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An embedded multichannel sound acquisition
system for drone audition
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Abstract— Microphone array techniques can improve the acoustic
sensing performance on drones, compared to the use of a single

microphone. However, multichannel sound acquisition systems are
not available in current commercial drone platforms. We present an
embedded multichannel sound acquisition and recording system
with eight microphones mounted on a quadcopter. The system
is developed based on Bela, an embedded computing system
for audio processing. The system can record the sound from
multiple microphones simultaneously; can store the data locally

Time [s] Time [s]

for on-device processing; and can transmit the multichannel audio

via wireless communication to a ground terminal for remote

processing. We disclose the technical details of the hardware,

software design and development of the system. We implement two setups that place the microphone array at different
locations on the drone body. We present experimental results obtained by state-of-the-art drone audition algorithms
applied to the sound recorded by the embedded system flying with a drone. It is shown that the ego-noise reduction
performance achieved by the microphone array varies depending on the array placement and the location of the target
sound. This observation provides valuable insights to hardware development for drone audition.

Index Terms— Drone audition, embedded system, ego-noise reduction, microphone array

. INTRODUCTION

The use of drones for remote sensing has substantially
increased in the past decade, with operation in broadcasting,
surveillance, inspection, and search and rescue [1]. Sensing
is primarily based on cameras (optical and thermal) and
lasers [2]-[4], whereas microphones are rarely used because
of the inherently challenging sound sensing conditions [5],
[6]. When visual data is unreliable due to low light, poor
weather conditions, or visual obstructions, drone audition
would greatly benefit the above-mentioned applications. One
of the main obstacles when capturing audio on a drone is
the strong ego-noise created by the rotating motors, propellers
and airflow during flight. The ego-noise masks the target sound
sources and causes poor recording quality. The signal-to-noise
ratio (SNR) at onboard microphones is typically lower than
-15 dB, which deteriorates most sound analysis algorithms.

Microphone array techniques can be used to improve the
drone audition performance through sound enhancement [8]-
[14] and sound source localization [15]-[22]. An important
bottleneck for deploying microphone array algorithms on
drones is the requirement of a multichannel sound acquisition
system to enable sampling of the sound from multiple
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microphones simultaneously and converting it to multichannel
digital signals before further processing. The sound acquisition
system needs to fly with the drone, which imposes additional
constraints on the size and weight of the system. Researchers
have to design and implement their own hardware systems for
data collection on drones, and the processing of the data is
often done offline after the flight due to limited computational
resources onboard. To the best of our knowledge, there is
only one dedicated multichannel sound processing device
available in current commercial drone platforms [7]. However,
the technical details of the commercial device typically remain
undisclosed to public.

To conduct and encourage research in the field of drone
audition, we designed an embedded multichannel sound
acquisition system that is suitable for drone audition and can
be mounted on a drone for acoustic sensing during flight.
The system is designed based on Bela [23], an embedded
computing platform dedicated to audio processing, and can
accommodate up to eight microphones placed in arbitrary
shapes. The system can record and store the sound both
locally on device and remotely to a computational terminal
via wireless communication. In the remainder of the paper,
we disclose the technical details for hardware, software design
and development.

Since the ego-noise sources (motors and propellers) are
fixed on the drone, the location of the array relative to
the motors and propellers will impact the acoustic sensing
performance remarkably. To validate this, we implement two
array placements: one with an array on top of the drone and
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TABLE |
EXISTING MULTICHANNEL SOUND ACQUISITION SYSTEMS ON DRONES. Q - QUADCOPTOR; H - HEXACOPTERS; O - OCTOCOPTER
Ref Number of Shape Placement Audio interface Drone Type Remark
microphones of the array of the array
[11] 6 T-shape Side Zoom H6 Self-assembled (Q) Portable recorder
[24] 8 Circular Top Zoom R24 3DR Iris (Q) Portable recorder
[27] 6 Circular (fixed) Top ReSpeaker + Raspberry Pi Self-assembled (O) Intell. voice interface
[28] 7 Circular (fixed) Side UMA-8 Array + Raspberry Pi Self-assembled (Q) Intell. voice interface
[29] 8 Circular Below MiniDSP USBStreamer Matrice 100 (Q) Sound card
[25] 8 Cubic Below 8SoundUSB MK-Quadro (Q) Sound card
[32] 8 Circular Top, below, side 8SoundsUSB Matrice 100 (Q) Sound card
[16] 12 Spherical Side RASP-ZX Surveyor MS-06LA (H) Sound card
[30] 8 Circular Side RASP-24 Parrot AR Drone (Q) Sound card
[21] 16 Octagon Side RASP-ZX Surveyor MS-06LA (H) Sound card
Proposed 8 Circular Top Bela Matrice 100 (Q) Sound card

in the middle of the drone body; one with an array in front
of the drone body with an extension pole. Both arrays can fly
with the drone. We make recordings with the embedded system
flying with the drone and compare the two array placements by
applying state-of-the-art time-frequency spatial filtering (TFS)
for ego-noise reduction [24].

The contribution and novelty of the paper can be
summarized into two folds. First, the embedded system
we designed and implemented can fly with the drone
and features multichannel recording both onboard and
remotely. These features can be exploited in the future
for onboard processing and remote processing, which is
crucial to drone audition applications. We described the
system design and implementation in such detail that benefits
researchers in the field. A tutorial document on software
implementation is included'. Second, we investigated the
spatial characteristics of the ego-noise and the performance
of existing drone audition algorithms with the recording
made by the embedded system flying with a drone. From
the experiments, we analyzed several factors that impact the
performance of ego-noise reduction, including input SNR, the
placement of the array, and the location of the target sound
source. This provides significant insights to the future work
in drone audition.

The paper is organized as follows. Sec. II reviews related
works. Sec. III and Sec. IV present the hardware and software
design of the embedded system. Sec. V presents real data
collection with the hardware and presents baseline processing
results. Finally, Sec. VI draws conclusions.

[l. RELATED WORK

As shown in Table I, three types of audio hardware
are employed for drone audition: portable multichannel
sound recorder, intelligent multichannel voice interface, and
multichannel sound card.

1) A portable multichannel sound recorder: This is the
easiest way to capture sound from drones as there is no
requirement for any configuration of the system, e.g. Zoom
H6 [11] and Zoom R24 [24], [31]. The hardware supports
arbitrary array topology. The drawback is the hardware can
only achieve recording and does not support sound processing.

lwww.eecs.gmul.ac.uk/~linwang/document /
bela-documentation.pdf

Another drawback is that the hardware, e.g. Zoom R24, is
usually too heavy a payload for the drone to fly.

2) Intelligent multichannel voice interface: This type
of hardware integrates the microphone array and sound
processing into a compact IC board, e.g. ReSpeaker [27] and
UAM-8 [28]. This hardware usually requires an additional
controller, e.g. Rasberry Pi, for sound acquisition and sound
processing. This hardware is usually easy to use and configure
for audio purposes. One of the main advantages is that the
hardware is compact and light-weight, and is suitable to fly
with the drone. The drawback is the topology of the array
is fixed, which limits the performance and flexibility of
microphone array algorithms.

3) Multichannel sound card: This is the most popular
approach for sound recording on drones, using e.g. RASP
series [16], [21], [30], 8SoundUSB [25], [32], USB
Streamer [29]. This hardware supports arbitrary array
topology along with sound acquisition and sound processing.
The main drawback is the user requires knowledge of
the hardware circuit design. This particular hardware also
requires an operating system to control sound recording and
processing, e.g. the RASP series is used in combination with
the HARK system [33] and 8SoundUSB is supported by
the ManEars framework [34]. To use the soundcard, a good
understanding of the back-end driver is necessary.

Being different from existing hardware solutions, our
system is developed based on Bela? [23], which is an
embedded computing platform dedicated to ultra-low latency
audio processing. Table II compares existing sound card
systems used for drone audition, where Bela features more
functionalities including onboard processing, onboard storage
and WiFi transmission. By taking advantage of the abundant
interfaces and the integrated software environment of Bela,
our system provides more flexibility in addition to recording
multichannel sound, e.g. on-device data processing and
wireless streaming.

2Bela is an embedded audio programming and processing platform invented
at QMUL [23]. The compact size, light-weight, and multichannel sound
acquisition make it suitable for sound processing on drones [26]. Bela also
comes with a user-friendly browser-based IDE, which is used for easy access
for editing, building, and managing the system. This is the first time the Bela
system has been applied to robot audition.
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I1l. HARDWARE DESIGN

Fig. 1 and Fig. 2 illustrate the architecture and the
real objects of the multichannel sound acquisition system,
respectively. The system mainly consists of three parts: the
microphone array, the drone, the hardware tray containing the
Bela sound acquisition system and cables. Fig. 3 illustrates the
Bela hardware system assembly and peripheral connections.

A. Microphone array and drone

We use a circular microphone array consisting of eight Boya
BY-M1 lapel microphones that are each powered by an LR44
(1.5V) battery. A balanced audio signal is provided by the
microphones. The diameter of the array is 16.5 cm and the
microphones are distributed uniformly along the circle. The
microphone array frame is 3D printed and constructed from
Acrylonitrile butadiene styrene (ABS). The array is mounted
on top of the drone to avoid the air flow from the rotating
propellers blowing downward [35]. For the drone, we use the
DJI Matrice 100, which has a payload capacity of 1 kg.

Since the microphone array placement affects the drone
audition performance significantly [24], we implement two
setups to investigate this influence. Fig. 2(a), (c) and (e)
illustrate Setup1, where the array is placed on top of the drone
and at the front side of the drone body. The vertical distance
from the array to the drone body is 8 cm. Fig. 2(b), (d) and
(f) illustrate Setup2, where the array is placed in front of the
drone body with an extension pole. The vertical and horizontal
distances from the array to the drone body are 25 and 30
cm, respectively. The hardware tray is mounted underneath
the drone body to maintain the drone’s centre of gravity.

B. Bela-based sound acquisition system

The sound acquisition system consists of four units: the
core processing unit, storage, wireless transmission unit and
the hardware tray.

1) Core processing unit: The core processing unit consists
of one PocketBeagle device flashed with the latest Bela
software. To access multichannel audio, Bela uses a
customized expansion board called Bela Mini Multichannel
Expander, featuring an audio codec with 8 audio input and 8
audio output channels. The Bela Mini Multichannel Expander
system consists of 1 x PocketBeagle, 1 x Bela Mini Cape, 1
x Bela Mini multichannel expander, and one external LiPo
power battery.

Bela is an audio processing platform based on PocketBeagle
single-board computer, which has a 1GHz ARM Cortex-A8

(e) ®

Fig. 2. Real objects of the multichannel sound acquisition system.
(a)(c) Side view and top view of Setup1. (b)(d) Side view and top view of
Setup2. The coordinate systems are indicated in (e) and (f) for the two
setups, respectively. The diameter of the array is 16.5 cm.

processor, two 200-MHz PRUs, 512 MB RAM, and a diverse
range of on-board peripherals. Bela is used for controlling
sound acquisition and audio processing. Bela is externally
powered by a LiPo USB battery that operates at 5V and
2 A for stability and powering the USB peripherals. The Bela
operation only requires power of 5V / 300-400 mA.

The audio codec operates at 44.1 kHz sampling rate with
16 bits analogue-to-digital converter (ADC) and digital-to-
analogue converter (DAC) conversion. To accommodate 8
microphone inputs, the Bela Mini Cape and Bela Mini
Multichannel expander are stacked on top of each other and
connected via the onboard metal contacts.

2) Storage and wireless unit: An external USB hub is
connected to the USB socket of the Beaglebone device. The
hub accommodates a USB storage stick, which stores the
recording locally, and a USB WiFi Dongle, eliminating the
need for a hard-wired connection to the system IDE and
enabling audio recording to a remote processing terminal via
WiFi network (Fig. 4).
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TABLE IlI
COMPONENTS USED IN THE HARDWARE SYSTEM.
Component Type Functionality Weight [g]
Drone Matrice 100 / 2355
Microphones (8) | Lapel / 120
. - Holding
Array frame 3D printing microphones 151
. Holding  hardware
Hardware tray 3D printing and cables 159
N PocketBeagle | 1 GHz ARM Cortex-
Bela Mini + Mini Cape | A8 processor
Multichannel / Multichannel audio | 53
Expander acquisition
Molex to 3.5 : fng
Connecting mics to
mm adapter | / Bela 22
cable (4)
Mono to stereo / Splitting stereo 64
adapter cable (4) signal to monos
USB LiPo Powering Bela
battery and cable > V. 2 Amp system 151
USB storage / Storing audio locally | 3
_— Wireless connection
WiFi Dongle / to bela IDE 3
USB hub / / 10

3) Hardware tray: A hardware tray is designed to
accommodate the Bela system and the cables. The tray
contains a Bela enclosure (made from ABS) and shock case
(made from Thermoplastic Polyurethane - TPU) to aid with
protecting the hardware from impacts in the event of a crash.
The tray is produced with 3D printing.

Table III lists the components used by the hardware system.
The weight of the whole system of 736 g.

IV. SOFTWARE DESIGN

In this section we briefly summarize the software
processing, as detailed in the tutorial document (see

the sound via WiFi to a remote terminal. All the objectives
are achieved with the assistance of the Bela Integrated
Development Environment (IDE), which is pre-installed on
the Bela device along with an operation system (Debian
Linux). IDE allows for editing, building, and managing
projects from a ground station (remote terminal) via either
hard-wired connection or wireless network.

A. Sound recording

The project setup procedure is shown in Fig. 5(a). We set
up a self-organized wireless network through a WiFi dongle
mounted on the Bela device. Upon system boot, Bela starts
a NodeJS server that allows connection to its system from a
ground station via the wireless network. The WiFi is setup
as a peer-to-peer connection to ensure that the board acts as a
dynamic host configuration protocol (DHCP) server. The WiFi
connection enables the user to access the Bela system through
the IDE without a hard-wired connection.

To connect to the Bela device from the ground station,
we first need to select the WiFi network hosted by the Bela
system. After connection, the IDE can be loaded by entering
the IP address of the host device from the web browser. The
IDE interface will appear automatically at the web browser of
the ground station. After compiling and building, we can run
the multichannel sound recording project for the recording.

Fig. 5(b) shows the processing flow for sound recording.
In brief, after importing the required library, and configuring
global variables and file paths, the program sets up the
recording task to capture the multichannel audio data, writes
the stream to the audio buffer (memory block), and stores the
data in the pre-defined file path. Once the recording is finished,
a clean-up function finalizes the writing process and closes the
file. The audio data is continuously written to the local storage
(or remote terminal) during recording, and can be downloaded
to the ground station once the recording is finished.

The project can be set to run on boot, which enables Bela to
operate automatically without connecting to the ground station
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as long as external power is provided.

B. WIiFi transmission

Instead of recording the audio to the USB storage, we can
alter the target file-path to the default RAM memory of the
Bela device. Then by using the rsync command in the terminal
on the ground station, we can automatically save the recorded
audio files to the USB storage and the remote computer disk
simultaneously. The command essentially performs real-time
synchronization using the secure shell (SSH) method [42],
which runs over Transmission Control Protocol (TCP). It
periodically inspects the contents at the Bela and the remote
computer every two seconds, and performs synchronization
without data loss. This enables the transmission of the data
from the USB storage to the remote computer with a minimum
delay of two seconds.

The transmission delay is also affected by the transmission
condition, such as the distance between Bela and the ground
station, and the obstruction in the environment. For instance, a
higher packet loss rate will be observed at a larger transmission
distance, leading to longer delays by TCP retransmitting
unreceived data packets [42]. Our current WiFi signal is able
to achieve an operational range of 32 m. When the network
connection is lost momentarily, the IDE on the ground station
will stop updating. When the connection is back, the IDE
will synchronize between the Bela and the ground station, and
continue updating the recorded file.

The WiFi transmission of data enables the back up of audio
and sensor data to the ground station, minimising the risk of
losing data if the drone experiences a technical fault during
flight. This also provides an option to process the streamed
data remotely with a powerful computational ground station,
which will be exploited in the future.

V. DATA ANALYSIS AND PROCESSING

A. Setup

We conduct in-flight testing and recording with the two
array setups. For each setup, we make three sets of recordings:
speech-only, noise-only, and simultaneous recording. When
recording the speech-only data, the drone is muted and a
human is talking towards the drone at four directions (-90°,
0°, 90°, and 180°) and at a distance of 2 m. When recording
the noise-only data, the drone is hovering in the air, with the
altitude maintained at about 2 m. During hovering, the drone
is operated using the GPS stabilised mode with additional
manual input (correcting small drift) to allow the drone
to remain reasonably stable throughout the recording. For
simultaneous recording, a human 2 m away is talking towards
the drone hovering in the air, with the altitude about 1.7 m.
The human wears a close-talk microphone which provides a
reference for human speech. The recordings are made outdoors
in a quiet and natural environment with limited reverberations
and ambient noise (see Fig. 6(a) and Fig. 10(a)). The original
sampling rate is 44.1 kHz. The audio is downsampled to 8
kHz before processing.

We first analyze the spectral and spatial characteristics
of the ego-noise (Sec. V-C), and then investigate the ego-
noise reduction performance of state-of-the-art drone audition
algorithms (as described in Sec. V-B) with simulated and real-
recorded data (Sec. V-D and Sec. V-E). All the analysis is
completed offline and not on the Bela system.

B. Baseline algorithm for ego-noise reduction

We employ time-frequency spatial filtering (TFS), a state-
of-the-art drone audition reduction algorithm, to enhance
the recorded noisy data [8], [24]. The TFS algorithm aims
to enhance the sound from a target direction 64, given
the multichannel microphone signal «, and the microphone
location R. The algorithm is briefly summarized below.

Suppose we have M microphones, the microphone signal

x(n) = [z1(n), - ,zp(n)]T consists of the target sound
s(n) = [s1(n), --,sym(n)]T and the ego-noise v(n) =
[v1(n), - ,var(n)]T, where the superscript ()T denotes

transpose. This can be represented in the time domain as
x(n) = s(n) + v(n), or in the time-frequency domain as
x(k,l) = s(k,l)+v(k,l), where n, k, [ are the time, frequency
and frame indices, respectively.

We first apply GCC-PHAT algorithm at each individual
time-frequency bin to estimate the local DOA of the sound at
the (k, 1)-th bin, which is represented as 0::(k, [). We measure
the closeness of each time-frequency bin (k, () to the direction
04, with

(Bre(k, 1) — 9)2) | 0

ca(k,1,0) = exp ( 97

where o denotes the standard deviation. The close measure
cq(+) € [0,1] indicates the probability that the sound at the
(k,1)-th bin arrives from direction 6.

We calculate an M x M target correlation matrix of the
direction 6 as

®,,(k,1,0) =

ch k1, 0)z

where c¢4(-) is the contribution of the (k,[)-th bin to the
correlation matrix, and the superscript (-)? denotes Hermitian
transpose. With this target correlation matrix, we formulate a
standard Multichannel Wiener filter (MWF) [41]

wTF(kalve) = q);zl(kvl)(r/)ssl(kJ’e)? (3)

where ¢, (k,[,0) is the first column of ®..(k,l,0),
and ®,.(k,l) is the correlation matrix of the microphone
signal which can be estimated directly using ®,.(k,1) =

LZ (kD) (k,1).

Fmally, the sound from the direction 6, is extracted as
yre(k, 1,0) = wi(k, 1,0)x(k,1). ())

The ego-noise reduction performance is evaluated with the
SNR measure [36]. We represent the spatial filter in the time
domain as w(n) = [wi(n), - ,wy(n)], the spatial filtering
result can be expressed as

k,Da(k, 1),  (2)

y(n) = w(n) «x(n) = w(n)
=ys(n) + yu(n),

s(n) +w(n) xv(n) 5)
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Fig. 6. Ego-noise analysis for Setup1 (left column) and Setup2 (right

column). (a) Drone hovering in the air. (b)(c) Time-domain waveform
and time-frequency spectrogram of the ego-noise. (d)(e) Sound source
localization results for two noise segments each lasting 4 seconds. The
locations of these segments are indicated in (b).

where ‘x’ denotes the convolutive filtering procedure; ys and
1y, are the target and noise components, respectively, at the
output. The SNR is calculated as

2
SNR = 101og,, 2=n¥x(") ©6)

> va(n)
We use SNR improvement, which is the difference between
the input and output SNR, to indicate the performance of the
spatial filter.

The TFS algorithm performs robustly in noisy conditions
by exploiting the time-frequency sparsity of the ego-noise. We
aim to investigate the ego-noise reduction performance with
the TFS algorithm and thus assume the location of the target
sound source to be known throughout the experiment.

C. Ego-noise analysis

We first analyze the spectral and spatial characteristics of the
ego-noise. Fig. 6 visualizes the ego-noise recorded by Setupl
and Setup? in the left and right columns, respectively. Fig. 6(b)
and (c) depict the time-domain waveform and time-frequency
spectrogram of a segment of ego-noise with a duration of 30

© 2023 Crown Copyright. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing

seconds. The ego-noise consists of multiple harmonics, whose
pitch corresponds to the operation speed of the motors.

We perform source localization on the ego-noise by
computing the instantaneous DOA at individual time-
frequency bins and then constructing a spatial likelihood
function based on the histogram of the instantaneous
DOAs [24]. Fig. 6(d) and (e) depict the spatial likelihood
function obtained for two segments of ego-noise, each lasting
4 seconds. For the same array setup (i.e. the same column),
the spatial likelihood functions appear similarly for the two
noise segments. This is because, for each array setup, the
locations of the motors and propellers remain fixed with
respect to the microphone array. On the other hand, the peaks
(locations and values) of the spatial likelihood function vary
between the two segments, indicating the nonstationarity of
the ego-noise even even when the drone is hovering.

For different array setups, the spatial likelihood function
appears differently across the two columns in Fig. 6. For
Setupl, where the microphone array is located on top of the
drone body, the spatial likelihood function shows high-value
peaks in the whole circle area [-180°, 180°], implying that
the ego-noise comes from all directions around the array. For
Setup2, where the microphone array extends outside the drone
body, the spatial likelihood function shows high values in the
back circle [-180°, 0°] and low values in the front circle [0°,
180°]. This implies that the ego-noise comes from the back
side of the array, where the propellers and motors locate.

Based on [24], the noise reduction performance of the
TFS algorithm tends to improve as the noise and the target
sound become farther apart. The different shapes of the
spatial likelihood functions imply that the noise reduction
performance achieved by the two array setups will be different.
We will validate this in the next subsection.

D. Experiments with simulated data

We investigate the ego-noise performance obtained by the
two array setups for a target sound source with varying
DOAs. The target sound source is simulated with the image-
source method [37] in a space of size 20x20x4 m3, with
reverberation time 200 ms®. The sound source is placed 5 m
away, emitting speech signals at DOAs varying from -180° to
180°, with an interval of 10°. We mix the simulated speech and
the recorded ego-noise at various input SNRs € [-40,0] dB
with an interval of 5 dB, and process the noisy data with
the TFS algorithm. The simulated signal is 160 seconds long.
We process the signal in a segment-wise style, with each
segment 6 seconds long. We compute the SNR measures in
each processing segment and average the output SNR across
all the processing segments.

Fig. 7 illustrates the polar plots for the SNR improvement
achieved by the two array setups for a varying target DOA
€ [-180°,180°]. For Setupl, the array tends to respond
equally to all target directions except at 90°, where the
performance drops remarkably. This is slightly unexpected
as we did not observe a strong peak at 90° of the spatial

3The impulse response generated in this scenario contains few
reverberations, which is similar to the outdoor environment for real recording.
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@) (b)

Fig. 7. Polar plots of SNR improvement with respect to a varying DOA
of the target sound with varying input SNRs [-30, -15] dB. The radius of
the polar plot denotes the SNR improvement in dB. (a) Array Setup1. (b)
Array Setup2.

likelihood functions in the left columns of Fig. 6(d) and (e).
One possible explanation is that the array is placed very
close to the front motors and propellers, and the diffused
(undirectional) component of the ego-noise masks the majority
of the target sound. This hypothesis can be partly validated
by the observation that at 90° there is a drop in performance
which becomes less evident when the input SNR is increased.
Overall, Setupl shows the highest SNR improvement for target
direction -90°.

For Setup2, the array tends to respond equally to all target
directions except at 90° and its neighbouring area [60°, 120°].
This is consistent with the observations in the right columns of
Fig. 6(d) and (e), where the spatial likelihood function shows
low values in the area [60°, 120°]. The outperformance in this
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Fig. 8. SNR improvement achieved by the two array setups. The target
DOAs are -90° for Setup1 and 90° for Setup2, respectively.

area becomes less evident when the input SNR is increased.
Overall, Setup2 has the highest SNR improvement for the
target direction 90°.

Fig. 8 compares the SNR improvement achieved by Setupl
for target direction -90°, and by Setup2 for target direction
90°. The input SNR varies within the range [-40, 0] dB.
The two setups show a similar variation trend, with Setup2
achieving slightly better performance over Setupl. Both setups
achieve the highest SNR improvement at input SNR -25 dB,
and the performance declines when increasing or decreasing
the input SNR. The decrease in performance at lower SNR (<
-25 dB) is due to the challenge of estimating the correlation
matrix of the target sound and the subsequent spatial filter. The
decrease in performance at higher SNR (> -25 dB) is due to
the dynamics of the acoustic transfer functions even when the
drone is hovering. For instance, the speed of the four motors
may change continuously to maintain the hovering status of
the drone in the presence of natural wind, generating varied
acoustic transfer functions between the ego-noise sources and
the microphones. This leads to inaccurate estimation of the
correlation matrix of the target sound, and thus decreased SNR
improvement as the input SNR increases.

In short, the contrast observation at the two array setups
indicates that the array placement, the target direction, and
the input SNR all affect the ego-noise reduction performance.
Setup2 achieves better noise reduction performance than
Setupl, while the latter has better manoeuvrability. There
is always a trade-off between the array placement and the
manoeuvrability. This is consistent with previous studies
that investigate microphone array configuration and ego-noise
noise reduction [11], [39], [40].

E. Experiments with real data

We conduct two ego-noise reduction experiments with
real recorded data. The first experiment synthesizes a noisy
signal by directly mixing the ego-noise-only and speech-only
recording. The speech is recorded in four directions: {-90°,
0°, 90°, 180°}. The second experiment uses simultaneous
recording where a human talks towards a hovering drone.

In the first experiment, we select a segment of noisy mixture
of 18 seconds long, process the data per 6 seconds with the
TES algorithm, and compute the average input and output SNR
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speaker at four directions.

achieved by the two array setups for the four speech directions.
The results shown in Fig. 9 are consistent with the simulation
results shown in Fig. 7. For both setups, the input SNR is
between -25 dB and -30 dB, which is extremely low. The
input SNR at Setupl is slightly lower than Setup2, because the
former is placed closer to rotors and propellers. For Setupl,
the array has similar SNR improvement at all directions except
a sharp drop at 90°. For Setup2, the array has the highest
SNR improvement at 90° and lower SNR improvement at the
other three directions. This implies that the array placement
will impact the ego-noise reduction performance significantly:
Setupl works best when a human talks towards the back side
of the drone while Setup2 works best when a human talks
towards the front side of the drone.

In the second experiment, we employ the TFS algorithm
to process the noisy data per 6 seconds. Fig. 10(a) depicts
the real-recording scenario with Setup2, where the drone is
hovering in the air while the human is talking in front of the
drone. Fig. 10(b1) and (b2) depict the time-domain waveform
and time-frequency spectrogram, respectively, of an example
input signal lasting 10 seconds. It is difficult to identify human
speech from the spectrogram of the input signal. Fig. 10(b3)
and (b4) depict the time-domain waveform and time-frequency
spectrogram, respectively, of the processing result. It can be
seen the speech signal is clearly extracted after processing.
Fig. 10(b5) depicts the time-frequency spectrogram of the
reference signal. The processing results resemble the reference
signal, with certain distortions. Since the human speech and
the ego-noise were recorded simultaneously, we do not have
a precise value of the input SNR, which is estimated to be
at a similar level to the first experiment, i.e. between -30 and
-25 dB. However, given the reference signal from the close-
talk microphone, we can compute the PESQ values of the input
and output signal to be 1.06 and 2.50, respectively. The TFS
algorithm improves the PESQ of the noisy input by 1.44.

A demo corresponding to Fig. 10 is available online*. In
this demo, a human is talking towards a hovering drone with
both microphone array steups. During hovering, the drone
might drift slightly and additional manual input from the
pilot is required to maintain stability in the air. This leads

dwww.eecs.gmul.ac.uk/~1linwang/demo/bela.html
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Fig. 10. Processing real-recorded signals. (a) A human talking to the
hovering drone. (b) Visualization of the processing results: (b1)(b2) The
noisy recording at onboard microphone; (b3)(b4) The processing result;
(b5) The reference speech recorded with a close-talk microphone. The
PESQ values of the input and output signal with respect to the reference
signal are 1.06 and 2.50, respectively.

to dynamic acoustic scenarios and increases the challenge of
data processing. However, the TFS algorithm still manages
to produce satisfactory results. Through informal listening, it
can be verified that the quality of the speech is improved
significantly for both setups. Table IV lists the PESQ values
of the input and output signals with respect to the reference
signal at the close-talk microphone. Both arrays can improve
the PESQ values of the noisy input by about 1.

We pass the noisy and processed audio to a simple speech
recognition engine (Google Translate with voice input), the
recognition result is given in Table V. The speech recognition
engine fails for both noisy recordings, but the recognition
performance is improved remarkably after the enhancement
processing. Specifically, Setupl recognizes 13 out of 19 digits
while Setup2 recognizes 20 out of 20 digits correctly.
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TABLE IV noise reduction and the manoeuvrability of the drone when
PESQ VALUES OF THE INPUT AND OUTPUT SIGNALS IN THE DEMO. choosing the array placement.
Array | noisy input | enhanced output Future work would be to explore alternative microphone
Setupl 071 176 array configurations to improve the quality of audio during
Setup2 135 247 acquisition and help reduce ego-noise. It would be logical
to conduct a comprehensive evaluation of the state-of-the-art
TABLE V drone audition algorithms and to optimize the code for real-
SPEECH RECOGNITION RESULTS IN THE DEMO. time prOCCSSing on Bela, which is able to process audio at very
low latency (<1 millisecond) [23]. Another direction would be
Array close-talk recording noisy recording enhanced speech . . . J
to exploit the wireless transmission capability of the system
1-2-3-4-5-6-7-8-9-10, ) - - 3-4-9-8-7-8-5-8, . .
Sewpl | | 2 4 5.6.7-8.9 fail 1-2-3-4.5-6.7-8.9 to process the data remotely in real time [38].
1-2-3-4-5-6-7-8-9-10 ) 1-2-3-4-5-6-7-8-9-10
Setup2 y fail g
1-2-3-4-5-6-7-8-9-10 1-2-3-4-5-6-7-8-9-10 REFERENCES

VI. CONCLUSION

We present an embedded multichannel sound acquisition
system that can fly with the drone. The system can
accommodate up to 8 microphones placed in an arbitrary
shape, and simultaneously record the sound locally and to the
remote terminal via a self-organized DHCP wireless network.
Experimental results with recordings made with this hardware
verify its validity. This will be the first stage towards creating
a fully embedded solution for drone audition.

We demonstrate the validity of the system with two array
setups by positioning a circular array at different locations on
the drone: Setupl close to the centre of the drone body and
Setup2 extending away from the drone body. Experimental
results with the recordings show that the array placement, the
target sound direction, and the input SNR all affect the ego-
noise reduction performance. Specifically,

o Since the location of the motors and propellers are
fixed, the placement of the array will change the spatial
characteristics of the ego-noise significantly. For instance,
for Setup2 positioning the array far from the drone body,
the ego-noise tends to come from the back side of the
array and thus the TFS algorithm can suppress ego-noise
effectively if the target sound comes from the front side of
the array. For this reason, the performance of ego-noise
reduction varies with the direction of the target sound:
it being high if the target direction is far from the ego-
noise and being low if the two are close. Exploiting the
mobility of the drone, it is possible to maximize the ego-
noise reduction performance by rotating the array towards
a desired direction.

e The input SNR also affects the ego-noise reduction
performance. As the input SNR decreases, the ego-
noise reduction performance (as measured by the SNR
improvement) tends to improve first, peaking at input
SNR -25 dB, and then drops monotonically. Thus it
becomes very challenging to suppress the ego-noise when
the input SNR is lower than -25 dB.

The above observations provide significant insights for
designing drone audition algorithms. In addition, while
positioning the array far from the drone body can improve the
ego-noise reduction performance, it brings new problems to
the manoeuvrability. There is always a trade-off between ego-
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