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Abstract—In this paper, we propose a generic sketch algorithm capable of achieving more accuracy in the following five tasks: finding
top-k frequent items, finding heavy hitters, per-item frequency estimation, and heavy changes in the time and spatial dimension. The
state-of-the-art (SOTA) sketch solution for multiple measurement tasks is ElasticSketch (ES). However, the accuracy of its frequency
estimation has room for improvement. The reason for this is that ES suffers from overestimation errors in the light part, which introduces
errors when querying both frequent and infrequent items. To address these problems, we propose a generic sketch, OneSketch,
designed to minimize overestimation errors. To achieve the design goal, we propose four key techniques, which embrace hash collisions
and minimize possible errors by handling highly recurrent item replacements well. Experimental results show that OneSketch clearly
outperforms 12 SOTA schemes. For example, compared with ES, OneSketch achieves more than 10× lower Average Absolute Error
on finding top-k frequent items and heavy hitters, as well as 48.3% and 38.4% higher F1 Scores on two heavy changes under 200KB
memory, respectively.
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1 INTRODUCTION

1.1 Background and Motivation
Approximate stream processing has always been a pop-

ular topic in various areas such as databases [1]–[4], data
mining [5]–[7], artificial intelligence [8]–[11], network mea-
surement [12]–[14] and security [15]–[17]. One of its most
important and fundamental tasks is frequency estimation,
which aims to accurately estimate the number of occur-
rences of a given item in data streams. Frequency estimation
can generally be divided into estimation for frequent-item
and per-item. Among them, frequent-item estimation can
be further summarized as finding top-k items (Task 1) and
heavy hitters (Task 2). The former finds the k items with the
largest frequency, and the latter finds items whose frequency
exceeds a predefined threshold. Per-item estimation (Task
3) on the other hand focuses on estimating the frequencies
of all items. Two other tasks, the time dimension heavy
changes and the spatial dimension heavy changes, are also
important and are related to frequency estimation. Heavy
changes in the time dimension (Task 4) refers to items whose
frequencies in two adjacent time windows increase/de-
crease beyond a predefined threshold. Heavy changes in the
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spatial dimension (Task 5) is a new problem that we define
for the first time, which refers to items whose frequencies
in two adjacent physical nodes increase/decrease beyond a
predefined threshold. It can be used for packet loss detection
in networks, but has rarely been formally studied. Sketch, a
compact data structure with small memory footprint and
error, has been widely recognized by the research commu-
nity [18]–[21], especially in addressing the above tasks 1
to 4. Thus, our design goal is to propose a generic sketch
algorithm that can more accurately perform the above five
tasks.

1.2 Prior Art and Limitations

The distribution of data streams is highly skewed [22]–
[24], i.e., only a few items appear frequently (called frequent
items), while most items appear only once or a few times
(called infrequent items). Thus, researchers naturally pay
more attention to frequent items and put forward many
excellent works. The key idea of the most state-of-the-art
(SOTA) sketch-based solutions, such as ElasticSketch (ES)
[14], [25], MV-Sketch [26], Cold filter (CF) [27] and its suc-
cessor LogLog Filter (LLF) [28], etc., is to separate frequent
items from infrequent items, and accurately record frequent
items. Among them, ES is the most compelling: it handles
multiple measurement tasks, including tasks 1 to 4, and
offers a high level of accuracy.

While ES performs well, it has two obvious problems
that cause inaccurate recording of frequent and infrequent
items. ES has a heavy part and a light part, which record the
frequencies of frequent and infrequent items, respectively.
The heavy part records the support votes and negative
votes for each item, representing the frequency of the item
and the frequency of other items (i.e., caused by hash
collisions), respectively. Once a new item arrives and the
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ratio of negative votes exceeds a threshold, the original item
is expelled to the light part, i.e., an item replacement occurs.
When querying the item frequency, for any item that is not
in the heavy part, its frequency is reported by the light part.
For any item in the heavy part, if item replacement has
occurred in the past, the sum of the frequencies of two parts
is reported. However, since the frequency of frequent items
recorded in the light part is likely to introduce errors due to
hash collisions, the final reported frequency must also have
errors. Further, coupled with the fact that the light part uses
a large-size counter to record infrequent items, it leads to a
large memory overhead and serious overestimation errors
in the light part.

1.3 Our Proposed Solution

To achieve higher accuracy, we propose a novel sketch
algorithm called OneSketch, whose name ONE is inspired
by two aspects: the measurement of five tasks can be re-
alized using just one sketch, and the design philosophy
is one-sided approaching (explain later). The accuracy of
OneSketch in these five tasks is better than that of ES and
other SOTA schemes: 1) For Task 1, the Average Relative
Error (ARE) of OneSketch is on average 10.9× and 56.0×
lower than that of ES and LLF, respectively. 2) For Task 2, the
Average Relative Error (ARE) of OneSketch is on average
5.3× and 17.4× lower than that of ES and LLF, respectively.
3) For Task 3, OneSketch achieves 36.0% and 82.3% higher
F1 Score than that of ES and LLF under 200KB of memory,
respectively. 4) For Task 4, OneSketch achieves 48.3% and
72.4% higher F1 Score than that of ES and LLF under 200KB
of memory, respectively. 5) For Task 5, OneSketch achieves
38.4% and 67.9% higher F1 Score than that of ES and LLF
under 200KB of memory, respectively.

OneSketch inherits the ES idea of separating frequent
and infrequent items, and its data structure also consists of
two parts, a heavy part and a light part, which are used
to accurately record the frequencies of frequent items and
other infrequent items, respectively. The key design philos-
ophy of OneSketch is Overestimation Control: reduce the
overestimated frequency of items, by approaching the true
frequency on one side. We propose four techniques around
the above design philosophy that embrace the reality of hash
collisions and minimize overestimation errors in terms of
extremely recurrent item replacements.

The key technique for the light part is called Fine-
Grained Control, which replaces the light part of ES from
CM [29] to a tailored TowerSketch [30], exploiting its small-
size counters to record infrequent items at a finer granularity
and reduce memory overhead. This technique optimizes the
accuracy of ES light part from the data structure.

The key technique of interaction between the light part
and the heavy part is called Frequency Read/Write Control
and Repeat Control. 1) The key idea of the former is that
after each item replacement in the heavy part, the new chal-
lenger item that succeeds in the item replacement should
immediately read its frequency recorded in the light part.
The goal is to avoid possible overestimation errors in the
light part due to hash collisions in the future. This is the
main strength of OneSketch to address the overestimation
errors generated by ES mentioned in Section 1.2. Similarly,

the light part should also write the frequency of the kicked
item. 2) Whenever Frequency Read/Write Control occurs,
the item frequency is recorded in the heavy/light part, but
this process is reversible, i.e., an item may be transferred
repeatedly between heavy and light parts. As a result, if
the process of Frequency Read/Write Control happens to an
item many times, its estimated value in the light part will be
accumulated repeatedly. Thus, our Repeat Control reduces
the overestimation errors caused by above-mentioned issue,
to further optimize Frequency Read/Write Control again.

The key technique for the heavy part is called Replace-
ment Control, and the main idea is that we should control
meaningless item replacement by comparing the minimum
frequency of the mapped bucket in the heavy part with the
read value of the new challenger item in the light part. This
conservative technique eliminates the errors caused by the
possible overflow of infrequent items in the light part, to
further improve Frequency Read/Write Control.

The above techniques significantly reduce the overesti-
mation errors of ES. More details are provided in Section
3. Further, we develop a rigorous mathematical analysis for
OneSketch to theoretically derive its error bounds in Section
4. Finally, we conduct extensive experiments, comparing
OneSketch with 12 sketch-based SOTA schemes in Section
5 to verify its effectiveness. The experimental results show
that OneSketch enables more accurate measurements in five
important tasks in data streams. All related codes of OneS-
ketch are provided open-source and available at GitHub
[31]1.
Main Contributions:

1) We propose a new measurement task called heavy
changes in the spatial dimension, which has important
applications but has rarely been studied.

2) We propose OneSketch, which is generic for five tasks
and more accurate than other SOTA solutions.

3) We theoretically derive the error bound for OneSketch
through rigorous mathematical analysis.

4) We perform extensive experiments, and the results val-
idate that OneSketch is generic and more accurate.

2 RELATED WORK

In this section, we divide sketches for frequency estima-
tion into per-item estimation and frequent-item estimation.

2.1 Per-Item Estimation
These sketches are designed to record the frequencies

of all items. Typical algorithms include Count-Min sketch
(CM) [29] and Conservative Update sketch (CU) [32]. A CM
consists of d arrays Ai(1 ≤ i ≤ d), where Ai is associated
with a hash function hi(.), and each array has w counters.
When inserting an item e, it increments the d hashed counter
Ai[hi(e)] by 1. To report the frequency of e, it only reports
the smallest one among the d hashed counters Ai[hi(e)]. The
CU is very similar to the CM, except that it only increments
the minimum counter(s) among the d hashed counters for
each insertion. They both suffer from overestimation errors
due to hash collisions. Other well-known schemes include
sketches of Count (C) [33] and CSM [34].

1. https://github.com/pkufzc/OneSketch

https://github.com/pkufzc/OneSketch
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SALSA [20] first uses small counters and accurately indi-
cates the merging of adjacent counters when they overflow
by complex operations with an additional bitmap, achieving
high accuracy but sacrificing speed. It can be extended in
CM, CU, and C versions. FCM-Sketch (FCMS) [35] and
TowerSketch [30] both consist of several counter arrays.
They use different-sized counters for different arrays, but
each array is allocated the same amount of memory. Hence,
the higher-level arrays have fewer counters, but their coun-
ters are larger. In this way, frequent items overflow in
lower-level counters, so their frequencies are kept in higher-
level/large counters, whereas the frequencies of infrequent
items are kept in lower-level/small counters. FCMS tries its
best to avoid counter overflow, and must rely on the existing
schemes (e.g., ES [14]) to achieve high accuracy in finding
top-k frequent items. TowerSketch handles overflow well
and can achieve high accuracy without requiring the co-
operation of existing SOTA scheme. TowerSketch supports
both CM and CU insertion, and we utilize the CU version
of TowerSketch (denoted as Tower CU) and redesign its
insertion strategy in this paper.

2.2 Frequent-Item Estimation

Typical sketches include Misra-Gries sketch (MG) [36],
Space-Saving (SS) [37], Unbiased Space-Saving (USS) [38],
and ASketch (AS) [39]. As a pioneering work, when a
new/non-recorded item arrives but the data structure is full,
MG directly decrements the frequency of all recorded items
by 1. It inspires many works such as SS and FD [40], but its
replacement strategy will lose a lot of infrequent items and
lead to a very low recall rate. SS and USS both use a data
structure named Stream-Summary to record frequent items.
Unlike MG, SS directly replaces the least frequent item with
this new item, while USS utilizes probabilistic replacement
to achieve unbiased estimation. AS uses a small array to
record only a few frequent items and a sketch (e.g., CM, C,
FCM [41]) to record infrequent items, without guaranteeing
the actual demand in terms of the total number of frequent
items or the processing speed.

SOTA sketches include UnivMon (UM) [42], ElasticS-
ketch (ES) [14], [25], MV-Sketch (MV) [26], [43], Cold filter
(CF) [27] and its successor LogLog Filter (LLF) [28], etc. UM
is the first universal sketch to address multiple measure-
ment tasks with a single data structure, based on the key
idea of universal streaming [44] It first recursively samples
the data stream to obtain several sub-streams, and uses C
and heap to record each sub-stream. However, its actual
accuracy is not satisfactory enough, and its sampling results
in slow processing speed.

ES separates frequent items from infrequent items
through a voting expulsion mechanism. ES consists of two
parts: a heavy part records frequent items, and a light part
records infrequent items. The heavy part is a hash table,
where each bucket records the following item information:
item ID, support vote, negative vote, and flag. Support vote
records the frequency of this item. Negative vote records
the frequency of other items. The flag indicates whether the
light part is likely to contain support votes for this item,
where the light part is a CM. When inserting an new item, if
it differs from the item in the mapped bucket, it increments

the negative vote, and calculates whether the ratio of the
negative votes exceeds a predefined threshold. If so, the
recorded item in the bucket is evicted to the light part. When
querying an item, for any item that is not in the heavy part,
its frequency is reported by the light part. For any item in
the heavy part, there are two cases: 1) if the flag is false,
then its frequency is the corresponding support vote; 2) if
the flag is true, then its frequency is the sum of support vote
and query result in the light part.

CF first uses a two-layer CU to record the frequency of
all items, and then sets a predefined threshold to separate
frequent items from infrequent items. When inserting an
item, CF first inserts it into the CU and queries its frequency.
If the frequency exceeds the threshold, the item will be
reported as a frequent item. To expand the filtering range
of CF, LLF replaces CU with the LogLog structure [45]–[47],
which is originally used for cardinality (i.e., the number of
distinct items) estimation. Its data structure is an array of
registers associated with a random generator and several
hash functions. When inserting an item, LLF first calculates
the hash functions to map the corresponding register, and
determines whether it is an infrequent item. If the answer
is positive, LLF generates random numbers, which follow
a geometric distribution, and then updates the associated
registers.

The structure of MV-Sketch (MV) [26], [43] is similar
to that of CM. The three fields recorded in each bucket
are: the sum of all item hashed to this bucket, the heavy
(our Task 2&4) item candidates (candidates for short) in the
current bucket, and the count value of the candidates in the
current bucket. When an item is mapped to a bucket, MV
uses MJRTY algorithm [48] to update the candidate. When
querying an item, MV determines the estimated value based
on whether the new item is consistent with the candidate,
and returns the minimum estimated value. Finally, MV
reports heavy items based on whether they are greater than
the set threshold.

3 ONESKETCH DESIGN

TABLE 1: Symbols frequently used in this paper.

Notation Meaning
e A distinct item in the data stream

B[i][j] The jth cell of the ith bucket in the heavy part
d Number of cells per bucket in the heavy part

h(.) Hash function of the heavy part
CH Count value of item recorded in the heavy part

⟨ID,CH⟩ The two fields of the item recorded in the heavy part
B[h(e)] The hashed/mapped bucket of e in the heavy part
C′

H Count value of the least frequent item e′ in B[h(e)]
gs(.) sth hash function of the light part

A[s][gs(e)] Hashed/mapped counters of e in the light part
CL Query value of the item in the light part
δ the number of bits in the light part counter

In this section, we first present the data structure of
OneSketch in Section 3.1. Then, we introduce the design
philosophy and four techniques of OneSketch in Section
3.2. Next, we introduce the operations of the Light Part in
Section 3.3, as a prerequisite for the subsequent OneSketch
operations. Finally, we describe the specific operations of
OneSketch for finding top-k frequent items and per-item
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Fig. 1: Data structure and examples of OneSketch .

frequency estimation in Section 3.4 and Section 3.5, respec-
tively. The symbols frequently used in this paper are shown
in Table 1.

3.1 The OneSketch Structure
As shown in Fig. 1, OneSketch consists of two part: a

Heavy Part and a Light Part, which are designed to accurately
record the frequencies of top-k items and infrequent items,
respectively.

The Heavy Part is a hash table with n buckets B[1], B[2],
· · · , B[n], and associated with the hash function h(.). Each
bucket consists of d cells, each of which stores two fields:
item ID (key) and its count CH . For convenience, we use
B[i][j] to represent the jth cell in the ith bucket.

The Light Part is a tailored Tower CU [30] (see Section
2.1). Each Tower CU has two arrays: A[1] with 2 ∗ w 2-
bit counters and A[2] with w 4-bit counters, each of which
is associated with a pair-wisely independent hash function
gs(.) (s = 1 or 2). Each counter only records the count
value of the item. Therefore, the 2-bit counter will overflow
if the count exceeds 3, and the 4-bit counter will overflow
if the count exceeds 15. For convenience, we use A[s][t] to
represent the tth counter in the sth array.

3.2 Design Philosophy and Techniques
The design philosophy of OneSketch is Overestimation

Control, i.e., reducing the overestimated frequency as much
as possible to approach the real frequency on the premise
of ensuring overestimation. Towards the design goal, we
propose four key techniques as follows.

1) Fine-Grained Control (Light). We find that the 8-bit
counters used in ES can be further compressed to 2-
bit or 4-bit, resulting in 2 ∼ 4 times more counters
with the same space, which means 2 ∼ 4 times fewer
hash collisions and errors. By combining the lower half
of TowerSketch [30] with our proposed techniques, we
achieve the aforementioned counter compression without
significant additional overflow errors.

2) Frequency Read/Write Control (Heavy&Light). When
each item replacement occurs in the Heavy Part, the

new item that succeeds in the item replacement should
immediately Read (merge) its frequency recorded in the
Light Part and set it as the original value in the Heavy
Part. This technique avoids possible overestimation errors
in the Light Part due to hash collisions as soon as possible
in the future, and essentially addresses well the sources
of error in ES as described in Section 1.2. Accordingly, the
Light Part should also be written with the frequency of
the least frequent item that is kicked from the Heavy Part.

3) Repeat Control (Heavy&Light). Followed by the above
Frequency Read/Write Control technique, the item may
go through the process of being written/kicked to the
Light Part firstly, read back to the Heavy Part and then
written/kicked to the Light Part again, which will cause
the issue of repeated accumulations in the Light Part.
Therefore, we improve the insertion algorithm of the
Light Part, which only records the maximum value be-
tween written/kicked value and counter value to avoid
repeated writing in the Light Part in order to further
reduce overestimation errors when using the Frequency
Read/Write Control technique.

4) Replacement Control (Heavy). We observe that, if the
Read value of the Light Part does not overflow and is
less than the least frequent item in the Heavy Part, re-
placement is meaningless and wasteful. Thereafter, unlike
the one-step replacement decision in SOTA scheme, we
propose the first double-check replacement strategy.

3.3 Design of Light Part
3.3.1 Insertion of Light Part

Rationale: Thanks to our Frequency Read/Write Control tech-
nique (detailed later), an item ends up only in the Heavy
Part or in the Light Part, not both. When Frequency Read-
/Write Control occurs, although the estimated value in the
Light Part is merged to the Heavy Part, there is still a
backup in the Light Part. It means that the estimated
value in the Light Part will be repeatedly accumulated if
item replacement and further Frequency Read/Write Control
occur several times for an item. For example, assuming
that the replacement path of item e is Heavy Part →
Light Part → Heavy Part → Light Part, when the
second time Heavy Part → Light Part (item replace-
ment) occurs, CH of item e includes CL queried in the last
Light Part → Heavy Part (Frequency Read/Write Control)
procedure. Thus the second occurrence of Heavy Part →
Light Part will result in twice repeated accumulations for
CL. As a consequence, N occurrences of item replacements
will result in N times repeated accumulations, leading to
large overestimation in the Light Part.

To address this problem effectively, we propose a new
technique called Repeat Control. The goal is to reduce the
overestimation of OneSketch by optimizing the traditional
insertion strategy of Tower CU, which updates the count
value of each counter to min{max{A[i][gi(e)], CL+C}, 2δ−
1}(i = 1, 2). Our optimized insertion strategy works as
follows: when inserting an item e with the count value C , if
C is equal to 1, we just increment the smallest counter(s) that
are not overflowed by 1 using CU [32] insertion strategy.
Otherwise, we update the count value of each counter
to min{max{A[i][gi(e)],max{CL, C}}, 2δ − 1}(i = 1, 2).
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Using max{CL, C} instead of CL + C means that there is
no need to update if the count value C is less than CL, which
will lead to a more tightly overestimated value.

It should be noted that, if a δ-bit counter overflows after
the update, we will set its value to 2δ−1 and regard it as an
overflowed counter. For an overflowed counter, we consider
its count value as +∞, which cannot be incremented. It
means that the maximum value of a δ-bit counter is 2δ − 2.

3.3.2 Query of Light Part

The query procedure of the Light Part returns the mini-
mum value of the hashed countersA[s][gs(e)]. Note that the
value of an overflowed counter is +∞. If all counters in the
Light Part are overflowed, it will return 15 and the query
value CL will be regarded as an overflowed value.

3.4 Operations (Top-K Version)
3.4.1 Insertion of OneSketch

The pseudo-code of the insertion procedure is shown in
Algorithm 1. Note that ReplaceforTopK(e) (Algorithm
2) is the top-k version of the item replacement procedure
shown in this section, while ReplaceforPerItem(e) (Al-
gorithm 3) is the per-item version in Section 3.5.

Initially, all ID fields are set to null, and all count fields
are set to 0. Given an incoming item with ID e, it is first
mapped to the bucket B[h(e)] in the Heavy Part by comput-
ing the hash function h(e) (1 ≤ h(e) ≤ n). According to the
information of B[h(e)], there are three cases as follows.

Case 1: e is in one cell of B[h(e)]. OneSketch increments
the count field CH in the cell by 1.

Case 2: e is not in B[h(e)], but there is at least one empty
cell in B[h(e)]. OneSketch inserts e into an arbitrary empty
cell, and sets the ID field to e and sets CH to 1.

Case 3: e is not in B[h(e)], and there is no empty cell.
OneSketch tries to replace the item e′ with the minimum
count value C ′

H in B[h(e)] with probability P = 1
C′

H+1

(equation from [49]). There are two sub-cases:
① If the probability condition does not hold, e no longer

replaces e′, but is inserted into the Light Part.
② If the probability condition holds, e successfully re-

places e′. OneSketch sets the ID field to e, and evicts e′.
Then, we propose a novel technique for the challenge-
successful item e called Frequency Read/Write Control, to
avoid possible overestimation errors in the Light Part due
to hash collisions in the future and accurately estimate the
item e. OneSketch queries the count of e in the Light Part:
it reports CL among the hashed counters A[s][gs(e)], then
sets the CH of e in the Heavy Part to CL+1. OneSketch also
inserts the evicted item e′ and its C ′

H into the Light Part.
Example 1 (Fig. 1): (1) For incoming item e1, OneSketch

maps it to bucket B[h(e1)]. Since there is a cell storing
e1, OneSketch increments its count from 6 to 7. (2) For
incoming item e3, OneSketch maps it to bucket B[h(e3)].
Since e3 does not exist in B[h(e3)], but there is still an empty
cell in B[h(e3)], OneSketch sets the ID field of the empty
cell to e3, and sets the count field to 1. (3) For incoming
item e7, OneSketch maps it to bucket B[h(e7)]. e7 does
not exist in B[h(e7)], and there is no empty cell. Therefore,
OneSketch tries to replace the least frequent item e6 with

Algorithm 1: Insertion of OneSketch
Input: Incoming item e
if e is in one cell of B[h(e)] then

CH ++;
return;

if B[h(e)] has an empty cell then
Set the empty cell to < e, 1 >;
return;

if we use the top-k version then
ReplaceforTopK(e);

else
ReplaceforPerItem(e);

Algorithm 2: ReplaceforTopK(e)

if the probability P = 1
C′

H+1 does not hold then
Insert < e, 1 > into the Light Part;

else
ID ← e;
CH ← CL + 1;
Insert < e′, C ′

H > into the Light Part;

e7 with probability P = 1
4+1 = 0.2. We assume that the

probability condition holds, so e7 successfully replaces e6.
OneSketch sets the ID field to e7 and the count field as
follows: OneSketch maps e7 to the countersA[1][g1(e7)] and
A[2][g2(e7)], and reports the minimum value of 2 between
them. Thus, the count field is set to 2 + 1 = 3.

3.4.2 Query of OneSketch

Since the item ends up only in the Heavy Part or Light
Part, the error introduced by the back-and-forth passing of
the counts in the two parts as in ES is completely avoided,
and the procedure of insertion and query are simplified. To
query an item e, OneSketch first checks the Heavy Part in
bucket B[h(e)]. If e matches a cell in B[h(e)], it reports the
corresponding count CH . If e matches no cell, it reports CL

among the hashed counters A[s][gs(e)] in the light part.

3.5 Operations (Per-Item Version)
Note that the operations in this section are only appli-

cable to per-item frequency estimation, and we only show the
description of Case 3 (sub-case ②), which is different from
the operations of top-k version in Section 3.4.1. The pseudo-
code of the item replacement procedure optimized in this
section is shown in Algorithm 3.

② If the probability condition holds, OneSketch first
applies the partial Frequency Read/Write Control technique
to query the count of e in the Light Part: it reports CL

among the hashed counters A[s][gs(e)]. Then, we propose
another novel technique, called Replacement Control, to
avoid meaningless item replacement. Specifically, OneS-
ketch checks the value of CL: if CL is not overflowed and
less than C ′

H , it is considered that e has not successfully
replaced e′, and the remaining operations are the same
as Case 3 (sub-case ①) in Section 3.4.1; otherwise, e suc-
cessfully replaces e′. OneSketch sets the ID field to e, and
evicts e′: OneSketch sets the CH of e in the Heavy Part to
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max{CL, C
′
H} + 1. Further, OneSketch inserts the evicted

item e′ and its C ′
H into the Light Part.

Algorithm 3: ReplaceforPerItem(e)

if the probability P = 1
C′

H+1 does not hold then
Insert < e, 1 > into the Light Part;

else
if CL is not overflowed and less than C ′

H then
Insert < e, 1 > into the Light Part;

else
ID ← e;
CH ← max{CL, C

′
H}+ 1;

Insert < e′, C ′
H > into the Light Part;

Example 2: This example is an extended version of
Example 1-(3) based on the above operations, and we still
assume that the probability condition holds. (1) We assume:
A[1][g1(e7)] = 2, A[2][g2(e7)] = 6 and C ′

H = 4. Since CL,
equal to 2, has not overflowed and is less than C ′

H , e7 will
still not replace e6 although the probability condition holds.
Instead, we insert e7 into the Light Part directly. (2) We
assume: A[1][g1(e7)] = 3, A[2][g2(e7)] = 15 and C ′

H = 4.
Since A[s][gs(e7)] both overflow and CL is equal to 15, e7
successfully replaces e6. Then, OneSketch sets the ID field
to e7 and the count field to 15 + 1 = 16. Further, OneSketch
inserts the evicted item e6 and its C ′

H into the Light Part.

4 MATHEMATICAL ANALYSIS

In this section, we propose the mathematical analysis of
OneSketch. We limit our results to the top-k version. First,
we present a theorem about the query results of the Light
Part in Section 4.2. We derive the formula of the error bound
in Section 4.3.

4.1 Preliminary
Let S = {e1, e2, . . . , eT } be a data stream that contains

T items, where et ∈ {1, 2, . . . ,m} appears at time t. Let fi
be the frequency of item i in the entire data stream S and
f(i,t) =

∑t
k=1 1{ek=i} be the frequency of item i at time t, we

have fi = f(i,T ). At time t, define τ(i, t) ∈ [0, t] as the last
time item i was not stored in the Heavy Part, i.e., τ(i, t) + 1
was the last time when item i successfully replaced another
item and was inserted into the Heavy Part or τ(i, t) = t
if item i was not stored in the Heavy Part. Here we let
f(i,0) = 0 and if the item was always stored in the Heavy
Part, τ(i, t) = 0. Then, we let H(i,t) = f(i,t) − f(i,τ(i,t))
be the number of items inserted into the Heavy Part with
ID i between τ(i, t) and t (note that H(i,t) ̸= 0 if and
only if item i is stored in the Heavy Part at time t), let
L(i,t) = f(i,t) − H(i,t) be the number of items inserted into
the Light Part with ID i at time t and let L̂(i,t) be the query
value of the light part. In the top-k version of OneSketch, we
have CH = H(i,t) + L̂(i,τ(i,t)), L(i,t) = L(i,τ(i,t)). Therefore,
let Hi = H(i,T ), ti = τ(i, T ), the true frequency of item i can
be written as

fi = Hi + L(i,ti)

and the estimated frequency can be written as

f̂i = Hi + L̂(i,ti)

Note that according to the above analysis, the estimation
error of OneSketch only comes from the Light Part.

4.2 Properties of the Light Part
Based on Section 3, the Light Part is Tower CU. Suppose

that the Light Part contains l arrays. The ith array has wi

counters and each counter consists of δi bits. We have 0 =
δ0 < δ1 < . . . < δl, w1 > w2 > . . . > wl. Based on the above
definition, we have the following theorem about the query
result of the Light Part:

Theorem 4.1. In the top-k version of OneSketch, for ∀i, t,
if L(i,t) < 2δl − 1, then no under-estimation error oc-
curs at time t and ∀k ∈ [1, l], L(i,t) ⩽ A[k][gk(i)] ⩽∑m

j=1 Igk(i)=gk(j)L(j,t), (L̂(i,t) = minlk=1A[k][gk(i)]). Here,
we denote

∑m
j=1 Igk(i)=gk(j)L(j,t) as C .

Proof. For an arbitrary item i, assume that for ∀t < Ti, L(i,t) <
2δl − 1. We prove that the theorem holds at any point in time
t < Ti through induction. Given a mapped counter A[k][gk(i)],
with some other items mapped to this counter. Initially, item i is
not in the Light Part and all the corresponding expressions in the
inequality are 0, so the theorem holds. At any point in time t,
there are five cases as follows.

Case 1: An item was inserted into the Heavy Part. we can
deduce that L(i,t),A[k][gk(i)], C stays the same and the theorem
holds.

Case 2: An item j ̸= i was inserted into the Light Part. If
gk(i) ̸= gk(j), then as for Case 1, the theorem holds. Otherwise,
C = C + 1 and A[k][gk(i)] increases at most by 1, therefore the
theorem holds.

Case 3: An item i was inserted into the Light Part. We have
L(i,t) = L(i,t−1) + 1, C = C + 1, according to the properties
of the CU insertion, A[k][gk(i)] increases by 1 or L(i,t−1) ⩽
minlk=1A[k][gk(i)] < A[k][gk(i)], so L(i,t) ⩽ A[k][gk(i)] and
the theorem holds.

Case 4: An item j ̸= i was evicted from the Heavy
Part after et ̸= j arrives. If gk(j) ̸= gk(i), the theorem
holds, otherwise the insertion in the Light Part is equivalent to
max(C ′

H − CL, 0), therefore L(i,t) stays the same, A[k][gk(i)]
becomes max(C ′

H ,A[k][gk(i)]) and C = C + H(j,t). Since
C ′

H = L̂(j,τ(j,t)) + H(j,t), A[k][gk(i)] = A[k][gk(j)] ⩾

L̂(j,t−1) ⩾ L̂(j,τ(j,t)) we can deduce that C ′
H − A[k][gk(i)] =

L̂(j,τ(j,t)) − A[k][gk(i)] + H(j,t) ⩽ H(j,t), and A[k][gk(i)]
increases at most by H(j,t). Therefore the theorem holds.

Case 5: Item i was evicted from the Heavy Part after et ̸= j
arrives. This case is similar to Case 4 except L(i,t) = L(i,t−1) +
H(i,t). Since no item i was inserted into the Light Part between
τ(i, t) and t, we have C + H(i,t) ⩾ max(C ′

H ,A[k][gk(i)]) ⩾

C ′
H = L̂(i,τ(i,t−1))+H(i,t) ⩾ L(i,τ(i,t−1))+H(i,t) = L(i,t−1)+

H(i,t) = L(i,t), therefore the theorem holds.
In summary, the theorem holds at any point of time t < Ti.

Note that based on the CU version of TowerSketch and
our insertion strategy, the Light Part reports better result
than the Tower CU. Also, at any time t for any item i, if
Tower CU does not overflow and we only consider those
items inserted into the Light Part, the query result is better
than the CM version of TowerSketch with the same amount
of counters in each layer.
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4.3 Error Bound
Theorem 4.2. In the top-k version of OneSketch, for ∀i, given
an arbitrary positive number ϵ, suppose u satisfies 2δu−1 − 1 ⩽
L(i,ti) < 2δu − 1(1 ⩽ u ⩽ l, and u = l+1 if L(i,ti) ⩾ 2δl − 1),
we have

Pr{f̂i ⩽ fi + ϵ} ⩾ 1−Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ϵ)wk

Proof. According to Section 4.1, we have

Pr{f̂i ⩽ fi + ϵ} = Pr{L̂(i,ti) ⩽ L(i,ti) + ϵ}

If L(i,ti) ⩾ 2δl − 1, then L̂(i,ti) = 2δl − 1 and the
above probability becomes 1, therefore the theorem holds. Next
we assume that the Light Part does not overflow and ϵ satisfies
L(i,ti) + ϵ ⩽ 2δl − 1

We define an indicator variable Ii,k,j as

Ii,k,j =

{
1, gk(i) = gk(j) ∧ i ̸= j

0, otherwise

As the l hash functions are independent from each other, we
have:

E(Ii,k,j) = Pr{gk(i) = gk(j)} =
1

wk

Based on the analysis in Section 4.2, at time ti, we define
another variable Xi,k =

∑m
j=1 L(j,ti) · Ii,k,j indicating an upper

bound of the over-estimation error caused by hash collisions in
counter A[k][gk(i)]. Here we only need to consider k ⩾ u since
L(i,ti) ⩾ 2δu−1 − 1, and we have

A[k][gk(i)] ⩽ L(i,ti) +Xi,k

E(Xi,k) = E(
m∑
j=1

L(j,ti) · Ii,k,j)

=
m∑
j=1

L(j,ti) · E(Ii,k,j) =

∑m
j=1 L(j,ti)

wk

Therefore, according to the Markov inequality:

Pr{L̂(i,ti) ⩾ L(i,ti) + ϵ}
=Pr{∀k ⩾ u,A[k][gk(i)] ⩾ L(i,ti) + ϵ}
=Πl

k=u Pr{A[k][gk(i)] ⩾ min(2δk − 1, L(i,ti) + ϵ)}
⩽Πl

k=u Pr{Xi,k ⩾ min(2δk − L(i,ti) − 1, ϵ)}

⩽Πl
k=u

E(Xi,k)

min(2δk − L(i,ti) − 1, ϵ)

⩽Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ϵ)wk

Therefore, we have

Pr{f̂i ⩽ fi + ϵ} ⩾ 1−Πl
k=u

∑m
j=1 L(j,ti)

min(2δk − L(i,ti) − 1, ϵ)wk

Note that according to Section 3, in the Light Part of
OneSketch, we have l = 2, δ1 = 2, δ2 = 4, w1 = 2 ∗ w,w2 =
w. Then, based on the above theorem we can conclude that
with high probability, the over-estimation error of frequent
items is less than ϵ (at most 15). Therefore, the relative error
is very small, since the true frequency of a frequent item is
usually large. For example, the frequency of the top 2000
items in the IP Trace Dataset we used for experiments in
Section 5 is greater than 1000.

5 EXPERIMENTAL RESULTS

5.1 Experimental Setup

Implementation: We implement OneSketch and all other
algorithms in C++. The hash functions are implemented
using the 32-bit Bob Hash (obtained from the open-source
website [50]) with different initial seeds. We list these 12
SOTA schemes and number them as follows: [S1] ES [14],
[25]; [S2] MV [26], [43]; [S3] USS [38]; [S4] SS [37]; [S5] CM
[29]; [S6] CU [32]; [S7] AS [39]; [S8] SALSA [20]; [S9] LLF
[28]; [S10] FCMS [35]; [S11] C [33]; [S12] UM [42].
Algorithm Configuration: For OneSketch, the Heavy Part is
array of buckets. Each bucket includes 8 cells and each cell
has ID field and count field. The memory ratio of the Heavy
Part and the Light Part is 4:1 for the top-k version and 1:4 for
the per-item version. We use the per-item version for per-
item frequency estimation and top-k version for the other
four tasks. For ES, the heavy part is an array of buckets.
Each bucket includes a vote- field and 8 cells. Each cell
has ID field, count field and flag field. The light part is an
array of 8-bit counters. The memory ratio of the heavy part
and the light part is 1:3. For MV, we fix r = 4 and vary w
according to the specified memory size. For USS and SS, the
storage memory of each bucket is 100B and the number of
buckets is determined by the memory size. For CM/CU/C,
the number of array is 3. We use single CM/CU/C for per-
item frequency estimation, and CM/CU/C with a minheap
(CM/CU/C+heap) for the other four tasks which allocates
25% memory for sketch and 75% memory for minheap.
The minheap is responsible for maintaining frequent items.
For each item in the insertion process, if its frequency in
CM/CU/C is larger than the minimum value of minheap,
this item will be inserted into minheap. For AS, the filter
includes 32 buckets and the rest of memory is for CM. Each
bucket has ID field, new count field and old count field.
For SALSA, we use the CM version. We set d = 4 and pick
s = 8 bit counters as the default configuration. For LLF,
we leverage CU and allocate 75% memory for it. We give
4 bits for each register, set the number of hash functions
as 3 and threshold as 5. For FCMS, we use single FCM-
Sketch (FCMS) for per-item frequency estimation, and FCM-
Sketch with ES (FCMS+ES) for the other four tasks. We use
configurations recommended by authors. For UM, we set
the number of levels to 2.
Computation Platform: We conduct all the experiments on
a 18-core CPU server (Intel i9-10980XE) with 128GB memory
and 24.75MB L3 cache.
Datasets:
1) IP Trace Dataset. The IP Trace Dataset is streams of
anonymized IP packets collected from high-speed monitors
by CAIDA in 2018 [51]. We use the trace with a monitoring
interval of 60s. Each item consists of a 5-tuple (13 bytes).
There are around 27M items and 1.3M distinct items in this
dataset.
2) MAWI Dataset. The MAWI Dataset is a set of
anonymized traffic traces collected from trans-Pacific back-
bone link by MAWI Working Group [52]. Each item consists
of a source IP (4 bytes) and a destination IP (4 bytes). There
are around 17M items and 4.6M distinct items in this dataset.
3) Network Dataset. This dataset contains users’ posting
history on the stack exchange website [53]. Each item (4
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Fig. 2: Effects of the parameter d on frequency estimation for top-k frequent items, where k = 2000.
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Fig. 3: Effects of the parameter r on frequency estimation for top-k frequent items, where k = 2000.
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Fig. 4: Effects of the parameter d on frequency estimation for per-item.
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Fig. 5: Effects of the parameter r on frequency estimation for per-item.

bytes) represents the ID of each user. There are around 10M
items and 0.7M distinct items in this dataset.
4) Web Page Dataset: The Web page Dataset is built from a
collection of web HTML documents [54]. Each item (8 bytes)
represents the number of distinct terms in a web page. There
are around 32M items and 0.9M distinct items in this dataset.
Metrics:
1) Average Absolute Error: AAE = 1

|Ψ|
∑

ei∈Ψ |fi − f̂i|,
where fi is the real frequency of item ei, f̂i is its estimated
frequency, and Ψ is the total number of distinct items.

2) Average Relative Error: ARE = 1
|Ψ|

∑
ei∈Ψ

|fi−f̂i|
fi

,

where fi is the real frequency of item ei, f̂i is its estimated

frequency, and Ψ is the total number of distinct items.
3) F1 Score: 2∗RR∗PR

RR+PR , where Precision Rate (PR) refers to the
ratio of true positive instances to all reported instances, and
Recall Rate (RR) refers to the ratio of true positive instances
to all actual instances.
4) Throughput: Million of operations (insertions) per second
(Mops). We use throughput to measure the speed.

5.2 Experiments on Parameter Settings

In this section, we measure the effects of the key param-
eters of OneSketch based on the IP Trace Dataset, namely,
the number of cells d per bucket in the Heavy Part, and the
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Fig. 6: F1 Score of frequency estimation for top-k frequent items.
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Fig. 7: AAE of frequency estimation for top-k frequent items.
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Fig. 8: ARE of frequency estimation for top-k frequent items.

ratio r of the memory size of the Heavy Part to the memory
size of the whole OneSketch. We use F1 Score (only for top-k
items2), AAE, ARE, and Throughput to evaluate the effects.

5.2.1 Frequency Estimation for Top-K Items

Effect of d (Fig. 2(a)-2(d)): We find that the optimal value for
d is 8. In this experiment, we fix the ratio r to 0.8, and vary
d from 8 to 64. The results show that, especially when the
memory size is relatively small, the F1 Score and throughput
decrease as d increases, while AAE and ARE increase as d
increases. Thus, we set d = 8.

Effect of the ratio r (Fig. 3(a)-3(d)): We find that the
optimal value for r is from 0.8 to 0.9. In this experiment, we fix
d to 8, and vary r from 0.5 to 0.9. The results show that the F1
Score and throughput increase as the ratio r increases, while
AAE and ARE decrease as the ratio r increases. Therefore,
the optimal value of the ratio r is from 0.8 to 0.9, and we set
r = 0.8.

2. For the frequency estimation for per-item, it is equivalent to taking
the k of the output top-k items as all items, so the F1 Score is all 1.

5.2.2 Frequency Estimation for Per-Item

Effect of d (Fig. 4(a)-4(c)): We find that the optimal value
for d is 8. In this experiment, we fix the ratio r to 0.2, and
vary d from 8 to 64. The results show that the throughput
decrease as d increases, while AAE and ARE do not change
as d increases. For simplicity, we set d = 8.

Effect of the ratio r (Fig. 5(a)-5(c)): We find that the
optimal value for r is 0.2. In this experiment, we fix d to 8,
and vary r from 0.1 to 0.5. The results show that the ARE
and throughput increase as the ratio r increases, and AAE
does not change with increasing ratio r except when AAE is
maximum at r = 0.1. To trade off ARE and throughput,
we set r = 0.2. Since infrequent items in data streams
predominate, the optimal value of the ratio r is different
for top-k items and per-item frequency estimation.

5.3 Experiments on Five Measurement Tasks

In this section, we compare OneSketch with 12 SOTA
schemes on five important measurement tasks: frequency
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Fig. 9: AAE of frequency estimation for per-item.
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Fig. 10: ARE of frequency estimation for per-item.

estimation for top-k items (we default k = 2000) (Sec-
tion 5.3.1), frequency estimation for per-item (Section 5.3.2),
heavy hitters (Section 5.3.3), heavy changes in the time
dimension (Section 5.3.4), heavy changes in the spatial di-
mension (Section 5.3.5), and throughput (Section 5.3.6). In
summary, the results presented in Sections 5.3.1 to 5.3.5 are
measured in terms of accuracy, while those in Section 5.3.6
are measured in terms of processing speed.

5.3.1 Frequency Estimation for Top-K Items

F1 Score (Fig. 6(a)-6(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 12.5%, 73.0%, 59.2%,
61.6%, 74.3%, 66.7%, 38.2%, 32.4%, 38.6%, 13.8%, 83.8%, and
92.0% higher than that of S1 to S12 on average under 200KB
of memory, respectively.

AAE (Fig. 7(a)-7(d)): We find that, on the four datasets,
the AAE of OneSketch is 13.1, 19.3, 1946.7, 2047.7, 2304.5,
28.3, 247.9, 353.4, 103.0, 16.8, 2210.5, and 14997.2 times lower
than that of S1 to S12 on average, respectively.

ARE (Fig. 8(a)-8(d)): We find that, on the four datasets,
the ARE of OneSketch is 10.9, 14.4, 1463.6, 1546.0, 769.3,
20.5, 131.5, 193.0, 56.0, 14.4, 632.5, and 5637.1 times lower
than that of S1 to S12 on average, respectively.

5.3.2 Frequency Estimation for Per-Item

AAE (Fig. 9(a)-9(d)): We find that, on the four datasets,
the AAE of OneSketch is 2.9, 78.9, 338.9, 336.0, 18.7, 11.5,
16.3, 28.1, 10.0, 3.4, 12.4, and 1061.1 times lower than that of
S1 to S12 on average, respectively.

ARE (Fig. 10(a)-10(d)): we find that, on the four datasets,
the ARE of OneSketch is 5.3, 142.8, 101.5, 116.0, 33.2, 21.3,

33.3, 49.7, 17.4, 6.6, 24.8, and 1883.3 times lower than that of
S1 to S12 on average, respectively.

5.3.3 Heavy Hitters

We set the threshold to be 2×10−5 the total size of traffic.
As shown in Fig. 11-13, we find that the F1 Score, AAE, and
ARE of OneSketch are always better than those of the 12
SOTA schemes.

F1 Score (Fig. 11(a)-11(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 36.0%, 90.2%, 65.4%,
67.2%, 75.0%, 71.8%, 86.1%, 88.4%, 82.3%, 28.4%, 79.6%, and
84.1% higher than that of S1 to S12 on average under 200KB
of memory, respectively.

AAE (Fig. 12(a)-12(d)): We find that, on the four datasets,
the AAE of OneSketch is 13.8, 114.8, 1194.0, 1202.2, 769.5,
86.6, 79.0, 116.5, 31.5, 16.7, 676.3, and 3024.3 times lower
than that of S1 to S12 on average, respectively.

ARE (Fig. 13(a)-13(d)): We find that, on the four datasets,
the ARE of OneSketch is 9.7, 144.2, 908.6, 863.3, 427.6, 89.1,
70.2, 103.6, 24.9, 11.6, 360.2, and 1386.2 times lower than that
of S1 to S12 on average, respectively.

5.3.4 Heavy Changes in the Time Dimension

We set the threshold to be 1 × 10−4 of the total size
of traffic. The experimental results in Fig. 14 show that
OneSketch always achieves a better F1 Score than the 12
SOTA schemes.

F1 Score (Fig. 14(a)-14(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 48.3%, 82.6%, 61.1%,
63.3%, 69.9%, 66.6%, 81.5%, 82.3%, 72.4%, 25.2%, 72.3%, and
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Fig. 11: F1 Score of heavy hitters.
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Fig. 12: AAE of heavy hitters.
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Fig. 13: ARE of heavy hitters.

76.0% higher than that of S1 to S12 on average under 200KB
of memory, respectively.

5.3.5 Heavy Changes in the Spatial Dimension

In this section, we conduct experiments for the case
where the frequency decreases sharply between two adja-
cent physical nodes as an example. The typical application
is packet loss detection in networks. For the first node, we
set each of our four datasets as the data streams which flow
through it. For the second node, we reconstruct our datasets
in the following steps: (1) We set the threshold to be 1×10−5

of the total size of traffic and pick up frequent items from
the original dataset. (2) For any item in the original frequent
items, we drop it with 70% probability. Eventually, we set
the threshold to be 1×10−4 of the total size of traffic to detect
heavy changes in adjacent two nodes. The experimental
results in Fig. 15 show that OneSketch always achieves a
better F1 Score than the 12 SOTA schemes.

F1 Score (Fig. 15(a)-15(d)): We find that, on the four
datasets, the F1 Score of OneSketch is 38.4%, 77.1%, 57.0%,

60.5%, 65.4%, 63.9%, 66.7%, 70.2%, 67.9%, 28.7%, 68.6%, and
73.0% higher than that of S1 to S12 on average under 200KB
of memory, respectively.

5.3.6 Throughput

In this section, we show the throughput of 13 schemes in-
volving frequent-item frequency estimation tasks (Sections
5.3.1, and 5.3.3 to 5.3.5) and per-item frequency estimation
tasks (Section 5.3.2). Because some of the schemes have two
versions for these two types of tasks (see Algorithm Con-
figuration in Section 5.1 for details), while other schemes
have no distinction. The above results are shown as the
average throughput of 13 schemes in memory 200KB to
1000KB stepping 200KB.

Throughput comparison of frequent-item versions
(Fig. 16(a) - 16(d), orange part): We find that, on the four
datasets, the throughput of OneSketch is 0.80, 1.6, 5.5, 1.6,
2.9, 3.6, 2.0, 1.3, 2.4, 0.79, 2.9, and 4.2 times higher than that
of S1 to S12 on average, respectively. We can see that the
throughput of OneSketch is less than ES because Frequency
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Fig. 14: F1 Score of heavy changes in the time dimension.
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Fig. 15: F1 Score of heavy changes in the spatial dimension.

Read/Write Control technique will add extra operations
when item replacement occurs and the insert operation of
the tailored Tower CU is much more complex than the light
part of ES. What’s more, for CM/CU/C, they use minheap
to maintain top-k items so that their throughput decreases
and is less than that of OneSketch.

Throughput comparison of per-item versions (Fig. 16(a)
- 16(d), green part): We find that, on the four datasets, the
throughput of OneSketch is 0.61, 1.2, 4.2, 1.2, 0.72, 1.3, 1.6,
1.01, 1.9, 0.60, 0.69, and 3.2 times higher than that of S1 to
S12 on average, respectively. For OneSketch, due to adding
Replacement Control technique, the throughput decreases
sightly. For CM/CU/C, compared with the top-k version,
they implement without minheap so that throughput in-
creases and may larger than OneSketch.

6 CONCLUSION

In this paper, we propose the OneSketch, which is
generic for five important tasks and more accurate than
SOTA solutions. One of the measurement tasks considered
for OneSketch has hardly been studied despite having
interesting applications. We call it heavy changes in the
spatial dimension. The key design philosophy of OneS-
ketch is overestimation control, around which we propose
four techniques that embrace hash collisions and minimise
overestimation errors in terms of extremely recurrent item
replacements. Experimental results show that OneSketch
performs better in five measurement tasks than ElasticS-
ketch and the other 11 schemes.
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