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Abstract

Background: The site frequency spectrum summarizes the distribution of allele frequencies throughout the genome, and it is widely
used as a summary statistic to infer demographic parameters and to detect signals of natural selection. The use of high-throughput
low-coverage DNA sequencing data can lead to biased estimates of the site frequency spectrum due to high levels of uncertainty in
genotyping.

Results: Here we design and implement a method to efficiently and accurately estimate the multidimensional joint site frequency
spectrum for large numbers of haploid or diploid individuals across an arbitrary number of populations, using low-coverage se-
quencing data. The method maximizes a likelihood function that represents the probability of the sequencing data observed given
a multidimensional site frequency spectrum using genotype likelihoods. Notably, it uses an advanced binning heuristic paired with
an accelerated expectation-maximization algorithm for a fast and memory-efficient computation, and can generate both unfolded
and folded spectra and bootstrapped replicates for haploid and diploid genomes. On the basis of extensive simulations, we show that
the new method requires remarkably less storage and is faster than previous implementations whilst retaining the same accuracy.
When applied to low-coverage sequencing data from the fungal pathogen Neonectria neomacrospora, results recapitulate the patterns
of population differentiation generated using the original high-coverage data.

Conclusion: The new implementation allows for accurate estimation of population genetic parameters from arbitrarily large, low-
coverage datasets, thus facilitating cost-effective sequencing experiments in model and non-model organisms.

Keywords: site frequency spectrum, high-throughput sequencing, genotype likelihoods, next-generation sequencing, maximum like-
lihood, population genetics, threading

Introduction
Over the past 2 decades, next-generation sequencing (NGS) tech-
nologies have allowed researchers to generate large amounts of
genomic data for both model and non-model species [1]. Across
various experimental settings, low-coverage whole-genome se-
quencing (lcWGS) is becoming one of the most popular ap-
proaches in population genomics studies [2], with short-read data
being the most feasible option at the moment. At a fixed experi-
mental budget, sequencing a larger sample size at the cost of de-
creasing the individual read depth has been the preferred strategy
in population genetics because it is associated with less biased
estimates of notable parameters [3]. However, under these con-
ditions, the high degree of uncertainty that inherently exists for
lcWGS data prevents the assignment of individual genotypes and
single-nucleotide polymorphisms (SNPs) [4].

To solve this issue, statistical methods that compute a prob-
ability measure for each of the possible genotypes (the geno-
type likelihoods) and integrate over these probabilities in the
downstream analyses have been proposed [5]. In general a geno-
type likelihood is calculated independently for each individual
for each site and is the probability of the read data D given
the true unobserved genotype G, which in a diploid context is
given by

L(G = {A1, A2} | D) ∝ Pr(D | G = {A1, A2}), A1, A2 ∈ {A,C, G, T}
Many genotype likelihood models exist [6–9], and the canonical
genotype likelihood model is shown below; M denotes sequenc-
ing depth, bi is the nucleotide for the ith read, and ei is the asso-
ciated error rate, which is in practice given by the phred-scaled
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base quality score of the nucleotides of the read:

Pr(D | G = A1A2) =
∏M

i=1
Pr(bi | G = A1A2)

=
∏M

i=1

[
2−1Pr(bi | A1) + 2−1Pr(bi | A2)

]
,

Pr(bi | A) =
{

ei
3 if bi �= A
1 − ei if bi = A

.

Previous studies have shown that summary statistics commonly
used in population genetics can be reliably estimated from lcWGS
data using genotype likelihoods [10–19]. The calculation of these
estimators is implemented in the dedicated software packages
ngsTools [20] and ANGSD [21]. Whilst being regarded as the gold
standard tool kit for population genetic inferences from lcWGS
data, these implementations tend to be computationally expen-
sive and require a large file storage capacity when applied to large
numbers of sequenced samples, limiting their scalability with
modern experimental datasets.

The estimation of the site frequency spectrum (SFS) is one
of the analyses most affected by poor scalability. The SFS is ar-
guably one of the most important summary statistics of popu-
lation genetic data because it summarizes the distribution of al-
lele frequencies throughout the genome. The SFS contains invalu-
able information on the demographic and adaptive processes that
shaped the evolution of the population under investigation [22].
For instance, an SFS showing an overrepresentation of rare alle-
les is an indication of an expanding population, while bottleneck
events tend to deplete low-frequency variants. Complex scenar-
ios of repeated bottlenecks and gene flow may also generate an
excess of rare alleles [23, 24]. Similarly, a locus targeted by posi-
tive selection will exhibit an excess of rare variants, while balanc-
ing selection will cause an increase of common (i.e., intermediate-
frequency) alleles.

The calculation of the joint, or multidimensional, SFS allows
for the inference of the evolutionary relationships between popu-
lations [25]. In fact, many statistical methods to estimate demo-
graphic parameters from population genetic data use the multi-
dimensional SFS as the sole input [26]. Additionally, widely used
metrics of genetic differentiation between populations can be di-
rectly calculated from the multidimensional SFS, including es-
timators of the fixation index (FST) and the population branch
statistic (PBS) [27].

Here, we propose a method to efficiently estimate the multi-
dimensional SFS (and statistics thereof) for an arbitrary number
of populations of either haploids or diploids, given lcWGS data.
We evaluate its performance over a range of experimental sce-
narios and describe its new features in terms of speed and data
storage. This novel implementation greatly reduces the compu-
tational cost and storage requirements through an accelerated
expectation maximization (EM) algorithm that uses a subset of
sample allele frequency likelihoods for any given SNP and allows
for the calculation of FST and PBS values on the fly. As an illustra-
tion, we demonstrate the applicability of this tool by calculating
metrics of genetic differentiation between strains of haploid fun-
gus Neonectria neomacrospora from NGS data. This novel method is
part of the ANGSD pipeline [21, 28].

Materials and Methods
Fast calculation of site frequency likelihoods
We seek to compute likelihoods y of possible sample allele fre-
quencies for a single site, given a set of genotype likelihoods across

samples. For a sample of diploids with n individuals, y is a 2n + 1
vector containing the likelihood of observing zero derived alleles,
1 derived allele, etc., up to 2n derived alleles. It follows that first
and last elements of this vector represent monomorphic alleles.
Each element of y is a very large combinatorial product and sum,
even for a moderate number of individuals n. A dynamic program-
ming algorithm described by Fumagalli et al. [5] and implemented
by Korneliussen et al. [21] computes the entire vector efficiently
in O(n2). Assuming that the likelihood vector is unimodal (which
is frequently the case and easy to verify on the fly), Han et al.
[19] proposed an algorithm that only updates entries around the
mode, reducing cost to O(n). We have implemented this low-cost
version of the original algorithm in ANGSD. We here emphasize
that the novelty lies not in the development of the dynamic pro-
gramming algorithm presented by Han et al. [19] but in the exten-
sion of this to a haploid and multidimensional population context.
To our knowledge, there is no other readily available implemen-
tation.

We have also developed an analogous algorithm for haploids,
in which case y has n + 1 elements and y[i] is the likelihood of
i derived alleles in a sample of n haploids. The quantity y is ini-
tialized using the genotype likelihoods for the ancestral and de-
rived states in the first haploid sample (x(1)

0 and x(1)
1 , respectively)

so that y(1) = [x(1)
0 , x(1)

1 ], and then is incrementally updated with
genotype likelihoods from subsequent samples: at the ith itera-
tion, given the output y(i − 1) from the previous iteration and the
genotype likelihoods x(i)

0 , x(i)
1 for the ith sample, the jth element of

the updated likelihood vector is equal to,

φ(i, j) = y(i)[ j] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(i)
0 y(i−1)[0] if j = 0

x(i)
1 y(i−1)[i − 1] if j = i

(i− j)
i x(i)

0 y(i−1)[ j] + j
i x(i)

1 y(i−1)[ j − 1] otherwise,

(1)

so that the length of y increases by 1 with each iteration (e.g.,
the superscript (i) indicates that the vector incorporates genotype
likelihoods up to the ith sample and thus has i + 1 elements). As
for the diploid case, the full recursion (on n haploids) can be per-
formed in O(n) by only updating the y in a band of allele frequen-
cies wherein the likelihoods exceed some predefined threshold ε

(Algorithm 1). In the rare cases where the site frequency likeli-
hoods are not unimodal, we revert to the original O(n2) algorithm.
The derivation for equation (1) is in the Supplementary Informa-
tion section 1.

Applications of site frequency likelihoods
Given vectors of site frequency likelihoods for sites across an ar-
bitrarily large genomic region such as a segment of a chromo-
some, we can obtain a maximum likelihood estimate of the as-
sociated SFS (or its multidimensional analogue for multiple pop-
ulations) via EM [21]. Many statistics of interest are either linear
combinations of elements of the SFS (e.g., various estimators of
the population-scaled mutation rate θ ) or are ratios involving such
linear combinations (e.g., FST). In many cases, we are interested in
the local behaviour of these statistics within an interval around a
locus of interest.

However, these local estimates may involve few segregating
sites and thus may be particularly sensitive to low-coverage data
and/or sequencing errors. We can reduce the variance in these lo-
cal estimates by leveraging genome-wide information and using
the globally estimated SFS as the prior in an empirical Bayes pro-
cedure [12]. Specifically, let l (s)

k , u(s)
k , and y(s)

k be the lower bound,

https://github.com/ANGSD
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upper bound, and likelihood band, respectively, for the sample al-
lele frequency at site s in population k, as output by Algorithm 1 or
its diploid variant. Let �(i1, …, iP) be a linear statistic of allele fre-
quencies i across P populations, and z be the P-dimensional global
SFS. The empirical Bayes estimate of � across an arbitrarily small
interval M is as follows:

�̂EB =
∑

s∈M C−1
s

∑u(s)
1

i1=l(s)
1

· · ·
∑u(s)

P

iP=l(s)
P

�(i1, . . . , iP )z[i1, . . . , iP]
∏P

k=1
y(s)

k [ik]

C−1
s =

∑u(s)
1

i=l(s)
1

· · ·
∑u(s)

P

i=l(s)
P

z[i1, . . . , iP]
∏P

k=1
y(s)

k [ik]

For many organisms, the polarization of alleles into ancestral
and derived states is not possible owing to lack of ancestral ge-

nomic material or a recently diverged outgroup. In this case, it
is preferable to fold the SFS such that the frequency of the mi-
nor allele is estimated instead. To this end, we generalized the
single-population probability model for the folded SFS in [5] to an
arbitrary number of populations and derived an EM update for ef-
ficient optimization (Algorithm 2). Briefly, this is accomplished by
introducing per-site latent variables that indicate the number of
non-ancestral alleles in the sample and whether the site is cor-
rectly polarized, then taking the expectation of the joint log prob-
ability function with regard to these latent variables to find the
EM update [21, 29] (further details are in the Supplementary Infor-
mation). Local statistics that are symmetric with regard to allele
polarization may then be estimated using the (global) folded SFS
and the empirical Bayes procedure described above.

Benchmarking
To compare the computational performance of the new im-
plementation with the existing method [21], we examined the
elapsed real time of the site allele frequency likelihood calcu-
lation (“-doSaf”), disk usage of BGZF compressed site allele fre-
quency likelihood files (“saf.gz”), maximum memory usage, and
the elapsed real time of the maximum likelihood estimation of
the SFS (“realSFS”). We performed these analyses on NGS data for
5, 10, 25, 50, 100, 150, and 200 samples from the 1000 Genomes
Project Phase 3 dataset [30] using Chromosome 1. The dataset con-
sists of 14 individuals from Southern Han Chinese (CHS) group,
99 individuals from Finnish in Finland (FIN) group, and 87 indi-
viduals from British in England and Scotland (GBR) group [30]. We
emphasize that we are subsampling across all 200 individuals as-
suming that they are from a single population: the purpose of this
specific benchmark is to assess the computational performance
rather than the accuracy of SFS estimation.

We used 5 replicates for each step in the analyses and retained
the lowest value for elapsed real times, to minimize the influence
of concurrent processes on our multiuser system. All analyses
were conducted on a Red Hat Enterprise Linux Server 7.7 (Maipo)
with Intel(R) Xeon(R) Gold 6152 CPUs at 2.10 GHz (x86_64) for
benchmarking purposes. The commands used are angsd -b ${FILE}

-anc ancestral.fq -doSaf 1 -gl 1 -r 1 -out ${FILE} and realSFS ${FILE}.saf.idx.

Accuracy on simulated data
To test the accuracy of the new implementation for the esti-
mation of the multidimensional SFS, we simulated 60 pseudo-
chromosomes for 3 equally sampled populations under a realistic
demographic model of recent human history [26] using the soft-
ware ms [31]. Simulated data consisted of sequences that were
1/10 of the length of human chromosome 22 (≈5 Mb) with real-
istic values of mutation and recombination rates. The command
line used was “ms 60 1 -t 1935 -r 2167 5130456 -I 3 20 20 20 -n
1 1.682020 -n 2 3.736830 -n 3 7.292050 -eg 0 2 116.010723 -eg 0 3
160.246047 -ma x 0.881098 0.561966 0.881098 x 2.797460 0.561966
2.797460 x -ej 0.028985 3 2 -en 0.028985 2 0.287184 -ema 0.028985
3 x 7.293140 x 7.293140 x x x x x -ej 0.197963 2 1 -en 0.303501 1 1”
with seed numbers “44349 37512 34833.” The “ms” command pro-
duced 1 replicate of 60 sampled haplotypes (ms 60 1) for 3 pop-
ulations with equal sample size (-I 3 20 20 20) with fixed muta-
tion and recombination rates (-t 1935 -r 2167) scaled by the region
length (5,130,456 bp). These values correspond to realistic average
values of mutation [32] and recombination rates [33] in the hu-
man genome. The 3 populations experienced changes in effective
sizes (switches -n, -eg, and -en), gene flow (-ma and -ema), and
splits (-ej) following a previously proposed demographic model
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Table 1. Benchmarking

doSaf realSFS

Sample
size Version Time (min) File size (GB) Time (min)

Memory
usage (GB)

5 Original 76 7.3 5 15.3
Banded 79 2.2 7 10.5

10 Original 135 16.8 13 21.7
Banded 122 3.9 11 12.0

25 Original 279 39.2 81 47.1
Banded 238 5.6 66 12.7

50 Original 547 64.3 123 85.3
Banded 421 6.5 88 13.4

100 Original 1,292 105.9 283 164.7
Banded 965 7.2 126 14.1

150 Original 2,055 142.3 315 244.2
Banded 1,342 8.0 156 15.1

200 Original 2,991 162.0 492 323.7
Banded 2,022 8.0 178 15.0

Benchmarking of original and the novel banded implementation of the SFS
estimation using data from Chromosome 1 of the individuals randomly se-
lected from 1000 Genomes Project Phase 3 Dataset [30]. realSFS time: minimum
elapsed time among 5 replicates; memory usage: maximum value of maximum
memory usage among 5 replicates.

[26]. Simulations can be run using “msprime” [34] with the pro-
gram “mspms,” which allows “ms” commands to be replaced. The
simulation generated data for 12,335 diallelic SNPs, which were
then converted into genotype likelihoods using the utility program
called msToGlf found in the ANGSD software suite [21] (for details
regarding the simulation algorithm we refer to [12]). We choose
an unrealistic high error rate of 1% to show the performance of
our method in a worst-case setting [35]. From these simulated
genomes and SNPs, we generated 100 distinct replicates of geno-
type likelihood data for each tested scenario of average per-site
read depth (1×, 2×, 10×, and 20×) and considered only variables
sites for ease of computation. For each replicate, we estimated
SFS using ANGSD following the aforementioned new implementa-
tion and compared the results at different depths and against the
ground truth. We assessed performance by calculating the root
mean squared deviation (RMSD) and standardized bias (SB), the
latter being the difference of estimated and true values divided
by the true value.

Application to real data
We analysed whole-genome sequencing data from the haploid
fungal pathogen N. neomacrospora [36]. We analysed 70 samples for
3 sampling areas, corresponding to British Columbia (BC, 6 sam-
ples), Quebec (QC, 15 samples), and Europe (EU, 49 samples). We
filtered out reads with mapping quality <30 and nucleotides with
a base quality score <20 (in Phred scale). We used ANGSD to es-
timate the multidimensional SFS for use as prior information in
the local estimation of FST [37] and PBS [27] in overlapping sliding
windows of 20 kb with a step of 2 kb. To assess the accuracy at
lower sequencing depth, we repeated the analyses on a randomly
downsampled dataset where we retained only 25% of sequenced
reads.

Results
Computational performance
We first compared the computational performance between the
original and new (labeled “banded”) implementation for estimat-
ing the site frequency spectrum at different sample sizes. We ob-
serve an almost linear increase of runtime and memory usage
with the number of samples using the original implementation
(Table 1). On the other hand, we observe a lower disk and memory

usage and runtime for large sample sizes using the new banded
implementation, which no longer exhibits a proportional increase
of memory with sample size.

Estimation of site frequency spectra
We estimated multidimensional SFS from simulated sequencing
data and compared results across different sequencing depths
(Figs 1 and2 and Supplementary Figs S1–S28). For the interpreta-
tion of these figures, the high-depth scenarios can be assumed to
be the true SFS.

We observe that the mean estimates of SFS across replicates
do not differ between sequencing depths except for a few private
and low-frequency bins, where lower depths tend to overestimate.
Estimates from low depths (1× and 2×) present a larger variance
in their distributions and, therefore, show higher RMSD than esti-
mates from high depths (10× and 20×) (Figs 1, 2 and Supplemen-
tary Figs S1, S4). This pattern is observed in 1D, 2D, and 3D SFS
(Supplementary Figs S7 and S9).

Within each SFS, low frequencies exhibit high RMSD (Supple-
mentary Figs S1, S4), while high frequencies have higher absolute
values of SB (Supplementary Figs S2, S5) as a result of having low
counts. In 2D and 3D SFS, most of the errors are concentrated in
population-private (high absolute SB) or low-frequency bins (high
RMSD) (Supplementary Figs S7–S10). We replicated all these find-
ings for both unfolded and folded multidimensional spectra (Sup-
plementary Figs S14–S28).

Finally, the choice of tolerance for calculation of site frequency
likelihood bands had a minimal impact on the estimated SFS, in
both folded and unfolded cases (Table 2), as previously suggested
[19].

Population differentiation in Neonectria
neomacrospora
We used the method described herein to estimate the SFS
from whole-genome sequences of the fungal pathogen N. neo-
macrospora. We analyzed 70 samples for 3 main sampling areas
(BC, QC, EU) [36] and downsampled the original sequencing data to
mimic the challenges associated with low-coverage settings. From
the estimated SFS, we sought to estimate the levels of genetic dif-
ferentiation, as measured by PBS [27] in sliding windows.

Results show that when BC is the target population in PBS cal-
culation, we observe greater levels of differentiation (Fig. 3) than
those obtained when QC or EU are considered target populations,
in line with recent findings [36]. We also highlighted outlier win-
dows with exceptionally high values of PBS compared to the em-
pirical distribution (Fig. 3). Notably, we obtained similar results
when using the full-coverage sequencing data (Supplementary
Fig. S29), although the scale of PBS values differs.

Conclusion
In this study, we present a novel implementation for the estima-
tion of multidimensional SFS from lcWGS data. We show that the
new method is faster and requires less memory and data stor-
age than the currently available solution. Notably, these improve-
ments do not come at the cost of accuracy because estimated
spectra display low error rates on simulated low-depth data or
artificially downsampled real sequencing data.

We foresee several avenues for improving the methods and
software developed for this study. For instance, additional met-
rics of genetic differentiation can be easily extracted from the esti-
mated multidimensional SFS, such as genome divergence DXY [38].
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Figure 1: Estimation of 1D SFS. Distribution of estimated SFS for
individual populations at 4 different sequencing average depths (1×, 2×,
10×, and 20×) across 100 simulations. Each box plot represents the
distribution of the estimated number of alleles with a certain derived
allele frequency, in log10 scale, across the 100 simulated data replicates.
D shows a 4-tile plot of the mean values of the distributions, where each
tile corresponds to a different depth. Notice that we do not observe any
difference in any 4-tiles across any population or sequencing depth. The
monomorphic positions are omitted in all the panels.

Likewise, extending this framework to an arbitrary ploidy would
allow the estimation of SFS for polyploid species. Finally, a future
user-friendly GUI for the ANGSD pipeline would make these anal-
yses accessible to a broader user base.

The estimation of fundamental population genetic parame-
ters over genomic intervals is crucial for elucidating how vari-
ous evolutionary forces have acted to shape contemporary ge-
netic polymorphism across species and populations. The devel-
opment and implementation of sound statistical and bioinfor-
matic methods that are robust to the uncertainty inherent in
low-coverage sequence data and that leverage genome-wide infor-
mation to improve local estimates are necessary for maintaining
cost-effectiveness without sacrificing accuracy in the generation
of large-scale population genomic data.

Implementation Details
The program is implemented in a fast multi-threaded C++ pro-
gram and takes as input either BAM/CRAM files or BCF/VCF files
containing genotype likelihood files as produced from standard
tools such as GATK [7] or SAMtools [6].

Availability of Source Code and
Requirements

� Project name: ANGSD/realSFS
� Project home page: https://github.com/ANGSD, https://www.

popgen.dk/angsd
� Operating systems: Platform independent
� Programming language: C/C++
� Other requirements: htslib
� License: GPL
� RRID:SCR_021865
� biotools: angsd

Data Availability
Supporting data and an archival copy of the code are available via
the GigaScience repository, GigaDB [39].

Additional Files
Supplementary Figure S1: Root mean squared deviation of
population-based SFS values shown in Fig. 1. Each panel repre-
sents the root mean squared deviation of the SFS for a differ-
ent population. Each of the coloured distributions of the box plot
shows the root mean squared deviation values for the log10 of the
number of occurrences of each derived allele frequency.
Supplementary Figure S2: Standardized bias of population-based
SFS values shown in Fig. 1. Each panel represents the standardized
bias of the SFS for a different population, at different depths (1×,
2×, 10×, and 20×). Each of the coloured distributions of the box
plot shows the values for the standardized bias of the log10 of the
number of occurrences of each derived allele frequency.
Supplementary Figure S3: Population-based SFS. Each panel rep-
resents the SFS for a different population, for each derived allele
frequency. Each of the coloured distributions of the box plot shows
the log10 of the number of occurrences in depths 1×, 2×, 10×, and
20×.

https://github.com/ANGSD
https://www.popgen.dk/angsd
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Figure 2: Estimation of 3D SFS. Joint distribution of estimated SFS for 3 populations in 4-tile plot, where each tile corresponds to a different depth. SFS
is represented in 3 dimensions (top right panel) and as marginal 2D SFS (top left and bottom panels), where the third axis is marginalized by its sum
value. Values are reported in in log10 scale.

Table 2. Effect of tolerance values on estimated SFS

SFS Depth Tolerance Mean KL

Unfolded 2 1e−4 3.51e−08
1e−6 3.79e−12
1e−8 1.035e−15

5 1e−4 4.69e−08
1e−6 4.75e−13
1e−8 3.78e−16

10 1e−4 6.32e−10
1e−6 6.92e−14
1e−8 3.011e−16

Folded 2 1e−4 1.67e−08
1e−6 2.011e−12
1e−8 3.63e−16

5 1e−4 2.69e−09
1e−6 2.88e−13
1e−8 1.15e−16

10 1e−4 6.43e−10
1e−6 6.67e−14
1e−8 1.38e−16

For each tested scenario, we calculated the average KL divergence over 100 rep-
etitions between the 2D-SFS with tolerance equal to 0 and several alternative
values.

Figure 3: Sliding windows scan for genetic differentiation in 3
populations of Neonectria neomacrospora. We calculated PBS in sliding
windows of 20 kb with a step of 2 kb. Each panel represents a separate
scan where each population was considered the target and the
remaining 2 controls. The highlighted points indicate windows with an
empirical rank P < 10−3 in each population. Sequencing data were
randomly downsampled to 25% of their original amount.
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Supplementary Figure S4: Root mean squared deviation of
population-based SFS values shown in Supplementary Fig. S3.
Each panel represents the root mean squared deviation of the
SFS for a different population, for each derived allele frequency.
Each of the coloured distributions of the box plot shows root mean
squared deviation of the log10 of the number of occurrences in
depths 1×, 2×, 10×, and 20×.
Supplementary Figure S5: Standardized bias of population-based
SFS values shown in Supplementary Fig. S3. Each panel rep-
resents the standardized bias of the SFS for a different popu-
lation, for each derived allele frequency. Each of the coloured
distributions of the box plot shows the standardized bias of
the log10 of the number of occurrences in depths 1×, 2×, 10×,
and 20×.
Supplementary Figure S6: Two-population joint SFS. Each panel
represents the 2-population joint SFS for a different pair of popu-
lations, for each derived allele frequency. Each colour of the 4-tile
squares is according to the log10 of the number of occurrences at
depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S7: Root mean squared deviation of the
2-population joint SFS values shown in Supplementary Fig. S6.
Each panel represents the root mean squared deviation of the 2-
population joint SFS for a different pair of populations, for each
derived allele frequency. Each colour of the 4-tile squares is ac-
cording to the root mean squared deviation of the log10 of the
number of occurrences at depths 1×, 2×, 10×, and 20×, like in
Fig. 2.
Supplementary Figure S8: Standardized bias of the 2-population
joint SFS values shown in Supplementary Fig. S6. Each panel rep-
resents the standardized bias of the 2-population joint SFS for
a different pair of populations, for each derived allele frequency.
Each colour of the 4-tile squares is according to the standardized
bias of the log10 of the number of occurrences at depths 1×, 2×,
10×, and 20×, like in Fig. 2.
Supplementary Figure S9: Root mean squared deviation of the
3-population joint SFS shown at Fig. 2. Each panel represents the
root mean squared deviation of the 3-population joint SFS for a
different pair of populations, for each derived allele frequency.
Each colour of the 4-tile squares is according to the root mean
squared deviation of the log10 of the marginal sum of the number
of occurrences across the third axis at depths 1×, 2×, 10×, and
20×, like in Fig. 2.
Supplementary Figure S10: Standardized bias of 3-population
joint SFS shown at Fig. 2. Each panel represents the standardized
bias of the 3-population joint SFS for a different pair of popula-
tions, for each derived allele frequency. Each colour of the 4-tile
squares is according to the standardized bias of the log10 of the
marginal sum of the number of occurrences across the third axis
at depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S11: Three-population joint SFS. Each
panel represents the 3-population joint SFS for a different pair of
populations, for each derived allele frequency. Each colour of the
4-tile squares is according to the log10 of the mean of the number
of occurrences across the third axis at depths 1×, 2×, 10×, and
20×, like in Fig. 2.
Supplementary Figure S12: Root mean squared deviation of the
3-population joint SFS shown in Supplementary Fig. S11. Each
panel represents the root mean squared deviation of the 3-
population joint SFS for a different pair of populations, for each
derived allele frequency. Each colour of the 4-tile squares is ac-
cording to the root mean squared deviation of the log10 of the
mean of the number of occurrences across the third axis at depths
1×, 2×, 10×, and 20×, like in Fig. 2.

Supplementary Figure S13: Standardized bias of 3-population
joint SFS shown in Supplementary Fig. S11. Each panel represents
the standardized bias of the 3-population joint SFS for a different
pair of populations, for each derived allele frequency. Each colour
of the 4-tile squares is according to the standardized bias of the
log10 of the mean of the number of occurrences across the third
axis at depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S14: Population-based folded SFS. Each
panel represents the folded SFS for a different population, for
depths 1×, 2×, 10×, and 20×. Each of the coloured distributions
of the box plot shows the values for the log10 of the number of
each allele frequency.
Supplementary Figure S15: Root mean squared deviation of the
population-based folded SFS. Each panel represents the root mean
squared deviation of the folded SFS for a different population.
Each of the coloured distributions of the box plot shows the val-
ues for root mean squared deviation of the log10 of the number of
each allele frequency.
Supplementary Figure S16: Standardized bias of the population-
based folded SFS. Each panel represents the standardized bias of
the folded SFS for a different population. Each of the coloured dis-
tributions of the box plot shows the values for the standardized
bias of the log10 of the number of each allele frequency.
Supplementary Figure S17: Popualtion-based folded SFS. Each
panel represents the folded SFS for a different population, for each
allele frequency. Each of the coloured distributions of the box plot
shows the log10 of the number of occurrences in depths 1×, 2×,
10×, and 20×.
Supplementary Figure S18: Root mean squared deviation of
population-based folded SFS values shown in Supplementary Fig.
S17. Each panel represents the standardized bias of the folded SFS
for a different population, for each allele frequency. Each of the
coloured distributions of the box plot shows the standardized bias
of the log10 of the number of occurrences in depths 1×, 2×, 10×,
and 20×.
Supplementary Figure S19: Standardized bias of population-
based folded SFS values shown in Supplementary Fig. S17. Each
panel represents the standardized bias of the folded SFS for a dif-
ferent population, for each allele frequency. Each of the coloured
distributions of the box plot shows the standardized bias of the
log10 of the number of occurrences in depths 1×, 2×, 10×, and
20×.
Supplementary Figure S20: Two-population joint folded SFS. Each
panel represents the 2-population joint folded SFS for a different
pair of populations, for each allele frequency. Each colour of the 4-
tile squares is according to the log10 of the number of occurrences
at depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S21: Root mean squared deviation of the
2-population joint folded SFS values shown at Supplementary Fig.
S20. Each panel represents the root mean squared deviation of the
2-population joint SFS for a different pair of populations, for each
allele frequency. Each colour of the 4-tile squares is according to
the root mean squared deviation of the log10 of the number of
occurrences at depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S22: Standardized bias of the 2-population
joint folded SFS values shown in Supplementary Fig. S20. Each
panel represents the standardized bias of the 2-population joint
SFS for a different pair of populations, for each allele frequency.
Each colour of the 4-tile squares is according to the standardized
bias of the log10 of the number of occurrences at depths 1×, 2×,
10×, and 20×, like in Fig. 2.
Supplementary Figure S23: Three-population joint folded SFS.
Each panel represents the 3-population joint folded SFS for a dif-
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ferent pair of populations, for each allele frequency. Each colour
of the 4-tile squares is according to the log10 of the marginal sum
of the number of occurrences across the third axis at depths 1×,
2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S24: Root mean squared deviation of the
3-population joint folded SFS shown in Supplementary Fig. S23.
Each panel represents the root mean squared deviation of the 3-
population joint SFS for a different pair of populations, for each
allele frequency. Each colour of the 4-tile squares is according to
the root mean squared deviation of the log10 of the marginal sum
of the number of occurrences across the third axis at depths 1×,
2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S25: Standardized bias of 3-population
joint folded SFS shown in Supplementary Fig. S20. Each panel rep-
resents the standardized bias of the 3-population joint SFS for
a different pair of populations, for each derived allele frequency.
Each colour of the 4-tile squares is according to the standardized
bias of the log10 of the marginal sum of the number of occurrences
across the third axis at depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S26: Three-population joint SFS. Each
panel represents the 3-population joint folded SFS for a different
pair of populations, for each derived allele frequency. Each colour
of the 4-tile squares is according to the log10 of the mean of the
number of occurrences across the third axis at depths 1×, 2×, 10×,
and 20×, like in Fig. 2.
Supplementary Figure S27: Root mean squared deviation of the
3-population joint SFS shown in Supplementary Fig. S11. Each
panel represents the root mean squared deviation of the 3-
population joint SFS for a different pair of populations, for each
derived allele frequency. Each colour of the 4-tile squares is ac-
cording to the root mean squared deviation of the log10 of the
mean of the number of occurrences across the third axis at depths
1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S28: Standardized bias of 3-population
joint SFS shown in Supplementary Fig. S11. Each panel represents
the standardized bias of the 3-population joint SFS for a different
pair of populations, for each derived allele frequency. Each colour
of the 4-tile squares is according to the standardized bias of the
log10 of the mean of the number of occurrences across the third
axis at depths 1×, 2×, 10×, and 20×, like in Fig. 2.
Supplementary Figure S29: Sliding windows scan for genetic dif-
ferentiation in 3 populations of Neonectria neomacrospora. We cal-
culated PBS in sliding windows of 20 kb with a step of 2 kb. Each
panel represents a separate scan where each population was con-
sidered the target and the remaining 2 controls. The highlighted
points indicate windows with an empirical rank P < 10−3 in each
population. Compared to Fig. 3, sequencing data are not down-
sampled.
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