
Financial Conduct Authority
University College London

Influencers in Dynamic Financial Networks

Isobel Seabrook

First supervisor: Fabio Caccioli
Second supervisor: Paolo Barucca

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London.

Department of Computer Science



Declaration

I, Isobel Emily Alice Seabrook confirm that the work presented in my thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in the thesis.

Any views expressed in this thesis are solely those of mine and so cannot be taken to represent those of

the Financial Conduct Authority.

Impact statement

This research has been approached from the perspective of developing techniques for application in

financial conduct regulation, but it has application also within academia and industry. Inside academia,

my work has an impact on the research area of dynamic financial networks, providing insights into

the use of network spectra to find dynamically important nodes and edges in networks, along with

proposing potential generative models for dynamic networks, which is an active area of research. I

find that structural importance relates to the dynamics of financial networks, which is a useful insight

complementing research exploring the dynamics and stability of financial networks.

While my thesis focuses on financial networks, the methods I have developed are not limited to finance,

meaning that my work provides a contribution to the field of network science in general. In particular,

the methods I put forward are useful for the identification of important nodes and edges in any networked

system, and the generative models I developed offer the potential for application to any system where

bursty patterns are present.

Outside academia, my research impacts predominantly in financial regulation, where my methods

could be used to help identify and reduce consumer harm in the financial markets. For instance, the

generative models for transaction sequences I propose could be further developed for use as null models

in anomaly detection systems to help flag instances of mis-reporting and market abuse. My methods to

measure the structural importance of nodes and edges could be used to target a supervisory response

to the market participants who pose the greatest risk to the overall system. My research also has the

potential to impact on policy design, since my methods could be used to help target new policies to the

most impactful nodes in a financial network, or to riskier financial instruments. Further to this, my

methods for analysis of complex regulatory datasets will benefit data practitioners working in financial

regulation. Although I have considered applications specifically relevant to the UK financial conduct

regulator, the Financial Conduct Authority, this research has the potential to benefit other national

and international regulators with similar remits. For example, the Bank of England has published
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several research papers looking at incorporating network analytics [1, 2, 3]. In addition, the Bank of

International Settlements and the Monetary Authority Singapore have recently launched project ellipse,

which has made use of network-based techniques to demonstrate how exposures could be mapped,

indicating possible systemic risks to the banking system [4].

The benefits of my research will be realised firstly through engagement with data practitioners at the

Financial Conduct Authority to establish the route to application for my methods. This will involve

educating practitioners and supervisors alike to help them understand the benefits and insights that

can be gained from my methods. I hope this will also involve future collaboration with academics to

further develop and test advanced methods for application to financial regulation, opening up significant

opportunities to benefit society as a whole.
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Abstract

To monitor risk in temporal financial networks, an understanding of how individual behaviours affect

the temporal evolution of networks is needed. This is typically achieved using centrality and importance

metrics, which rank nodes in terms of their position in the network. This approach works well for

static networks, that do not change over time, but does not consider the dynamics of the network. In

addition to this, current methods are often unable to capture the complex, often sparse and disconnected

structures of financial transaction networks. This thesis addresses these gaps by considering importance

from a dynamical perspective, first by using spectral perturbations to derive measures of importance

for nodes and edges, then adapting these methods to incorporate a structural awareness. I complement

these methods with a generative model for transaction networks that captures how individual behaviours

give rise to the key properties of these networks, offering new methods to add to the regulatory toolkit.

My contributions are made across three studies which complement each other in their findings.

Study 1:

• I define a structural importance metric for the edges of a network, based on perturbing the

adjacency matrix and observing the resultant change in its largest eigenvalues.

• I combine this with a model of network evolution where this metric controls the scale and

probabilities of subsequent edge changes. This allows me to consider how edge importance relates

to subsequent edge behaviour.

• I use this model alongside an exercise to predict subsequent change from edge importance. Using

this I demonstrate how the model parameters are related to the capability of predicting whether

an edge will change from its importance.

Study 2:

• I extend my measure of edge importance to measure the importance of nodes, and to capture

complex community structures through the use of additional components of the eigenspectrum.

• While computed from a static network, my measure of node importance outperforms other

centrality measures as a predictor of nodes subsequently transacting. This implies that static

representations of temporal networks can contain information about their dynamics.

Study 3:
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• I contrast the snapshot based methods used in the first two studies by modelling the dynamic of

transactions between counterparties using both univariate and multivariate Hawkes processes,

which capture the non-linear ‘bursty’ behaviour of transaction sequences.

• I find that the frequency of transactions between counterparties increases the likelihood of them

to transact in the future, and that univariate and multivariate Hawkes processes show promise as

generative models for transaction sequences.

• Hawkes processes also perform well when used to model buys and sells through a central clearing

counterparty when considered as a bivariate process, but not as well when these are modelled as

individual univariate processes. This indicates that mutual excitation between buys and sells is

present in these markets.

The observations presented in this thesis provide new insights into the behaviour of equities markets,

which until now have mainly been studied via price information. The metrics I propose offer a new

potential to identify important traders and transactions in complex trading networks. The models I

propose provide a null model over which a user could detect outlying transactions and could also be

used to generate synthetic data for sharing purposes.
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Chapter 1

Introduction

1.1 Motivation

The financial markets are one of the most notorious examples of a complex system. Although there is
no concise definition of a complex system, they tend to consist of multiple elements interacting in an
apparently disordered way, out of which is generated a robust order [5]. Financial markets influence,
and are influenced by a myriad of endogenous and exogenous effects, and they are hugely important
in supporting global society. In particular, stock trading plays an important role in the economy,
influencing and responding to external factors and providing investors the opportunity to have a share
in the profits of publicly-traded companies.

Because of their significance, financial markets are tightly monitored and regulated, both through
qualitative means as well as quantitative monitoring of a vast array of different data streams. They are
regulated from a prudential perspective to ensure that markets function well in terms of both integrity
and competition, and to reduce the risks of impacts being passed through the system to the detriment
of consumers. They are also regulated from a conduct perspective, to avoid the harms of market
manipulation, market abuse and money laundering. In the UK, the Financial Conduct Authority is the
regulatory body responsible for supervision, enforcement and development of policy in relation to the
conduct of financial firms, encapsulated in their three operational objectives [6]:

• To secure an appropriate degree of protection for consumers.

• To protect and enhance the integrity of the UK financial system.

• To promote effective competition in the interests of consumers.

To meet these objectives effectively, it is important that regulators and policy makers understand how
these systems function, and have the tools they need to model and monitor behaviours. One way to
represent these systems is through the use of network theory to study the interactions between market
participants [7, 8], which is the focus of this thesis. I study stock trading systems as dynamic networks to
understand influential relationships, entities and processes in the context of financial conduct regulation,
with a particular focus on transaction reports for stock trading. I am making a strong assumption
in modelling financial systems as dynamic networks, as in reality the behaviours of these systems are
influenced by much more than just the relationships between participants. Despite this, in this thesis
I am able to demonstrate the power of dynamic networks in delivering significant insights into the
behaviours of these systems. Although my methods have not yet been applied in a regulatory context,
this thesis lays down significant groundwork to add network theory to the regulatory toolkit.
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This thesis focuses on the development of methods to tackle two challenges in data driven financial
regulation. First of all, regulating and developing policies for financial markets requires the ability
to identify important players and to understand how their actions affect other market participants
and the evolution of the system as a whole. My research explores this both conceptually through the
development of models that relate structural importance to network dynamics, and analytically through
application to a range of different datasets, including transactions conducted on UK equities markets.
Secondly, models which are able to generate realistic transaction sequences are of great interest, due to
the usage and sharing constraints for market sensitive data. They are also of interest because of their
utility in detecting outliers. Finally, they have the potential to deliver insights into the link between
microscopic observations obtained from transaction reports showing an individual market participant’s
trading activity, and macroscopic market evolution and structural change. Although attempts have
been made to infer the generative processes from observed prices of financial instruments, there is a
lack of methods to generate the transaction sequences themselves, which I explore in my research in
chapter 5.

1.2 Research Objectives

Given these overarching focus topics for this research, my objectives are:

• To provide a means of quantifying the structural importance of nodes and edges in a network.

• To understand how the importance of edges or nodes in transaction networks relates to the global
network structure and how this relates to network evolution.

• To develop a generative model for transaction networks that is able to reproduce the key properties
of these networks and be robust to application over different aggregation scales.

• To use these methods to uncover insights from datasets consisting of the transactions executed on
the UK equities markets.

1.3 Research experiments & findings

The above objectives are addressed through experimental studies which have been published during
the course of development of this thesis. Note that to address the first objective, I make a distinction
between methods at the level of edges in chapter 3 and at the level of nodes in chapter 4, resulting in
three experimental studies:

1. Evaluation of edge importance: In chapter 3 I will introduce a concept that sits at the
core of this thesis, in the use of spectral derivatives to assess the structural influence of edges
in a network. I will further explore the relationship between spectral edge importance and
subsequent evolution of the network. Specifically, I will propose a Markov model for temporal
network evolution, parameterised by the extent to which spectral edge importance indicates
resultant changes. Through this I will demonstrate that element-wise derivatives of the network
eigenspectrum provide a useful indicator of structural importance and will show that in some cases
this provides an indication of subsequent edge changes. The published version of this chapter can
be found at [9].

2. Evaluation of node importance: Building on the ideas in my first study, In chapter 4 I will
present a measure for spectral node importance, to understand who the key players are in terms
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of importance. I will show how multiple components of the eigenspectrum can be used to capture
importance of nodes which accounts for community structure, and will demonstrate how the
importance of nodes when defined in this way is predictive of subsequent node presence. The
published version of this chapter can be found at [10].

3. Hawkes processes for modelling the bursty behaviour of financial networks: In chapter
5 I will first of all demonstrate key temporal and cross-sectional properties of financial transaction
networks, before proposing a generative model which makes use of the Hawkes process – a temporal
point process in which the occurrence of an event increases the probability of occurrence of another
event – to generate timestamps with properties observed in the real transaction networks. I
will consider several different formulations of Hawkes processes and will also introduce methods
to select edges to transact at each of the generated timestamps according to their historical
importance where this is required. I will demonstrate that multivariate processes show some
promise as generative systems for stock network systems as a whole as they are able to reproduce
some key cross-sectional properties observed. I will also demonstrate that bivariate models show
strong performance in reproducing the temporal behaviour of transaction sequences of buys
and sells occuring through a single hub organisation. This chapter is currently in review for
publication, and the pre-print can be found at [11].

During the course of the development of this thesis, I have also considered additional avenues of research
which, although I do not cover in depth in this thesis, also contribute to the understanding of stock
markets and their impact and response to shocks experienced by groups of stocks [12].

1.4 Scientific contributions

This thesis consists of original research and presents contributions to science through demonstrating
that network eigenvalue derivatives can be used as a fundamental measure of structural importance
in networks, and that this can be applied across multiple applications of network science. It further
demonstrates how this relates to predictability and stability in the context of temporal financial networks,
with the hope that these methods can be used practically by policy makers in understanding market
stability. It contributes to existing literature by enhancing the understanding of the effect of aggregation
scales on predictability in financial networks. It develops a generative model which is able to reproduce
the real bursty behaviours which are seen in high frequency traded financial instruments. It provides
insights into the applicability of techniques from network science that have not been applied in the
finance industry. These will help to build the tool-kit of researchers in collaboration with industry
experts when analysing regulatory data. On top of this, it presents observations of the key properties
and behaviours of equity transactions that have previously been unavailable for study.

1.5 Thesis structure

This thesis first presents the contextual background that motivates the research and related literature
explored in the process of developing the methods. It then presents the research experiments outlined
in section 1.3. I start chapter 3 by delivering the core concept of this thesis, defining a metric for edge
importance measuring the impact on market structure of financial market participants and their actions.
I then link this to network dynamics throughout the thesis by considering complementary approaches
that can be separated into discriminative modelling and generative modelling [13]. The first of these
approaches separates observed data into distinct classes, often referred to as conditional modelling. The
second models the data distribution itself rather than the decision boundary, and can be used to generate
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new data points. I initially start by exploring time series of static snapshots of financial networks using
a discriminative approach, exploring the prediction of changes between successive snapshots. This
is followed by the proposal of generative models for the sequences of transactions themselves, which
complements the discriminative approaches and allows for more granular properties of the systems to
be observed. My conclusions are then drawn considering insights from all of the research experiments
conducted, before presenting a summary of the contributions and suggestions of future research to build
on these. Figure 1.1 shows the thesis structure from this point onward.

Figure 1.1: Thesis structure



Chapter 2

Background & Related Literature

This section covers the core theory and methods available for the study of transaction networks, in
particular the methods that are chosen for use in this thesis. I will first discuss the various methods
that exist for the analysis of financial markets, before focusing on the specific methods used in this
thesis. I highlight throughout this section where these methods will be applied in further chapters, and
the reasons that certain methods are not explored further. I then continue to a thorough review of
related literature, in which I discuss methods and applications presented by other researchers, whilst
highlighting how my research contrasts and complements the existing literature.

2.1 Background

As noted in the introduction, there are a number of different approaches to the analysis of financial
market behaviour. Methods are motivated by the potential benefits they offer, focusing typically and
historically on the development of tools for the individual investor. There have also been more recent
developments of tools for regulation and monitoring of markets in terms of their stability and dynamics,
to help minimise the risks of large scale market turmoil and financial crises.

Considering the individual investor, researchers have predominantly focused on the statistical analysis,
modelling and prediction of asset prices and returns. There has been a particular focus on risk
management [14, 15, 16], notably on the prediction of loan default [17]. Within this, there has been a
significant focus of efforts in the peer-to-peer lending space, driven by the availability of data and the
credit risk that individual investors are subjected to [18, 19, 20, 21]. Other researchers have focused on
the pricing of financial instruments [22, 23, 24], for example those considering options pricing [25, 26].
In addition to the focus on analysis of prices and returns, some researchers have considered analyses at a
lower level of granularity in an attempt to understand the behaviours which shape the financial markets
[26, 27, 28, 29, 30, 31]. Complementing these are studies which consider the generative processes
of financial markets [32, 33, 34, 35], which offer huge potential for experimentation with data that
would otherwise be unavailable. Finally, a number of researchers have focused their efforts on portfolio
optimisation [36, 37, 38], due to the financial benefits that can be gained from a high performing
investment portfolio.

From the perspective of regulation and monitoring of financial markets, the 2008 crisis prompted new
research considering the inter-connectedness of the system, and understanding the mechanisms that can
lead to the breakdown of this system [39, 40]. Methods from risk management such as stress testing
have been reconsidered from the perspective of the financial network [41]. Further to this, techniques
ranging from physics [7] to ecology [42, 43] have been used to explore financial stability [39], and recent

6
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developments in machine learning have been exploited to unearth non-linear relationships from more
challenging regulatory datasets [44, 45, 46]. My research has been directed and informed by progress in
these areas, however it differs in that I approach things from a conduct perspective, which motivates
my aims presented in the introduction.

2.2 Methods

This thesis at its core is a study of the application of network theory to financial systems. I chose this as
my focus due to the potential of network-based approaches to provide insights into how financial systems
behave, and how an individual can have an impact on the system. A network is simply a collection of
points, referred to as nodes, joined together with lines, known as edges. An edge in a network can either
carry a value referred to as its weight, or the network can be unweighted. Mathematically, a network
can be described by a matrix known as the adjacency matrix, in which the nth row, mth column entry
of the matrix contains the weight of the edge between the nodes n and m, or a 1 in the presence of an
edge if the network is unweighted. In the case of an undirected network, the edges in a network do
not have a direction and the adjacency matrix is symmetric. When the network is directed and the
edges have a direction, the adjacency matrix is asymmetric and the (n,m)th entry may not equal the
(m,n)th entry.

As an example, consider the simple undirected network presented in figure 2.1. The adjacency matrix
for this network is 

0 0.6 0.2 0.3 0 0
0.6 0 0 0 0 0
0.2 0 0 0.1 0.7 0.9
0.3 0 0.1 0 0 0
0 0 0.7 0 0 0
0 0 0.9 0 0 0

 (2.1)

Figure 2.1: Simple weighted, undirected network, image found at [47]
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2.2.1 Static networks

There exist a number of ways to quantify the properties networks exhibit. Here I start with the
most local measures that describe individual nodes, and I present successively more complex measures
which eventually capture the global behaviour of the network. In particular, I present centrality based
methods, which are closely related to the methods I develop to address my first aim of this research, to
understand how importance relates to network structure and evolution.

Degree

The simplest property describing nodes in networks is the degree. For an undirected network, the
degree kj of node j is the number of edges attached to it [48],

kj =
∑
i

Aij . (2.2)

Centrality

The next set of measures to note are centrality measures, which rank nodes according to their position
in the network. These are of particular relevance to this thesis, as nodes that are more central in
networks have a larger potential to impact neighbouring nodes and often play a more influential role in
the evolution of the network. One of the most commonly used measures of centrality is eigenvector
centrality, which scores nodes based on the concept that having well connected neighbours makes a
node more influential. It does this by giving each node a score proportional to the sum of the scores of
its neighbours[48]. Eigenvector centrality can be calculated as follows from the adjacency matrix. For
node i in a network with adjacency matrix A, the eigenvector centrality is defined to be proportional
to the sum of the centralities of i’s neighbours:

xi =
1

λ

∑
j

Aijxj . (2.3)

This can be rearranged and written in vector notation as the eigenvector equation:

Ax = λx, (2.4)

with the eigenvector centrality being the eigenvector associated with the largest eigenvalue of the
adjacency matrix. Other commonly used measures of node centrality include closeness centrality, which
is calculated as the average shortest path from the node in question to every other node in the network
[49], and betweenness centrality, which captures how much a given node is in between others [50].
Betweenness centrality is also the most commonly used edge centrality measure, with edge betweenness
centrality defined as the number of the shortest paths that go through an edge [51].

In this thesis, I define static measures of node and edge importance by considering the change to
the network spectrum between successive snapshots. Although my measures of importance are static
measures, I find that they have some predictive power in predicting the subsequent behaviour, which is
a property not demonstrated by other static measures. This finding is significant since it provides a
link between static and dynamic representations of networks.
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Rich club index

The rich club phenomenon in networks is characterised when the hub nodes with high degrees are on
average more intensely connected than the nodes with smaller degree [52]. This can be measured using
the rich club coefficient at each degree k, which is the fraction of of the actual and potential number of
edges among the set of nodes with degree higher than k:

φ(k) =
2E>k

N>k(N>k − 1)
, (2.5)

where N>k is the number of nodes with degree larger than k and E>k is the number of edges among
those nodes.

Assortativity

Assortative mixing in networks is the tendency for nodes to connect to other nodes that are like them
[53]. In this thesis I consider degree assortative mixing, which is a network level property quantified in
terms of the quantity eij , which is the fraction of edges in a network that connect a vertex of degree i
to one of degree j. The assortativity coefficient then quantifies the level of assortative mixing, given by:

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi
=

Tr(e)− ||e2||
1− ||e2||

, (2.6)

where e is the matrix whose elements are eij , ai =
∑

j eij and bi =
∑

j eji are the fraction of each type
of end of an edge that is attached to vertices of type i, and ||x|| means the sum of all elements of the
matrix x [54].

Assortativity is a useful quantity to explore to help understand how nodes having different ‘roles’ in
networks might relate to the overall evolution and stability of the system. In particular, it has been
shown that disassortative mixing enhances the stability of banking networks [55]. Later on in this thesis
in chapter 4, I observe disassortative mixing in transaction networks of equity stocks, and also find
that nodes with a larger value of structural influence are less likely to subsequently transact which is
suggestive of an enhanced stability.

Reciprocity

Reciprocity is defined for a directed network as the ratio of the number of edges pointing in both
directions to the total number of edges in the network G

r =
|(u, v) ∈ G||(v, u) ∈ G|

|(u, v) ∈ G|
, (2.7)

similarly, for a single node, reciprocity is the ratio of the number of edges in both directions to the
total number of edges attached to the node in question [56].

In application to address the aims of this thesis, reciprocity is a useful quantity to explore across time
since it indicates how prevalent reciprocal relationships are in the networks considered. This helps
to provide insights into the role of a historical relationship between two participants increasing the
likelihood of them to transact. This is of particular relevance in chapter 5, in which I observe strong
performance of a generative model for transaction sequences parameterised by the historical prevalence
of trades between counterparties. This highlights the role of historical relationships between participants
in trading decisions.
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2.2.2 Temporal networks

Traditionally, network analytics has focused on static representations of networks, either looking at
single snapshots in time, or considering a projection of the time dimension onto a static view by
aggregating the links in a time window. In doing so, some, or all, of the temporal information about
the network is lost.

However, recently, there have been developments in modelling systems as temporal networks, which
are of particular use to address the aims of this thesis since they help capture the evolution of the
system, and they offer opportunities to gain an understanding into the generative processes present. A
common approach is to represent the system with a contact sequence (i, j, t), where i and j constitute
the vertex set V at time t. This representation also allows for edges which take time to traverse, or
contracts completed after a duration δt by representing the contact sequence as (i, j, t, δt) [57]. Since I
am considering systems where the transactions are instantaneous I am not interested in transmission
time for edges, and since I am considering applications where time is discretised, I formally define a
temporal network Gwt (tmin, tmax) as in [58] as the ordered sequence of networks

Gtmin , Gtmin+w, ..., Gtmax , (2.8)

where w is the size of the time aggregation (e.g. daily). Element Asij of the adjacency matrix between
nodes i, j at time s is non-zero if and only if there exists a link between i and j in Gt, t ≤ s ≤ t+ w.

As in the static case, temporal node, community and network level measures can provide useful insights
into the behaviour of the system. Several static measures have received recent attention to extend
for use in temporal networks, for example the extension to the static rich club metric presented in
Pedreschi et. al. [59], which captures the tendency of well-connected nodes to form simultaneous and
stable structures in a temporal network. The measure quantifies whether static rich club patterns
correspond to a structure that actually existed at some instant. Many of the centrality measures from
static network analytics are also trivial to generalise for temporal networks. For example, for the
calculation of closeness centrality, the degree is simply replaced with the latency [57], which is defined
to be the shortest time within which i can reach j and gives an indication of how fast information can
spread across a network [60].

An example making use of temporal centrality metrics in the literature is found in Tang et. al. [61],
who consider extensions to centrality and efficiency metrics based on temporal shortest paths. They
show that the temporal metrics are able to provide information about the structure of time varying
networks that classical methods are unable to capture [62]. However, for my research, the concept of
latency is less meaningful because the transactions I analyse are sparse and there often is not a path
between two nodes.

Other methods attempt to generalise spectral measures of centrality like eigenvector centrality, and
a number of similar measures, for which the network would need to be represented as a tensor [63],
making the calculation of these measures non-trivial. In this thesis, instead of considering fully temporal
spectral measures of importance, I instead propose static measures and show that these can provide an
indication of subsequent network activity, to address the first aim of this thesis. My approach results in
interpretable methods which are usable in financial regulation. I also consider the underlying generative
processes of transaction sequences that give rise to the properties I observe in aggregate and in network
snapshots, the theory of which will be outlined in the next section.

When representing a dynamic network as static snapshots across time, to capture the dynamic behaviour
a probabilistic approach can be taken. It is common to consider the probability for the network to
move between snapshots in an vector autoregressive sense, i.e. the future network configuration being
dependent on the past network configuration. When doing so, several researchers make the Markov
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assumption [64, 26], or in other words for a system X which evolves in time t, the state of the system
depends on the previous state only, meaning that the process has no memory and the probability P of
the observed network at time tn obeys:

P (Xtn |Xtn−1 , ..., Xt0) = P (Xtn |Xtn−1). (2.9)

As well as being dependent on the past network configuration, attributes of nodes (and edges) can have
an influence over the state of the subsequent snapshot. This approach is often termed a ‘fitness model’
where each node has a fitness which controls its propensity to subsequently form edges [65]. Fitness
models have most commonly been considered in a static sense to explore the network formation process,
however can also be considered in a dynamic sense as demonstrated by Mazzarisi et. al. [66], who
combine the concept of Markovian persistence with time evolving node fitnesses in a hidden Markov
chain formulation for the temporal network:{

P(Θt|Θt−1, φ) = h(Θt,Θt−1, φ)

P(At|At−1,Θt, β) = g(At,At−1,Θt, β).
(2.10)

Here the node fitnesses Θ themselves have a dynamics determined by a one-step transition probability
h(.) and g(.) represents the likelihood for the network snapshot at time t given the information
about the previous network snapshot, as well as the fitnesses. θ and φ represent static parameters.
Other researchers have considered how static models of network formation such as the Watts-Strogatz,
Exponential Random Graph and Stochastic Block Models extend to dynamic networks (see section
‘Longitudinal modelling’ in the review presented by Lee et. al. [67], alongside examples in [68, 69, 70, 71]).
The approach taken in this thesis in chapter 3 is similar to a dynamic fitness model, however instead
of considering a node level fitness variable, I instead control the propensity for changes with an edge
level quantity. This helps me to address my aim of understanding how importance relates to network
evolution at the most granular level.

In this thesis, I consider dynamic networks as both snapshot networks and as temporal point processes.
Up to this point, the majority of the methods discussed have been focused on snapshot networks, which
do not allow the true, complex dynamics of the system to be assessed. In this next section, I consider
the use of temporal point processes to observe the dynamic behaviour of transactions.

2.2.3 Temporal point processes

Temporal point processes (TPPs) are probabilistic generative models for continuous-time event sequences
[72]. TPPs are key to understanding processes in many applications, including earthquake modelling,
crime analysis, infectious disease diffusion forecasting and transaction modelling [73].

Temporal point processes have been used extensively in modelling financial transactions, for example
by Barcy et. al. [74], who model arrival times of buy and sell orders. The estimation of temporal
point processes is well established, both following a parametric approach as in my research and also
non-parametrically, using for instance the approach recently proposed in Dalmasso et. al. [75], which
makes use of a Variational Autoencoder, applying convolutions to transaction times across interacting
sellers and buyers and making use of a recurrent model to encode the sequential structure. Whilst
their approach is able to capture some properties of the real transaction network, they were unable to
reproduce the overall degree distributions. Also, black box approaches like this are unable to draw any
further insights from the model parameters or performance. In contrast, I make use of fully parametric
methods in this thesis as these allow interpretation of the parameter values themselves in providing
information about the underlying behaviours of transaction sequences.
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In this thesis, I use TPPs to address my aim of developing generative models for transaction networks,
since they do not require aggregation as is the case with snapshot networks, which can result in
behavioural information being lost. Here, I focus on two means of generating temporal sequences: the
Poisson process and the Hawkes process.

Poisson processes

The Poisson process is one of the most widely used point process models, used in scenarios where the
occurrence of events appears to have a constant rate but is stochastic. Formally, the Poisson process is
a renewal process in which the inter-arrival intervals have an exponential distribution, with a density
for each Xi of

fX(x) = λe−λx, (2.11)

for x > 0 [76]. Here λ represents the mean number of events occurring in a given time interval. A
key feature of the Poisson process is that it is memoryless, which is a disadvantage when considering
financial transactions, in which the market responds to activity.

The Poisson process has been widely applied across finance [77, 78, 79] and other applications, and
in combination with network methods [80, 81, 82, 83, 84]. They are used in scenarios where events
occur at a constant rate. However, Poisson processes do not allow for any memory within the process
and are not able to reproduce many of the properties I observe in this thesis for transaction sequences,
such as burstiness - the tendency for transactions to arrive in bursts of activity. Hawkes processes as
an alternative offer additional flexibility to capture these properties as they are based on a counting
process in which the intensity function depends on all previously occurred events.

Hawkes processes

Hawkes processes [85] are point processes defined by the following conditional intensity function:

λi(t) = µi +
N∑
j=1

∑
tjk<t

φij(t− tjk), (2.12)

where N is the number of dimensions of the process, µi is the background rate of the dimension i,
sometimes referred to as the baseline, tjk are the timestamps of all events of dimension j and φij are
the excitation kernels which capture the extent and mechanism by which events excite future events.
Here I have specified a full multidimensional excitation function, which allows for both self-excitation
of events within a single dimension i of a multidimensional Hawkes process, and mutual excitation, in
which events in one dimension i excite events in another dimension j. The presence of excitation in
Hawkes processes has been shown to give rise to burstiness in the generated point process [86].

In the literature, the Hawkes kernels usually take the form of an exponential or power law [87]. The
question of which kernel to choose has previously been an active topic of discussion, starting with
Filimonov and Sornette [88] finding a good fit of the Hawkes exponential kernel for mid-price changes of
E-mini S&P 500 futures contracts, which was later challenged by Hardiman et. al. [89]. Their challenge
builds on the observations of Bacry et. al. [90], who introduce a non-parametric approach to estimate
the Hawkes kernel finding power-law kernels for Bund and Dax futures. Hardiman et. al. also find
that power law kernels are most suited when using Hawkes processes to model the same price changes
considered by Filimonov and Sornette, in particular challenging their observation of endogeneity in
the markets increasing with time. Their work highlights the importance of the choice of kernel for
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studying the closeness of markets to criticality, since sub-criticality can be observed through choosing
an exponential kernel to fit a critical, power law Hawkes Process. Although these discussions indicate
that the best choice of kernel for financial datasets is likely to be the power law kernel, In chapter 5, I
consider exponential excitation functions, since they are practically more suitable with significantly
lower time complexity for estimation via a maximum likelihood approach (O(N) as opposed to O(N2)
for power law kernels [74]). I find that the exponential kernel performs well for my generative models,
but highlight here that exploring the use of power law kernels, in particular improving run-times of
available estimation methods for these would be a worthwhile direction for future work.

Specifically, the kernel used in this study φij takes the form

φij(t) = αijβe−βt1t>0, (2.13)

where αij is the kernel intensity governing the extent to which excitatory behaviour dominates over
the background process and β is the kernel decay governing the timescale over which a transaction
influences future transactions. The baseline parameter µi can either be constant or can be time varying
in nature. While estimation of the process in the case of a time varying baseline has been tackled by
Chen et. al. [91], who take a non-parametric approach to estimate the process, for simplicity and
following observations of stationarity in the properties of the process, I opt to consider a constant
baseline when making use of Hawkes processes in chapter 5 of this thesis.

When using the Hawkes process as a univariate model for a single transaction sequence, N = 1 and the
Hawkes process reduces to

λ(t) = µ+
∑
tk<t

φ(t− tk). (2.14)

Written as a probabilistic model which defines the probability of a transaction at time t given the
history of the process up to time t, Ht,

P(N(t+ h)−N(t) = 1|Ht) = λ(t|Ht)h+ o(h), (2.15)

where N(t) is the counting process, or in other words the cumulative count of transactions, and h is an
infinitesimally small time interval [92]. The history Ht is the time-ordered sequence of previous events.

When considering the univariate Hawkes process for generating transaction networks, the cross sectional
information is not inherently generated, so later in chapter 5 I present different specifications to
probabilistically select the edge to change. The probability of a given link appearing at a given time is
then

P (Ni(t+ h)−Ni(t) = 1|Hi,t) = P (N(t+ h)−N(t) = 1|Ht)pi, (2.16)

where Ni(t) is a counting process for edge i, Hi,t is the history for edge i, and pi is the probability that
edge i is selected.

In the multivariate case, the Hawkes process inherently generates the cross sectional information, so
the probability of edge i appearing at time t is specified similarly to equation 2.15:

P(Ni(t+ h)−Ni(t) = 1|Ht) = λi(t|Ht)h+ o(h). (2.17)

Equations 2.16 and 2.17 specify the generative model for the univariate and multivariate Hawkes
transaction network models respectively.

Hawkes processes have been extensively applied in finance (for detailed reviews of a large range of
financial applications, see [74, 93]), although there are relatively few examples in the literature where
the Hawkes process is combined with network models. One such example is presented by Linderman et.
al. [84], who developed a probabilistic model that combines the mutually-exciting point process with
random network models to produce an implicit network, for use cases such as trades on a stock market
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which are likely to cause subsequent activity on stocks in related industries. They apply their methods
to discover the latent structure underlying financial markets, which is of use to reveal interpretable
patterns of interaction and to provide insight into the stability of markets. Another relevant application
of Hawkes Processes is in the modelling of Limit Order Books with several examples in the literature
[94, 95, 96, 97], showing particular promise in modelling price jumps [98]. One such example was
presented recently in Morariu-Patrichi et. al. [99], who propose an extension to the Hawkes process
to allow them to account for the state of the Limit Order Book, meaning that the effects of price,
volumes, bid-ask spread or other properties of the order book have influence on the arrival rate of orders.
Following a similar approach for the trade executions themselves would be an interesting next step
for my research. For my research, I focus on the use of the original Hawkes process for simplicity and
interpretability. Given their utility in modelling processes in which events trigger future events, Hawkes
processes are also prevalent in non-financial applications, for example in disease modelling [100, 101]
and social networks [102, 103].

2.2.4 Datasets for studying financial systems

The financial markets present an excellent opportunity to study complex systems with the availability
of large, high frequency datasets and significant industry knowledge to extract insights from the data.
Here I briefly summarise the most commonly used types of data that exist, along with their availability:

• End of day prices of stocks

Data on the final prices of stocks when stock markets conclude are widely available through several
data suppliers, so have received significant attention from researchers. The use of networks has
been a particular focus, where these are constructed from matrices of the correlations between the
time series of different stock prices (see [104] for a review). These networks allow an assessment
of how different stocks, and also how different market segments, affect each other. However, as
these datasets only present an aggregate view of the markets, they do not allow for a study of
how individual’s behaviours in the markets affect other participants, or the markets as a whole.

• Transaction datasets

In contrast to end of day prices, transaction level data for markets allows the study of how
individual market participants and their actions affect other market participants and the overall
system. This means they are of particular interest with respect to addressing the aims of this
thesis. However, data at transaction level is rarely available to researchers due to its sensitivity (see
however [84, 105, 106, 107, 108]). There have been recent developments in generating synthetic
transactions to allow for data sharing [109].

• Order book data

Transaction level data shows the transactions that are executed. However, further insight can
be gained by studying all of the buy and sell orders, as this provides an additional view of
the intentions of market participants [110]. Order book data was not available for the research
presented in this thesis.

Since the majority of the research presented in this thesis focuses on transaction reports for individual
equities reported to the Financial Conduct Authority under MIFID II regulation, presented here is
an overview of these datasets. These datasets were available in their raw transaction form, containing
information on price, volume, transaction time and anonymised identities of market participants. The
transactions are reported to the nearest microsecond, providing a highly detailed view of the behaviour
of these markets at the lowest level of granularity. For my research presented in chapters 3 and 4, I
select at random three equity instruments from the energy sector and consider the giant component
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Dataset Time period # of transactions # of traders
Equity-1 01/01/18 to 01/01/20 3,496 723
Equity-2 01/01/18 to 01/01/20 1,540 323
Equity-3 03/06/19 to 05/11/19 21,742 3854
FTSE-A 08/12/20 106,929 5,433
FTSE-B 08/12/20 43,246 1,051
FTSE-C 08/12/20 66,595 5,429
FTSE-D 08/12/20 105,070 3,041
FTSE-E 08/12/20 16,544 457

Table 2.1: Details of the datasets of transaction reports used in this thesis, collected under MIFID II
regulation.

networks of these. These were traded sufficiently frequently to be able to observe meaningful trading
networks on a daily basis. I chose to study networks of transactions for stocks on energy companies
to allow a comparison between instruments with expected similar properties and trading frequencies.
The first two instruments were traded less frequently than the third as can be seen in table 2.1, with
one focusing on oil and gas exploration and production and the second focusing on renewable and
alternative energy. The third instrument, another oil and gas production stock, shows a much higher
volume of transactions so is considered over a shorter time window. Due to the sensitivity of the data,
these have been referred to as Equity networks 1, 2 and 3 throughout this thesis. Later on in this thesis,
I also consider significantly higher frequency traded financial instruments as these are most suited for
the inference of the transaction sequence generation methods I consider. Specifically, I look at five
FTSE 100 constituent instruments focusing on a single day of trading and refer to these as FTSE A-E.
Although these instruments are FTSE 100 stocks which will be dominated by high frequency trading
strategies, for the day considered they vary significantly in the number of transactions, with the smallest
being 16,000 transactions (on average approximately one transaction every 2 seconds) and the largest
107,000 transactions (on average approximately one transaction every 0.2 seconds). Table 2.1 contains
the high level properties of these datasets.

Open-source datasets

When considering techniques to study market data, significant insight can also be gained by applying
methods to datasets from other fields with similar behaviours. In the research presented in this thesis,
I also make use of datasets relating to global trade as well as social network data.

The social network data I consider in chapter 3 is a dataset of private messages sent on an online social
network at the University of California. An edge (u, v, t) means that user u sent a private message to
user v at time t. As this network is unweighted, the weights of all of the edges have been set to 1. I
then aggregate the network into daily snapshots, in which the edge weight is the number of times that
edge is active during that day.

The first global trade dataset considered in chapter 3 tracks bilateral trade flows between states from
1870-2014, describing import and export data in current U.S. dollars for pairs of sovereign states [111].
This dataset is interesting not just due to its relevance to my focus on financial markets, but also due to
an observed growth across time, apart from in two time periods corresponding to the First and Second
World Wars. The second considered in chapter 4 was the Financial Services segment of the Balanced
Trade in Services (BaTIS) dataset, a complete and consistent trade in services matrix created by the
OECD and WTO, covering the more recent period from 2000 to 2019. Full details of the compilation
methodologies for this can be found at [112].
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2.3 Related relevant studies

In this section I present a review of related relevant literature. Where there is literature that is specific
to a single area of my research, I present it within the relevant chapter. As I present the literature, I also
highlight how my research is motivated by other’s findings, and how my insights differ and complement
these.

2.3.1 Related static network studies

First, here I highlight relevant literature which considers the effect an individual node or edge can have
on network structure. This depends not only on the scale of its activity, but also on its position within
the network and the activity of neighbouring nodes and edges. Understanding these interrelations
remains one of the key challenges in network science.

Focusing first on nodes, structural node importance has gained a large amount of recent attention
due to its relevance in use cases across a wide range of fields [113]. Methods have predominantly
focused on network spectra, in order to elicit structural information from the network adjacency matrix.
This includes numerous studies of epidemic processes, in which it is intuitive that the removal of a
node that acts as a bridge between communities can be used to stem the spread of a disease, leading
to significant effort being taken to understand the influences of community structure on epidemic
spreading [113, 114, 115]. Similar applications include preventing network-based attacks [116, 117] and
understanding and actioning on the spread of gossip in society [118]. This idea of network resilience is
often approached from the angle of percolation theory, in which the percolation threshold governing the
appearance of a giant component is related to the leading eigenvalue of the adjacency matrix [119, 120].
An alternative lens is taken by Wang et. al. [121], who make use of the observation that the spectrum
of the adjacency matrix gives an indication of community structure. In noting that for a network
with c strong communities, the c largest eigenvalues of the adjacency matrix are significantly larger
than the others, they follow a perturbation based approach to define node importance as the relative
change in the c largest eigenvalues upon the node’s removal. Along with the structural information
contained within the network spectrum, several researchers look to use the spectrum because it contains
information on how processes behave on networks, for instance the stability of spreading processes on
social networks [122, 123], or financial shocks on inter-bank networks [1].

Similar to Wang et. al., Lü et. al. [124] propose a universal structural consistency index for a network
based on perturbing the adjacency matrix. They demonstrate that this index is a good index for
link predictability. Restrepo et. al. use the same approach to define the dynamical importance of
network nodes and edges, instead motivated by the observed relationship between the network leading
eigenvalue and dynamical network processes [125]. My work considers the same central concept as these
of applying edge based perturbations to the adjacency matrix and focusing on the change in the leading
eigenvalue. However, my approaches differ in that I propose the use of this concept as static indicator
that can be monitored in networks with an evolving structure, as opposed to a measure capturing the
effects of node or edge removal on dynamical processes taking place on networks.

Although the bulk of the attention has focused on importance of nodes in networks, Helander et. al.
[126] propose a method for characterising the relative importance of an edge, which they refer to as edge
gravity. Edge gravity measures how often an edge occurs in any possible network path. They show that
important edges are not necessarily adjacent to nodes of importance as identified by standard centrality
metrics and that high centrality nodes often have their centrality over-represented by being adjacent to
‘edges to nowhere’. Similar path-based methods include the BCCMOD (Betweenness Centrality and
Clique Model) proposed by [127], which weights the importance of the two nodes forming the endpoints
of the edge with the number of cliques containing the edge. Their method outperforms several methods
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including Jaccard coefficient [128] and betweenness centrality [129] in identifying critical edges both in
network connectivity and spreading dynamic. Both these path-based approaches and the approach I
consider in this thesis show strong connections to existing centrality measures; as shown in section 3.3,
an approximation to the network eigenvalue derivative is proportional to the product of the constituent
nodes’ centralities. In addition, my research focuses on the temporal behaviour of the network in
relation to structural importance.

Also key to this thesis is the concept of communities in networks and how individuals positions
within networks with complex communities can be appropriately accounted for. Many algorithms for
community detection have been developed over the past two decades, and several comprehensive reviews
of these methods exist (see for example [130, 131]). However, no single method is found to outperform
on all types of networks, with different algorithms presenting different pros and cons depending on
the characteristics of the networks being considered [132]. Of relevance for the development of my
methods is that several methods of community detection rely on the identification of nodes or edges
with high centrality, for example the Girvan-Newman algorithm, which follows an iterative approach to
removal of edges with a high betweenness centrality [133]. Fortunato et. al. take a similar approach to
remove edges with the highest information centrality [134]. In the financial literature, Chan-Lau et.
al. [135] explore both community and centrality methods to identify nodes that are systemically ‘too
interconnected to fail’ or ‘too important to fail’. They note that the two complement each other for
assessing systemic risk in financial networks. It is also worth noting how both centrality and community
detection can be intuitively considered using the concept of a random walk, with a number of methods
for community detection, and also for finding central nodes, being defined from the perspective of a
random walk and correspondingly computed using the network eigenspectrum. For example, spectral
partitioning, a widely used method for finding communities in networks, can be interpreted as trying to
find a partition of the network such that a random walk will stay long within the same cluster and
rarely move between clusters [136]. Eigenvector centrality also relates to a random walk of infinite
length, in which each node is chosen uniformly at random from the set of neighbours of the current
node. Specifically, the eigenvector centrality of a node is proportional to the frequency with which a
node is visited during such a walk [137]. When using eigenvector centrality in networks with complex
structures care must be taken to account for disconnected communities as the measure makes use of
the leading eigencomponent only.

When multiple disconnected components are present in a network, the adjacency matrix can be written
in block diagonal form with the eigenspectrum decomposing into the spectra of the individual blocks.
This means that the leading eigencomponent of the full network will be the leading component of
the largest block, meaning that nodes in a smaller disconnected community will have an eigenvector
centrality of 0, even if they play a central role within their community. Katz centrality is a widely
used method which accounts for this by adding a free centrality to each node[138]. Other methods
such as those presented in Anguzu et. al. [139] simply calculate the eigenvector centralities of the
components separately and weight these appropriately. However, in this thesis, I consider whether the
other components of the eigenspectrum can be used in addition to the leading component in order to
account for community structure.

To establish if I can use the components of the eigenspectrum to account for community structure, I
now explore how other researchers have used different parts of eigenspectra to understand network
structure. Much of the research in this area has focused on spectral partitioning methods, which
make use of the eigenvector corresponding to the second smallest eigenvalue of the Laplacian, also
known as the Fiedler vector, to partition networks [140]. These methods make use of the difference
between the coordinates of the Fiedler vector, which provides information about the distance between
nodes [141]. However, as is noted in Newman et. al. [142], these methods are still limited to just one
part of the spectrum and fail in the detection of community structure when many communities are
present. Newman et. al. instead gives methods for detecting communities and presents a new idea of
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‘community centrality’, by making the observation that modularity can be expressed in terms of the
eigenvalues and eigenvectors of the modularity matrix. They take an approach similar to that used in
spectral partitioning to maximise the modularity benefit function and show that the eigenvalues of the
modularity matrix relate to the community structure. They further show that negative eigenvalues can
be used to indicate bipartivity, as well as presenting methods to evaluate network correlations, such as
assortativity, using the modularity matrix.

2.3.2 Related dynamic studies

To understand how networks evolve across time, many researchers have focused on studying mechanisms
for network growth and defining network models to understand the origin of observed properties of real
networks [143, 66, 144, 145, 146]. These include the Barabasi-Albert model [147], which demonstrates
that scale-free degree distributions observed in real networks can be explained by the presence of
growth and preferential attachment in the network evolution. Falkenberg et. al. [148] present a simple
adaptation to the Barabasi-Albert model, in which new nodes attach to nodes in the existing network
in proportion to the number of nodes one or two steps from the target node. This results in an implicit
time dependence, which arises from a node’s attractiveness being dependent on its local environment
which changes as the network evolves. Central to their model is the idea that network structure and
temporal evolution are inherently linked. However their model is limited to the influence of the local
environment. Others focus on considering temporal networks as multi-layer networks, in which one
can account for the fact that connectivity patterns in different layers can depend on each other. Bazzi
et. al. [149] propose a model which explicitly incorporates a user-specified dependency between layers
that is flexible enough to allow complex inter-layer relationships such as dependencies between a layer
and all layers that follow, incorporating memory effects into the model. A handful of studies have
attempted to link overall network structure to temporal evolution, such as Peixoto et. al. [150], who
suggest a dynamical variation of the degree-corrected stochastic block model that is capable of finding
meaningful large-scale temporal structures in real-world systems and predict their temporal evolution.
Their method works with both discrete and continuous time representations, making it versatile to a
range of applications. Watts et. al. [151] consider semi-random ‘small world’ networks and show that
the dynamics are an explicit function of the network structure. They also find an enhanced propagation
speed for small world networks.

As briefly introduced in the methods section, a common and general framework for network growth is
the fitness model, in which each node has associated with it a time independent ‘fitness’ which represents
its propensity to attract links, as proposed by Barabasí and Bianconi [65] and further emphasised in
[152]. They find that different fitnesses result in multi-scaling in the dynamic evolution, or in other
words that the time dependence of a node’s connectivity depends on the fitness. Attempts have been
made to build on this model in order to understand the origins of network dynamics, such as a recent
study by Kobayashi et. al. [153]. They find that population and activity dynamics are sufficient to
explain two types of scaling empirically observed in real networks. However, their methods do not
explicitly allow for different roles to be captured within a network, by assuming a uniform distribution
of fitness parameters.

Given my aim in chapter 4 to develop methods that help in the understanding of node behaviour in
a dynamical setting, it is also relevant to explore literature that links network eigenspectra to the
dynamics of networks. From the perspective of network community structure, the concept of ‘dynamical
influence’ is explored from the angle of the network’s eigenspectrum by Clark et. al. [154], who present
methods to find ‘Communities of Dynamical Influence’ by investigating the relationships between a
system’s most dominant eigenvectors. The concept of ‘temporal centrality’ has also been a recent
interest of many researchers, with the majority of literature focusing on defining temporal random walks
in order to generalise static measures of centrality which are based around the concept of a random
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walk [155, 156, 157, 158, 159, 160]. This allows the production of measures which respect the ordering
of events in temporal networks and take into account the temporal distance between events. These
methods have recently been applied in a temporal context, such as Zhao et. al. [161], who make use of
temporal centrality to select peripheral stocks to construct risk diversified portfolios with high return
and low risk. Taylor et. al. [162] approach things a little differently, presenting a method to extend
eigenvector centrality based methods to temporal networks by coupling centrality matrices for different
temporal layers into a supra-centrality matrix, allowing them to calculate both the joint centrality for
node i at time t, as well as marginal and conditional centralities. This allows for the study of the node
(or temporal layer) centralities separately and analysis of the centrality trajectory across time. In a
similar vein to my research, Kim et. al. [163] focus on centrality prediction in dynamic networks, first
finding that node centrality is predictable in the context of human social behaviour, before presenting
several prediction functions that are suited for different applications. My findings that node and edge
importance is predictive of future presence in financial networks complement their findings. By studying
how static measures of importance relate to future activity, my work is a step towards connecting the
static properties to the dynamics of the network.

2.3.3 Studies exploring network structure, stability and systemic risk

Increasing complexity and stability are inextricably linked, with works as early as May’s investigations
into ecosystems with increasing biodiversity highlighting the relationship [164]. In the context of financial
markets, although market integration and diversification are widely believed to play a stabilising role
[165, 166], Bardoscia et. al. [167] demonstrate that two factors of increasing complexity, namely
increasing the number of institutions (nodes) and contracts (edges) in an inter-bank network can drive
the system to instability. Similarly, Markose et. al. [168] present the idea of institutions being ‘too
interconnected to fail’ through an exploration of the structure of the US CDS market. They consider
an empirical network constructed from market shares and make use of the May-Wigner condition for
stability 1 in comparison to a random network. They show that although the CDS structure shows
better outcomes than a random network when subject to shocks, the demise of any one big player will
bring down other big players. Caccioli et. al. [169] showed in a theoretical exploration that uncontrolled
proliferation of financial instruments can lead to large instability in markets. They suggest potential
interventions such as the introduction of a Tobin tax [170], which is shown by Bianconi et. al. to
have a stabilising effect [171]. Related to this, Brock et. al. [172] use ‘arrow securities’ as a proxy for
more complicated hedging instruments and found that these incentivise construction of larger positions,
resulting in a reinforcement effect due to large gains/losses as a result of being on the ‘right’ or ‘wrong’
side of the market. They showed that this is associated with greater instability and also that the
primary bifurcation parameter, marking the onset of instability, occurs earlier when there are more
arrow securities.

In contrast to the majority of the data-centric financial literature which focuses on inter-bank trading,
Bardoscia et. al. [1] analysed UK Trade Repository data, which includes all transactions occurring
through a Central Counterparty clearing house (CCP) in the UK. Considering a snapshot of the open
positions on a single day for interest rate derivatives, FX derivatives and credit default swaps as a three
layered network, they compare a ranking derived from centrality measures to a ranking derived from
modelling the network’s response to liquidity contagion, looking at how shocks propagate across the
network and translate into payment deficiencies across the different markets. The model considers
the stress faced by an institution - the difference between all payments it is required to make and all
payment inflows from counterparties, and allows stress to spill over between the layers. They found
that centrality measures can be used as a proxy for the vulnerability of financial institutions.

1The May-Wigner condition for stability is a critical threshold below which any random network has a high probability
of stability and is defined as D < 1

Ns2
where D is the network diameter, N is the number of nodes and s is the strength

of average interactions between nodes
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Many works in the financial literature focus on node specific influence on stability. For example,
Battiston et. al. [173] define a node ranking coined DebtRank, which takes recursively into account the
impact of distress of an initial node across the whole network. Their measure amounts to the fraction of
the total economic value in the network that is potentially affected by the distress or default of a specific
node. They apply their method to a network of loans from the Federal Reserve to financial institutions
between 2008 and 2010, enriched with equity investment relations, and find a strongly connected core
of 22 institutions which all become too systemically important to fail at the 2008 crisis peak. They
demonstrate the effectiveness of their node ranking in comparison to other centrality measures and
find that it was the only measure to deliver a clear response well before the crisis peak. However, their
method specifically considers the case of distress propagation and does not explicitly measure how an
individual node or edge affects the structure of the network in general. Barucca et. al. [174] investigate
whether a change to a few selected banks in the network of the e-MID2 market can affect the large
scale structure of a network through node removal or degree mutation, and also through comparison of
the network structure that results to the original.

Although this thesis focuses on importance from the perspective of individual market participants,
considering networks at the level of stocks or market segments, and ranking nodes according to how much
they impact others in the system is also of value. In [12], we make use of end of day prices for stocks
making up the FTSE 100 and 250 indices over the 15 year period from January 2005 to August 2020,
which captures both the 2008 financial crisis and also the initial market shocks experienced in response
to the COVID-19 pandemic. By applying an information filtering method to infer the dependency
structure from the inverse covariance matrix of the price time series, followed by the application of
a sparse probabilistic elliptical model we were able to quantify the ‘impact’ and ‘response’ of the
system to market shocks. In doing this we observe that central sectors are more likely to be affected by
shocks and that diversified stocks are more likely to impact the rest of the market when experiencing
shocks. We also observe different behaviour in times of crisis than in periods of relative market calm, in
which we see the differences in the sector responses to the shock becoming closer together, suggesting
that markets ‘behave as one’ in times of crisis. This work demonstrates an alternative approach to
establishing the importance of nodes in complex systems when we do not have physical observations
of the relationships between nodes, so is a useful addition to the toolkit of techniques studied in this
thesis.

2.3.4 Generative models for financial transactions

The search for generative models for Market data has received significant interest from the academic
community, mainly focusing on time series of stock prices due to the availability of this data. Although
many techniques have been developed in an attempt to infer the generative processes that result in
the observed prices [175, 23, 176, 177], due to data sharing constraints there has been less focus on
the microscopic behaviours of financial systems through the study of the transactions themselves. The
temporal dimension has been studied by observing the arrival times of orders in limit order books
[94, 95, 96, 97, 98, 99], electronic records of the outstanding orders in individual stocks, as this gives a
view of the supply and demand in the market. However, these usually lack counterparty information,
so do not allow for a consideration of how the relationships between market participants give rise to the
temporal dynamics observed. On occasion, some researchers have had access to counterparty information
[84], which has enabled insights such as those presented in Musciotto et. al., who provide evidence of
networked structure, defined as market participants having statistically validated preferential trading
relationships [105]. Other examples have focused on analysing and classifying the different trading
strategies present [106, 107, 108]. However, these studies do not consider the network structure in
conjunction with the temporal dynamics of markets. My research in chapter 5 contributes in this space

2e-MID is the Italian electronic market for interbank deposits, a platform for trading unsecured money-market deposits.
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since I seek models that are able to reproduce cross sectional properties observed in the counterparty
information of transactions, in combination with temporal properties observed through the transaction
timestamps.



Chapter 3

Evaluating edge importance

3.1 Chapter overview

This chapter focuses on understanding how individual edges affect the structure of networks and how
this relates to network stability and evolution. The goals of this chapter are as follows:

• To derive a measure of edge importance which accounts for the structure of the network.

• To explore how this measure of structural edge importance relates to the network evolution.

• To demonstrate how this measure of importance can be used in analysis of real transaction
datasets and other network datasets.

To achieve these goals, I explore the use of network spectra to define a measure of edge importance.
I then propose a model for temporal network evolution, before exploring the relationship between
edge importance and subsequent evolution by assessing the predictability of subsequent edge changes
given individual edge importances. I explore these both through the use of toy networks and also in
application to transaction datasets and a social network dataset.

3.2 Introduction

Understanding how individual edges in a network influence its structure and evolution is important in
a range of applications. Considering financial networks, network structure has implications for financial
stability [178], market efficiency [179] and consumer safety [180]. Identification of players to monitor
more closely is of paramount importance to regulators and policy makers, with many attributing the
severity of the 2008 crisis to systemic flaws in the banking ecosystem [181].

This chapter contributes by defining a measure for edge importance which incorporates information
about network structure. It then demonstrates how this measure can be used to identify important
relationships in networks which have the potential to influence the subsequent network structure. I start
by defining a measure for structural edge importance le 1 and propose a model for network evolution in
which an edge’s importance can be indicative of future edge changes. I show that le values are higher
for edges which appear to play a more important structural role, and that subsequent changes occurring
in the real networks analysed depend to some extent on the value of le.

1I use le as shorthand for lij

22
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In the following sections, I address two questions: Can the extent to which an edge affects the overall
network structure be quantified, and does this provide information on the network’s temporal evolution?
The literature reviewed in section 2.1 shows that network structural information can be gained from the
network spectra, both from the observation that the threshold for the appearance of a giant component
in a network relates to the leading eigenvalue, and in that the number of communities can be determined
from the number of well separated eigenvalues. The literature also demonstrates that the leading
eigenvalue provides an indication of stability in terms of dynamical processes occurring on the network.
I want to understand edge importance in terms of network structure and stability, so I thus look
to capture both of these in my analysis through considering the derivatives of the network’s leading
eigenvalue with respect to individual edges. I present evidence that a measure based on this could be a
useful indicator in understanding temporal changes in network structure and present the results of its
application to five real networks. My main results demonstrate that my measure le, calculated as the
element-wise derivative of the leading eigenvalue, can be predictive of subsequent edge changes for five
different networks analysed. I further show that predictability can be related to the specific realisation
of two parameters α and ρ in the network evolution model in which edges change with probability
αlρe . This has potential implications for stability, as a system experiencing more changes to edges of
structural dominance could see a reinforcing effect, leading to an unstable system. These methods
could be useful in classifying transaction systems to inform regulation activities and policy making. I
further show that the scale of resultant transactions can be related to the realisation of two additional
parameters β and γ, again with potential stability implications.

3.3 Methodology

3.3.1 Central concept - eigenvalue derivatives as a measure of importance

For a given network Gt(V,E) with adjacency matrix At, the eigenspectrum of At is the set of eigenvalues
λ2 that satisfy the equation

Atx = λx. (3.1)

By observing changes in the eigenspectrum of a network, insight can be gained into structural changes.
As I am looking at network snapshots across time, I have a ‘time series’ of networks and can consider
the change in the leading eigenvalue between successive time snapshots,

∆λ = λ(A(t+1))− λ(A(t)) ≈
∑
ij

∂λ

∂Aij
∆Aij , (3.2)

where I have made a first order approximation and the derivative is with respect to the (i, j)th entry
of the matrix, as opposed to the entire matrix. Here A refers to the adjacency matrix, λ refers to
the leading eigenvalue of the adjacency matrix and ∆Aij refers to the relative element-wise difference
between the two network snapshots, or in other words the change for the individual edge between i and
j between the two snapshots.

The two parts of equation 3.2 can be seen as a playoff between the potential for an edge to influence
the structure ( ∂λ

∂Aij
) and the actual change in the network structure (∆Aij). Later in this chapter I

experiment with synthetic networks to assess the extent to which my derivation below, which makes
approximations and assumptions, captures the true behaviour. The first term, ∂λ

∂Aij
, measures the

sensitivity of the eigenvalue to changes in an individual edge, which I refer to as the structural

2Note that earlier in this thesis λ is used to represent the intensity of temporal point processes, here it represents the
eigenvalue. Both uses are the standard used in the literature.
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importance of an edge and denote by le. I now derive equation 3.19 for le for the undirected case by
taking a perturbation theory approach. Although not explicitly explored in this chapter, I also derive
an equivalent for the directed case for completeness.

3.3.2 Undirected case

Consider a perturbation εB to the adjacency matrix A:

A→ A + εB, (3.3)

where ε is an infinitesimally small number. The resulting first order changes to the leading eigenvalue λ
and the associated eigenvector |λ〉3 are:

λ ≈ λ0 + ελ1 (3.4)

|λ〉 ≈ |λ〉0 + ε |λ〉1 , (3.5)

where λ0 and λ1 are the first two terms of a Taylor expansion in of λ, and similarly |λ0〉 and |λ1〉 are
the first two terms of a Taylor expansion of the eigenvector |λ〉. Substituting these into the eigenvalue
equation

(A + εB)(|λ〉0 + ε |λ〉1) + ... = (λ0 + ελ1 + ...)(|λ〉0 + ε |λ〉1 + ...), (3.6)

and considering terms up to 1st order in ε

A |λ〉0 + εB |λ〉0 + εA |λ〉1 = λ0 |λ〉0 + ελ1 |λ〉0 + ελ0 |λ〉1 . (3.7)

Then consider each of the terms in εn separately,

ε0 : A |λ〉0 = λ0 |λ〉0 (3.8)

ε1 : B |λ〉0 + A |λ〉1 = λ1 |λ〉0 + λ0 |λ〉1 . (3.9)

By multiplying the equation for ε1 by the left eigenvector 0〈λ| and making use of the Hermitian
properties of A such that 0〈λ|A = λ0 0〈λ|, I find

〈λ|B|λ〉0 0 = λ1 〈λ|λ〉0 0 . (3.10)

Since the derivative is with respect to a specific edge, the perturbation corresponds to the single
component of the row/column corresponding to that edge, i.e. where Bij = Aij if i or j are the
row/column being changed, zero otherwise:

Bij =

{
Aij if i = p and j = q or j = p and i = q

0 otherwise.

Then, expanding the indices,∑
ij

x0iBijx0j =
∑
ij

x0iAijx0jδpq +
∑
ij

x0iAijx0jδqp = 2
∑
ij

x0iAijx0j , (3.11)

where x0,i is the ith component of the eigenvector |λ〉 corresponding to the leading eigenvalue of A.
Here I have re-labelled the indices for the second term and have evaluated the δ’s. This brings me to
my result:

3Note that I have switched to Dirac notation here for conciseness, |λ〉 ≡ x
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le =
∂λ

∂Aij
= x0,ix0,j . (3.12)

3.3.3 Directed case

For the directed case, as before, considering terms in εn

ε1 : B |λ〉1 + A |λ〉0 = λ1 |λ〉0 + λ0 |λ〉1 . (3.13)

Here the Hermitian properties of the matrix A cannot be used, as for directed networks A is generally
not symmetric. I consider instead the matrix M = AAT and perturbation M → M + εC and use
the symmetric result from this. This is useful since the singular values of matrix A are defined as the
square root of the eigenvalues of AAT, such that:

∂λM = 2sA∂sA, (3.14)

where λM is the leading eigenvalue of M and sA is the leading singular value of A. I can then make
use of my result above for the symmetric matrix,

〈λM |C|λM 〉0 0 = λM1 , (3.15)

where 0〈λM | and |λM 〉0 are the left and right eigenvectors of M. For the directed case, the perturbation
is changing just a single element of the adjacency matrix independently, i.e.

Cij =
{
Mij if i = p and j = q, 0 otherwise. (3.16)

Then, expanding the indices,∑
ij

xM0i Cijx
M
0j =

∑
ij

xM0iMijx
M
0j δpq =

∑
ij

xM0iMijx
M
0j , (3.17)

leading to the result

∂sA

∂Mij
=
xM0,ix

M
0,j

2sA
. (3.18)

where xM0,i is the ith component of the eigenvector corresponding to the leading eigenvalue of M. In
both the directed and undirected case above, it is worth noting that the derivations can be generalised
to allow new links to be added or removed but new nodes cannot be added or removed.

To summarise, in both the undirected and directed cases, my measures of structural edge importance
are proportional to the product of the eigenvector centralities of the two nodes involved in the edge:

le =
∂λ

∂Aij
= 2x0,ix0,j (3.19)

∂sA

∂Mij
=
xM0,ix

M
0,j

2sA
. (3.20)

My equations are defined in terms of the eigenvector corresponding to the largest eigenvalue, which
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usually has non-zero values only for the largest connected component of a network. For this reason,
in this chapter I restrict myself to exploring the giant component of the networks. Generalising these
to allow for disconnected components is considered in the following chapter when focusing on node
importance. I note here that my approach is general in that le can be computed for all networks,
weighted or unweighted, directed or undirected, as differentiability of the spectrum is ensured whenever
the adjacency matrix is real and symmetric. The perturbative approach is valid in the case of small,
isolated perturbations, which I further explore in section 3.4.1.

The relationship between le and subsequent edge changes can be captured by observing the distributions
of P (∆Aij = 0| ln(le))

4 and the joint probability P (∆Aij , le), which I explore in detail in the results
sections 3.5.2 and 3.4.3. My findings from these are compared to my model for the temporal evolution
of networks, which I propose in section 3.3.4, to assess the extent to which my model captures the true
behaviour observed.

The second term of equation 3.2 considers the changes that subsequently occur in response to the value
of le. This is of significance from a stability perspective; edges that are structurally important could
cause a system to become unstable by changing frequently or by a large amount. Conversely, they may
also act to stabilise a system if it begins to move towards a regime of instability. This can be explored
by assuming that the evolution of the temporal network is Markovian as discussed in the methods
section. I consider this first of all in the proposal of a model for network evolution, parameterised by
the extent to which le is indicative of the propensity of an edge to change and the scale of the resultant
changes. I further assess the predictability of changes from the value of le through the use of a logistic
regression classifier and relate the performance of this to the model parameters.

3.3.4 Model for network evolution

In order to understand the relation between structural importance and stability of a network over time,
I need a model that captures two behaviours. The first of these is that the value of le is indicative
of the probability for an edge to change, and the second is that the size of a resultant change can be
related to le.

I thus propose a model in which I control the extent to which le influences a subsequent edge change,
both in probability of occurrence and resultant scale. Specifically, I propose a model in which the
network evolution exhibits the Markovian property as in [66, 150]:

At+1
ij = VtijAtijU tij + (1− Vtij)Atij , (3.21)

where Vtij follows a Bernoulli distribution B(α(le)
ρ) and U tij is the distribution of edge changes which I

choose to take as U tij = N (µ = 0, σ = βlγe ). Here I introduce four parameters. The first two control
the probability of an edge to change - ρ which controls the level to which the value of le influences the
probability for an edge to change, and α scales Vtij to ensure that it is a valid probability. A positive
value for ρ indicates that more important edges are more likely to change and a negative ρ would
indicate the opposite. The second two parameters control the scale of the resulting changes: β controls
the width of the distribution of edge changes, and γ controls the level to which le influences the variance
of the edge change distribution. The simplicity of this model means that it is unable to account for
edges appearing and disappearing in the network. This could be addressed in future research.

4Here I have conditioned on the logarithm to make the relationships more visually interpretable.
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3.3.5 Parameter estimation in real networks

Assuming that the data evolves according to the model in equation 3.21, observations from real networks
can be used to estimate the most likely values of the parameters α, ρ, β and γ from the data.

Estimation of ρ and α

I assume in this section that the networks I consider can be described by a model in which the probability
of an edge changing is given by

P (∆) = θe =


0 αlρe ≤ 0
αlρe 0 < αlρe < 1
1 αlρe ≥ 1

The maximum likelihood estimate of the probabilities θ = (θ0, θ1, ..., θn) then follows the same procedure
as in the case of a (potentially biased) coin toss - given a sample of changes ke, the likelihood of observing
these changes given θ is

L(k1, k2, ...kn|θ) =
∏
e

f(ke|θe), (3.22)

where f(ke|θe) follows the Bernoulli distribution θkee (1− θe)1−ke , where ke is the observed outcome of
edge e. Taking the logarithm of this, the log-likelihood is given by

ln(L(k|θ)) =

N∑
e

ke ln(θe) + (1− ke) ln(1− θe). (3.23)

Since P (∆) is constrained to be a probability, to estimate the parameters which result in the maximum
likelihood, I need to minimise the negative log-likelihood with respect to multiple inequality constraints:

0 ≤ αlρe ≤ 1, (3.24)

where there is one inequality constraint for each le. To do this, I make use of the Karush-Kuhn-Tucker
conditions [182] and numerical optimisation, to find the optimal saddle point which maximises L with
whilst satisfying these constraints. In practice, numerical optimisation of the log-likelihood in equation
3.23 was used to estimate α and ρ.

Estimation of β and γ

For the case of the distribution of edge changes drawn from a Gaussian distribution with µ=0 and
σ = βlγe , the log-likelihood is given by

ln(L) =

N∑
e

ln

(
1√

2πβlγe

)
exp

(
−(∆Arele )2

2β2l2γe

)
, (3.25)

where ∆Arele refers to the observed relative change of edge e. Differentiating with respect to β,

β =

√√√√ 1

N

N∑
e

(∆Arele )2

l2γe
, (3.26)

from which I recover the expected standard deviation for a Gaussian in the case of γ=0.
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Differentiating with respect to γ,

∂ ln(L)

∂γ
=

N∑
e

− ln(le) +
∂

∂γ

(∆Arele )2

2β2
exp (−2γ ln (le)), (3.27)

which when set to 0 results in

N∑
e

ln(le)

(
1 +

(∆Arele )2ln(le)

β2l2γe

)
. (3.28)

Substituting 3.26 for β and solving numerically allows me to produce an estimate for γ.

Structural influence and network predictability

Depending on the values of the parameters for a given dataset, the observed values of le might be
expected to be predictive of subsequent change. Specifically, since ρ controls the relationship between
le and the propensity for an edge to change, a high value of ρ would suggest that le would be more
predictive of future change. Similarly for α, within the constraints for αlρe to give the probability of
an edge to change, a larger α will increase the distance between change probabilities for edges with
different le, thus also strengthening the relationship between the value of le and the propensity for an
edge to change. In order to evaluate these effects, I make use of a logistic regression for classification
of edges into changing vs. unchanging from the values of le. I compare the results to a null model
consisting of the average over multiple trials in which edges randomly change with probability equal to
the fraction of observed changes. The data is split into training and test sets in a stratified manner,
with 20% used to test the model on unseen data. To account for any class imbalance in the datasets, I
make use of random over-sampling, in which observations from the minority class are duplicated. The
predictions are compared according to balanced accuracy, defined as the average of recall obtained on
each class [183], and area under curve (AUC) scores for both receiver operating characteristic (ROC)
curves [184] and precision recall (PR) curves [185] which show the true positive/false positive rates or
precision/recall respectively for a range of probability thresholds for the logistic regression.

3.4 Results - synthetic networks

3.4.1 Validation of method using toy networks

Here I assess the extent to which the approximations made in calculating le hold. I do this by
approximating the change in eigenvalues as the coefficient weighted sum of the edge weight changes,
∆λ =

∑
e le∆Aij , and comparing the gradient of this to the value of le. My derivation of le makes the

simplification in assuming that edge changes occur independently of each other. My first test thus
considers the case of an individual edge changing at each timestep, and I consider perturbations applied
to a barbell network, to observe the effects of network structure, a ring network, to observe the effects
of weight with structural equivalence, and a Erdős–Rényi (ER) network as a baseline. The results in
figures 3.1, 3.2 and 3.3 show the line of constant le, overlaid with the observed ∆Aij and corresponding
∆λ values.

I observe here that the linear approximation generally holds for relative edge changes less than
∆Aij = 0.05. I also see for the barbell network that le captures the structural role of the edges, with
edges in the cliques having higher values of le than those in the bridge. For the ring network, I observe
a poorer fit for edges with low values of le, and the larger le edges tend to be adjacent to edges with
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Figure 3.1: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le.
Barbell network, with equal initial weights.

Figure 3.2: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le.
Ring network with each edge independently assigned a random integer between 1 and 10.
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Figure 3.3: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le.
Erdős–Rényi network with each edge independently assigned a random integer between 1 and 10.

similar le values. Although the edge with the largest weight also has the largest value of le, in general
there does not appear to be a simple relationship between edge weight, or weight of neighbouring edges,
and the value of le. Similar observations are made for the weighted ER network, with the lowest le
values observed for more peripheral edges, and the two edges with the largest weights also having the
highest le values. Further results for the case of a weighted barbell, and unweighted ring and random
networks are shown in figures 5 - 7 in the appendix.

Results for the case of two edges changing are also shown in the appendix in figures 8-13. In these for
the barbell network better fit is observed for higher values of le. For the ring networks and random
networks, I observe that my model performs well if the observed edge has a larger value of le than
the other changing edge, but performs poorly when the value of le is smaller. The case of complete
structural equivalence and equal weights in the unweighted ring network shows good performance for
all edges.

The breakdown of the method when there are multiple changes occurring between snapshots suggests
that my approximation for le may be better suited to a continuous or pseudo-continuous representation
of a temporal network, which can be seen as the limit of a discrete temporal network in which each
snapshot captures an individual edge change occurring at an infinitesimally different time to the
neighbouring snapshot changes.
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3.4.2 Relationship between edge importance and the presence of edge changes

I now explore the role of the parameters α and ρ by observing the effect of varying the parameters
on the distributions of the values of le for changing vs. non-changing edges, P (∆Aij = 0| ln(le)). I
consider this for synthetic data generated according to my model in equation 3.21, first keeping ρ fixed
and varying α, then fixing α and varying ρ.

Model with varying α

Figures 3.4 and 3.5 show the resulting distributions for varying values of α. These show that an increase
in α results in a decrease in the probability of an edge to remain unchanged for all values of le. Also,
For larger values of α, the rate of increase of change probability with le is slightly larger.

Figure 3.4: Distributions of le for edge changes vs. no changes, when varying α.

Figure 3.5: P (∆Aij = 0| ln(le)) as a function of ln(le) for 0.1 < α < 1
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Model with varying ρ

Figures 3.6 and 3.7 show the resulting distributions for varying values of ρ. These show that for
increasing ρ, the probability of observing no change increases for increasing le, the probability decreases
for a given ρ, at a rate that shows a significant dependence on ρ.

Figure 3.6: Distributions of le value for the case of edge changes vs. no changes.

Figure 3.7: P (∆Aij = 0| ln(le)) as a function of ln(le) for 0 < ρ < 1.0.

3.4.3 Relationship between edge importance and size of weight changes

I now consider if the value of le is observed to have an effect on the scale of subsequent edge changes.
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Variation of γ

Figure 3.8 shows the distributions of P (ln(1 + ∆Aij), le) for a range of values of γ. This shows that for
positive γ, the width of the distribution widens for larger le. For negative γ, the opposite behaviour is
observed, in that the width of the distribution becomes narrower for larger le.

Figure 3.8: Distributions of P (ln(1 + ∆Aij), ln(le) for fixed β = 0.008, −1 < γ < 1. Underlying
observations of ln(le) and ln(1 + ∆Aij) represented by the dots underlying these.

Variation of β

Figure 3.9 shows the distributions of P (ln(1 + ∆Aij), le) for a range of values of β. This shows that as
β increases, the width of the distributions increase.

Figure 3.9: Distributions of P (ln(1 + ∆Aij), ln(le) for fixed γ = −0.5, 0.001 < β < 0.005. Underlying
observations of ln(le) and ln(1 + ∆Aij) represented by the dots underlying these.
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Dataset Corr(le, ∆A) Corr(le, EBC) Corr(le, kikj) Corr(le, SiSj)
Bilateral Trade -0.061 -0.397 0.352 0.786
College Message -0.169 0.035 0.581 0.434

Equity-1 -0.104 0.135 0.717 0.320
Equity-2 -0.047 0.166 0.580 0.265
Equity-3 -0.010 0.041 0.923 0.763

Table 3.1: Spearman’s rank correlations for le with the rank by edge weight, edge betweenness centrality
(EBC) and product of nodes’ degrees and strengths.

3.5 Results - real networks

3.5.1 Static observations in real networks

The above application to synthetic networks demonstrates that my model behaves as expected, with
networks with a large ρ (and α) being more predictable. Now I explore the performance of my structural
influence metric and model through the application to five real datasets. Firstly, given that my research
has been motivated by a need to monitor risks in a financial setting, I consider a network of country
level bilateral trade [111] and three different capital markets transaction datasets reported under MIFID
II regulations. However, my methods can be applied more generally to any temporal networks. Due to
the availability and high volume of research conducted into social networks (see [118]), I also consider a
network of messages sent between College students [186]. A full description of these can be found in
section 2.2.4.

In order to understand the usefulness of le as a metric for structural importance, I first examine the edges
that rank the highest according to their values of le for the bilateral trade dataset, since the historical
context of international trade can give an indication of which edges I might expect to be ‘important’.
For the bilateral trade dataset, the largest value of le is observed for the edge between Portugal and
Spain in 1872, and considering the sum across all time for Greece and Turkey. These are examples of
edges with both nodes having large eigenvector centrality; edges involving only one central node are
seen to have lower values of le. This means that inter-European edges almost exclusively make up the
top 100 ranked edges, whereas the lowest ranked le edges occur when one, or both, of the nodes have
very low centrality scores. Similarly, for the other datasets, the highest values of le are also observed
for edges involving nodes with high eigenvector centrality. In general, the rankings of le are observed in
table 3.1 to be uncorrelated with the rankings of edges according to their betweenness centrality, or
their mean value of ∆Aij , but do for some cases correlate with the product of the participating node’s
degrees and strengths.

As the equity datasets contain large numbers of edges (the smallest contained 2785 edges), I cannot
fully explore all of the individual observed values of le as for the toy networks. Instead, I consider
the probabilities of observing values of le by making use of Kernel Density Estimation to estimate the
probability density functions from the data.

Figure 3.10 shows the estimated probability density functions of the logarithm of the value of le. These
show that, in all networks, the values observed for le tend to be very small. Omitting the tails of the
distributions for diminishingly small values of le, a similarity in the values of le is observed across the 3
equity datasets. Although across all 5 datasets analysed, the distribution is found to be approximately
lognormal, the social network shows a much broader distribution of le. The peak of the distribution for
the college messaging dataset is also much lower, observed at approximately ln(le) = −8.8, whereas the
bilateral trade dataset shows a peak at -3.3 and the equity datasets at -3, -2.5 and -4.2.
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Figure 3.10: Probability distribution of the values of ln(le) for different networks.

3.5.2 Relationship between edge importance and the presence of edge changes

I now address the central concept of the relationship of le observed for the real networks and the
probability of an edge to change. Figure 3.11 shows the distributions of the ln(le) values observed for
non-changing edges in comparison to changing edges. These show that in all cases, there is a shift in
the mean value of ln(le) towards higher values for edges which do change, which would be suggestive of
a positive ρ parameter, and potentially the ability to predict the presence of changes given the value of
le

5. The smallest shifts are observed for the bilateral trade dataset and Equity-3, which show negligible
differences in the mean and quartiles of the values of le for changes and no changes, suggesting that
predictability of changes might not be expected from the values of le in these cases. In all cases, the
differences in the mean values of le for change vs. no change is significant, with a two-sided t-test
showing p < 0.05 for all datasets.

Figure 3.11: Boxplots showing the distribution of le values observed according to the presence or
absence of an edge subsequently changing.

5In appendix section .1.1 I show how predictability relates to the values of the parameters α and ρ.
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To further understand how the value of le relates to the probability for edges to change, I consider the
distributions of P (∆Aij = 0|le) as shown in figure 3.12. Here a decreasing probability of ∆Aij = 0 is
observed for the bulk of the distribution for increasing le for the bilateral trade and Equity-3 datasets.
However, the rarely observed edges with le > 0.3 for these datasets show larger probabilities to remain
unchanged. A slight initial decrease is also observed for Equity-1 and 2 datasets however the relationship
is clearly non-linear for large le. The college messaging dataset shows a much larger probability in
general for edges to remain unchanged and shows a very slight decrease in probability to remain
unchanged for very small le values but is dominated by noise for le > 0.05.

Referring back to section 3.4.2, I considered the ideal cases of linear positive, neutral and negative
relationships between le and the probability of edge changes. In reality, as shown in figure 3.12, things
are more complex, with different relationships apparent for different le ranges. In particular, for edges
with lower values of le, the negative relationship between the value of le and the probability of an edge
to remain unchanged suggests that a parameterisation of my model with positive value of ρ would be
effective in capturing the behaviour of the bulk of the network. However, changes to the small handful
of edges with the largest values of le are less likely. These observations could suggest that there are a
few structurally important edges with consistent trading patterns which act to stabilise a system which
would otherwise move towards a regime of instability.

Figure 3.12: P (∆Aij = 0| ln(le)) as a function of ln(le) for the 5 real datasets.

Estimation of α and ρ from data

In table 3.2, I present the values of α and ρ estimated for my 5 different datasets. The errors on
these estimations are given by the inverse Hessian of the log-likelihood, which is found by numerical
approximation. In comparison with figures 3.5 and 3.12, the ordering of the estimated value of α
appears to agree with the positions of the college messaging dataset and the equity datasets. The
parameter ρ appears to correspond with the overall gradients observed in figure 3.12 for the bulk of the
distributions observed for low values of le. These observations suggest that my model is mostly capturing
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Dataset Estimated α Estimated ρ
Bilateral trade 0.783± 1.08× 10−4 0.072± 1.21× 10−5

College messaging 0.033± 3.03× 10−6 0.270± 2.76× 10−6

Equity-1 0.392± 2.74× 10−4 0.030± 2.82× 10−5

Equity-2 0.401± 3.13× 10−5 0.016± 4.93× 10−5

Equity-3 0.465± 2.57× 10−4 0.036± 4.21× 10−5

Table 3.2: Estimated α and ρ for the 5 real datasets. Standard errors have been calculated from the
inverse Hessian of the log-likelihood.

the imbalance of observed changes in the parameter ρ and the overall average change probability for
each dataset in the parameter α.

Figure 3.13 shows the bulk of the distributions for P (∆Aij = 0| ln(le)) for my 5 datasets, in comparison
to the equivalent generated from my model for network evolution which I remind the reader is:

At+1
ij = VtijAtijU tij + (1− Vtij)Atij . (3.29)

Figure 3.13: P (∆Aij = 0| ln(le)) as a function of ln(le) for the 5 real datasets, overlaid with the
distributions for data generated according to the model in 3.29

This shows that the dataset generated according to the parameters estimated appears to show a
reasonable agreement to the actual distribution and differences here can be attributed to the differences
in the initial network conditions.

3.5.3 Relationship between edge importance and size of weight changes

I now explore the distributions of P (ln(1 + ∆Aij), ln(le)), as considered for synthetic data in section
3.4.3, for the case of edges that do change, i.e. ∆Aij 6= 0 for the five real networks. These can be seen
in figure 3.14. Note that ∆Aij refers to the relative change in the value of the edge weight from t0 to
t1, which takes values in the interval [−1,∞], and le is measured at time t0. Infinite values for ∆Aij ,
corresponding to the case of a new edge appearing, were observed but are not captured in the plots.
The prominence of these across the different datasets are 4.7% of the bilateral trade dataset, 0.086% of
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Dataset Estimated β Estimated γ
Bilateral trade 1.11× 10−4 ± 8.93× 10−18 1.93± 1.10× 10−27

College messaging 7.77× 10−5 ± 1.10× 10−16 1.15± 3.07× 10−27

Equity-1 1.51× 10−5 ± 4.55× 10−24 1.35± 2.55× 10−36

Equity-2 1.42× 10−4 ± 1.36× 10−26 1.32± 5.81× 10−37

Equity-3 1.63× 10−4 ± 2.20× 10−26 1.42± 1.43× 10−36

Table 3.3: Estimated β and γ for the 5 real different datasets

the college messaging dataset, 0.012%, 0% and 0.0028% of the equity datasets6. A slight widening of
the distributions is observed for larger values of le for Equity-1 and 2 datasets and to a larger extent for
the third equity dataset. The bilateral trade dataset shows initial widening as le increases, but narrows
again for the largest le edges. The college messaging dataset shows two distinct peaks, corresponding
to changes in edge weight of ±1, which are over-represented in this dataset as it is unweighted and the
edge weight solely represents the count of interactions in the time window of consideration. The slight
widening for larger le for all datasets is suggestive of a positive relationship between the value of le and
the variance of the distribution of subsequent edge changes.

Figure 3.14: Contours showing the distributions of P (ln(1 + ∆A), ln(le)) for the 5 real datasets.
Underlying observations of ln(le) and ln(1 + ∆Aij) represented by the dots underlying these.

Estimation for β and γ from data

All 5 datasets show positive values of γ, suggestive of a relationship between the width of the distribution
of edge changes and the value of le. The dataset with the highest value for γ, the bilateral trade dataset
dataset, also shows the largest level of bias towards larger change distribution width for higher le in
figure 3.14. Correspondingly, the lowest γ value is seen for the college messaging dataset, which shows
the least bias towards larger changes occurring for larger values of le. The values for β are similar across
the 5 datasets and all relatively low. It is difficult to draw conclusions from these, as the behaviours
controlled by the two parameters cannot be separated and observed alone in the distributions in figure
3.14.

6The prominence of new edges has been significantly reduced by focusing on the giant component



3.5. Results - real networks 39

Dataset Balanced accuracy ROC AUC Precision-Recall AUC
Bilateral trade 0.542 (0.5± 0.0011) 0.554 (0.5± 0.0013) 0.628 (0.595± 0.0021)

College messaging 0.623 (0.5± 0.0027) 0.678 (0.5± 0.0029) 0.017 (0.005± 0.0045)
Equity-1 0.568 (0.5± 0.0039) 0.576 (0.5± 0.0046) 0.365 (0.313± 0.0062)
Equity-2 0.566 (0.5± 0.0061) 0.579 (0.5± 0.0073) 0.430 (0.351± 0.010)
Equity-3 0.527 (0.5± 0.0025) 0.542 (0.5± 0.0045) 0.424 (0.381± 0.0030)

Table 3.4: Values of AUC scores for ROC and PR curves. Numbers in brackets represent the score and
confidence intervals achieved by a model which randomly predicts 1 or 0 in proportion to the dataset
prior, averaged over 100 trials.

3.5.4 Edge change predictability

Given the non-zero estimated values of the parameters α and ρ in section 3.5.2, it is natural to assess
the performance of using the value of le to predict a subsequent change. Figure 3.15 shows the ROC
Curves for the 5 different datasets, and the PR curve can be found in figure 16 in the appendix.

Figure 3.15: ROC curves for a logistic regression classifier making use of ln(le) to predict ∆Aij = 1.
The dashed lines and shaded areas represent the mean 95% confidence intervals for the dummy model.

All datasets are seen to perform slightly better than the dummy model, with better performance seen for
the college messaging dataset and Equity-1 and 2, which also show larger differences in the distribution
of le across change vs. no change in figure 3.6. Poorer performance is seen for the bilateral trade and
Equity-3 datasets, which show similar shaped distributions in figure 3.12 with an initial steep decrease
in probability to remain unchanged for increasing le. However, this trend appears to reverse for le > 0.3.
These datasets also show little difference in the distribution of values observed in figure 3.6 and are
found to have low values of ρ. Although the college messaging dataset shows the best performance,
particularly in the left hand side of the ROC curve, this is driven by the significant class imbalance with
only 5% of the observations showing a non-zero ∆Aij , as opposed to the bilateral trade dataset which
shows a 20% proportion of non-zero changes and the Equities 1, 2 and 3 datasets which show 68%, 61%
and and 63% proportions of non-zero changes respectively. This is also reflected in the PR AUC score
for the college messaging dataset being close to the upper margin of error for the null model.
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3.5.5 Predictability & aggregation scale

It is worth noting that the behaviour of the networks I have been considering in this chapter is partially
dependent on the aggregation scale used in constructing the snapshot networks. Figure 3.16 shows
network snapshots at three different aggregation scales across a single afternoon of trading7 for the
Equity-1 dataset. These show that aggregation has an affect on the density of each snapshot, with the
fourth snapshot for the hourly aggregation containing very few edges. These also demonstrate how the
non-Poissonian nature of this dataset adds an additional consideration, as the latest snapshots appear
very similar for all three aggregations, as although there is activity spread across the entire time frame,
the bulk of the activity happens after 7pm, reflecting trading strategies which place orders on or after
market close, in anticipation of a price movement the next day.

Figure 3.16: hourly, two hourly and 6 hourly aggregated networks across an afternoon (1pm -8pm) for
the Equity-1 dataset

Given these differences in the network structure at different aggregation scales and observations presented
in Bandi et. al. [187], who note that predictability is aggregation scale specific, I now explore how the
predictability of edge changes varies with aggregation scale. For this, I consider a simple experiment
where my methods presented in the previous sections are applied across a range of different aggregations,
and the performance statistics across the different aggregations are compared. Figure 3.17 and 17 and
18 in the appendix show the improvement of the three classification performance metrics in comparison
to the null model. These show that larger aggregation scales produce lower predictability and that the
predictability varies with aggregation, displaying a ‘sweet spot’ in which the predictability is maximised
at a given aggregation scale. However, also note that my methods are unsuitable for low levels of
aggregation, due to the sparsity of the network at these scales. This presents an interesting trade-off
with the results presented in section 3.4.1, in which I demonstrated that the measure le itself is most
valid in the case of isolated edge changes.

3.6 Summary & next steps

The ability to understand how microscopic changes in networks affect the macroscopic evolution across
time is one of the key challenges in dynamic network analysis. In this chapter I have begun to explore
the use of derivatives of network spectra to capture this. I have derived a measure of edge based
structural influence, le, and explored the extent to which the value is indicative of future changes. I first

7A single afternoon of trading was chosen here to allow for networks of a reasonable size to analyse visually
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Figure 3.17: Average improvement and confidence intervals of balanced accuracy from null model for
aggregation scales ranging from 50 seconds to 27 hours, calculated over 100 trials.

of all demonstrated that for small and isolated perturbations applied to the network, the eigenvalue
derivative in equation 3.2 is able to capture the effect of an individual edge on the eigenvalue. However,
I observed the relationship breaks down for multiple changes happening during the same time snapshot,
suggesting that the measure may be more suited to a continuous or pseudo-continuous representation
of network evolution, in which each time snapshot contains a single edge change.

Considering the 5 real datasets, I observed lognormal distributions of the values of le, indicating
structural influence dominated by a small handful of edges. I proposed a model in which the probability
for an edge to change is given by αlρe . This model allows the user to control the extent to which
le dictates the propensity for an edge to change and also controls the scale of a subsequent change.
Focusing on the former, I observed similarities in the shapes of the distributions of P (∆Aij = 0, ln(le))
when generating synthetic networks according to this model and those observed in the data. Also, the
values observed for α and ρ are suggestive of a relationship between the value of le and the subsequent
presence of change. In using le in a logistic regression classifier to predict change, I observed that le
is slightly predictive of change in all cases, but only marginally so for the case of the bilateral trade
and Equity-3 datasets. This corresponds with my observations of small values of ρ for these datasets,
along with similar, non-linear distribution shapes for the probability of no change for increasing le.
These observations indicate that the static structural importance can be indicative of the presence of
a subsequent change. It is likely that the results of the prediction exercise are impacted by the class
imbalance of the datasets considered. In the next chapter, I will be conducting a similar prediction
exercise for node importance for which this class imbalance is exacerbated as across all of its edges with
individual nodes being highly unlikely to remain unchanged between snapshots. In order to reach a
more balanced dataset, instead of looking to predict nodes which remain unchanged, I will instead look
to predict whether or not nodes transact in the next time snapshot.

I note here that α and ρ themselves are useful parameters that could be used to classify networks
according to their growth stability. A large value of α would be an indicator for larger levels of overall
network activity. A network with very large ρ would be characterised by changes occurring to the edges
with the largest le, conversely, a network with very small ρ would see changes distributed across all
edges, regardless of the value of le. In the context of financial markets, these contrasting situations
would require different approaches, and ρ could be used by policy makers to inform which asset classes
should be monitored as a whole (for the case of small ρ) or following an approach targeting those edges
with the highest le.
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When considering the parameters which control the extent to which importance influences the scale of
the resultant edge changes, I observe a slight widening of the distribution for larger le for all datasets.
This is suggestive of a positive relationship between the value of le and the variance of the distribution
of subsequent edge changes, which is supported by observations of positive γ for all datasets. As above,
this observation could be used by policy makers since a larger γ would motivate a monitoring of larger
le edges due to their potential to make larger changes.

My model doesn’t account for edges appearing and disappearing in the network and assumes that
edge changes are independent of each other. For the first limitation, note that edge appearance and
disappearance would be unlikely to heavily influence the behaviour of the Equity networks, as I observed
very low percentages (0.012%, 0% and 0.0028%) of new edges appearing 8, but for the other two
networks this behaviour is more prominent at 4.7% for the bilateral trade network and 0.086% for
the college messaging network. On the second point, I noted in my exploration of toy networks that
the ability of using the eigenvalue derivative to quantify importance breaks down for multiple edge
changes present, and in section 3.5.5, I demonstrated the how predictability initially improves with
aggregation scale before deteriorating. This presents a trade-off between improved capability of le for
the quasi-continuous limit in which each time snapshot contains a single edge change and improved
predictability for larger aggregation scales. This motivates the research I present in section 5, in which
I consider instead modelling transaction networks as temporal point processes as opposed to snapshot
networks. It is also worth noting that although using raw transaction data gives the lowest granularity
view of the data, my work has not considered the higher order effects of trading behaviour on price. Such
an effect results in the influence of edges reaching disconnected components, which cannot be captured
by my methods, so in the next chapter I consider generalising my methods to allow for networks with
disconnected components.

8This is largely due to the preprocessing steps applied to the network, since I am only considering the giant component.
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Node importance

4.1 Chapter summary

This chapter expands on the work presented in chapter 3 to adapt my methods to the importance of
nodes in such a way that allows for potentially disconnected components present in the network. The
main goals of this chapter are as follows:

1. To extend my spectral edge importance method to instead consider nodes.

2. To improve my measures of spectral importance to allow for disconnected components in a
network.

3. To assess the predictability of a node’s behaviour given its importance.

To achieve these goals, I first of all build on my measure of edge importance to derive an equivalent
measure for the importance of nodes, before demonstrating how making use of further components of
the eigenspectrum in addition to the leading component allows my measure of importance to become
‘community aware’. I then assess the predictability of subsequent node presence from the value of node
importance, along with measures of centrality and other node level quantities. I demonstrate how my
measure of importance is able to outperform other measures in predicting subsequent node presence in
equity transaction networks.

4.2 Introduction

Following my exploration of edge importance in chapter 3, the natural next step is to consider node
importance. From the perspective of financial regulation, being able to identify important nodes is vital
to ensure that these market participants are adequately monitored to minimise the risk they pose to the
overall system. Important nodes can be identified by considering concepts such as ‘centrality’, for which
there are a number of measures that rank nodes according to their position in the network [121, 126].

Markets are often characterised by a wide range of different participant behaviours, manifesting in
transaction networks displaying complex structures with both communities and dominant nodes, and
wide ranges of transaction values and trading frequencies [188, 189]. For a measure of node importance
to provide useful insight to policy makers, it needs to account for these complexities. Furthermore, it
should provide information on how the network would react to changes in the node’s activity. For this

43
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reason, in this study I derive a measure that can be calculated from a static snapshot of a temporal
network, but which considers how a change in a node’s strength would affect the subsequent structure of
the network, which I characterise in terms of the eigenvectors and eigenvalues of the network’s weighted
adjacency matrix as in chapter 3. I show that my measure of importance can be used for networks
with complex community structures and high heterogeneity of nodes’ strengths. I demonstrate that
it provides an indication of importance in financial transaction networks, where a key concern is the
impact an individual would have on the system if they become unable to continue their current level of
participation [190].

To bring me a step closer to understanding real networks and their stability, I also pose the question of
whether important nodes are more or less likely to continue their market participation in a dynamical
setting. I address this through the application of my methods to the same networks analysed in chapter
3, formed from transactions of individual equities traded on the UK capital markets. I consider daily
snapshots of transaction networks and perform a classification exercise using a logistic regression model
to predict which nodes will appear in the next snapshot given the historical behaviour of the network.
This model is a probabilistic model which describes the probability of a node to transact at the next
timestamp, so is contributing to the growing body of research exploring the temporal aspects of financial
networks. My results show that the measure of node importance I propose in this chapter can predict
nodes being present in the next time snapshot better than other importance measures, including two
widely used measures of centrality and the frequency of a node’s previous transactions.

These results indicate that in the context of these equity networks, defining ‘importance’ in terms of how
a change occurring will affect the subsequent network structure whilst accounting for communities and
disconnected components provides useful insights into the role of network structure in the evolution of
these networks. This highlights the importance of additional research in this area to further understand
how network structure relates to stability, particularly in the context of financial networks.

Taking into account examples in the literature reviewed in section 2.1 of the entire network spectrum
and its relevance to network community structure and dynamics, I first provide a measure of importance
for nodes based on the spectrum. Then I look at whether this measure is predictive of nodes being
present in the subsequent snapshot in the context of equity networks, to understand whether I would
expect important nodes in these networks to show lower or higher activity. This in turn will help build
an understanding of the roles that nodes of differing importance play in establishing the stability of
these systems as a whole. A key thing to highlight is the simplicity of my methods - both in their use of
the spectrum of the adjacency matrix itself and in the use of snapshots to capture temporal information.
Moreover, the results I now present are significant and meaningful despite this simplicity, suggesting
that I have uncovered fundamental findings about the behaviour and evolution of financial networks.

4.3 Proposed method

4.3.1 Defining structural node importance

As shown in chapter 3, I can make use of the derivative of a network’s leading eigenvalue with respect
to adjacency matrix components as a measure of edge importance:

le =
∂λ

∂Aij
= 2x0,ix0,j , (4.1)

where e ≡ ij denotes each edge, λ refers to the leading eigenvalue, Aij is the ijth component of the
(weighted) adjacency matrix, and x0,i is the ith component of the eigenvector corresponding to the
leading eigenvalue. This was derived considering small perturbations to the adjacency matrix. Through
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application of the chain rule, measures for structural node importance can be derived based on the
derivative of the eigenvalue of the adjacency matrix with respect to an individual node’s strength, where
a node’s strength Si is the sum of the weights attached to that node1. I do this below for undirected
and directed networks respectively2.

Undirected case

To derive the equivalent to equation 4.1 for node importance, I can again consider perturbations to the
adjacency matrix to find the derivative with respect to node strength, ∂λ

∂Si
. However, in contrast to

chapter 3, my perturbation now consists of adding a fixed amount to each node’s strength Si:

Si → Si + ε. (4.2)

For this to occur, the change to a node’s strength is distributed across its edges. So now, if I apply a
perturbation εV to the adjacency matrix,

Aij → Aij + εVij , (4.3)

where

Vij =

{
Aij
Sk

if i = k or j = k

0 otherwise.
(4.4)

The perturbation approach then proceeds as follows: First, consider a perturbation to the adjacency
matrix A:

A→ A + εV, (4.5)

and the resulting first order changes to the leading eigenvalue λ and the associated eigenvector |λ〉 3:

λ ≈ λ0 + ελ1 (4.6)

|λ〉 ≈ |λ〉0 + ε |λ〉1 . (4.7)

Substituting these into the eigenvalue equation

(A + εV)(|λ〉0 + ε |λ〉1)
= (λ0 + ελ1 + ...)(|λ〉0 + ε |λ〉1 + ...),

(4.8)

and considering terms up to 1st order in ε

A |λ〉0 + εV |λ〉0 + εA |λ〉1
= λ0 |λ〉0 + ελ1 |λ〉0 + ελ0 |λ〉1 .

(4.9)

Then consider each of the terms in εn separately,

ε0 : A |λ〉0 = λ0 |λ〉0 (4.10)

ε1 : V |λ〉0 + A |λ〉1 = λ1 |λ〉0 + λ0 |λ〉1 . (4.11)

Multiplying the equation for ε1 by the left eigenvector 0〈λ| and making use of the Hermitian properties

1In an unweighted network, node strength is equivalent to node degree.
2I consider the undirected case only when applying in section 4.4.
3Note that I have switched to Dirac notation for conciseness for the rest of the derivation.
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of A such that 0〈λ|A = λ0 0〈λ|, results in

〈λ|V|λ〉0 0 = λ1 〈λ|λ〉0 0 . (4.12)

Expanding the indices of this and considering the specific perturbation in equation 4.4,∑
ij

x0,iVijx0,j

=
∑
ij

x0,i
Aij
Sk

x0,jδik +
∑
ij

x0,i
Aij
Sk

x0,jδkj

=
2

Sk

∑
j

x0,kAkjx0,j .

(4.13)

Here x0,i is the ith component of the eigenvector |λ〉 corresponding to the leading eigenvalue of A and I
have evaluated the δ terms and relabelled the indices. From this, I find the derivative of the eigenvalue
with respect to node strength:

∂λ

∂Si
=

∂λ

∂(
∑

j Aij)
=

2

Si

∑
j

x0,iAijx0,j . (4.14)

Directed case

In the case of a directed network A, the perturbations to the matrix either correspond to changes to in
strength or out strength, and I do not need to perturb the matrix symmetrically. Further to this, in
contrast to the above, A is not Hermitian and so I cannot use that xTA = λxT . However, the matrix
product M = AAT is symmetric and Hermitian.

The edge level result for the directed case from chapter 3 is

∂sA

∂Mij
=
xM0,ix

M
0,j

2sA
, (4.15)

where xM0,i refers to the ith component of the eigenvector of M corresponding to the leading eigenvalue
of M, which is also also known as the singular value of A, sA. I can again relate to the strength by
considering a Taylor expansion of the matrix A

Aij = A0
ij + εA1

ij + ε2A2
ij , (4.16)

which means that to 1st order,

Mij =
∑
k

(A0
ik + εA0

ik)(A
0
jk + εA0

jk) (4.17)

= M0
ij + 2εM0

ij , (4.18)

so
∂Mij

∂ε
= 2Mij , (4.19)
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which gives my result when applying the chain rule as above

∂sA

∂Si
=

1

SisA

∑
j

x0,kx0,jMij . (4.20)

To summarise my final results of these derivations, I present equations 4.21 and 4.22 for undirected and
directed networks respectively:

mi =
∂λ

∂Si
≡ 2

Si

∑
j

x0,ix0,j (4.21)

mi =
∂sA

∂Si
≡ 1

SisA

∑
j

x0,ix0,jMij . (4.22)

Here mi denotes the importance of node i. I note here that my measure of node importance is, by
design, inversely proportional to node strength. Although this is in contrast to measures of centrality,
here I am defining importance by considering an individual node experiencing a fixed size change to its
strength, meaning that a more connected node will distribute its change across more edges, having
a smaller effect on each of its neighbours individually. An alternative definition of importance could
consider fixed changes to each edge, effectively producing the inverse of my defined measure. However,
for my application to financial transaction networks, it is important to understand the scenario in which
a participant in the market experiences a decrease in its available inventory and how this impact will
propagate to its neighbours. A well connected node in a network will have the option of spreading this
impact across multiple trading relationships, whereas a poorly connected node will present a larger risk
to its counterparties. For this reason, in this chapter, I define importance from the perspective of fixed
changes to node strength. In both the directed and undirected case, it is also worth noting that the
derivations can be generalised to allow new links to be added/removed, but new nodes cannot be added
or removed.

Extension of node importance method

Although in chapter 3 I considered only perturbations to the leading eigenvalue and its associated
eigenvector, equations 4.21 and 4.22 are relevant for any of the single components of the eigenspectrum.
Later in section 4.4 I demonstrate how different parts of the networks considered in this chapter relate
to different parts of the eigenspectrum and propose that my methods can be made ‘structurally aware’
through the use of multiple components of the eigenspectrum. First, I note that care must be taken in
identifying the relevant eigenvector from the eigenspectrum of the network.

Toy network exploration of network spectrum

Here I briefly explore whether the use of multiple components of network spectra can be used to capture
different structures in networks through the use of a toy network. I consider a barbell network with
two unevenly sized cliques joined by a bridge, shown in figure 4.1, in order to observe how the different
components of the eigenspectra are relevant for the different communities present in this network. Table
4.1 shows the eigenvector values corresponding to the 3 positive eigenvalues of the adjacency matrix.
If I consider the nodes in the largest clique (top right in figure 4.1, nodes 6 to 10), I see that the
largest eigenvector components are seen for the eigenvector corresponding to the leading eigenvalue
(eigenvector 1). Considering nodes 0 to 3 (in the bottom left clique), I see that the largest magnitude
eigenvector components are seen for eigenvector 2. The nodes in the bar (nodes 4 and 5) both show the
largest component for eigenvalue 3. I further support these observations through the use of a k-means
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Node Eigenvector 1 Eigenvector 2 Eigenvector 3
0 0.006 -0.478 -0.159
1 0.006 -0.478 -0.159
2 0.006 -0.478 -0.159
3 0.013 -0.524 0.121
4 0.033 -0.189 0.629
5 0.122 -0.060 0.658
6 0.463 0.002 0.187
7 0.439 0.016 -0.106
8 0.439 0.016 -0.106
9 0.439 0.016 -0.106
10 0.439 0.016 -0.106

Table 4.1: Eigenvector values corresponding to the three positive eigenvalues for the barbell network
displayed in figure 4.1. Nodes 0 to 3 are the nodes within the top left clique, nodes 4 and 5 make up
the bridge and nodes 6 to 10 are the nodes within the bottom right clique.

clustering, applied to the three positive eigenvectors, which resulted in the clustering of the nodes
shown by the different colours in figure 4.1, demonstrating that the different eigenvectors have relevance
for the different communities present in the network.

Figure 4.1: Barbell network, nodes coloured by result of k-means run on the eigenvectors corresponding
to the positive eigenvalues of the adjacency matrix. Nodes are labelled by the value of the measure mb.

I have shown through this example that the n’th largest community is found to correspond to the n’th
largest eigenvalue and its eigenvector and that the magnitude of the components of this eigenvector for
the given community will be larger than the components for the other eigenvectors. So I expect that by
taking the largest magnitude eigenvector components corresponding to the nodes in the community as
the ‘correct’ eigenvector components to represent the nodes in that community, my measure will be
‘community aware’. To assess this, I propose extending my structural importance metric to make use of
the spectrum in one of four ways:
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1. Only make use of the leading eigenvalue and its associated eigenvector in equation 4.21. This
measure is expected to perform well when there are no communities present. I will refer to this as
ma.

2. Identify, for each node, the eigenvector with the largest magnitude component for that node and
the eigenvalue associated with this and use these to compute equation 4.21 for each node. I will
refer to this as mb.

3. To understand whether node importance has meaningful contributions from all parts of the
spectrum, consider importance as the sum of equation 4.21 for all eigencomponents. I will refer
to this as mc.

4. Consider as for mc, but only make use of the part of the eigenspectrum with positive eigenvalues.
I will refer to this as md.

The nodes in figure 4.1 are also labelled with the individual mb node importances. This shows that the
nodes making up the bridge, which themselves have very few connections but connect the communities,
are the most important, and the nodes in the larger clique are the least important. This suggests that
the measure mb is performing as expected, as a fixed change to a node’s strength when the node is
present in the bridge would have a larger impact on the rest of the network than for a node in a clique.

It is worth noting that mb is not suitable for use on random networks, as in this case, no single entry of
the eigenvector would be relevant for each node, so there is no guarantee that the eigenvector with the
largest entry for each node is the correct part of the spectrum for that node. This restricts my method
to the application of networks which are known to have a non-random structure.

4.3.2 Node importance and network evolution

It is intuitive to explore how importance in a static sense relates to future activity in a network, since
an importance measure is only useful in practice if it is able to provide actionable information. This
complements several studies which have used node or edge importance to explain structural changes in
real network systems [125, 191, 192], and in particular financial systems [173, 174, 1, 168].

When considering the use of my measures of importance in understanding real networks and their
stability, I can consider whether important nodes are more or less likely to be present in the subsequent
snapshot given their current importance. To do this, I make use of logistic regression to predict
subsequent node presence from historical feature vectors. The logistic regression I consider can be
interpreted as a probabilistic model that gives the probability that a node subsequently transacts given
historical properties:

P (Y = 1|X = x) =
exp (α+ βTx)

1 + exp (α+ βTx)
, (4.23)

where Y is my target variable taking a binary value per node, X is a vector of feature values, and
α and β are the regression model coefficients. The feature vectors consist of my node importance
measures, along with eigenvector and pagerank centralities as benchmark measures, and other node
level attributes, degree and community. These features are calculated as averages over all the previous
time periods in the data available prior to the snapshot in question, to answer the question ‘given what
I know about the network up to today, what do I know about tomorrow?’. I also include a further
feature of the number of times that a node has been present in the network prior to the snapshot as a
benchmark to compare my measure to. For my first experiment the target variable for the classifier is
a binary variable indicating whether a node that is present in the current snapshot is also present in
the next snapshot. Since I observe fairly high levels of class imbalance across the datasets considered
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4, I apply a random over-sampling strategy to correct this for all three datasets. I make use of 5-fold
cross validation 5 to select the best classifier and its associated parameter values6. This not only allows
me to assess whether my measures of node importance are predictive of subsequent node activity, but
it also provides me with the means of comparing the different entries of the feature vector through
their feature importances. To do this, I make use of permutation importance, which calculates the
increase in the model’s prediction error after permuting the feature [193]. Since this measure is only
able to capture the importance of features in a global sense without accounting for the role of a feature
in individual predictions, I also make use of Shapley values, which use concepts from co-operative
game theory to explain the additional importance of each variable for each individual observation [194].
More specifically, I make use of the SHapley Additive exPlanations (SHAP) approach, which quantifies
the contribution each feature in a Machine Learning model makes to the prediction of individual
observations [195]. When using SHAP to explain the probability of a linear logistic regression model, I
note that strong interaction effects would affect the performance since the model is not additive in the
probability space. To account for this, I use SHAP to explain the log-odds of the model, as there is
a linear relationship between the model’s inputs and this output [195]7. When evaluating the overall
performance of the classifiers, I make use of precision, recall and the ROC AUC.

I benchmark the results against a null model consisting of the average over 100 trials in which edges
are randomly present with probability equal to the fraction of observed edges. For this benchmark, the
confidence intervals were determined empirically by discarding the top and bottom 5% of the precision
and recall scores, and a ‘coin toss’ approach was taken to calculate the confidence intervals for the
model precision and recall thresholds such that the probability of observed outcome is higher than
some threshold α. The method for this can be found in the appendix. In practice, the Central Limit
Theorem can be used when there is a sufficiently large number of samples, since the sum of random
variables will closely follow a normal distribution, allowing me to make use of the confidence intervals
of a normal distribution. When comparing to the null model results in this chapter, I also present
empirically calculated confidence intervals and average precision and recall for my null model, which
randomly predicts 1 or 0 in proportion to the dataset prior. The confidence intervals for the ROC AUC
were calculated using a bootstrap approach, with 1000 iterations of random sampling with replacement
from the training dataset.

4.4 Applications

4.4.1 Application to individual equity stocks

The bulk of the results presented in this chapter focus on the identification of important nodes in
transaction networks of the same three different equity stocks traded on the UK capital markets
considered in chapter 3 and explored in section 2.2.4. Later in this chapter I also include an application
of my methods to an open source dataset of inter-country trades in financial services, created by the
OECD and WTO [112].

4Equity-1 shows 1499 of 2063 present in the subsequent snapshot, Equity-2 shows 724 of 880 present, and Equity-3
shows 1803 of 2237 present

5For this, I split my data into training and test sets, with a 40-40-20 train, validation, test split. I split the data whilst
keeping the ordering of time, so that the model is not trained on data from the future.

6Both logistic regression and random forest classifiers were considered to allow for potentially non-linear relationships.
In practice, the logistic regression model consistently performed the best, so the results presented in this chapter are for
logistic regression classifiers.

7The results of using SHAP can be found in the appendix in figure 19
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Exploration of network community structure

First, to build my understanding of how the equity transaction networks evolve, I explore how the
community structure varies across time. I also explore how the distributions of various node level
measures differ for nodes that do appear in subsequent snapshots to nodes that don’t. The former
is considered since I am proposing a measure of node importance that is able to capture community
structure, so I first need to verify that the networks I am considering consistently show a community
structure. The latter provides me with an indication of which node level measures I might expect to
provide information on network evolution, and also to help indicate whether different classes of nodes
are more, or less likely to subsequently transact.

Figure 4.2 examines how the networks evolve across time, by considering the variation in the modularity
(the fraction of the edges that fall within the given groups minus the expected fraction if edges were
distributed at random [196]). Aggregating on a half-monthly basis to reduce noise corresponding to days
of very low trading activity at weekends and public holidays, I see that all three networks have a largely
static modularity, with all showing similar average modularity of around 0.5-0.7. This is suggestive
of a meaningful community structure that does not vary significantly across the observation period.
The network with the lowest modularity is Equity-3, which is in agreement with what is seen when
visually exploring these networks in figures 4.3a-4.3c, as this network consists of one large connected
component, with the smaller disconnected components observed for the other two networks not present
in this dataset.

(a) Equity-1 (b) Equity-2 (c) Equity-3

Figure 4.2: Modularity across time for the three different equities networks, for the full observation
period aggregated on a half monthly basis.

I also consider how the different components of the eigenspectra relate to the communities of the
networks. I do this by exploring how nodes rank by eigenvalue if I select for each node the eigenvalue
with the largest magnitude eigenvector component for that node. In figures 4.3a, 4.3b and 4.3c, the
nodes are coloured and numbered by the rank of the eigenvalue that is selected (rank 1 corresponds to
the largest eigenvalue). These show in all networks that nodes within small communities often, but
not exclusively, select the same eigenvalue, and that nodes playing similar roles within the network
show similar ranks for their eigenvalue. Where nodes in the same connected component select different
eigenvalues, hub nodes select higher ranked eigenvalues. This suggests that if I make use of my measure
of importance in equation 4.21 whilst selecting the most relevant eigencomponent, this would assign a
larger importance to these nodes. However, this will be partially counteracted by the inverse strength
factor in my structural importance measure, which makes sense since a node in a small but well
connected community has few direct neighbours to spread the impact of a change in strength between
but will have a high reachability to other nodes overall.
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(a) Equity-1

(b) Equity-2

(c) Equity-3

Figure 4.3: Initial snapshot networks for the three equities datasets, colours and numbers representing
the ranking of the eigenvalue that corresponds to the eigenvector with the largest magnitude for each
node.
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(a) Equity-1

(b) Equity-2

(c) Equity-3

Figure 4.4: Distributions of the different node importance measures across nodes which are subsequently
present in comparison to those that are subsequently absent.

Figure 4.4 shows the distributions of the values of ma−d computed according to the 4 different eigenvalue
inclusion schemes along with the two benchmark measures of node importance, pagerank and eigenvector
centrality and also degree, community label and the number of times a node has been present in the
historical data (presence count). I use violin plots to present the distributions, which show the kernel
density estimated distribution plotted on top of a boxplot showing the mean and interquartile range.
The plots are split by whether or not nodes are subsequently present in the network. I see here that
mb, which selects the relevant eigenvalue component for each node, visually shows the largest difference
in the distribution mean for present nodes in comparison with absent nodes across the three datasets.
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Measure Equity-1 Equity-2 Equity-3
ma 3.23× 10−11 8.17× 10−2 5.82× 10−63

mb 1.34× 10−4 3.96× 10−13 2.42× 10−135

mc 1.18× 10−1 8.47× 10−1 3.62× 10−1

md 5.09× 10−1 8.23× 10−1 4.62× 10−1

Community 1.76× 10−21 1.03× 10−22 2.57× 10−2

Degree 9.53× 10−49 2.36× 10−13 4.62× 10−10

Eig. cent. 4.73× 10−37 42.99× 10−8 9.89× 10−12

Pagerank 3.51× 10−58 1.56× 10−14 5.25× 10−5

Pres. count 3.72× 10−53 1.22× 10−2 9.78× 10−52

Table 4.2: p-values for a two-sided t-test for the differences in the mean values for nodes which are present
and nodes which are absent for each of the different node level measures, for the equity transaction
datasets.

I also observe that nodes that are subsequently present are observed with smaller values of mb, in
contrast to eigenvector centrality and pagerank, which both show changing nodes having slightly larger
values. Table 4.2 shows the p-values for a two-sided t-test for the differences in the mean values for
presence vs. absence of nodes for each of the different measures. I see that ma mc, and md do not
show p < 0.001 8 for all datasets. This non-significant difference in the mean values for changing vs.
unchanging nodes suggests that I would not expect these measures to be predictive of subsequent node
presence. On the other hand, mb, community, degree, eigenvector centrality, pagerank and presence
count all show significant differences in the mean values for all datasets, making these measures better
candidates for prediction of subsequent node presence.

In order to assess the similarities between the different measures, and also to ensure that any predictive
model is not impacted by large correlations between the features, I consider the Pearson correlations
between the rankings of nodes according to the different measures, shown in figure 4.5. In general across
all three datasets, I see that the measures ma, mb, community and presence count show no significant
correlations with any other measures. For Equity-1 and Equity-2, mc and md are moderately correlated
with each other, which is expected since the two measures differ only in their use of the part of the
spectra with negative eigenvalues for which the eigenvector components will be small. For Equity-1,
high correlations were observed between degree and both pagerank and eigenvector centrality, so degree
was not included in the feature vector for the classifier for this dataset. For the other two datasets,
high correlations were observed between pagerank, degree, and eigenvector centrality, so both pagerank
and degree were not included in the feature vector for the classifiers for these datasets. These large
correlations are indicative of the dominance of hub nodes in these networks.

8Since I am comparing 9 metrics simultaneously, I have applied a Bonferroni correction to the p-value threshold.
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(a) Equity-1 (b) Equity-2

(c) Equity-3

Figure 4.5: Pearson correlations between the different node level features, for the different equity
transaction datasets, with both colours and labels representing to the correlation value.
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Prediction experiments

I now present the results of the prediction experiments described in section 4.3.2. First, considering the
prediction of subsequent node presence from the node level features, the precision and recall of the
classifiers when applied to test sets are shown in table 4.3, alongside the performance of the null model.
For all three datasets, the prediction showed reasonable precision and recall, which in all cases showed
no overlap in the 95% confidence intervals with the null model.

Measure Equity-1 Equity-2 Equity-3
Precision 0.83 0.79 0.73

CI (0.78,0.87) (0.72,0.85) (0.70,0.76)
P (N.M.) 0.54 0.60 0.57

CI (0.47,0.59) (0.52,0.69) (0.53,0.62)
Recall 0.66 0.81 0.72
CI (0.61,0.71) (0.75,0.88) (0.69,0.75)

R (N.M.) 0.49 0.51 0.50
CI (0.29,0.60) (0.21, 0.75) (0.28,0.69)

AUC 0.66 0.61 0.76
CI (0.64, 0.67) (0.61, 0.63) (0.75, 0.76)

AUC (N.M.) 0.5 0.5 0.5
CI (0.47, 0.54) (0.44, 0.55) (0.47, 0.54)

Table 4.3: Precision, recall and ROC AUC for the classification model for the 3 different datasets,
presented alongside the same average precision and recall for the null model (N.M.) trials. The brackets
denote the 95% confidence intervals (CI).

Figure 4.6 shows the permutation importance for the different features. I observe that the measure mb

(a) Equity-1 (b) Equity-2 (c) Equity-1

Figure 4.6: Logistic regression permutation importance for the different node level features. The error
bars represent the standard deviation of the importances across the different trees that make up the
model.

is by far the most important feature in the prediction across all three datasets considered. Although
for Equity-3, ma and eigenvector centrality are moderately important, as would be expected in a
network with a single connected component, along with the presence count, none of the other node
level measures are consistently important across all 3 datasets. I also make similar observations in
the appendix using SHAP values to assess feature importance in figure 19. In figure 4.7, which shows
the coefficients of the model, I observe that mb, community and presence count are the only features
that show a consistent sign and approximate size of the parameter, and also p-values of p < 0.001. I
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Figure 4.7: Classification model coefficients, with 95% confidence intervals indicated by the error bars.
If a p-value is less than 0.001, it is coloured green, otherwise red.

also note that mb has the largest magnitude coefficient9 for both Equity-1 and Equity-2, which is in
agreement with the feature importances in figure 4.6. If the parameter mb is used as the only feature in
the model, I observe that the coefficient is consistently negative and significant, which indicates that
nodes that are more important are less likely to subsequently transact.

When considering the exercise of predicting whether or not nodes are subsequently present from the
different measures, in order to validate that the measure mb is the most predictive, I also re-run the
model with the measure mb removed. The results for this are found in table 4.4.

Measure Equity-1 Equity-2 Equity-3
Precision 0.77 0.76 0.69

CI (0.73,0.83) (0.70, 0.83) (0.66,0.73)
P (N.M.) 0.67 0.70 0.57

CI (0.62,0.71) (0.63, 0.83) (0.53,0.59)
Recall 0.40 0.5 0.69
CI (0.36,0.44) (0.43, 0.57) (0.66,0.72)

R (N.M.) 0.52 0.51 0.49
CI (0.27, 0.75) (0.31, 0.74) (0.38,0.64)

AUC 0.53 0.60 0.71
CI (0.50, 0.57) (0.53, 0.63) (0.71, 0.72)

AUC (N.M.) 0.50 0.51 0.50
CI (0.47, 0.54) (0.45, 0.57) (0.47, 0.52)

Table 4.4: Precision and recall for the logistic regression for the 3 different datasets, presented alongside
the same average precision and recall for the null model (N.M.) trials, when considering the prediction
without the feature mb. The brackets denote the 95% confidence intervals (CI).

I observe that although there is a drop in all precision scores, this only brings the model performance
within the confidence interval range of the null model for the Equity-2 dataset. The recall and ROC
AUC also drop for all datasets, falling for both the Equity-1 and Equity-2 datasets to be within the
confidence interval range of the null model. As expected, the model still retains some performance since
some of the information captured by the measure mb is also captured by the other features, as shown
by the correlations between the features. In this case, for Equity-1 and Equity-2, degree was found to
be the most important of the remaining features, and for Equity-3, ma was the most important. The

9The features are standardised prior to use in the model, which allows for size comparison of the coefficients.
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drop in model performance was least prominent for Equity-3, which is as expected due to mb providing
additional information in networks with disconnected components, which is not the case for Equity-3.

For nodes which show a persistence in transacting between snapshots, I also considered whether the
sign of the change to nodes’ strength is predictable from the different node level features, and the
results of this are shown in table 4.5. For this, I observe precision and ROC AUC scores for all three
datasets which are not within the confidence intervals of the null model. However, the recall is never
outside of the confidence intervals of the null model, so I cannot conclude that the sign of a change is
predictable from my chosen node level features. In all cases, the ‘presence count’ feature was the most
important feature in predicting sign change.

Measure Equity-1 Equity-2 Equity-3
Precision 0.80 0.84 0.93

CI (0.75,0.84) (0.77,0.90) (0.91,0.95)
P (N.M.) 0.68 0.69 0.75

CI (0.62,0.73) (0.60,0.76) (0.71,0.80)
Recall 0.66 0.68 0.75
CI (0.61,0.71) (0.61,0.76) (0.71,0.78)

R (N.M.) 0.49 0.51 0.49
CI (0.31,0.67) (0.38, 0.65) (0.27,0.71)

AUC 0.76 0.74 0.85
CI (0.74, 0.76) (0.73, 0.76) (0.84, 0.85)

AUC (N.M.) 0.50 0.49 0.50
CI (0.45, 0.54) (0.41, 0.56) (0.47, 0.54)

Table 4.5: Precision and recall for the logistic regression predicting the sign of the change in strength
for the 3 different datasets, presented alongside the same average precision and recall for the null model
(N.M.) trials, when considering the predicting the sign of the subsequent change in strength to a node.
The brackets denote the 95% confidence intervals (CI).

Finally, I further consider whether the value of the change in strength is predictable from the node level
features, by considering a regression of the features onto the value of the relative change in strength.
The results for this are found in table 4.6.

Measure Equity-1 Equity-2 Equity-3
R2 score 0.10 0.11 0.10

CI (0.08,0.16) (0.08,0.19) (0.08,0.15)
R2 (N.M.) 0.12 0.11 0.11

CI (0.10,0.13) (0.10,0.13) (0.10,0.12)

Table 4.6: Coefficient of determination R2 for a linear regression with endogenous value of the relative
change in node strength, exogenous variables the node level features as used in the classification exercise.
This is compared to a null model in which the relative change in node strength is randomly shuffled in
100 trials, and the average and 95% confidence intervals (CI) reported.

For all three datasets, the confidence intervals for the R2 score of the regression overlap with those for
a null model in which node strength is randomly shuffled, and that the R2 values are higher for the null
model. This means that I can conclude that the change in strength is not predictable in these networks.
When looking at the coefficients of the regression model in figure 4.8, only eigenvector centrality and
community show consistent sign of the coefficient across all three datasets, only presence count shows a
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high significance for the coefficients across the three datasets, and in general many of the coefficient
values are close to 0.

Figure 4.8: Regression model coefficients, with 95% confidence intervals indicated by the error bars. If
a p-value is less than 0.001, it is coloured green, otherwise red.

4.4.2 Application to open source data: BaTIS dataset

Since the equity transaction datasets explored above are not publicly available, here I present the results
of applying my methods to the Financial Services segment of the BaTIS dataset. In contrast to the
equity datasets, the BaTIS dataset has a natural persistence of activity (generally, countries that trade
with each other continue to do so year on year) so instead of looking to predict whether or not a node
will be present in the subsequent snapshot, I instead look to predict whether or not a node will show a
change in strength in the subsequent snapshot10. Figure 4.9 shows the distributions of the different
node level metrics for nodes that do subsequently change, and those that don’t 11. I also observe how

Figure 4.9: Distributions of the different node importance measures across edges which do subsequently
change in comparison to those that don’t, for the BaTIS trade dataset.

selection of the maximum eigencomponent for each node manifests itself in this dataset in figure 4.10,
which shows the initial snapshot of the network with nodes coloured by the rank of the most relevant
eigencomponent for that node.

10Specifically, I define a significant change to a node’s strength as a change of more than 5% between snapshots.
11Note that a log transform has been applied to mb, mc and md due to these features spanning a few orders of magnitude
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Figure 4.10: Network showing the initial snapshot for the BaTIS dataset, colours and numbers
representing the ranking of the eigenvalue that localises to a given node.

In figure 4.11 I present the modularity across time for this dataset, and I see that in comparison to the
equity transaction datasets, the BaTIS dataset shows a much lower average modularity, and unlike the
equity datasets which showed a stable modularity across time, I see a decreasing trend for this dataset.

Figure 4.11: Modularity across time for the BaTIS dataset, for the full observation period.

This is in agreement with what I see in figure 4.10, in which I observe that the network has just one
community, with a small number of peripheral nodes. These peripheral nodes tend to show lower
eigenvalue rankings in comparison to the more densely connected core. Looking at figure 4.9, I see
that the measures ma, mb, eigenvector centrality and presence count show clear differences in the
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Measure BaTIS dataset
ma 2.62× 10−47

mb 6.34× 10−6

mc 5.83× 10−2

md 1.71× 10−3

Degree 2.19× 10−1

Eig. cent. 3.51× 10−7

Pagerank 2.79× 10−4

Pres. count 1.46× 10−4

Table 4.7: p-values for a two-sided t-test for the differences in the mean values for nodes which change
and nodes which don’t, for each of the different node level measures, for the BaTIS dataset

distributions for changing vs. unchanging nodes. The p-values for a two-sided t-test for the differences
in the mean values for change vs. no change for each of the different measures are shown in table 4.7.
Here I see that ma shows the most significant difference in the means, but mc and degree have p-values
>0.001, suggesting that any difference I can visually observe for these variables is not unlikely to have
occurred by chance.

Now, prior to considering the role of node importance in change predictability for the BaTIS dataset, I
first of all explore the correlations between the different measures used in the predictor, shown in figure
4.12.

Figure 4.12: Pearson correlations between the different node level features for the BaTIS dataset, with
both colours and labels representing to the correlation value.
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Here, I see large correlations between degree, and the two centrality measures pagerank and eigenvector
centrality, suggesting that these measures are only capturing the node degree as an indicator for
importance. The measures ma, mb, mc and md show no significant correlations with the other measures,
although there is a reasonable negative correlation between mb and degree, eigenvector centrality and
pagerank, which is as expected from my definition of structural importance, particularly in the case
when there is only one community in the network.

Prediction experiments

As before, I now present the results of the prediction experiments described in section 4.3.2 for the
BaTIS dataset. For the prediction of whether or not a node changes strength given the node level
features, the classifier shows good performance in table 4.8 on the test set, with a precision of 0.70,
recall of 0.65 and a ROC AUC of 0.71. I observe that although the precision and ROC AUC are better

Measure BaTIS dataset
Precision 0.70 (0.63,0.76)

Precision (null model) 0.52 (0.45,0.59)
Recall 0.65 (0.59,0.72)

Recall (null model) 0.52 (0.36,0.66)
ROC AUC 0.71 (0.69, 0.71)

AUC (null model) 0.50 (0.46, 0.54)

Table 4.8: Precision and recall for the logistic regression for the BaTIS dataset, presented alongside the
average precision and recall for the hull model. The brackets denote the 95% confidence intervals.

than the null model, the recall confidence intervals overlap with those of the dummy model so I cannot
conclude that subsequent change to node strength is predictable from the node level features used for
this dataset.

Figure 4.13: Logistic regression permutation importance for the different importance measures, for the
BaTIS dataset. The error bars represent the standard deviation of the importances across the different
trees that make up the model.
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Measure BaTIS dataset
Precision 0.80 (0.72,0.89)

Precision (null model) 0.66 (0.58,0.74)
Recall 0.65 (0.57,0.74)

Recall (null model) 0.51 (0.39,0.64)
AUC 0.69 (0.65, 0.73)

AUC (null model) 0.50 (0.47, 0.52)

Table 4.9: Precision and recall for the logistic regression for the BaTIS dataset, presented alongside the
same average precision and recall for the Null model trials, when considering predicting a change in
sign for node strength. The brackets denote the 95% confidence intervals.

Considering the feature importances in figure 4.13, in contrast to the equities transaction networks, I
now see that the feature ma shows the largest importance, followed by mb. This is as expected given
the connected nature of the network, meaning that the measure ma is not impacted by disconnected
components, as the leading eigenvalue will be relevant for all nodes. I see similar results when looking
at the SHAP values in figure 20 in the appendix. However, here I observe the most important feature to
be mb closely followed by ma. When looking at the coefficients in figure 4.14, only eigenvector centrality
does not show a significant coefficient, and only md and presence count show positive coefficients
suggesting that higher values of these features would be indicative of nodes being more likely to change,
whereas the other coefficients would show larger values for nodes that are less likely to subsequently
change.

Figure 4.14: Classification model coefficients, with 95% confidence intervals indicated by the error bars.
If a p-value is less than 0.05, it is coloured green, otherwise red.

I now consider the predictability of a change in sign of the strength, as considered for the equities
networks. For this dataset, The results for this are shown in table 4.9. I see similar results to the
equities data, with good performance of the model in terms of precision and ROC AUC. However,
poorer performance is observed for the recall showing overlap with the confidence intervals of the null
model, meaning that again I cannot conclude that sign change is predictable from my node level features.
For the case of sign prediction, the presence count was found to be the most important feature, closely
followed by ma.

Finally, I consider the predictability of the value of the change in strength through the use of a linear
regression model. The results for this are shown in table 4.10. In contrast to the equities datasets,
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Measure BaTIS dataset
R2 score 0.69

CI (0.66,0.72)
R2 (N.M.) 0.64

CI (0.64,0.66)

Table 4.10: Coefficient of determination R2 for a linear regression with endogenous value of the relative
change in node strength, exogenous variables the node level features as used in the classification exercise,
for the BaTIS dataset. This is compared to a null model in which the relative change in node strength
is randomly shuffled in 100 trials, and the average and 95% confidence intervals (CI) reported.

the coefficient of determination (R2) suggests that the model has a reasonable prediction capability,
and although the confidence intervals for the dummy model are close, there is no overlap between
these suggesting that this result is significant, and I can conclude that the size of a change to a node’s
strength is predictable from my node level features for this dataset. The model coefficients for each of
the features are shown in figure 4.15. Here I see that the significant coefficients are ma, mb and presence
count, and of these only mb has a positive coefficient. This suggests that nodes with higher values of
mb are more likely to show larger relative changes. Negative coefficients are seen for ma and presence
count suggesting that nodes with lower values of these are more likely to show larger relative changes.

Figure 4.15: Regression model coefficients, with 95% confidence intervals indicated by the error bars. If
a p-value is less than 0.05, it is coloured green, otherwise red.

4.5 Discussion

Through consideration of the full network spectrum, I present different ways of considering node
importance in networks, with the aim of accounting for both community structure and hub nodes, which
are key characteristics of many systems including financial networks. Motivated by several examples in
the literature, to achieve this I demonstrate and make use of the most relevant eigenspectra components
in order to capture ‘community aware’ node importance. The result of this is a measure which when
applied to financial transaction networks, tells me how much a change to an individual node’s strength,
which in the context of equity transaction networks is their available funds or product, will impact
the rest of the network. This sets my measure apart from centrality measures, as is it is defined in a
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temporal sense considering how the network will respond to changes.

By incorporating more than just the leading eigenpair, my measure is able to capture node importance
in the context of complex structures, which makes my methods particularly suited for studying equity
transaction networks. For these networks, which all show complex structures with both disconnected
communities and ‘hub’ nodes, I compare my measures of node importance to two commonly used
centrality measures and also to degree, community label and the number of times a node has appeared
historically. This allows me to demonstrate that my measure is not simply acting as a proxy for these
key node properties.

When exploring whether static node importance is able to predict the presence of nodes in subsequent
snapshots given features derived from the network history, I see that the measure mb, which makes
use of the eigenvector with the largest magnitude for each node, is the most important in determining
the prediction for all three equities datasets. Not only do my results demonstrate that mb is a useful
indicator of node importance in a static sense for networks with complex structures, they also provide
evidence of the nodes in these equity networks having an evolution which depends on their importance
when defined in this way. The latter of these observations is a useful insight for policy makers, as
it motivates taking into account the full structure of these networks in determining which nodes to
monitor more closely for their effects on the system. It also provides insights into the evolutionary
properties of these networks which is interesting from a macro-economical perspective - I observe that
more structurally important nodes are less likely to subsequently transact, and given that these nodes
tend to show positions in the network in which an impact to their strength would be spread across few
counterparties, the observation of these nodes showing less frequent changes relates to the overarching
stability of these networks.

Interestingly, if I compare my results on the equity datasets to application to a denser network of global
trades in financial services (BaTIS), I observe poorer performance in the prediction of the presence or
absence of changes. Also, I also no longer see mb as the dominating feature in predicting the sign of
any change. These results suggest that structural importance could be a unique property of sparse
transaction networks. However, the value of a change to a node’s strength for this dataset is predictable,
with several node level features including mb being significant predictors.

These observations contribute to the growing body of studies that provide insights into the evolution
and stability of financial networks, for example the observations of Bardoscia et. al. [167] that market
practices that contribute to cyclical patterns tend to amplify distress. Further relevant to my work
is Haldane et. al. [197], in which it is noted that up until the 2008 crisis, the global financial system
appeared to be self-regulating and self-repairing despite experiencing several exogenous shocks. However,
in the crisis, enduring stress in the money markets was observed due to the interdependence of banks,
who rationally sought to protect themselves from infection from other banks by hoarding liquidity. The
findings I present in this chapter provide a novel insight into the evolutionary behaviour of transaction
networks for the capital markets, which I hope will motivate further research into the links between
structural importance, network evolution and how these relate to market stability constraints.



Chapter 5

A Hawkes model for bursty transaction
networks

5.1 Chapter summary

This chapter focuses on proposing generative models for the transaction times of high frequency traded
equities instruments that are able to reproduce key properties of equity transaction datasets.

To summarise the main goals of this chapter:

1. To assess the key cross sectional and temporal properties of equity transactions that a model
should reproduce.

2. To propose models for the generation of transaction sequences.

3. To demonstrate the capability of these models in reproducing the observed cross sectional and
temporal properties of equity transaction datasets.

To achieve these goals, I first of all present an exploration of the key properties of transaction reports
for five randomly selected FTSE 100 equities. I then present several formulations of Hawkes processes
as potential models for the generation of the transaction times of these datasets, before presenting a
statistical demonstration of the reproducibility of key cross sectional and temporal properties of these
datasets.

The main results of this chapter are as follows:

1. Models which produce transaction sequences specific for each pair of counterparties – which I will
refer to as ‘edge level’ throughout this chapter – show a stronger performance than those where
a single Hawkes process is used to generate events independently of the pair of counterparties
involved.

2. Persistent relationships between counterparties has influence on key cross-sectional and temporal
properties of transaction systems.

3. Multidimensional Hawkes processes, whilst modelling the temporal dimension, are inherently able
to reproduce cross sectional properties for the transaction systems considered.

4. Strong performance is observed when applying a model which captures mutual excitation between
buy and sell sequences to trades executed via a single hub.

66
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5.2 Introduction

The generation of synthetic transaction level data is of great importance as it allows financial institutions
and regulators to find solutions for technical problems through the sharing of data. From a conduct
regulation perspective, stock markets require constant monitoring, to avoid the harms of market
manipulation, market abuse, and money laundering. Regulators often have access to highly detailed
transaction level data for trades of regulated financial instruments. However, the usage and sharing of
this data is highly restricted due to its sensitive contents. This means that the generation of synthetic
transaction level data with realistic properties is of great importance as these could be shared as a
surrogate for real data, allowing for instance to outsource the development and training of advanced
machine learning models. Regulators have already begun to seek solutions for this, for example through
running hackathons and techsprints to collaborate across regulated firms, start-ups, academia, and
professional services to develop high quality, synthetic financial datasets [198]. Synthetic financial data
generation has also been the focus of financial services firms; a detailed discussion can be found in
Assefa et. al. [32].

In this chapter, I propose generative models for transaction times of highly frequently traded equity
instruments. In particular, I do not just consider transaction sequences in a univariate sense for a single
dimensional transaction sequence, but also explore the inter-relations between market participants.
To this end, I consider the system as a dynamic network. More specifically, I model the systems
using multidimensional Hawkes processes, where each pair of counterparties, or each edge using the
terminology from network science, is a singe dimension of the Hawkes process. I can then make use of
either independent univariate Hawkes processes modelling each dimension independently, allowing me
to evaluate the effects of self-excitation at the level of independent transaction sequences for individual
edges, or multivariate Hawkes processes, allowing me to evaluate mutual excitation between the edge
transaction sequences.

I make observations of both the burstiness of transaction sequences to evaluate the temporal dimension
of transaction sequences, as well as several cross-sectional, network-based properties of the systems
considered and look for models capable of reproducing these. Properties such as the degree distribution
have been a core focus of research in financial networks [199, 200, 55] which often display fat tailed
distributions due to the large range of different market participant types. Higher order properties,
capturing the relationships between nodes, have also received attention, such as reciprocity [200, 201]
and assortativity [202, 203], as well as the rich club coefficient [204, 205] which measures the extent to
which well connected nodes connect to each other. I make observations of all of these in datasets of
transaction reports for five FTSE 100 stocks (a general exploration of these datasets is found in the
appendix section .1.3). I make my observations for three different subsets of these systems, exploring
their properties at the level of all the visible trades for a given instrument, trades through a single
trading venue, and trades executed off exchange1, to help build an understanding of how different
trading mechanisms may be driving the properties I observe. I then make observations of the same set
of properties in data generated by the generative models I propose, which allows me to assess their
capability to reproduce the behaviours of these systems that are driven by the relationships between
market participants.

5.3 Properties of real transaction systems

When evaluating the performance of a generative model, a set of target properties is needed that
the model should be able to reproduce. Here I briefly explore the key temporal and cross sectional,

1referred to as ‘full’, ‘single venue’ and ‘off exchange’ throughout this chapter
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Data All Single venue Off venue Single CCP
A 0.35 0.24 0.25 0.27
B 0.48 0.32 0.23 0.39
C 0.37 0.22 0.27 0.28
D 0.30 0.20 0.14 0.20
E 0.46 0.33 0.18 0.35

Table 5.1: Burstiness of the 5 equities considered in this chapter, considering the entire dataset, only
trades on the venue with the most trading activity, only off venue trades and only trades through the
main clearing house.

network-based properties of the five transaction datasets considered in this chapter. In appendix section
.1.4 I also present additional results for a further ten instruments to evidence the robustness of my
results.

First I focus on reproducing burstiness as a key temporal property of transaction sequences. Burstiness
can be directly derived from the sequence of inter-transaction times, by comparing to the statistical
properties of the inter-transaction times for a Poissonian sequence. Starting from the coefficient of
variation of the inter-contact times (στµτ ), which equals 1 for a Poissonian sequence, the burstiness can
be defined as

B =

στ
µτ
− 1

στ
µτ

+ 1
=
στ − µτ
στ + µτ

, (5.1)

where στ is the standard deviation of the inter-contact times and µτ is the mean. B = 1 indicates a
very bursty sequence, B = 0 a Poissonian sequence and B = −1 an entirely periodic sequence [57].

For all 5 instruments considered in this chapter, for which I consider all transactions in a day, in table 5.1
I present the burstiness of the transaction sequences. Here, the burstiness is calculated for all trades for
each instrument, along with trades executed only through the largest trading venue, and those executed
off exchange. I refer to these filtered datasets as data subsets throughout the rest of this chapter.
Similar levels of burstiness are observed across all datasets, with instrument D consistently showing the
lowest burstiness, and of all the subsets, trades through a single CCP showing the largest burstinesses.
Figure 5.1 shows the network level burstiness for instrument A for illustration, computed across rolling
windows containing 200 transactions, with the window size chosen as an optimal size in containing
enough data points for each window for all datasets. I also present the same plots for instruments

Figure 5.1: Network level burstiness across rolling windows of length 200 transactions, for instrument A
for illustration.



5.3. Properties of real transaction systems 69

B-E in the appendix in figure 23, demonstrating that all instruments have a similar burstiness for
the full transaction set and in general the off venue subset shows the lowest burstiness, and in some
cases shows a visible dip in the burstiness around midday. Applying an Augmented Dickey-Fuller
test for stationarity [206] to the burstiness calculated in a rolling window of 200 transactions, the null
hypothesis of a unit root present (which would indicate non-stationarity) is rejected at 5% significance
for all except one of the transaction sequences.

(a) Burstiness (b) Density

Figure 5.2: Rolling burstiness and density, averaged across four different days for one of the datasets
considered. The dashed lines represent 3 standard deviations from the mean of the time series. The
burstiness is computed with a window of 200 transactions and the density over a 10 minute time
window.

In addition to the single day explorations of these datasets, I also look to see if there are any consistent
patterns across multiple days in the burstiness, to understand whether the burstiness observed is affected
by regular events e.g. different markets opening. Figure 5.2 shows the rolling burstiness in comparison
to the rolling density for one of the datasets, averaged over four different trading days. Here I observe
that, although there are a few significant peaks in the burstiness occurring around the middle of the
day, the density shows significantly more prevalent peaks representing variations in market activity.
Further to this, there is a clearly observable rise in the density in the later third of the day, which is not
reflected in the burstiness suggesting that the burstiness can be treated as a noisy but fixed quantity
across a day’s trading.

Since I am seeking a generative model that is able to reproduce the complex relational properties
between counterparties, I also explore the cross sectional, network-based properties observable for the
transaction when aggregated to obtain network snapshots. Here I consider higher and higher order
properties allowing me to study the cross-sectional behaviour of the systems studied first at the node
level through the degree distribution, then the level of neighbours through assortativity and beyond
through network level reciprocity and rich club distributions:

• Degree distribution - the fraction of nodes in the network with degree k

P (k) =
Nk

N
, (5.2)

where Nk is the number of nodes with degree k and N is the total number of nodes

Figure 5.3a shows the cumulative degree distributions for instrument A, with those for the other
instruments in the appendix in figure 27. Here I observe similar degree distributions for the
different subsets, showing fat tails in which the majority of nodes have a low degree with a small
number of hub nodes having very high degree.
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• Assortativity - As outlined in section 2.1, assortativity is given by:

r =

∑
i eii −

∑
i aibi

1−
∑

i aibi
=

Tr(e)− ||e2||
1− ||e2||

. (5.3)

Figure 5.3b shows the assortativity computed in a rolling 200 transaction window for the different
subsets of instrument A for illustration, and the same for the other instruments can be found in
the appendix in figure 28. I observe here that the assortativity is consistently the most negative
for the single venue subset, indicating disassortative relationships in which nodes connect to other
nodes with very different degrees to them. The off exchange subsets shows the least negative
values, which is as expected as this subset will contain a lower prevalence of hub nodes.

• Reciprocity - Again as outlined in section 2.1, network level reciprocity is given by

r =
|(u, v) ∈ G||(v, u) ∈ G|

|(u, v) ∈ G|
, (5.4)

with reciprocity for a single node being the ratio of the number of edges in both directions to the
total number of edges attached to the node in question [56].

Figure 5.3c shows the reciprocity again computed in rolling windows of 200 transactions for
instrument A, and the same for the other instruments can be found in the appendix in figure 29.
Here I see a large level of variation across the different subsets, with the off-venue subset showing
a lower reciprocity in general, and significant variation over the day.

• Rich club index - I measure the rich club phenomenon using the rich club coefficient at each
degree k, which is the fraction of of the actual and potential number of edges among the set of
nodes with degree higher than k:

φ(k) =
2E>k

N>k(N>k − 1)
, (5.5)

where Nk is the number of nodes with degree larger than k and Ek is the number of edges among
those nodes.

Figure 5.3d shows the rich club coefficient distributions for 10 minute snapshots of these networks
for the 5 instruments, presented here for instrument A for illustration. I observe here that the
nodes with the largest degree have low values of the rich club indices, which is driven by the
presence of disconnected star sub-networks containing a single hub node connected to a number of
other nodes that are only connected to the hub. This is also reflected in the rich club distributions
of the other datasets presented in the appendix in figure 30, and the single venue subsets in figure
31 but less so for the off-venue subset in figure 32.

To summarise, I observe in all 5 datasets burstiness appears to be an inherent property of the transaction
sequences, that isn’t constrained to a particular type of trading activity. Across all transactions, the
burstiness shows stability across time even when the underlying transaction density varies. I observe
consistency in the degree distributions, but variation across the different subsets and different datasets
for the assortativity, reciprocity and rich club distributions. Given their ability to produce bursty
sequences, in the next section I introduce Hawkes processes as generative models for transaction
sequences. I consider different approaches making use of both univariate and multivariate Hawkes
processes in single and multiple dimensions, to establish the extent to which self- and mutual exciting
behaviour could be responsible for the burstiness I observe. I further evaluate the models by exploring
their ability to reproduce the cross sectional, network-based properties of the transaction sequences
when aggregated, finding that for the case of multidimensional models, these properties are inherently
reproduced by the temporal point process.
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(a) Cumulative degree distribution computed over the
entire time period and plotted on a log-log scale.

(b) Assortativity computed across time in rolling windows
of 200 transactions for the different subsets.

(c) Reciprocity computed across time in rolling windows
of 200 transactions for the different subsets.

(d) Rich club coefficients for the degrees of nodes for
the 5 different datasets. The colours represent snapshot
networks aggregated every 10 minutes.

Figure 5.3: Cross sectional network properties for instrument A.

5.4 Proposed generative models

When considering transactions for a single instrument that is traded on multiple venues, or through
a single venue for which trades are cleared by multiple clearing houses, or considering off exchange
transactions, I treat these systems as dynamic networks. For the transactions making up these dynamic
networks, there are a number of different excitation mechanisms which may result in a trade. There
may be some level of mutual excitation, in which the presence of a trade between two individuals
excites future trades between other pairs of individuals. There may also be excitation on the level of an
individual pair of traders, where the presence of a trade between them excites (or inhibits) the presence
of a trade between them in the future. There will also be trades that are controlled by exogenous
factors, such as news events. Further to this, I can also not rule out the possibility of an inherent
excitation in the transaction sequence as a whole, regardless of who the participants are. In order to get
a step closer to understanding the generative process underlying these networks, I compare a number of
different approaches using the Hawkes process to simulate transactions.
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Hawkes type Granularity Dataset
Univariate Overall transaction sequence All venues

Single venue
Off venue

Univariate Edge level All venues
Single venue
Off venue

Multivariate Edge level All venues
Single venue
Off venue

Univariate Buys/sells Single CCP
Bivariate Buys/sells Single CCP

Table 5.2: Summary of different applications of Hawkes Processes considered in this chapter

I also make use of multidimensional, multivariate Hawkes processes to generate transaction sequences
composed of sub-sequences per pair of counterparties, or in other words for each edge if using terminology
from network science. In doing so, my model will capture both self- and mutual excitation within
and between transaction sequences for each edge. I can also make use of multiple univariate Hawkes
processes to generate transaction sequences for each edge independently, so that my models have only
self-excitation for each edge. Both of these approaches thus inherently produce the information on
counterparties involved in each trade. However, if I use a univariate Hawkes process to generate a single
transaction sequence for the whole system, to model self-excitation of the transaction sequence as a
whole, I am not inherently producing information on which counterparties are transacting. This means
that I also need a method to select which edge will transact at each point in the sequence. So in this
case, the model I propose consists of two parts - timestamp generation and edge selection. I do this by
selecting the edge for each transaction according to the frequency of their historical transactions and
compare this to simply selecting edges randomly as a null model.

Table 5.2 summarises the different ways I make use of the Hawkes process and the dataset subsets I apply
these to. I further compare these models to models using Poisson processes, considering both a Poisson
process for a one dimensional transaction sequence, and individual Poisson processes multidimensionally
for each edge.

Parameter estimation

A univariate Hawkes process is controlled by three parameters, the baseline intensity and the kernel
intensity and decay, which can be estimated using maximum likelihood estimation. Full details of the
Hawkes process, and the meaning of the parameters, can be found in section 2.2.3. The log-likelihood
can be expressed in this case as [207]

L = log

∏n
i=1 λ(ti)

exp
∫ T
0 λ(t)dt

=

n∑
i=1

log λ(ti)−
∫ T

0
λ(t)dt. (5.6)

However, considering the multivariate Hawkes process with mutual excitation between edges, the number
of parameters to be estimated increases as O(2n+ n2), as each edge will have its own baseline intensity
and kernel decay parameters, as well as cross terms within the kernel matrix to capture the influence of
each edge level process on every other process. This means that even for a modest number of processes,
a standard maximum likelihood approach is computationally infeasible 2. Instead, I make use of the

2On a 2nd generation Intel Xeon Platinum 8000 series processor, the parameter estimation for a system with 200 cross
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ADM4 method developed by Zhou et. al. [207], using the implementation provided by the tick package
[208], to estimate the µi and αij parameters for a process with a given decay parameter β. I then use a
brute force approach to find the value for β which produces a sequence with a burstiness closest to
the real sequence. The ADM4 method first of all makes use of the sparsity and low-rank properties
common in many network systems and applies sparse and low-rank regularisation to the likelihood
function. Since the resulting likelihood is non-differentiable and difficult to optimise, it then combines
the idea of alternating direction method of multipliers and majorisation minimisation to convert the
optimisation problem to several sub-problems that are much easier to solve. The performance of this
method is demonstrated in [207], in application to both simulation and real-world datasets. A drawback
of this method is that it is only implemented with a constant kernel decay across all processes, whereas
I know from my exploration later in this chapter that the individual processes are heterogeneous in
terms of their burstiness. Fast estimation of a multivariate Hawkes with the flexibility of a varying
kernel decay would thus be a useful area for future research efforts.

5.5 Results

5.5.1 Single dimension model - univariate Hawkes process with counterparty se-
lection

First, I present the results of fitting a univariate Hawkes process to the full transaction sequence,
and using the fitted process to generate new transactions. Looking at the burstinesses in table 5.3

Data Real data Poisson Hawkes
A (full) 0.40 0 (-0.01, 0.01) 0.30 (0.27, 0.33)

A (single venue) 0.30 0 (-0.02, 0.02) 0.13 (0.11,0.14)
A (off exchange) 0.29 0 (-0.02, 0.02) 0.40 (0.34, 0.46)

B (full) 0.54 0 (-0.02, 0.02) 0.27 (0.24, 0.29)
B (single venue) 0.39 0 (-0.01, 0.01) 0.41 (0.35, 0.46)
B (off exchange) 0.31 0 (-0.02, 0.02) 0.08 (0.06, 0.11)

C (full) 0.44 0 (-0.01,0.01) 0.51 (0.48, 0.56)
C (single venue) 0.32 0 (-0.01, 0.01) 0.37 (0.34, 0.40)
C (off exchange) 0.32 0 (-0.02, 0.02) 0.78 (0.48, 0.94)

D (full) 0.34 0 (-0.01,0.01) 0.07 (0.06, 0.08)
D (single venue) 0.26 0 (-0.02, 0.02) 0.21 (0.01, 0.39)
D (off exchange) 0.19 0 (-0.02, 0.02) 0.75 (0.37, 0.96)

E (full) 0.55 0 (-0.02, 0.02) 0.41 (0.38, 0.43)
E (single venue) 0.45 0 (-0.02, 0.02) 0.54 (0.48, 0.60)
E (off exchange) 0.27 0 (-0.02, 0.02) 0.53 (0.43, 0.64)

Table 5.3: Burstiness of the timestamps generated by univariate Hawkes and Poisson processes, in
comparison to the real timestamps

(visualised in figure 36 in the appendix), I immediately see that although the Hawkes process produces
sequences with a positive burstiness closer to the real data than a Poisson, I rarely see overlap of the
the 95% confidence intervals 3 with the burstiness observed in the real dataset. This suggests that
self-excitation alone is not able to explain the burstiness observed. I further explore the parameter
values in the appendix in table 2, for which I observe counter-intuitive values which again suggest
a poor fit of the univariate Hawkes process to the transaction sequences as a whole. This suggests

terms took over 8 hours to complete.
3the confidence intervals were obtained by running the simulations 1000 times
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Data Random Frequency
A (full) 2.99× 10−20 0.38

A (single venue) 1.88× 10−20 0.73
A (off exchange) 3.01× 10−6 0.06

B (full) 4.20× 10−20 0.36
B (single venue) 9.39× 10−18 0.030
B (off exchange) 8.63× 10−7 0.01

C (full) 1.74× 10−33 0.41
C (single venue) 3.53× 10−24 0.001
C (off exchange) 8.21× 10−5 0.01

D (full) 2.41× 10−31 0.035
D (single venue) 2.44× 10−13 0.35
D (off exchange) 7.04× 10−8 0.04

E (full) 4.87× 10−36 0.018
E (single venue) 1.67× 10−24 0.18
E (off exchange) 9.50× 10−9 1.02× 10−4

Table 5.4: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the distributions
of the Rich Club index over different degrees for the two different edge selection methods in comparison
to the real data, for the 5 datasets considered.

that mutual excitation, and self-excitation specific to individual edges, could be a relevant generative
property of transaction sequences across the different subsets.

As noted in section 5.4, fitting a univariate Hawkes process for a 1-dimensional transaction sequence
does not inherently generate information on the counterparties involved in each transaction, so here
I also present the results of selecting the counterparties to transact according to their frequency of
transactions in the training data, and compare this to a null model of randomly selecting them. I
evaluate the performance of these methods by assessing their ability to reproduce the cross sectional,
network-based properties explored in section 5.3 for the real datasets.

The first property I consider is the distribution of rich club coefficients at different node degrees. Figure
37 in the appendix presents an example of these distributions for instrument A for illustration, and
shows clear visual similarity between the distributions for the real data with the frequency based
method of edge selection. In order to quantitatively assess the similarities of these distributions to
those of the real data, I make use of a two dimensional two sided Kolmogorov-Smirnov test [209],
the results of which are presented in table 5.4. Here, small p-values mean that the two samples are
significantly different, with the null hypothesis being that the two distributions are the same. I see that
for frequency based selection, considering the full datasets, four of the datasets show a p-value of > 0.05,
meaning that for these the null hypothesis is not rejected and the distributions are not significantly
different from the rich club distributions of the real data. For the dataset for which the null hypothesis
is rejected for frequency based edge selection, the p-values are still much higher than for the random
selection, suggesting some level of similarity between these distributions and the rich club distribution
of the real data. Similar results are seen for the single venue subsets, where three of the datasets have
p-values > 0.05. However, for off-exchange trading the null hypothesis is rejected at 5% confidence,
suggesting that transactions executed off exchange are less dependent on the prevalence of historical
trades between the two counterparties than the frequency based selection models. The null hypothesis
is as expected rejected for all of the datasets for my null model of randomly selecting counterparties for
each transaction.

I also consider in a similar vein the degree distributions, again finding that frequency based edge
selection produces distributions not significantly different from the real data in all cases. The results
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for this can be found in table 3 the appendix.

Next I consider the reciprocity computed over a rolling window for all subsets, presented in figure 5.4
for instrument A for illustration, with the results for instruments B-E presented in the appendix in
figure 39. I clearly see that the frequency based method produces a similar reciprocity to the real
data, but the null model randomly selecting counterparties is unable to reproduce the reciprocity. The
reciprocity of the real data regularly falls within the 95% confidence intervals of the frequency based
selection method, however this is less than 95% of the time for four of the five datasets. I make similar
observations for the assortativity across time, which I again present in the appendix in figure 40.

Figure 5.4: Reciprocity computed in rolling windows of 200 transactions for the 5 different datasets,
presented for the two methods of edge selection along with the real data, for instrument A for illustration.

To summarise these results for univariate Hawkes processes, I find that these processes are unable to
reproduce the burstiness observed for all the datasets considered, which suggests that self-excitation at
the level of the overall transaction sequence does not explain the burstiness. However, the frequency
based method of selecting the counterparties for each transaction is able to reproduce the network-
based, cross sectional properties that I observe for the real data, suggesting that preferential trading
relationships play a meaningful part in shaping the structure of these markets.

5.5.2 Multidimensional models

I now look instead at fitting multidimensional Hawkes processes, considering my transaction sequences
as multidimensional systems with a dimension for each edge, to assess the extent to which mutual
excitation between edges, and self-excitation of each edge independent of other edges to explain the
temporal and cross-sectional properties I have observed. It is worth noting that one of the drawbacks
of using Hawkes processes multidimensionally is that several sequences are observed to contain only a
single transaction, so when considering multidimensional Hawkes processes, I restrict to sequences with
more than 10 transactions. This roughly halves the number of counterparties for all of the datasets
considered. I compare multidimensional, multivariate Hawkes processes to multidimensional, univariate
Hawkes processes where the process is fitted to each dimension independently, to disentangle the effects
of self- and mutual excitation.

Table 5.5 shows the burstiness of the simulated transactions for the different datasets across the different
subsets, in comparison to the real burstinesses. These are also presented visually in the appendix
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True Univ. HP Multiv. HP
A (full) 0.45 0.48(0.41,0.56) 0.35 (0.33, 0.40)

A (single venue) 0.21 0.15(0.07,0.25) 0.24(0.21,0.26)
A (off exchange) 0.18 0.18(0.09,0.30) 0.26 (0.21, 0.30)

B (full) 0.60 0.43 (0.34, 0.58) 0.41 (0.39, 0.46)
B (single venue) 0.16 0.16(0.08,0.26) 0.28 (0.25, 0.31)
B (off exchange) 0.10 0.12(0.02,0.23) 0.17 (0.13, 0.21)

C (full) 0.54 0.54(0.49,0.60) 0.44(0.35,0.62)
C (single venue) 0.37 0.20 (0.10, 0.33) 0.19 (0.16, 0.22)
C (off exchange) 0.23 0.16(0.07,0.26) 0.24(0.20,0.29)

D (full) 0.43 0.26 (0.20, 0.37) 0.58 (0.53, 0.66)
D (single venue) 0.34 0.22 (0.13, 0.32) 0.20 (0.18, 0.22)
D (off exchange) 0.20 0.15(0.07,0.23) 0.18(0.15,0.22)

E (full) 0.56 0.55(0.50,0.59) 0.34 (0.31, 0.38)
E (single venue) 0.18 0.13(0.05,0.23) 0.28 (0.25, 0.31)
E (off exchange) 0.10 0.17(0.07,0.28) 0.14 (0.12, 0.17)

Table 5.5: Burstiness of the timestamps generated by edge level Hawkes processes, in comparison to
the real timestamps. Results shown in bold are the cases where the true burstiness falls within the 95%
confidence intervals of the simulation results.

in figure 41. As before, I consider a Poisson process as a benchmark which I do not present as this
process as expected always has a burstiness of 0. I observe that the univariate approach has the best
performance, showing the true burstiness falling within the 95% confidence intervals in all cases for the
off exchange data subsets and 3 of the 5 datasets for the full and single venue subsets. This suggests
that much of the burstiness of the real data can be attributed to self-excitation at the edge level, or
in other words, that the presence of a trading relationship between two counterparties increases the
likelihood of future trading relationships. This is in agreement with my results from the previous section
where selecting counterparties to transact based on their historical transaction frequency showed good
performance in reproducing the cross sectional properties of the datasets. Both observations suggest
that preferential trading is a key property shaping the behaviour of these systems. The multivariate
approach shows the true burstiness falling outside the confidence intervals for the majority of the
trials. However, the method itself produces results with tighter confidence intervals around the mean,
suggesting a higher level of stability in the resulting simulations.

In contrast to the unidimensional case, when considering multidimensional Hawkes processes, the
models inherently produce the counterparties involved in the trade. I now explore the cross-sectional
properties of these, restricting to the full datasets as the network structure diminishes when considering
any smaller subsets when removing counterparties with limited activity.

Starting with observations of the rich club coefficient distributions, I observe similarities of both the
approaches, for which the null hypothesis of differences between the distributions is rejected for both
models, for all datasets. The same can be said for the degree distributions, which also show the null
hypothesis rejected in all cases. Plots of the rich club and degree distributions for the instrument A
can be found in the appendix in figures 42 and 43.

Next, considering the reciprocity and assortativity computed over rolling windows of 200 transactions,
I observe that both the assortativity and reciprocity of the sequences generated using a multivariate
Hawkes are similar in value and variance to the real process. This can be seen visually in figures 44 and
45 in the appendix. Although there is a visually high similarity of both reciprocity and assortativity
for the multidimensional Hawkes process sequences in comparison to the real data, in making use of a
Levene test [210] to assess whether the sequences have equal variance and in making use of a one-sided
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True univ. HP univ. edge HP multiv. HP
A (full) 0.45 0.30 (0.27, 0.33) 0.48(0.41,0.56) 0.35 (0.33, 0.40)

A (single venue) 0.21 0.13 (0.11, 0.14) 0.15(0.07,0.25) 0.24(0.21,0.26)
A (off exchange) 0.18 0.40 (0.34, 0.46) 0.18(0.09,0.30) 0.26 (0.21, 0.30)

B (full) 0.60 0.27 (0.24, 0.29) 0.43 (0.34, 0.58) 0.41 (0.39, 0.46)
B (single venue) 0.16 0.41 (0.35, 0.46) 0.16(0.08,0.26) 0.28 (0.25, 0.31)
B (off exchange) 0.10 0.08(0.06,0.11) 0.12(0.02,0.23) 0.17 (0.13, 0.21)

C (full) 0.54 0.51(0.48,0.56) 0.54(0.49,0.60) 0.44(0.35,0.62)
C (single venue) 0.37 0.37(0.34,0.40) 0.20 (0.10, 0.33) 0.19 (0.16, 0.22)
C (off exchange) 0.23 0.78 (0.48, 0.94) 0.16(0.07,0.26) 0.24(0.20,0.29)

D (full) 0.43 0.07 (0.06, 0.08) 0.26 (0.20, 0.37) 0.58 (0.53, 0.66)
D (single venue) 0.34 0.21(0.01,0.39) 0.22 (0.13, 0.32) 0.20 (0.18, 0.22)
D (off exchange) 0.20 0.75 (0.37, 0.96) 0.15(0.07,0.23) 0.18(0.15,0.22)

E (full) 0.56 0.41 (0.38, 0.43) 0.55(0.50,0.59) 0.34 (0.31, 0.38)
E (single venue) 0.18 0.54 (0.48, 0.60) 0.13(0.05,0.23) 0.28 (0.25, 0.31)
E (off exchange) 0.10 0.53 (0.43, 0.64) 0.17(0.07,0.28) 0.14 (0.12, 0.17)

Table 5.6: Burstiness of the timestamps generated by unidimensional, multidimensional, univariate
and multidimensional, multivariate Hawkes processes, in comparison to the real timestamps. Results
shown in bold are the cases where the true burstiness falls within the 95% confidence intervals of the
simulation results.

t-test to assess whether the mean of the difference between the simulated and actual reciprocity and
assortativity is significantly different from 0, in all cases the p-values were <0.5, meaning that I reject
the null hypothesis in both cases and validate the similarity between the sequences.

To summarise the performance of both unidimensional and multidimensional modelling approaches, I
present the burstinesses of all of the Hawkes approaches in a single table in table 5.6. Here I can see
that the univariate Hawkes process applied to multiple dimensions independently shows the strongest
overall performance, although this is heavily dependent on the wider confidence intervals of this model.

5.5.3 Bivariate Hawkes process for buy/sell trades

When considering trades occurring through a central clearing party, from a network perspective the
system is a network consisting of a single star. This means the insights I can gain into the behaviour
of the system by modelling it as a dynamic network are limited. Instead, I re-frame the modelling of
the system to consider the buy and sell trade executions as separate sequences and allow for mutual
excitation between the buys and sells. This is similar in approach to the recently published methods in
[211] who make use of a bivariate marked Hawkes process to model aggressive market order arrivals. As
before, I make use of Maximum Likelihood estimation to fit the parameters of the Hawkes process to
the transaction sequences. Since I am considering a bivariate Hawkes process, there are 8 parameters to
estimate with a 2× 2 matrix for the adjacency α, two decay parameters β, and two baseline intensity
parameters µi.

The estimated parameters for the bivariate Hawkes model can be found in the appendix in table 8, and
the resulting burstiness of the overall sequences, as well as the buy and sell sequences separately, are
shown in table 5.7. Considering the burstiness, I see that in the majority of cases, the true burstiness
falls within the confidence intervals of the simulations for both the full transaction sequences as well as
the buys and sells themselves. For the case of dataset D, which shows a true burstiness overall outside
of the confidence intervals of the simulation, if I look at the rolling burstiness of the buys and sells
separately in figure 34 in the appendix, I see that the burstiness of the sells drops during the latter
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Data Real data Univariate Bivariate
A (all) 0.30 0.09 (0.05, 0.13) 0.26 (0.16,0.39)
A (buys) 0.19 0.14 (0.08, 0.21) 0.26 (0.16, 0.37)
A (sells) 0.24 0.17 (0.08, 0.28) 0.21 (0.09, 0.37)

B 0.45 0.12 (0.05, 0.22) 0.49 (0.20, 0.72)
B (buys) 0.35 0.20 (0.10 0.33) 0.36 (0.01, 0.67)
B (sells) 0.41 0.21 (0.09, 0.34) 0.51 (0.22, 0.74)

C 0.34 0.13 (0.08, 0.20) 0.27 (0.10, 0.46)
C (buys) 0.27 0.18 (0.11, 0.25) 0.35 (0.22, 0.49)
C (sells) 0.28 0.21 (0.11, 0.33) 0.27 (0.07, 0.49)

D 0.24 0.09 (0.05, 0.15) 0.12 (0.05, 0.21)
D (buys) 0.20 0.17 (0.08, 0.31) 0.15 (0.05, 0.29)
D (sells) 0.18 0.15 (0.09, 0.24) 0.12 (0.05, 0.24)

E 0.49 0.12 (0.06, 0.19) 0.42 (0.09, 0.77)
E (buys) 0.41 0.19 (0.10, 0.32) 0.34 (0.28, 0.77)
E (sells) 0.43 0.21 (0.11, 0.34) 0.37 (0.09, 0.67)

Table 5.7: Burstiness of timestamps generated with a bivariate Hawkes process.

part of the day, which explains why my model is unable to reproduce the overall burstiness. I can also
compare to fitting Hawkes processes to the buys and sells separately, also shown in table 5.7, to help
me understand how much the observed burstiness is driven by self excitation as opposed to mutual
excitation. I see here that although the confidence intervals of the buys and sells contains the true
burstiness in many cases, the simulated transaction sequences as a whole have a consistently lower
burstiness than the real transaction sequences. This means that some of the burstiness of this system is
likely to be driven by mutual excitation between buy trades and sell trades.

5.6 Summary

In this chapter, I have explored the use of Hawkes processes as generative models for transaction
sequences for FTSE 100 stocks. This is challenging since these markets are highly heterogeneous,
with many different methods of trading giving rise to different behaviours, which is reflected in the
observations I make of differing properties across the 5 different instruments considered, and across
different subsets of the data for transactions that are executed on the dominant exchange, and only
those that are executed off exchange in comparison to all trades. My task has thus been to assess the
capability of Hawkes process models to reproduce these properties with a flexibility allowing for this
variation, in particular across both temporal and cross sectional properties simultaneously.

When modelling the transaction sequences as a single dimension using a univariate Hawkes process, I
observed counter-intuitive parameter values and although the model was able to reproduce sequences
with a burstiness closer to the real data than the benchmark of a Poisson process, in most cases this
model underestimated the burstiness, suggesting that self-excitation at the level of the overall transaction
sequence does not accurately represent the true generative process of these transaction sequence. In
selecting which pair of counterparties should transact at each point in the transaction sequence, selecting
based on their historical trading frequency from the training set produced cross-sectional properties that
were the most similar to those of the real data, suggesting that historical counterparty relationships
influences the probability that a pair of counterparties will transact in the future.

When considering multidimensional approaches, the approach making use of a univariate process
for each pair of counterparties (each edge) was able to reproduce the burstiness of the real dataset
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much more often than the mutlivariate approach could. However, the multivariate approach showed
tighter 95% confidence intervals for the burstiness, suggesting that this model was more stable. The
better performance of the univariate edge level model is in agreement with the strong performance
of the frequency based edge selection, since both suggest that historical counterparty relationships
are influential in the presence of a future relationship. However, the multivariate approach performed
slightly better than the multidimensional, univariate model in reproducing the cross sectional properties
of the transaction networks, suggesting that improvements to this model, for example allowing the
kernel decay to vary across the different edges, or considering other choices of kernel such as power law
kernels, and establishing methods to compute the likelihood for these, would be a promising avenue for
further research.

Finally, I observed strong performance in applying a bivariate model to buys and sells for trades
occurring through a single central clearing counterparty, with the burstiness reproduced in the majority
of cases. I also observed a better performance of the bivariate approach in comparison to a univariate
Hawkes process for buys and sells separately suggesting that mutual excitation between the buys and
the sells contributes to the overall burstiness. Further exploration into the performance of edge level
modelling in conjunction with the bivariate model would be an interesting avenue of further exploration.

Since I am proposing generative methods of transaction sequences, it is worth discussing the potential
uses of simulated transaction sequences. In an ideal world in which transaction reporting contains no
errors, duplicate reports or nuances which cause deviations from the generative model, these methods
would be valuable in anomaly detection, in flagging transactions which deviate too far from the model,
or alternatively systems which show differing aggregate properties, allowing consideration of how these
properties constitute risk. For example, I can see that all 5 systems considered in this chapter show
similar burstinesses across time and similar degree distributions. The presence of burstiness shows the
market response to activity, which drives price formation, and the stability of prices is integral to the
good function of markets as a whole. The degree distributions I observe demonstrate fat tails in which
the majority of participants have a low degree with a small number of hub nodes with very large degrees,
usually central clearing houses which play a large part in mitigating the risks of highly interconnected
networks and the propagation of risk. In the appendix section .1.3 I present an example of the use of the
multidimensional, univariate Hawkes process model to detect anomalies in the reciprocity across time.
A similar approach could be taken for other properties of the transaction systems, depending on the
types of anomalies that are of interest. It is also worth noting that a number of problems encountered
in finance involve extreme class imbalances, for example fraud detection. A generative model for
transactions could be used as an oversampling method to generate artificial data, to help alleviate class
imbalance, as is explored in Hung et. al. [212], who make use of Generative Adversarial Networks to
assist on the classification of credit card fraudulent transactions, which are highly imbalanced with only
0.17% of transactions of the positive (fraudulent) class. Assessing the capability of my Hawkes based
generative models in this application would be an interesting next step for this research.
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Conclusion and future work

6.1 Summary & Contributions

In this thesis, I have used techniques from network theory to assess how the trading behaviour of
individual market participants influences the evolution of the markets they participate in. I have
focused on networks constructed from transaction reports of equities traded on the UK capital markets.
Understanding how these systems function is of importance to regulators, who are responsible for
ensuring that markets function well and for minimising risks passed to consumers. To do this, they need
to be able to identify important market participants, and to understand how participant behaviours can
influence change in the systems as a whole. This thesis has contributed methods which deliver these
capabilities, and has also provided novel observations into the behaviour of these systems. For some of
these observations, I have found behaviours which are generally observed for financial systems. For
example, all financial networks I have considered have a high reciprocity exceeding 55% indicating a
high prevalence of repetitive relationships common in other financial systems. Other properties observed
are specific to the types of market considered, such as the prevalence of trades cleared through central
counterparty clearing houses, which act as hub nodes for instruments traded on major trading venues. I
have produced methods that account for and are able to reproduce these properties, and which provide
significant insights into the dynamics of equity trading networks.

My first and central contribution was a novel way to measure the potential impact nodes and edges could
have on the global structure of networks if they were to change. This underpins the rest of my research,
particularly when studying snapshot networks for selected equity instruments using discriminative
methods. In chapter 3 I presented a derivation for a measure of edge importance. This is based on
considering the change to the network leading eigenvalue, which can be approximated and decomposed
into the potential for an edge to influence the structure, given by the derivative of the leading eigenvalue
with respect to an individual edge, and the actual change in the network structure. The former captures
the sensitivity of the eigenvalue to changes to an individual edge, making it a natural candidate for an
edge importance measure. I took a perturbation theory approach to derive a computable form of this
derivative for both undirected and directed networks. I validated my derivation by perturbing individual
edges to observe the resultant change to the eigenvalue, and compared this to the value of importance.
To explore the temporal behaviour of my measure of importance, I contributed a Markov chain model
to describe the dynamics of snapshot networks, parameterised by the extent to which edge importance
controls the scale and probability of edge changes between snapshots. I explored this model through
simulations to understand how varying the parameters affects the distributions of the values of edge
importance for changing vs. non-changing edges. I also applied this model to real data, drawing insights
again from the importance distributions alongside using a maximum likelihood approach to estimate
the parameters from the data. In using importance to predict edge changes, I found it to be slightly
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predictive for all datasets considered, though only marginally so for two of these datasets. I showed
that this predictive performance can be linked to the parameters of my dynamical model, allowing
me to suggest that the parameters of the model have practical application in classification of financial
networks. Other observations made in chapter 3 include edge importance being dominated by a small
handful of participants with changes to these edges being less likely. This observation suggests that
there are a few structurally important edges which could act to stabilise a system which might otherwise
move towards a regime of instability. I also observed positive values for the the parameter controlling
the extent to which importance influences the scale of resultant edge changes, which suggests that more
important edges are more likely to make larger changes when they do change. Finally, through an
experiment to demonstrate how predictability varies with aggregation scale, I found that predictability
initially improves with increasing aggregation scale before deteriorating. This presents a trade-off
between improved performance of my importance measure for the quasi-continuous limit in which
each time snapshot contains a single edge change and improved predictability for larger aggregation
scales. This contributed to my motivation to model transaction networks as temporal point processes
as opposed to snapshot networks in chapter 5.

When considering instead node importance in chapter 4, I observed that if the most relevant eigenspectra
component is chosen for each node, my measure of importance becomes ‘community aware’. I supported
this through experiments with a toy barbell network in which I show how different parts of the
eigenspectrum show relevance to different communities in networks. I found that my importance
measure which incorporates this property of the eigenspectrum showed the largest difference in the
distribution mean for present nodes in comparison with absent nodes, suggesting its capability as
a discriminator for subsequent activity. I then confirmed this by finding that it differs from and
outperforms other importance measures in predicting subsequent transactions. I observed that more
structurally important nodes are less likely to subsequently transact. This combined with their tendency
to show positions in these networks in which an impact would be spread across few counterparties
has implications for the stability of these networks. Interestingly, I did not observe correspondingly
strong results for my importance measure in prediction experiments for a dataset of global trade. This
suggests that structural importance could be a unique property of sparse transaction networks. I
complemented my main results with predictability experiments for sign changes and transaction values.
I observed in both cases a lack of predictability from node importance for the equity datasets considered,
however predictability was observed when considering instead the global trade dataset. A potential
explanation for the differences in these results could be the quality of the transaction reports for the
equities datasets.

Although my measures of node and edge importance are defined in a static sense, they provide novel
insights into the evolution of the financial markets considered. They consider how the network will
respond to changes. This, combined with observations of a relationship between importance and the
probability of future changes implies that static representations of networks can contain information
about their dynamics. My methods thus have particular potential for application in financial regulation,
as regulators could be directed towards market participants who have the largest potential to impact
the markets. They also show potential in application to a social network and datasets of global trade
which are significantly denser, suggesting that my methods could be applicable in other fields.

My findings linking static importance to the dynamics of financial networks motivated me to consider
the generative processes producing the systems observed. I focused specifically on FTSE 100 financial
instruments given their high levels of trading activity. I observed that these display bursty characteristics,
consistent across multiple days and appears at a similar level for buy trades and sell trades. They also
showed dominance of hub nodes as in the non-FTSE systems, with 30-40% of all trades intermediated
by the same Central Clearing Counterparty. I also observed different types of market being used,
with lit markets dominating but dark and off market trading still showing a significant presence. The
generative models for transaction networks that I presented reproduced many of the key cross-sectional
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and temporal properties of these systems. I specifically focused on using Hawkes processes for these,
which model both self- and mutual excitation in which past transactions influence the presence of future
transactions. I found that using Hawkes processes in a univariate sense, such that each transaction
excites future transactions regardless of the counterparties making the trade, underestimated the
burstiness of the transaction sequences. This suggests that self-excitation at the level of all transactions
does not accurately represent the true generative process. However, when considering applying a
univariate Hawkes process at the level of individual edges, I found that the burstiness can be reproduced.
I also found that the univariate approach, which considers self-excitation without mutual excitation
between edges, outperforms a multivariate approach with mutual excitation. When considering the
cross sectional properties of the systems, I first observed that selecting edges to transact based on
their historical transaction frequency was able to reproduce the static network structure I observe
in real systems. Alongside this, I found that the multivariate approach to using Hawkes processes
also captures the cross sectional properties well. This complements my observation that historical
counterparty relationships are influential in the presence of a future relationship. Finally, I observed
strong performance of a bivariate model for buy transactions vs. sell transactions, which suggests that
mutual excitation between buys and sells contributes to the overall burstiness of the system.

Overall, my observations that structural importance relates to network evolution and my evidence on the
suitability of Hawkes processes as generative models for these systems helps build an understanding of
the fragility of these financial systems with respect to participant behaviour. These will be of particular
use for data practitioners working with transaction data, providing models and methods for which
the parameters help the user to understand how the systems behave. My research will help inform
null models for detection of outliers and for the generation of data to test algorithms and transaction
monitoring systems. I have also presented a number of complementary observations of the datasets
studied and have contributed in the development of methods to clean, aggregate and analyse these
datasets. These contribute to the academic community who have an interest in the granular behaviour
of equities markets, as well as the Financial Conduct Authority who make use of these datasets for
market monitoring and other regulatory use cases.

6.2 Further work

This thesis presents several avenues for future research. Focusing on chapters 3 and 4, my methods of
edge and node importance have provided novel insights into how the structural importance of network
constituents relates to their subsequent change, and there are several natural next steps to extend these.
First of all, it would be interesting to assess the subsequent impact on the network structure of any
changes, as it may be that a change to an influential node or edge could act to destabilise a system or
could move the system towards a state of stability. It would also be interesting to consider the longer
term effects as opposed to solely considering the next time snapshot.

Extensions could also be considered to allow for more exogenous influences to be taken into account,
for example the effects of individual transactions on the market price of an instrument, which will in
turn have an affect on the probability of others to transact. This would help to connect my research
to several studies presented in econometric literature, for example the methods presented in [213]. In
this paper the authors explore networks of traders of the S&P 500 Stock index futures contracts and
show how network variables preempt financial variables such as volume, duration and market liquidity
measures, demonstrating the potential for trading networks in assessing liquidity supply and price
formation influencing trading strategies. In relation to this, an interesting avenue for further work
would be to compare the predictability observed to that obtained using correlation networks to analyse
the more widely available data on stock prices, in a similar way to the comparison presented in [214],
who demonstrate that a correlation based approach in combination with methods to analyse direct
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exposures provides a useful tool for assessing systemic risk. In their scenario of a limited dataset of
direct exposures, the predictive power of correlation based approaches is significantly better than the
approach making use of direct exposures.

Additional work could also include considering whether the nodes or edges that are changing in these
networks do so persistently, as this would allow me to gain deeper insights into the evolutionary
behaviour of these networks. Finally, further analysis could be conducted to assess the effectiveness of
my measures as indicators for risk, as so far I understand that my importance measures bear some
relationship to how the network subsequently changes, but I have not considered in this thesis the
resultant changes of nodes or edges with high values of either metric and how these have an effect on
the rest of the network in terms of risk and stability.

I also note some limitations presented by the datasets considered. In particular, note that the equity
transaction datasets are sparse and may contain outlier values due to reporting errors. A useful
further exploration would be to develop an equivalent to the use of filtering methods from random
matrix theory, which are widely used in identifying the relevant structure in correlation networks
[215, 216, 217, 218, 219, 220, 221]. This could help counteract the lack of predictability of the value of
a node’s change in strength for the equity datasets observed in chapter 4, as one explanation for this
could be the quality of the transaction reports or the methods of preprocessing applied to the data prior
to my analysis. I also note that while care has been taken to account for duplicate trade reporting by
identifying trades occurring at the same time and quantity between matching counterparties, reporting
quality issues may result in trades being duplicated with differences. Further work is needed to fully
account for this.

It is also worth noting some areas where alternatives to the modelling approaches in this thesis could
be taken. For example, a limitation of both the edge change model I propose in chapter 3 and also the
use of Hawkes processes at the edge level in chapter 5, is that these do not allow for edges to appear
and disappear. Understanding how these appearances and disappearances can be captured in a model
for network growth would be highly beneficial for future work. Further to this, my experiments making
use of logistic regression to predict changes in equity networks can be considered as a probabilistic
model for the network dynamics. This complements approaches found in literature on econometric
network models, where much of the focus is on identification of models for macroeconomic time series
given the wealth of price time series available for analysis. Approaches often make use of Vector
Autoregressive models, which relate current observations of a variable with past observations of itself
and past observations of other variables in the system [222]. Studies such as [223] have demonstrated
how these models have good predictive accuracy and offer a good representation of linkages between
economic sectors, making them a useful tool for assessing systemic risk. An interesting further area
of development for my methods would be to consider autoregressive approaches as an alternative
prediction method. Finally, I note that my work in the first two chapters focused on static snapshots of
networks, meaning that although I am capturing the temporal behaviour of these to some extent, the
aggregation scale used will have an impact on what I am able to observe. My research in chapter 5
partly addresses this by considering the generative processes that give rise to the transactions I observe,
but an interesting avenue for further research would be to consider how the metrics proposed can
analytically incorporate the full temporal information. Overall, by researching further into the links
between structural importance, network evolution and how these relate to market stability constraints
would be an exciting and impactful further avenue to take this work.

In chapter 5, the poorer performance of the multivariate model in reproducing the temporal properties
of the datasets, combined with the observation that this approach performed better than the univariate
edge model in reproducing the cross sectional properties of the transaction networks, suggest that
improvements to this model, for example improving the runtime of estimation of processes with power
law decay kernels, and also allowing the kernel decay to vary across the different edges, would be
promising avenues for further research. Further exploration into the performance of edge level modelling
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in conjunction with the bivariate model would be an interesting avenue of further exploration.

Although in chapter 5 I have considered application of different models to different subsets of the
trading ecosystems studied, there are several trading mechanisms that I did not explore in terms of
their influence on the systems’ properties. For example, in markets such as these which are heavily
dominated by trades which are centrally cleared, in order to provide clearing members with increased
opportunities to net their orders and to give a reduction in outstanding gross exposures in the system,
interoperability agreements exist which allow CCPs to link between counterparties allowing cross-system
execution of transactions. These links introduce a direct channel of contagion between these critical
nodes in the financial system, so in order for my methods to fully capture the macroprudential risks in
these systems, these links would need to be included. Further to this, I have considered application of
Hawkes processes to trade executions only so further research into how the dynamics of the order book
influences the generative processes of these executions would be useful to explore in addition to the
other potential avenues suggested.

Finally, significant work can now be undertaken to implement the methods presented in this thesis
to the monitoring of transaction networks in a regulatory setting. My metrics for node and edge
importance can be compared to existing methods used to rank transactors for monitoring purposes,
with the potential to be incorporated as an early indicator for potential harm. The models I propose
making use of Hawkes processes can be used to generate transaction sequences, which can act as
a null model to detect unusual transactions within the observed sequences. To be able to do this,
an in-depth exploration into how different types of unusual or harmful transactions manifest in the
temporal and cross-sectional properties that can be observed is needed. Generative models also open
up the opportunity to share synthetic transactions with the academic community and industry for
further research into the behaviour of capital markets transaction sequences. An intuitive next step to
achieve this goal would be to apply my methods to a large number of networks, both to further verify
my observations and would be a useful tool for classifying networks according to their evolutionary
properties.
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.1 Appendix

.1.1 Additional results for chapter 3

Summary statistics for the Equity 1-3 datasets

Here I present an exploration of the three datasets considered in chapter 3, to highlight some of their key
properties. I aggregate the transactions daily, ignore non-trading days such as weekends and holidays
and construct networks with the market participants as the network nodes and edges representing the
net value traded between two market participants. All statistics are based on the networks following
the removal of nodes which appear on less than 5 days in the sample, which I classed as ‘inactive’.

Table 1 shows key network level statistics for these three datasets. These show that all three networks
have similar connectivities, but Equity-3 is significantly denser than the other two and shows a higher
level of reciprocity which would be expected for a denser network. All datasets have a similar level of
assortativity, which is negative, a reflection of the prevalence of a small number of hub nodes.
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(a) Equity-1 (b) Equity-2 (c) Equity-3

Figure 1: Reciprocity vs. price for the Equity networks

Figure 1 demonstrates that large transaction values are more likely to have a high reciprocity for the
first and second dataset. However the same cannot be said for the third Equity dataset.

The evolution of high level network statistics are shown in figures 2,3 and 4. These show that the
networks fluctuate around a relatively stable mean, with no obvious level of growth or decay across the
time period.

Figure 2: Daily counts of nodes and edges, density and reciprocity across the entire investigation period
for Equity-1
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Figure 3: Daily counts of nodes and edges, density and reciprocity across the entire investigation period
for Equity-2

Figure 4: Daily counts of nodes and edges, density and reciprocity across the entire investigation period
for Equity-3
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Perturbing nodes in toy networks

The plots shown in figures 5 - 7 show additional results for the case of perturbing single edges for
weighted barbell networks, and unweighted ring and Erdős–Rényi networks.

Figure 5: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le.
Weighted barbell network
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Figure 6: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le.
Unweighted ring network.

Figure 7: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le.
Unweighted Erdős–Rényi network
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In figures 8 - 13 I present the results of changing two individual edges, and observing the resulting
change in λ for the range of perturbations applied. I overlay this with a line of constant le, to assess
the performance of my approximation.

Figure 8: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le, for
the case of two edges changing. The plots consider one of the two perturbed edges. Barbell network,
with equal initial weights

Figure 9: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le, for
the case of two edges changing. The plots consider one of the two perturbed edges. Ring network with
randomly assigned weights.
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Figure 10: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le,
for the case of two edges changing. The plots consider one of the two perturbed edges. Erdős–Rényi
network with randomly assigned weights

Figure 11: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le,
for the case of two edges changing. The plots consider one of the two perturbed edges. Barbell network,
with randomly assigned weights.
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Figure 12: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le,
for the case of two edges changing. The plots consider one of the two perturbed edges. Ring network
with equal weights.

Figure 13: Scatter plot of perturbations ∆Aij and the resulting ∆λ, compared to line of constant le,
for the case of two edges changing. The plots consider one of the two perturbed edges. Erdős–Rényi
network with equal weights
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Predictability improvement with α and ρ

As detailed in section 3.3.5, here I apply a logistic regression classifier with a single feature le to datasets
with varying α and ρ. Figures 14 and 15 show the improvement in the test set PR AUC for increasing
values of each parameter. These show that increasing both parameters improves the predictability
of changes given the value of le, consistent with my observations of the rate of increase of change
probability being positively correlated with both α and ρ.

Figure 14: Model prediction PR AUC score improvement with ρ

Figure 15: Model prediction PR AUC score with α
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Prediction of edge changes

Figure 16 shows the PR curves, to complement the ROC curve for the prediction of edge changes
presented in chapter 3.

Figure 16: PR curves for a logistic regression classifier making use of ln(le) to predict ∆Aij = 1. The
dashed lines represent the results for a stratified random allocation of labels.

Figures 17 and 18 show the improvement on the null model of the precision-recall and ROC AUC scores
with increasing aggregation scale, to complement figure 3.17 in chapter 3.

Figure 17: Improvement of PR AUC from null model for aggregation scales ranging from 50 seconds to
27 hours
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Figure 18: Improvement of ROC AUC from null model for aggregation scales ranging from 50 seconds
to 27 hours

.1.2 Additional results for chapter 4

A coin-toss approach to estimating confidence intervals

In order to estimate the confidence intervals for precision and recall presented in this chapter 4, I
can take a coin-toss approach to estimate the precision/recall thresholds such that the probability of
observed outcome is higher than some threshold α. The first step of this approach is to note that
precision is the probability of ground truth positive from all positive predictions, and recall is the
probability of a ground truth positive from all correct predictions. I can then make use of the binomial
distribution probability mass function to estimate the probability of the observed outcome depending
on the chance of a ‘positive flip’ (the value of precision or recall):

Pr(k = TP ;n, p) =
n!

TP !(n− TP )!
pTP (1− p)(n−TP ), (1)

where k, the number of successes, is equal to the number of true positives (TP) in both cases, n is the
number of true positives and false positives (TP+FP) for the case of precision and the number of true
positives and false negatives (TP+FN) for the case of recall and p is the probability of success. Taking
the cumulative of this and inverting for p allows me to find the confidence intervals for the precision
and recall.

Prediction of node presence

In figure 4.6 in chapter 4 I present evidence of the importance of my measuremb in predicting subsequent
node presence, using permutation importance to measure the importance of the model features. This is
consistent with observations from figure 19, in which each dot represents a single SHAP explanation of
the log-odds for a single observation by the feature the row of the plot corresponds to.

The features are ordered by the mean absolute value of the SHAP value for each feature. I observe that
mb is also the most important feature on average for all three datasets, and that nodes with a high mb

have a lower chance of of being subsequently present.

Figure 20 shows the equivalent SHAP plot for the BaTIS dataset.
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(a) Equity-1

(b) Equity-2

(c) Equity-3

Figure 19: SHAP feature importance for the different node importance measures. Each dot represents
a single SHAP explanation of the log-odds for a single observation by the feature the row of the plot
corresponds to.
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Figure 20: SHAP feature importance for the different node measures, for the BaTIS dataset. Each dot
represents a single SHAP explanation of the log-odds for a single observation by the feature the row of
the plot corresponds to.
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.1.3 Additional results for chapter 5

Data exploration

In chapter 5, I make use of transaction reports containing the details of 5 randomly selected FTSE 100
constituent instruments, reported under MIFID II regulations. Although all of the instruments are
FTSE 100 stocks which will be dominated by high frequency trading strategies, for the day considered
they vary significantly in the number of transactions, with the smallest being 16,000 transactions (on
average approximately one transaction every 2 seconds) and the largest 110,000 transactions (on average
approximately one transaction every 0.2 seconds).

As the majority of trading in these liquid instruments is through market exchanges, one of the prevalent
properties of these systems is the dominance of central institutions, usually central counterparty clearing
houses (CCPs). A CCP is an institution that sits between parties involved in a transaction, to absorb
any counterparty credit risk. For the instruments in question, all show 30− 40% of trades intermediated
by the same central clearing house. For most major venues order book trades are cleared through a
single CCP for each instrument. However, with the existence of interoperability agreements which
give clearing members the opportunity for netting across CCPs covered by these agreements, it is not
uncommon to see trades cleared through several CCPs for the same instrument1. Despite this, I observe
a large proportion of trades through one venue, as can be seen in figure 21, and a large proportion of
trades made by a single counterparty in figure 22. I thus consider application of Hawkes processes in

Figure 21: Transaction counts by venue, showing the top 4 venues and off venue trades separately and
the remaining venues aggregated (‘other’).

various different ways, to different subsets of these systems: I consider application to all the visible

1This is not the situation for many other asset classes, for example ICE futures contracts will be cleared through ICE
only.
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trades for these instruments, trades through a single exchange, trades executed off exchange2 and
trades only with the largest participant, a prominent clearing house. It is theoretically possible to
disintermediate the central clearing house, but most of the trading in these cases will be on central limit
order books, the buyers and sellers either side of the clearing house will not deliberately trade with each
other, but are matched according to the order matching system in place [224]. Also, by trading via the
clearing house, the risk of the trade is absorbed by the clearing house. For these reasons, I decide not
to disintermediate the central clearing house as it represents a true node in the transaction network.

‘

Figure 22: Transaction counts by counterparty, showing the top 5 counterparties for each instrument
separately and the remaining counterparties aggregated (‘other’).

Of the trades operated through the major venues, I also observe different types of market - for example,
the second and third largest venues for all instruments considered in chapter 5 are both examples of
dark order book trading venues3. These are venues in which there is a lack of transparency of the order
book, allowing large institutional investors to place trades while minimising the impact the markets
[225]. On the other hand, the fourth largest is a lit order book venue, where the full book of orders
is visible to all market participants. Different trading mechanisms would be expected for lit vs. dark
order books, as the former allows the market price to respond more readily than the latter.

Additional observations of temporal properties

In chapter 5, I make observations of the burstiness of these datasets across time for a single instrument
for illustration. Here I supplement these with additional observations for other instruments in figure 23,

2Off exchange trades of exchange listed securities occur for a number of reasons, for example they may occur between
different arms of a large institution in different jurisdictions in order to move client money between these different arms

3The top four venues are the London Stock Exchange, the LSEG’s Turquoise Lit venue, and the BATs Europe and
Chi-X Europe venues operated by Cboe Europe.
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alongside observations of transaction density and burstiness at edge level.

Figure 23: Network level burstiness across rolling windows of length 200 transactions, for the different
data subsets.

Figure 24 shows the rolling transaction density (number of transactions in a given time window) for 10
minute time windows, with the window size chosen optimally to contain enough data points in each
window for all datasets. I observe that unlike the burstiness, the transaction density is in general not
stationary and in some cases shows a visible trend.

Figure 24: Network level density (number of transactions in a given time window) across rolling 10
minute windows
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When considering individual edge burstiness, I observe that the individual edges tend to show a lower
burstiness, with average edge burstinesses between 0.1 and 0.3 for the five datasets, in comparison
to the network as a whole which shows average burstinesses between 0.3 and 0.5. This suggests that
mutual-excitation is a contributing factor to the burstiness. In figure 25 I observe a significant variation
in the edge level burstiness, with some edges showing periodic behaviour (negative burstiness). The
subsets containing only trades with the most active central clearing house show the largest average
burstiness across the edges.

Figure 25: Histograms of the burstiness of individual edges across the entire observation period, for the
5 different datasets for their different subsets

It is worth noting that a key property of these systems is the presence of multiple transactions occurring
between the same counterparties at the same time or very close together. This is likely to be as a
result of multiple limit orders being placed at the same price, matching with a single larger order
in the other direction. In order to understand the extent to which the observed burstiness in these

Figure 26: Rolling burstiness in windows containing 200 transactions, of all transactions for the
instruments considered, both for the raw transaction timestamps and grouped timestamps.
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systems is explained by these trades alone, I apply my methods both to the observed timestamps and
to timestamps grouped at an edge level, considering transactions as part of the same larger order if
the transactions in a group have inter-trade times of less than 1 second. Figure 26 shows the rolling
burstiness produced as in figure 23 for all transactions, both for the observed transactions, and for
transactions grouped by searching for bursts of transactions which have an inter-transaction time of
less than 1 second. This shows that grouping the transactions produces a sequence with a slightly lower
burstiness but does not entirely remove the burstiness of these sequences.

Additional observations of cross sectional properties

In chapter 5, I also make observations of cross-sectional, network-based properties. Figure 27 shows
additional results for the cumulative degree distributions for additional datasets, demonstrating similar
behaviour across all datasets.

Figure 27: Cumulative degree distributions for the 5 different datasets for the different subsets considered,
computed over the entire time period and plotted on a log-log scale.

Figures 28 and 29 show the assortativity and reciprocity across time for all 5 datasets. I observe
similar levels of assortativity for all datasets, but a reasonable level of variation across the 5 different
datasets and subsets for reciprocity, with some instruments showing larger values, indicating a higher
prevalence of participants acting as both buyers and sellers. In particular, over half of the counterparty
relationships for the single venue subsets of instruments D and E appear in both directions, whereas
roughly a quarter do for instrument C.
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Figure 28: Assortativity computed across time in rolling windows of 200 transactions for the 5 different
datasets, for the different subsets.

Figure 29: Reciprocity computed across time in rolling windows of 200 transactions for the 5 different
datasets, for the different subsets.
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Figures 30, 32 and 31 show the distributions of rich club indices for the data subsets for the full datasets,
trades through a single variable and trades executed off exchange. For the full datasets, I observe
similarity in the distributions across all 5 datasets, with the nodes with the largest degree showing low
values of the rich club indices, driven by the presence of disconnected star subnetworks. Although the
single variable and off exchange subsets are limited by the sparsity of these datasets, here I observe
that trading through a single venue shows the similar behaviour of nodes with high degree showing
very low rich club coefficients, which is not the case for the off exchange dataset.

Figure 30: Rich club coefficients for the degrees of nodes for the 5 different datasets. The colours
represent snapshot networks aggregated every 10 minutes.

Figure 31: Rich club coefficients for the degrees of nodes for the 5 different datasets, for trades executed
on a single venue. The colours represent snapshot networks aggregated every 10 mintues.
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Figure 32: Rich club coefficients for the degrees of nodes for the 5 different datasets, for trades executed
off exchange. The colours represent snapshot networks aggregated every 10 minutes.

Assortativity and degree distribution constraints

Care must be taken in interpreting the degree distribution and assortativity results in the chapter
5 for the case of frequency based edge selection, as the method of sampling the edges to change
probabilistically based on their frequency essentially fixes the degree distribution for a large enough
sample size when the degree distribution is temporally stable. The values that the assortativity can
take when the degree distribution is fixed will be constrained, since the degree distribution constrains
the configuration of the network, which places bounds on the values that the assortativity can take. To
understand the extent to which this explains the observed assortativity, I conduct an experiment in
which the edges of the network are randomly re-wired to destroy any correlations between neighbours
while preserving the degree distribution. The results of the assortativity across a rolling window a
tenth of the length of the transaction sequence for both the real network and the rewired are shown
in figure 33. I can see from this that although some of the assortativity is preserved when rewiring,

Figure 33: Assortativity computed across time in rolling windows of 200 transactions for dataset A, in
comparison to the assortativity computed for dataset A with edge rewiring applied N times, with N
the number of edges in the network
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not all of the observed assortativity in the real data is explained by the constraints imposed by the
selection method. In general, fixing the degree distribution means that I would expect the cross sectional
properties to be reproduced, so this should be taken into consideration when interpreting the results of
the frequency based selection of edges, as well as the multidimensional model making use of univariate
Hawkes processes.

Finally, I note that in the case of the subset of trades executed through a single clearing house, I can
alternatively consider the transaction sequences of buys and sells separately. Figure 34 shows the rolling
burstinesses of the buys and sells separately for trades executed through the most active clearing house.
I can see from these that the burstinesses of the buys and sells are at a similar level, although there
are periods for certain instruments where the two transaction sequences differ in their burstinesses.
Visually, there also appears to be some influence of higher periods of burstiness of buys influencing a
higher burstiness of sells.

Figure 34: Rolling burstiness over a window of 200 transactions for the 5 different instruments,
considering transaction sequences of buys and sells separately for transactions executed through the
main clearing house.



.1. Appendix 119

Data Baseline int. Kernel int. Kernel dec.
A (full) 0.45± 0.08** 0.55± 0.01*** 0.62± 0.06**

A (single venue) 0.99± 0.16 0.48± 0.01*** 0.92± NA
A (off exchange) 0.23± 0.19 0.56± 0.02*** 0.66± 0.40

B (full) 0.09± 0.02** 0.35± 0.01*** 0.63±NA
B (single venue) 0.41±NA 0.72± 0.01*** 0.77± 0.10*
B (off exchange) 2.84± 0.58 0.75± 0.03*** 0.80± 0.45

C (full) 0.12± 0.04* 0.36± 0.01** 0.38±NA
C (single venue) 0.42± 0.10** 1.05± 0.02*** 1.33±NA
C (off exchange) 0.03± 0.03 1.29± 0.05*** 1.30± 0.23*

D (full) 0.90± 0.04** 0.36± 0.01*** 1.59±NA
D (single venue) 0.01± 0.01 0.27± 0.01** 0.63±NA
D (off exchange) 0.01± 0.01 0.93±NA 0.94±NA

E (full) 0.23± 0.06** 0.56± 0.01** 0.66±NA
E (single venue) 0.10± 0.10 0.52± 0.10 0.57± 0.11
E (off exchange) 0.04± 0.04 1.31± 0.04*** 1.54± 0.20*

Table 2: Parameters for the univariate Hawkes model estimated using a Maximum Likelihood approach
for the chosen datasets, across the different subsystems considered as dynamic networks. P-values
indicated as follows: ***<0.001, **<0.01, *<0.05. P-values and standard error calculated by taking
the inverse of the Hessian, so are not calculated when the Hessian is non-invertible.

Additional model results - univariate Hawkes processes

The parameters estimated using a maximum likelihood approach to fit the three parameters of a
univariate process to the full transaction sequence are shown in table 2. I observe a reasonable amount
of variation across the parameter values for the different datasets for all three subsets considered, as
demonstrated in figure 35. For the baseline intensity and kernel decay parameters, there is no consistent
difference in the parameter value for the different data subsets across all of the datasets considered.
However, the Kernel intensity appears to show the largest values for the off venue subset and smaller
values for the full dataset. Revisiting my earlier observation that the burstiness is highest for the full
dataset and lowest for off venue transactions, this appears contradictory, suggesting that the model is
not able to accurately estimate the parameters in the univariate case.

Figure 35: Parameter values for the 5 different datasets, across the three subsets considered. Error
bars (where present) represent the standard error calculated by taking the inverse of the Hessian. The
standard error is not calculated when the Hessian is non-invertible.
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Figure 36: Burstiness of the simulated timestamps using the parameters in table 35, for the 5 different
datasets across the different subsets, in comparison to the burstiness of the real data and a univariate
Poisson process fitted to the real data.

Figure 36 visualises the burstiness of sequences generated by Hawkes processes using the parameters in
table 2, that I also present in table 5.3.

In chapter 5, when using a univariate Hawkes process, I consider two different methods to select the edge
to change at each time step. To evaluate the performance of these models, I compare their ability to
reproduce several properties of the real data. Here I present additional observations of these properties.
The first property I consider is the rich club coefficients at different node degrees. Figure 37 shows
the rich club coefficients at different node degrees for snapshots of networks every 10 minutes, for all
transactions for instrument A for illustration. I observe that for the real data, the nodes with the

Figure 37: Rich club coefficients for the degrees of nodes in the network for the FTSE-A instrument.
The colours represent snapshot networks aggregated every 10 minutes. Inset plots are presented for the
frequency and real data with a reduced x axis scale.

largest degree have very low rich club indices, which is driven by the presence of disconnected star
subnetworks containing a single hub node (in all cases a CCP) connected to a number of other nodes
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that are only connected to the hub. This property is also reproduced by frequency based edge selection
but not for random selection.

The second property I consider is the aggregated degree distributions. Figure 38 shows an example
for instrument A of the degree distributions for the different edge selection methods along with the
real data. Here I observe that the real data and frequency based edge selection data show similar

Figure 38: Cumulative degree distributions for the full networks computed over the entire time period,
plotted on a log-log scale

shaped degree distributions, with a small number of nodes with very high degree, but the majority
of nodes with very low degree. The random based edge selection methods instead produce networks
which have a large number of nodes with a reasonably high degree. Table 3 shows the p-values of a
two dimensional, two sided Kolmogorov-Smirnov test applied to each of the degree distributions of the
simulated data, in comparison to the real data. I can see that the null hypothesis of the samples having
the same distribution is not rejected for all of the datasets for the frequency based edge selection, but
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Data Random Frequency
A (full) 2.78× 10−48 0.10

A (single venue) 7.12× 10−61 0.15
A (off exchange) 3.73× 10−27 0.01

B (full) 4.24× 10−71 0.99
B (single venue) 1.79× 10−63 0.15
B (off exchange) 4.53× 10−27 4.03× 10−9

C (full) 5.43× 10−40 0.06
C (single venue) 1.86× 10−34 0.12
C (off exchange) 3.40× 10−18 1.75× 10−5

D (full) 2.20× 10−65 0.99
D (single venue) 4.79× 10−72 0.45
D (off exchange) 6.25× 10−34 0.02

E (full) 2.41× 10−91 0.99
E (single venue) 4.71× 10−98 0.24
E (off exchange) 3.73× 10−30 0.99

Table 3: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the degree
distributions for the two different edge selection methods in comparison to the real data, for the 5
datasets considered.

observe very small p-values for the other random method of selection confirming that this method is
not able to reproduce the degree distribution of the real data.

Finally, I present the results of reciprocity and assortativity observed across the entire time period and
in rolling windows across time. Table 4 and figure 39 shows the reciprocity computed across the entire

Figure 39: Reciprocity computed in rolling windows of 200 transactions for the 5 different datasets,
presented for the two methods of edge selection along with the real data.

time period and over a rolling window for the 5 different datasets for the 3 different methods of edge
selection, demonstrating consistency with figure 5.4 in chapter 5.

Table 5 and figure 40 shows the assortativity computed across the entire period and over the same rolling
window. I can clearly see that the frequency based edge selection method produces an assortativity
that is similar to that of the real data, whereas the random selection is unable to reproduce the
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Data Real Random Frequency
A (full) 0.53 0.07 0.52

A (single venue) 0.52 0.10 0.36
A (off exchange) 0.29 0.08 0.28

B (full) 0.45 0.16 0.47
B (single venue) 0.56 0.16 0.52
B (off exchange) 0.28 0.21 0.33

C (full) 0.46 0.04 0.51
C (single venue) 0.46 0.03 0.46
C (off exchange) 0.50 0.10 0.34

D (full) 0.38 0.12 0.41
D (single venue) 0.56 0.17 0.57
D (off exchange) 0.68 0.23 0.50

E (full) 0.64 0.28 0.64
E (single venue) 0.66 0.47 0.69
E (off exchange) 0.42 0.25 0.40

Table 4: Reciprocity across all transactions for the 5 different datasets, presented for the two methods
of edge selection along with the real data.

Data Real Random Frequency
A (full) -0.24 0.01 -0.15

A (single venue) -0.61 -0.02 -0.61
A (off exchange) 0.79 0 0.75

B (full) -0.44 -0.03 -0.42
B (single venue) -0.63 -0.01 -0.59
B (off exchange) 0.98 -0.03 0.98

C (full) -0.41 -0.01 -0.42
C (single venue) -0.46 0 -0.44
C (off exchange) 0.89 -0.01 0.87

D (full) -0.39 0 -0.41
D (single venue) -0.62 0 -0.62
D (off exchange) 0.84 0 0.86

E (full) -0.37 0 -0.39
E (single venue) -0.37 0 -0.39
E (off exchange) 0.93 0 0.91

Table 5: Assortativity across all transactions for the 5 different datasets, presented for the two methods
of edge selection along with the real data.
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Figure 40: Assortativity computed across time in rolling windows of 200 transactions for the 5 different
datasets, presented for the two methods of edge selection along with the real data. In the case of the
frequency based method, the shaded blue area corresponds to 95% confidence intervals.

assortativity of the real data. The blue bands represent 95% confidence intervals for the assortativity
for the frequency based method and although the real data assortativity falls within the confidence
intervals some of the time, this is generally less than 95% of the time so I cannot conclude that the
frequency based edge selection method is producing sequences with the same assortativity as the real
data.

Additional model results - multivariate Hawkes processes

In addition to the results in chapter 5, I now present further observations for the multivariate Hawkes
process. Figure 41 visualises the results presented in table 5.5. Here I observe that the univariate
process better reproduces the real burstiness than the multivariate, however often has larger confidence
intervals suggesting a lower stability of this model.

Figure 41: Burstiness of the simulated timestamps for both univariate and multivariate edge level
Hawkes, for the 5 different datasets across the different subsets, in comparison to the burstiness of the
real data.
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For the cross sectional properties, starting with the rich club coefficient distributions and degree
distributions, figures 42 and 43 demonstrates the similarities in both simulation methods to the real
data that are confirmed in all cases using the same Kolmogorov-Smirnov test as before, for which the
null hypothesis of differences between the distributions is rejected for both models, for all datasets.

Figure 42: Distributions of rich club coefficients for the degrees of nodes in networks from snapshots
aggregated hourly.

Figure 43: Degree distribution of networks from snapshots aggregated hourly.

Figures 44 and 45, and tables 6 and 7 show the assortativity and reciprocity computed over the entire
time period and rolling windows for both methods of applying Hawkes processes to generate edge level
transaction sequences.
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Figure 44: Assortativity computed across time in rolling windows of 200 transactions for the 5 different
datasets, presented for the two different methods of generating edge level transaction sequences, in
comparison to the real data.

Figure 45: Reciprocity computed across time in rolling windows of 200 transactions for the 5 different
datasets, presented for the two different methods of generating edge level transaction sequences, in
comparison to the real data.
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Data Univariate Multivariate
A (full) 0.38 0.22

A (single venue) -0.63 -0.68
A (off exchange) 0.14 0.57

B (full) -0.40 -0.53
B (single venue) -0.58 -0.68
B (off exchange) 0.57 0.98

C (full) -0.58 0.50
C (single venue) -0.60 -0.68
C (off exchange) 0.85 0.92

D (full) -0.35 -0.45
D (single venue) -0.62 -0.69
D (off exchange) 0.72 0.90

E (full) -0.29 -0.42
E (single venue) -0.62 -0.68
E (off exchange) 0.95 0.97

Table 6: Assortativity across all transactions generated by the two multidimensional Hawkes models

Data Univariate Multivariate
A (full) 0.56 0.57

A (single venue) 0.64 0.54
A (off exchange) 0.21 0.37

B (full) 0.30 0.44
B (single venue) 0.44 0.54
B (off exchange) 0.46 0.70

C (full) 0.19 0.48
C (single venue) 0.25 0.56
C (off exchange) 0.36 0.76

D (full) 0.37 0.35
D (single venue) 0.43 0.55
D (off exchange) 0.46 0.75

E (full) 0.60 0.64
E (single venue) 0.73 0.63
E (off exchange) 0.29 0.46

Table 7: Reciprocity across all transactions generated by the two multidimensional Hawkes models
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Data Baseline int. Kernel int. Kernel dec.

A [0.24, 0.11]

[
0.57 0.42
0.15 0.10

]
[1.23, 0.24]

A (SE) [0.05, 0.07]

[
0.04 0.03
0.07 0.03

]
[0.03, 0.08]

B [0.03, 0.01]

[
0.15 0.0
0.21 0.58

]
[0.15, 0.76]

B (SE) [0.03, 0.01]

[
0.03 0.01
0.04 0.05

]
[0.03, 0.06]

C [0.29, 0.02]

[
0.59 0.01
0.05 0.20

]
[0.67, 0.25]

C (SE) [0.07, 0.02]

[
NA 0.03
0.09 0.21

]
[NA, 0.30]

D [0.20, 0.53]

[
0.21 0.07
0.05 0.27

]
[0.33, 0.37]

D (SE) [0.13, 0.07]

[
0.04 0.03
0.02 NA

]
[0.08, NA]

E [0.00, 0.04]

[
0.42 0.01
0.27 1.07

]
[0.43, 1.67]

E (SE) [0.00, 0.02]

[
0.04 0.02
0.05 0.10

]
[0.04, 0.22]

Table 8: Hawkes parameters estimated using a Maximum Likelihood approach for the chosen datasets,
for a bivariate Hawkes process applied to buys and sells through a central clearing house

Additional model results - bivariate Hawkes process

The estimated parameters for the bivariate Hawkes model are shown in table 8. I see here that all
datasets show similar value ranges for the parameters and that higher or lower parameter values for
buys in comparison to sells are not observed consistently across the different datasets. The kernel
intensity is interesting to compare values across datasets since it captures the level of cross - and self-
excitation present. I don’t observe consistently across the different dataset a dominance of either of
these from the parameter values. For example, instruments C, D and E show larger parameter values
for self excitation than cross excitation, however this is not the case for instruments A and B. Figure 46
shows the burstiness values presented in table 5.7 for the bivariate Hawkes process applied to buys and
sells.
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Figure 46: Burstiness of the simulated timestamps using a bivariate Hawkes, for the 5 different datasets
considering trades through a single central clearing house, in comparison to the burstiness of the real
data.

Application of models for anomaly detection

Here, I present a brief example of how the Hawkes models I present in chapter 5 can be used in practice.
I demonstrate this using the multidimensional, univariate Hawkes process as this model showed the
strongest performance of the models in reproducing both the temporal and cross-sectional properties of
the real data.

I start by fitting the Hawkes process to a single day for a randomly selected instrument, and use the
fitted process to generate an ensemble of 200 transaction sequences. I then measure the reciprocity
across time for each of these sequences, and calculate the time series of zscores for the reciprocity
values for the ensemble. I then consider an additional 10 days of data for the same financial instrument,
and calculate the reciprocity across time. I then use the zscores for the simulated ensemble and flag
instances when the reciprocity of the new days deviates outside of the zscore range.

Figure 47: Mean of the reciprocities of 200 simulations using a univariate Hawkes process (thick line),
with shaded area represents 3 standard deviation from the mean of this average. Other lines represent
the reciprocity for 10 additional days.

Figure 47 shows the mean (thick line) of the reciprocities across time for the ensemble of transaction
sequences. The shaded area represents 3 standard deviations above and below the mean, and the
additional lines are the reciprocities for the additional days. Visually, I observe that the additional
days rarely deviate outside of the shaded area. 3 of the 10 days are found to deviate outside at least
once, so would be flagged as anomalous.
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.1.4 Robustness assessment of chapter 5 results

Here I present results for additional instruments to complement those presented in chapter 5.

Univariate Hawkes processes

Table 9 shows the burstiness of transaction timestamps for an additional 10 FTSE 100 instruments,
across the different subsets. As in the main results in chapter 5, I observe here that although in all
cases the burstiness is positive, there are only a few cases where the real burstiness falls within the 95%
confidence intervals of the burstiness of the generated data.

Dataset simulated burstiness real burstiness
D1 Full 0.07 (0.06, 0.08) 0.65

D1 Single venue 0.54 (0.49, 0.59) 0.58
D1 Off exchange 0.26 (0.24, 0.28) 0.35

D2 Full 0.31 (0.29, 0.34) 0.59
D2 Single venue 0.11 (0.10, 0.12) 0.55
D2 Off exchange 0.15 (0.10, 0.21) 0.39

D3 Full 0.28 (0.26, 0.31) 0.56
D3 Single venue 0.36 (0.28, 0.43) 0.43
D3 Off exchange 0.16 (0.13, 0.17) 0.28

D4 Full 0.51 (0.47, 0.54) 0.49
D4 Single venue 0.78 (0.66, 0.86) 0.32
D4 Off exchange 0.19 (-0.06, 0.39) 0.42

D5 Full 0.28 (0.26, 0.31) 0.57
D5 Single venue 0.18 (0.16, 0.20) 0.42
D5 Off exchange 0.15 (0.12, 0.19) 0.47

D6 Full 0.48 (0.32, 0.60) 0.52
D6 Single venue 0.26 (0.25, 0.27) 0.39
D6 Off exchange 0.13 (0.10, 0.15) 0.45

D7 Full 0.31 (0.29, 0.34) 0.57
D7 Single venue 0.45 (0.41, 0.47) 0.48
D7 Off exchange 0.15 (0.12, 0.18) 0.19

D8 Full 0.86 (0.77, 0.92) 0.57
D8 Single venue 0.44 (0.38, 0.51) 0.48
D8 Off exchange 0.38 (0.20, 0.59) 0.42

D9 Full 0.07 (0.06, 0.08) 0.58
D9 Single venue 0.24 (0.19, 0.27) 0.51
D9 Off exchange 0.08 (0.05, 0.10) 0.32

D10 Full 0.50 (0.18, 0.67) 0.47
D10 Single venue 0.15 (0.13, 0.17) 0.34
D10 Off exchange 0.18 (0.08, 0.41) 0.42

Table 9: Burstiness of the timestamps generated by a univariate Hawkes process, in comparison to the
real data

Table 10 shows the parameters estimated for the univariate Hawkes process. As for the original 5
datasets, I observe a reasonable amount of variation across the parameter values for the different
datasets for all three subsets considered, with the baseline intensities ranging between 0.0005 and 1.89,
the kernel intensities ranging between 0.2 and 11.14 and the kernel decays ranging between 0.3 and
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24.15. Whereas before I noted that the kernel decay appeared to show larger values for the off exchange
subset and smaller values for the full subset, this is not consistently observed for these datasets.

Dataset baseline intensity kernel intensity kernel decay
D1 Full 0.44± 0.14 ** 0.37± 0.004 *** 2.28± 0.08 ***

D1 Single venue 0.10± 0.24 0.52± 0.02 *** 0.57± 0.59
D1 Off exchange 1.98± 0.14 *** 1.16± 0.04 *** 1.10± NA

D2 Full 0.48± 0.08 *** 0.61± 0.006 *** 0.68± 0.03 ***
D2 Single venue 1.23± NA 0.67± 0.01 *** 1.88± NA
D2 Off exchange 1.31± 0.27 *** 0.71± 0.02 *** 0.74± NA

D3 Full 0.1± NA 0.2± 0.002 *** 0.3± NA
D3 Single venue 0.05± 0.05 0.44± 0.008 *** 0.66± NA
D3 Off exchange 0.005± 0.003 0.26± 0.006 *** 0.66± 0.06 **

D4 Full 0.65± 0.04 *** 0.50± 0.005*** 0.54± NA
D4 Single venue 1.33± 0.14 *** 1.87± 0.04 *** 1.87± 0.10 ***
D4 Off exchange 0.78± 0.22 * 0.56± 0.02 *** 0.60± 0.21 **

D5 Full 0.12± 0.12 0.36± 0.003 *** 0.38± NA
D5 Single venue 0.06± NA 10.38± 0.06 *** 10.63± NA
D5 Off exchange 0.005± 0.005 0.27± 0.005 *** 0.63± NA

D6 Full 0.1± 0.04 0.2± 0.002 *** 0.3± 0.06 ***
D6 Single venue 1.59± NA 1.08± 0.02 *** 1.56± NA
D6 Off exchange 1.89± NA 1.06± 0.02 *** 1.11± NA

D7 Full 0.03± 0.02 1.29± NA 1.30± NA
D7 Single venue 0.33± NA 0.62± 0.01 *** 0.65± NA
D7 Off exchange 0.80± 0.22 *** 0.66± 0.02 *** 0.66± 0.11 ***

D8 Full 1.27± NA 0.54± 0.006 *** 0.76± 0.06 ***
D8 Single venue 0.33± 0.07 *** 0.62± 0.01 *** 0.65± NA
D8 Off exchange 0.16± 0.19 3.53± 0.09 *** 3.53± 0.21 ***

D9 Full 0.90± 0.01 *** 0.36± 0.003 *** 1.59± NA
D9 Single venue 0.09± 0.08 11.14± 0.12 *** 24.15± 0.13 ***
D9 Off exchange 2.84± NA 0.75±NA 0.80± NA

D10 Full 0.0005± 0.0004 2.16± 0.02 *** 2.31± NA (NA)
D10 Single venue 1.66± 0.64 * 0.88± 0.03 *** 1.09± 0.39 **
D10 Off exchange 0.005± 0.005 0.27± 0.005 *** 0.63± NA

Table 10: Parameters for the univariate Hawkes model estimated using a Maximum Likelihood approach
for the chosen datasets, across the different subsystems considered as dynamic networks. P-values
indicated as follows: *** <0.001, ** <0.01, * <0.05. P-values and standard error calculated by taking
the inverse of the Hessian, so are not calculated when the Hessian is non-invertible.

Cross sectional properties of univariate models

Table 11 shows the p-values of a two dimensional, two sided Kolmogorov-Smirnov test applied to the
rich-club distributions of the simulated data, in comparison to the real data. As in the main research in
chapter 5 for the original 5 datasets, here I can see that the null hypothesis of the samples having the
same distribution is not rejected for the majority of the datasets for the frequency based edge selection,
but I observe very small p-values for the random method of selection which confirms that this method
is not able to reproduce the degree distribution of the real data.
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Dataset Random Frequency
D1 Full 1.82e-27 0.11

D1 Single venue 1.14e-22 0.26
D1 Off exchange 1.77e-07 0.01

D2 Full 6.40e-26 0.42
D2 Single venue 9.26e-13 0.51
D2 Off exchange 6.02e-09 0.01

D3 Full 1.17e-12 3.43e-5
D3 Single venue 1.20e-12 0.08
D3 Off exchange 3.89e-07 0.003

D4 Full 1.84e-30 0.01
D4 Single venue 1.45e-11 0.11
D4 Off exchange 8.95e-06 0.02

D5 Full 6.77e-17 0.06
D5 Single venue 1.65e-11 0.11
D5 Off exchange 3.86e-06 0.11

D6 Full 4.33e-36 0.07
D6 Single venue 1.07e-29 2.75e-5
D6 Off exchange 4.79e-11 0.0002

D7 Full 7.40e-26 0.03
D7 Single venue 2.08e-16 0.0002
D7 Off exchange 3.67e-11 0.01

D8 Full 1.55e-16 0.01
D8 Single venue 2.27e-17 0.008
D8 Off exchange 1.96e-08 0.007

D9 Full 4.83e-43 1.65e-12
D9 Single venue 3.30e-12 0.003
D9 Off exchange 2.41e-06 0.0008

D10 Full 5.24e-31 0.01
D10 Single venue 6.65e-13 6.96e-6
D10 Off exchange 1.31e-06 0.009

Table 11: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the distributions
of the Rich Club index over different degrees for the different edge selection methods in comparison to
the real data, for the 10 additional instruments.

Table 12 shows the p-values again for a two dimensional, two sided Kolmogorov-Smirnov test applied
to each of the degree distributions of the simulated data, in comparison to the real data. As for the
rich club distributions, I observe consistency with my results presented in the chapter 5, with the
null hypothesis of the samples having the same distribution not rejected for many, but not all, of the
datasets for the frequency based edge selection. I observe very small p-values for the random method of
selection confirming that this method is not able to reproduce the rich club distributions of the real
data.
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Dataset Random Frequency
D1 Full 5.22e-91 0.05

D1 Single venue 9.61e-66 0.95
D1 Off exchange 7.18e-27 0.72

D2 Full 7.05e-78 0.99
D2 Single venue 1.42e-30 0.99
D2 Off exchange 2.04e-26 0.003

D3 Full 1.45e-68 0.99
D3 Single venue 3.04e-45 0.16
D3 Off exchange 6.25e-47 1.43e-8

D4 Full 1.53e-52 0.99
D4 Single venue 2.07e-28 0.002
D4 Off exchange 2.81e-29 0.04

D5 Full 6.72e-72 0.13
D5 Single venue 5.94e-40 0.002
D5 Off exchange 2.84e-23 0.68

D6 Full 3.34e-82 0.93
D6 Single venue 2.63e-37 0.19
D6 Off exchange 7.18e-28 0.05

D7 Full 1.39e-82 0.43
D7 Single venue 7.39e-83 0.76
D7 Off exchange 5.21e-27 0.006

D8 Full 5.07e-28 0.99
D8 Single venue 2.32e-119 0.15
D8 Off exchange 8.26e-18 5.43e-9

D9 Full 9.61e-74 0.11
D9 Single venue 5.01e-32 0.99
D9 Off exchange 1.64e-34 1.27e-9

D10 Full 3.74e-24 0.02
D10 Single venue 6.90e-71 0.21
D10 Off exchange 4.54e-17 0.005

Table 12: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the degree
distributions for the different edge selection methods in comparison to the real data, for the 10 additional
instruments.

Multidimensional Univariate Hawkes processes

I now present additional results for multidimensional, univariate Hawkes processes. Table 13 shows
the burstiness of the simulated transactions for the different datasets across the different subsets, in
comparison to the real burstinesses for the multidimensional univariate ‘edge level’ Hawkes processes.
The results here are in agreement with those seen in chapter 5, showing the true burstiness falling
within the 95% confidence intervals in all cases.
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Dataset simulated burstiness real burstiness
D1 Full 0.30 (0.20, 0.41) 0.34

D1 Single venue 0.12 (0.01, 0.24) 0.14
D1 Off exchange 0.08 (-0.04, 0.25) 0.07

D2 Full 0.41 (0.33, 0.50) 0.41
D2 Single venue 0.26 (0.16, 0.37) 0.24
D2 Off exchange 0.19 (0.09, 0.30) 0.28

D3 Full 0.46 (0.35, 0.56) 0.47
D3 Single venue 0.18 (0.08, 0.30) 0.12
D3 Off exchange 0.48 (0.25, 0.67) 0.67

D4 Full 0.31 (0.22, 0.40) 0.34
D4 Single venue 0.21 (0.09, 0.33) 0.14
D4 Off exchange 0.05 (-0.05, 0.16) 0.15

D5 Full 0.26 (0.18, 0.35) 0.29
D5 Single venue 0.28 (0.18, 0.37) 0.35
D5 Off exchange 0.13 (0.03, 0.22) 0.16

D6 Full 0.33 (0.23, 0.42) 0.32
D6 Single venue 0.29 (0.20, 0.37) 0.25
D6 Off exchange 0.32 (0.12, 0.53) 0.38

D7 Full 0.21 (0.10, 0.36) 0.24
D7 Single venue 0.21 (0.01, 0.37) 0.19
D7 Off exchange 0.17 (-0.05, 0.42) 0.13

D8 Full 0.48 (0.41, 0.53) 0.49
D8 Single venue 0.27 (0.18, 0.35) 0.27
D8 Off exchange 0.16 (0.10, 0.23) 0.20

D9 Full 0.29 (0.18, 0.38) 0.29
D9 Single venue 0.13 (0.03, 0.27) 0.16
D9 Off exchange 0.19 (0.11, 0.29) 0.16

D10 Full 0.20 (0.12, 0.30) 0.14
D10 Single venue 0.15 (0.07, 0.24) 0.21
D10 Off exchange 0.17 (0.09, 0.27) 0.21

Table 13: Burstiness of the timestamps generated by univariate edge level Hawkes processes, in
comparison to the real timestamps. Results shown in bold are the cases where the true burstiness falls
within the 95% confidence intervals of the simulation results.

Multivariate Hawkes processes

Here I present additional results for multidimensional, multivariate Hawkes processes in table 14. Since
the runtime of the multivariate method is high, I have only considered five additional datasets here. The
results support those observed in chapter 5, showing the true burstiness falling outside the confidence
intervals for the majority the trials.
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Dataset simulated burstiness real burstiness
D1 Full 0.32 (0.30, 0.34) 0.34

D1 Single venue 0.37 (0.36, 0.40) 0.14
D1 Off exchange 0.25 (0.23, 0.26) 0.07

D2 Full 0.39 (0.37, 0.41) 0.41
D2 Single venue 0.42 (0.37, 0.45) 0.24
D2 Off exchange 0.15 (0.14, 0.16) 0.28

D3 Full 0.37 (0.35, 0.40) 0.47
D3 Single venue 0.38 (0.36, 0.44) 0.12
D3 Off exchange 0.24 (0.22, 0.27) 0.67

D4 Full 0.40 (0.39, 0.41) 0.34
D4 Single venue 0.39 (0.43, 0.43) 0.14
D4 Off exchange 0.22 (0.20, 0.25) 0.15

D5 Full 0.30 (0.29, 0.31) 0.29
D5 Single venue 0.35 (0.34, 0.36) 0.35
D5 Off exchange 0.18 (0.16, 0.22) 0.16

Table 14: Burstiness of the timestamps generated by multivariate Hawkes processes, in comparison to
the real timestamps. Results shown in bold are the cases where the true burstiness falls within the 95%
confidence intervals of the simulation results.

Cross sectional properties of multidimensional models

Here I consider the cross sectional properties for the two multidimensional models applied to five
additional instruments, for the full dataset only. I present additional results of Kolmogorov-Smirnov
tests to compare the rich club and degree distributions of for the two multidimensional models I consider
in chapter 5. In both tables 15 for the rich club distributions and 16 for the degree distributions, I
observe in all but one test p-values exceeding 0.05, meaning that the null hypothesis of the samples
having the same distribution is not rejected, supporting my results in chapter 5.

Dataset Univariate Multivariate
D1 Full 0.75 0.63
D2 Full 0.07 0.40
D3 Full 0.08 0.13
D4 Full 0.86 0.73
D5 Full 0.01 0.64

Table 15: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the Rich Club
distributions for the multidimensional Hawkes models to the real data, for the 5 additional instruments.

Dataset Univariate Multivariate
D1 Full 0.26 0.20
D2 Full 0.04 0.35
D3 Full 0.10 0.14
D4 Full 0.97 0.87
D5 Full 0.35 0.47

Table 16: p-values for a two dimensional two sided Kolmogorov-Smirnov test comparing the degree
distribution for the multidimensional Hawkes models to the real data, for the 5 additional instruments.
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Bivariate Hawkes processes

Finally, here I present additional results for 10 instruments for the bivariate Hawkes process to model
buy and sell trade executions as separate sequences and allow for mutual excitation between the buys
and sells. As in the main results presented in chapter 5, I see in table 17 that in the majority of cases,
the true burstiness falls within the confidence intervals of the simulations for both the full transaction
sequences as well as the buys and sells themselves.

Data Real data Univariate Bivariate
D1 (all) 0.48 0.12 (0.06, 0.21) 0.30 (0.13, 0.54)
D1 (buys) 0.40 0.21 (0.10 , 0.37) 0.29 (0.12,0.48)
D1 (sells) 0.38 0.20 (0.10, 0.33 ) 0.29 (0.11,0.56)

D2 0.46 0.18 (0.13, 0.23) 0.42 (0.27,0.55)
D2 (buys) 0.41 0.22 (0.16, 0.28) 0.36 (0.24,0.49)
D2 (sells) 0.38 0.24 (0.17, 0.31) 0.38 (0.23,0.55)

D3 0.45 0.13 (0.06, 0.20) 0.32 (0.16, 0.53)
D3 (buys) 0.35 0.21 (0.11, 0.34) 0.24 (0.01,0.57)
D3 (sells) 0.36 0.21 (0.10, 0.34) 0.29 (0.13,0.47)

D4 0.37 0.12 (0.06, 0.21) 0.26 (0.12, 0.41)
D4 (buys) 0.30 0.21 (0.10, 0.34) 0.21 (0.10,0.34)
D4 (sells) 0.36 0.20 (0.10, 0.35) 0.40 (0.21, 0.63)

D5 0.47 0.12 (0.06, 0.21) 0.51 (0.22, 0.71)
D5 (buys) 0.39 0.21 (0.10, 0.36) 0.44 (0.18, 0.70)
D5 (sells) 0.38 0.20 (0.10, 0.33) 0.45 (0.21,0.71)

D6 0.49 0.13 (0.07, 0.19) 0.15 (0.09, 0.21)
D6 (buys) 0.40 0.21 (0.11, 0.33) 0.29 (0.20,0.38)
D6 (sells) 0.42 0.20 (0.10, 0.31) 0.10 (0.04,0.16)

D7 0.47 0.12 (0.05, 0.21) 0.31 (0.17, 0.47)
D7 (buys) 0.39 0.20 (0.10, 0.37) 0.29 (0.15, 0.48)
D7 (sells) 0.46 0.21 (0.10, 0.36) 0.35 (0.21, 0.49)

D8 0.49 0.32 (0.24, 0.38) 0.51 (0.28, 0.74)
D8 (buys) 0.38 0.36 (0.26, 0.45) 0.44 (0.17,0.71)
D8 (sells) 0.43 0.35 (0.26, 0.44) 0.46 (0.22, 0.72)

D9 0.49 0.09 (0.04, 0.14) 0.31 (0.27, 0.35)
D9 (buys) 0.43 0.15 (0.08, 0.24) 0.26 (0.21, 0.30)
D9 (sells) 0.41 0.17 (0.07, 0.27) 0.30 (0.26, 0.34)

D10 0.35 0.10 (0.03, 0.19) 0.24 (0.09, 0.41)
D10 (buys) 0.33 0.17 (0.07, 0.31) 0.16 (-0.008, 0.40)
D10 (sells) 0.28 0.18 (0.08, 0.29) 0.29 (0.17, 0.45)

Table 17: Burstiness of timestamps generated with a bivariate Hawkes process. Results highlighted
in bold indicate where the real burstiness falls within the 95% confidence intervals of the model
burstinesses.
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