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1. Introduction

The rencontre problem is one of the oldest problems of probability theory. If n people exchange their
hats at random, the probability that no one receives their own hat is about e−1. This classic result relates
to the probability that the permutation of [n] := {1, . . . , n} has no fixed points (singleton cycles). Such a
permutation is called a derangement. For permutations of increasing degree one can consider a dynamic
version of the rencontre problem. Given a stochastic process that sequentially constructs permutations on
n = 1, 2, . . . elements, how often a derangement will be observed? What are other path properties of the
number of fixed points seen as a process? Questions of this sort can be asked also about other functionals
related to the cycle structure of the permutation.

A growth rule which received considerable attention in the literature is the following preferential attach-
ment algorithm known as the Chinese Restaurant Process (CRP) [3, 9, 26]. Given a permutation of [n] which
has been constructed at step n, element n + 1 is either appended to the permutation as a new singleton
cycle with probability proportional to θ, or inserted in random position within any existing cycle of size m
with probability proportional to m. The permutation obtained at step n has the Ewens distribution, which
is the uniform distribution on n! permutations in the case θ = 1. Properties of the Ewens distribution of
fixed degree have been thoroughly studied. Still, there does not seem to be much work done on the dynamic
properties connecting permutations with variable n.

We will show that for the discrete-time CRP the proportion of time when the permutation has no fixed
points does not converge. An intuitive explanation for this is that the process counting fixed points slows
down as n increases, spending more and more steps at the same level. To achieve convergence, we employ a
known embedding of the CRP in a continuous-time birth process with immigration [16]. In this realisation
the process counting fixed points becomes identical with a M/M/∞ queue, whose features have been intensely
studied. Going deeper in this vein, the full process of cycle counts behaves as a series of such queues arranged
in a tandem. The principal point of the present note is that this analogy opens the way to translate many
results from the queueing theory in terms of the evolutionary properties of permutations. There is vast
literature on infinite-server queues, so we do not attempt to survey the field exhaustively. Much more our
strategy is to collect and complement results allowing for transparent combinatorial interpretation, with the
primary focus on the small cycle counts of permutation.

2. Background

Let Π(n) be the random permutation of [n] at the nth step of the CRP. The distribution of Π(n) is
invariant under conjugations. For different degrees the permutations are consistent, in the sense that Π(m),
for m < n, can be derived from Π(n) by removing elements m+1, . . . , n from their cycles and deleting empty
cycles if necessary.
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Let C
(n)
i be the number of cycles of size i in Π(n). Thus C

(n)
1 counts singletons (fixed points), C

(n)
2

doubletons, and so on. The vector of counts C(n) := (C
(n)
1 , C

(n)
2 , . . .) is a random integer partition repre-

senting the cycle structure of Π(n). The generic value of C(n) is a vector c = (c1, c2, . . .) ∈ Z∞
+ satisfying∑∞

i=1 ici = n (hence ci = 0 for i > n). The law of Π(n) is Ewens’ distribution, which assigns probability
θc/(θ)n to permutation with c =

∑n
i=1 ci cycles (where (θ)n = θ(θ + 1) · · · (θ + n − 1)), so permutations of

[n] with the same number of cycles are equally likely.

The process (C(n), n ≥ 1) (we shall also use shorthand notation C(·)) is a nonhomogeneous Markov
chain starting from the identity permutation for n = 1 and evolving in Z∞

+ with transition probabilities

P
[
C(n+1) = (c1 + 1, c2, . . .)|C(n) = c

]
=

θ

θ + n
, (1)

P
[
C(n+1) = (c1, . . . , ci − 1, ci+1 + 1, . . .)|C(n) = c

]
=

ici
θ + n

, ci > 0. (2)

Transition of the first type occurs when n + 1 starts a new cycle, and of the second when the element is
inserted in an existing cycle of Π(n). The state distribution is widely known as the Ewens sampling formula

P[C(n) = c] =
n!

(θ)n

n∏
i=1

(
θ

i

)ci 1

ci!
,

n∑
i=1

ici = n. (3)

The number of cycles in Π(n), denoted by

K(n) :=

n∑
i=1

C
(n)
i ,

has probability generating function (p.g.f.)

EzKn =
(θz)n
(θ)n

, (4)

which corresponds to the distribution of the sum of n independent Bernoulli variables with success proba-
bilities i/(i+ θ − 1), i = 1, 2, . . . , n. As n→ ∞,

K(n) ∼ θ log n a.s.,
K(n) − θ log n√

θ log n

d→ N(0, 1). (5)

The counts C
(n)
k for k = 1, 2, . . . , n are not independent because of the constraint in (3). Nevertheless, the

small cycle counts of large permutation are almost independent:

C(n) d→ (Z1, Z2, . . .), n→ ∞, (6)

where the random variables Zk are independent with Poisson distribution Zk
d
= Poiss(θ/k). The convergence

(6) holds with all moments. See [3] for detailed discussion including estimates of the convergence rate.

2



3. Time averages in the CRP

For k ≥ 1 we denote C
(n)
k := (C

(n)
1 , . . . , C

(n)
k ) the truncated vector of the first k cycle counts. Easily

from (1) and (2), C
(·)
k itself evolves as a Markov chain. Each transition of type (1) or (2) with i ≤ k triggers

a jump of the truncated chain, while transitions of type (2) with i > k result in a loop, by which we mean

same value C
(n+1)
k = C

(n)
k . We assert that the average time spent in any given state (c1, . . . , ck), that is

#{m ≤ n : C
(m)
k = (c1, . . . , ck)}/n, does not have a limit as n→ ∞. For the sake of simplicity of exposition

we only consider the singleton count, the general case being completely analogous.

The process (C
(n)
1 , n ≥ 1) is a nonhomogeneous Markov chain on Z+ which in state c has transition

probabilities

P[C(n+1)
1 = j |C(n)

1 = c] =



θ

θ + n
, for j = c+ 1, 0 ≤ c ≤ n,

c

θ + n
, for j = c− 1, 1 ≤ c ≤ n,

n− c

θ + n
, for j = c, 0 ≤ c ≤ n.

(7)

Loops occur in the event C
(n+1)
1 = C

(n)
1 . By time n there will be about K(n) ∼ θ log n upward moves caused

by starters, and about the same number of downward moves caused by upgrading of singletons to doubletons.
We introduce here the time spent in state c,

Tn(c) := #{m ≤ n : C
(m)
1 = c},

the time spent in state c, which equals the number of permutations among Π(1), . . . ,Π(n) with exactly c fixed
points. We will look at the long-run behaviour of the proportion n−1Tn(c) for fixed c ≥ 0. Specialising (6)
to singletons, we have

P[C(n)
1 = i] → e−θθc

c!
, n→ ∞. (8)

Taking the Césaro average in (8) results in the limit for the mean E[n−1Tn(c)] → e−θθc/c!, which suggests
that the proportion itself obeys the law of large numbers. But this intuition is wrong.

Theorem 1. It holds that

lim inf
n→∞

n−1Tn(c) = 0 a.s. and lim sup
n→∞

n−1Tn(c) = 1 a.s.

Proof. Let ν1 < ν2 < . . . be the consequitive times when sojourns at c start, that is C
(νi−1)
1 ̸= c, and

C
(νi)
1 = c. Choose an arbitrary integer γ > 1, and consider the event Ak = {νk+1/νk > γ}. If Ak occurs, the

proportion n−1Tn(c) exceeds 1− 1/γ for n = νk+1.
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Given C
(n)
1 = c and m > n, the probability that C

(j)
1 = c for all j = n, . . . ,m is

m−1∏
j=n

(
1− c+ θ

j + θ

)
= exp

m−1∑
j=n

log

(
1− c+ θ

j + θ

)
= exp

−(c+ θ)

m−1∑
j=n

1

j + θ
+O

(
1

n

)
= exp

(
−(c+ θ) log

(m
n

)
+O

(
1

n

))
. (9)

Taking m = γn, we obtain
γn−1∏
j=n

(
1− c+ θ

j + θ

)
→ γ−(c+θ) as n→ ∞.

Using the strong Markov property to replace fixed m by the random stopping time νk, we conclude that
P[Ak|Πνk

] is bounded away from 0 as k → ∞. It follows that

∞∑
k=1

P[Ak|Πνk
] = ∞ a.s.

Noting that Ak is σ(Πνk+1
)-measurable, Lévy’s conditional Borel-Cantelli lemma ([17], p. 108) applies to

the sequence (Ak, σ(Πνk+1
)) and ensures that these events coincide:{ ∞∑

k=1

P[Ak|Πνk
] = ∞

}
= {Ak i.o.}.

It follows that P[Ak i.o.] = 1.
Letting γ → ∞ we arrive at lim supn→∞ n−1Tn(c) = 1 a.s. for every c. But then since n−1Tn(c) +

n−1Tn(d) ≤ 1 for d ̸= c we also have lim infn→∞ n−1Tn(c) = 0 a.s. □

We leave to the reader checking that the variance of n−1Tn(c) does not vanish asymptotically, hence
convergence in probability also fails. The source of irregularity is the infinite expectation of sojourn times.
This phenomenon is akin to the null recurrence of time-homogeneous Markov chains like the symmetric
random walk.

4. The embedded random walk

The convergence of time averages can be achieved by discarding the loops, that is letting the clock tick
only at times of nontrivial moves.

To explore this thread, let (Ji, i ≥ 0) be a nearest-neighbour random walk on Z+ = {0, 1, 2, . . .} which
moves ±1 with time-independent probabilities

pc =
ρ

c+ ρ
, qc =

c

c+ ρ
, (10)
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respectively, where ρ > 0 is a parameter. The random walk is reversible and, checking the detailed balance
equations, it is seen that it has the unique stationary distribution (cf. [11], Section 6.11, Exercise 2)

αc =
e−ρ(ρ+ c)ρc−1

2 c!
, c ∈ Z+, (11)

which can be decomposed as equi-weighted mixture of Poiss(ρ) distribution on {0, 1, . . .} and the shifted
Poiss(ρ) distribution on {1, 2, . . .}. Appealing to the ergodic theorem, we conclude that the proportion of
time that J· spends at 0 converges to α0 = e−ρ/2. Therefore the mean time between two consequitive visits
to 0 is 1/α0 = 2eρ, and the mean number of upward moves between the visits is eρ.

Define an excursion of J· above level c to be a segment of the path that starts from c+1 and terminates
by hitting c. Assuming J0 = c+ 1, the first passage time

κc := inf{k ≥ 0 : Jk = c} (12)

is the length, and
Hc := sup{Jk : k ≤ κc} − c

is the height of excursion above c.
The random walk starts anew by each visit at c, hence the elementary renewal theorem ensures that the

number of excursions above c completed within k steps is asymptotic to

αc
ρ

ρ+ c
k, k → ∞,

which entails that the limit proportion of time spent above c is

αc
ρ

ρ+ c
E[κc],

which must also be equal to
∑∞

j=c+1 αj by ergodicity. Recalling (11), an easy calculation gives

E[κc] = 1 +
2c!

ρc

∞∑
j=c+1

ρj

j!
.

In particular,
E[κ0] = 2eρ − 1.

To determine the variance of excursion length we adopt a formula of Harris ([15], Equation (5.9)). To
that end, express the product of odds involved in the cited result in terms of Poiss(ρ) probabilities as

πr := e−ρ ρ
r

r!
, so

r−1∏
j=1

qj
pj

= (eρπr−1)
−1,

to obtain

Var [κ0] = 4eρ(2ρ− eρ + 1) + 8eρ
∞∑
r=0

1

πr

 ∞∑
j=r+1

πj

2

. (13)
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Harris ([15], Theorem 2b) also solved the generalised gambler’s ruin problem: for fixed integers 0 ≤ ℓ <
s ≤ u, if the random walk starts at s it will reach u before visiting ℓ with probability

P[J· reaches u before ℓ|J0 = s] =

1

πℓ
+

1

πℓ+1
+ · · ·+

1

πs−1

1

πℓ
+

1

πℓ+1
+ · · ·+

1

πu−1

(14)

Choosing ℓ = c, s = c + 1, u = h + 1 this gives the distribution of Hc, most conveniently expressed in the
form of the upper tail probabilities

P[Hc ≥ h+ 1] =
1

h∑
r=0

(c+ 1)r

ρr

, h ≥ 0. (15)

The tails are lighter than geometric,

lim
h→∞

P[H0 ≥ h+ 1]

P[H0 ≥ h]
= 0,

which suggests that the maximum of random walk satisfies a law of large numbers for discrete random
variables [1]. This was indeed shown by Park et al [25]. To state their exceptionally precise result, let βm
be the time of the mth visit of the random walk to 0. Then

lim
m→∞

P [ max
0≤i≤βm

Ji ∈ {Im, Im + 1}] = 1, (16)

where

Im :=

⌊
logm− 1

2 log logm− 1
2 log 2π

log logm− 1− log ρ
+

1

2

⌋
. (17)

Using ρ = 1 in (15), we obtain numerical values for the excursion height moments

E[H0] =

∞∑
h=0

1

0! + 1! + 2! + · · ·+ h!
= 1.887 . . . ,

Var[H0] =

∞∑
h=0

2h+ 1

0! + 1! + 2! + · · ·+ h!
− (E[H0])

2 = 1.242 . . .

and the number of upward moves of an excursion has expectation and variance

E
[
κ0 − 1

2

]
= 1.718 . . . , Var

[
κ0 − 1

2

]
= 7.930 . . .

Translating the results above to the CRP and taking our parameter ρ = θ, the random walk J· is the

embedded jump chain for C
(·)
1 , hence we can make conclusions about the number of fixed points in the CRP.

Excursions above c = 0 correspond to the fluctuation in the number of fixed points in the period between
two consequitive derangements. The asymptotic proportion of derangements within the number of nontrivial
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moves of C
(·)
1 is e−θ/2. This does not match with the value e−θ that could be anticipated from (8). Starting

from C
(n)
1 = c + 1, c ≥ 0, the variable Hc + c is the maximum number of singletons observed until their

number falls to c, and (κc − 1)/2 is the number of new cycles produced by the CRP within this period. In
particular, applying the above findings to the case θ = 1 of uniformly chosen permutations, we see that a
permutation with initially one singleton (for instance, Π(1)) will have on the average 1.778 cycles at the first
time when it becomes derangement, and the expected maximum number of singletons observed by this time
is about 1.887.

For the first n permutations Π(1), . . . ,Π(n), the number of fixed points C
(·)
1 will change the value about

2θ log n times, when singletons are formed and when they progress to doubletons. This implies a strong law
of large numbers on the log scale

#{j ≤ n : Π(j) is a derangement and Π(j−1) is not} ∼ (2θ log n)α0 = e−θθ log n a.s.

Thus e−θ appears to be the asymptotic proportion of singletons that enter the permutation when it is a
derangement, relative to the number of all cycles. For the maximum number of fixed points we have from
(5) and (16)

lim
n→∞

P [ max
1≤j≤n

C
(j)
1 ∈ {Im, Im + 1}] = 1,

where Im is given by (17) with a possible adjustment of ±1, with ρ = θ for m = ⌊θ log n⌋. The fact that
approximating the true value of m by ⌊θe−θ log n⌋ only changes the expression inside ⌊·⌋ in (17) by o(1)
accounts for the possible adjustment to Im.

It is tempting to similarly link C
(·)
k to the random walk J· with parameter ρ = θ/k. For k > 1, this

comparison does not work literally, because the count of k-cycles is not a Markov chain. The connection

becomes valid asymptotically, in the sense that for n0 → ∞ the loop-free path of (C
(n)
k , n ≥ n0) conditioned

on C
(n0)
k = c converges in distribution to J· with the initial state J0 = c. This will follow from the embedding

in the next section. To gain some intuition, observe that the transition of C
(·)
k−1 causing an upward move of

C
(·)
k has probability

P[C(n+1)
k−1 −C

(n)
k−1 = (0, . . . , 0,−1) |Π(n)] =

(k − 1)C
(n)
k−1

n+ θ
.

For large n the distribution of C
(n)
k−1 is approximately Poisson with mean θ/(k− 1), hence the unconditional

probability of the said upward move is about θ/(n+ θ), to be compared with probability kc/(θ + n) of the

downward move (which does not depend on the first k−1 counts); thus for large times given C
(·)
k has a move

it is +1 with probability about (θ/k)/(c+ θ/k), in agreement with (10).

5. Embedding in continuous time

To ensure the convergence of time averages of occupation times, the temporal scale of the CRP should
be changed so that the degree of permutation grows about exponentially, and hence the number of cycles
grows about linearly. An elegant way to do this is to embed the permutation-valued process in continuous
time. The embedding idea originated in [4, 16, 38] and is nicely presented in [9].

Consider a permutation-valued process (Π(t), t ≥ 0) which starts with the empty permutation (of degree
0) and then evolves according to this rule: given permutation Π(t) of [n], element n + 1 starts a new cycle
with probability rate θ and is inserted in random position of any existing cycle of size m at rate m. It is
obvious from this description that the associated discrete-time jump chain is the CRP (Π(n), n ≥ 0).
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Let C(t) = (C1(t), C2(t), . . .) denote the vector counting singletons, doubletons, and so on. Clearly,
(C(t), t ≥ 0) is a Markov process on {c ∈ Z∞

+ :
∑

i ci <∞} with time-independent transition rates

θ for (c1, c2, . . .) → (c1 + 1, c2, . . .),

ici for (c1, c2, . . .) → (c1, . . . , ci − 1, ci+1 + 1, . . .), i ≥ 2,

and (by definition) the initial value C(0) = (0, 0, . . .).
Define K(t) and N(t) to be the number of cycles and the degree of permutation Π(t), respectively. Thus,

K(t) :=

∞∑
i=1

Ci(t) and N(t) :=

∞∑
i=1

i Ci(t).

The number of cycles evolves according to a Poisson process of rate θ. The degree of Π(t) follows a linear
birth process with immigration, where the immigration rate is constant θ and the birth rate per capita is 1
(so that given N(t) = n, the birth rate is n). Sometimes the term Pascal process is used for such a process,
because the conditional distribution of the increment N(t) − N(s) given N(s) = n is negative binomial
(i.e. Pascal) NB(θ + n, 1 − e−(t−s)), for t > s ≥ 0. See the texts [5, 9, 29] for properties of the birth-death
processes.

We let Ck(t) := (C1(t), . . . , Ck(t)) denote a truncated vector of cycle counts. Similarly to the discrete-
time CRP, each Ck(·) is itself a time-homogeneous Markov process.

The next product-form result is known in much larger generality in the theory of networks and population
processes [18]. The textbook proofs for the transient (pre-limit) state all employ Kolmogorov’s equation.
The following elegant elementary proof for the special case in focus was outlined in [4], Exercise 10.7.

Theorem 2. The random variables C1(t), C2(t), . . . are independent, with distribution

Ck(t)
d
= Poisson

(
θ(1− e−t)k

k

)
. (18)

Therefore, as t→ ∞
C(t)

d→ (Z1, Z2, . . .), (19)

where Zi
d
= Poisson(θ/i) are independent.

Proof. A singleton needs time ξ1 to become a doubleton, then time ξ2/2 to become a tripleton, etc., where
ξ1, ξ2, . . . are independent unit exponential random variables. The jump times for different cycles are inde-
pendent. Hence by the theorem on marked Poisson processes (see [19], Ch. 5), the Ck(t)’s for k = 1, 2, . . .
are independent and Poisson distributed. It remains to compute the means.

A singleton grows to a cycle of size at least k + 1 within time s with probability

P

[
k∑

i=1

ξi/i < s

]
= P[max(ξ1, . . . , ξk) < s] = (1− e−s)k, (20)

where the first identity is Rényi’s representation of the exponential order statistics. Hence, the probability
that this is a k-cycle is

(1− e−s)k−1 − (1− e−s)k = e−s(1− e−s)k−1.
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Thus, the mean number of k-cycles at time t is

E [Ck(t)] =

∫ t

0

e−s(1− e−s)k−1θ ds = θk−1(1− e−t)k,

as wanted.
The convergence of C(t) in distribution follows from the first part of the statement. Note that this con-

vergence is understood relative to the discrete product topology on Z∞
+ and amounts to the weak convergence

of truncated processes Ck(t). □

The Markov chain (Ck(t), t ≥ 0) is positive recurrent, hence application of the ergodic theorem ensures
existence of the time averages. Let

hk :=

k∑
i=1

1

i

denote the kth harmonic number.

Corollary 1. The proportion of time spent by the process (Ck(t), t ≥ 0) in state (c1, . . . , ck) converges to

P[Z1 = c1, . . . , Zk = ck] = e−θhk

k∏
i=1

θci

icici!
.

In particular, the average time when Π(·) is a derangement approaches e−θ.
We may tag a cycle by its minimal element. The growth of a cycle can be thought of as passing through

phases S1, S2, . . . of being a singleton, doubleton, etc. The sojourn periods across different cycles and phases
are independent. The input flow into S1 is a Poisson process of rate θ, and the time spent in Sk has
exponential distribution with parameter k. By Theorem 2 the flow from Sk to Sk+1 is nonhomogeneous
Poisson with rate θ(1− e−t)k, hence converging to homogeneous flow with rate θ.

Such a process, with general sojourn rates µ1, µ2, . . ., models a network of M/M/∞, infinite-server queues
connected in a tandem [7, 12, 20, 28]. In the literature the tandem is often considered as open network with
finitely many phases S1, . . . , Sk, where the task departs upon passing through Sk.

The process (Ck(t), t ≥ 0) is stationary if it starts with the product Poisson distribution Ck(0)
d
=

(Z1, . . . , Zk) as in (19). Following the established terminology we shall call the stationary process steady
state, as opposed to the transient regime with the pre-limit state distribution (18). In the steady state the
flow from Si to Si+1 is Poisson with rate θ, so each Ci(·) behaves like a single stationary M/M/∞ queue; this
is an instance of the seminal Burke’s theorem. We stress that the steady state does not describe permutations
of finite degree, but rather captures asymptotic features of small cycle counts of Π(·) at large times.

6. Pascalisation and big cycles

The discrete- and continuous time models are related via

(Π(t), t ≥ 0)
d
= (Π(N(t)), t ≥ 0),

where the permutation in the right-hand side is constructed from two independent ingredients: CRP
(Π(n), n ≥ 0) and a Pascal process (N(t), t ≥ 0). For this kind of randomisation we propose the term
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pascalisation, by analogy with the established concept of poissonisation (sampling n from the Poisson distri-
bution). These methods are most useful in the situations where they produce exact independence instead of
the asymptotic independence in fixed-n combinatorial models. In the context of cycle structure the pascali-
sation was used already in [36] for the case θ = 1 (where the mixing distribution is geometric), in particular
to prove the convergence (6). See [24] (Section 4 and references) for the general case θ > 0, and [6] for
pascalisation of another interesting distribution on integer partitions.

To illustrate, let gn(z) be the p.g.f. of K(n). Connecting gn(z) to the Poisson p.g.f. of K(t) produces

eθt(z−1) =

∞∑
n=0

P[N(t) = n] gn(z) =

∞∑
n=0

(θ)n
n!

e−θt(1− e−t)ngn(z).

Expanding the left-hand side in powers of (1− e−t) and equating the coefficients yields gn(z) = (θz)n/(θ)n,
which gives altervative proof of (4). For both discrete and continuous models, the number of cycles is about
normally distributed for large times.

A more complex functional is the maximal size of a cycle. For Π(n) this has a sophisticated limit
distribution ([9], Theorem 2.5), but for Π(t) the things are rather straightforward. Let M(t) := max{i :
Ci(t) > 0} be the maximal size of a cycle present in Π(t). From (18),

P[M(t) ≤ m] = exp

(
−

∞∑
k=m+1

θ(1− e−t)k

k

)
.

To find the limit law of M(t) consider a Poisson random measure (PRM) Pt which charges point e−tk with
mass Ck(t), k = 1, 2, . . . ans let P be another PRM on (0,∞) with mean measure λ(dx) = θe−xdx/x. We
have λ(x,∞) = θE1(x), where

E1(x) =

∫ ∞

x

e−s

s
ds

is the exponential integral function.

Theorem 3. For t→ ∞, the PRM Pt converges weakly to P.

Proof. It is sufficient to show that the mean measure λt of Pt satisfies

lim
t→∞

λt(x,∞) = λ(x,∞)

for each x > 0. We have

λt(me
−t,∞) = θ

∞∑
k=m+1

(1− e−t)k

k
= θ

∞∑
k=m+1

∫ 1

e−t

(1− y)k−1dy =

θ

∫ 1

e−t

(1− y)m

y
dy = θ

∫ et

1

(1− se−t)m

s
ds.

Setting m = ⌊xet⌋ we obtain, by the monotone convergence,

λt(x,∞) = θ

∫ et

1

(1− se−t)xe
t

s
ds+ o(1) → θ

∫ ∞

1

e−xs

s
ds = θE1(x),
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and the conclusion follows. □

The result implies that e−tM(t) converges in distribution to the largest point of P, whence

lim
t→∞

P[e−tM(t) ≤ x] = exp (−θE1(x)) .

Moreover, the whole scaled decreasing sequence of the cycle lengths of Π(t) converges in distribution to the
infinite sequence of points of P listed in decreasing order. The analogous limit for Π(n), the Poisson-Dirichlet
distribution, can be obtained by normalising the points of P by their sum ([9], Theorem 2.2).

Better tractable limit laws for large cycles in Π(n) or Π(t) appear if the cycles are listed in the age order,
that is by increase of the starters. For instance, the size of the oldest cycle of Π(t) (containing element 1) is
asymptotic to et−η/θξ with independent unit exponential ξ and η. See [2, 3, 9] for various representations of
the multivariate limit.

7. Excursions of a cycle count process

The M/M/∞ queue occupancy process is a Markov chain (X(t), t ≥ 0) on Z+ which from state c jumps
by ±1 with rates θ and µc, respectively. This is sometimes called a linear immigration-death process [5].
We shall follow the intuitive terminology of queueing theory, calling θ the arrival rate of the input Poisson
process K(·), µ the service rate (the departure rate per task), and ρ := θ/µ the average workload. The
transient state distribution is Poisson with parameter depending on t, that is

P[X(t) = c |X(0) = 0] = πc(t), where πc(t) = exp{−ρ(1− e−t/µ} [(ρ(1− e−t/µ)]c

c!
, c ≥ 0,

and in the steady state the distribution is Poiss(ρ). The embedded jump chain for X(·) is the random walk
J· with parameter ρ as in Section 4.

In terms of the permutation-valued process, X(·) could be C1(·), or Ck(·) for k > 1 with Poisson inflow
resulting from the output of Ck−1(·) (or Ck−1(·)) in the steady state. Then the parameters are θ, µ = k, ρ =
θ/k.

For c ≥ 0. we define excursion above c to be a segment of the path that starts at c + 1 and terminates
by the first passage of level c. The case c = 0 is referred to as the busy period, and for the general c the
excursion is called the congestion period above the level. Excursions below c ≥ 1 are defined analogously
but will not be touched here (see [30] or [31] on intercongestion periods).

A visit to c is followed by an excursion above c if the next state is c+ 1. In the long run, the mean rate
of the point process of jumps c→ c+1 is about πcλ, thus by renewal theory the number of excursions above
c completed by time t is asymptotic to t/(πcλ) = teρc!/(λρc) as t→ ∞.

The functionals characterising the excursion include

the duration Dc = inf{t : X(t) = c},
the height above c Hc = sup{X(t)− c : 0 ≤ t ≤ Dc},

the overflow Ac =

∫ Dc

0

(X(t)− c)dt,

the number of new arrivals ∆c = (κc − 1)/2,

11



where we write definitions as if the excursion started at time 0 with X(0) = c+ 1. The variables Hc and κc
are functionals of the embedded random walk J· and have the same meaning as in Section 4. In the rest of
this section we put together and complement properties of these variables found in the literature.

Some relations among the moments follow by the optional sampling theorem applied to ∆c = K(Dc) and
the martingale K(·)− θ · where K(·) is the Poisson arrival process:

E [∆c − θDc] = 0, E[∆c − θDc]
2 = E[∆c]. (21)

By arguments from the renewal theory,

E[Dc] =
1

θπc

∞∑
j=c+1

πj , E[Ac] =
1

θπc

∞∑
j=c+1

πj(j − c), (22)

and from (21)

E[∆c] =
1

πc

∞∑
j=c+1

πj , (23)

where πj are the Poisson(ρ) probabilities. The variance of ∆c for c = 0 is obvious from the connection with
κc and (13), and for c > 0 can be also derived from (14); from (21) one can compute then the covariance
between Dc and ∆c.

Formulas for the Laplace transforms of these statistics have been obtained in terms of the integrals

Ic(α, β) =

∫ 1

0

uc(1− u)α−1e−βudu,

which in turn can be expressed through Kummer’s confluent hypergeometric function

M(a, b, z) :=

∞∑
i=0

(a)i
(b)i

zi

i!

as

Ic(α, β) = e−β Γ(c+ 1)Γ(α)

Γ(c+ α+ 1)
M(α, α+ c+ 1, β).

The appearance of these functions here is quite natural, since the Laplace transform of the transient state
probability πc(t) is ∫ ∞

0

πc(t)e
−ztdt =

ρcµ

c!
Ic(µz, ρ),

12



as one can easily calculate by∫ ∞

0

πc(t)e
−ztdt =

∫ ∞

0

exp(−ρ(1− e−t/µ)
[ρ(1− e−t/µ)]c

c!
e−ztdt

=

∫ 1

0

e−ρu [ρu]
c

c!
(1− u)µzµ(1− u)−1du

=
µρc

c!

∫ 1

0

e−ρuuc(1− u)µz−1du

=
µρc

c!
Ic(µz, ρ),

where u = 1− e−t/µ, du = 1
µe

−t/µdt⇒ dt = µ(1− u)−1du and e−zt = (1− u)µz. Concretely, Guillemin and

Simonian [12] showed that

E[exp(−zDc)] =
Ic+1(z/µ, ρ)

Ic(z/µ, ρ)
. (24)

Preater [28] derived the joint Laplace transform

E[exp(−xD0 − y∆0 − zA0)] =
µ

z + µ

Ic+1(a− b, b)

Ic(a− b, b)
, (25)

where

a =
x+ θ

z + µ
, b =

θµe−y

(z + µ)2

(this result is cited as Equation (20) in [31]), and in [27] obtained a continued fraction formula for the joint
Laplace transform of Dc and Ac. Preater’s approach [27, 28] to continued fractions expansions relies on
the fact that an excursion above c decomposes in a sojourn at c + 1 of Exp(θ + (c + 1)µ)-length and some
Geom((c+ 1)/(ρ+ (c+ 1))) number of path segments, each comprised of excursion above c+ 1 and sojourn
at c, with all ingredients being independent.

Roijers et al [31] notice that obtaining higher moments by differentiating the Laplace transforms is not
straightforward due to the implicit nature of functions involved. They derived recursions in c using the said
decomposition of the excursion above c, thus eventually reducing to the case c = 0. For the second moment
of the duration they obtain a series expansion ([31], Equation (24))

E[D2
0] =

2e2ρ

θµ

∞∑
j=1

πj
j
, (26)

which can be written as

E[D2
0] =

2eρ

θµ

∫ ρ

0

es − 1

s
ds.

Lizgin and Rudenko [22] employed a similar recursion for the moments of the first passage time from level c
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to 0, which led them to another derivation of (26), the third moment formula

E[D3
0] =

6eρ

θµ2

e2ρ
 ∞∑

j=1

πj
j

2

+ eρ
∞∑
j=1

πj
j2

 ,
and a similar more complex formula for the fourth moment.

Knessl and Young [20] (p. 217) give a representation of the density of Dc as a series
∑∞

i=1 ci exp(−zit/µ)
where zi’s are the (positive) roots of M(−z, c + 1 − z, ρ) = 0. For example, for c = 0, θ = µ = 1 this gives
the leading exponential term of the order exp(−z1t) with z1 = 0.450 . . ., as compared with exp(−t) tail of
the service time.

For X(0) = c+ 1 the first passage time to 0 can be represented as
∑c

j=0Dj with independent Dj . From
(22) and tail asymptotics of the Poisson distribution (cf [10], Corollary 1 (ii)) for large c we have

E[Dc] ∼
πc+1

θπc
=

1

µ(c+ 1)

which gives

E

 c∑
j=0

Dj

 ∼ log c

µ
, c→ ∞.

Robert [30] (Proposition 6.8) employs the Laplace transform to show that this asymptotics also holds in
probability.

See [20, 30] and references therein for asymptotic results in the heavy traffic limit ρ→ ∞.

8. Multivariate excursions from the zero state

A path segment of Ck(·) that starts with (1, 0, . . . , 0) and terminates upon reaching the zero state
(0, . . . , 0) is analogous to a busy period of a tandem of M/M/∞ queues with k phases S1, . . . , Sk. To study
the basic characteristics of such multivariate excursion it is enough to follow the total

Y (t) := C1(t) + · · ·+ Ck(t),

which itself is the occupancy process of a single-phase M/G/∞ queue with Poisson arrival rate θ, and the
generic service time σ having distribution function

P[σ ≤ t] = (1− e−t)k. (27)

Indeed, σ is distributed like a sum of exponential variables ξ1/1 + · · · + ξk/k, as in (20), which is the time
that a cycle needs to pass through S1, . . . , Sk.

The definition of the busy period (excursion above 0) for M/G/∞ requires some care, because the process
is not Markovian and the periods spent by present tasks in service cannot be ignored hence must be included
in description of the state [33]. With this in mind, the excursion starting at time t0 is defined under the
assumption that Y (t0−) = 0 and Y (t0) = 1. In this section we denote by D0, H0, A0,∆0 the duration,
height, overflow and the number of new arrivals during the busy period of Y (·).

14



Let ρ := θE[σ] = θ hk. The steady state distribution is Poisson(ρ), and formulas (21), (22) and (23) with
c = 0 apply without change. In particular,

E[D0] =
eρ − 1

θ
.

Recall a concept from the renewal theory. For a nonnegative integrable random variable η, representing
the generic inter-arrival time, the variable η∗ with the integrated tail distribution

P[η∗ ≤ t] =
1

E[η]

∫ t

0

P[η > x]dx.

appears as the stationary residual lifetime. In terms of their Laplace transforms, the relationship between η
and η∗ is

E[exp(−zη∗)] = 1− E[exp(−zη)]
z E[η]

. (28)

We shall use this connection of σ and D0 to their associated variables σ∗ and D∗
0 .

The transient state distribution πc(t) := P[Y (t) = c |Y (0) = 0] is Poisson with mean ρP[σ∗ ≤ t], hence
in particular

π0(t) = exp{−ρP[σ∗ ≤ t]}.

From (27) one finds readily that σ and σ∗ both have exponential tails: as t→ ∞

P[σ > t] ∼ ke−t, P[σ∗ > t] ∼ k

hk
e−t, (29)

which implies that

π0(t)− π0 = exp{−ρP[σ∗ ≤ t]} − e−ρ = e−ρ
(
exp{ρP[σ∗ > t]} − 1

)
∼ θke−ρ e−t,

where π0 = limt→∞ π0(t) = e−ρ.
The Laplace transform of the duration is given by

E[exp(−zD0)] = 1 +
z

θ
− z

θ L(z)
, (30)

where

L(z) = 1 +

∫ ∞

0

e−ztπ′
0(t)dt. (31)

Equation (30) is a version of the Takàcs formula ([37], Equation (2) on p. 210) for the Laplace transform of
the time between beginnings of two successive busy periods. In [37] and subsequent work (e.g. Equation (5)
in [32], Equation (4.6) in [21]) the authors use L(z)/z, which is the Laplace transform of π0(t). The form
(31) is better suitable for our purpose since L(z) is holomorphic in a larger halfplane ℜz > −1, as dictated
by the asymptotics |π′

0(t)| = O(e−t) for t→ ∞.
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The second moment of the duration was derived from (31) in Liu and Shi [21] (Equation (4.13)) as

E[D2
0] =

2

θπ2
0

∫ ∞

0

(π0(t)− π0)dt .

For k = 1 this has a series representation (26) but for k > 1 there does not seem to exist a simple analogue.
To compare the numerics, for θ = 1 we get Var[D0] about 12.7921 for k = 2 and about 4.2123 for k = 1.
The joint Laplace transform of D0 and ∆0 is found in Shanbhag [35] (Theorem 2).

We turn next to the counterpart of (29) for the duration of excursion above zero. To that end, designate

F (t) := P[D0 ≤ t], f∗(t) := P[D∗
0 ∈ dt]/dt,

which are the distribution function of D0 and the density function of D∗
0 , respectively. These are related via

f∗(t) =
1− F (t)

E[D0]
. (32)

The function L(z) increases from −∞ to e−ρ as z runs from −1 to 0, therefore there exists a unique
β ∈ (0, 1) satisfying L(−β) = 0 For instance, β = 0.2734 . . . if θ = 1, k = 2.

Theorem 4. As t→ ∞, it holds that
1− F (t) ∼ αe−β , (33)

where

α := −
(
θ

∫ ∞

0

eβt t π′
0(t) dt

)−1

.

Proof. We shall apply a result from the renewal theory. Following Makowski [23], the Takàcs formula (30)
amounts to the representation of D∗

0 as a geometric sum

D∗
0

d
=

Q∑
j=1

Uj ,

where all variables involved are independent, Q has the geometric distribution

P[Q = j] = π0(1− π0)
j−1, j = 1, 2, . . .

and the Uj ’s are i.i.d. with density

u(t) :=
−π′

0(t)

1− π0
.

Conditioning on U1 we arrive at the improper renewal equation

f∗(t) = π0u(t) + (1− π0)

∫ t

0

f∗(t− s)u(t)dt,

with substochastic density (1− π0)u(t). Adopting a formula from Resnick [29] (page 258, bottom equation
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where z(∞) = Z(∞) = 0 should be set due to limt→∞ π′
0(t) = 0) we have

f∗(t) ∼ α∗e−βt,

with β ∈ (0, 1) as above solving L(−β) = 0 (cf [29], Proposition 3.11.1) and

α∗ =
π0
∫∞
0
eβxu(x)dx

(1− π0)
∫∞
0
xeβxu(t)dt

=
αθ

eρ − 1
.

The assertion now follows by the virtue of (32). □

An alternative approach is the following. Using (28) we have

E[exp(−zD∗
0)] =

∫ ∞

0

e−ztf∗(t)dt = (eρ − 1)−1

(
1

L(z)
− 1

)
. (34)

From this the exponential tail asymptotics can be concluded by singularity analysis of the Laplace transform.
Indeed, with ℜz fixed, |L(z)− 1| is maximised for ℑz = 0, hence and by monotonicity L(z) ̸= 0 if ℜz > −β.
On the other hand, by a property of the Laplace transform |L(z) − 1| → 0 as |z| → ∞ uniformly in
ℜz > −β − ε (cf [8], Theorem 23.6). Thus for ε > 0 sufficiently small, L(z) has no zeros in this halfplane
other than −β, hence the only singularity of (34) in the halfplane is a simple pole at −β, with residue readily
identified with α∗. From this (33) follows by writing f∗(t) in the form of the inverse Laplace transform of
(34), then moving the contour of integration to ℜz = −β − ε, see [8] (Section 35) for this classic technique.

Note that α is the residue of (30) at pole −β, but using (30) directly to justify the tail asymptotics (of
the density of D0) looks more difficult due to the factor z.

9. The embedded tagged cycle process

Suppose element n starts a new cycle of the CRP permutation, with some number L
(n)
1 of singletons

already present in Π(n−1), that is L
(n)
1 = C

(n−1)
1 . Let L

(n)
2 be the number of doubletons present immediately

before this cycle moves to S2, etc. Intuitively, L
(n)
k is what an observer moving with the tagged cycle spots

in Sk when entering the phase. As n → ∞ the distribution of L
(n)
1 , L

(n)
2 , . . . converges to a limit which has

Poisson marginals as in (6) but they are not independent. It seems hard to capture features of the limit
multivariate distribution without turning to the embedding of CRP in continuous time. Fortunately, a major
work has been done by the queueing theorists.

To set a general scene, consider a tandem of M/M/∞ queues with arrival rate θ and sojourn parameter
µk for phase Sk, and let ρk := θ/µk. Assuming the system in steady state and that there is a tagged arrival
at time 0, let Lk be the occupancy of Sk immediately before the tagged item enters Sk. The following result
was obtained by Vainstein and Kreinin [39] and extended by Boxma [7] to tandems of M/G/∞ queues with
arbitrary sojourn times. As above, ξ1, ξ2, . . . denote independent unit exponential random variables.
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Theorem 5. The joint p.g.f. of Lj and Lk for 1 ≤ j < k is

E[xLjyLk ] = exp{ρj(x− 1) + ρk(y − 1)}
∫ ∞

0

exp{ρj(x− 1)(y − 1)φjk(t)}dψjk(t), (35)

where

φjk(t) := P
[
ξj
µj

+ · · ·+ ξk−1

µk−1
< t <

ξj
µj

+ · · ·+ ξk
µk

]
, ψjk(t) := P

[
ξj
µj

+ · · ·+ ξk−1

µk−1
< t

]
.

Proof. By the steady-state assumption, the flow from Sj−1 to Sj is Poisson, hence we will not lose generality
by considering the case j = 1 only. We adapt the more general argument from [7] (Theorems 2.2 and 3.1)

to the M/M/∞ tandem. We have L1
d
= Poiss(ρ1), and the time, say T , that the tagged arrival to S1 needs

to reach Sk has distribution function P[T ≤ t] = ψ1k(t). For 1 ≤ i ≤ k, let Ni be the number of items in Sk

at time T that were in Si at time 0, and let N0 be the number of items in Sk at time T that were not yet
present in the system at time 0. Clearly, Lk = N0 + N1 + · · · + Nk. Given the tagged item finds L1 = ℓ1
and needs time T = t, the variables N0, . . . , Nk are conditionally independent,

N0
d
= Poiss(θp0), N1

d
= Bin(ℓ1, p1) and Ni

d
= Poiss(ρipi), 2 ≤ i ≤ k.

Here,

p0 =

∫ t

0

φ1k(x)dx,

and pi for 1 ≤ i ≤ k is the probability that the generic item from Si is located in Sk over time t, i.e.

pi = P

[
k−1∑
m=i

ξm
µm

< t <

k∑
m=i

ξm
µm

]
.

Note that p1 = φ1k(t). The steady-state balance equation for the mean content of Sk is

θp0 + ρ1p1 + · · ·+ ρkpk = ρk,

which allows us to write θp0 + ρ2p2 + · · ·+ ρkpk = ρk − ρ1p1, and together with the above conclude that the
conditional distribution of Lk is the convolution

Bin(ℓ1, p1) ∗ Poiss(ρk − ρ1p1),

whence
E[xL1yLk |L1 = ℓ1, T = t] = xℓ1{1− φ(t) + φ(t)y}ℓ1 exp{(ρk − ρ1φ(t))(y − 1)}.

The result now follows by integrating out ℓ1 and t. □

From (35) follows that (or see [7], Equation (3.4))

cov(Lj , Lk) = ρj

∫ ∞

0

φjk(t)dψjk(t), corr(Lj , Lk) =

√
µk

µj

∫ ∞

0

φjk(t)dψjk(t). (36)
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Vainshtein and Kreinin [40] observed that

corr(Lj , Lk) =
1

2
√
µjµk

L(0), (37)

where L(·) is the Lagrange polynomial interpolating the square root function from the data set

(µ2
j , µj), . . . , (µ

2
k, µk).

Remarkably, the correlation coefficient does not depend on θ.
The case relevant to permutations

µk = k (38)

will be worked out in the rest of this section. Using (37) Vainstein and Kreinin ([40], Equation (15)) evaluated
(36) as

corr(L1, Lk) =

√
k

2(2k − 1)
.

We take a different approach which works smoothly for all j but is limited to (38) (or constant multiples of
(38)). Let ξj:k, 1 ≤ j ≤ k, denote the jth maximal order statistic among the first k exponential variables.
Using Renyi’s representation we have the identities

ψjk(t) = P[ξj:k−1 < t],

φjk(t) = P[ξj:k−1 < t]− P[ξj:k < t] = P[ξj:k−1 < t < ξj−1:k−1]P[ξk > t],

where the last equality follows from the events coincidence

{ξj:k−1 < t, ξj:k ≥ t} = {ξj:k−1 < t ≤ ξj−1:k−1, ξk ≥ t}.

To express (36) via a beta integral we pass to the uniform order statistics, thus obtaining

φjk(− log(1− x)) =

(
k − 1

j − 1

)
xk−j(1− x)j ,

dψjk(− log(1− x)) = (k − 1)

(
k − 2

j − 1

)
xk−j−1(1− x)j−1 dx ,

whence (36) for rates (38) becomes

cov(Lj , Lk) = θ

(
k − 1

j

)(
k − 1

j − 1

)
(2k − 2j − 1)!(2j − 1)!

(2k − 1)!
,

corr(Lj , Lk) =
√
jk

(
k − 1

j

)(
k − 1

j − 1

)
(2k − 2j − 1)!(2j − 1)!

(2k − 1)!
.

Interestingly, the covariance has some symmetry, cov(Lj , Lk) = cov(Lk−j , Lk).
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Since φjk(t) = ψj,k(t)− ψj,k+1(t), (36) implies an estimate

corr(Lj , Lk) <
1

2

√
j

k
,

which gives the correct decay order k−1/2 of the correlation as k → ∞ and j is fixed.

10. A functional limit for the small cycle counts

Finally, we argue that (Ck(t), t ≥ 0) appears as a weak limit of (C
(n)
k , n ≥ 0) by the virtue of a nonlinear

time-scale change. To that end, we interpolate the discrete time Markov chain to a piecewise constant jump
process with real time parameter.

Theorem 6. Let Ck(·) start at time 0 in some random state Ck(0), and let C
(·)
k start at time ν in some

random state C
(ν)
k . If C

(ν)
k converges in distribution to Ck(0) as ν → ∞ then also

(C
(νet)
k , t ≥ 0) ⇒ (Ck(t), t ≥ 0) ,

where ⇒ means weak convergence in the Skorohod space D[0,∞).

To ease notation let Xν(t) = C
(νet)
k . Since the state space is discrete, the assertion can be reduced to

the case when the initial states are fixed and identical, that is Ck(0) = Xν(0) = c(0). The embedded jump
chains have the same transition probabilities, hence it is possible to couple the processes in such a way that
they pass the same random sequence of states. Appealing to [41] (Lemma 2.12) shows that is suffices to
verify that the sequence of consecutive sojourn times of Xν(t), seen as a random element of R∞

+ , converges
in distribution to the sequence of sojourn times of Ck(t). Given a path c(0), c(1), . . . of the jump chain, the
sojourn times of Ck(·) are independent exponential variables, with rates

r = θ +

k∑
i=1

ici (39)

depending on c ∈ Zk
+. The next lemma finds the limiting distribution of the sojourn time of Xν(t) at an

arbitrary state c ∈ Zk
+.

Lemma 1. Given Xν(t) = c the residual sojourn time in this state converges in distribution to Exp(r), as
ν → ∞.

Proof. Using (9), as n→ ∞ we obtain

P[C(i)
k = c , n ≤ i ≤ m |C(n)

k = c] =

m−1∏
j=n

(
1− r

j + θ

)
=
( n
m

)r (
1 +O

(
1

n

))

uniformly in m ≥ n. Setting n = νet, m = νet+δ, δ > 0, we conclude that Xν(·) spends in c some time
exceding δ with probability e−rδ +O(ν−1), hence the limit distribution is exponential as stated. □
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Let r(0), r(1), . . . be the rates for c(0), c(1), . . . defined by (39), and let Vν(0), Vν(1), . . . be the sojourn
times that Xν(·) spends in these states. By the lemma, Vν(0) converges in distribution to Exp(r(0)). By
the strong Markov property and because the estimate O(ν−1) in the proof of the lemma is uniform in t,
the conditional distribution of Vν(1) given Vν(0) converges to Exp(r(1)). But then we also have the joint
convergence of (Vν(0), Vν(1)), as follows from [34] (Theorem 2). Continuing by induction, we obtain the joint
convergence of the sojourn times Vν(0), Vν(1), . . . to the counterpart sequence of sojourn times of Ck(·) and
the weak convergence of Xν(·) follows. □
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