions between datasets and parameterisation inflexibility,

this is known not to be the case in a global PDF fit. To overcome this, a 68% C.L.

region for each dataset is defined. Then for each eigenvector, the value of
√

χ2
global for

each chosen t is recorded (ideally showing a quadratic behaviour). Finally, a value

of T is chosen to ensure that all datasets are described within their 68% CL in each

eigenvector direction. For a fuller mathematical description of the dynamical tolerance

procedure used in MSHT PDF fits, the reader is referred to [64]. In this section we

present a demonstration of how well the resultant eigenvectors follow the quadratic

assumption based on t = T, including the specific choices of dynamical tolerances and

which dataset/penalty constrains this tolerance in each eigenvector direction.
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PDF + N3LO DIS Theory + N3LO K-factor (decorrelated) Parameters

As discussed in Section 11.2, when determining the eigenvectors and therefore PDF

uncertainties, we can choose to either include the correlations between the 10 K-factor

parameters added with the other 42 parameters (encompassing the standard 32 MSHT

eigenvector parameters and the 10 new theory parameters from the splitting functions,

transition matrix elements and coefficient functions) or to decorrelate the 10 K-factor

parameters.

In this section we address the scenario where we decorrelate the K-factors as

H−1
ij +

Np

∑
p=1

K−1
ij,p (11.2)

and consider each term individually.

Fig. 11.2 shows the map of eigenvectors produced from Hij in Equation (11.2),

where we have included the new N3LO DIS theory parameters (splitting functions in

blue and coefficient functions/transition matrix elements in red) correlated with the

PDF parameters. Eigenvectors 35 and 36 are prime examples of where the eigenvectors

have specifically encompassed the correlation/anti-correlation between the two NLL

FFNS coefficient function parameters cNLL
i (i ∈ {q, g}). Whereas the splitting functions

naturally give rise to a much more complicated mixing with other PDF parameters as

these directly affect the evolution of the PDFs. Due to the direct impact of ρij’s on the

PDFs (via DGLAP evolution), combined with the large contributions to the evolution

shown at N3LO, this result is as expected.

Another somewhat pleasing aspect is the recovery of a natural separation between

eigenvectors associated with the N3LO coefficient function/transition matrix elements
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Figure 11.2.: Correlation matrix of the first 42 (total 52) eigenvectors found with the N3LO pa-
rameters added into the analysis in the case where the K-factors are decorrelated
from these first 42 parameters. Parameters associated with the splitting functions
are coloured blue, those affecting the transition matrix elements and coefficient
functions are in red.
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Figure 11.3.: Map of the 10 K-factor eigenvectors found with the N3LO parameters added into
the analysis in the case where the K-factors are decorrelated from these first 42
parameters.. Combined with the 42 eigenvectors shown in Fig. 11.2, these form
the total 52 eigenvectors in the decorrelated case. Parameters associated with the
K-factor parameters are in green.
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and our original PDF parameters (incl. N3LO splitting functions). This separation

is reminiscent of our DIS picture, whereby the splitting functions are much more

intertwined with the raw PDFs and the transition matrix elements have a symbiotic

relationship with the coefficient functions (see GM-VFNS description in Chapter 3).

Due to this, the form of these eigenvectors has not only some level of physical inter-

pretation inherited from our underlying theory, but also offers a useful way to access

the different sources of N3LO additions within the PDF set.

In Fig. 11.3 the eigenvectors resulting from the ∑
Np
p=1 K−1

ij,p terms in Equation (11.2)

are shown. These eigenvectors are constructed in pairs, describing the correlation

and anti-correlation of the two K-factor parameters (controlling the NLO and NNLO

contributions to N3LO) for each process p contained within the corresponding Kij,p

correlation matrix.

Table 11.3 shows further information regarding the K-factor parameter limits from

each eigenvector. In most cases the parameter limits are well within the allowed

variation (−1 < a < 1), which is an indication that the data included in the fit is

constraining these parameters rather than the individual penalties for each parameter2.

To assess whether the eigenvectors are violating the quadratic treatment, four

examples displaying this behaviour are shown in Fig. 11.4, with a full analysis provided

in Appendix E.1. Additionally, Table 11.4 provides a summary of all tolerances found

within the eigenvector scans. There is relatively consistent agreement between t and

T across all eigenvectors with later eigenvectors (i.e. higher #) generally becoming less

quadratic (a feature which is built into the fit). Eigenvectors 31, 41 and 42 displayed

2We remind the reader that the Dimuon datasets also include a branching ratio factor which is
providing some compensation with these K-factor parameters (as discussed in Chapter 10).



190 MSHT20 Approximate N3LO Global Analysis

Figure 11.4.: Dynamic tolerance behaviour for 4 selected eigenvectors in the case of decor-
related K-factor parameters. The black dots show the fixed tolerance relations
found for integer values of t, whereas the red triangles show the final chosen
dynamical tolerances for each eigenvector direction. For an exhaustive analysis
of all eigenvectors see Fig. E.1.
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Matrix
Central Values

Eigenvector
+ Limit - Limit

Scale
aNLO aNNLO aNLO aNNLO aNLO aNNLO

KDY
ij -0.247 -0.053

43 -0.386 0.039 -0.146 -0.119
m/2

44 -0.173 0.467 -0.319 -0.559

KTop
ij 0.324 0.812

45 -0.015 0.227 0.674 1.476
Section 10.2

46 0.059 1.295 0.721 0.088

KJets
ij -0.250 -0.719

47 -0.454 -0.991 0.282 0.008
pjet

T48 -0.659 -0.060 0.072 -1.237

KpT Jets
ij 0.662 -0.105

49 0.468 -0.421 0.916 0.310
pT50 0.558 0.566 0.763 -0.760

KDimuon
ij -0.694 0.602

51 -1.219 -0.054 -0.272 1.258
Q2

52 -1.268 1.013 1.099 -0.680

Table 11.3.: Limiting values for specific K-factor parameters for each of the processes consid-
ered in the decorrelated case. Parameter values are shown in the positive and
negative limits for each eigenvector. The scale choices for top quark processes
are described in Chapter 10 to be HT/4 for the single differential datasets with
the exception of data differential in the average transverse momentum of the top
or antitop, pt

T, pt̄
T, for which mT/2 is used. For the double diff. dataset the scale

choice is HT/4 and for the inclusive top σtt̄ a scale of mt is chosen.

in Fig. 11.4 are shown in Table 11.4 to be either dominated or limited by at least

one new N3LO parameter. Conversely, eigenvector 26 is much more dominated

by the original PDF parameters from MSHT20 NNLO. Comparing these cases, the

eigenvectors associated more strongly with the N3LO parameters exhibit a similar

level of agreement (and occasionally better) with the desired quadratic behaviour as

eigenvectors more closely associated with the original PDF parameters.

The last 5 sets of eigenvectors (i.e. the last 10 where a set contains 2 eigenvectors

for a particular process) we see in Table 11.4 are the decorrelated K-factor eigenvectors,

where there are correlated/anti-correlated eigenvectors for each process. For all K-

factor cases, Table 11.4 provides sensible results with either the dominant datasets or

parameter penalties constraining each eigenvector direction. One interesting feature

one can observe here is a sign of tension between the ATLAS 8 TeV Z pT [121] and
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# t+ T+ Limiting Factor (+) t− T− Limiting Factor (−) Primary
Parameter

1 3.45 3.56 ATLAS 7 TeV high prec.
W, Z [116]

2.80 2.93 ATLAS 8 TeV double diff.
Z [135]

aS,3

2 3.52 3.33 NMC µd F2 [75] 5.13 5.41 HERA e+p NC 920 GeV
[120]

aS,6

3 4.48 4.37 NMC µd F2 [75] 6.33 6.82 HERA e+p NC 920 GeV
[120]

ag,3

4 5.57 5.78 ATLAS 7 TeV high prec.
W, Z [116]

2.47 2.42 NMC µd F2 [75] aS,2

5 6.63 6.72 HERA e−p NC 575 GeV
[120]

4.16 4.39 HERA e+p NC 920 GeV
[120]

δg′

6 3.97 4.23 DØ II W → νe asym. [74] 2.15 2.14 DØ W asym. [119] δu

7 3.09 3.53 DØ W asym. [119] 6.69 6.44 HERA e+p NC 920 GeV
[120]

δS

8 5.97 6.06 LHCb 2015 W, Z [105,
106]

2.85 3.05 DØ W asym. [119] au,6

9 3.15 3.02 BCDMS µp F2 [72] 3.07 3.39 DØ W asym. [119] au,6

10 2.17 2.35 DØ W asym. [119] 5.27 5.37 CMS 8 TeV W [109] δg

11 5.54 5.89 NuTeV νN F2 [85] 2.55 2.63 NMC µd F2 [75] ag,2

12 3.58 3.68 CMS 7 TeV W + c [115] 3.22 3.28 NuTeV νN → µµX [114] as+,5

13 2.13 2.40 DØ W asym. [119] 2.78 3.13 E866 / NuSea pd/pp DY
[104]

As−

14 4.38 4.92 ATLAS 8 TeV double diff.
Z [135]

1.82 1.86 E866 / NuSea pd/pp DY
[104]

aρ,6

15 5.08 4.39 NuTeV νN xF3 [85] 2.09 2.13 NuTeV νN → µµX [114] au,2

16 2.97 3.39 E866 / NuSea pd/pp DY
[104]

0.92 1.21 E866 / NuSea pd/pp DY
[104]

Aρ

17 2.23 2.61 DØ W asym. [119] 2.81 3.01 E866 / NuSea pd/pp DY
[104]

ad,6

18 1.68 2.15 E866 / NuSea pd/pp DY
[104]

2.51 2.53 NuTeV νN → µµX [114] as+,2

19 1.45 1.45 ρNS
qq 1.70 1.75 ρNS

qq ρNS
qq

20 1.65 1.41 ρNS
qq 1.41 1.68 ρNS

qq ρNS
qq

21 2.77 3.30 E866 / NuSea pd/pp DY
[104]

3.04 2.89 CMS 7 TeV W + c [115] as+,2

22 2.23 2.45 NuTeV νN → µµX [114] 1.60 1.99 DØ W asym. [119] ad,2

Table 11.4.: Tolerances resulting from eigenvector scans with decorrelated K-factors for each
process. The average tolerance for this set of eigenvectors is T = 3.12.
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# t+ T+ Limiting Factor (+) t− T− Limiting Factor (−) Primary
Parameter

23 6.08 5.26 BCDMS µp F2 [72] 1.96 2.18 E866 / NuSea pd/pp DY
[104]

ηu

24 5.01 5.91 ATLAS 7 TeV high prec.
W, Z [116]

4.77 5.67 HERA e+p NC 920 GeV
[120]

ρPS
qq

25 1.61 1.81 E866 / NuSea pd/pp DY
[104]

3.41 3.65 CMS 8 TeV W [109] aρ,3

26 1.94 2.22 DØ W asym. [119] 2.45 2.90 E866 / NuSea pd/pp DY
[104]

ad,3

27 1.65 1.68 ρgq 3.38 4.06 DØ W asym. [119] ρgq

28 1.20 1.45 DØ W asym. [119] 3.21 3.61 CMS 8 TeV W [109] As+

29 3.87 5.08 ATLAS 8 TeV double diff.
Z [135]

2.21 2.86 CMS 8 TeV sing. diff. tt̄
[133]

ηg

30 1.06 1.07 DØ W asym. [119] 4.22 4.60 DØ W asym. [119] ηd − ηu

31 3.58 3.93 CMS 8 TeV W [109] 2.12 2.43 NuTeV νN xF3 [85] ηS

32 4.86 6.78 HERA e+p NC 920 GeV
[120]

4.10 4.68 ATLAS 8 TeV Z pT [121] ρqg

33 2.65 3.80 BCDMS µd F2 [72] 3.34 3.69 CMS 8 TeV W [109] ηs+

34 2.29 3.63 DØ W asym. [119] 2.02 3.28 CMS 8 TeV W [109] aρ,1

35 4.07 5.08 HERA ep Fcharm
2 [107] 2.40 2.92 HERA ep Fcharm

2 [107] cNLL
g

36 1.34 1.52 cNLL
q 1.24 1.22 cNLL

g cNLL
q

37 2.63 3.83 NuTeV νN → µµX [114] 2.97 3.16 E866 / NuSea pd/pp DY
[104]

ηs−

38 0.69 0.71 ρgg 3.76 3.90 ρgq ρgg

39 1.57 5.57 ATLAS 7 TeV high prec.
W, Z [116]

1.57 5.01 ATLAS 7 TeV high prec.
W, Z [116]

AS

40 0.88 1.00 aNS
qq,H 1.15 1.01 aNS

qq,H aNS
qq,H

41 1.71 2.72 HERA ep Fcharm
2 [107] 2.16 2.81 ρgg aHg

42 2.09 2.19 ρgg 0.60 0.54 agg,H agg,H

43 2.25 2.77 ATLAS 7 TeV high prec.
W, Z [116]

1.62 1.26 CMS double diff. Drell-
Yan [103]

DYNLO

44 3.90 3.86 E866 / NuSea pp DY
[102]

3.80 4.38 ATLAS 7 TeV high prec.
W, Z [116]

DYNNLO

45 1.28 1.22 ATLAS 8 TeV sing. diff.
tt̄ dilep. [124]

1.45 1.56 Tevatron, ATLAS, CMS
σtt̄ [89–101]

TopNNLO

Table 11.4.: (Continued) Tolerances resulting from eigenvector scans with decorrelated K-factors
for each process. The average tolerance for this set of eigenvectors is T = 3.12.
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# t+ T+ Limiting Factor (+) t− T− Limiting Factor (−) Primary
Parameter

46 1.08 0.92 TopNNLO 1.62 1.34 TopNLO TopNLO

47 1.47 1.44 CDF II pp̄ incl. jets [128] 3.85 4.10 agg,H JetNLO

48 3.25 3.29 CMS 2.76 TeV jet [131] 2.56 2.90 JetNNLO JetNNLO

49 2.10 2.35 ATLAS 8 TeV Z pT [121] 2.75 2.71 ATLAS 8 TeV W + jets
[126]

pT JetNLO

50 2.24 2.28 ATLAS 8 TeV Z pT [121] 2.19 2.24 ATLAS 8 TeV W + jets
[126]

pT JetNNLO

51 1.02 1.03 DimuonNLO 0.82 0.90 DimuonNNLO DimuonNNLO

52 0.75 0.77 DimuonNLO 2.35 2.33 DimuonNLO DimuonNLO

Table 11.4.: (Continued) Tolerances resulting from eigenvector scans with decorrelated K-factors
for each process. The average tolerance for this set of eigenvectors is T = 3.12.

ATLAS 8 TeV W + jets [126] datasets where the limiting factors in Table 11.4 for

eigenvectors 49 and 50 show that these datasets are preferring a slightly different

K-factor.

To provide some extra level of comparison between the eigenvectors shown here

and the eigenvectors found in the NNLO case, the average tolerance T for aN3LO

(decorrelated K-factors) set is 3.34, compared to the NNLO average T of 3.37.

PDF + N3LO DIS Theory + N3LO K-factor (correlated) Parameters

In this section we address the scenario,

H′ij =


H−1

ij +

Np

∑
p=1

K−1
ij,p



−1

. (11.3)

Moving to an analysis including aN3LO K-factors as correlated parameters with

PDF and other N3LO theory parameters. This provides a comparison to the case
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Figure 11.5.: Map of eigenvectors found with the N3LO theory and K-factor parameters added
into the analysis. Parameters associated with the splitting functions are coloured
blue, those affecting the transition matrix elements and coefficient functions are
in red and the K-factor parameters are in green.
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of decorrelated K-factors and justification for treating the cross section behaviour

separately to the PDF theory behaviour.

Fig. 11.5 shows a map of eigenvectors with the extra 10 N3LO K-factor parameters

(shown in green) included into the correlations considered. As expected, the result of

including the correlations between PDF parameters and aN3LO K-factors results in a

slightly more intertwined set of eigenvectors (although a high level of decorrelation

remains). Specifically, due to the much higher number of DY datasets included in the

global fit, these N3LO K-factor parameters tend to be included across more of a spread

of eigenvectors. On the other hand, the Dimuon K-factors are almost entirely isolated

within two eigenvectors, similar to the decorrelated case.

Once again, to investigate deviations from the quadratic behaviour, Fig. 11.6 il-

lustrates examples of the tolerance behaviours of selected eigenvectors, with a full

analysis provided in Appendix E.2. Further to this, Table 11.5 displays the tolerances

and limiting datasets/parameters for the 52 correlated eigenvectors. It is difficult

to compare and contrast these results with the decorrelated case, since the eigenvec-

tors are inherently different. However in both cases, the eigenvectors are similarly

well behaved, exhibit relatively good consistency between t and T and are therefore

providing valid descriptions for a PDF fit.

For most of the 12 eigenvectors with N3LO K-factors as primary parameters, there

is expected behaviour, with the eigenvectors constrained either by their own penal-

ties or by dominant datasets for the associated process. However, due to the extra

correlations considered, there are a small number of eigenvector directions which are

not as trivial to explain (e.g. eigenvector 31). We therefore recover the lack of corre-

lation between K-factor parameters seen within Fig. 11.1 in the set of correlated PDF
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Figure 11.6.: Dynamic tolerance behaviour for 4 selected eigenvectors in the case of correlated
K-factor parameters. The black dots show the fixed tolerance relations found
for integer values of t, whereas the red triangles show the final chosen dynam-
ical tolerances for each eigenvector direction. For an exhaustive analysis of all
eigenvectors see Fig. E.2.
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# t+ T+ Limiting Factor (+) t− T− Limiting Factor (−) Primary
Parameter

1 2.87 2.90 ATLAS 8 TeV double diff.
Z [135]

3.50 3.47 ATLAS 7 TeV high prec.
W, Z [116]

aS,3

2 4.22 3.99 NMC µd F2 [75] 5.14 5.38 HERA e+p NC 920 GeV
[120]

aS,6

3 4.54 4.25 ATLAS 8 TeV Z pT [121] 6.55 6.98 HERA e+p NC 920 GeV
[120]

ag,3

4 4.97 5.10 ATLAS 7 TeV high prec.
W, Z [116]

2.82 2.74 NMC µd F2 [75] aS,2

5 4.18 4.29 HERA e+p NC 920 GeV
[120]

6.63 6.59 HERA e−p NC 575 GeV
[120]

δg′

6 4.00 4.10 DØ II W → νe asym. [74] 2.18 2.08 DØ W asym. [119] δu

7 6.69 6.31 HERA e+p NC 920 GeV
[120]

3.21 3.45 DØ W asym. [119] δS

8 4.65 4.45 CMS W asym. pT >
25, 30 GeV [81]

2.24 2.32 DØ W asym. [119] δd

9 5.29 5.49 DØ II W → νµ asym.
[134]

2.45 2.25 BCDMS µp F2 [72] au,6

10 5.52 5.43 CMS 8 TeV W [109] 2.15 2.20 DØ W asym. [119] δg

11 2.64 2.45 NMC µd F2 [75] 5.65 5.90 NuTeV νN F2 [85] ag,2

12 5.76 4.47 CMS 7 TeV W + c [115] 4.44 3.40 NuTeV νN → µµX [114] as+,5

13 2.23 2.21 DØ W asym. [119] 2.88 3.03 E866 / NuSea pd/pp DY
[104]

As−

14 4.91 4.75 ATLAS 8 TeV double diff.
Z [135]

2.53 2.28 DØ W asym. [119] au,2

15 6.05 5.57 NuTeV νN xF3 [85] 1.49 1.41 E866 / NuSea pd/pp DY
[104]

aρ,6

16 0.95 0.59 E866 / NuSea pd/pp DY
[104]

2.90 3.23 E866 / NuSea pd/pp DY
[104]

Aρ

17 2.86 3.05 NuTeV νN → µµX [114] 3.27 3.23 CMS 8 TeV W [109] ad,6

18 1.97 1.78 DØ W asym. [119] 1.73 1.82 E866 / NuSea pd/pp DY
[104]

as+,2

19 2.36 2.48 CCFR νN → µµX [114] 2.58 2.40 NuTeV νN → µµX [114] as+,3

20 1.57 1.82 ρNS
qq 1.84 1.43 ρNS

qq ρNS
qq

21 3.03 2.61 ρNS
qq 2.97 3.32 E866 / NuSea pd/pp DY

[104]
as+,2

22 2.17 2.10 NuTeV νN → µµX [114] 1.64 1.77 DØ W asym. [119] ad,2

Table 11.5.: Tolerances resulting from eigenvector scans with correlated K-factors for each
process. The average tolerance for this set of eigenvectors is T = 3.12.
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# t+ T+ Limiting Factor (+) t− T− Limiting Factor (−) Primary
Parameter

23 4.68 4.13 ρNS
qq 1.88 1.78 E866 / NuSea pd/pp DY

[104]
ηu

24 4.79 5.59 HERA e+p NC 920 GeV
[120]

4.76 5.42 ATLAS 7 TeV high prec.
W, Z [116]

ρPS
qq

25 1.65 1.58 E866 / NuSea pd/pp DY
[104]

3.46 3.56 CMS 8 TeV W [109] aρ,3

26 2.16 2.14 DØ W asym. [119] 2.26 2.43 E866 / NuSea pd/pp DY
[104]

aρ,3

27 4.92 5.71 Tevatron, ATLAS, CMS
σtt̄ [89–101]

1.85 1.64 ρgq ρgq

28 1.19 0.91 DØ W asym. [119] 3.39 3.58 CMS 8 TeV W [109] As+

29 3.95 3.47 CMS double diff. Drell-
Yan [103]

2.16 2.40 ρgq ηg

30 1.79 1.56 CMS double diff. Drell-
Yan [103]

2.41 2.59 ATLAS 7 TeV high prec.
W, Z [116]

DYNLO

31 4.43 4.66 DØ W asym. [119] 1.06 0.92 DØ W asym. [119] ηd − ηu

32 2.94 3.21 ATLAS 8 TeV Z pT [121] 2.84 2.60 ATLAS 8 TeV W + jets
[126]

pT JetNLO

33 3.46 3.68 CMS 8 TeV W [109] 2.44 2.34 NuTeV νN xF3 [85] ηS

34 4.61 4.55 DØ W asym. [119] 3.89 4.03 NuTeV νN xF3 [85] DYNNLO

35 4.99 6.80 HERA e+p NC 920 GeV
[120]

3.96 4.29 ATLAS 8 TeV Z pT [121] ρqg

36 6.56 6.80 CMS 8 TeV W [109] 2.06 1.90 CDF II pp̄ incl. jets [128] JetNLO

37 2.14 2.95 DØ W asym. [119] 1.86 2.91 CMS 8 TeV W [109] aρ,1

38 3.77 3.92 CDF II pp̄ incl. jets [128] 3.10 3.92 BCDMS µd F2 [72] ηs+

39 2.62 2.91 JetNNLO 3.25 3.28 CMS 2.76 TeV jet [131] JetNNLO

40 1.85 1.77 ATLAS 8 TeV sing. diff.
tt̄ dilep. [124]

2.34 2.26 Tevatron, ATLAS, CMS
σtt̄ [89–101]

TopNLO

41 2.60 2.47 ATLAS 8 TeV W + jets
[126]

2.90 2.97 ATLAS 8 TeV sing. diff.
tt̄ dilep. [124]

pT JetNNLO

42 2.42 2.92 HERA ep Fcharm
2 [107] 4.08 5.04 HERA ep Fcharm

2 [107] cNLL
g

43 2.02 1.72 TopNLO 1.07 1.00 TopNNLO TopNNLO

44 0.82 0.78 DimuonNNLO 1.00 1.03 DimuonNLO DimuonNNLO

45 2.37 2.35 DimuonNLO 0.76 0.76 DimuonNLO DimuonNLO

Table 11.5.: (Continued) Tolerances resulting from eigenvector scans with correlated K-factors
for each process. The average tolerance for this set of eigenvectors is T = 3.12.



200 MSHT20 Approximate N3LO Global Analysis

# t+ T+ Limiting Factor (+) t− T− Limiting Factor (−) Primary
Parameter

46 1.34 1.52 cNLL
q 1.24 1.22 cNLL

g cNLL
q

47 2.62 3.68 NuTeV νN → µµX [114] 3.00 2.99 E866 / NuSea pd/pp DY
[104]

ηs−

48 3.76 3.76 ρgq 0.69 0.68 ρgg ρgg

49 1.54 5.44 ATLAS 7 TeV high prec.
W, Z [116]

1.55 4.88 ATLAS 7 TeV high prec.
W, Z [116]

AS

50 0.88 1.00 aNS
qq,H 1.15 1.01 aNS

qq,H aNS
qq,H

51 2.16 2.71 ρgg 1.71 2.65 HERA ep Fcharm
2 [107] aHg

52 2.09 2.21 ρgg 0.60 0.54 agg,H agg,H

Table 11.5.: (Continued) Tolerances resulting from eigenvector scans with correlated K-factors
for each process. The average tolerance for this set of eigenvectors is T = 3.12.

eigenvectors presented here. Further to this, comparing the t and T values found for

eigenvectors associated with N3LO K-factors in Table’s 11.4 and 11.5, one can observe

clear similarities between eigenvectors. This suggests that even when correlating the

K-factor parameters, the fit succeeds in decorrelating the individual processes, thereby

motivating our original assumption that the correlations with K-factors can be ignored.

Another similarity one can observe between Table 11.4 and Table 11.5 is the suggestion

of some tension between ATLAS 8 TeV Z pT [121] and ATLAS 8 TeV W + jets [126]

datasets seen in the limiting factors of eigenvector 39 in the correlated case.

Eigenvectors 27, 29 and 52 displayed in Fig. 11.6 can be seen from Table 11.5 to be

associated with the new N3LO theory parameters. Whereas eigenvector 37 is primarily

focused on an original PDF parameter. One can observe a similar level of quadratic

behaviour across all four of these eigenvector tolerances. Comparing all eigenvectors

in the decorrelated/correlated cases, the behaviours are similarly well behaved. The

average tolerance T for the aN3LO (with correlated K-factors) case is 3.57, slightly

higher than the NNLO average of 3.37 and the aN3LO (with decorrelated K-factors)

average of 3.34.
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Figure 11.7.: General forms of NNLO (top) and aN3LO (bottom) PDFs at low (left) and high
(right) Q2. Several main features can be compared and contrasted such as the
marked increase in the gluon and charm at small-x (note the difference in y-axis
scale between NNLO (top) and aN3LO (bottom)).

11.4. PDF Results

Fig. 11.7 displays the overall shape of the PDFs including the N3LO additions com-

pared to the standard NNLO set. We provide this comparison to accompany the
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results described in earlier sections. At small-x and low-Q2 the gluon exhibits a

marked enhancement due to the large small-x logarithms inserted at N3LO (similar to

the results shown in [4, 15] The changes induced from specific N3LO contributions are

investigated in Section 11.8.

Shown in Fig.’s 11.8 and 11.9 are the ratios for each flavour of aN3LO PDF compared

to the NNLO set with their 68% confidence intervals at low and high-Q2 respectively.

The shaded aN3LO regions indicate the PDF uncertainty produced with the decorre-

lated ((H−1
ij + ∑

Np
p=1 K−1

ij, p)
−1) aN3LO K-factors for each process. As a comparison to

these shaded regions, the bounds of uncertainty for the fully correlated (H′ij) N3LO

K-factor parameters is also provided (red dashed line).

Considering Fig. 11.8 we present the aN3LO PDF set at Q2 = 10 GeV2 with the

bottom quark PDF at Q2 = 25 GeV2. These PDF ratios better display the substantial

increase in the gluon at small-x. The predicted harder small-x gluon is then accom-

modated for by reductions in the PDFs at large and small-x (including the gluon near

x = 10−2) from NNLO. Another prominent feature is the enhanced charm and bottom

quark at N3LO. Since the heavy flavour quarks are perturbatively calculated in the

MSHT framework, this amplification is a feature of the transition matrix element

A(3)
Hg at high-x, combined with the increase in the gluon PDF at small-x (as these two

ingredients are convoluted together). Comparing with Fig. 95 in [3], we observe that

the approximate N3LO charm quark now follows a much closer trend to the CT18

PDF and is therefore even more significantly different from the NNPDF NNLO fitted

charm at large-x than MSHT20 at NNLO. In the high-Q2 setting shown in Fig. 11.9 we

observe similar albeit less drastic effects to those described above.

Also contained in Fig.’s 11.8 and 11.9 are the relative forms of NNLO PDFs when

fit to all non-HERA data (full χ2 results are provided in Appendix D). Comparing
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Figure 11.8.: Low-Q2 ratio plots showing the aN3LO 68% confidence intervals with decorre-
lated (Hij + Kij) and correlated (H′ij) K-factor parameters, compared to NNLO
68% confidence intervals. Also shown are the central values at NNLO when
fit to all non-HERA datasets which show similarities with N3LO in the large-x
region of selected PDF flavours. All plots are shown for Q2 = 10 GeV2 with the
exception of the bottom quark shown for Q2 = 25 GeV2.
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Figure 11.8.: (Continued) Low-Q2 ratio plots showing the aN3LO 68% confidence intervals with
decorrelated (Hij + Kij) and correlated (H′ij) K-factor parameters, compared to
NNLO 68% confidence intervals. Also shown are the central values at NNLO
when fit to all non-HERA datasets which show similarities with N3LO in the
large-x region of selected PDF flavours. All plots are shown for Q2 = 10 GeV2

with the exception of the bottom quark shown for Q2 = 25 GeV2.

the non-HERA NNLO PDFs with aN3LO PDFs, there are some similarities in the

shapes and magnitudes of a handful of PDFs in the intermediate to large-x regime,

most noticeably the light quarks. At small-x the HERA data heavily constrains the

PDF fit and therefore these similarities rapidly break down. However, this analysis

displays further evidence that including N3LO contributions, even though approxi-

mate, reduces tensions between the HERA and non-HERA data (when considering

the reduction in tension seen in Table D.1). The aN3LO PDFs are seemingly able to fit

to HERA and non-HERA datasets with superior flexibility than at NNLO.
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Figure 11.9.: High-Q2 ratio plots showing the aN3LO 68% confidence intervals with decorre-
lated (Hij + Kij) and correlated (H′ij) K-factor parameters, compared to NNLO
68% confidence intervals. Also shown are the central values at NNLO when fit to
all non-HERA datasets which show similarities with N3LO in the large-x region
of selected PDF flavours. All plots are shown for Q2 = 104 GeV2.
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Figure 11.9.: (Continued) High-Q2 ratio plots showing the aN3LO 68% confidence intervals
with decorrelated (Hij + Kij) and correlated (H′ij) K-factor parameters, compared
to NNLO 68% confidence intervals. Also shown are the central values at NNLO
when fit to all non-HERA datasets which show similarities with N3LO in the
large-x region of selected PDF flavours. All plots are shown for Q2 = 104 GeV2.

While in principle the negativity of quarks is possible in the MS scheme, it is un-

likely to be correct at very high scales and the behaviour can lead to issues concerning

negative cross section predictions [155, 156]. In the case of the d, the form of this PDF

has a negative central value above x∼ 0.5 with a minimum of ∼ − 0.001 at x∼ 0.6.

It is also noted that although the d central value becomes negative in this region, it

is still positive within PDF uncertainties. These features are not uncommon in PDF

analyses and are discussed in detail in [8]. The proposed smoothing of parameterisa-

tions employed in [8] ensures the definite positive nature of PDFs in the high-x region.
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Comparing the negativity of the approximate N3LO d PDF with that in [8], the d PDF

presented here is much less negative and positive within PDF uncertainties. Due to

this and the fact that this effect is only apparent in the d, we present these PDFs as

they are. We also note that in the current MSHT20 fit, recent results surrounding the

d/u from the SeaQuest collaboration [19] are not included at the time of writing. It is

therefore only the E866 / NuSea pd/pp DY dataset [104] that is constraining this ratio,

which is not as precise as the more recent results. However SeaQuest results suggest

a preference for a higher d at large-x, therefore including this data may in fact help

constrain the high-x d behaviour seen here.

Fig.’s 11.10 and 11.11 express the aN3LO PDFs with decorrelated (green shaded

region) and correlated (red dashed lines) aN3LO K-factors at low and high-Q2 respec-

tively (again with the bottom quark provided at Q2 = 25 GeV2 at low-Q2) as a ratio

to the N3LO central value. For comparison we also include the level of uncertainty

predicted with all N3LO theory fixed (blue shaded region) i.e. only considering the

variation without N3LO theoretical uncertainty.

Comparing the two different aN3LO sets in Fig.’s 11.10 and 11.11, in general there is

good agreement between the total uncertainties considering the cases with correlated

(red dash) and decorrelated (green shaded) aN3LO K-factors. The differences that are

apparent between between the two aN3LO cases, are relatively small across all PDFs,

with slightly larger effects only where the PDF itself tends towards zero i.e. valence

quarks at small-x.

A larger distinction is observed when comparing the sets with and without theoreti-

cal uncertainty (where N3LO theory is fixed at the best fit value). In general there is an

expected substantial increase in the PDF uncertainties when taking into account the

MHOUs for the gluon (and therefore the heavy quarks). In particular, the form of the
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Figure 11.10.: Low-Q2 ratio plots showing the aN3LO 68% confidence intervals with decorre-
lated and correlated K-factor parameters, compared to the aN3LO central value.
Also shown are the central values at aN3LO when fit to all non-HERA datasets
and the central values with all K-factors set at NNLO. All plots are shown for
Q2 = 10 GeV2 with the exception of the bottom quark shown for Q2 = 25 GeV2.
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Figure 11.10.: (Continued) Low-Q2 ratio plots showing the aN3LO 68% confidence intervals
with decorrelated and correlated K-factor parameters, compared to the aN3LO
central value. Also shown are the central values at aN3LO when fit to all non-
HERA datasets and the central values with all K-factors set at NNLO. All plots
are shown for Q2 = 10 GeV2 with the exception of the bottom quark shown for
Q2 = 25 GeV2.

N3LO bottom quark uncertainty is reminiscent of the (H + H) prediction from Fig. 8.5.

One can therefore directly observe the effect of the AHg MHOU on the bottom quark

directly above its mass threshold. In other areas, the without theoretical uncertainty

PDF set exhibits a comparable uncertainty to aN3LO and is even shown to increase the

overall 68% confidence intervals in certain regions of (x, Q2) due to N3LO parameters

being fixed (i.e. uv and dv PDFs in Fig. 11.10 and Fig. 11.11). As the fit now resides in

a different χ2 landscape where a best fit has been achieved through fitting the N3LO
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Figure 11.11.: High-Q2 ratio plots showing the aN3LO 68% confidence intervals with decorre-
lated and correlated K-factor parameters, compared to the aN3LO central value.
Also shown are the central values at aN3LO when fit to all non-HERA datasets
and the central values with all K-factors set at NNLO. All plots are shown for
Q2 = 104 GeV2.
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Figure 11.11.: (Continued) High-Q2 ratio plots showing the aN3LO 68% confidence intervals
with decorrelated and correlated K-factor parameters, compared to the aN3LO
central value. Also shown are the central values at aN3LO when fit to all non-
HERA datasets and the central values with all K-factors set at NNLO. All plots
are shown for Q2 = 104 GeV2.

theory, fixing the aN3LO theory parameters is likely to have a substantial effect across

all PDFs.

An important point made by Fig.’s 11.10 and 11.11 is that that the difference be-

tween the decorrelated and correlated cases is much smaller than the difference of not

including theoretical uncertainties at all (blue shaded region). This analysis therefore

provides evidence to support the original assumption of being able to decorrelate the

cross section (aN3LO K-factors) and PDF theory (including other N3LO theory).
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Figure 11.12.: General forms of NNLO (left) and aN3LO (right) PDFs at Q2 = 2 GeV2. Axis
are set to the same scale to highlight the main differences between NNLO and
aN3LO. Specifically in the gluon and heavy flavour sectors.

Along with the separate cases of uncertainty illustrated in Fig.’s 11.10 and 11.11, we

also display the central values of an aN3LO fit to all non-HERA data and an aN3LO fit

with NNLO K-factors. Examining the form of the no HERA aN3LO PDFs for x > 10−2,

we show some agreement with the standard N3LO central value across most PDFs

(more so at high-Q2 than low-Q2). Whereas the form at small-x gives some insight into

the importance of HERA data in constraining PDFs in this region. In slightly better

agreement across all x are the aN3LO PDFs with NNLO K-factors, which complement

the χ2 results in Section 10 and Section 11.1 arguing that the form (and fit results)

of aN3LO PDFs is mostly determined from the extra PDF + DIS coefficient function

N3LO additions i.e. not aN3LO K-factors which prefer a softer high-x gluon (similar

to the N3LO no HERA case – also shown in Fig.’s 11.10 and 11.11).
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11.5. MSHT20aN3LO PDFs at Q2 = 2 GeV2

Fig. 11.12 compares the MSHT NNLO and aN3LO PDF sets at Q2 = 2 GeV2. In this

very low-Q2 regime, some major differences are evident between NNLO and aN3LO

sets at Q2 = 2 GeV2, especially towards small-x. For example, the gluon PDF is

predicted to be much harder across this region, such that it is now positive across all

x values considered here. The effect of this can be immediately seen in the sea and

heavy quarks.

Since the charm quark is directly coupled to the gluon PDF (through a convolution

with AHg), the charm PDF receives a notable enhancement at small-x and also remains

positive across all x values considered3. Another interesting feature is the reduction

in uncertainty of the strange quark at small-x. It may seem counter intuitive to have

an uncertainty reduction by adding sources of theoretical uncertainty, however we

should recall that the underlying theory has also been altered. Although one can

expect an uncertainty increase in PDFs across (x, Q2), there are exceptions to this

e.g. where tensions are relieved by introducing the N3LO theory. The shift in the χ2

landscape then has the potential to result in more precise regions of (x, Q2) (in this

case manifesting in an uncertainty reduction for the strange quark towards small-x).

Fig. 11.13 displays the ratios of the aN3LO MSHT PDFs to their NNLO counterparts

at Q2 = 2 GeV2. Here the specific shifts of each PDF are displayed more clearly. We

note that there are many similar features shown here to those discussed for Fig.’s 11.8

and 11.9. Even in this very low-Q2 regime, the uncertainty difference between corre-

lated and decorrelated aN3LO K-factor PDF sets is minimal in all relevant regions of

x.

3Since this is a convolution, it is the higher small-x gluon, combined with the high-x enhancement of
AHg at N3LO which gives rise to this increase in the charm PDF.
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Figure 11.13.: Very low-Q2 ratio plots showing the aN3LO 68% confidence intervals with decor-
related and correlated K-factor parameters, compared to NNLO 68% confidence
intervals. All plots are shown for Q2 = 2 GeV2.
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Figure 11.13.: (Continued) Very low-Q2 ratio plots showing the aN3LO 68% confidence intervals
with decorrelated and correlated K-factor parameters, compared to NNLO 68%
confidence intervals. All plots are shown for Q2 = 2 GeV2.

11.6. Effect of a x < 10−3 cut at aN3LO

In this section we include results from a global PDF fit with all small-x (x < 10−3) data

omitted. This analysis is provided to shed some light on the tensions between regions

of x at aN3LO while also providing some context with regards to the form of the PDFs

in different regions of x.

Immediately, in Fig. 11.14, one can observe that omitting all small-x data results in a

set of less constrained PDFs for x < 10−3 (most notably in the gluon sector). However,

also in Fig. 11.14 it can be observed that overall, the large-x behaviour of these PDFs

is very similar across both fits, indicating that the fit is able to sufficiently fit to both

large and small x regions simultaneously. We provide this analysis as a cross-check to

further support the reliability of our procedure, showing that the small-x behaviour

is seemingly not attempting to fit to any all order result at the expense of the large-x

description. We also note that while there is some change in the central values of the

PDFs at small x, in most cases this is very well within uncertainties, and at most at the

level of about one standard deviation, particularly for the gluon for x just below 10−3.
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Figure 11.14.: Low-Q2 PDF ratios showing aN3LO PDFs fitted with and without small-x
(< 10−3) data included in a global fit. All plots are shown for Q2 = 10 GeV2

with the exception of the bottom quark shown for Q2 = 25 GeV2.
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Parameter
Default Fit Small-x cut Fit

Central + Limit − Limit Central + Limit − Limit

Low-Q2 Coefficient

cNLL
q −3.868 −1.891 −6.132 −5.822 −4.333 −10.373

cNLL
g −5.837 −4.444 −7.429 −6.995 −3.701 −7.991

Transition Matrix Elements

aNS
qq,H −64.411 −38.778 −91.850 −65.103 −40.073 −93.225
aHg 12214.000 12966.856 11279.376 12524.000 13831.976 11286.843

agg,H −1951.600 −1577.155 −3418.568 −1392.600 −512.817 −2190.354

Splitting Functions

ρNS
qq 0.007 0.015 −0.002 0.006 0.020 −0.005

ρPS
qq −0.501 −0.254 −0.644 −0.505 −0.285 −0.692

ρqg −1.754 −1.157 −1.897 −1.309 −0.620 −1.881
ρgq −1.784 −1.548 −2.212 −1.622 −1.367 −1.877
ρgg 19.245 21.505 9.025 12.997 16.142 6.611

Table 11.6.: Posterior predicted ± 1σ limits on aN3LO theoretical nuisance parameters for
splitting functions, transition matrix elements and coefficient functions.

This limited shift in the best fit PDFs suggests that while effects beyond N3LO are not

insignificant at very low x, they are also not dominating the pull on the fit.

11.7. Posterior N3LO Theory Parameters

Following from the previous section, it is also interesting to examine where the aN3LO

theory contributions and their uncertainties reside after a global PDF fit.

Displayed in Table 11.6 are the predicted posterior limits on each (non K-factor)

aN3LO theory parameter. Here one can directly compare these variations with the

prior variations decided in earlier Sections. Also provided is a comparison of these

posterior limits across a fit with and without small-x (x < 10−3) data included. This

comparison complements the previous section by showing a similar trend in the
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Figure 11.15.: Posterior variations of the aN3LO splitting functions and transition matrix
elements predicted from a full global fit.

central values predicted in both cases (i.e. with an overlap of uncertainties). As with

the PDFs, there is some evidence of tensions, but these are clearly not severe, and the

central values of many parameters are extremely stable. Furthermore this is evidence

that the small-x behaviour is not likely to be dominating the behaviour of aN3LO

parameters in a manner which is adversarial to the preference of data at x > 10−3.
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Fig. 11.15 displays a comparison of the prior and posterior variations predicted

for the perturbative expansions of relevant splitting functions and transition matrix

elements discussed in Chapter’s 7 and 8. We exclude the non-singlet quantities from

this comparison as the variations predicted for these quantities are very similar to

their priors (as can be seen in Table 11.6) and have a small overall effect on the PDFs.

It is true that once a fit is performed, the variation of the aN3LO theoretical nuisance

parameters becomes less sensitive to the prior variation, suggesting that the initial

uncertainty estimate was conservative. Nevertheless in Fig. 11.15, one can observe

that all posterior variations overlap with their corresponding priors, in most cases

quite considerably. We also note that the most drastic differences between prior and

posterior variations are expectedly relating to the gluon PDF.

Fig. 11.16 contains a comparison between the aN3LO functions posterior variations

with and without small-x (x < 10−3) data included in a global fit. These results

accompany those presented in Table 11.6 and further display the agreement between

the two fits. In all cases the predicted variations overlap with most central values

being stable (i.e. contained within the uncertainty predictions). Therefore providing

evidence that the aN3LO predictions are consistent across all values of x and not being

heavily determined by, for example, the small-x region.

11.8. N3LO Contributions

In this section all but one N3LO contribution will be switched off, in particular only

splitting functions, or only heavy or light flavour coefficient functions with their

relevant transition matrix elements. In all cases the aN3LO K-factors are left free to

allow the fit some freedom in manipulating the cross sections of other datasets. In
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Figure 11.16.: Posterior variations of the aN3LO splitting functions and transition matrix
elements predicted from a full global fit (blue shaded band) compared to a fit
with small-x (x < 10−3) data removed from a fit (red shaded band).
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practice however, fixing these K-factors at the NNLO values has a minimal effect on

the shape of the PDFs in all cases (as demonstrated in Fig. 11.10 and 11.11).

The deconstructed aN3LO PDFs as a ratio to the NNLO MSHT PDFs for various

flavours at Q2 = 10 GeV2 (with the bottom quark given at Q2 = 25 GeV2) are shown

in Fig. 11.17. Across the more tightly constrained light quark PDFs, all contributions

lie very close to the aN3LO ± 1σ uncertainty bands (blue shaded region and solid line).

The additive and compensating nature of these contributions is also clear in a handful

of the ratios from Fig. 11.17. In other areas the full description is biased towards a

single contribution, for example the charm and bottom quarks follow the contribution

from heavy flavours as one may expect. Conversely, to some extent the gluon follows

the splitting functions much more closely as these contributions indirectly couple the

gluon to the more constraining data.4

11.9. αs Variation

As in the standard MSHT20 NNLO PDF fit, we present the best fit aN3LO PDFs with

αs(mZ) = 0.118, the common value chosen in the PDF4LHC combination [8]. However,

investigating the true minima in αs(mZ), the χ2 profiles in Fig. 11.18 prefer a value of

around αs(mZ) = 0.1170. This result follows the trend from lower orders whereby the

best fit values are αs(mZ) = 0.1174± 0.0013 at NNLO and αs(mZ) = 0.1203± 0.0015 at

NLO [143]. Following from NNLO, the aN3LO αs(mZ) prediction is also slightly lower

than the NNLO world average central value at around αs(mZ) = 0.1179± 0.0010 [213].

In any case, the preferred aN3LO αs(mZ) value stated here is in agreement with the

4An exception to this can be seen around x∼ 10−2 where the contributions act cumulatively. We make
this point as this region of x is of interest for Higgs calculations such as those discussed in Chapter 12
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Figure 11.17.: Low-Q2 PDF ratios showing aN3LO (with decorrelated K-factors) 68% confi-
dence intervals compared to NNLO 68% confidence intervals with varying
theory contributions. All plots are shown for Q2 = 10 GeV2 with the exception
of the bottom quark shown for Q2 = 25 GeV2. The PDFs included are: NNLO
(green shaded), All N3LO contributions (blue shaded), only splitting functions
(green dashed), only heavy flavour coefficient functions and transition matrix
elements (dark grey dash-dot) and only light flavour coefficient functions and
transition matrix elements (red dotted).
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Figure 11.17.: (Continued) Low-Q2 PDF ratios showing aN3LO (with decorrelated K-factors)
68% confidence intervals compared to NNLO 68% confidence intervals with
varying theory contributions. All plots are shown for Q2 = 10 GeV2 with the
exception of the bottom quark shown for Q2 = 25 GeV2. The PDFs included
are: NNLO (green shaded), All N3LO contributions (blue shaded), only splitting
functions (green dashed), only heavy flavour coefficient functions and transition
matrix elements (dark grey dash-dot) and only light flavour coefficient functions
and transition matrix elements (red dotted).
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Figure 11.18.: Quadratic fit to the total χ2 results from various αs(mZ) starting scales. The
minimum of the quadratic fit provides a rough estimate of αs(mZ) = 0.1170 at
aN3LO.

MSHT20 NNLO result and the world average within uncertainties. A full analysis is

left for a future publication.

11.10. Charm Mass Dependence

In a standard MSHT fit [3], aN3LO PDFs are produced with the charm pole mass

mc = 1.40 GeV. Fig. 11.19 displays the χ2 results when varying this charm mass.

The predicted minimum at NNLO (for MSHT20 PDFs) is in the range mc = 1.35−

1.40 GeV [143], whereas at aN3LO we show a minimum in the region of mc = 1.42−

1.47 GeV. This aN3LO result therefore shows a slightly better agreement with the

world average [213]5 of mc = 1.5± 0.2 GeV.

5There is some ambiguity in this value since the transformation from MS to the pole mass definition is
not well-defined (see [143] for more details).
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Figure 11.19.: Quadratic fit to the total χ2 results from various charm masses (mc). The mini-
mum of the quadratic fit provides a rough estimate of mc = 1.45 GeV at aN3LO.

Considering Fig. 11.20, one is then able to analyse the effect of this slightly higher

charm mass on the form of the PDFs. As one can expect, the charm PDF is subject to

the largest difference and is suppressed by a higher mc. The extra suppression from a

higher charm mass allows the fit to suppress the c + c̄ sea contribution. This is then

compensated by an increase in the ū and d̄ distributions which stabilises the overall

sea contribution.
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Figure 11.20.: Low-Q2 PDF ratios showing aN3LO (with decorrelated K-factors) 68% confi-
dence intervals compared to NNLO 68% confidence intervals with varying fixed
values for the charm mass. All plots are shown for Q2 = 10 GeV2 with the
exception of the bottom quark shown for Q2 = 25 GeV2. The PDFs included are:
mc = 1.40 GeV (standard MSHT20 choice) (blue solid), mc = 1.30 GeV (green
dashed), mc = 1.45 GeV (grey dotted dashed) mc = 1.50 GeV (red dotted).
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Figure 11.20.: (Continued) Low-Q2 PDF ratios showing aN3LO (with decorrelated K-factors)
68% confidence intervals compared to NNLO 68% confidence intervals with
varying fixed values for the charm mass. All plots are shown for Q2 = 10 GeV2

with the exception of the bottom quark shown for Q2 = 25 GeV2. The PDFs
included are: mc = 1.40 GeV (standard MSHT20 choice) (blue solid), mc =
1.30 GeV (green dashed), mc = 1.45 GeV (grey dotted dashed) mc = 1.50 GeV
(red dotted).
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Chapter 12.

N3LO Predictions

With the increasing number of hard cross section calculations at N3LO, there is a

growing demand for N3LO accuracy in PDFs. In this section we investigate the effect of

the MSHT approximate N3LO PDFs on Higgs production via gluon fusion and vector

boson fusion (VBF). The hard cross sections for these processes have been calculated

to N3LO accuracy [195–204, 214, 215]. We present a full N3LO computation for each

prediction with our approximate N3LO PDFs, including theoretical uncertainties. In

future work, the intention will be to expand this analysis to include results for N3LO

DY [191] and approximate N3LO top production [194] cross sections.

Note that in this Section we follow the notation used previously and denote the

aN3LO results with decorrelated K-factors as (Hij +Kij)
−1 and those with correlated K-

factors with H′ −1
ij . In all cases, scale variations are found via the 9-point prescription [9]

for results with NNLO PDFs. Whereas for aN3LO PDFs, although the extra information

introduced is at N3LO, the data (and therefore all relevant theory nuisance parameters)

which are included in the global fit are sensitive to all orders. In particular, we include
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σ order PDF order σ + ∆σ+ − ∆σ− (pb) σ (pb) + ∆σ+ − ∆σ− (%)

PDF uncertainties

N3LO

aN3LO (no theory unc.) 44.164 + 1.339 - 1.382 44.164 + 3.03% - 3.13%
aN3LO (Hij + Kij) 44.164 + 1.473 - 1.395 44.164 + 3.34% - 3.15%

aN3LO (H′ij) 44.164 + 1.515 - 1.354 44.164 + 3.43% - 3.07%
NNLO 47.817 + 0.558 - 0.581 47.817 + 1.17% - 1.22%

NNLO NNLO 46.206 + 0.541 - 0.564 46.206 + 1.17% - 1.22%

PDF + Scale uncertainties

N3LO

aN3LO (no theory unc.) 44.164 + 1.339 - 2.214 44.164 + 3.03% - 5.01%
aN3LO (Hij + Kij) 44.164 + 1.473 - 2.222 44.094 + 3.34% - 5.03%

aN3LO (H′ij) 44.164 + 1.515 - 2.196 44.164 + 3.43% - 4.97%
NNLO 47.817 + 0.577 - 2.210 47.817 + 1.21% - 4.62%

NNLO NNLO 46.206 + 4.284 - 5.414 46.206 + 9.27% - 11.72%

Table 12.1.: Higgs production cross section results via gluon fusion (
√

s = 13 TeV) using N3LO
and NNLO hard cross sections combined with NNLO and aN3LO PDFs. All PDFs
are at the standard choice αs(mZ) = 0.118. These results are found with µ = mH/2
unless stated otherwise, with the values for µ = mH supplied in Table F.1.

theoretical uncertainties into our aN3LO fit which incorporate MHO effects on the

PDFs. Therefore we argue (and in these cases demonstrate) that the factorisation

scale variation is contained within the PDF uncertainties. Therefore it is only the

renormalisation scale which requires variation in predictions involving aN3LO PDFs1.

12.1. Higgs Production – Gluon Fusion: gg→ H

Table 12.1 and Fig. 12.1 (left) show predictions at a central scale of µ = µ f = µr =

mH/2 (where mH = 125 GeV) for the Higgs production cross section via gluon fusion2

1This is to quantify the theoretical MHOU in the hard cross section, whereas the aN3LO PDFs now
come with an estimated MHOU.

2Results are obtained with the code ggHiggs [195–204, 216].

https://www.ge.infn.it/~bonvini/higgs/
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Figure 12.1.: Higgs production cross section results via gluon fusion (
√

s = 13 TeV) at two
central scales: µ = mH/2 (left) and µ = mH (right). Displayed are the results
for aN3LO PDFs with decorrelated K-factors ((Hij + Kij)

−1), correlated K-factors
(H′ −1

ij = (Hij + Kij)
−1) each with a scale variation band from varying µr by a

factor of 2. In the NNLO and NLO PDF cases, both scales µ f and µr are varied by
a factor of 2 following the 9-point convention [9].

at the LHC for
√

s = 13 TeV where mH is the Higgs mass. Fig. 12.1 (right) displays the

same analysis for the gluon fusion cross section with µ = µ f = µr = mH (numerical

results provided in Table F.1).

Considering the µ = mH/2 and µ = mH central value results displayed in Table 12.1

and Fig. 12.1, it can be observed that aN3LO PDFs predict a lower central value than

NNLO PDFs across all hard cross section orders. One can also notice an overlap in all

cases between predictions from NNLO and aN3LO PDFs for both choices of central

scale. However for µ = mH/2, whilst the error bands for predictions with N3LO hard

cross section and NNLO and N3LO PDFs overlap, their central values are outside

each other’s respective error bands. Since estimating MHOUs via scale variations is a

somewhat ambiguous procedure (and is therefore estimated conservatively to reflect

this), these results highlight the benefit of being able to exploit a higher level of control

over MHOUs i.e. via nuisance parameters. By predicting a different central value
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we include a more accurate estimation for higher order predictions which may not

be contained within scale variations, especially at unmatched orders in perturbation

theory.

Examining the predicted central values further, Fig. 12.1 suggests that the increase

in the cross section theory at N3LO is compensated by the PDF theory at N3LO,

suggesting a cancellation between terms in the PDF and cross section theory at N3LO.

This point is important to consider when combining unmatched orders in physical

calculations, since we must be open to the possibility that unmatched cancellations in

physical calculations can lead to inaccurate predictions, as our results suggest here.

Further to this, the change in the gluon PDF is largely driven by the predicted

form of Pqg at aN3LO and DIS data. Therefore the relevant changes in the gluon

at aN3LO are most likely due to indirect effects i.e. not directly related to gluon

fusion predictions. Due to this, there is no reason to believe that the observed level

of convergence should happen at aN3LO for both choices of µ. However, owing to

the inclusion of known information at higher orders, one can be confident that the

prediction is more accurate than NNLO, whichever way it moves.

Comparing PDF uncertainty values calculated using NNLO and aN3LO PDFs, an-

other prominent feature one can notice in Table 12.1 is an increase in PDF uncertainties.

We find that the PDF uncertainty without N3LO theory uncertainties included (i.e.

using only the eigenvector description from the first 32 eigenvectors and with N3LO

parameters fixed at the best fit) also includes a marginal increase in the positive direc-

tion compared to NNLO. Mathematically, the reason for this comes back to the fact

that the best fit is inherently different from the NNLO theory, residing in a completely

novel χ2 landscape. In turn, this means it is not guaranteed that the PDF uncertainty
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will remain consistent across the distinct PDF sets3. In the case of gluon fusion, the

leading contribution to the positive uncertainty direction is an eigenvector primarily

dominated by PDF parameters, while in the negative direction a N3LO splitting func-

tion parameter dominates (eigenvector 9 and 31 in the (Hij + Kij)
−1 N3LO case – see

Table 11.4). As discussed in Section 11.8, the gluon predominantly follows the splitting

function contributions, therefore it is not surprising that this eigenvector is having a

noticeable effect. Phenomenologically, the increase in predicted uncertainties from the

inclusion of the theoretical uncertainties is a reflection of the estimated PDF MHOUs

in this particular cross section and acts to replace factorisation scale variation. As a

consistency check, we find that when performing a 9-point scale variation procedure

with aN3LO PDFs, the values calculated (for both choices of µ) are within the predicted

PDF uncertainties. This is therefore a further verification of our MHOUs and that the

µ f variation is intrinsic in the PDF uncertainties.

Finally Fig. 12.1 also demonstrates the increased stability of predictions when

considering the two different central scales µ at N3LO. As predicted from perturbation

theory, the scale dependence is reduced and central values become more in agreement

when increasing the order of either the PDFs or hard cross section. Furthermore, the

aN3LO σ central predictions for both choices of µ are contained within the uncertainty

bands of each other. This is true by definition for the NNLO PDFs since the factorisation

scale µ f variation includes both choices of µ, whereas for aN3LO PDFs this result is

not guaranteed and is therefore intrinsic in the PDF (and renormalisation scale µr

variation) uncertainty.

3As we can see from Section 11.4, the theory uncertainty is also not guaranteed to add to the total
uncertainty (and in fact acts to reduce the uncertainty in some areas of (x, Q2)).
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Figure 12.2.: Higgs production cross section results via vector boson fusion (with
√

s = 13 TeV)
at a central scale set to the vector boson momentum. Displayed are the results
for aN3LO PDFs with decorrelated K-factors ((Hij + Kij)

−1), correlated K-factors
(H′ −1

ij = (Hij + Kij)
−1) each with a scale variation band from varying µr by a

factor of 2. In the NNLO and NLO PDF cases, both scales µ f and µr are varied by
a factor of 2 following the 9-point convention [9]. Note that the light bands are
almost invisible in this plot due to the scale variations being extremely small.

12.2. Higgs Production – Vector Boson Fusion: qq→ H

Table 12.2 and Fig. 12.2 show the predictions at various orders in αs for Higgs pro-

duction cross sections via vector boson fusion4 at the LHC for
√

s = 13 TeV up to

N3LO [214, 215]. The predictions shown are calculated with µ2
f = µ2

r = Q2 as the

central scale where Q2 is the vector boson squared momentum.

For this process one can follow the increase in the cross section as higher order PDFs

are used. Contrasting with the case of gluon fusion, Fig. 12.2 displays little cancellation

between the terms added in the aN3LO PDF description and the N3LO cross section.

However, the cross section for VBF produces around a ∼ 3− 4% change order by order

4Results are obtained with the inclusive part of the code proVBFH [214, 215, 217].

https://provbfh.hepforge.org/
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σ order PDF order σ + ∆σ+ − ∆σ− (pb) σ (pb) + ∆σ+ − ∆σ− (%)

PDF uncertainties

N3LO

aN3LO (no theory unc.) 4.1378 + 0.0737 - 0.0926 4.1378 + 1.78% - 2.23%
aN3LO (Hij + Kij) 4.1378 + 0.0867 - 0.0869 4.1378 + 2.10% - 2.10%

aN3LO (H′ij) 4.1378 + 0.0829 - 0.0889 4.1378 + 2.00% - 2.15%
NNLO 3.9941 + 0.0558 - 0.0631 3.9941 + 1.40% - 1.58%

NNLO NNLO 3.9974 + 0.0557 - 0.0633 3.9974 + 1.39% - 1.58%

PDF + Scale uncertainties

N3LO

aN3LO (no theory unc.) 4.1378 + 0.0737 - 0.0926 4.1378 + 1.78% - 2.23%
aN3LO (Hij + Kij) 4.1378 + 0.0867 - 0.0869 4.1378 + 2.10% - 2.10%

aN3LO (H′ij) 4.1378 + 0.0829 - 0.0889 4.1378 + 2.00% - 2.15%
NNLO 3.9941 + 0.0560 - 0.0631 3.9941 + 1.40% - 1.58%

NNLO NNLO 3.9974 + 0.0576 - 0.0642 3.9974 + 1.44% - 1.61%

Table 12.2.: Higgs production cross section results via the vector boson fusion process (with√
s = 13 TeV) using N3LO and NNLO hard cross sections combined with NNLO

and aN3LO PDFs. All PDFs are at the standard choice αs(mZ) = 0.118. These
results are found with µ = Q2 where Q2 is the vector boson momentum.

σ order PDF order σ + ∆σ+ − ∆σ− (pb) σ (pb) + ∆σ+ − ∆σ− (%)

N3LO
aN3LO n f = 5 4.1378 + 0.0867 - 0.0869 4.1378 + 2.10% - 2.10%
aN3LO n f = 4 4.0510 + 0.0853 - 0.0859 4.0510 + 2.11% - 2.12%
aN3LO n f = 3 2.7066 + 0.0610 - 0.0695 2.7066 + 2.26% - 2.57%

NNLO
NNLO n f = 5 3.9974 + 0.0557 - 0.0633 3.9974 + 1.39% - 1.58%
NNLO n f = 4 3.9118 + 0.0561 - 0.0634 3.9118 + 1.44% - 1.62%
NNLO n f = 3 2.6845 + 0.0539 - 0.0641 2.6845 + 2.01% - 2.39%

Table 12.3.: Higgs production cross section results via the vector boson fusion process (with√
s = 13 TeV) using N3LO and NNLO hard cross sections combined with NNLO

and decorrelated aN3LO PDFs whilst varying the number of active flavours n f .
All PDFs are at the standard choice αs(mZ) = 0.118. These results are found with
µ = Q2 where Q2 is the vector boson momentum.
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and is therefore fairly constant. Considering this relatively small difference between

orders, this lack of cancellation is not a major concern. Further to this, the vector boson

fusion process is much more reliant on the quark sector which, compared to the gluon,

is relatively constant order by order (see Section 11.4). The reason for this stems from

the more direct data constraints on the shape of quark PDFs.

Comparing the aN3LO VBF cross section (with MHO theoretical uncertainties)

with the NNLO cross section result (with NNLO PDFs) including MHOUs via scale

variations, we see that the scale variation MHOUs are negligible against the PDF

uncertainties at aN3LO. This result is in part due to the fact that the scale variation for

aN3LO is only being included for the renormalisation scale. However at NNLO, the

extra MHOU predicted was still only a small contribution. Therefore considering these

results further, the effects of higher orders in both cases are expected to be small, which

provides some agreement with the argument that there is little scope for cancellation

between orders for VBF. As for the gluon fusion prediction in Section 12.1, we confirm

that any further factorisation scale variation (i.e. using the 9-point prescription)

is contained within the predicted PDF uncertainties; hence further motivating our

previous argument that factorisation scale variation is not necessary with aN3LO

PDFs.

Another feature of the VBF results is that the level of uncertainty at full aN3LO is

only increased slightly from the calculation involving NNLO PDFs. Comparing this to

the gluon fusion results, where the uncertainty was more noticeably increased in both

directions, it is evident that these approximate N3LO additions are having a smaller

effect on the VBF calculation. Once again, the origin of this is due to the nature of the

process. VBF involves mostly the quark sector and is therefore much less affected by

the extra N3LO theory we have introduced (due to direct constraints from data). As
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we have presented in previous sections, most of the uncertainty in the N3LO theory

resides in the small-x regime which is more directly probed by the gluon sector than

in the quark sector.

Lastly we briefly discuss the n f dependence of the VBF cross section. In VBF the

scaling of contributions follows as n2
f due to the presence of two input quark flavours

in the process. In Table 12.3 we observe that the VBF cross section receives a large

contribution when including the charm quark (n f = 3 → 4) due to this scaling. We

also show that at aN3LO, this is where most of the difference in the central value

and uncertainty from NNLO is accounted for. This is a consequence of the predicted

enhancement of the charm PDF at aN3LO, discussed in Section 11.4. Beyond n f = 4

the bottom contribution to VBF in the W ± channel (the dominant channel) is heavily

suppressed, since due to the CKM elements b must transition to t most of the time.

Therefore the VBF cross section only receives a small contribution moving from n f = 4

to n f = 5.
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Chapter 13.

PDFs in the High-x Region

In the high-x region there is little data available to constrain PDFs at the time of writing.

However, with the recent experimental results from the SeaQuest collaboration and

the highly anticipated EIC on the horizon, this elusive region is becoming much more

popular in particle phenomenology.

13.1. Negative d̄ PDFs at low-Q2

In this thesis, a set of aN3LO PDFs has been presented whereby a global minimum

is achieved with a slightly negative low-Q2 d̄ at high-x, as discussed in Chapter 11.

Investigating this negative d̄ mode further, it can also be shown that a negative d̄ mode

is also present at NNLO with a near degenerate global χ2 compared to the standard

MSHT20 NNLO set [3].
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Dataset Npts χ2 ∆χ2 from
NNLO

BCDMS µp F2 [72] 163 182.3 +3.5
BCDMS µd F2 [72] 151 140.7 −5.8

E866 / NuSea pd/pp DY [104] 15 7.9 −1.8
NuTeV νN → µµX [114] 84 55.9 −3.3

HERA e+p NC 920 GeV [120] 402 516.4 +4.3
LHCb 2015 W, Z [105, 106] 67 105.5 +5.7

DØ W asym. [119] 14 16.0 +4.4

Total 4369 5115.8 +2.1

Table 13.1.: A selection of χ2 results comparing the two near degenerate NNLO minima with
positive and negarive d̄ PDFs.

Table 13.1 displays a selection of χ2 changes between the two near degenerate

NNLO minima. Of particular interest is the ∆χ2 = −1.8 in the E866 DY ratio data [104]

which prefers a negative high-x d̄ PDF at low-Q2. While this is a relatively small

change in χ2, it is a smaller number of data points which make up the main constraint

for the high-x d̄ description. Therefore it is this data which is driving the fit to find a

minima with a negative high-x d̄ at N3LO and also at NNLO.

Fig. 13.1 presents the form of these NNLO PDFs at low-Q2, clearly highlighting the

areas in which these two degenerate fits differ. Towards small-x in all cases the two

sets of PDFs are in agreement within uncertainties. However for the light sea quarks

(ū, d̄, s + s̄), this agreement breaks down at high-x (x > 0.2). At this point one can

observe that the fit has produced a near degenerate global minima with a reduction in

the d̄ PDF magnitude which is negative (∼ − 10−3) between 0.4 < x < 0.9.

These results confirm that the negative d̄ found in Chapter 11 at aN3LO is not a

direct feature of any N3LO approximations and is in fact present at NNLO (although

this was not found before). Having said this, it is true that extending our theoretical
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Figure 13.1.: Low-Q2 ratio plots showing a NNLO negative d̄ mode 68% confidence intervals,
compared to the standard MSHT20 NNLO 68% confidence intervals. All plots
are shown for Q2 = 10 GeV2 with the exception of the bottom quark shown for
Q2 = 25 GeV2.
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Figure 13.1.: (Continued) Low-Q2 ratio plots showing a NNLO negative d̄ mode 68% confidence
intervals, compared to the standard MSHT20 NNLO 68% confidence intervals.
All plots are shown for Q2 = 10 GeV2 with the exception of the bottom quark
shown for Q2 = 25 GeV2.

description to N3LO results in a clear preference for a negative high-x d̄ at low-Q2.

This is most likely due to the increased flexibility allowed at aN3LO, which in turn

allows the fit to better fit the high-x E866 which is known to prefer a negative d̄ in this

region. In the following section, we will investigate how this description changes with

the inclusion of SeaQuest data.
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Dataset Npts χ2 ∆χ2 from
NNLO

(with SQ)

∆χ2 from
aN3LO

(w/o SQ)

NMC µn/µp [88] 148 136.3 +1.9 +4.7
E866 / NuSea pp DY [102] 184 219.7 −9.8 +4.3

E866 / NuSea pd/pp DY [104] 15 19.2 +0.2 +10.8
LHCb 2015 W, Z [105, 106] 67 99.2 +1.2 −4.0

CMS 7 TeV jets [118] 158 190.6 +13.0 +3.8
CMS 8 TeV jets [122] 174 267.7 +6.1 −3.6

SeaQuest [19] 6 8.2 +0.1 -

Total 4369 4994.5 −144.7 +25.1(+8.2)

Table 13.2.: Selective breakdown of χ2 results from relevant datasets included in a global fit
with SeaQuest data added. Note that the total from from aN3LO includes an extra
∆χ2 = +8.2 from the addition of SeaQuest data which must be taken into account
when comparing the two fits.

13.2. Inclusion of SeaQuest Data

As discussed in Chapter 11 and in the previous section, it is hoped that the high-x

SeaQuest data [19] can alleviate an issue found with the positivity of the high-x d̄

PDF at low-Q2. In particular, the SeaQuest data provides a higher ratio for the (d̄/ū)

around x∼ 0.4 than the previously included E866 ratio data.

Table 13.2 summarises the largest χ2 changes from performing a fit at aN3LO with

SeaQuest data compared to a NNLO fit with SeaQuest data and the standard aN3LO fit

discussed in Chapter 11. Comparing with the previous aN3LO results, one can observe

that the fit quality unsurprisingly gets slightly worse due to the tension introduced

between E866 data and the new SeaQuest data, an effect which is also seen at NNLO.

However there are also some smaller indirect effects which result in a slightly better fit

to the LHCb 2015 W, Z [105,106] data along with a variety of other small effects across
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multiple datasets, some of which are also shown in Table 13.2. Overall these small

shifts cancel out globally and we find that the ∆χ2
global = +16.9 (ignoring any extra χ2

directly from the SeaQuest data) can be almost entirely attributed to the E866 data.

Fig. 13.2 displays the effect of SeaQuest data on the form of the NNLO and aN3LO

PDFs as a ratio to the standard MSHT20 NNLO PDF set. For both the NNLO and

aN3LO PDF sets, the effect of adding SeaQuest data has a similar effect on the high-x

light quarks. For example, the high-x d̄ PDF shows a substantial increase in both

NNLO and aN3LO fits when including SeaQuest data. Accompanying this effect is

also a decrease in the ū and sea strangeness at high-x, in order to preserve momentum

conservation.

As expected, the gluon remains very similar with the addition of the SeaQuest

data at both NNLO and aN3LO. As a result of this, since the heavy quarks are directly

coupled to the gluon, the heavy quarks are also unaffected by the extra SeaQuest data.

Fig. 13.3 (top left) displays the (d̄/ū) ratio at NNLO and aN3LO and the direct effect

of SeaQuest data on this ratio. One can observe that the aN3LO ratio is completely

reversed from the PDFs presented in Chapter 11 to be very similar to the NNLO result

with SeaQuest data added in. Fig. 13.3 also illustrates a reduction in the uncertainties

in this ratio at aN3LO where these uncertainties are comparable to those found at

NNLO with SeaQuest. Along with the χ2 results shown in Table 13.2, this result

therefore confirms that both aN3LO and NNLO PDF sets are able to fit SeaQuest data

similarly well.

To further accompany the results above, and display where the main differences

lie at aN3LO are, Fig. 13.3 also shows the new aN3LO set (with SeaQuest) as a ratio

of the set presented in Chapter 11. The main differences clearly lie in the aN3LO ū, d̄
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Figure 13.2.: Low-Q2 ratio plots showing the 68% confidence intervals for aN3LO and NNLO
PDFs with and without SeaQuest data included in a fit, compared to the standard
MSHT20 NNLO 68% confidence intervals (i.e. without SeaQuest data). All plots
are shown for Q2 = 10 GeV2 with the exception of the bottom quark shown for
Q2 = 25 GeV2.
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Figure 13.2.: (Continued) Low-Q2 ratio plots showing the 68% confidence intervals for aN3LO
and NNLO PDFs with and without SeaQuest data included in a fit, compared to
the standard MSHT20 NNLO 68% confidence intervals (i.e. without SeaQuest
data). All plots are shown for Q2 = 10 GeV2 with the exception of the bottom
quark shown for Q2 = 25 GeV2.

and strange PDFs at in Fig. 13.3. However, these plots also show the orthogonality

between the small and high-x behaviour with virtually all changes in the PDFs being

focused almost entirely in the high-x region.

13.3. Inclusion of Dijet Data

Including data with dijets in the final state is beneficial as this data is sensitive to some

of the highest mass scales accessible at the LHC. Also the increased tension observed
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Figure 13.3.: Comparison of NNLO and aN3LO PDFs fitted with and without SeaQuest data.
The (d̄/ū) ratios (top left) are shown for NNLO and aN3LO PDFs with and
without SeaQuest data added into the global fit. Low-Q2 (Q2 = 10 GeV2) ratio
plots (top right and bottom) also display the main differences between aN3LO 68%
confidence intervals found with SeaQuest compared to aN3LO 68% confidence
intervals found without SeaQuest data.
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Npts
NNLO aN3LO

χ2/Npts χ2 χ2/Npts χ2

ATLAS 7 TeV jets [113] 140 1.58 221.2 1.54 215.6
CMS 7 TeV jets [118] 158 1.11 175.4 1.18 186.4
CMS 8 TeV jets [122] 174 1.50 261.0 1.56 271.4

Total (jets) 472 1.39 656.1 1.43 675.0

Total 4363 1.17 5121.3 1.14 4961.2

Npts
NNLO aN3LO

χ2/Npts χ2 χ2/Npts χ2

ATLAS 7 TeV dijets [218] 90 1.05 94.5 1.12 100.8
CMS 7 TeV dijets [219] 54 1.43 77.2 1.39 75.1
CMS 8 TeV dijets [220] 122 1.04 126.9 0.83 101.3

Total (dijets) 266 1.12 297.9 1.04 276.7

Total 4157 1.14 4756.0 1.10 4555.6

Table 13.3.: Breakdown of χ2 results from jets (top) and dijets (bottom) datasets included in
a global fit for NNLO and aN3LO PDFs. χ2 results are shown per data point
(χ2/Npts) to provide a fair comparison across datasets with a varying number of
points.

in a global fit with single inclusive jets final states (which was shown to be even more

apparent at aN3LO than at NNLO) provides an extra motivation to consider dijet final

states as opposed to single inclusive jets.1

Table 13.3 compares the χ2 results from global fits with single inclusive jet (left)

and with dijet final states (right). Comparing across the two orders, it is apparent that

including aN3LO theory disfavours jet data overall compared to NNLO, whereas for

dijets there is a preference for aN3LO theory from NNLO.

Considering the overall fit quality of both final states, it is clear to see that both the

NNLO and aN3LO fits prefer a dijet description of the 7+ 8 TeV ATLAS and CMS data.

Overall the aN3LO description with dijets produces not only the best fit quality for

this data but also a manages to fit the rest of the data very slightly better (∆χ2∼ − 10)

than the results presented in Chapter 11.

1or as well as, if correlations can be made available in the future.
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Considering the total difference in the global aN3LO χ2, Table 13.3 displays a

reduction of ∆χ2 = −200.4 in the dijet description from NNLO. This reduction is ∼ 40

better than the reduction seen for a fit including jet data, therefore providing further

evidence for an overall preference towards a dijet description.

The form of NNLO and aN3LO PDFs with dijets is compared and contrasted with

PDFs produced with single inclusive jet data also at NNLO and aN3LO. In both cases,

the switch from jets to dijets produces similar PDF results, with any more substantial

changes restricted to the high-x gluon. There are also very small changes in the sea

quarks such as a reduction at very high-x for the NNLO d̄ and ū. However at aN3LO,

this reduction was already apparent with single inclusive jets, therefore these PDFs

are more similar in these regions than at NNLO.

Fig. 13.5 provides a more in-depth comparison of the high-x gluon behaviour

with jets or dijets. It can be observed that the effect of including 7 + 8 TeV dijet data

allows for a softer gluon at very high-x (x > 0.5) at NNLO, with a slightly harder

gluon predicted between 0.1 < x < 0.5. At aN3LO this very high-x reduction is seen

when considering jets to some level, however is also slightly more significant when

switching to dijet data. A noteable difference between the two orders is the differences

in the gluon between 0.1 < x < 0.5, where the aN3LO description is allowing for a

softer central prediction throughout this entire region with dijets compared to NNLO.

It can also be seen that below around x∼ 0.1, the gluon PDF becomes almost identical

for the case of fitting jets or dijets in both NNLO and aN3LO cases.

Inspecting Fig. 13.4 once more, one can observe the parallels between the heavy

quark predictions and those discussed for the gluon. In particular, the charm and

bottom PDFs tend to follow the general trend discussed for the high-x gluon due to

the direct coupling between these partons.
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Figure 13.4.: Low-Q2 ratio plots showing the NNLO and aN3LO 68% confidence intervals
with 7 + 8 TeV jets or 7 + 8 TeV dijets included in a gloabl fit, compared to the
standard MSHT20 NNLO (7 + 8 TeV jets) 68% confidence intervals. All plots
are shown for Q2 = 10 GeV2 with the exception of the bottom quark shown for
Q2 = 25 GeV2.
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Figure 13.4.: (Continued) Low-Q2 ratio plots showing the NNLO and aN3LO 68% confidence
intervals with 7 + 8 TeV jets or 7 + 8 TeV dijets included in a gloabl fit, compared
to the standard MSHT20 NNLO (7 + 8 TeV jets) 68% confidence intervals. All
plots are shown for Q2 = 10 GeV2 with the exception of the bottom quark shown
for Q2 = 25 GeV2.

13.4. Combined Fit with Dijets and SeaQuest Data

In this section, the previous two sections will be combined to show the combined

effects of fitting to 7 + 8 TeV dijet final states alongside the added SeaQuest data.

Table 13.4 summarises the χ2 results from a global fit including dijet and SeaQuest

data. These results show a similar fit quality across all common datasets to the original
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Dataset Npts χ2 ∆χ2 from
NNLO

∆χ2 from
N3LO

BCDMS µp F2 [72] 163 172.5 −7.7 −1.9
BCDMS µd F2 [72] 151 150.2 +4.2 +5.9

NMC µp F2 [75] 123 121.9 −2.2 +0.4
NMC µd F2 [75] 123 105.4 −7.3 +1.2

SLAC ep F2 [78, 79] 37 32.0 +0.0 +0.5
SLAC ed F2 [78, 79] 38 22.5 −0.5 −0.3

E665 µd F2 [82] 53 63.8 +4.1 −0.1
E665 µp F2 [82] 53 67.5 +2.8 −0.1

NuTeV νN F2 [85] 53 34.7 −3.6 −1.0
NuTeV νN xF3 [85] 42 36.1 +5.5 +1.3
NMC µn/µp [88] 148 136.4 +5.6 +4.8

E866 / NuSea pp DY [102] 184 219.9 −5.2 +4.5
E866 / NuSea pd/pp DY [104] 15 19.2 +8.8 +10.8

HERA ep Fcharm
2 [107] 79 145.6 +13.3 +2.0

NMC/BCDMS/SLAC/HERA
FL [72, 75, 79, 110–112]

57 45.5 −23.0 −0.2

CCFR νN → µµX [114] 86 68.1 +0.3 −0.2
NuTeV νN → µµX [114] 84 59.0 +0.5 +2.3

CHORUS νN F2 [117] 42 29.9 −0.3 +0.7
CHORUS νN xF3 [117] 28 18.2 −0.2 +0.1

HERA e+p CC [120] 39 50.2 −1.8 +0.5
HERA e−p CC [120] 42 64.7 −5.5 −0.2

HERA e+p NC 820 GeV [120] 75 84.8 −5.1 +0.5
HERA e−p NC 460 GeV [120] 209 247.4 −0.9 −0.4
HERA e+p NC 920 GeV [120] 402 474.0 −38.7 −0.1
HERA e−p NC 575 GeV [120] 259 248.5 −14.5 +0.0
HERA e−p NC 920 GeV [120] 159 242.6 −1.8 −0.4

CDF II pp̄ incl. jets [128] 76 62.6 +2.2 −3.9
DØ II Z rap. [130] 28 17.1 +0.8 −0.3
CDF II Z rap. [132] 28 38.4 +1.2 −2.2

DØ II W → νµ asym. [134] 10 15.6 −1.7 −0.9
CDF II W asym. [73] 13 19.0 +0.0 +0.8

Table 13.4.: Full breakdown of χ2 results for the aN3LO PDF fit. The global fit includes the
N3LO treatment for transition matrix elements, coefficient functions, splitting
functions and K-factor additions with their variational parameters determined by
the fit.
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Dataset Npts χ2 ∆χ2 from
NNLO

∆χ2 from
N3LO

DØ II W → νe asym. [74] 12 31.2 −2.7 +0.5
DØ II pp̄ incl. jets [76] 110 113.9 −6.3 +0.6

ATLAS W+, W−, Z [77] 30 30.0 +0.0 +0.0
CMS W asym. pT > 35 GeV [80] 11 6.7 −1.2 −0.1

CMS W asym. pT > 25, 30 GeV [81] 24 7.8 +0.4 −0.1
LHCb Z → e+e− [83] 9 22.6 −0.2 −0.7

LHCb W asym. pT > 20 GeV [84] 10 12.6 +0.1 +0.0
CMS Z → e+e− [86] 35 17.8 −0.2 +0.2

ATLAS High-mass Drell-Yan [87] 13 18.2 −0.7 −0.1
Tevatron, ATLAS, CMS σtt̄ [89–101] 17 14.3 −0.3 +0.0

CMS double diff. Drell-Yan [103] 132 133.5 −10.9 +0.4
LHCb 2015 W, Z [105, 106] 67 99.6 +0.3 −3.5
LHCb 8TeV Z → ee [108] 17 30.1 +3.9 −0.2

CMS 8 TeV W [109] 22 10.9 −1.8 −0.6
CMS 7 TeV W + c [115] 10 10.6 +2.0 −0.2

ATLAS 7 TeV high prec. W, Z [116] 61 117.5 +0.9 −1.7
DØ W asym. [119] 14 13.7 +1.7 +1.5

ATLAS 8 TeV Z pT [121] 104 107.6 −80.9 −0.9
ATLAS 8 TeV sing. diff. tt̄ [123] 25 24.1 −1.5 −0.1

ATLAS 8 TeV sing. diff. tt̄ dilep. [124] 5 2.2 −1.2 −0.5
ATLAS 8 TeV High-mass DY [125] 48 62.0 +4.9 −0.8

ATLAS 8 TeV W + jets [126] 30 18.7 +0.6 −0.1
CMS 8 TeV double diff. tt̄ [127] 15 23.6 +1.1 +0.1

ATLAS 8 TeV W [129] 22 53.2 −4.2 +0.2
CMS 2.76 TeV jet [131] 81 107.1 +4.2 −2.7

CMS 8 TeV sing. diff. tt̄ [133] 9 9.3 −3.9 −1.0
ATLAS 8 TeV double diff. Z [135] 59 81.1 −4.5 +0.6

Total 3891 4302.0 −161.7 +14.8

ATLAS 7 TeV dijets [218] 90 100.9 - -
CMS 7 TeV dijets [219] 54 75.5 - -
CMS 8 TeV dijets [220] 122 100.4 - -

SeaQuest [19] 6 8.0 - -

Table 13.4.: (Continued) Full breakdown of χ2 results for the aN3LO PDF fit. The global fit
includes the N3LO treatment for transition matrix elements, coefficient functions,
splitting functions and K-factor additions with their variational parameters deter-
mined by the fit.
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Low-Q2 Coefficient

cNLL
q = −3.802 0.010 cNLL

g = −5.810 0.819

Transition Matrix Elements

aHg = 12326.000 0.652 aNS
qq,H = −64.682 0.002

agg,H = −1893.200 0.698

Splitting Functions

ρNS
qq = 0.006 0.007 ρgq = −1.777 0.713

ρPS
qq = −0.484 0.147 ρgg = 18.685 3.017

ρqg = −1.797 0.030

K-factors

DYNLO = −0.273 0.074 DYNNLO = −0.142 0.020
TopNLO = 0.002 0.000 TopNNLO = 0.652 0.425
JetNLO = 0.567 0.322 JetNNLO = −0.757 0.573

pTJetsNLO = 0.556 0.310 pTJetsNNLO = −0.071 0.005
DimuonNLO = −0.458 0.210 DimuonNNLO = 0.865 0.748

DijetNLO = 0.449 0.202 DijetNNLO = −0.127 0.016

N3LO Penalty Total 9.000 / 22 Average Penalty 0.409

Total 4586.8 / 4163

Table 13.4.: (Continued) Full breakdown of χ2 results for the aN3LO PDF fit. The global fit
includes the N3LO treatment for transition matrix elements, coefficient functions,
splitting functions and K-factor additions with their variational parameters deter-
mined by the fit.
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Figure 13.5.: Effect of including a dijet description for 7 + 8 TeV LHC data in a global fit on
the high-x gluon at NNLO and aN3LO.

aN3LO fit (with single inclusive jets) reported in Chapter 11. Inspecting these results

in more detail, the main differences from a single inclusive jet fit at aN3LO is the

worsening fit quality to E866 data as a result of the tension between these data and the

included SeaQuest data. Note that a similar increase can be seen at NNLO for the E866

/ NuSea pd/pp DY [104] data, confirming this is a tension effect and not a result of any

N3LO theory. The overall fit quality per data point is also reduced to χ2/Npts = 1.102

from χ2/Npts = 1.140 (χ2/Npts = 1.136) for the single inclusive jet case with (without)

SeaQuest included and from χ2/Npts = 1.149 for a NNLO fit to dijet and SeaQuest

data.

In terms of the aN3LO theory, we find a very similar set of parameters and therefore

penalties as those found in Chapter 11. Note that Table 13.4 also includes the aN3LO
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K-factor parameters used in the same way as described in Chapter 10 to provide a

rough approximation for the N3LO dijet hard cross sections.

Fig. 13.6 illustrates the combined effects of including dijets and SeaQuest data in a

global fit at NNLO and aN3LO. It can be observed that the two effects are virtually

orthogonal, with the high-x gluon seemingly being sensitive only to the dijets and

displaying very similar effects to those seen in Fig. 13.4. Similarly, the effects from

Sect. 13.2 are also present in Fig. 13.6 and are seemingly unaffected by the inclusion of

dijets.

From these results, we can therefore conclude that at both NNLO and aN3LO,

the PDFs are able to fit both SeaQuest and dijet data well, with no indirect effects or

tensions between these high-x datasets. On top of this, a better overall fit quality per

data point can be achieved while also pushing the PDFs to be positive without directly

demanding positivity.
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Figure 13.6.: Low-Q2 ratio plots showing the NNLO and aN3LO 68% confidence intervals
with 7 + 8 TeV jets or 7 + 8 TeV dijets + SeaQuest data included in a global
fit, compared to the standard MSHT20 NNLO (7 + 8 TeV jets) 68% confidence
intervals. All plots are shown for Q2 = 10 GeV2 with the exception of the bottom
quark shown for Q2 = 25 GeV2.
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Figure 13.6.: (Continued) Low-Q2 ratio plots showing the NNLO and aN3LO 68% confidence
intervals with 7 + 8 TeV jets or 7 + 8 TeV dijets + SeaQuest data included in
a global fit, compared to the standard MSHT20 NNLO (7 + 8 TeV jets) 68%
confidence intervals. All plots are shown for Q2 = 10 GeV2 with the exception of
the bottom quark shown for Q2 = 25 GeV2.



Chapter 14.

Availability and Recommended Usage

of MSHT20 aN3LO PDFs

We provide the MSHT20 aN3LO PDFs in LHAPDF format [221]:

http://lhapdf.hepforge.org/

as well as on the repository:

http://www.hep.ucl.ac.uk/msht/

The approximate N3LO functions (for Pij(x) and Aij(x)) are provided as lightweight

FORTRAN functions or as part of a Python framework in the repository:

https://github.com/MSHTPDF/N3LO_additions
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We present the aN3LO eigenvector sets with and without correlated K-factors as

discussed in Chapter 11, with the default set being provided with decorrelated K-

factors.

MSHT20an3lo_as118

MSHT20an3lo_as118_Kcorr

Both these PDF sets contain a central PDF accompanied by 104 eigenvector direc-

tions (describing 52 eigenvectors) and can be used in exactly the same way as previous

MSHT PDF sets i.e. the MSHT20 NNLO PDFs with 64 eigenvector directions.

Further to this, the aN3LO eigenvector sets discussed in Chapter 13 for global fits

including 7 + 8 TeV dijet final states and/or SeaQuest data will be made available in

a future publication (these will be added to both the web pages listed above). The

PDF sets fitted to dijet final states will contain a central PDF accompanied by 108

eigenvector directions (describing 54 eigenvectors) and can be used in exactly the same

way as previous MSHT PDF sets i.e. the MSHT20 NNLO PDFs with 64 eigenvector

directions. Note the extra eigenvector directions correspond to the extra K-factors

introduced in the aN3LO theory.

As presented in this work, the aN3LO PDFs include an estimation for MHOUs (the

leading theoretical uncertainty) within their PDF uncertainties. Due to this, we argue

and motivate in Chapter 12 that factorisation scale variations are no longer necessary

in calculations involving aN3LO PDFs. However the renormalisation scale should

continue to be varied to provide estimates of MHOUs in the hard cross section piece

of physical calculations.

http://www.hep.ucl.ac.uk/msht/Grids/MSHT20an3lo_as118.tar.gz
http://www.hep.ucl.ac.uk/msht/Grids/MSHT20an3lo_as118_Kcorr.tar.gz
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In the case that the hard cross section for a process is available up to N3LO the

recommendation is to use the aN3LO PDFs, since unmatched ingredients in cross

section calculations can ignore important cancellations (between the PDFs and hard

cross section).

If a process is included within the global fit and the hard cross section is known

only up to NNLO (i.e. those discussed in Chapter 10), we recommend the use of the

decorrelated version of the aN3LO PDF set. Using these PDFs and the details provided

in Table 11.3, the hard cross section can be transformed from NNLO to approximate

N3LO. From here the two approximate N3LO ingredients can be used together to give

a full approximate N3LO result.

If a process is not included in the global PDF fit and the hard cross section is known

only up to NNLO, the standard NNLO PDF set remains the default choice. However,

we recommend the use of these aN3LO PDFs as an estimate of potential MHOUs. In

this case the aN3LO PDF set + NNLO hard cross section prediction should be reflected

in any MHOU estimates for the full NNLO prediction. For example, when the hard

cross section is known only up to NNLO Equation (3.13) from [203] can be adapted to

be,

δ(PDF− TH) =
1
2

∣∣∣∣∣∣

σ
(2)
aN3LO

− σ
(2)
NNLO

σ
(2)
aN3LO

∣∣∣∣∣∣
(14.1)

where δ(PDF − TH) is the predicted PDF theory uncertainty on the σ prediction,

σ
(2)
aN3LO

is the NNLO hard cross section with aN3LO PDFs and σ
(2)
NNLO is the full NNLO

result. A caveat to this treatment is that the theory uncertainty is sensitive to un-

matched cancellations and should therefore be used with care (and caution), therefore

the NNLO set remains the default in evaluating PDF uncertainties.
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Chapter 15.

Conclusion

This thesis has presented the first approximate N3LO global PDF fit. This has been

achieved by following the MSHT20 framework [3], where the aN3LO PDF set also

incorporates estimates for theoretical uncertainties from MHOs. In addition, the

framework presented for obtaining these PDFs provides a means of utilising higher

order information as and when it is available. In contrast, previously, complete

information of the next order was required for theoretical calculations in PDF fits. This

provides a significant advantage moving forward in precision phenomenology, since

as we move to higher orders, this information takes increasingly longer to calculate.

We have analysed the resulting set of PDFs, denoted MSHT20aN3LO, and made two

sets available as described in Chapter 14. These aN3LO PDF fits have been performed

to the same set of global hard scattering data and PDF parameterisations included for

the MSHT20 NNLO PDF fits.

The NNLO theoretical framework for MSHT20 PDFs has been extended in Chap-

ter 5 to include the addition of general N3LO theory parameters into the fit. Subse-
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quently, we have outlined how these N3LO theory parameters can be included into the

Hessian procedure as controllable nuisance parameters where they are not yet known.

Two methods of handling subsets of the N3LO theory parameters in the Hessian matrix

have then been discussed i.e. including or ignoring correlations with aN3LO K-factors

across distinct processes. Finally in Chapter 6 we explained in detail the approximation

framework which can be employed to provide approximate parameterisations for

each N3LO function considered.

In Chapter 7 to Chapter 10 we have presented the N3LO additions to the relevant

splitting functions, transition matrix elements, heavy coefficient functions and K-

factors. We present usable and computationally efficient approximations to N3LO

based on known information in the small and large-x regimes and the available Mellin

moments (and make these available as described in Chapter 14). In all cases the best

fit prediction for each N3LO function is in good agreement with the prior expected

behaviour. Also in Chapter 10, we find good agreement with recent progress towards

N3LO DY and top production K-factors [192, 194]. As more information becomes

available surrounding each of these functions, the framework we present here can

be easily adapted, aiding in the reduction in sources of MHOUs from N3LO. As we

have stressed, we interpret our theoretical uncertainty as being mainly due to the

remaining uncertainty at N3LO, but with some small, but significant contribution

from even higher orders, particularly at small-x. Our results seem consistent with this

interpretation. However, in the future we expect the N3LO description to become more

exact. Hence, at some point remaining N3LO uncertainty will become comparable

to, or smaller than effects beyond N3LO. At that point we would have to modify our

procedure. However, we expect that once N3LO is largely known, there will then also

be more information known about even higher orders (i.e. N4LO), which could then be

incorporated in a similar manner to maintain an estimate for MHOUs. Alternatively,
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in the event that the available information is not suitable to provide approximations

(or indeed to complement these approximations), a treatment similar in principle,

but more sophisticated in practice, to that of the K-factors may be adopted for DIS

quantities. On this note, we acknowledge that the method of constructing aN3LO

K-factor’s for non-(inclusive) DIS processes presented here is a first step towards a

more robust and flexible procedure which is left for future work.

Combining together all N3LO information, in Chapter 11 the results of an approxi-

mate N3LO global PDF fit are presented. The new MSHT20 approximate N3LO PDFs

show a significant reduction in χ2 from the MSHT20 NNLO PDF set, with the leading

NNLO tensions between HERA and non-HERA datasets heavily reduced at aN3LO

(most notably with the ATLAS 8 TeV Z pT dataset [121]). With this being said, the

aN3LO set does fit selected Jets datasets worse in an aN3LO global fit than at NNLO,

although these are an exception to the behaviour seen for the other datasets. In per-

forming a fit not including ATLAS 8 TeV Z pT data we provide evidence that similar

tensions seen at NNLO (see [3]) remain between this dataset and jet production data

at aN3LO. Further to this, we show that since HERA and ATLAS 8 TeV Z pT data are

more in agreement in the form of the high-x gluon at aN3LO, one can observe that the

tension with the jet production data is shared between HERA and ATLAS 8 TeV Z pT

data.

Investigating the correlations present within an aN3LO PDF fit, a natural separation

between process independent and process dependent parameters can be observed.

With this motivation, a PDF set with decorrelated aN3LO K-factor eigenvectors is

constructed. The validity of this is then also verified by comparison with a second PDF

set which includes correlations between all parameters. Each of these sets exhibits

similarly well behaved eigenvectors and levels of dynamical tolerance.



266 Conclusion

Considering the form of the individual PDFs, the aN3LO PDFs include a much

harder gluon at small-x due to contributions from the splitting functions as discussed

in Section 11.8. This enhancement then translates into an increase in the charm and

bottom PDFs due to the gluon input into the heavy flavour sector via the transition

matrix elements. Further to this, at very low-Q2 the result of the N3LO additions

is a non-negative charm and gluon PDF at small-x. As a consistency check, the fit

dependence on αs and mc has been investigated. In both of these cases we show a

preference for values which suppress the heavy flavour contributions (slightly lower αs

and slightly higher mc than NNLO). Considering the predicted aN3LO αs, we observe

a slightly lower than 1σ effect when comparing with the NNLO world average. While

an extensive analysis of the aN3LO αs value is left for further study, since the world

average is determined by NNLO results, one could expect a small systematic effect

from moving to N3LO.

Taking this analysis further and using the approximate N3LO PDFs as input to

N3LO cross section calculations, we consider the cases of gluon and vector boson

fusion in Higgs production in Chapter 12. We present the first aN3LO calculation

for these cross sections and show how the aN3LO prediction differs from the case

with NNLO PDFs including scale variations, highlighting the importance of matching

orders in calculations. In VBF we provide an example where cancellation is not realised

between orders. However in this case the quark sector is much more constrained

and due to the smaller variation between orders, there is naturally less scope for

cancellation.

Finally in Chapter 13, the datasets included in an MSHT20 global fit have been

extended to include SeaQuest and 7+ 8 TeV dijet final states. With the addition of high-

x SeaQuest data, we investigate how the high-x d̄ PDF at low-Q2 no longer becomes
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negative and also that a similar negative d̄ mode was present at NNLO without

SeaQuest (with a near discrete minima). These results confirm that the observed

negativity is not a direct feature of the aN3LO theory and is in fact, a result of the extra

flexibility introduced when performing a fit at aN3LO. For the dijets data, the PDFs are

also presented in Chapter 13 which show the effects introduced in the high-x gluon.

Towards the end of this Chapter, a final set of PDFs are investigated which are fitted

to SeaQuest and dijet data, which exhibit all the features discussed for fitting these

datasets separately while also resulting in a slightly better overall fit quality than for a

fit with single inclusive jet data.

In summary, we have presented a set of approximate N3LO PDFs that are able to

more accurately predict physical quantities involving PDFs (given that all ingredients

in these calculations are included at N3LO or aN3LO). In producing these PDFs, we

have provided a more controllable method for estimating theoretical uncertainties

from MHOs in a PDF fit than scale variations. While some ambiguity remains in this

method in how the prior variations are chosen, we argue that the current knowledge

and intuition surrounding each source of uncertainty can be utilised as and when

available. This is therefore much more in line with what one can expect a theoretical

uncertainty to encompass. Another potential shortcoming is the possibility of fitting to

sources of uncertainty other than higher orders (or higher order corrections elsewhere

in theory calculations included in a PDF fit). Although this is a possibility, the position

of the considered sources of uncertainty in the underlying theory combined with the

prior variations and penalties should act to minimise this effect. In any case, if a

separate source of uncertainty is significantly affecting the fit, this will present itself as

a source of tension with the N3LO penalties and the χ2 (and PDF uncertainty) will be

adapted accordingly.
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In future work it will be interesting to investigate the effects in the high-x gluon,

which is a region of phenomenological importance and where the interpretation of

LHC constraints is not always straightforward. We also note that there are N3LO

results available from di-lepton rapidity in DY processes [192]. Considering the results

in Chapter 10 which display an agreement with these recent results, we hope that these

approximate N3LO PDFs may be of interest in this analysis. Similarly for recent results

considering top production [194]. Furthermore, any approximate information from

these results could be included in the N3LO K-factor priors, which was not done for

this iteration of the aN3LO PDFs. Further to this, the treatment of K-factors presented

here could be re-imagined to include a more extensive description. Finally, in order to

continually improve the description of aN3LO PDFs, the inclusion of more sub-leading

sources of MHOUs could be addressed. With the upcoming wealth of experimental

data from future colliders such as the HL-LHC and the EIC, it will be of interest to

gain a better understanding of the transition matrix elements and also describe better

the charged current and longitudinal structure functions, where currently theoretical

uncertainties are much smaller than the experimental uncertainties.



Appendix A.

Higher Order Convolutions

In this section we present some of the complicated analytical solutions that accompany

the work done in Chapter 5. These functions were calculated by hand via a transforma-

tion into Mellin space which transforms the convolution into a multiplication. After

the full function is obtained in Mellin space, the x-space solutions provided below are

obtained via an inverse Mellin transform for each term.

[
P(0)

qq ⊗ P(0)
qq

]
(x) =

[
4 (1 + x2) ln(1− x) + x2 + 5

1− x

]

+

− (3x2 + 1)
ln x

1− x

− 4 +
(

31
4
− 2π2

3

)
δ(1− x) (A.1)

269



270 Higher Order Convolutions

[
P(0)

qq ⊗ P(0)
qg

]
(x) = CFTR

{
(4x2 − 4x + 2) ln(1− x)

− (4x2 − 2x + 1) ln x + 2x− 1
2

}
+

(11CA − 4n f TR

6

)
(2x2 − 2x + 1) (A.2)

[
P(0)

qg ⊗ P(0)
gq

]
(x) = CFTR

{
2(1 + x) ln x − 4

3
x2 +

4
3x
− x + 1

}
(A.3)

[
P(0)

qg ⊗ P(0)
gg

]
(x) = 2CATR

{
(2x2 − 2x + 1) ln(1− x)

+ (1 + 4x) ln x− 31
6

x2 + 7x +
2

3x

− 5
2

}
+ TR

(11CA − 4n f TR

6

)
(2x2 − 2x + 1) (A.4)

[
C(1)

2,q ⊗ P(0)
qq

]
(x) = 4

[
(1 + x2)

ln2(1− x)
1− x

]

+

+

[
1

1− x

(
32
3

Li2(x)− 64
3

ζ2 − 15
)]

+

+
4
3

[
ln(1− x)

1− x
(1 + 2x− 6x2)

]

+

+
ln2 x
1− x

2
3
(1 + 3x2)

+
4
3
(9− x2)

Li2(1− x)
1− x

+
20
3

(1 + x) ln x ln(1− x)

+
ln x

1− x
8
3
(2x2 − x− 1) +

16
3

ζ2 (1 + x) + 14

+ 8 x−
(

106
3

+ ζ3

)
δ(1− x) (A.5)
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[
C(1)

2,q ⊗ P(0)
qg

]
(x) = TRCF

{(
2x2 − 2x + 1

)
ln2(1− x)

− (6x2 − 8x +
7
2
) ln(1− x) + (2x2 − x +

1
2
) ln2 x +

(
6x2 − 4x− 1

2

)
ln x

− (1 + 2x)Li2(x) + (−4x2 + 2x− 1) ln x ln(1− x) + x2

− 3x + 2−
(

2ζ2 +
9
2

)
(2x2 − 2x + 1)

}
(A.6)

[
C(1)

2,g ⊗ P(0)
gq

]
(x) = TRCF

{(
− 4

3
x2 − x +

4
3x

+ 1
)

ln(1− x)− (1 + x) ln2 x

+

(
4
3

x2 − 5x− 1
)

ln x− 2(1 + x)Li2(x)

+
16
3

x2 +
2
3

x +
2

3x
− 20

3
+ 2ζ2(1 + x)

}
(A.7)

[
C(1)

2,g ⊗ P(0)
gg

]
(x) = 2CATR

{(
2x2 − 2x + 1

)
ln2(1− x)

−
(

2x2 − 4x + 2
)

ln x ln(1− x)−
(

79
6

x2 − 11x +
7
6

)
ln(1− x)

+
1

3x
− 121

6
x + 4ζ2x + ζ2 −

(
2x +

1
2

)
ln2 x− 43

12
+

(
281
12
− 2ζ2

)
x2

− (2x + 2)Li2(x) +
(

31
6

x2 − 16x− 1
2

)
ln x + (2x− 1)Li2(1− x)

}
(A.8)
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Appendix B.

Renormalisation Group Invariance

A general RG invariant function C(αs(µ
2), µ2

Q2 ) is required to obey the RG equation,

µ2 d

dµ2 C(αs(µ
2),

µ2

Q2 ) = 0. (B.1)

We define two new variables for the convenience of this derivation as,

ξ = ln
Q2

Λ2 χ = ln
µ2

Q2 , (B.2)

also note the change of variables gives,

d

dµ2 =
1

µ2
d

dχ
. (B.3)

Now we have the RG equation in a simpler form,

d
dχ

C(αs(ξ + χ), χ) = 0 (B.4)
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We can expand this equation out by use of the chain rule as follows,

0 =
d

dχ
αs(ξ + χ)

∂

∂αs
C(αs(ξ + χ), χ)

∣∣∣
χ
+

∂

∂χ
C(αs(ξ + χ), χ)

∣∣∣
αs

(B.5)

=
d

dξ
αs(ξ + χ)

∂

∂αs
C(αs(ξ + χ), χ)

∣∣∣
χ
+

∂

∂χ
C(αs(ξ + χ), χ)

∣∣∣
αs

(B.6)

=
∂

∂ξ
C(αs(ξ + χ), χ)

∣∣∣
χ
+

∂

∂χ
C(αs(ξ + χ), χ)

∣∣∣
αs

(B.7)

This then reveals a new relationship between the partial derivatives of an RG invariant

quantity with respect to our new variables, which will be useful in the next step.

Performing a Taylor expansion around the point where µ2 = Q2 or χ = 0 gives us

the following expression,

C(αs(ξ + χ), χ) = C(αs(ξ + χ), 0) + χ
∂

∂χ
C(αs(ξ + χ), 0)

∣∣∣
αs

(B.8)

+
1
2

χ2 ∂2

∂χ2 C(αs(ξ + χ), 0)
∣∣∣
αs

+ .... (B.9)

Then using the relation we just derived from the RG group equation, we can state,

C(αs(ξ + χ), χ) = C(αs(ξ + χ), 0)− χ
∂

∂ξ
C(αs(ξ + χ), 0)

∣∣∣
αs

(B.10)

+
1
2

χ2 ∂2

∂ξ2 C(αs(ξ + χ), 0)
∣∣∣
αs

+ ... (B.11)

The above equation is in general how any RG invariant quantity can be described in

terms of a Taylor expansion and is how expressions used in this report are formulated.

With the use of (B.12) and the subsequent perturbative expansion of the β-function

and C(αs, 0) in terms of αs, we are then able to find an order by order expansion for
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C(αs(µ
2), µ2

Q2 ).

d
dξ

C(αs(ξ), 0) =
dαs
dξ

∂

∂αs
C(αs(ξ), 0) = β(αs(ξ))

∂

∂αs
C(αs(ξ), 0) (B.12)

Note that the beta function has the perturbative expansion shown in (B.13), beginning

at the 1-loop correction.

β(αs(µ
2)) = α2

s (Q
2)β0 + α3

s (Q
2)β1 + α4

s (Q
2)β2 + ... (B.13)
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Appendix C.

List of N3LO Ingredients

Table’s C.1 and C.2 summarise the available (at the time of writing) and used informa-

tion regarding the N3LO splitting functions and coefficient functions respectively. The

formalism presented in Chapter 5 currently makes use of all this information and is

able to be adapted as and when more information becomes available.
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N3LO No. of Moments
Small-x Large-x

Function Moments (Even only)

PNS
qq 8 N = 2− 16 [159] [159] [159]

PPS
qq 4 N = 2− 8 [171, 172] LL [164] N/A

Pqg 4 N = 2− 8 [171, 172] LL [164] N/A
Pgq 4 N = 2− 8 [171, 172] LL [165–167] N/A
Pgg 4 N = 2− 8 [171, 172] LL & NLL [165–169] N/A

ANS
qq,H 7 N = 2− 14 [179] N/A N/A

APS
Hq 6 N = 2− 12 [179] [181] [181]

AHg 5 N = 2− 10 [179] LL [178] N/A
Agq,H 7 N = 2− 14 [179] [182] [182]
Agg,H 5 N = 2− 10 [179] N/A N/A

Table C.1.: List of all the N3LO ingredients used to construct the approximate N3LO splitting
functions and transition matrix elements. Where only a citation is provided, exten-
sive knowledge i.e. beyond NLL is used. This table is a non-exhaustive list of the
current knowledge about these functions, however information beyond that which
is provided here is not currently in a usable format for phenomological studies.

GM-VFNS N3LO
Known N3LO Components

Function

CH,q C(3), FF
H,q

(
Q2 ≤ m2

h

)
LL [176–178], CVF, (3)

H,q [185]

CH,g C(3), FF
H,g

(
Q2 ≤ m2

h

)
LL [176–178], CZM, (3)

H,q [185]

CNS
q,q CZM, (3)

q,q, NS [185]

CPS
q,q CZM, (3)

q,q, PS [185]

Cq,g CZM, (3)
q,g [185]

Table C.2.: List of all N3LO ingredients used to construct the approximate N3LO GM-VFNS
coefficient functions. Note that lower order components that contribute to these
functions are also known and are cited in the text. This table only considers
contributing 3-loop functions.



Appendix D.

χ
2 Results without HERA

D.1. NNLO

Table D.1 shows the differences in χ2 found when omitting HERA data from a PDF

fit using the MSHT NNLO PDFs. This table is copied here from [3] for the ease of

the reader. We see similarities between these results and the ∆χ2’s seen in the case of

N3LO PDFs. Specifically the ATLAS 8 TeV Z pT displaying a substantial reduction

from the global NNLO fit. This therefore provides evidence that the inclusion of the

N3LO contributions is aiding in reducing tensions between the HERA and non-HERA

datasets.
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Dataset Npts χ2 ∆χ2

BCDMS µp F2 [72] 163 174.7 −5.5

BCDMS µd F2 [72] 151 143.9 −2.1

NMC µp F2 [75] 123 119.6 −4.5

NMC µd F2 [75] 123 96.6 −16.1

SLAC ep F2 [78, 79] 37 33.0 +0.9

SLAC ed F2 [78, 79] 38 24.1 +1.1

E665 µd F2 [82] 53 63.5 +3.9

E665 µp F2 [82] 53 68.9 +4.3

NuTeV νN F2 [85] 53 38.0 −0.3

NuTeV νN xF3 [85] 42 27.5 −3.2

NMC µn/µp [88] 148 132.7 +1.9

E866 / NuSea pp DY [102] 184 228.0 +2.9

E866 / NuSea pd/pp DY [104] 15 9.1 −1.3

CCFR νN → µµX [114] 86 66.2 −1.5

NuTeV νN → µµX [114] 84 49.0 −9.5

CHORUS νN F2 [117] 42 29.6 −0.6

CHORUS νN xF3 [117] 28 18.2 −0.3

CDF II pp̄ incl. jets [128] 76 60.9 +0.5

DØ II Z rap. [130] 28 16.6 +0.3

CDF II Z rap. [132] 28 38.7 +1.5

DØ II W → νµ asym. [134] 10 17.4 +0.1

CDF II W asym. [73] 13 19.0 +0.0

DØ II W → νe asym. [74] 12 30.0 −3.9

DØ II pp̄ incl. jets [76] 110 119.3 −0.9

ATLAS W+, W−, Z [77] 30 29.5 −0.4

Table D.1.: The change in χ2 for a NNLO fit(with negative indicating an improvement in the
fit quality) when the combined HERA data sets including FL and heavy flavour
data are removed, illustrating the tensions of these data sets with several of the
other data sets in the global fit. ∆χ2 represents the change from a full global fit at
the same order in αs.
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Dataset Npts χ2 ∆χ2

CMS W asym. pT > 35 GeV [80] 11 6.6 −1.2

CMS W asym. pT > 25, 30 GeV [81] 24 7.5 +0.1

LHCb Z → e+e− [83] 9 24.2 +1.5

LHCb W asym. pT > 20 GeV [84] 10 12.1 −0.3

CMS Z → e+e− [86] 35 17.3 −0.6

ATLAS High-mass Drell-Yan [87] 13 16.9 −2.0

Tevatron, ATLAS, CMS σtt̄ [89–101] 17 14.2 −0.4

CMS double diff. Drell-Yan [103] 132 134.2 −10.3

LHCb 2015 W, Z [105, 106] 67 97.4 −1.9

LHCb 8 TeV Z → ee [108] 17 24.4 −1.8

CMS 8 TeV W [109] 22 13.7 +0.9

ATLAS 7 TeV jets [113] 140 228.0 +6.5

CMS 7 TeV W + c [115] 10 9.2 +0.6

ATLAS 7 TeV high prec. W, Z [116] 61 116.8 +0.2

CMS 7 TeV jets [118] 158 179.5 +3.8

DØ W asym. [119] 14 11.3 −0.8

ATLAS 8 TeV Z pT [121] 104 149.3 −39.2

CMS 8 TeV jets [122] 174 259.5 −1.8

ATLAS 8 TeV sing. diff. tt̄ [123] 25 24.5 −1.1

ATLAS 8 TeV sing. diff. tt̄ dilep. [124] 5 2.3 −1.1

ATLAS 8 TeV High-mass DY [125] 48 60.9 +3.7

ATLAS 8 TeV W + jets [126] 30 16.4 −1.7

CMS 8 TeV double diff. tt̄ [127] 15 23.3 +0.8

ATLAS 8 TeV W [129] 22 54.4 −3.0

CMS 2.76 TeV jet [131] 81 102.9 +0.0

CMS 8 TeV sing. diff. tt̄ [133] 9 10.6 −2.6

ATLAS 8 TeV double diff. Z [135] 59 108.3 +22.7

Total 3042 3379.6 −61.6

Table D.1.: (Continued) The change in χ2 (with negative indicating an improvement in the fit
quality) when the combined HERA data sets including FL and heavy flavour data
are removed, illustrating the tensions of these data sets with several of the other
data sets in the global fit. ∆χ2 represents the change from a full global fit at the
same order in αs.
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D.2. aN3LO

Table D.2 shows the differences in χ2 found when omitting HERA data from a PDF

fit using the MSHT aN3LO PDFs. These results show that at aN3LO the fit no longer

experiences large tensions between HERA and ATLAS 8 TeV Z pT [121] datasets. The

main tensions at N3LO are now concerning the Jets data with HERA (and most likely

some non-HERA datasets). This result is not unexpected due to the known issues

surrounding jets especially as we move to higher precision [207].
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Dataset Npts χ2 ∆χ2

BCDMS µp F2 [72] 163 175.8 +1.4

BCDMS µd F2 [72] 151 144.2 −0.0

NMC µp F2 [75] 123 113.6 −7.8

NMC µd F2 [75] 123 87.6 −16.6

SLAC ep F2 [78, 79] 37 30.7 −0.9

SLAC ed F2 [78, 79] 38 23.2 +0.4

E665 µd F2 [82] 53 65.2 +1.3

E665 µp F2 [82] 53 69.0 +1.5

NuTeV νN F2 [85] 53 35.4 −0.4

NuTeV νN xF3 [85] 42 29.2 −5.6

NMC µn/µp [88] 148 131.1 −0.5

E866 / NuSea pp DY [102] 184 217.6 +2.3

E866 / NuSea pd/pp DY [104] 15 8.2 −0.2

CCFR νN → µµX [114] 86 67.0 −1.3

NuTeV νN → µµX [114] 84 47.6 −9.1

CHORUS νN F2 [117] 42 29.0 −0.2

CHORUS νN xF3 [117] 28 18.5 +0.4

CDF II pp̄ incl. jets [128] 76 65.9 −0.6

DØ II Z rap. [130] 28 17.7 +0.3

CDF II Z rap. [132] 28 42.1 +1.5

DØ II W → νµ asym. [134] 10 18.9 +2.4

CDF II W asym. [73] 13 19.2 +0.9

DØ II W → νe asym. [74] 12 31.0 +0.2

DØ II pp̄ incl. jets [76] 110 114.2 +0.9

ATLAS W+, W−, Z [77] 30 29.5 −0.5

Table D.2.: The change in χ2 for an N3LO fit (with negative indicating an improvement in the
fit quality) when the combined HERA data sets including FL and heavy flavour
data are removed, illustrating the tensions of these data sets with several of the
other data sets in the global fit. ∆χ2 represents the change from a full global fit at
the same order in αs.
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Dataset Npts χ2 ∆χ2

CMS W asym. pT > 35 GeV [80] 11 7.0 +0.2

CMS W asym. pT > 25, 30 GeV [81] 24 7.8 −0.2

LHCb Z → e+e− [83] 9 22.5 −0.7

LHCb W asym. pT > 20 GeV [84] 10 12.6 +0.0

CMS Z → e+e− [86] 35 17.1 −0.5

ATLAS High-mass Drell-Yan [87] 13 17.5 −0.9

Tevatron, ATLAS, CMS σtt̄ [89–101] 17 14.4 +0.1

CMS double diff. Drell-Yan [103] 132 129.5 −3.7

LHCb 2015 W, Z [105, 106] 67 96.7 −6.5

LHCb 8TeV Z → ee [108] 17 27.9 −2.4

CMS 8 TeV W [109] 22 11.6 +0.1

ATLAS 7 TeV jets [113] 140 217.7 +1.8

CMS 7 TeV W + c [115] 10 10.8 +0.0

ATLAS 7 TeV high prec. W, Z [116] 61 118.0 −1.3

CMS 7 TeV jets [118] 158 187.8 +1.0

DØ W asym. [119] 14 10.1 −2.0

ATLAS 8 TeV Z pT [121] 104 121.2 +12.8

CMS 8 TeV jets [122] 174 259.8 −11.5

ATLAS 8 TeV sing. diff. tt̄ [123] 25 24.1 −0.2

ATLAS 8 TeV sing. diff. tt̄ dilep. [124] 5 3.0 +0.3

ATLAS 8 TeV High-mass DY [125] 48 65.2 +2.4

ATLAS 8 TeV W + jets [126] 30 18.0 −0.8

CMS 8 TeV double diff. tt̄ [127] 15 22.8 −0.8

ATLAS 8 TeV W [129] 22 48.0 −5.0

CMS 2.76 TeV jet [131] 81 103.0 −6.8

CMS 8 TeV sing. diff. tt̄ [133] 9 12.3 +2.0

ATLAS 8 TeV double diff. Z [135] 59 86.1 +5.7

Table D.2.: (Continued) The change in χ2 for an N3LO fit (with negative indicating an improve-
ment in the fit quality) when the combined HERA data sets including FL and heavy
flavour data are removed, illustrating the tensions of these data sets with several
of the other data sets in the global fit. ∆χ2 represents the change from a full global
fit at the same order in αs.
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Low-Q2 Coefficient

cNLL
q = −3.844 0.006 cNLL

g = −3.875 0.004

Transition Matrix Elements

aHg = 17788.000 5.607 aNS
qq,H = −63.950 0.000

agg,H = −1334.500 0.001

Splitting Functions

ρNS
qq = 0.007 0.000 ρgq = −1.647 0.001

ρPS
qq = −0.579 0.429 ρgg = 9.237 0.023

ρqg = −1.343 0.131

K-factors

DYNLO = −0.291 0.085 DYNNLO = −0.228 0.052

TopNLO = −0.204 0.042 TopNNLO = 0.412 0.170

JetNLO = −0.254 0.065 JetNNLO = −0.861 0.741

pTJetsNLO = 0.461 0.213 pTJetsNNLO = 0.016 0.000

DimuonNLO = −0.329 0.109 DimuonNNLO = 0.587 0.345

Total 3311.8 / 3042

∆χ2 from N3LO −48.0

Table D.2.: (Continued) The change in χ2 for an N3LO fit (with negative indicating an improve-
ment in the fit quality) when the combined HERA data sets including FL and heavy
flavour data are removed, illustrating the tensions of these data sets with several
of the other data sets in the global fit. ∆χ2 represents the change from a full global
fit at the same order in αs.
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Appendix E.

Dynamic Tolerances

In this section we provide an exhaustive breakdown of the ∆χ2
global behaviour for

all eigenvectors found where N3LO K-factor parameters are considered completely

decorrelated (Hij + Kij) or correlated (H′ij) with all other parameters.

E.1. Case 1: Decorrelated K-factor Parameters

Fig. E.1 displays the tolerance landscape for each eigenvector found from the decorre-

lated (Hij + Kij) Hessian described in Chapter 5. Across all 52 eigenvectors (42 PDF +

N3LO DIS theory and 10 N3LO K-factor) we show an overall general agreement with

the quadratic assumption similar to that found at NNLO.
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Figure E.1.: Dynamic tolerances for each eigenvector direction in the case of complete decor-
relation between the theory and PDF parameters, and the K-factor parameters
included in the PDF fit.
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Figure E.1.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete decorrelation between the theory and PDF parameters, and the K-factor
parameters included in the PDF fit.
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Figure E.1.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete decorrelation between the theory and PDF parameters, and the K-factor
parameters included in the PDF fit.
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Figure E.1.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete decorrelation between the theory and PDF parameters, and the K-factor
parameters included in the PDF fit.
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Figure E.1.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete decorrelation between the theory and PDF parameters, and the K-factor
parameters included in the PDF fit.
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Figure E.1.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete decorrelation between the theory and PDF parameters, and the K-factor
parameters included in the PDF fit.
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Figure E.1.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete decorrelation between the theory and PDF parameters, and the K-factor
parameters included in the PDF fit.
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Figure E.2.: Dynamic tolerances for each eigenvector direction in the case of complete cor-
relation between all theory, PDF and K-factor parameters included in the PDF
fit.

E.2. Case 2: Correlated K-factor Parameters

Fig. E.2 displays the tolerance landscape for each eigenvector found from the correlated

(H′ij) Hessian described in Chapter 5. Across all 52 eigenvectors we show an overall

general agreement with the quadratic assumption similar to that found at NNLO.
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Figure E.2.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete correlation between all theory, PDF and K-factor parameters included in the
PDF fit.
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Figure E.2.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete correlation between all theory, PDF and K-factor parameters included in the
PDF fit.
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Figure E.2.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete correlation between all theory, PDF and K-factor parameters included in the
PDF fit.
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Figure E.2.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete correlation between all theory, PDF and K-factor parameters included in the
PDF fit.
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Figure E.2.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete correlation between all theory, PDF and K-factor parameters included in the
PDF fit.
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Figure E.2.: (Continued) Dynamic tolerances for each eigenvector direction in the case of com-
plete correlation between all theory, PDF and K-factor parameters included in the
PDF fit.
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Appendix F.

Higgs Gluon Fusion µ = mH Results

Provided in Table F.1 are the results analogous to those in Table 12.1 but with the

central scale set to µ = µ f = µr = mH. These results show a higher level of stability for

aN3LO PDFs with the chosen central scale. By the renormalisation group arguments,

this scale dependence should disappear at all orders in perturbation theory. Therefore

the results here suggest that the aN3LO PDFs are following this trend.
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σ order PDF order σ + ∆σ+ − ∆σ− (pb) σ (pb) + ∆σ+ − ∆σ− (%)

PDF uncertainties

N3LO

aN3LO (no theory unc.) 42.709 + 1.282 - 1.342 42.709 + 2.81% - 3.14%
aN3LO 42.709 + 1.409 - 1.357 42.709 + 3.30% - 3.17%

aN3LO (K correlated) 42.709 + 1.448 - 1.317 42.709 + 3.39% - 3.08%
NNLO 46.243 + 0.524 - 0.563 46.243 + 1.13% - 1.22%

NNLO NNLO 42.129 + 0.472 - 0.510 42.129 + 1.12% - 1.21%

PDF + Scale uncertainties

N3LO

aN3LO (no theory unc.) 42.709 + 2.000 - 2.750 42.709 + 4.68% - 6.44%
aN3LO 42.709 + 2.088 - 2.757 42.709 + 4.89% - 6.45%

aN3LO (K correlated) 42.709 + 2.114 - 2.738 42.709 + 4.95% - 6.41%
NNLO 46.243 + 1.845 - 3.078 46.243 + 3.99% - 6.66%

NNLO NNLO 42.129 + 4.989 - 5.106 42.129 + 11.84% - 12.12%

Table F.1.: Higgs production cross section results via gluon fusion using N3LO and NNLO
hard cross sections combined with NNLO and aN3LO PDFs. All PDFs are at the
standard choice αs = 0.118. These results are found with µ = mH unless stated
otherwise, with the values for µ = mH/2 supplied in Table 12.1.
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