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Abstract
General relativity (GR) is the currently accepted classical theory of gravity, standing
the test of time for more than 100 years. The recently Nobel-Prize-winning detection
of gravitational waves (GWs) opens doors for direct search of new physics, by matching
theoretical predictions to experimental data. Numerical relativity attempts to solve
in computers strong gravity problems without analytical solutions. In this thesis, we
use numerical relativity to investigate gravitational waves from binary black holes in
extensions of GR.

We first study spherically symmetric gravitational collapse in cubic Horndeski theories
of gravity. By varying the coupling constants and the initial amplitude of the scalar field,
we determine the region in the space of couplings and amplitudes for which it is possible
to construct global solutions to the Horndeski theories. Furthermore, we identify the
regime of validity of effective field theory (EFT) as the sub-region for which a certain
weak coupling condition remains small at all times.

We study black hole binary mergers in these cubic Horndeski theories of gravity, treating
them fully non-linearly. In the regime of validity of EFT, the mismatch of the gravita-
tional wave strain between Horndeski and GR (coupled to a scalar field) can be larger
than 30% in the Advanced LIGO mass range. Initial data and coupling constants are
chosen so the theory always remains in the weakly coupled regime. We observe that the
waveform in Horndeski theories is shifted by an amount much larger than the smallness
parameter that controls initial data. This effect is generic and may be present in other
theories of gravity involving higher derivatives.

We explore a higher-order curvature correction of GR. Guided by toy models, we develop
systems capable of reproducing the low energy behaviour of many such theories with a
fully nonlinear/non-perturbative approach. We evolve binary black holes, observing a
shift in phase accumulated over time which is not statistically significant when compared
to GR, for the methods and coupling used.

Finally, we present AHFinder, a flexible multi-purpose tool to find apparent horizons in
the open-source numerical relativity code GRChombo.
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Chapter 1

Introduction

1.1 The universe of today

Gravity is one of the fundamental forces of nature. From the apple on the tree to the tides
on the sea, gravity puts weight on our shoulders, but holds the world together. While
holding us down, it has intrigued humans to reach the sky and understand planetary
orbits. While making us fall, its mysteries revealed it also warps time and bends light.

Our understanding of gravity has undergone a revolution in the past century, ever
since Albert Einstein proposed the groundbreaking theory of general relativity (GR) in
1915, describing it not as a force but as pure geometry, or curvature of spacetime, influ-
enced by the presence of matter and energy in a four dimensional universe that puts time
and space on more equal footing. This idea challenged the traditional Newtonian view of
gravity as an instantaneous force acting between masses, in a universe with absolute time
and frame of reference. Beautifully, Newton’s law of gravitation fits perfectly within the
umbrella of GR under the assumptions of small curvatures and velocities, making GR
a perfect example of our expanding knowledge of the universe. It showed us a myriad
of effects we could have never have predicted: expansion of the universe, existence of
black holes and gravitational waves. It has also left us with many puzzles to understand,
as dark matter and dark energy, the evolution of the early universe, the cosmological
structure formation, the possibility of existence of higher dimensions, and, above all, the
non-renormalisability of GR leaves little clues to unify it to quantum field theory for the
ultimate understanding of spacetime, quantum gravity.

Nevertheless, this theory has shown predictive power and remarkable accuracy for
all measurements and observations made to this day. Such tests entered the new era of
gravitational wave astronomy when the LIGO/Virgo/KAGRA collaboration made the
first detections of a gravitational waves [19, 20] as predicted long before by GR, which
resulted in the Nobel Prize award in 2017. This extreme event was emitted by two black
holes 1.4 billion light years away, each with a mass about 30 times bigger than our Sun
and yet each with size of only about 50 km, emitting the energy of three solar masses in
less than a second, in the form of gravitational waves we detected on Earth. Since then,
the collaboration has made detections on a weekly basis [21–23], not only of coalescing
black holes, but also binaries involving two neutron starts or a black hole and a neutron
star.

3
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Other evidences for the existence of black holes include the galactic X-ray source
Cygnus X-1, the monitoring of stellar orbitals around galactic centres [24, 25] and the
observation of a black hole shadow by the Event Horizon Telescope [26], which resulted
in the Nobel Prize award in 2020.

1.2 The universe of tomorrow

We will soon enter the era of precision gravitational wave astronomy. Due to improve-
ments in sensitivity and number of ground based observatories, the development of third-
generation gravitational-wave observatory such as the Einstein Telescope [27], and the
future construction of the Laser Interferometer Space Antenna (LISA) [28, 29], many
more (and more precise) detections will allow us to put stronger constraints on the limits
of gravity. The Einstein Telescope is a European project planned to be an underground
infrastructure, bigger, more precise and with reduced noise. LISA, expected to launch in
2037, will be a space-based gravitational wave detector, consisting of three spacecrafts
separated by 5 million kilometres that act as a gigantic interferometer antenna.

The present data suggests that the corrections to GR are small [30]. Therefore, one
may hope that there is a better chance to detect some deviations from GR in the strong
field regime, where some effects may be enhanced, namely in the final collision of com-
pact objects such as black holes, known as merger phase. The unprecedented amount of
data giving us access to the strong regime of gravity1 offers the opportunity (and carries
the duty) to better test GR and observe deviations from it. However, detection of grav-
itational waves requires matching the data against templates of theoretical predictions
of waveforms, without which some deviations from GR may be undetected.

One common approach is to aim to test the self-consistency of GR, by making more
(and more accurate) predictions hoping to find hints of failure that can guide us in a new
direction. Though promising, one big challenge in the development of this approach is
the vast dimension of the parameter space required to understand the gravitational wave
landscape: mass ratio and total mass, relative velocities and separation, spin orientations,
position and orientation relative to detectors, and equation of state if involving neutron
stars.

Alternatively, one can take the effective field theory approach, by looking at GR as an
effective theory of some more fundamental theory, valid up to some finite energy scale.
We can then attempt to describe the low energy limit of such fundamental theory to
probe emerging phenomena in the regime of high curvature, namely around black holes
and compact binaries. In this approach, it is equally or more difficult to come up with

1By the ‘strong field regime’, we mean the regime in which the non-linearities of the theory are
important.
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templates of waveforms. The issue is we have no single preferred theory extending GR
and, in fact, many (many!) have been proposed (see section 2.5 for details). Which
theories should be picked and how should we simulate them?

Given some interesting theory, one possibility is to focus solely on those phases of
the binary that can be treated using perturbation theory, namely the inspiral [31] and
the ringdown phases [32, 33] respectively. So far the merger phase has been modelled
phenomenologically [34, 35], or by treating the deviations from GR perturbatively [36–
41]. Treating the modifications to Einstein’s gravity perturbatively may seem justified
given that the present data indicates that they are small. In this case, there are no issues
with the well-posedness of the equations and this is the approach that has been adopted
in a number of papers [33, 36–42]. However, it has some serious limitations: it is well-
known that small effects can accumulate over time due to secular effects2 and eventually
lead to a breakdown of perturbation theory in a regime where it should still be valid.
Furthermore, this approach is completely insensitive to certain non-perturbative effects
encoded in the full non-linear theory which, even if very small, may be detectable over
sufficiently many orbits of a binary. For instance, the non-linear perturbation theory
around anti-de Sitter space breaks down precisely before a black hole forms [44].

Alternatively, one can demand that the theory satisfies some mathematical consis-
tency requirements, namely having a well-posed initial value problem. This is not an
issue if one is considering weak corrections to GR. Up until recently, only the so called
scalar-tensor and scalar-vector-tensor theories of gravity have been considered in their
full non-linear glory in all phases of the binary [45–48]. In recent years, significant
progress has been made in uncovering which theories can be formulated in a well-posed
manner [49–51], as well as studies of the strong field dynamics of certain alternative the-
ories of interest using this approach [52–57]. It is of interest to treat alternative theories
of gravity fully non-linearly and uncover some of their (perhaps) unique physical effects
that may break certain degeneracies.

In this thesis, we aim to study gravitational waves in interesting and viable alternative
theories of gravity, and compare them to GR, in order to probe generic deviations of GR
one may expect to encounter. By interesting, we mean theories that extend GR non-
trivially offering new phenomenology that satisfies the weak field assumptions compatible
with small deviations. By viable, we mean theories where a formulation exists where the
theory can be simulated fully non-linearly.

2There are recent interesting attempts to re-sum the perturbative series and hence alleviate these
secular effects [43].
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1.3 Outline of the thesis

This manuscript is split in three main parts: background material, research work and
extra material.

The background material comprises chapters 1-3 and provides an overview of the
relevant material for the research work presented. Chapter 1 lays out the motivation for
the rest of the thesis. Chapter 2 introduces general relativity and conventions used, as
well as background concepts and recent developments required for the discussion that
follows, namely scalar fields, modified gravity (Horndeski theories in particular), well-
posedness and procedures to deal with higher derivative theories numerically. Chapter
3 reviews historical numerical evolution schemes and presents GRChombo, the numerical
code used to perform the main simulations in this thesis. More details of such schemes
are shown in appendix E.

The research work in chapters 4-6 constitutes the core of the thesis. In chapter 4,
accompanied by appendix A, we study gravitational collapse in cubic Horndeski theories
in order to identify its regime of validity from the point of view of effective field theory.
Chapter 5, accompanied by appendix B, builds on this by exploring binary black holes
in the regime of validity of such theories, with the goal of comparing them to GR. In
chapter 6, accompanied by appendix C, we analyse an extension of GR involving higher-
order curvature corrections. We describe methods that allow a stable evolution of such
theories and present results on binary black hole waveforms. In chapter 7, we present
AHFinder, a flexible tool to find apparent horizons in multiple scenarios, integrated in
the GRChombo open-source code.

We summarise our conclusions and propose future directions in chapter 8. Finally,
appendix D presents code development work and technical discussions relating all the
simulations performed.



Chapter 2

Overview of general relativity and
modified gravity

The goal of this background material chapter is to introduce some core ideas fundamental
to the development of this thesis and which set the basis for the work done. Their
importance lies on communicating conventions used and reviewing relevant literature
work in the fields of modified gravity and effective field theory. Basic knowledge of
general relativity is assumed1, though a summary of definitions used throughout the
thesis is laid out in 2.2.

2.1 Notation and conventions

We adopt notation as follows unless stated otherwise. Spacetime has D = d+ 1 dimen-
sions, fixed to d = 3, D = 4 where explicitly mentioned. Greek letters (α, β, µ, ν, . . . )
denote full spacetime indices, ranging from 0 to D, and Latin letters (i, j, k, l, . . . )
denote purely spatial ones, ranging from 1 to D. We adopt the mostly plus metric sig-
nature (−,+,+,+) and we use geometric units, with (G = c = 1), where G is Newton’s
gravitational constant and c is the speed of light. This implies that length, time, mass
and energy all have the same dimension2. All these are expressed in a geometrised unit
mass M , which can be freely chosen.

Partial derivatives with respect to any variable xµ, ∂
∂xµ (·), are written as ∂µ(·). The

symbols (. . . ) and [. . . ] around tensor indices (e.g. W[ab]) denote, respectively, total
symmetrisation and antisymmetrisation of the indices within them. We use Einstein’s
summation convention, where repeated indices are summed over all their possible values
(i.e. UαVα means

∑D
α=0 U

αVα).

1See details in Reall [58], Caroll [59] or d’Inverno [60]. Also a useful intuition behind dimensions was
made by Volovik [61] and Mana [62].

2For conversion to conventional SI units, see Wald [63, p. 471].
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Summary 2.2: Key concepts of general relativity

The key formal ideas that motivated GR were: the Principle of General Covariance,
the Principle of Equivalence and Mach’s Principle. Spacetime curvature is described
by a symmetric

(0
2
)

tensor, the metric gµν , from which proper distance ds2 (invariant
interval between infinitesimally close points separated by {dxα}) and proper time dτ

(time experienced by massive objects in their reference frame) can be calculated:

ds2 = dτ2 = −gµνdxµdxν . (2.1)

Due to curvature, basic vectors and co-vectors change between points. The notion of
derivative of a

(m
n

)
tensor T is replaced by covariant derivative, ∇, using the Christoffel

symbolsa, Γρµν :

∇αT
µ1...µm

ν1...νn
≡ Tµ1...µm

ν1...νn ,α + Γµ1
αβ T

βµ2...µm
ν1...νn

+ · · · + Γµm

αβ T
µ1...µm−1β

ν1...νn
−

− Γβ αν1 T
µ1...µm

βν2...νn
− · · · − Γβ ανn

Tµ1...µm

ν1...νn−1β
, (2.2)

Γρµν ≡ 1
2g
ρσ (gµσ,ν + gσν,µ − gµν,σ) . (2.3)

Free massive particlesb, at coordinates {xµ} with spacetime velocity uµ = dxµ

dτ , follow
timelike geodesics, the equivalent of “straight lines” in curved spacetime, according to:

d2xµ

dτ2 + Γµρσ
dxρ

dτ

dxσ

dτ
= 0 ⇐⇒ uν∇νu

µ = 0 . (2.4)

To analyse curvature, one defines the Riemman curvature tensor, Rα
βµν , the Ricci tensor,

Rµν , and Ricci scalar, R, as follows. The symmetries of the Riemann tensor are as in
(2.8).

Rα
βµν ≡ ∂µΓαβν − ∂νΓαβµ + ΓαρµΓρβν − ΓαρνΓ

ρ
βµ , (2.5)

Rµν ≡ Rλ
µλν , (2.6)

R ≡ Rµ
µ , (2.7)

Rα[βµν] = 0 , Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ , (2.8)

∇µ∇νT
α = ∇ν∇µT

α +RαβµνT
β . (2.9)

Geometry of spacetime, described by the Einstein tensor, Gµν , and distribution of mat-
ter, described by the energy-momentum tensor, Tµν , are related by Einstein’s field equa-
tions:

Gµν ≡ Rµν − 1
2gµνR = κ

2 Tµν − Λgµν , (2.10)

where Λ is the cosmological constant and κ = 16πG. The Bianchi identities/contracted
Bianchi identities are:

Rαβ[µν;λ] = 0 =⇒ ∇µGµν = 0 = ∇µTµν . (2.11)
aNot a tensor.
bCharacterised by timelike separation: ds2 < 0. For massless objects, travelling at the speed of light,

ds2 = 0 = dτ2, one can write uµ = dxµ

dλ
, with λ an affine parameterisation of null geodesics.
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2.3 Black holes and gravitational waves

In this section follows a one page overview of BHs and GWs. See Reall [64] and Centrella
and Baker [65] for a review.

The trivial solution to Einstein’s equations and where special relativity ‘lives’ is not
the familiar geometry of Euclidean space. The flat spacetime metric solution can be
written as ηµν = diag(−1, 1, 1, 1), and such spacetime is called Minkowski spacetime.

In vacuum, without any matter, i.e. Tµν = 0 = Gµν , the most fundamental solutions
of Einstein’s equations are black holes, regions of “no escape” delimited by an horizon (see
details about horizons in 7.1). Surprisingly, black hole solutions typically characterise
fully empty spacetimes, apart from an infinitely dense point or ring at the centre. The
simplest black hole is the Schwarzschild black hole, describing a static and spherically
symmetric spacetime. It can be written as the metric:

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
, (2.12)

where M is the mass of the black hole. The Schwarzschild solution also describes the
exterior of stars. In the limit of M → 0 or r → ∞, Minkowski spacetime is recovered.

On the other hand, consider perturbations of flat space, taking some metric:

gµν = ηµν + hµν , (2.13)

where hµν is a small perturbation, |hµν | ≪ 1. Linearising Einstein equations for hµν
yields a wave equation:

□h̄µν = −κTµν , (2.14)

where h̄µν = hµν − 1
2

(
ηαβhαβ

)
ηµν and where we use the Lorentz gauge, ∂ν h̄νµ = 0. This

has two fascinating consequences. The first one is that for small velocities, □ ≈ ∇2 and
T 00 ≈ ρ, where ρ is the energy density. This implies that:

∇2h̄00 = −κρ , (2.15)

which is precisely the same as Newton’s law of gravitation ∇2ϕ = 4πGρ if one takes
h00 = hii = −2ϕ. This is a brief description revealing how GR allows the recovery
of Newton’s law of gravitation under the assumption of weak gravitational force and
velocities.

Moreover, the wave equation (2.14) indicates perturbations of flat space propagate
as waves, and is the basis for the prediction of gravitational waves, ripples in the fabric
of space and time.
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2.4 Scalar fields

Scalar fields describe concepts like temperature, a concept with a number assigned to
each point in space. Fundamental fields are not macroscopic properties such as tempera-
ture, but are seen as elemental parts of nature, such as the electron. The only currently
empirically verified fundamental scalar field in nature is the Higgs boson [66]. Other
fundamental scalar fields are hypothesised to exist, such as the inflaton, a scalar field
candidate to extend the Big Bang theory and explain problems such as the homogeneity
and isotropy of the CMB, Cosmic Microwave Background. Beyond this, scalar fields can
be useful as effective theories, describing the low energy behaviour of other fundamental
theories or representations of higher dimensions, or as toy models to understand phe-
nomena in complex systems, such as critical collapse in strong gravity settings. Classical
scalar fields are an approximation to the fundamental description via QFT, Quantum
Field Theory, in a regime where occupation numbers are high and wavelengths are larger
than Compton wavelengths of the quanta of the field. This does not allow analysing
quantum behaviours such as quantum tunnelling, but allows to study effects of gravity
over large scales.

The evolution of a classical scalar field, ϕ with some potential V (ϕ) is modelled via
the action:

S :=
∫
d4x

√
−g (X − V (ϕ)) , (2.16)

where X = −1
2∇µϕ∇µϕ is the kinetic term of the scalar field. This leads to the equations

of motion:
□ϕ = ∂ϕV . (2.17)

For a potential V (ϕ) = 1
2m

2ϕ2, this is the well-known Klein Gordon equation where m
is the mass of the field. Without extra interactions, the field has a tendency to follow
the gradient of the potential towards its minima.

2.4.1 Critical collapse

Gravitational collapse of a scalar field minimally couple to GR is an area with very active
interest. It was first studied analytically by Christodoulou [67–69] and numerically by
Goldwirth and Piran [70]. Soon after, Choptuik [71] discovered a critical phenomena
associated with gravitational collapse, briefly described below.

Start from a gravity environment where we place a bubble of scalar field of some
shape. This scalar field, if coupled to gravity, will invariably follow gravitational collapse
by its own attraction. If the profile of such bubble is faint and disperse, this collapse will
propagate just as a typical wave in a wave equation, rebound and disperse to infinity.
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However, if sufficiently dense, it is understandable that under the action of gravity it can
be dense enough to distort spacetime and form a black hole3. These two behaviours are
generic for any configuration.

What Choptuik found was a critical point at which the transition between the two
states occur, the critical collapse. Interestingly, for any family of configurations param-
eterised by one parameter p (e.g. amplitude of the profile, width, etc.), the approach to
the critical point p∗ reveals a universal scaling:

M ∝ |p− p∗|γϕ , (2.18)

where M is the mass of the black hole formed close to the critical point. The constant
γϕ ≈ 0.37 is universal for any one parameter families of minimally coupled real scalar
fields (it is different for instance for vector fields). Among other interesting phenomena
such as discrete self-similarity in the solutions, the universality of this behaviour suggest
the generic appearance of black holes with mass approaching zero. This leads to the
possibility of creation of naked singularities that violate the cosmic censorship conjecture,
later proved false for some classes of initial data [72]. For comprehensive reviews and
recent developments, see [73–76].

2.5 Modified gravity overview

As of the writing of this thesis, gravitational wave observations of BBHs and neutron stars
by the LIGO/Virgo/KAGRA collaboration have been consistent with the predictions of
GR [21–23]. Yet, there has been an extensive effort by many researchers to model
the dynamics of binary black holes and neutron stars in modified (non-GR) theories of
gravity.

There are many topics in fundamental physics beyond the current standard mod-
els of gravity, cosmology and particle physics being researched to sharpen our chances
of discovering new physics. Research topics range from probing for new physics (dark
matter, dark energy, screening models, primordial black holes, echoes, speed of light,
parity violations, etc.) to improving methodologies (better models, control of systemat-
ics, model-independent and dependent tests, etc.) [29]. On the front of new and better
models of gravity, extending general relativity has resulted in a diversity hard to keep up
with. A schematic attempting to categorise this is shown in figure 2.1. Following [77],
the distinctions can be broken down in the following main categories:

• Adding new fields: often considered the easiest approach, adding a new field often
3It may be useful for the reader to see these effects with the visual animation of our simulations of

such effects: https://www.youtube.com/watch?v=cfXF1wIcIJc.

https://www.youtube.com/watch?v=cfXF1wIcIJc
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results in simple models. Some of these theories can be considered simply exotic
matter and not modified gravity, as detailed further in section 2.7. This class of
theories can be broken down further:

– Scalar fields: this includes both real and complex scalar fields, and some
examples include Horndeski gravity, Beyond Horndeski gravity or Cherns-
Simons gravity.;

– Vector fields: such as Einstein-Aether gravity or generalised Proca gravity;

– Tensor fields: such as massive gravity, bigravity and bimetric MOND (Modi-
fied Newtonian Dynamics) gravity.

• Adding invariants: these include breaking certain assumptions like adding extra
dimensions, such as Lovelock theories (which are the diffeomorphism invariant
generalisations of the Hilbert-Einstein action for higher dimensions), or adding
higher order terms to the action, such as f(R) gravity, some of which break locality.

• Changing geometry: examples of non-Riemannian geometries are Finsler geometry,
non-commutativity gravity and teleparallel theories. It is often debated whether
problems such as dark matter will be solved by adding particles and fields or by
modifying geometry [78].

• Quantising gravity: quantum arguments can be used to extend gravity, mainly
using string theory. Other examples are Loop quantum gravity, causal sets, Horava-
Lifshitz gravity or spin foams.

Many of these extensions or modifications of gravity should be seen as effective field
theories, truncations of the full UV-complete quantum gravity theory we aspire to find,
with the hope of finding constraints to each different type of parameterisation and the
trust that higher derivative operators are suppressed for low energy physics. There are
many more extensions or modifications of gravity not mentioned above and at the mo-
ment there is no theoretical consensus or experimental evidence that favours a particular
theory. The hope is that each modification of GR should be reflected in a unique way in
the corresponding waveform to allow for exploration in analysis of gravitational waves.
However, in many of these theories it is not known whether the initial value problem
is well-posed. Without a well-posed initial value problem, one cannot possibly simulate
the non-linear regime of the theory on a computer and obtain the desired waveforms.

In the next sections, we will describe the idea of well-posedness in more detail and
two theories of gravity that can be written in a well-posed formulation.
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Figure 2.1: Modified gravity roadmap summarising possible extensions of GR, high-
lighting constraints obtained from the speed, dispersion, damping and oscillations of
gravitational waves. Figure taken from Ezquiaga and Zumalacárregui [10].

2.6 Well-posedness and hyperbolicity

Following Alcubierre [18], in classical physical theories, the behaviour of a system is
formulated in terms of functions and fields governed by a system of differential equations.
General solutions to these equations depend on free parameters or free functions, which
are fixed by imposing initial conditions and boundary conditions. Setting up appropriate
initial conditions allows for a deterministic evolution. This is called an initial value
problem or Cauchy problem.

Mathematical stability and consistency ultimately demands from these systems a set
of hyperbolic partial differential equations and well-posedness. These conditions arise
from the expectation that solutions are unique, but also that small perturbations on the
initial data lead to small perturbations in the solution at later times. Considering these
expectations, a system is well-posed if (i) there are unique solutions and (ii) the solutions
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depend continuously on the initial data, or more strictly, solutions do not increase more
rapidly than exponentially. For some defined norm || · ||, the solution vector u must
satisfy:

||u(t, xi)|| ≤ k eα t||u(0, xi)|| , (2.19)

where k, α are constants independent of the initial data. Often for generic initial data one
can only prove local well-posedness, which means existence, uniqueness and continuous
dependence on initial data for only a finite non-zero amount of time.

2.6.1 Notions of hyperbolicity

When considering small perturbations, any n-dimensional partial differential equation
system can be written in first order form as:

∂tu + Mj∂ju = S(u) , (2.20)

where S is a source vector dependent on u but not its derivatives, Mi are matrices,
one for each direction i. Second order PDEs can also be considered [79], and for fully
non-linear PDEs the concepts of hyperbolicity often gets blurry. Note that most systems
can be written like this if one considers re-writing higher derivatives as first derivatives
of new auxiliary variables. The vector u should be seen as an ordered list of evolution
variables without any geometric meaning.

Focusing on the principal part of the equation (terms involving the highest degree in
derivatives of u, as these are the ones that involve higher frequencies that enter the anal-
ysis of hyperbolicity), one can ignore the source term as if S = 0. Consider an arbitrary
unit vector ni and construct the principal symbol or characteristic matrix P(ni) = M ini.
From the decomposition of this matrix into its eigenvectors and eigenvalues, one can clas-
sify the system as:

• Weakly hyperbolic, if P has real eigenvalues for any ni, but not a complete set of
eigenvectors,

• Strongly hyperbolic, if P has real eigenvalues and a complete set of eigenvectors
for all ni. If this is the case, then one can diagonalise P into a diagonal matrix Λ
(with the eigenvalues λ in the diagonal) using the matrix of column eigenvectors:

Λ = R−1PR . (2.21)
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One can then define an positive definite matrix H = (R−1)TR−1, that satisfies:

HP − PTHT = (R−1)TΛR−1 − (RT )−1ΛR−1 = 0 . (2.22)

This can be used to define the energy norm of u and its adjoint (complex-conjugate
transpose):

||u||2 = u†Hu . (2.23)

Using a Fourier mode of the form u(t, xi) = ũ(t)eik xini , one can estimate the
growth in the energy norm:

∂t||u||2 = ikũT
(
PTH − HP

)
ũ = 0 , (2.24)

meaning that the energy norm is constant in time and, as required, the system
is well-posed. We then see that strong hyperbolicity implies well-posedness. It is
also possible to show that weakly hyperbolic systems are not, meaning that strong
hyperbolicity and well-posedness are equivalent properties.

To study well-posedness of a system, the methodology consists of looking at the
principal part of the system of equations and trying to build a linearly independent set of
eigenvectors. If attained, the system is hyperbolic, and these eigenvectors, combinations
of the original evolution variables, will evolve through simple advection equations with
their own characteristic speed.

2.6.2 Well-posedness in gravity

The original formulation of general relativity as a system of PDEs used harmonic co-
ordinates developed by Choquet-Bruhat [80, 81], later evolving to generalised harmonic
coordinates [82, 83]. A popular alternative is the 3 + 1 approach, first leading to the
ADM system (see section E.1). This turned out to result in weakly hyperbolic evolution
equations, meaning lack of well-posedness and unstable numerical behaviour. This led
to the development of more complex formulations that satisfy well-posedness, such as
the BSSNOK [84–86] and CCZ4 [87–90] formulations (see sections E.2 and E.3).

In the realm of modified theories of gravity, most theories are either not well-posed
or not known to be well-posed (often they are non-linear theories for which the concept
of hyperbolicity analysis is not well understood). There have been some recent efforts
that have successfully managed to construct well-posed formulations of certain modified
theories of gravity of physical interest, such as cubic Horndeski theory [49]. Earlier
works studied the well-posedness of Lovelock and certain Horndeski theories, such as
Einstein-scalar-Gauss-Bonnet gravity, and found that the equations of motion are weakly
hyperbolic (and hence not well-posed) in a certain class of generalised harmonic gauges
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[91, 92]. A new modified generalised harmonic gauge was then found to circumvent these
problems for all Lovelock and Horndeski theories [50, 51, 57]. Alternatively, [93, 94] have
proposed to find well-posed formulations of alternative theories of gravity extending the
Müller-Israel-Stewart formalism of viscous relativistic hydrodynamics [95–98] to those
theories of gravity. Very recently [99] succeeded in applying this formalism to theories
of gravity with higher curvature corrections assuming spherical symmetry. This method
has also been applied to scalar-tensor theories with second order equations of motion
[100–103].

Even for some of the theories proven to be well-posed, it has been shown that hy-
perbolicity can fail if the spacetime curvature and/or the derivatives of the scalar field
become too large in the future development of the solution [1, 104–111].

2.7 Horndeski

Having in mind the importance of well-posedness, we focus on particular modified theory
of gravity which is known to have a well-posed initial value problem: Horndeski theory4

[49–51].5 This is the most general theory satisfying 1) a metric tensor coupled to a
scalar field, 2) with second order equations of motion, 3) arising from a diffeomorphism
invariant action6, 4) in four spacetime dimensions. The general action for this 4D theory
is7

S :=
∫
d4x

√
−g (L1 + L2 + L3 + L4 + L5) , (2.25)

with

L1 = R +X − V (ϕ) ,

L2 = G2(ϕ,X) ,

L3 = G3(ϕ,X)□ϕ ,

L4 = G4(ϕ,X) R + ∂XG4(ϕ,X)
[
(□ϕ)2 − (∇µ∇νϕ) (∇µ∇νϕ)

]
,

L5 = G5(ϕ,X)Gµν∇µ∇νϕ− 1
6∂XG5(ϕ,X)

[
(□ϕ)3 − 3□ϕ (∇µ∇νϕ) (∇µ∇νϕ)

+ 2 (∇µ∇νϕ) (∇ν∇ρϕ) (∇ρ∇µϕ)
]
,

(2.26)

4This theory was first found by Horndeski [112] and rediscovered in other works [113–115].
5Rendall [116] had previously proven well-posedness of the initial value problem for the so called

k-essence theories, which are a subclass of the Horndeski theories considered in these papers.
6Also known as general covariance, this property means invariance of the physical laws under arbitrary

coordinate transformations. Simplistically, this equates to expressing systems with tensor fields.
7The Teleparallel gravity version of this theory has been recently worked out by Bahamonde et al.

[117, 118]. While this version may offer a phenomenologically attractive avenue to explore, the well-
posedness of the initial value problem in these theories has not been established.
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where ϕ is a dimensionless scalar field; X := −1
2(∇µϕ)(∇µϕ) and V (ϕ) are the usual

scalar kinetic and potential terms in the standard action for a minimally coupled scalar
field; Gi (i = 2, 3, 4, 5) are freely specifiable functions, and R and Gµν are the Ricci
scalar and Einstein tensor of the spacetime metric gµν , respectively. We have explicitly
separated the canonical kinetic and potential terms from G2 so that Gi parameterise
only the higher derivative terms and non-minimal couplings of the scalar field to gravity.
Having only second-order equations is essential to avoid a physical instability known as
Ostrogradsky instabilities, detailed in the section below 2.7.1. This theory has found
numerous other applications to cosmology; the literature on the subject is vast and we
will not attempt to review it here. We do not provide a detailed review of the current
observational and theoretical constraints on the Horndeski gravity theories, nor do we
discuss methods to construct solutions to the Horndeski gravity theories, such as Post-
Newtonian methods. We refer the reader to the recent reviews [119–123].

Restricting the theory to the class G4 = G5 = 0, the action (2.25) reduces to cubic
Horndeski theories, which will be extensively discussed in chapters 4 and 5 and comprise
several well-known particular cases that have been extensively studied in other contexts,
mostly cosmology [119, 120, 124].

Following Quiros et al. [124] and Ripley [122], one can summarise a non-extensive
list of main sub-classes of Horndeski studied in the literature:

• quintessence, which consists of a simple scalar field minimally coupled to GR; this
model is obtained by setting G2 = G3 = G4 = G5 = 0.

• k-essence, setting G3 = G4 = G5 = 0, with the common choice of G2(ϕ,X) =
f(ϕ)g(X) for arbitrary functions f and g of their arguments [125]. This can be
extended to a g-essence theory by adding a fermionic field its corresponding non-
abelian kinetic term [126].

• Galileons, also known as kinetic gravity braiding [127, 128] or cubic galileons [129–
134], are obtained by choosing G3 ̸= 0 with G4 = G5 = 0; this class of models
is often simplified to the shift symmetric case [135], corresponding to G3(ϕ,X) =
g(X), for an arbitrary function g. This class evades many constraints to Horndeski
theories [136–140].

• 4∂ST (4 derivative scalar-tensor) is a special case with the action8:

S4∂ST :=
∫
d4x

√
−g

(
R +X − V (ϕ) + α(ϕ)X2 + β(ϕ)G

)
, (2.27)

where G = R2 − 4RµνRµν + RαβµνRαβµν is the Gauss-Bonnet invariant. This
8This action does not seem to appear in the form (2.25), but through field re-definitions can be

transformed into the Gi form [141] and, as expected, leads to second order equations of motion.
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theory has attracted attention because for some coupling functions β(ϕ) black
holes can have scalar hair, and because it can be shown to be an expected truncated
theory for lower energies from an effective field theory perspective [142]. The theory
with α(ϕ) = 0 is known as EsGB (Einsten scalar Gauss-Bonnet) [55].

• Brans-Dicke theory, choosing G3 = G5 = 0, G2 =
(
w
ϕ − 1

)
X and G4 = ϕ, leading

to the action:
SBD :=

∫
d4x

√
−g

(
f(ϕ)R + w

ϕ
X

)
. (2.28)

Due to the conformal coupling of the scalar field to the Ricci scalar, this action is
said to be in the Jordan frame [143–147]. Through a suitable conformal transfor-
mation redefining the metric gµν → Ω(ϕ)g̃µν , this action can be re-written as:

SBD :=
∫
d4x

√
−g̃

(
R̃ + X̃

)
, (2.29)

where R̃, X̃ are computed using the conformal metric g̃. This is called the Einstein
frame.

As a final note, there is a nuance to be made on the distinction between modified
gravity and exotic matter, as simple theories such as Galileons can be considered as part
of both classifications. These theories have been used as one of many ways of modifying
the behaviour of gravity and potentially address certain phenomena. Hence, for the
purposes of this thesis, such extensions of GR are considered modified gravity, leaving
the term exotic matter to refer to matter not in the standard model of particle physics
that, for instance, violates energy conditions, such as having negative energy density or
pressure.

2.7.1 Ostrogradsky instability

Having only second-order equations is essential to avoid a physical instability known as
Ostrogradsky instability [148–150], which we summarise below. Theories with higher
than second derivatives correspond to Hamiltonians unbounded from below, typically
associated with a new degree of freedom of the theory, the Ostrogradsky ghost. A
Hamiltonian unbounded from below implies an empty state can decay into an unsta-
ble collection of unbounded positive and negative energy excitations, often entropically
favoured. Below we give an example of one such Hamiltonian.

The instability can be circumvented by breaking non-degeneracy of the Lagrangian
canonical coordinates [151–153]. For scalar-tensor theories, this results in the DHOST
(Degenerate Higher-Order Scalar-Tensor) theories [154–157], which are the largest gen-
eralisation of scalar-tensor theories with higher-order derivatives (higher than second)
that avoid the Ostrogradsky instability. These obviously include Horndeski as a sub-
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class, as well as Beyond Horndeski theories and disformal transformations of Horndeski
theories. Note that the absence of this instability does not guarantee well-posedness,
and the presence of ghosts, in general, does not exclude well-posedness either.

Let us see this effect taking place with a simple explicit example [148]. Take the
Lagrangian of higher derivative deviations from an harmonic oscillator, parameterised
by ϵ:

L = − ϵm

2ω2 ẍ
2 + m

2 ẋ
2 − mω2

2 x2 , (2.30)

which leads to the Hamiltonian:

H = ϵm

ω2 ẋ
...
x − ϵm

2ω2 ẍ
2 + m

2 ẋ
2 + mω2

2 x2 . (2.31)

The Euler-Lagrange equation and its general solution are,

0 = −m
(
ϵ

ω2
....
x + ẍ+ ω2x

)
, (2.32)

x(t) = C+ cos (k+t) + S+ sin (k+t) + C− cos (k−t) + S− sin (k−t) , (2.33)

where k± = ω
√

1∓
√

1−4ϵ
2ϵ are constants and C± and S± are determined by initial condi-

tions (a fourth order equation requires four initial conditions). Replacing this solution
back into the Hamiltonian:

H = m

2
√

1 − 4ϵ k2
+

(
C2

+ + S2
+

)
− m

2
√

1 − 4ϵ k2
−

(
C2

− + S2
−

)
. (2.34)

The last form makes it clear that the C+ and S+ carry positive energy modes, and C−

and S− carry negative energy modes. Moreover, the negative energy modes show the
Hamiltonian is unbounded from below, leading to problems such as vacuum decay when
considering interactions [148]. This is the Ostrogradsky instability. These unbounded
modes are called Ostrogradsky ghosts.

2.8 Fixing higher derivative effective field theories

In section 2.6 we discuss the hyperbolicity required to assess the well-posedness in a
traditional way. There are theories for which such analysis is hard to develop or for which
partial differential equation theory is still to be developed, giving us no mathematical
guidance to enquire about the validity of an initial value problem. This is the case for
theories with higher than second derivatives or with non-linear terms such as second
derivatives multiplied together. The issue often lies not in the full theory these effective
field theories are trying to reproduce, but in strong energy cascades and characteristic
shocks resulting from a truncated theory with a certain energy cutoff, as we shall see
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in an example below. In reality, sensitivity to high frequency behaviour affecting the
physics of a system hints the solution is away from the regime of applicability of the
theory in the first place. As intended in figure 2.2, one can then hope to develop suitable
techniques to develop a fixed theory that can capture the low energy behaviour of an
extension of GR while being insensitive to uncontrolled growth one naively would find
[93, 94].

In the next sections we will apply the ideas above to a sample toy model that ex-
emplifies how a truncated theory can introduce problems the full theory does not share,
and present the generic method that can be used to fix an extended class of theories
with higher derivatives in the equations of motion.

Figure 2.2: Schematic of three possible theories: an unknown full theory of nature free of
pathologies, a truncated theory probing low energy phenomenology, yet with pathologies,
and a fixed theory constructed from the truncated one, free of pathologies and now able
to inform about the full theory.

2.8.1 Toy model, from full theory to truncated theory

Let us consider some complete theory and truncate it in some effective field theory sense
[94, 158]. Consider the 4D full theory action:

S = −
∫
d4x [(∂µϕ∗) (∂µϕ) + Vϕ (ϕ∗ϕ)] , (2.35)

where the potential is given by:

Vϕ (ϕ∗ϕ) = λ
2

(
ϕ∗ϕ− v2

2

)2
, (2.36)
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with a minimum for ϕ∗ϕ = v2

2 . Decomposing the complex scalar field into a real phase
and amplitude expanded around the minimum, θ and ρ, one can write:

ϕ(x) = v√
2 [1 + ρ(x)] ei θ(x) . (2.37)

The action (2.35) becomes:

S

v2 = −
∫
d4x

[
1
2 (∂µρ) (∂µρ) + 1

2 (1 + ρ)2 (∂µθ) (∂µθ) + Vρ(ρ)
]
, (2.38)

with the potential Vρ re-written as:

Vρ(ρ) = M2

2

(
ρ2 + ρ3 + ρ4

4

)
, (2.39)

where M2 = v2λ
2 . ρ represents a massive field and θ a Goldstone boson. The equations

of motion are:

□ρ = (1 + ρ) (∂µθ) (∂µθ) + V ′(ρ) ,

□θ = −2 (1 + ρ)−1 (∂µρ) (∂µθ) .
(2.40)

In the limit where M is very large compared with the energies of interest we can integrate
out the ρ field to determine its leading-order effects on the low-energy physics of θ-
particles. As described by Burguess and Williams [158], this yields:

S

v2 ≈ −
∫
d4x

(
1
2 (∂µθ) (∂µθ) − 1

2M2 [(∂µθ) (∂µθ)]2 + 2
M4 (∂µ∂νθ) (∂µ∂σθ) (∂νθ) (∂σθ)

)
.

(2.41)
The last term in this action leads to equations of motion that clearly have third and
fourth order derivatives. In the original theory, the equations of motion for ρ and θ only
had up to second order derivatives. We then see how a perfectly healthy full theory can
be truncated into a pathological one.

2.8.2 Fixing truncated theories

In the context of modified gravity, let us explore extensions of Einstein’s equation by
considering an energy-momentum tensor that depends on derivatives higher than second
order in the metric, without extra fields. Take the Einstein tensor as a function of the
metric up to second derivatives, Gµν = G(ga, ∂µga, ∂2

µg
a), where ga are the components

of the metric gµν (here and below a, b, ... represent generic indices counting the variables,
not spacetime indices). Following [99], write Einstein’s extended equation generically as:

Gb(ga, ∂µga, ∂2
µg

a) = ϵ Sb(ga, ∂µga, ∂2
µg

a, ∂3
µg

a, ∂4
µg

a) + O(ϵ2) , (2.42)
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for some small parameter ϵ. The symbol Sb encodes contributions of extensions to GR.
We consider up to fourth order terms as generic terms that may appear in lowest order
EFT. On the left hand side one can factor out second time derivatives to obtain:

∂2
t g
b = G̃b(ga, ∂µga, ∂i∂µga) + ϵ Sb(ga, ∂µga, ∂2

µg
a, ∂3

µg
a, ∂4

µg
a) + O(ϵ2) , (2.43)

where ∂2
i g
a and ∂i∂tg

a indicate purely spatial and mixed time and spatial derivatives,
respectively, and G̃b is related to the original Gb functions. The higher order time
derivatives clearly make this problem intractable at first sight. We will now see how to
deal with higher order time derivatives and then with higher order spatial derivatives:

2.8.2.1 Time derivative order reduction

Take the previous equation now only up to O(ϵ):

∂2
t g
b = G̃b(ga, ∂µga, ∂i∂µga) + O(ϵ) . (2.44)

From this, notice how higher order derivatives can be written as:

∂3
t g
b =

(
∂tG̃

)b
(ga, ∂µga, ∂2

µg
a, ∂2

i ∂tg
a, ∂i∂

2
t g
a) + O(ϵ) ,

∂4
t g
b =

(
∂2
t G̃
)b

(ga, ∂µga, ∂2
µg

a, ∂t∂
2
µg

a, ∂2
i ∂

2
t g
a, ∂i∂

3
t g
a) + O(ϵ) .

(2.45)

The right hand side of (2.45) depends on second time derivatives of ga, which can be re-
expressed (recurrently as necessary, since we are discarding terms of O(ϵ)) using equation
(2.44) to yield:

∂3
t g
b =

(
∂tG̃

)b
(ga, ∂µga, ∂i∂µga, ∂2

i ∂µg
a) + O(ϵ) ,

∂4
t g
b =

(
∂2
t G̃
)b

(ga, ∂µga, ∂i∂µga, ∂2
i ∂µg

a, ∂3
i ∂µg

a) + O(ϵ) .
(2.46)

This procedure expresses all second or higher order time derivatives with spatial deriva-
tives (of higher order), keeping only time derivatives up to first order, which are typically
reduced to auxiliary variables when decomposing the system into a first order form. One
can now use these re-written higher derivatives to re-write Sb into S̃b, satisfying:

ϵ Sb = ϵ S̃b + O(ϵ2) . (2.47)

This yields the “time reduced” evolution equations, equal to the original up to O(ϵ)2:

∂2
t g
b = G̃b(ga, ∂µga, ∂i∂µga) + ϵ S̃b(ga, ∂µga, ∂i∂µga, ∂2

i ∂µg
a, ∂3

i ∂µg
a) + O(ϵ2) . (2.48)
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2.8.2.2 Dealing with higher spatial derivative, “Fixing the equation”

The existence of higher order spatial derivatives, even without higher order time deriva-
tives, are known to bring uncontrolled high frequency modes [93]. Allwright and Lehner
[94] mention two solutions to this problem: “Fixing the equations” and “Reduction of
Order” (not to be confused with the time reduction of order used in the previous section).
Reduction of order is an iterative method where the source is assumed to be sub-leading,
allowing to iterate until convergence the solution using the source evaluated on previous
iterations: Gb(gai , ∂µgai , . . . ) = ϵ Sb(gai−1, ∂µg

a
i−1, . . . ), effectively decoupling it from the

principal part of the equation as it is treated as an independent source. This method
was found to behave less robustly, so we will not describe it more extensively.

The “fixing” method, inspired by the Israel-Stewart formulation of relativistic viscous
hydrodynamics [159, 160], was found to behave extremely well. It consists of writing
an ad hoc system with an auxiliary variable that replaces the badly behaved terms in
the source of the evolution equation. This auxiliary variable is dynamic and “tracks”
the original source. However, its evolution equation is written in such a way that it
captures the low frequency behaviour of the source, damping away any high frequency
spurious modes. This allows us to achieve our original goal of reproducing the low energy
behaviour of the full theory that our truncated equations are trying to probe, without
introducing pathological behaviour.

Let us look at a simple version of such alternative system by introducing independent
variables Πb that “track” the source S̃b:

∂2
t g
b = G̃b(ga, ∂µga, ∂i∂µga) + ϵΠb ,

∂tΠb = − 1
τ

(
Πb − S̃b(ga, ∂µga, ∂i∂µga, ∂2

i ∂µg
a, ∂3

i ∂µg
a)
)
,

(2.49)

where we ignore O(ϵ)2 terms and τ is a constant. The variables Πb follow a damped
equation converging to the source S̃b on a timescale τ . If the long wavelength physics of
the original equations can be decoupled from short wavelength modes, then the particular
form of this equation should not be unique as long as it retains the same long distance
behaviour. Moreover, the physics obtained should be also insensitive to the choices of
τ , within a wide range of timescales. For specific problems, these auxiliary variables
can be engineered to completely remove all higher order spatial derivatives, as we will
demonstrate in sections 6.2 and 6.3.6.

Using time order reduction to reduce the system to first order time derivatives, and
dealing with higher order spatial derivatives by “fixing” the equations with auxiliary
variables, one can arrive at the fixed theory, with stable equations ready for numerical
evolution. Cayuso and Lehner [99] make an explicit application of this, which was the
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basis for chapter 6. Toy models analysed by Cayuso et al. [93] apply this technique to
various equations. Its toy model example labelled n = 4 is analysed in more detail in
section 6.2, as well as extended to a more “gravitatonal” setting useful to understand
the theory simulated with black hole binaries in chapter 6.3.3.1.



Chapter 3

Overview of numerical general rel-
ativity

3.1 Introduction

GR requires the solution to Einstein’s field equations: multidimensional, nonlinear, cou-
pled partial differential equations in four dimensions. Due to its non-linearity, only a few
idealised cases with high degree of symmetry (e.g. static solutions, isotropic solutions,
etc.) can be solved exactly. This led to the birth of the field of Numerical Relativity
(NR), developing computer algorithms using numerical techniques to finish the exciting
task of finding solutions to Einstein’s equations.

One of the main difficulties associated with NR is related to singularities, regions
where the gravitational tidal forces, matter density and curvature all become infinite
(where the theory breaks down), as present in BHs, potentially causing overflows in
a simulation tied to finite numbers. On top of that, one encounters both theoretical
challenges, in terms of initial data, gauge conditions and boundary conditions, as well as
numerical implementation challenges, as the requirement of accurate resolution at small
and large scales in a single simulation demands the use of parallel processing technology
and computer clusters.

One early result of NR was Choptuik’s discovery of critical phenomena in the grav-
itational collapse of a massless scalar field [71], already discussed in section 2.4.1. For
problems like the binary black hole spacetime, it took more than fifty years [161] until
the breakthrough in 2005, Pretorius [162] achieved the first ever numerical evolution of a
binary black hole spacetime with more than one orbit before merger. By now, about 90
compact binary mergers have been observed by the gravitational wave detector network
[163–165]. Many numerical schemes can be developed to approximate the inspiral and
the post-merger solution, such as post-Newtonian theory [11], self-force [166] and effec-
tive one-body approximations [167]. Figure 3.1 illustrates the applicability of these in
different regimes of approximation, such as extreme mass ratios or very far apart orbits.
To evolve the full system without symmetry assumptions and with time dependence,
numerical general relativity is the only path forward to this day.

There are several approaches to this problem and in this work the d+1 formalism will
be the focus, due to its widespread use and importance for the applications developed.

25
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Figure 3.1: Different schemes to study black hole binaries, depending on the mass ratio
and distance between the bodies. Figure taken from Blanchet [11]. The representation
of numerical relativity up to distances of r12 ∼ 102m overestimates current standards.

The gravitational field is thought to have a future evolution in “time”, splitting time
from the 3-dimensional space. Let us recall that the Einstein’s field equations provide
no clear distinction between space and time, which, even though it was intentional and
natural from the perspective of differential geometry, is not always the ideal picture for
the desired outcome: give certain initial data and obtain the subsequent evolution of the
gravitational field. Therefore, it turns to a problem of separating the equations into space
and time to suit this goal. It is important to note that unlike other Cauchy problems,
there is no preferred time direction when doing this split and no global concept of time.
Each point on a spatial slice evolves according to a local time coordinate, which leaves
up to us the freedom to choose the path of each of such point “observer”, commonly
called gauge freedom. Einstein’s equations (2.10) only fix the Ricci curvature, not the
full metric components, which are dependent on the coordinate system.

In the next sections we discuss 3 possible standard formulations that perform the
split of space and time and generate physical solutions, their intuition, advantages and
disadvantages, each with important consequences for numerical stability: the ADM for-
malism, the first step in the life of any numerical relativist which results in evolution
equations that are weakly hyperbolic and cannot be numerically evolved; the BSSN for-
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malism [84–86], a conformal reformulation with strong hyperbolicity properties, and the
CCZ4 formulation [87–90], which extends BSSN with added stability properties. We
will also discuss gauge conditions (freely specifiable conditions), initial data and bound-
ary conditions, essential ingredients in any Cauchy problem. Finally, we will review
GRChombo, the numerical code we use for all numerical simulations. For reviews of
numerical relativity, see Alcubierre [18], Baumgarte and Shapiro [14] and Gourgoulhon
[168].

Summary 3.2: ADM formulation

Standard d+ 1 split into gauge functions (the lapse function, α, and the shift vector, βi)
and the spatial metric, γij :

ds2 =
(
−α2 + βiβ

i
)
dt2 + 2βi dtdxi + γij dx

idxj . (3.1)

This results in the following unit vector normal to spatial hypersurfaces: nµ =
(

1
α ,−

βi

α

)
.

The extrinsic curvature is introduced as the projections of the gradients of the normal
vector into the spatial slice:

Kµν ≡ −γ α
µ γ

β
ν ∇αnβ . (3.2)

Matter source terms are introduced as:

ρ ≡ nµnνTµν , Si ≡ −γiµnνTµν , Sij ≡ γiµγjνTµν , S = S i
i . (3.3)

The ADM variables are: {γij ,Kij}. Einstein’s equations are decomposed into the Hamil-
tonian and Momentum constraint,

H = 1
2

[
R+K2 −KijK

ij
]

− κ
2ρ− Λ = 0 , (3.4)

Mi = Dj [Kij − γijK] − κ
2Si = 0 , (3.5)

where R and Dj are the Riemann tensor and covariant derivative associated with γij ,
and K ≡ K i

i ; and first order evolution equations for the spatial metric and extrinsic
curvature,(

∂t − βk∂k
)
γij = −2αKij + 2γk(i∂j)β

k , (3.6)(
∂t − βk∂k

)
Kij = 2Kk(i∂j)β

k −DiDjα+ α
[
Rij +KKij − 2KikK

k
j

]
(3.7)

+ ακ
2

[
γij

S−ρ
d−1 − Sij

]
− 2α

d−1γijΛ ,

where Rij is the Ricci tensor associated with γij . See details in appendix E.1.
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Summary 3.3: BSSNOK formulation

The spatial metric of the d+1 equations, γij , is decomposed into a conformal metric, γ̃ij
with unit determinant, assuming Cartesian coordinates, and a conformal factor, χ. The
extrinsic curvature is also decomposed into its trace and traceless part, with the latter
conformally transforming as the metric. New variables are added as independent, the
conformal connection functions, Γ̃i, adding a new constraint to the system.

γ̃ij ≡ χγij , (3.8) Kij ≡ 1
χ

(
Ãij + 1

d γ̃ijK
)
. (3.9)

The BSSNOK variables are: {χ, γ̃ij ,K, Ãij , Γ̃i}. Adding to the constraints the conformal
connection functions equation, the constraints of the BSSNOK system are:

det(γ̃ij) = 1 , tr(Ãij) = 0 , Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij , (3.10)

H = 1
2

[
χR̃+ (d− 1) D̃iD̃iχ− (d+2)(d−1)

4χ D̃iχD̃iχ+ d−1
d K2 − ÃijÃ

ij
]

− κ
2ρ− Λ = 0 ,

(3.11)

Mi = D̃jÃij − d
2χÃijD̃

jχ− d−1
d ∂iK − κ

2Si , (3.12)

where Γ̃ijk, R̃, D̃i are, respectively, the Christoffel symbols, Ricci scalar and covariant
derivatives associated (and raised/lowered) with γ̃ij . The first order evolution equations
becomea:(

∂t − βk∂k
)
χ = 2

dχ
(
αK − ∂iβ

i
)
, (3.13)(

∂t − βk∂k
)
γ̃ij = −2αÃij + 2 ˜γk(i∂j)β

k − 2
d γ̃ij∂kβ

k , (3.14)(
∂t − βk∂k

)
K = −γijDjDiα+ α

(
ÃijÃ

ij + 1
dK

2
)

(3.15)

+ ακ
2(d−1) (S + (d− 2)ρ) − 2

d−1αΛ ,(
∂t − βk∂k

)
Ãij = χ

(
−DiDjα+ αRij − ακ

2 Sij
)TF + α

(
KÃij − 2ÃikÃkj

)
(3.16)

+ 2Ãk(i∂j)β
k − 2

dÃij∂kβ
k ,(

∂t − βk∂k
)
Γ̃i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃkj − d

2 Ã
ij ∂jχ

χ − d−1
d γ̃ij∂jK − κ

2 γ̃
ikSk

)
− Γ̃j∂jβi + 2

d Γ̃i∂jβj + d−2
d γ̃ki∂k∂jβ

j + γ̃kj∂j∂kβ
i , (3.17)

To calculate the covariant derivative, Di, and the Ricci tensor, Rij , the following is
useful:

Γijk = Γ̃ijk − 1
2χ

(
δij∂kχ+ δik∂jχ− γjkγ

il∂lχ
)
, (3.18)

Rij = R̃ij +Rχij , (3.19)

R̃ij = −1
2 γ̃

lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃k + Γ̃kΓ̃(ij)k + γ̃lm
[
2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

]
, (3.20)

Rχij = d−2
2χ

(
D̃iD̃jχ− 1

2χD̃iχD̃jχ
)

+ 1
2χ γ̃ij

(
D̃kD̃kχ− d

2χD̃
kχD̃kχ

)
. (3.21)

aThe matter source terms are the same as for the ADM equations as in 3.3. See details in appendix
E.2.
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Summary 3.4: CCZ4 formulation

For improved control of constraint violations, Einstein’s field equations are extended
covariantly, introducing a vector Zµ and two damping coefficients, κ1 and κ2:

Rµν+2∇(µZν)−κ1
[
2n(µZν) − 2

D−2(1 + κ2)gµνnσZσ
]
− 2
D−2Λgµν = κ

2

(
Tµν − 1

D−2gµνT
)
.

(3.22)
Zµ assesses deviations from Einstein’s equations, measuring constraint violations. It is
decomposed into spatial and normal components, Zi and Θ. A conformal transformation
is made as for BSSNOK equations (3.3). The conformal connection functions (3.10) are
re-defined as Γ̂i.

Θ ≡ −nµZµ = αZ0 , (3.23) Γ̂i ≡ Γ̃i + 2γ̃ijZj . (3.24)

Effective damping occurs for κ1 > 0 and κ2 > −1. And extra damping parameter κ3

is added to the evolution equation of Γ̂i to exponentially suppress constraint violating
modes.
The CCZ4 variables are: {χ, γ̃ij ,K, Ãij ,Θ, Γ̃i}. The algebraic constraints of the CCZ4
system area:

det(γ̃ij) = 1 , (3.25) tr(Ãij) = 0 , (3.26)

Zµ = 0 =⇒ Γ̂i = γ̃jkΓ̃ijk = −∂j γ̃ij . (3.27)
The first order evolution equations becomeb:(
∂t − βk∂k

)
χ = 2

dχ
(
αK − ∂iβ

i
)
, (3.28)(

∂t − βk∂k
)
γ̃ij = −2αÃij + 2 ˜γk(i∂j)β

k − 2
d γ̃ij∂kβ

k , (3.29)(
∂t − βk∂k

)
K = −γijDjDiα+ α

(
R+ 2DiZ

i +K(K − 2Θ)
)

(3.30)

− 2d
d−1ακ1 (1 + κ2) Θ + ακ

2(d−1) (S − dρ) − 2d
d−1αΛ ,(

∂t − βk∂k
)
Ãij = χ

[
−DiDjα+ α

(
Rij + 2D(iZj) − κ

2Sij
)]TF

(3.31)

+ α
[
(K − 2Θ) Ãij − 2ÃikÃkj

]
+ 2Ãk(i∂j)β

k − 2
dÃij∂kβ

k ,(
∂t − βk∂k

)
Θ = α

2

(
R+ 2DiZ

i − 2KΘ + d−1
d K2 − ÃijÃ

ij − κρ− 2Λ
)

(3.32)

− Zi∂iα− ακ1 (2 + κ2) Θ ,(
∂t − βk∂k

)
Γ̂i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃkj − d

2 Ã
ij ∂jχ

χ − d−1
d γ̃ij∂jK − κ

2 γ̃
ikSk

)
(3.33)

− Γ̃j∂jβi + 2
d Γ̃i∂jβj + d−2

d γ̃ki∂k∂jβ
j + γ̃kj∂j∂kβ

i − 2ακ1γ̃
ijZj

+ 2γ̃ij
(
α∂jΘ − Θ∂jα− 2

dαKZj
)

+ 2κ3
(

2
d γ̃

ijZj∂kβ
k − γ̃jkZj∂kβ

i
)
,

aThe energy-momentum constraints can still be computed using (3.4, 3.5) or (3.11, 3.12).
bTo calculate the covariant derivative, Di, and the Ricci tensor, Rij , equations 3.18-3.21 apply. The

matter source terms are the same as for the ADM equations as in 3.3. See details in appendix E.3.
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3.5 Gauge conditions

As mentioned previously, there are D parameters freely specifiable throughout the evo-
lution, the lapse function and shift vector, which dictate how grid points (constant coor-
dinates on the numerical grid) move in the spatial hypersurfaces. The choices for these
degrees of freedom are called slicing condition and shift condition, as the lapse function
dictates the advancement of proper time between spatial slices in relation to the coor-
dinate time (possibly differently at each point in space) and the shift vector shapes how
spatial points at rest with respect to normal observers are relabelled when moving to
neighbouring hypersurfaces. These conditions are tied to the coordinate system and do
not affect physical results, but their choice is fundamental to achieve long term robust
numerical evolutions. One such example is the presence of black holes: we want to slow
down time around black holes to prevent grid observers from ever reaching the physical
singularity, as this would obviously bring a divergence. Following Alcubierre [18], we
examine a few slicing and shift conditions in the sections below.

3.5.1 Slicing conditions

The most natural choice for the lapse corresponds to matching coordinate time with
proper time, α = 1. This corresponds to asking for the coordinate time t to coincide
with the proper time of observers following the direction normal to the hypersurface. To
see this analytically, one can compute the acceleration vector by looking at how much
the normal vector changes in the normal direction:

aµ = nν∇νnµ = Dµ lnα . (3.34)

One can now clearly see that a constant lapse means no acceleration, i.e., normal ob-
servers are free falling following geodesics. This is known as geodesic slicing. This an
inadequate condition as hinted by the black hole problem mentioned above. Geodesics
tend to focus in areas of high density and decrease coordinate volume potentially to
zero, leading to singular systems. Analytically, the problem lies in having nµ∇µK > 0,
leading to ever-growing K. From equation (E.6) one can see that K = −∇µn

µ, the neg-
ative divergence of the normal vector, implying that large growing K means converging
normal observers.

The natural solution to this issue is trying to impose the condition K = 0 = ∂tK at
all times, called maximal slicing, which ensures volume preservation along the normal
direction. Equation (3.15) implies:

γijDjDiα = α
(
ÃijÃ

ij + 1
dK

2 + κ
2(d−1) (S + (d− 2)ρ) − 2

d−1Λ
)
. (3.35)
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The main advantage of this condition is called singularity avoidance, which means pre-
venting observers from getting too close to either coordinate or physical singularities.
This happens by an effect known as collapse of the lapse, as this condition forces the
lapse to approach zero close to singularities. The interpretation of this is a slow down of
the clock of observers falling into singularities, effectively freezing time inside horizons,
such that the singularity is never reached in finite coordinate time while numerically
the exterior solution is still evolved. The main disadvantage of maximal slicing is that
equation (3.35) is an elliptic equation that needs to be solved for each spatial hypersur-
face at each timestep to determine the lapse at each point, which is extremely expensive
numerically. Another side effect of maximal slicing is called slice stretching: the slices
get distorted as time passes. As more and more grid points evolve to approach the black
hole, where the simulation is freezing, the horizon expands and eventually all grid points
are inside the black hole, grid points become increasingly far apart in terms of physical
distance and the components of the metric develop large gradients. As an alternative

Figure 3.2: Trumpet slicing. The lapse collapses to zero close to a singularity, allowing
the exterior spacetime to evolve. The shift also increase close to the centre to fix slice
distortion due to slice stretching, discussed in section 3.5.2. Figure taken from Aur-
rekoetxea [12, p. 46].

to solving an elliptic equation, while trying to preserve the collapse of the lapse prop-
erty, one can use an hyperbolic slicing condition that collapses the lapse to zero if K
becomes large (representing collapsing volumes). These are referred to as Bona-Masso
family of slicing conditions [169], or hyperbolic K-driver, and the most adopted version
is called 1 + log slicing1 like a critical collapse of a scalar field, which can either collapse

1Recent developments in slicing conditions beyond the Bona-Masso family have been proposed by
Baumgarte and Oliveira [170] and Baumgarde and Hilditch [171]:

∂tα = −2α(K − 2Θ) + βi∂iα , (3.36)

where the shift term allows the region of small lapse to move with the singularity, and the 2Θ term
maintains consistency between the CCZ4 and BSSN formulation in the continuum limit (recall that the
BSSN equation of motion for K implied subtracting a multiple of the Hamiltonian constraint, represented
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to a black hole or disperse to infinite (details in Alcubierre [18, p. 136]). An hyperbolic
condition requires only local quantities and derivatives at each point, being well suited
to numerical evolution.

With this new condition, we are almost ready to evolve black hole spacetimes. We
must only use a clever condition on the shift to overcome the slice stretching problem
alluded to previously. There are well known conditions such as harmonic slicing, but
they do not bring useful details to the current discussion.

3.5.2 Shift conditions

Even though often a zero shift condition, βi = 0, is sufficient, for black hole spacetimes
this turns out to be a poor choice due to the slice stretching described in the previous
section. To tackle it, one needs a shift vector pointing outwards that actively prevents
coordinate’s timelines to fall into the black hole, as depicted in figure 3.2. With this, we
can ensure that the size of the black hole stays the same throughout the evolution, i.e.
the horizon stays at a finite distance from the centre2. Note that grid points do not have
to follow physically allowed paths and can travel faster than the speed of light. Similarly
to the maximal slicing, an appropriate shift condition would entail Γ̃i = 0 = ∂tΓ̃i, but
this also results in elliptic equations unfeasible to be solved on each slice. We can instead
drive Γ̃i to zero dynamically. The most popular way of achieving this is the Gamma-
driver shift condition [172, 173]:

∂tβ
i = FBi ,

∂tB
i = ∂tΓ̂i − ηBi ,

(3.37)

where F and η are constants. Γ̂i is replaced for Γ̃i when using BSSN instead of CCZ4.
This is an hyperbolic condition that arises from noticing that the principal part of the
equation (E.22) involves second derivatives of the shift. The choice of F is typically tied
to enforcing that the longitudinal gauge modes propagate at the speed of light, resulting
in fixing F = d

2(d−1) [174]. The parameter η is typically chosen to be of order η ≈ M−1,
where M is the spacetime mass, in order to damp unwanted oscillations of the shift over
long timescales. The Gamma-driver shift condition above can be integrated to yield a
form that does not require the auxiliary variable Bi, but instead requires storing the
initial value of the Γ̂i variables [175]. As a final note, the superluminal gauge speeds
that this condition generates can lead to numerical instabilities. These can be overcome

by Θ). The factor of 2 originates from trying to stabilise simulations. It applies to 4D and may require
different values in higher dimensions to achieve the same stability.

2One might thing that taking derivatives across the singular point at the centre is problematic, but
as long as the singularity does not coincide with an actual grid point, this in practice does not cause any
issues.
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by computing advection term derivatives, βk∂k, using one-sided derivatives.

The Gamma-driver shift condition together with 1 + log slicing condition, is called
the moving puncture gauge. This has been one of the key developments in the field of
numerical relativity, as it allowed effective evolution of black hole spacetimes in the BSSN
and CCZ4 formulations [172, 173]. Other conditions, such as the minimal distortion
[176, 177], the Gamma freezing or the generalised harmonic shift conditions will not be
detailed.

3.6 Initial data

Given a coordinate grid on some spatial slice, one must specify initial data at each
point for the spatial metric, γij , and the extrinsic curvature, Kij , together with the
matter components ρ, Si, Sij . This data is not completely free, as it must satisfy the
Hamiltonian and Momentum constraints (3.4)-(3.5). These are elliptic equations that
constraint the fields in space in each instant of time. The variables (γij ,Kij), as d
dimensional symmetric tensors, have in total d(d+1) components that must be specified
for the initial time slice, while satisfying the d + 1 constraint equations, leaving d2 − 1
free degrees of freedom to specify. The main challenge is understanding how to choose
these variables according to the physical knowledge about the system (e.g. two black
holes, a scalar field cloud, etc.).

A common choice for initial data involve setting the conformal metric to be flat,
γij = δij , or the extrinsic curvature or its trace to be zero, Kij = 0 or K = 0. This
may not be a natural initial state (i.e. though physically possible, represents an artificial
distortion into something that does not form dynamically), potentially leading to spuri-
ous burst of gravitational wave emissions (known as junk radiation) on the initial time
steps of a simulation while the simulation settles down3. For example, superposing initial
data of black holes or scalar field clouds that have Kij = 0, i.e. are stationary, is not
natural as clearly two bodies do not pop our of nowhere close to each other without an
existent gravitational pull driving an inward velocity. One can either solve more complex
equations to find more accurate solutions or find a configuration with acceptable junk
radiation that does not affect significantly physical observables like initial mass or total
energy radiated.

About the gauge variable lapse and shift, even though they commonly do not affect
the constraints (only if the matter terms depend on them due to dependence on the
coordinate system), a common choice is simply α = 1 and βi = 0. With correct gauge
evolution equations, such as the moving puncture gauge, these quickly settle into dy-

3This can be improved with methods proposed by Gleiser et al. [178, 179].
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namically appropriate values4, such as having the lapse collapsed and the shift pointing
radially outwards. This often leads to a lot of non-physical yet intense dynamics during
the initial stage of a simulation until the gauge reaches equilibrium. One can minimise
this with cleverer choices, such as a pre-collapsed lapse, α = √

χ.

Several methods have been developed to attempt to separate the constrained parts of
the fields into some form that simplifies finding a solution for the initial data (see Cook
[180] for a review). Among others, the most commonly used ones are the conformal
transverse-traceless decomposition and the conformal thin-sandwich decomposition (see
Baumgarte and Shapiro [14, chapter 3] and Alcubierre [18, chapter 3]). We shall describe
an adaptation of the former in the next section, as it proves relevant for the discussions
of chapter 4-6. Additionally, for data only violating the Hamiltonian constraint (when
the Momentum constraint can be trivially satisfied), one can use a simple yet inefficient
method of relaxing the conformal factor using a decay equation as ∂tχ = cRH, where cR
is the relaxation speed constant. Alternatively, for complex systems where exact initial
data is hard to find but where almost constraint-satisfying solutions exist (e.g. using
a black hole solution in a modified theory of gravity slightly perturbing GR), one can
use the CCZ4 formulation (see section E.3), which quickly damps any violations away
and generically provides very robust results. Finally, a recent breakthrough in full initial
condition solvers has been achieved with the CCTK method [181].

3.6.1 Conformal transverse-traceless decomposition

Intentionally breaking apart degrees of freedom, we start by decomposing (γij ,Kij) into
the conformal metric and trace of extrinsic curvature, (χ, γ̃ij ,K, Ãij), as described in
section E.2. This is where we differ from the presentation by Baumgarte and Shapiro
[14, section 3.2], as the rescaling of Ãij uses a distinct power of the conformal factor. The
traceless tensor Ãij can be split into two components, using a scalar-vector-tensor decom-
position, by splitting it into a transverse-traceless divergenceless part and a symmetric
traceless gradient of a vector:

Ãij = ÃijTT + ÃijV , (3.38)

where the component (ÃijTT , Ã
ij
V ) satisfy:

D̃jÃ
ij
TT = 0 , (3.39)

ÃijV = 2 D̃(iW j) − 2
d γ̃

ijD̃kW
k , (3.40)

where W i is a vector potential. Note the original d(d+1)
2 − 1 degrees of freedom of Ãij

are split into d(d−1)
2 − 1 degrees of freedom in ÃijTT and d for W i. Relating back to the

4Typically in the timescale of ∼ 20 − 30M , where M is the mass of the spacetime. See appendix 7.3
for an example.
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momentum constraints (3.12), one can write:

D̃jÃ
ij = D̃kD̃

kW i + d−2
d D̃i

(
D̃jW

j
)

+ R̃ijW
j :=

(
∆̃VW

)i
, (3.41)

where R̃ij is the Ricci tensor associated with the conformal metric γ̃ij and ∆̃V called the
vector Laplacian. Finally, one can re-write the system of constraint equations to solve
as:

H = 1
2

[
χR̃+ (d− 1)D̃iD̃iχ− (d+2)(d−1)

4χ D̃kχD̃kχ+ d−1
d K2 − ÃijÃij − κρ− 2Λ

]
= 0 ,

(3.42)

Mi =
(
∆̃VW

)
i
− d

2 ÃijD̃
j lnχ− d−1

d ∂iK − κ
2Si = 0 . (3.43)

These equations can be solved for the d+1 variables (χ,W i), while γ̃ij , K and ÃijTT have
d2 − 1 freely specifiable parameters. From W i, one can reconstruct both Ãij or Kij and
obtain the physical initial data needed. We do not go into details of specific solutions,
but some applications, such as spinning and boosted black holes, and simplification5 can
be found in chapter 3.2 and appendix B of Baumgarte and Shapiro [14]. For instance, the
solution to a boosted black hole found therein is used in chapter 6. Alternatively, one can
use numerical methods, by providing an initial guess (χ0,W

i
0), and solving perturbatively

for χ = χ0 + δχ and W i = W i
0 + δW i [12, 181].

3.7 Boundary conditions

Boundary conditions is an essential ingredient, but has proven to have easier solutions
to reach good numerical stability and accuracy. Many codes use unphysical exterior
boundary conditions that are easy to implement numerically, such as periodic boundary
conditions (which in 3 + 1 dimensions is equivalent to evolving a spacetime with the
topology of a 3-torus), or symmetric6 boundary conditions, but one can typically get
away with this by using a big enough numerical grid, such that effects from the boundary
either never affect the centre of the grid due to the finite speed of light or do physically
reach it but with minor to no effects. Symmetric boundary conditions can be truly useful
to evolve only part of the grid; for instance evolving one eighth of the 3d grid for an
equal mass head on black hole collision that has axisymmetry over the collision axis.

A common condition in numerical relativity is the Sommerfeld or radiative bound-
5Note that the different rescaling of Ãij done in Baumgarte and Shapiro [14, p. 64] is helpful to

eliminate the second term in equation (3.43). This allows to solve the equation explicitly for a couple
of black hole spacetimes. For our purposes, the Horndeski equations, with non-vacuum and non-trivial
ρ and Si, result in Hamiltonian and Momentum coupled equations that we solve numerically, and such
simplifications are not relevant.

6Often called reflective as well.



Chapter 3. Overview of numerical general relativity 36

ary condition [182], which enforces that outgoing waves are not reflected back into the
computational domain. For this effect, the evolution equations at the boundary cells of
the computational domain are changed to:

∂tξ = −xi

r
∂iξ − ξ − ξ∞

r
, (3.44)

where ξ represents any evolution variable and ξ∞ represents the desired asymptotic
value for it, typically the value it would take in Minkowski space. Other used boundary
conditions include static and extrapolating boundary conditions.

3.8 GRChombo numerical code

GRChombo [4, 5, 183] is an open-source code for performing numerical relativity evo-
lutions, built on top of the publicly available Chombo software [184] for the solution
of PDEs. This is the software used to perform the simulations in this thesis, and
in this chapter we describe its core characteristics. It is one of the premier codes
for numerical relativity, focused on physics problems that require high flexibility and
adaptability of grid structure and ease of code modification. It is this feature that
greatly distinguishes it from other numerical relativity codes such as PAMR/AMRD
[83, 185], LEAN [186], BAM [187], NRPy+ [188] or pseudospectral codes for gravita-
tional wave templates such as SpEC [189], among others7. GRChombo allows simulat-
ing non-trivial structures [4], such as ring-like configurations [190], cosmological space-
times [191], higher dimensional black rings and black strings [192–195], or modified
gravity systems [1, 2]. Videos of simulations using GRChombo can be viewed via the
website https://www.youtube.com/@grchombo1458 and more information can be found
in https://www.grchombo.org/ or https://github.com/GRChombo/GRChombo/wiki.

3.8.1 Numerical features

GRChombo is primarily written in C++, heavily using class structure object oriented
programming and templating, in order to make the code modular for the various pro-
cesses and computer cores.

3.8.1.1 Standardised output and visualisation

Chombo uses the HDF5 output format [196] for loading and writing files in parallel,
which is supported by many popular visualisation tools such as VisIt [197] or ParaView
[198], as well as data analysis tools, such as python YT [199]. In addition, the output
files can be used as input files if one chooses to continue a previously stopped run.

7For an overview of numerical relativity codes, see Sperhake [161].

https://www.youtube.com/@grchombo1458
https://www.grchombo.org/
https://github.com/GRChombo/GRChombo/wiki
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3.8.1.2 Space and time discretisation

GRChombo evolves PDEs using the method of lines with fourth-order Runge-Kutta
method for time discretisation. For spatial discretisation, it uses fourth or sixth order
centred stencils, except for advection terms, which use lopsided stencils. GRChombo
uses typically a CFL (Courant-Friedrichs-Levy) condition [200] of αC = ∆t

∆x = 1
4 . In

appendix D.3 we show convergence of these methods.

3.8.1.3 Berger-Rigoutsos adaptive mesh refinement

AMR (Adaptive Mesh Refinement) is a technique used to tackle the problem of simula-
tions with a large range of dynamic spatial and temporal scales combined with the limit
of computational resources available. Numerical relativity requires a mesh that dynam-
ically adjusts itself in response to the underlying physical system, following a certain
refinement criteria. The numerical scheme to increase resolution in regions of interest is
called mesh refinement. If the mesh and its size is specified in advance, this is typically
called moving box refinement, whereas if it is dependent on some dynamic criterion, it is
called adaptive mesh refinement. If the refinement regions can have arbitrary shape and
topology, the implementation is called fully adaptive mesh refinement. The later is only
needed for complex dynamics problems, such as the ones GRChombo was designed for.

In block-structured AMR, first described and implemented by Berger et al. [201], the
computational domain is built from a hierarchy of increasingly fine levels, with each one
containing a set of (not necessarily contiguous) boxes of meshes, with the only condition
being that a finer mesh must lie on top of one or possibly more meshes from the next
coarsest level. GRChombo uses Berger-Oliger style AMR [202] with Berger-Rigoutsos
block-structured grid generation [203]. For a simple explanation, see Clough [204] and
Kunesch [174]. Although AMR brings great flexibility and efficiency, it creates a new
set of problems, such as unwanted interpolations for regridding8, prolongation errors
and additional ghost cells required for interpolation between coarse and fine grids, and
artificial boundaries that create spurious unphysical reflections. As hinted before, AMR
also requires a fine-tuned user-defined criteria to determine the tagging of grid cells for
refinement, which in itself can also be hard to control if one wants to keep all regions of
interest accurately resolved.

In GRChombo, the hierarchy of levels consists of lmax + 1 refinement levels labelled
l = 0, ..., lmax, with grid spacing doubling from level to level ∆xl = ∆x0/2l. Each level
has its mesh split into boxes distributed between CPUs as described in section 3.8.1.4.
This hierarchy of levels can be seen in figure 3.3. Note that each level, having a smaller

8Intermediate values required by Runge-Kutta timestepping actually involve third order polynomial
interpolation in time, potentially generating errors that can effect the whole convergence order of simu-
lations from fourth to third order convergence.
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grid spacing ∆x, must also have a smaller timestep ∆t to preserve the CFL condition,
implying that deeper levels run 2l timesteps for every full timestep of the coarsest level
0.

Tagging criteria are a Boolean flag defined by the user on each cell (e.g. tag if the
derivative of the conformal factor is bigger than some threshold τR; see more information
in section D.1). Block-structured AMR partitions the mesh based on tagged cells, taking
into account inflection points and clusters of cells before deciding whether to regrid and
how to split the new grid into several boxes. The minimum and maximum size of boxes,
how frequently to regrid each level, how many cells need to be tagged in a region to
proceed to regridding and buffer regions of forced tagging around a given identified
tagged cell9 are some of the parameters a user can tune.

Figure 3.3: Display of multiple levels in mesh refinement in a BBH simulation. The
colour scheme represents the real part of the Weyl scalar Ψ4. On the right, we see
a zoom in of the left figure with yet more refinement levels, and two circumferences
representing the horizons of the two black holes. The tagging used is χ and puncture
tagging mentioned in D.1.

3.8.1.4 Parallelisation

To take advantage of performance scaling of modern computing architectures, GR-
Chombo makes use of parallelism at different scales: each AMR level is split into boxes,
distributed between cores of computing nodes using Message Passing Interface (MPI);
evaluations of the right hand side of evolution equations for all cells within a box are
threaded over the y and z directions using OpenMP, taking advantage of several CPUs

9This is useful to set mesh boundaries further apart from each other and reduce errors from high
frequency resonances bouncing off neighbouring boundaries.
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Figure 3.4: Diagram displaying the layout of a computing networks, where
multiple stand-alone nodes, each with multiple cores and shared memory, com-
municate to make a larger parallel computer clusters. Figure taken from
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial.

available to a given MPI process; and finally over the x direction, GRChombo relies on
vectorisation (also known as SIMD or vector intrinsics), templated away from the user
using C++14 templates, to utilise the full vector-width of the target architecture10 [174].
Represented in figure 3.4, the main difference between MPI and OpenMP is the use of
shared memory between cores, for OpenMP, versus distributed memory for MPI. The
later requires more independent work for each node since communication incurs less ef-
ficiency. This hybrid OpenMP/MPI parallelism with explicit vectorisation via intrinsics
makes GRChombo an efficient strong scaling code up to thousands of CPU cores (see
appendix D.3).

Load balancing seeks to avoid the situation where most nodes are waiting for a subset
of other nodes to finish their computational work before proceeding to the next timestep.
This is performed following the Morton ordering algorithm, which splits work among
nodes assuming work is proportional to the number of cells in a box, and which also
performs an exchange phase to maximises neighbouring box communication. Note that
each cell can evaluate derivatives numerically using neighbouring cell in the same box,
or ghost cells in their box whose values are exchanged with other boxes by interpolation
at the end of each step.

For efficient load balancing, the decision of more or less MPI process and OpenMP
threads does not follow easy general rules. Using less but bigger boxes is more efficient11,
but limits how many nodes the code can scale to and may not be suitable for systems
with less memory available per node. Using more and smaller boxes can make use of

10Typically compilers will automatically do this, but the complexity of the CCZ4 equations typically
results in a failure of auto-vectorisation.

11Given the use of fourth order stencils, each box requires three ghost cells. This implies that a box
of side N3 has an effective side of (N + 6)3, making the volume with physical cells only 38% for N = 16
or 60% for N = 32.

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
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more nodes and MPI processes (and hence make the code faster), but also increases the
percentage of ghost cells per box which, given the added communication and computation
required, may worsen performance. GRChombo performs best for boxes of side 16 or 32,
and typically more than 2 or 4 OpenMP threads does not improve performance, meaning
that more MPI processes is typically preferred over adding OpenMP threads [174].

3.8.1.5 Dissipation

Finite difference methods can often introduce spurious high-frequency modes, partic-
ularly when using adaptive mesh refinement and regridding. To control such high-
frequency noise, from both truncation and regridding interpolation errors, GRChombo
uses N = 3 Kreiss-Oliger dissipation [18, p. 343] [205, 206], which adds a diffusion op-
erator of amplitude σ to the right hand side of each evolution variable. This is linearly
stable if σ < 2

αC
, where αC is the CFL condition as in section 3.8.1.2. It is conventional

wisdom to use N such that 2N − 1 ≥ m, where m is the order of the finite difference
scheme [18, p. 345]. For GRChombo, even with sixth order spatial stencils, time step-
ping is still fourth order, and hence N = 3 dissipation operator does not affect stability
properties. Some projects have found that having a level dependent σ is relevant for
stability [207], even though this is not part of the standard GRChombo code.

3.8.1.6 Convergence

Appendix D.5.2 discusses basic convergence concepts to evaluate the order a finite differ-
ences scheme has in practice. In AMR it proves difficult to test and obtain convergence,
because of the lack of predictability of where meshes are and behave exactly in a given
region of space. Due to the discrete side length that level boxes have, low resolutions
simulations may not have the exact same mesh as high resolution simulations which have
smaller boxes (in physical length, though potentially the same in number of cells). Be-
sides this, differences in truncation error may by themselves lead to different cells being
tagged. One must tune the tagging criteria parameters to attempt to make refinement
regions similar over different resolutions. Nevertheless, if one ensures that physically
significant regions have approximately the same refinement, convergence can typically
be demonstrated, as shown in appendixes A.4 and B.1. Some alternatives are using
truncation error itself as a tagging criteria, or enforcing specific regions to regrid (e.g.
a sphere of fixed radius). For details of these and other approaches, see Radia et al.
[5]. Taking into account sections 3.8.1.2 and 3.8.1.5, in GRChombo one should expect
between third to fourth order convergence.
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3.8.2 Physical methods

3.8.2.1 Evolution equations

GRChombo implements the BSSN/CCZ4 formalism with moving puncture gauge. It
implements periodic, Sommerfeld/radiative, extrapolating and symmetric/reflective bound-
ary conditions. It provides analytical and semi-analytical initial data for black hole bi-
naries, Kerr black holes and scalar matter. The code also modified the open-source code
TwoPunctures [208] for accurate spinning black hole binary data.

The equations of motion are evolved with GRChombo [4, 4, 5, 183], using MPI (Multi
Processor Interface), OpenMP and templated vector intrinsics/SIMD (Single Instruc-
tion, Multiple Data) to obtain a good performance in the most common architectures.
GRChombo uses the Chombo adaptive mesh refinement libraries [184].

GRChombo implements the usual puncture gauge (i.e., 1 + log slicing plus Gamma
driver [169, 172, 173]) for the evolution of the gauge variables and N = 3 Kreiss-Oliger
(KO) dissipation.

3.8.2.2 Observables

GRChombo includes key diagnostics necessary to analyse numerical relativity simula-
tions. These include:

• Puncture tracking: to track the movement of punctures when moving black holes
exist in the grid, GRChombo uses the shift to store the positions xipunc of each
puncture [17], by integrating:

∂tx
i
punc = −βi(xipunc) . (3.45)

• Apparent Horizon Finder : this feature was developed during this thesis and made
public in the code. It allows to easily track the position of multiple black holes
over time and determine their properties, such as mass and spin. See details in
appendix 7.

• Interpolation: using an AMR grid interpolator, users can interpolate grid variables
and its derivatives at any arbitrary position in the computational domain. This
can be done up to arbitrary order in interpolation accuracy, but typically fourth
order Lagrange polynomial interpolation is used [209]. Given this, one can perform
extraction of values in d − 1 dimension surfaces such as spheres, planes or cylin-
ders, and then integrate them using a custom integration method (trapezium rule,
Simpson’s rule, Boole’s rule, etc.).

• Wave extraction: using spherical extractions with the interpolator, one can use the
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Newman-Penrose formalism [210] to compute the Weyl scalar Ψ4 (include Z4 terms
as described in appendix D.2) on multiple spheres of fixed radius and compute the
modes ψℓm with respect to spin-weight -2 spherical harmonics −2Y

ℓm [18, appendix
D] using:

rexψℓm =
∮
S2
rexΨ4

∣∣
r=rex

·
(

−2Y
ℓm
)
dΩ , (3.46)

where dΩ = sin θ dθ dϕ is the area element over the unit sphere S2 and rex is
the extraction radius. GRChombo uses trapezium rule for the integration over
ϕ (since the periodicity means that any quadrature converges exponentially [211])
and Simpson’s rule for the integration over θ.

• Extracting mass and momenta: even though in general relativity there is no glob-
ally well defined law of conservation of energy and momenta from both matter and
gravitational sectors, one can find approximations to define the mass M , momen-
tum P i and angular momentum J i of a spacetime.

One can measure the energy from the matter sector using the matter decomposition
of the stress-energy tensor, ρ and Si as:

M =
∫
ρ
√
γ dV P i =

∫
Si

√
γ dV J i =

∫
ϵijkxjSk

√
γdV , (3.47)

where ϵijk is the Levi-Civita symbol.

An alternative method consists of computing the ADM measures, defined as d− 1
dimensional surface integrals at infinity. See appendix A.7 for details on the ADM
mass and [14, p. 83] for more details on linear and angular momentum.

Even though these integrals should be evaluated up to infinity, GRChombo mea-
sures them as far out in the computational domain as possible, and post-processing
analysis allows to extrapolate their values to infinity (see appendix D.5 for details
on extrapolation).

• ADM Constraints: the Hamiltonian and Momentum constraints are also diagnos-
tics that can be computed over the grid, and also its L1 or L2 norm over a part or
the full computational domain.

3.8.2.3 Parameter choices

To carry out the numerical simulations presented in chapter 4-6, we used GRChombo,
a multipurpose numerical relativity code [183]12 that implements the BSSNOK [84–86]
or CCZ4 [87–90, 212] formulations of the Einstein equations.

GRChombo implements Bona-Masso slicing conditions [169] and gamma-drive shift
12See also www.grchombo.org.

www.grchombo.org
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conditions as its gauge equations, generalised with the following parameterisation:

∂tα = −µα1α
µα2 (K − 2Θ) + µα3β

k∂kα , (3.48)

∂tβ
i = FBi + µBβ

k∂kβ
i , (3.49)

∂tB
i = ∂tΓ̂i − ηBi + µB(βk∂kBi − βk∂kΓ̂i) . (3.50)

Common choice of parameters are µα1 = 2, µα2 = 1, µα3 = 1 for the slicing condition
(1 + log slicing) and the usual F = 3

4 , η = 1, µB = 0 for the shift condition (usually with
η ≈ 1

MADM
).

Other typically parameter choices in GRChombo are G = 1, Courant factor (also
known as CFL condition, the ratio between the discretisation in space and time ∆t

∆x) of
0.25 and, as CCZ4 parameters, κ1 = 0.1

α , κ2 = 0, κ3 = 113. These can be assumed to be
the choices in most simulations, except if made explicit otherwise.

13This is the default in the code used, namely GRChombo, and it greatly improves the stability of
black hole spacetimes, see Andrade et al. [4] for detailed studies.
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Chapter 4

Gravitational collapse in cubic Horn-
deski theories

4.1 Introduction

In this chapter we study the non-linear regime of a subclass of Horndeski theories for
which [49] found a well-posed CCZ4 formulation of the Einstein equations. In this
chapter, unlike [36, 37, 39, 40], we consider the theory in its full non-linear splendour,
which allows us to explore its distinctive non-perturbative physics; our goal is to identify
the weakly coupled regime of the theory so that it can be consistently treated as a valid
EFT from which one can obtain meaningful predictions. Rather than studying a specific
phenomenologically viable theory, our ultimate goal is to identify general features in the
waveforms that do not depend on the details and that can be attributed to the higher
derivatives and non-linearities in the action. Therefore, we treat it as a toy model that
can give us a glimpse of the type of effects that one can expect in more complicated
theories which involve higher derivatives of the spacetime metric tensor.

In detail, we study gravitational collapse and black hole formation in cubic Horndeski
theory. Our goal is to identify the region in the space of couplings for which the Horndeski
theories under consideration are weakly coupled throughout the evolution.

4.1.1 Summary of the results

We consider gravitational collapse in Horndeski theories using as initial data a spheri-
cally symmetric lump of scalar field (4.5). Even though the initial data is spherically
symmetric, we evolve it using a 3+1 evolution code based on GRChombo [183], without
symmetry assumptions. We have also considered gravitational collapse of some non-
spherical scalar field configurations but we did not observe significant differences from
the spherically symmetric case. However, a thorough study of gravitational collapse
beyond spherical symmetry in Horndeski theories is beyond the scope of this chapter.

Before we describe our results, we comment on previous works that are directly
related to ours. Gravitational collapse and black hole dynamics in spherical symmetry
in Einstein-dilaton-Gauss-Bonnet (EdGB) theory has been studied before [105, 106, 108,
109, 111]. This theory can be considered to be a member of the Horndeski class, but
the mapping between the two is highly non-trivial [141]. In these papers mentioned,

47
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its authors study, among other things, the hyperbolicity of the equations of motion in
various regions of the spacetime, including the interior of black holes, as a function of
the coupling. They show that for large enough couplings the equations of motion can
change character from hyperbolic to elliptic, even outside black holes, in which case one
cannot solve them as an evolution problem. In a related work, Bernard et al. [107]
consider the conditions under which one may be able to construct global solutions of
Horndeski theories. In this paper, the authors study in detail the hyperbolicity of the
equations of motion and the pathologies that may arise during the evolution in some
specific examples. They also perform numerical simulations of spherically symmetric
scalar field collapse to illustrate the breakdown of the hyperbolicity at strong coupling
in different situations. Our work can be considered as an extension of these papers in
different directions, as we now explain.

In this article we consider the so called cubic Horndeski theories (4.1), for which
Kovács [49] showed that they have a well-posed initial value problem in the CCZ4 for-
mulation of the Einstein equations and in puncture gauge. Because we are not partic-
ularly interested in a specific theory but rather in identifying general features of the
non-linear dynamics of Horndeski theories, we consider two particularly simple and il-
lustrative cases, see equation (4.2). In fact, from the point of view of EFT, the G2

theory considered here, equation (4.2), is the most general scalar matter term up to
four derivatives that one can include to the action [142]. In order for these theories to
make sense as EFTs, the Horndeski terms have to be suitably small compared to the GR
terms. Indeed, the well-posedness result of Kovács [49] only holds if a certain weak field
condition is satisfied. For the class of theories that we consider, the relevant weak field
conditions are given by (4.18). The main goal of this chapter is to identify the region in
the space of initial conditions and couplings for which the weak field conditions (4.18)
are small at all times.

In our simulations of scalar field collapse we keep the radius r0 and width ω of the
initial Gaussian lump fixed, and vary both the amplitude A and Horndeski coupling (g2

or g3 depending on the theory under consideration). For every pair (A, g2) or (A, g3), we
monitor both the character of the equations of motion of the scalar field1 and the weak
field conditions (4.18) everywhere in spacetime, except in a certain region of the interior
of black holes when they form. It seems reasonable to accept the breakdown of EFT in a
region sufficiently close to a singularity as long as this region is covered by a horizon. In
this case, there is no loss of predictivity since this region is causally disconnected from
the Universe outside the black hole, where EFT remains valid. The same criterion was
adopted by Ripley and Pretorius [105].

1The evolution equations for the metric are given by the CCZ4 equations which are strongly hyper-
bolic.
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Figure 4.1: Dynamical regimes of the G2 = g2X
2 theory as a function of the initial

amplitude A and the dimensionless coupling constant η2, see equation (4.8). The black
band denotes the region near critical collapse; black holes form to the right of this band.
The orange curve on the right marks the region where the initial data contains a trapped
surface. The scalar equation is hyperbolic at all times in the blue region; EFT is valid in
the interior of this region. In the yellow region, the scalar equation is initially hyperbolic
but it changes character during the evolution. In the green region the initial value
problem is not well-posed.

Our main results for the G2 ̸= 0, G3 = 0 theory are summarised in figure 4.1. The
analogous figure for the G3 ̸= 0, G2 = 0 theory is qualitatively similar and can be found
in section 4.4.2, figure 4.10. For the sake of definiteness, in the following we shall focus
our discussion on the G2 ̸= 0, G3 = 0 theory, but essentially the same conclusions apply
to the G3 ̸= 0, G2 = 0 theory.

The dimensionless coupling constants η2 and η3, see equations (4.8)-(4.9), control the
future development for our initial data; in other cubic Horndeski theories one should
be able to define analogous dimensionless couplings, and therefore the conclusions of
this chapter should apply to those theories as well. In figure 4.1 we show the various
dynamical regimes of the G2 theory as a function of η2 and the initial scalar amplitude
A. As one would expect, the weakly coupled regime of the theory corresponds to suitably
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small values of η2, but the boundary of this region depends non-trivially on the scalar
amplitude.

The blue region in figure 4.1 denotes the values of (A, η2) for which the scalar equation
is hyperbolic at all times. The yellow region corresponds to the values of (A, η2) for
which the scalar equation is initially hyperbolic, and hence the initial value problem is
well-posed, but it changes character during the evolution, signalling a breakdown of the
formulation of the theory2. The green region corresponds to the values of (A, η2) for
which the scalar equation is not hyperbolic on the initial data slice and hence the initial
value problem is not well-posed3. The black band in figure 4.1 corresponds to the range
of amplitudes, numerically determined, for which the future development of the initial
data gets close to Choptuik’s critical solution [71], which is a naked singularity. This
band splits the figure into two regions corresponding to the small and large data regimes:
for initial data in the blue region to the left of the black band, the scalar field disperses
to infinity. On the other hand, initial data in the blue region to the right of the black
band collapses into a black hole. The orange curve on the right marks the region where
the initial data contains a trapped surface4.

For initial data in any of blue regions in figure 4.1 it is possible to construct global
solutions to the G2 = g2X

2 Horndeski theory. Away from the boundary of this region,
the deviations from GR are “small” everywhere on and outside black holes (if there are
any) for all times. By “small” here we mean that the weak field condition (4.18) is
satisfied. Therefore, we identify the interior of the blue region as the regime of validity
of EFT for the corresponding Horndeski theory. Of course, when black holes form during
the evolution, EFT will break down near the singularity, just as GR does. In this case,
we excise a portion of the interior of the black hole since it is causally disconnected
from external observers. For values of (A, η2) close to the boundary of the blue region,
the weak field condition (4.18) can become O(1) during the evolution while the scalar
equation remains hyperbolic. In this case one may argue that even though the theory
has a well-posed initial value problem, higher derivative corrections not included in the
action (4.1) should become important and hence one should not trust the theory as it

2The boundary between the blue and yellow region was obtained numerically by finding the boundary
η2 for a fixed A for which the simulations crashed or not.

3Following section 4.3, this could be approximated by the value of η2 for a fixed A for which g2X ∼
O(1) (or τg3 ∼ O(1) for the case of G2 = 0, G3 ̸= 0). It was obtained numerically by finding, for a fixed
amplitude, the value of η2,3 for which the character of the equation at t = 0 was already not hyperbolic,
by checking whether det (hµ

ν) or h00 were zero.
4If the initial data contains a trapped surface, empirically this corresponds to the impossibility of

solving the Hamiltonian and Momentum constraints using the method described in appendix A.3. How-
ever, this region was determined numerically making use of Kip Thorne’s Hoop Conjecture [213, 214],
which, for spherical symmetry, roughly says that a black hole forms when a mass M is compacted in a
region with radius R ≤ 2M . For a fixed η2,3, we determined the amplitude for which the initial data has
a radius r = 2Mr, where Mr is the mass up to radius r. Mr can be estimated using Mr =

∫
Vr

d3xρ
√

γ,
where ρ is the scalar energy density, Vr a ball of radius r and γ the spatial metric.
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stands.

As mentioned above, the yellow region in figure 4.1 denotes the values of (A, η2) for
which the evolution breaks downs due to the change of character of the scalar equation
and this breakdown cannot be hidden behind a horizon. The change of character of
the scalar equation is typically associated to the weak field conditions becoming O(1)
or larger, but this is not always the case. Indeed, for certain values of (A, η2), and in
particular for η2 < 0, the weak field condition can be O(10−2) during the evolution and
yet the equations change character. Beyond this point it is no longer possible to solve
the theory as an initial value problem. However, we note that whenever the equations
change character, the weak field condition is much larger than the dimensionless coupling
η2 determined from the initial data. Therefore, in a certain sense, the theory becomes
strongly coupled right before it breaks down. In section 4.4 we study in detail how and
where in spacetime the loss of hyperbolicity of the scalar equation happens depending
on the Horndeski couplings and we correlate it to the weak field conditions (4.18). For
0 < A ≲ 0.05, the boundary between the blue and yellow regions is given by constant
values of η2 ∼ (1.44 ± 0.06) × 10−4 and η2 ∼ (−1.94 ± 0.07) × 10−5. This is non-trivial
since the location of this boundary is obtained from the non-linear evolution of the initial
data. As we will see in section 4.4.1, for η2 > 0 the breakdown of the evolution happens
through a Tricomi-type-of transition while for η2 < 0 the transition is of the Keldysh
type.

A zoom in of figure 4.1 near the black band would show that η2 → 0 as one approaches
the critical regime from both sides. This is expected since for A near the critical ampli-
tude A∗ = 0.13±0.01, the gradients of both the metric tensor and the scalar field become
very large as the solution approaches the critical solution, which leads to a change of
character of the scalar equation unless g2 → 0 as A → A∗. Since the regime of validity
of EFT is essentially the empty set at the critical solution, in the rest of the chapter
we will purposely avoid the region near criticality.5 For values of A > A∗, a black hole
forms during the evolution of the initial data. Interestingly, the larger the value of A, the
larger the black hole that forms and the sooner it forms. Since larger black holes result
in lower curvatures on the horizon scale, larger values of the couplings are allowed and
yet the theory remains weakly coupled on and outside the black hole. This is the reason
why η2 increases for larger A. This is a very important effect, otherwise one could think
that for any value of the couplings, one could always find some high enough amplitude
that leads to a breakdown of hyperbolicity: this is not true, because eventually black
holes start forming and absorbing the region where hyperbolicity breaks. Finally, for
sufficiently large A, the initial data already contains a trapped surface. Since we are

5Gannouji and Baez [215] study critical collapse in k-essence models. We thank Eugeny Babichev for
bringing our attention to this article.
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interested in studying gravitational collapse, we do not consider those values of A.

It is clear from the previous discussion that our weak field conditions (4.18) bear some
relation with the hyperbolicity condition of the scalar equation of motion (4.4) but such
a relation is not a direct one. It is possible that one can come up with refined and sharp
weak field conditions that also capture the change of character of the equations when
they are violated but finding them is beyond the scope of this chapter. It follows from
our analysis that the regime of validity of EFT corresponds to the weak field conditions
(4.18) being satisfied (to justify that higher derivative terms in (4.1) can be neglected)
and that the initial value problem is well-posed, i.e., the scalar equations of motion are
hyperbolic everywhere in spacetime, perhaps except in a small region inside black holes.
These two conditions are satisfied in the interior of the blue region in figures 4.1 and
4.10. For initial data in this region, the Horndeski theories that we have considered are
valid EFTs and global solutions can be constructed. We note that whilst the conditions
for hyperbolicity and the weak field conditions (4.18) overlap near the GR limit, the
latter are not necessarily contained in the former far away from GR.6

4.1.2 Outline

The rest of the chapter is organised as follows. In section 4.2 we present the theories
that we consider and in 4.3 we analyse the corresponding hyperbolicity conditions. In
section 4.4 we present and analyse the results of our numerical simulations. Section
4.4.1 discusses in detail the dynamics of the G2 ̸= 0 theories, while the G3 ̸= 0 theories
are dealt with in subsection 4.4.2. We conclude with some final remarks in section
4.5. We have relegated some technical details to the appendices. In appendix A.1.1
we write down the equations of motion for scalar field and the effective scalar metric
in a 3+1 form. We collect some technical results in appendix A.1.2, details of initial
data in appendix A.3, the convergence tests are presented in appendix A.4 and some
notes on numerical implementation are in appendix A.5. Appendix A.6 contains the
results of certain numerical simulations that are also relevant for the main text. Finally,
some useful computations are left in appendix A.7 and A.8, regarding the ADM mass in
spherical symmetric and the variation of the cubic Horndeski action, respectively.

4.2 Methodology

In this section, we describe the specific Horndeski theories that we have studied, its equa-
tions of motion, our initial data, the analysis of the hyperbolicity of the scalar equations
and the weak field regime conditions that are necessary as to allow the evolution on and
outside of the black hole horizon.

6We thank Harvey Reall for discussions on this issue.
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4.2.1 Cases explored

We consider the special subset of Horndeski theories for which [49] proved well-posedness
of the initial value problem in both the BSSN and CCZ4 formulations of the Einstein
equations in the usual gauges used in numerical relativity. This subclass of theories is
given by setting G4 = G5 = 0 in the general Horndeski action (2.25), which has been
discussed in section 2.7 to be very rich and with multiple applications to gravitational
physics and cosmology. This is the so called cubic Horndeski theories described by the
4D action

S := 1
κ

∫
d4x

√
−g
[
R +X − V (ϕ) +G2(ϕ,X) +G3(ϕ,X)□ϕ

]
. (4.1)

In our work we are not interested in a particular model but rather in exploring general
features of the non-linear physics encoded in cubic Horndeski theories. From the point
of view of EFT, one would expect (4.1) to be valid when the G2 and G3 terms are
suitably small, which corresponds to X being small. Therefore, one can consider Taylor-
expanding some general (smooth) functions G2 and G3 for small X and keep only the
leading order terms. With this in mind, we therefore focus on the simplest non-trivial
functions G2 and G3:

G2(ϕ,X) = g2X
2,

G3(ϕ,X) = g3X,
(4.2)

where g2 and g3 are arbitrary coupling constants with dimensions of Length2 that we
can tune. These or similar choices have been considered in the literature before, namely
in models of dark energy [127, 216–220], and in studies of the fate of the Universe in
cosmological bounces or inflationary models [219, 221–223], among others [224, 225]. As
we noted in the introduction 4.1, from the point of view of EFT our choice for G2 in
(4.2) corresponds to the most general scalar term that can be added to the action up to
four derivatives [142]. The choice of G3 is a matter of simplicity and the convenience of
being able to use the standard BSSN/CCZ4 formulation.

4.2.2 Equations of motion

Applying the variational principle to the action (4.1), the resulting Einstein equations
are7:

Gµν = gµν
(
G2 +X − V + 2X ∂ϕG3

)
+ (∇µϕ)(∇νϕ)

(
1 + ∂XG2 + 2 ∂ϕG3

)
(4.3)

+ ∂XG3
[
(□ϕ)(∇µϕ)(∇νϕ) − 2 (∇ρϕ)(∇(µϕ)∇ν)∇ρϕ+ gµν(∇ρϕ)(∇σϕ)∇ρ∇σϕ

]
,

7Appendix A.8 has the details of this calculation for the G3 term.
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where Gµν is the Einstein tensor. The equation of motion for the scalar field is:8

− □ϕ
(
1 + ∂XG2 + 2∂ϕG3 − 2X∂2

ϕXG3
)

− ∂ϕG2 + ∂ϕV

+ 2X(∂2
ϕXG2 + ∂2

ϕϕG3) + (∂2
XXG2 + ∂2

ϕXG3)(∇µϕ)(∇νϕ)∇µ∇νϕ

+X ∂XG3
(
G2 − V +X (2 + ∂XG2 + 4 ∂ϕG3)

)
+X

(
∂XG3

)2[
X □ϕ+ 2 (∇µϕ)(∇νϕ)∇µ∇νϕ

]
+ ∂2

XXG3(∇µϕ)(∇νϕ)
[
(□ϕ)∇µ∇νϕ− (∇µ∇ρϕ)∇ρ∇νϕ

]
− ∂XG3

[(
□ϕ
)2 − (∇µ∇νϕ)∇µ∇νϕ

]
= 0 .

(4.4)

We write down equations (4.3) and (4.4) in the usual 3+1 conformal decomposition and
implement the CCZ4 form of the Einstein equations that is suitable for the numerical
simulations. The equations that we have implemented in our code as well as the details
of the numerical simulations are given in appendix A.1.1.

4.2.3 Initial data

For the present analysis, motivated by the objective of studying gravitational collapse, we
choose a family of initial data for the scalar field (ϕ,Π) modelling a spherically symmetric
bubble centred at c⃗:

ϕ(t, x⃗)
∣∣∣∣
t=0

= A

(
r2

r2
0 + 2ω2

)
e

− 1
2

(
r−r0
ω

)2

, (4.5)

where r⃗ = x⃗ − c⃗ and r = ||r⃗||2 with the Euclidean 2-norm. Notice that the class of
theories in (4.2) have a reflection symmetry ϕ → −ϕ , g3 → −g3 (g2 unchanged) and
hence, we can choose A > 0 without loss of generality. In the ω ≪ r0 limit, this profile
has its peak at rmax = r0

(
1 + 2

(
ω
r0

)2
+ O

(
ω
r0

)4
)

≈ r0, with a value of ϕ(rmax) ≈

A

(
1 − 2

(
ω
r0

)4
+ O

(
ω
r0

)6
)

≈ A. The weird normalisation denominator r2
0 + 2ω2 is to

make A the maximum of ϕ up to O
(
ω
r0

)4
, useful for numerical purposes. The width at

half height of the Gaussian profile is ∆r ≈ 2ω
(

1 + 2
(
ω
r0

)2
+ O

(
ω
r0

)4
)

.

Regarding the scalar momentum, having zero momentum generates an in-going and
an out-going pulse of equal amplitude. This is unphysical and undesired. Instead,
assuming an approximately Minkowski initial background, we choose an in-going wave

8The direct variation of the action with respect to the scalar field yields a term ∂XG3 Rµν(∇µϕ)(∇νϕ);
one can use the metric equation of motion to replace Rµν in this term and obtain (4.4) (see Kovács [49]
for details).
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pulse9:

Π(t, x⃗)
∣∣∣∣
t=0

= 1
r∂r (rϕ)

∣∣∣∣
t=0

. (4.6)

To explore the relevant phenomenology of these theories, we have studied many different
scenarios. Using a full 3D code, we were able to verify that all the features hereafter
described are not a peculiarity of spherical symmetry, and also occur when the symmetry
is broken, without any seemingly interesting new features emerging. However, we have
not attempted to carry out a thorough analysis of non-spherically symmetric scalar field
collapse. Hence, in the following we only present the results for the spherically symmetric
case.

With the choices (4.5) and (4.6) for the initial scalar profile and momentum, we obtain
the constraint satisfying initial data for the metric by solving the Einstein constraints
using the conformal transverse-traceless decomposition (details in section 3.6.1). We
choose a conformally flat initial metric and vanishing trace and transverse-traceless part
of the extrinsic curvature. Hence, we solve for the conformal factor of the spatial metric
and three leftover degrees of freedom of the traceless part of the extrinsic curvature
(which reduce to one in spherical symmetry). More details are presented in appendix
A.3.

To get some intuition about how the modifications of GR affect our initial data, we
can expand the initial spacetime matter mass for small amplitudes and couplings around
a Minkowski background. This is done by performing

∫
d3x ρ, where ρ is the energy

density for Horndeski (see equation (A.6)) assuming a flat metric. We find,

Mmatter ≈ ρ̄

16π

{
1 + 13

2

(
ω
r0

)2
+ O

((
ω
r0

)4
)

(4.7)

+
[ (
m2ω2

)
+
(

5
4
√

2

) (
g2A2

r2
0

)
+
(

28
9

√
2
3

)(
g3Aω2

r4
0

) ][
1 + O

((
ω
r0

)2
)]}

,

where ρ̄ =
√
π

8
A2r2

0
ω and we have included the contribution of the in-going momentum

(4.6) and of a mass term in the scalar potential V (ϕ) = 1
2m

2ϕ2. It is interesting to
note that this energy is twice as big due to the in-going momentum contribution, when
compared to the zero momentum rest case. From (4.7) we see that for our initial data,
the strength of the modifications of GR due to the cubic Horndeski terms G2 and G3 is

9This is such that we have a wave-like equation for ϕ in spherical coordinates Minkowski space:
∂2

t ϕ0 = ∂tΠ0 = 1
r
∂r (rΠ0) = 1

r
∂2

r (rϕ0) = ∇2ϕ, i.e. □ϕ0 = (−∂2
t + ∇2)ϕ0 = 0.
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measured by the dimensionless couplings:

η2 = g2A
2

r2
0

, (4.8)

and,

η3 = g3Aω
2

r4
0

, (4.9)

respectively. These dimensionless couplings play an important role in predicting the
future development of the initial data and determine the weakly coupled regime of these
theories.

g2=-0.2

g2=0

g2=1.5

A=0.22

A=0.05

5 10 15 20 25 30
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r

χ ϕ

Figure 4.2: Initial conformal factor χ (left y-axis) for a given scalar field profile (in
orange, right y-axis) with ingoing momentum, for different choices of g2. The scalar
profile in this figure corresponds to Cases 1 (dashed line) and 3 (solid line) of section
4.4; the shown values of coupling g2 correspond to the GR case (g2 = 0) and the cases
presented in figure 4.7 (g2 = 1.5) and figure 4.8 (g2 = −0.2).

In figure 4.2 we show the initial conformal factor χ and scalar profile ϕ for some rep-
resentative cases. From this figure we see that even for relatively large amplitudes within
the range that we have considered, the conformal factor has a very small dependence
on the Horndeski couplings. For the specific case of A = 0.22, the difference between
g2 = 1.5 and GR at r = 0 is 0.2%, which is in accordance with the fact that for this
case the dimensionless coupling is small (η2 ∼ 3 × 10−3). One can also notice that for
sufficiently small amplitude, the conformal factor is almost 1 for any reasonable value of
g2.
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4.2.4 Numerical scheme

On top of what was already described in section 3.8.2.3, for the simulations presented in
this chapter, we use Kreiss-Oliger numerical dissipation with σ = 0.3. Typical simula-
tions used a Courant factor of 0.2 (small value chosen to better resolve Keldysh-type-of
transitions), a coarse grid resolution of ∆x = 1 and up to 7 additional refinement levels,
and a box size of L = 96 with Sommerfeld boundary conditions. We use the gradients
of ϕ and χ as well as contours of χ to tag cells for regridding (see appendix D.1 for more
details). Last but not least, we use the symmetry of the system to only simulate one
octant of the full domain, which reduces the computational cost of the problem by a
factor of 8.

4.3 Breakdown of hyperbolicity

From sections 4.3.1-4.3.3, we learn how the effective metric of the scalar equation has
strong implications in the stability and existence of the solutions, how the breakdown
of the evolution can be explained by analysing scalar speeds of propagation, and what
are the necessary conditions we must satisfy to guarantee the physical relevance of the
theory. In sections 4.3.4-4.3.5 we apply these lessons to the case of G2 and G3 theories.
Finally, in section 4.3.6, we discuss numerical implications of the hyperbolicity problems
discussed below.

4.3.1 Effective metric

To identify the regime of validity of EFT, we need to first determine the character of the
equations of motion for the scalar field (4.4) and the conditions under which they are
hyperbolic. To do so, we consider the principal part of the scalar equation (4.4), which
is a wave equation governed by an effective metric [127]:

hµν = gµν
[
1 + ∂XG2 + 2 ∂ϕG3 + 2 ∂XG3 □ϕ−X2(∂XG3

)2
− ∂2

XXG3(∇ρϕ)(∇σϕ)∇ρ∇σϕ− 2X ∂2
ϕXG3

]
− (∇µϕ)(∇νϕ)

[
2X

(
∂XG3

)2 + ∂2
XXG2 + ∂2

XXG3 □ϕ+ 2 ∂2
ϕXG3

]
+ 2 ∂2

XXG3(∇ρϕ)(∇(µϕ)∇ρ∇ν)ϕ− 2 ∂XG3∇µ∇νϕ .

(4.10)

The eigenvalues of hµν determine the character of the equation: if the product of the
eigenvalues is negative then the equation is hyperbolic; if the product is positive then
the equation is elliptic, and if it is zero the equation is parabolic.

Having a well-posed initial value problem, is the minimum requirement that we should
demand on any classical theory; therefore, the breakdown of hyperbolicity of the scalar
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equation in this case can be associated to the breakdown of the formulation of the theory
itself. As [107, 226] noted, the fact that the effective metric (4.10) depends on the scalar
field itself and its gradients implies that shocks can generically form from smooth initial
data, at which point the well-posedness is lost. Therefore, the local character of the
scalar equation is a useful proxy to establish the regime of validity of the theory and to
measure the size of the non-linearities and deviations from GR [105–108]. We will come
back to this point below.

When considering spacetimes containing black holes, the evolution of the spatial slices
in puncture gauge is such that the determinant of the inverse spacetime metric goes to
zero near the puncture, i.e., det(gµν) = −χ3

α2 → 0 (see section E.1). Consequently the
same happens for the effective metric (4.10). To distinguish this effect from an actual
breakdown of the hyperbolicity of the scalar equation, we note that hµν = gµρhνρ and
therefore:

det (hµν) = det
(
hνρ

)
det (gµρ) = −χ3

α2 det (hµν) , (4.11)

with det (hµν) = 1 in GR. Clearly, deviations of this quantity from 1 encode the dynamics
of the Horndeski theories and hence we will focus our attention on det (hµν).

4.3.2 Characteristic speeds

The characteristic speeds, also called front velocities, are important since they correspond
to the local speed of propagation of the scalar modes and hence they tell us about the
effective causal cone that the scalar field “sees”.10 The characteristics are given by the
zeros of the characteristic polynomial which, for the scalar field equation, is

Q(x, ξ) = hµνξµξν = 0 , (4.12)

for some covector ξµ that defines the characteristic surface. Physically this corresponds
to considering the high frequency and small amplitude limit of a wave with wave vector
ξµ. To calculate the propagation speed v without symmetry assumptions, we specify
ξ =

(
v, ni

)
, with ni a direction of propagation suitably normalised ninjδ

ij = 1, where
δij is the Euclidean 3D metric (we can take space as locally flat). Then, the speed of
propagation in the ni direction is:

h00v2 + 2h0ini v + hijninj = 0 ⇒ v± =
−h0ini ∓

√
(h0ini)2 − h00hijninj

h00 . (4.13)

10Recall that the characteristic speeds do not coincide in general with the phase or group velocity,
which do not have a direct relation with the causal structure.
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In spherical symmetry one can naturally use a radial vector for the direction of propa-
gation, ni = {xr ,

y
r ,

z
r}, which gives [107, 227],

v± =
−h0r ∓

√
(h0r)2 − h00hrr

h00 . (4.14)

In our conventions, v+ and v− correspond to the ingoing and outgoing modes of the
scalar field respectively and by construction they tend to +1 and −1 at infinity. When
v− ≥ 0 and v+ ≥ 0 in a certain region, scalar modes cannot reach asymptotic observers;
the boundary v− = 0 of this region is the sound horizon [228, 229].

As discussed by Ripley and Pretorius [108] and Bernard et al. [107], the equations
can change character from hyperbolic to parabolic and elliptic in a manner which is
qualitatively similar to what happens in the two standard equations of mixed type,
namely the Tricomi equation,

∂2
yu(x, y) + y ∂2

xu(x, y) = 0 , (4.15)

and the Keldysh equation,

∂2
yu(x, y) + 1

y ∂
2
xu(x, y) = 0 . (4.16)

Both equations are hyperbolic for y < 0 and they change character at the transition
line y = 0. Related to this change of character are the appearance of ghosts, gradient
instabilities and formation of caustics [226, 230, 231].

In the case of the Tricomi equation, the characteristic speeds go to zero at y = 0
where the equation becomes parabolic. If the characteristic speeds of both the ingoing
and outgoing modes vanish then the evolution freezes. This can happen because of the
choice of gauge; for instance, in coordinates that are not horizon penetrating, the lapse
asymptotically goes to zero at the horizon, effectively resulting in zero characteristic
speeds. However, in this case the freezing of the evolution is a consequence of the gauge
choice and it does not correspond to a breakdown of EFT. Therefore, in the case of
a Tricomi-type-of transition, we also need to check that the deviations from GR are
suitably large to conclude that the loss of hyperbolicity corresponds to a breakdown of
the theory. The determinant det (hµν) mentioned in the previous section can aid in this
distinction.

On the other hand, a Keldysh-type-of transition involves diverging characteristic
speeds at y = 0,11 which will typically signal a breakdown of EFT. This case is more

11At least in some direction in full 3D space, which is non-trivial to determine without spherical
symmetry.
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difficult to handle numerically since one is forced to take prohibitively small time steps.12

Note from (4.10) that h00 has a factor of − 1
α2 coming from g00, and hence the deviations

from GR are measured by −α2h00, for which this factor is 1. Therefore, the Keldysh-
type-of transition without symmetry assumptions is signalled by −α2h00 → 0, which
implies that the t = const. hypersurface being evolved is no longer spacelike with respect
to the scalar effective metric [232]. We associate this breakdown of the evolution to
a Keldysh-type-of transition since the characteristic speeds diverge. However, strictly
speaking, at this point the equation may not have changed character yet but the two
effects go hand in hand.13 We discuss in detail the different types of transitions in the
G2 ̸= 0 and G3 ̸= 0 cases in subsections 4.3.4 and 4.3.5.

4.3.3 Weak coupling conditions

The previous discussion only relates to the existence of a well-posed initial value problem
but it does not fully address the issue of whether the theory under consideration makes
sense as a truncated EFT [233]. We now turn to this point. As mentioned by Kovács
[49], local well-posedness is only guaranteed in the weak field regime, meaning that the
Horndeski terms are small compared to GR ones. One possible weak field condition that
compares the size of the Horndeski terms versus GR is:∣∣∣∂kX∂lϕG2

∣∣∣ ≪ L2k−2 k = 0, 1, 2; l = 0, 1;∣∣∣∂kX∂lϕG3
∣∣∣ ≪ L2k k, l = 0, 1, 2.

(4.17)

where L is a length scale estimate for the system: L−1 = max{|Rαβµν |
1
2 , |∇µϕ| , |∇µ∇νϕ|

1
2 }

in all orthonormal bases. For the cases (4.2), this is explicitly14:

|g2 L
−2| ≪ 1 , |g3 L

−2| ≪ 1 . (4.18)

In order for the Horndeski theories under consideration (4.2) to be in the regime of
validity of EFT, in this analysis we require that the evolution equation of the scalar field
is hyperbolic and that (4.18) is satisfied. These two conditions ought to be imposed on
and outside black hole horizons, should there be any in the spacetime. The nuance of
the interior of black holes is addressed in section 4.3.6.

12In fact, the degree of regularity of the solutions of these equations typically differs, with solutions of
the Tricomi equation enjoying higher regularity [108].

13We would like to thank Luis Lehner for discussions on these issues.
14The conditions 4.17 result in more conditions than 4.18, like |giX| ≪ 1, but ultimately the gradients

of X are encapsulated in the length scale L via ∇µϕ and all these conditions are, in order of magnitude,
equivalent to simply 4.18.
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4.3.4 Case of G2 ̸= 0, G3 = 0

To monitor the character of the scalar equation, we compute the determinant of the
scalar effective metric. Even though it is possible to find an analytic expression for
the full determinant (using Cayley–Hamilton’s theorem and Newton’s identities), for
simplicity we consider the G2 ̸= 0, G3 = 0 and the G3 ̸= 0, G2 = 0 cases separately.

As explained in the discussion surrounding equation (4.11), we only need to consider
the determinant of the effective metric with one index up and one index down. For the
G2 ̸= 0 case, we have

hµν = δµν (1 + ∂XG2) − (∇µϕ)(∇νϕ) ∂2
XXG2 . (4.19)

Realising that, up to scalars, this metric is the identity plus the tensor product of two
vectors, one can use the Weinstein–Aronszajn identity to calculate the determinant of
the full 4D metric without assuming any symmetries. We find:

det (hµν) = (1 + ∂XG2)3
(
1 + ∂XG2 + 2X∂2

XXG2
)

= (1 + 2 g2X)3 (1 + 6 g2X) ,
(4.20)

where in the last line we have used that G2 = g2X
2. Knowing the determinant is the

product of the eigenvalues, we can double check the consistency of this result by double
checking these. For a vector vν , note that:

hµνv
ν = vµ (1 + ∂XG2) −

(
∂2
XXG2v

ν∇νϕ
)

∇µϕ , (4.21)

so we conclude that ∇µϕ is an eigenvector with eigenvalue
(
1 + ∂XG2 + 2X∂2

XXG2
)
.

The other three eigenvectors are any tetrad orthogonal to the 4-vector ∇µϕ and have
degenerate eigenvalues equal to (1 + ∂XG2), in accordance to (4.20).

Besides the determinant of the effective metric, as discussed in section 4.3.2, to mon-
itor a Keldysh-type-of transition, we have to compute −α2h00. For the G2 ̸= 0, G3 = 0
case, this is given by,

−α2h00 = 1 + ∂XG2 + Π2 ∂2
XXG2

= 1 + 6 g2X + 2 g2 ΠiΠi ,
(4.22)

where Π = nµ∇µϕ is the scalar momentum, and in the last line we have used that
G2 = g2X

2 and Π2 = 2X+ΠiΠi, with Πi = Diϕ (see appendix A.1.1). All in all, for G2

as in (4.2), the two quantities that inform us about the breakdown of the initial value
problem for the scalar equation are (4.20) and (4.22). The scalar equation is hyperbolic
as long as these two quantities are non-negative.15 These are the same conditions found

15Note that we have pulled out a minus sign in (4.11) so det (hµ
ν) > 0 corresponds to hµν having one
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by Babichev et al. [232], and it is evident that if the weak field conditions (4.18) are
satisfied then the scalar equation is hyperbolic.

det(hμ
ν)

-α2h00, ΠiΠi≠0, g2>0

-α2h00, ΠiΠi=0

-α2h00, ΠiΠi≠0, g2<0

-1.5 -1.0 -0.5 0.0

-0.5

0.0

0.5

1.0
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2.0

2.5

g2X

Figure 4.3: Sketch of the possible changes of character of the scalar equation in the
G2 ̸= 0 theory depending on the sign of the coupling constant g2. For g2 > 0, det(hµν)
(blue curve) vanishes before −α2h00 does (light green line), leading to a Tricomi-type-of
transition. On the other hand, for g2 < 0, −α2h00 will vanish first (dark green line),
leading to a Keldysh-type-of transition. In this case, the time coordinate t is no longer
a global time function and the scalar equation cannot be evolved further in this gauge.

For a non-constant scalar profile ϕ, Πi satisfies ΠiΠi ≥ 0, but on the other hand X

can be either positive or negative, depending on the balance between scalar gradients and
momentum. In a dynamical evolution, both can become large. As this happens, g2X can
decrease to make either (4.20) or (4.22) zero, see figure 4.3. But interestingly, we can still
conclude which transition will happen when. If g2 > 0, the fact that ΠiΠi > 0 implies
that det (hµν) will reach zero before −α2h00, and the equation will become parabolic on
a co-dimension one surface, where at least one of the characteristic speeds goes to zero
while the others remain bounded. This will correspond to a Tricomi-type-of transition.
On the other hand, if g2 < 0 the opposite is true and −α2h00 may become zero before
det (hµν) does, leading to infinite speeds of propagation and a very abrupt termination of
the evolution associated to a Keldysh-type-of transition. The transition is also expected
to happen for small absolute values of g2. Both behaviours were identified by Bernard
et al. [107].16

The changes of character described in the previous paragraph can only occur if |g2X|
is suitably large and hence outside the weak field regime. While generically one can
expect that weak data eventually enters the strong field regime, one question that we
need to address is whether or not the region where EFT breaks down can be hidden
inside a black hole. If the answer is positive, then one can hope that classical observers at
infinity will be protected from any potential pathologies that arise in the scalar equations

negative eigenvalue and three positive ones, as it should for a hyperbolic equation.
16Bernard et al. [107] use a coupling g with the opposite sign as our g2.
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and EFT will retain its predictive power. The technical details on how we have dealt
with the loss of hyperbolicity and the violations of the weak field condition (4.18) inside
black holes are given in section 4.3.6.

4.3.5 Case of G3 ̸= 0, G2 = 0

In equation (A.13) of appendix A.1.2 we present the full analytic form of the determinant
of the scalar effective metric in the G3 ̸= 0, G2 = 0 case. For clarity, in this subsection
we analyse (A.13) for small g3, which is the relevant limit in the weak field regime.

To obtain the expansion of (A.13) for small g3, we use the scalar equation of motion
(several times if necessary) to replace □ϕ in (A.13) by V ′(ϕ) and terms which are higher
order in g3, in the spirit of order reducing schemes. We then obtain, up to second order:

det (hµν) = 1 + 6 g3 V
′(ϕ) + g2

3

[
−6V (ϕ)X + 8V ′(ϕ)2 + 12X2 + 4 (∇µ∇νϕ) (∇µ∇νϕ)

]
+ O

(
g3

3

)
. (4.23)

Similarly, we find:

−α2h00 = 1 + 2 τg3 − g2
3

(
X2 − 2 Π2X

)
+ O(g3

3) , (4.24)

where τ = K Π +DiΠi is independent of g3, see (A.3). Let us focus on the case of zero
scalar potential, V (ϕ) = 0, which is the relevant one for the analysis carried out in this
chapter. In this case, the correction to GR in det(hµν) comes at O(g2

3), while in −α2h00

it comes at leading order. Because τ does not have a definite sign, then regardless of the
sign of g3, there will be regions in spacetime where −α2h00 will vanish before det (hµν)
does, resulting in a Keldysh-type-of transition. This should be the generic behaviour in
the V (ϕ) = 0 case for the G3 ̸= 0, G2 = 0 theory, and it is indeed what we observe
in our numerical simulations, see section 4.4.2. The picture changes for V (ϕ) ̸= 0 (for
instance V (ϕ) = 1

2m
2ϕ2 implies V ′(ϕ) = m2ϕ); then det (hµν) receives a contribution to

leading order in g3 and the type of transition will depend on the details of the scalar
potential and the initial data.

4.3.6 Excision

As described before, inevitably the evolution will exit the regime of validity of Horndeski
theories inside black holes. To deal with strong field regime inside black holes, in practice
we excise a portion of the interior of the black hole. In this section we provide the details
of our implementation.

Rather than performing proper excision, i.e., cutting out a region of the domain, we
found that it was easier to modify the evolution equations inside the black hole. The
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result should be the same, since information cannot escape from this region and affect the
physics in the domain of outer communications. Note that in certain Horndeski theories,
depending on the sign of the couplings, the scalar field can propagate faster than light
and consequently the associated scalar apparent horizon will be inside the black hole
horizon [229]. As long as the weak coupling conditions hold, the sound horizons should
be close to the usual metric horizon. Nevertheless, to avoid unphysical effects leaking
out of the black hole, any modification of the equations of motion should be done in a
region contained well within the metric apparent horizons.

Since puncture gauge can handle singularities very well in GR, in practice we turn
off all Horndeski terms in a certain region inside the black hole and evolve the standard
GR equations there, effectively interpolating from the full equations of motion to GR.
To do so, we first define a smooth transition function, valued between 0 and 1, such as
the sigmoid-like function:

σ(x; x̄, w) = 1
1 + e− 2

w ( x
x̄

−1) , (4.25)

where x̄ represents the transition point, and w represents the transition width, relative
to x̄, such that wx̄ is the actual width of the transition.17 The metric apparent horizon
can be accurately tracked during simulations, but for a sense of what is “well within
the black hole”, contours of the conformal factor χ are, in puncture gauge, an excellent
measure. For example, for a Schwarzschild black hole, after puncture gauge settles, the
apparent horizon corresponds to a contour of χ around 0.25, reducing to lower values
as spin increases along the Kerr family of solutions (see details in appendix 7.3). For
reasonable choices of Horndeski couplings in the regime of validity of the theory, the
scalar apparent horizon is close to the metric horizon. Therefore, the region inside a
certain sufficiently small contour of χ will contain all apparent horizons. Denoting by
W the maximum of all the weak field conditions (4.17), we define the excision function
e(χ,W ) as:

e(χ,W ) = σ(χ; χ̄,−wχ)σ(W ; W̄ , wW ) , (4.26)

where wχ and wW are two adjustable parameters18. In our simulations we typically used
χ̄ = 0.08, wχ = 0.2, W̄ = 1, wW = 0.1. This choice is robust, in the sense that changing
these barely affects the evolution across resolutions as long as χ̄ is well within the black
hole, which is the case for this choice. It follows from the definition (4.26) that e → 1
when χ < χ̄ and W > W̄ , and e → 0 otherwise. We then modify the right hand side of

17Roughly, σ ≲ 0.1 for x < x̄(1 − w) and σ ≳ 0.9 for x > x̄(1 + w), and σ decays very fast to 0 or 1
outside of this interval.

18Note that wχ is accompanied by a negative sign such that the sigmoid σ goes to 1 as χ → 0, while
it also tends to 1 when W → ∞.
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Figure 4.4: Evolution of the profile of a massless scalar field (SF) in GR for the Cases
1–4.

the evolution equations, collectively denoted by RHS, as:

RHS = (1 − e)RHSHorndeski + e RHSGR , (4.27)

with e given by (4.26). This is equivalent to changing the Horndeski couplings of the
functions (4.2) to gi → (1 − e)gi. As a reminder, in practice, we are only modifying the
equations of motion in a region where the weak field condition is large and where the
theory should not be trusted in any case.

4.4 Results

In this section we present the results of our numerical simulations of the gravitational
collapse of a single massless (no scalar potential) scalar bubble with initial data as in
section 4.2.3. In all our simulations we keep the radius r0 and the width ω of the initial
Gaussian profile (4.5) fixed, and we vary both the amplitude A and Horndeski coupling
g2 or g3. The reason is that varying r0 and ω leads to similar results and varying A alone
makes the analysis simpler. We choose r0 = 5 and ω =

√
0.5, which set the length scale

in our simulations.

Since we consider spherically symmetric scalar field collapse (even though we do not
assume spherical symmetry in our simulations), there are essentially two relevant regimes
depending on whether the initial data disperses to infinity (small data) or it collapses
into a black hole (large data)19. We consider four representative values of the initial

19It may be useful for the reader to see these effects with the visual animation of our simulations of
such effects: https://www.youtube.com/watch?v=cfXF1wIcIJc.

https://www.youtube.com/watch?v=cfXF1wIcIJc
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amplitude A, so that we can probe the regimes far and close to critical collapse for both
small and large data:20

• Case 1: A = 0.05 – dispersion far from the critical regime, with initial ADM mass
of ≈ 0.022.

• Case 2: A = 0.10 – dispersion closer to critical regime, with initial ADM mass of
≈ 0.1.

• Case 3: A = 0.22 – collapse into small black hole with initial ADM mass of ≈ 0.5.

• Case 4: A = 0.33 – collapse into a larger black hole with initial ADM mass of
≈ 1.6.

For each of these cases, we vary the Horndeski couplings (g2 or g3) while ensuring that the
initial value problem is well-posed. We then evolve the initial data by solving the coupled
equations of motion (2.10)–(4.4) numerically, and we monitor both the hyperbolicity of
the scalar equation and the weak field conditions (4.18). In this way we can identify
the regime of validity of the EFT for both small and large data. We shall refer to
the different cases as “weakly” or “strongly” coupled depending on the whether the
hyperbolicity of the scalar equation breaks down at some point during the evolution; this
breakdown is associated to the weak field conditions (4.18) becoming large compared to
the dimensionless couplings (4.8) and (4.9). The evolution of the scalar field in GR (i.e.,
g2 = g3 = 0) for the Cases 1–4 is shown in figure 4.4.

It is worth emphasising that Cases 2 and 3 above do not exhibit Choptuik’s critical
behaviour, as the amplitude A is purposely chosen to be sufficiently ‘far’ from the critical
amplitude A∗ ≈ 0.13 ± 0.01. The reason is that Choptuik’s critical solution is a naked
singularity and EFT will necessarily break down close to it. Indeed, zooming in near
the black band in figure 4.1 and figure 4.10 would show that the coupling constants have
to be tuned down to maintain the hyperbolicity of the scalar equation as we approach
the critical regime from both sides. In addition, the weak field conditions (4.18) become
large the closer we get to the critical solution, as expected.

Since the G2 ̸= 0 and G3 ̸= 0 theories do not exhibit significant qualitative differences
in terms of the dynamics of collapse of the scalar field, in the next subsection we will
focus the discussion on the G2 ̸= 0 theory considering different values and signs of the
coupling constant g2. In subsection 4.4.2 will only highlight the main differences in the
G3 ̸= 0 case.

20The endpoints in Cases 1–4 below are obtained by evolving our initial data turning off all Horndeski
terms, see figure 4.4. For large enough couplings, the equations may break down before the scalar field
has either dispersed or collapsed into a black hole.
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4.4.1 G2 theories

In the following subsections we will discuss gravitational collapse in Horndeski theories
with G2 = g2X

2 for different values of the coupling constant g2. For our scalar field
initial data, during collapse a positive and negative peak in X form; these peaks grow as
the evolution progresses and the scalar shell approaches the origin. After reaching the
origin, they bounce back and smaller peaks of opposite signs form, eventually resulting
in the formation of a black hole or dispersion to infinity. See figure 4.4 for the evolution
of the scalar field profile in GR; in the Horndeski theories it is qualitatively similar. With
an initial ingoing momentum, as in our initial data, momentum dominates over spatial
gradients and the positive peak will be much larger in amplitude than the negative
or the subsequent peaks that form after the bounce. Considering the expressions for
det(hµν) and −α2 h00 in (4.20) and (4.22) for the G2 ̸= 0 theory, this implies that
generically a negative g2 will lead to a breakdown of the hyperbolicity of the equations for
a significantly smaller |g2| and it will happen sooner than for a positive g2. Furthermore,
as described in section 4.3.4, for g2 < 0 the change of character will be of the Keldysh
type while for g2 > 0 it will be of the Tricomi type.

4.4.1.1 Weak coupling

We first consider the case of a small and positive coupling constant g2; we choose g2 =
0.005 as a representative example. This is a case of a theory that remains in the regime
of validity of EFT throughout the whole evolution, both for small and large initial data.
For this choice of parameters, the maximum of the weak field condition (4.18) is small
everywhere on and outside horizons (if they form) at all times.

In figure 4.5 we display det(hµν) (top) and −α2 hµν (bottom) for Cases 1–4. The
white lines in these plots indicate the trajectories of the initial scalar field peak and
serve to guide the eye. In Cases 1 and 2, the scalar field bounces at the origin and
eventually disperses to infinity; as the amplitude increases from Case 1 to Case 2, the
scalar field spends more time near the origin where gravitational focusing is stronger. For
sufficiently large amplitudes (Cases 3 and 4) it collapses into a black hole. In all cases,
both det(hµν) > 0 and −α2 h00 > 0 throughout the evolution so the scalar equations are
hyperbolic at all times. The long dashed line in figure 4.5 indicates the contour where
the maximum of weak field condition (4.18) is equal to one; as we can see, for Cases 1
and 2 the weak field condition is always less than one everywhere in spacetime, while in
Cases 3 and 4 and the weak field condition is greater than one only inside the apparent
horizon (solid black line). Only in Case 3 there is a small region near the origin where
the weak field condition is greater than one and for a short period of time is not covered
by an apparent horizon. Note however that this region is already cloaked by the sound
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Figure 4.5: det(hµν) (top) and −α2 h00 (bottom) for g2 = 0.005. The corresponding
values of η2 are, from left to right, 5×10−7, 2×10−6, 9.7×10−6, 2.2×10−5 respectively.

horizon (dotted black line), so the scalar modes emanating from this region cannot reach
asymptotic observers, and likely by an event horizon as well. For Cases 2–4, det(hµν)
can significantly deviate from 1 (its GR value) when the scalar field is most contracted
at the origin. Likewise, the bottom plots in figure 4.5 show that −α2 h00 also exhibits
some deviation from its GR value near the origin but it never gets anywhere close to 0.
Therefore, despite the weak field condition being small at all times, the Horndeski terms
can have a significant impact on the dynamics of the system, especially near the origin
where the gravitational focusing is strongest.

In figure 4.6 we display the characteristic speeds for both the outgoing (top) and
the ingoing (bottom) modes. Notice that in Case 2, both speeds approach zero at the
origin when the scalar field collapses but their sign does not change. This is indicative
of strong gravitational dynamics, as one would expect since Case 2 is “close” to the
critical regime. Also, note that there are no scalar horizons in this case and all the scalar
field eventually disperses to infinity. The dynamics changes in Cases 3 and 4, where a
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Figure 4.6: Outgoing (top) and ingoing (bottom) scalar characteristic speeds for g2 =
0.005. The evolution freezes inside black holes as a consequence of the 1 + log slicing
condition that we use. Sounds horizons form for large initial data.

black hole forms. First, notice that v− changes sign inside the black hole, from negative
to positive; this implies that inside the black hole, outgoing modes travel inwards, as
expected. Eventually both speeds become close to zero in the region near the singularity.
This is just a consequence of using 1 + log slicing in our simulations, which effectively
freezes the evolution inside black holes. Second, we do observe the formation of scalar
horizons, where v− = 0 and v+ > 0. In both Cases 3 and 4, the characteristic speed
of the outgoing modes is small in the vicinity of the sound horizon; consequently, even
though the scalar field can eventually reach infinity, it will remain near the black hole
for a long time, thereby interacting with itself and with the black hole.

It is apparent from the results shown here that even though the weak field condition
(4.18) is small everywhere, the scalar field still exhibits strong dynamics, such as the
dynamical formation of scalar horizons. Evidently, if the couplings are small then the
scalar horizon will be close to the metric horizon. In the case of a black hole binary in a
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Horndeski theory of gravity, even if the effects of the strong scalar dynamics are locally
small, over a sufficiently long time they can lead to significant deviations from GR that
may be observable [2].

4.4.1.2 Strong coupling

In this subsection we analyse the case for which the g2 coupling is large and positive. We
choose g2 = 1.5 as a representative example. For this value of the coupling constant, the
weak field condition (4.18) can be O(1) for large initial data, see figure 4.7 Cases 3 and
4. Therefore, strictly speaking, in these cases the theory is already outside the regime
of validity of EFT even though the initial value problem is well-posed. Nevertheless, we
choose this value of the coupling constant as an illustrative example of the dynamics of
Horndeski theories for large and positive g2.

Figure 4.7: det(hµν) (top) and −α2 h00 (bottom) for strong and positive coupling g2 = 1.5.
The corresponding values of η2, from left to right, are: 1.5 × 10−4, 6 × 10−4, 2.9 ×
10−3, 6.5 × 10−3.

In figure 4.7 we display det(hµν) and −α2h00 during the evolution for our four cases.
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Unsurprisingly, this figure shows that in all cases the evolution breaks down at some
point. For this choice of g2 (and all other strong coupling values of g2 > 0), the reason
why the simulations crash is because det(hµν) → 0 in a certain region at some instant of
time and hence the scalar equation changes character, becoming parabolic. Beyond this
point it is not possible to solve the equations as an initial value problem. For this value of
the Horndeski coupling, for all Cases 1–4 the weak field condition (4.18) has become large
before the equations change character. Also, note that for large initial data (Cases 3 and
4), the evolution breaks down before an apparent horizon has had time to form and hence
the pathology in the scalar equations of motion cannot be hidden behind the horizon.
Figure 4.7 (bottom) shows that in all cases −α2h00 deviates significantly from its GR
value, but remains well above zero up until the breakdown of the evolution. Likewise,
we observe that in these simulations the characteristic speeds of both the ingoing and
outgoing modes remain bounded at all times. Therefore, the loss of hyperbolicity for the
g2 > 0 theories is due to a Tricomi-type-of transition, in accordance with the discussion
in section 4.3.4.

By lowering the coupling constant a bit, it is possible to hide the strong scalar field
dynamics that causes the breakdown of the hyperbolicity of the equations inside a large
enough black hole. This is illustrated in appendix A.6, figure A.6.1. For such “inter-
mediate” couplings, the evolution still breaks down in Cases 2 and 3, while in Case 4
the pathologies that develop in the scalar equation can be hidden behind the horizon.
In this case, one can continue the evolution without encountering any issues. Moreover,
the weak field condition in Case 4 remains small on and outside the black hole horizon
despite the fact that g2 is large. This contains an important lesson. One could fear that
any of these theories were doomed to failure given that for strong enough initial data or
coupling (which, in the end, is partially a matter of the length scale chosen) they break
down. But, our hope is partially restored when realising that is not the case: even for
strong coupling, if our initial data is strong enough (big amplitude in this case) then a
trapped surface forms fast enough such that any pathology stays well hidden behind an
horizon and the theory does not breakdown.

4.4.1.3 Negative coupling

In this subsection we discuss the case of a strong and negative coupling constant g2. As
an illustrative example, we consider g2 = −0.2.

As anticipated in section 4.3.4, the dynamics of the scalar field changes quite signif-
icantly for negative couplings. First, a smaller absolute value of g2 is enough to cause
a breakdown of the hyperbolicity of the scalar equations for both small and large data.
The results are shown in figures 4.8 and 4.9. In all cases we find that −α2h00 → 0 before
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Figure 4.8: det(hµν) (top) and −α2 h00 (bottom) for a strong and negative coupling
g2 = −0.2. The corresponding values of η2, from left to right, are: −2 × 10−5,−8 ×
10−5,−3.9 × 10−4,−8.7 × 10−4.

det(hµν) → 0, even though this is not easily seen from figure 4.8. This implies that,
in our gauge, the t = const. surfaces are no longer spacelike with respect to the scalar
effective metric before the scalar equation changes character. The fact that for g2 < 0,
−α2h00 → 0 first results in infinite characteristic speeds of propagation for both the
ingoing and outgoing modes, see figure 4.9. Therefore, we associate the breakdown of
the hyperbolicity of the scalar equation to a Keldysh-type-of transition, in accordance to
the discussion in section 4.3.4 (see also [107]). The diverging characteristic speeds near
the transition point imply that the dynamics of the scalar field becomes increasingly
fast right before it breaks down; to adequately resolve it, in our simulations we had to
significantly reduce the Courant factor. However, at some point it is no longer feasible
in practice to keep reducing it, and numerical errors eventually build up until the simu-
lation inevitably crashes. A possible way out would be to change our slicing conditions
to ensure that the t = const. hypersurfaces remain spacelike with respect to both hµν

and gµν , but we have not attempted to do so here.
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Figure 4.9: Characteristic speeds of the outgoing (top) and ingoing (bottom) scalar modes
for g2 = −0.2. Both characteristic speeds simultaneously diverge when the evolution
breaks down, but v− does so faster than v+. This behaviour is in accordance with a
Keldysh-type-of transition.

Notice that for this value of the coupling constant, the weak field condition (4.18) is
always less than one everywhere in spacetime, including the region near the origin where
gravitational focusing is strongest, except immediately before the breakdown. This is
simply a consequence of the fact that |η2| is small in all Cases 1–4. Related to this last
observation, the breakdown occurs before either sound horizons or apparent horizons
have had time to form, so the pathologies cannot be hidden from asymptotic observers.
However, when the breakdown occurs, even though the weak field condition (4.18) may
be as small as O(10−2), this is still much larger than η2, thereby suggesting that the
system is strongly coupled. We expect that a refined weak field condition should be able
to capture that this case indeed becomes strongly coupled in a precise sense before the
breakdown of the evolution.

Needless to say, for sufficiently small absolute values of |g2| the scalar equations re-
main hyperbolic at all times for Cases 1–4. In this situations the evolution is qualitatively
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Figure 4.10: Dynamical regimes for the G3 = g3X theory as a function of the initial
amplitude A and the dimensionless coupling constant η3, see equation (4.9). The black
band denotes the region near critical collapse; black holes form to the right of this band.
The orange curve on the right marks the region where the initial data contains a trapped
surface. The scalar equation is hyperbolic at all times in the blue region; EFT is valid in
the interior of this region. In the yellow region, the scalar equation is initially hyperbolic
but it changes character during the evolution. In the green region the initial value
problem is not well-posed.

similar to the small and positive g2 case that we have already discussed in subsection
4.4.1.1. Likewise, for a given g2 < 0 and a sufficiently large A, the pathologies in the
scalar equation can be hidden inside the black hole horizon, as seen for g2 > 0 in the
previous section.

4.4.2 G3 theories

In this subsection we will briefly comment the dynamics in Horndeski theories with
G3 = g3X and G2 = 0. In all cases that we have explored, either for g3 > 0 or g3 < 0,
the dynamics is qualitatively similar to the G2 = g2X

2 theories with g2 < 0, so we will
not go into much detail.

As discussed in section 4.3.5, we expect that for sufficiently small absolute values of
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g3, the breakdown of the scalar evolution equations is expected to be due to a Keldysh-
type-of transition. Our numerical simulations confirm that this is indeed the case for
either signs of g3. In figures A.6.2 and A.6.3 of appendix A.6 we show the results for
a representative case with g3 = 0.4. In figure A.6.2 we see that −α2h00 → 0 before
det(hµν) does, resulting in infinite characteristic speeds, as expected in a Keldsyh-type-
of transition. In this case we observe that v− diverges as −α2h00 → 0 while v+ remains
finite (see figure A.6.3). Note that in this particular example, for large data (Cases 3
and 4) the evolution breaks down before the first apparent horizon appears.

Figure 4.10 summarises our results for the G3 = g3X theories. The colour code is
the same as in figure 4.1 and the qualitative features are also the same. The black band
corresponds to the range of A for which the future development of initial data becomes
close to Choptuik’s critical solution. Black holes form for A to the right of the black
band while for A’s to left, the scalar field disperses. As before, global solutions to this
particular Horndeski theory can be constructed for values of (A, η3) in the blue region.
The regime of validity of EFT corresponds to the interior of the blue region, away from
its boundaries. For 0 < A ≲ 0.05, the boundary between the blue and yellow regions is at
a constant value of η3 given by η3 ∼ (9.20±0.09)×10−6 and η3 ∼ (−1.04±0.03)×10−5.
The two main lessons are similar to the G2 ̸= 0 case: for low enough amplitude, η3 is
a perfect predictor of the stability of the evolution; for big amplitude, we realise that
even if we increase g3, or η3, there is a big enough amplitude so that the theory remains
in the regime of validity of EFT on and outside black holes, by engulfing the instability
fast enough inside an horizon.

4.5 Conclusions

In this chapter we have studied the regime of validity of certain cubic Horndeski theories
of gravity that have a well-posed initial value problem. We have chosen two particularly
simple cases, namely (4.2), but we expect that our results should extend as well to other
generic models with an effective metric, at least in the weakly coupled regime which is
where these theories should be valid EFTs. For instance, for a single massive scalar field
the results are qualitatively unchanged during gravitational collapse. Nevertheless, one
expects that a massive scalar field will stay trapped around the black hole for a much
longer time, forming scalar clouds [234]. This can spark interesting results as, over long
periods of time such as in a black hole binary inspiral, locally small deviations from GR
introduced by Horndeski theories may accumulate, giving rise to significant deviations.

For the particular class of models that we have studied, the reason why the evolution
breaks down is because the scalar equation changes character. For the G2 = g2X

2 theory
the transition can be of the Tricomi type for g2 > 0, while for g2 < 0 the transition is of
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the Keldysh type. On the other hand, for the G3 = g3X theory, we have only observed
a breakdown à la Keldysh. However, this is not generic for the G3 theories; other choices
such as G3 = g3X

2 can exhibit both behaviours. Furthermore, we have provided some
level of analytic justification for the types of pathologies that may arise in each of the
models that we have considered.

In order for the initial value problem to be well-posed and the theory be a consistent
(truncated) EFT, we need to impose that a certain weak field condition (4.18) is suitably
small. For certain choices of initial conditions and couplings (no fine-tuning required)
the conditions in (4.18) can be O(1) and yet the scalar equation of motion is perfectly
hyperbolic. Conversely, the conditions in (4.18) can be O(10−2) and yet the scalar
equation changes character. In either case, the weak field conditions at the time of
breakdown are much larger than the dimensionless couplings, (4.8)-(4.9), of the initial
data. Therefore, in a certain sense, the theory becomes strongly coupled by the time
the hyperbolicity is lost. It would be very interesting to obtain a sharp condition that
identifies the truly weakly coupled regime of the theory and provides some analytic
understanding of it, at least for certain classes of initial data. Using the tools of Reall
[235] to analyse characteristic polynomials, it would also be interesting to analyse the
case of cubic Horndeski in some appropriate generalised harmonic gauge, just as done
for G4 and G5 theories like Gauss-Bonnet theory, to potentially understand whether the
failure of hyperbolicity in the full theory occurs before the failure of hyperbolicity of the
reduced theory.

Having identified the regime of validity of the Horndeski theories that we have con-
sidered, we can proceed to study black hole binaries for initial data in this regime. These
studies were presented in the companion paper [2] (see chapter 5).



Chapter 5

Black hole binaries in cubic Horn-
deski theories

5.1 Introduction

Using the results of chapter 4, we study black hole binary mergers, treating the theory
fully non-linearly while remaining the regime of validity of EFT in all phases of the
binary.

When we discuss alternative theories of gravity, we refer to the ‘strongly coupled
regime’ of the theory as the regime in which the new terms in the equations of motion
that modify GR are comparable (or even larger) to the original (two-derivative) terms.
Conversely, by the ‘weakly coupled regime’ we will mean the regime of the theory in which
the modifications to the GR equations of motion are small. This is compatible with still
being in the strong field regime of gravity. It is in the weakly coupled regime that
alternative theories of gravity make sense as low energy effective field theories (EFTs).

Up until recently, only the so-called scalar-tensor and the scalar-vector-tensor theories
of gravity had been studied fully non-linearly [45–48]. The reason is that for this class of
theories, it is straightforward to find a well-posed formulation. For other, more general,
classes of theories involving higher derivatives and yet second order equations of motion,
such as Horndeski or Lovelock theories, finding a suitable well-posed formulation turns
out to be far more difficult. In fact, it has been shown that weak hyperbolicity can fail
in Lovelock [104] or Horndeski [1, 105–111] theories if the spacetime curvature and/or
the derivatives of the scalar field become too large, i.e., in the strongly coupled regime.
In a recent breakthrough, [50, 51] showed that these theories can be strongly hyperbolic
in certain modified generalised harmonic coordinates, also in the weakly coupled regime,
i.e., when the deviations from GR are small. These theoretical developments have led to
the first studies of the fully non-linear dynamics of black holes in a particular subset of
these theories, namely scalar Einstein-Gauss-Bonnet theory [53–56] or the more general
four-derivative scalar tensor theory [57].

We should remark that even if a well-posed formulation can be found for a certain
alternative theory of gravity, it is possible that during the dynamical evolution of certain
classes of initial data, the hyperbolicity of the equations of motion is lost due to strong
coupling effects. In the context of Einstein-dilaton-Gauss-Bonnet and Horndeski theories,

77
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it has been shown that this loss of hyperbolicity is due to Tricomi or Keldysh transitions,
in which characteristic speeds go to zero or diverge in finite time respectively, effectively
changing the character of the scalar equation of motion from hyperbolic to parabolic or
elliptic, after which time evolution cannot proceed [1, 105–109].

Therefore, given these recent theoretical developments, it is the right time to start
probing the non-linear regime of alternative theories of gravity and infer predictions for
black hole binary mergers. Building on our previous work [1] (see chapter 4), in this
chapter we study black hole binary mergers in cubic Horndeski theories. The reason
why we consider these theories in the present chapter and in chapter 4 is because these
theories are known to be well-posed in the standard gauges used in numerical GR [49].
As we previously mentioned, the general case has also been shown to be well-posed
by Kovàcs and Reall [50, 51], but in a modified version of the generalised harmonic
coordinates. While here we only consider the cubic case for simplicity and convenience,
one may expect that some of our conclusions hold for more general Horndeski theories.

In chapter 4 we studied gravitational collapse of a massless scalar in spherical sym-
metry in certain cubic Horndeski theories1 given by the choices

G2(ϕ,X) = g2X
2, (5.1)

G3(ϕ,X) = g3X, (5.2)

where g2 and g3 are arbitrary dimensionful coupling constants that we can tune. This
particular choice of G2 is well-motivated by EFT, since it is the leading order correction
to GR minimally coupled to a scalar field [142]. On the other hand, this choice of G3 is a
matter of simplicity and the convenience of being able to use the standard BSSN/CCZ4
formulation. Both choices have been extensively considered in the literature (see e.g.,
[127, 219, 224, 236] and references therein).

One of the main results of chapter 4 was to identify the region in the space of initial
conditions and couplings such that the solution in the domain of dependence of the initial
data surface remained in the weakly coupled regime of the theory on and outside black
hole horizons if any are present, see section 5.2 for more details. This is relevant in the
context of EFT to justify that one can consistently keep only the leading order terms
beyond GR, i.e., Horndeski, and neglect the otherwise (presumably) infinite number of
higher derivative corrections. At the same time, it is consistent to treat the theory fully
non-linearly, as we do here.

In the present chapter we consider the same theories as in chapter 4, namely (5.1)–
(5.2). For the initial data, we choose two boosted lumps of scalar field, with amplitudes

1Whilst in this chapter the initial data was chosen to be spherically symmetric, our code did not
assume spherical symmetry.
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chosen so that they quickly collapse into black holes, thus forming a black hole binary.
Whilst most of the scalar field is absorbed by the black holes during the initial collapse
stage, a scalar cloud remains in their vicinity throughout the lifetime of the binary. This
scalar cloud can interact with itself and with the black holes and, over sufficiently long
times, give rise to interesting effects. Furthermore, since spacetime curvature can source
the scalar field via the Einstein equations, it is conceivable that when the spacetime
curvatures are large, i.e., in the merger phase of a binary, one can observe sizeable
deviations from GR. We mostly consider massive scalar fields and we restrict ourselves
to a choice of potential V (ϕ) = 1

2m
2ϕ, where m is the mass of the scalar field. The

reason is that the corresponding scalar cloud can remain in the vicinity of the black
holes for longer [237] and hence there is a greater chance of producing larger deviations
from GR. The initial separations and velocities of the scalar lumps are tuned so that
the black holes that form describe an eccentric binary that merges in 5 orbits. As we
shall see in section 5.3, eccentric binaries seem to be particularly well-suited to detect
small deviations from GR since the system enters the strong field regime in every close
encounter of the binary and not only in the merger phase. Circular binaries are more
computationally costly but they exhibit a build up of the deviations from GR also during
the inspiral phase and not only in the merger phase. As such, one can expect even larger
deviations from GR.

Finally, we choose the coupling constants g2 and g3 such that on the initial data
surface, the solution lies well inside the weakly coupled regime and we monitor that the
solution remains in this regime throughout the evolution; this is necessary to ensure the
consistency of the truncated EFT.

Note that for the cubic Horndeski theories, the natural frame to consider is the
Einstein frame. This would not be the case had we considered more general Horndeski
theories such as L4 [143]. On top of this, since massive scalar fields cannot propagate
to the wave-zone2, the waveforms presented in section 5.3 would look the same in the
Einstein and Jordan frames respectively.

5.1.1 Outline

The rest of the chapter is organised as follows. In section 5.2 we describe our methods,
numerical techniques and construction of suitable initial data. Section 5.3 contains the
main results of the chapter. In section 5.3.1, we present the waveforms of elliptic binaries
computed in various cubic Horndeski theories and we compare them to the waveforms
obtained in GR coupled to a scalar field. In section 5.3.2 we discuss the properties of

2In a skematic way, for the flat space wave equation, solutions to □ϕ = 0 decay as ϕ ∝ 1
r
, whereas

solutions to the massive case (□ − m2)ϕ = 0 decay exponentially faster as ϕ ≈ e−mr

r
.
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the scalar cloud surrounding the black holes and in section 5.3.3 we show that in our
simulations, the weak coupling conditions are satisfied throughout the evolution of the
binaries. In section 5.3.4 we analyse the mismatch between GR and Horndeski. In section
5.3.5, we describe waveforms for circular binaries. In section 5.4 we summarise the main
results of the chapter and we discuss future directions for research. The convergence
tests are presented in appendix B.1. Appendix B.2 describes details in the computation
of the gravitational strain.

5.2 Methodology

5.2.1 Equations of motion

The equations of motion and numerical implementation are the same as the ones of
chapter 4 (see section 4.2.2).

5.2.2 Initial data

For initial data, we consider the superposition of two equal boosted scalar field bubbles,
similarly to what was done by Pretorius [162]. Each individual scalar bubble follows the
setup of section 4.2.3: spherically symmetric and with some in-going momentum, which
prompts a quick collapse into a black hole without any outgoing scalar wave while leaving
some leftover dynamical scalar hair surrounding the black hole. Whilst the individual
scalar bubbles satisfy the Hamiltonian and momentum constraints, the superposition
of the two does not; however, we place them sufficiently far apart so that the initial
constraint violations due to superposing the two scalar bubbles are sufficiently small.
Further details and explicit form of the constraint satisfying scalar bubble profiles used
can be found section 4.2.3.

For binary systems, we boost the individual profiles with a Galilean boost with ve-
locity v⃗. This can be implemented in the scalar momentum by adding to it (with the
appropriate sign) the Galilean boost3:

Π(t, x⃗)
∣∣
t=0 = Πoriginal(t, x⃗)

∣∣
t=0 − 1

α v⃗ · ∇⃗ϕ(t, x⃗)
∣∣
t=0 , (5.3)

where α is the lapse function and Π = Lnϕ = nµ∇µϕ is the scalar momentum, where
nµ is the unit normal 4-vector to spatial hypersurfaces. Such a boost is valid for small

3This follows simply from a transformation from unboosted to boosted coordinates (t′, x⃗′) → (t =
t′, x⃗ = x⃗′ + v⃗ t′). With the usual decomposition of the unit normal into the lapse function and shift
vector, nµ = ( 1

α
, − βi

α
), then Π = nµ∇µϕ = 1

α

(
∂
∂t

− βi ∂
∂xi

)
ϕ. The shift transforms as a vector under

Galilean boosts, leaving βi ∂
∂xi = β′i′ ∂

∂x′i′ unchanged, whereas ∂
∂t

= ∂
∂t′ − vi ∂

∂x′i′ , resulting in equation
(5.3).
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velocities and avoids the obstacle of having to evaluate the initial data at different times
for distinct points, as one would need to do to implement a proper Lorentz boost. Doing
the latter would be unfeasible for non-static initial data.

To superpose the initial data of two scalar bubbles, A and B, boosted in opposite
directions, we use [5]:

ψ = ψA + ψB − 1 ,

Kij = γm(i
(
KA
j)nγ

nm
A +KB

j)nγ
nm
B

)
,

ϕ = ϕA + ϕB ,

Π = ΠA + ΠB ,

(5.4)

where ψ is the conformal factor associated with the induced metric on the initial data sur-
face, γij , so that γij = ψ4γ̃ij and γ̃ij has unit determinant. The initial data corresponding
to each of the individual scalar bubbles is conformally flat, so γ̃ij = γ̃Aij = γ̃Bij = δij , and
satisfies KA = KB = 0. For K = 0 and a conformally flat spatial metric, the condition
for Kij above reduces to Ãij = ÃAij + ÃBij , where Ãij is the conformal traceless part of the
extrinsic curvature given by Ãij = ψ−4Kij . In our simulations, we initialise the lapse
and shift vector as α = 1 and βi = 0, as the initial perturbation of the scalar field on
the metric is mild.

Motivated by the similarity with previous studies of binary black holes mergers in
scalar field environments, we also tried an alternative way of constructing initial data
by superposing scalar bubbles as suggested in Helfer et al. [238]. The construction of
Helfer et al. [238] produces initial data which is physically different from (5.4) but, for
the large separations between the initial scalar bubbles as in this analysis, the amounts
of initial constraint violations are comparable. We identified that the evolution of this
initial data leads to qualitatively similar results after one orbit. Therefore, henceforth
we will only discuss the evolution of the binaries constructed using (5.4).

Using the notation of equation (4.5), we use (A, r0, ω) =
(
0.21, 5,

√
1
2

)
and a scalar

mass parameter m = 0.5 for the scalar potential. For an isolated scalar bubble, this
configuration has an ADM mass of approximately M ≈ 0.52. The mass term in the
scalar potential accounts for about 10% of the total ADM mass, while the contribution
of the Horndeski terms for a coupling of g2 = 0.02 or g3 = 0.05 is of order O(10−5) (as
expected from the associated values of η2 and η3).

The binaries with the eccentric orbits presented in this chapter are obtained by choos-
ing a “large” initial separation4 between the centres of the scalar bubbles of D = 40 and
an individual scalar boost velocity of |v⃗| = 0.17; after the initial gravitational collapse,

4This “large” initial separation makes a circular binary unfeasible with our computational resources,
but it helps to minimise the errors from the initial data superposition. A more circular binary is presented
in section 5.3.5.
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the resulting black holes have an initial velocity of 0.042. For GR, we calculate numer-
ically that the superposed data has a total ADM mass of M = 1.0346 ± 0.0001. The
values quoted above are in code units, and the mass parameter m and couplings g2, g3

will be referred without units henceforth (e.g., g2 = 0.02 as opposed to g2 ∼ 0.0214M−2

after taking into account that the total mass is M = 1.0346).

5.2.3 Weak coupling conditions

In order for the Horndeski theories to be valid EFTs, the basic requirement is that
corrections to the two-derivative GR terms in the equations of motion on and outside
black hole horizons (if there are any in the spacetime) should be small at all times. Inside
black holes both GR and the Horndeski theories break down but classically this region
is inaccessible to external observers. Therefore, in practice, we only monitor the weak
coupling conditions (WCCs) on and outside black hole horizons.5

For the cases considered in this chapter, the WCCs translate into the requirement of
equations (4.18), with the addition of the mass parameter in the scalar field potential,
m, to the length scale estimate of the system6:

L−1 = max{|Rαβµν |
1
2 , |∇µϕ| , |∇µ∇νϕ|

1
2 ,m} . (5.5)

We consider values for the couplings g2 and g3 based on the valid values of η2 and η3

displayed in figures 4.1 and 4.10. In practice, for massive scalar fields, the scalar clouds
that form near black holes tend to be more extended, have lower densities and smaller
gradients than in the massless case, thus allowing for larger couplings without violating
the WCCs that may lead to a loss of the hyperbolicity of the scalar equations.

5.2.4 Excision

We implement excision as explained in section 4.3.6. We only implement this during the
initial stages of the evolution, while t ≲ 40M , namely during gravitational collapse and
gauge re-adjustment phases.7 Once the black hole has stabilised, the matter density at
its centre is very small and no loss of hyperbolicity of the scalar equations occurs.

5While the weak cosmic censorship conjecture [72, 239] remains unproven in the astrophysical settings
considered in this chapter, we will assume that it holds. We do not find any evidence against it in our
setting.

6It turns out that for our choice of couplings and scalar mass parameter m, near the black holes the
contribution of m to L is always smaller than the metric and scalar curvature terms.

7The initial data is not in puncture gauge, so in the initial stages of the simulation there is a certain
amount of artificial dynamics in grid variables due to the adjustment of the coordinates.
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5.2.5 Gravitational wave extraction

We extract gravitational waves at finite radii by projecting the Weyl scalar Ψ4 onto
the spin-weighted spherical harmonics on multiple spheres of fixed coordinate radius
in the standard way, obtaining the multipoles ψℓm (see section 3.8.2.2). Data on each
integration sphere is obtained from the finest available level in the numerical grid at
a given extraction radius, using fourth-order Lagrange interpolation. We calculate the
Weyl scalar Ψ4 using the Newman-Penrose formalism [240] and the electric and magnetic
parts of the Weyl tensor, Eij and Bij [18, p. 289]. The latter can be computed from our
evolution variables using the following expressions adapted to the 3+1 CCZ4 formulation
of the Einstein equations (see details in appendix D.2):

Eij =
[
Rij +D(iΘj) + (K − Θ)Kij −KimK

m
j − κ

4Sij
]TF

, (5.6)

Bij = ϵmn(iD
mK

n
j) , (5.7)

where Rij is the 3 dimensional Ricci tensor, Kij the extrinsic curvature, Θ := −nµZµ

is the projection of the Z4 vector, Zµ,8 onto the timelike unit normal vector nµ, Sij :=
γ µ
i γ

ν
j Tµν is the spatial projection of the stress-energy tensor, γµν := gµν + nµnν is the

induced metric on the spatial hypersurfaces, ϵµνρ = nσϵσµνρ is the volume form on such
hypersurfaces and [·]TF denotes the trace-free part of the expression in square brackets.
Note that equations (5.6)-(5.7) guarantee that Eij and Bij are automatically trace-free
and symmetric, unlike usual 3+1 ADM expressions [18, p. 289], which require that the
constraints are satisfied (see details in appendix D.2).

5.2.6 Gravitational strain

The natural observable measured in detectors and used when constructing waveform
templates is the gravitational strain. In the conventions of Alcubierre [18, p. 308], the
strain of a gravitational wave, h, can be obtained from the Ψ4 Weyl scalar using the
transformation [18, p. 308] [5]:

Ψ4 = −ḧ = −ḧ+ + iḧ× , (5.8)

where the dot ˙ denotes a time derivative, and h+ and h× are the usual plus and cross
polarisations of the wave. This gives the strain multipoles ḧ+

ℓm = −Re(ψℓm) and ḧ×
ℓm =

Im(ψℓm), where ψℓm are the amplitudes of each mode in the multipolar decomposition of
the Weyl scalar Ψ4. To avoid artefacts from finite length of the wave, discrete sampling
and noisy data, we perform the double time integration in the frequency domain using

8The components of the Z4 vector essentially correspond to the Hamiltonian and Momentum con-
straints, assumed to be zero in the BSSN formulation.
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a fixed low frequency filter [241], with a cutoff of 0.01M−1 for low frequencies9 (see
appendix B.2 for more details). Adding a cutoff for high frequencies resulted in no
improvement. We taper the signal in the time domain with a Tukey window [242] of
width ∼ 40M on each side10 and zero-pad to the nearest power of two. We further
increase the length of the waveform data points by a factor of eight, zero-padding it,
before applying the fast Fourier transform [243]. This increases the frequency resolution
of the discrete Fourier transform and reduces the noise for low frequencies introduced
by the discretisation. Removing the initial junk radiation of the inspiral from the time
domain did not result in any significant improvement. Finally, the signal at null infinity
can be obtained by extrapolating the results at finite radii [244]. Using the tortoise
radius r∗ = r + 2M log

∣∣ r
2M − 1

∣∣, one first aligns separate extraction radii in retarded
time, u = t − r∗, and then extrapolates the aligned waves assuming a Taylor series
expansion in 1

r∗ [245]. This is preferred over Richardson extrapolation which incurs high
errors with noisy data.

5.2.7 Waveform mismatch

In order to estimate the difference between two waveforms, we compute the mismatch
between the strain resulting from each wave. First, given the strain of two waves, h1(t)
and h2(t), one can compute the overlap, O, using the frequency domain inner product
[246–250]:

O(h1, h2) = Re (⟨h1, h2⟩)√
⟨h1, h1⟩ ⟨h2, h2⟩

,

⟨h1, h2⟩ = 4
∫ fmax

fmin

h̃∗
1(f)h̃2(f)
Sn(f) df ,

(5.9)

where h̃(f) denotes the Fourier transform of the function h(t), ∗ denotes complex conju-
gation, Sn(f) is the power spectral density (PSD) of a detector’s strain noise as a function
of frequency f (e.g., updated Advanced LIGO sensitivity design curve [13]), fmin and
fmax is the lowest and highest frequency cutoffs of the PSD of the detector or the fre-
quency minimum/maximum imposed by the timestep and duration of the simulation11.
Notice that for h1 = h2, ⟨h1, h2⟩ is real.

Then, we compute the mismatch by maximising the overlap, O, over time and phase
9This choice affects the noise in the strain, but low frequencies have negligible effects in the final

computation of the mismatch.
10This choice reduces noise, but it does not affect the results in any meaningful way, as the signal is

essentially zero in this region.
11Notice that the strain is a dimensionless quantity. Moreover the inner product (5.9) can be computed

in geometric units for flat PSD, but LIGO’s PSD is in physical units, Hz = s−1. To convert Hertz into
geometric units, one can use the conversion factor fG=c=1 = n⊙ · g⊙ · fHz, where g⊙ = GM⊙

c3 = 4.927 µs
and n⊙ is the number of solar masses considered for the system’s total mass.
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shifts of the second wave, hδt,ϕ2 (t) = h2(t+ δt) eiϕ:

mismatch = 1 − max
δt,ϕ

O(h1, h
δt,ϕ
2 ) . (5.10)

Noticing that h̃δt,ϕ2 (f) = h̃2(f)eiϕe2πiδt and

O(h1, h
δt,ϕ
2 ) =

Re
(
eiϕe2πiδt ⟨h1, h2⟩

)
√

⟨h1, h1⟩ ⟨h2, h2⟩
, (5.11)

then maximising over phase shifts corresponds to simply taking the absolute value of〈
h1, h

δt
2

〉
as opposed to the real part (i.e. max

ϕ
Re(eiϕz) = |z|, for any complex number

z). Maximising over time shifts is more subtle because in the discrete domain with a finite
time window, the discrete Fourier transform changes by more than a mere phase e2πiδt.
Hence, we perform the time shift maximisation numerically. To allow for continuous
time shifts, we interpolate the data h1,2(t) and re-sample appropriately after the time
shift. The number of points when re-sampling the time series was checked not to affect
the final result. When comparing two gravitational waves, the length of the time interval
used for the Fourier transform and the size of the frequency domains used for integration
are enforced to be the same for all waves (taking into account the time shifts). All in all:

mismatch = 1 −
max
δt

∣∣∣〈h1, h
δt
2

〉∣∣∣√
⟨h1, h1⟩ ⟨h2, h2⟩

. (5.12)

5.2.8 Numerical scheme

On top of what was already described in section 3.8.2.3, for the simulations presented
in this chapter, we use a tagging criterion that triggers the regridding based on second
derivatives of both the scalar field and the conformal factor, forcing certain levels around
the location of apparent horizons and around gravitational wave extraction regions. We
use Kreiss-Oliger numerical dissipation with fixed σ = 1 in all our simulations. As for
boundary conditions, we use Sommerfeld boundary conditions and take advantage of the
reflective/bitant symmetry of the binary problem to evolve only half of the grid. Sixth
order spatial stencils are used in order to improve phase accuracy of the binaries [251].
Time updates are still made with a fourth-order Runge-Kutta scheme, which implies that
the global convergence order cannot be higher than four.12 For the results presented in
this chapter, we have a Courant-Friedrichs-Lewy factor of 1/4, a coarsest level resolution
of ∆x = 16

7 , with 8 additional refinement levels, and a computational domain of size
L = 1024.

12Notice that this allows us to still use the usual KO dissipation stencils that are commonly imple-
mented with fourth order finite differences.
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5.3 Results

In this section we present the results of our numerical simulations for the various Horn-
deski theories that we have considered and we compare them to GR (with a minimally
coupled scalar field). To carry out the comparison, we consider standard GR coupled
to a massive scalar field (with same mass parameter m = 0.5 as in Horndeski). We
comment on the massless scalar field case in section 5.3.2. We have also considered the
evolution of a black hole binary in vacuum GR with the same total ADM mass and
initial velocities for the black holes. In this case, the binary describes many more orbits
before merger, as expected, since no energy is transferred to the scalar field. We will
not comment any further on this case since it is not relevant for the kind of comparisons
that we carry out.

We have constructed superposed initial data for GR coupled to a massive scalar field
and for Horndeski theories. One could question whether different results arise from small
differences in the initial data. As discussed in chapter 4, the effect of the Horndeski terms
in the initial data is proportional to g2A2

r2
0

and g3Aw2

r4
0

(η2 and η3) depending on the theory.
For the values of the couplings g2 and g3 that we consider, this results in a difference
of order O(10−5) between the Horndeski and the GR counterpart. To confirm that the
small Horndeski corrections in the initial data do not affect the subsequent evolution, we
evolved the equations of motion of the Horndeski theories using initial data constructed
for GR. Clearly this procedure introduces extra initial constraint violations proportional
to the Horndeski couplings. However, our results from the Horndeski theories initialised
with GR initial data and those results obtained using proper Horndeski initial data
do not exhibit any significant or quantitative difference. Therefore, we conclude that
the differences observed between GR and Horndeski theories are caused by the evolution
with distinct evolution equations and not by the extremely small differences in the initial
data. Henceforth, for the Horndeski theories we will only present results obtained with
Horndeski initial data.

In figure 5.1 we display the trajectories of the punctures on the orbital plane for
GR and for a Horndeski theory with g2 = 0.02. This figure shows that after the first
close encounter of the binary, the trajectories that the black holes follow in GR and in
Horndeski are visibly different. Interestingly, the black holes seem to recombine to the
same trajectory in the final stages of binary. In the following subsections we will quantify
the differences in other observables such as the gravitational strain.

5.3.1 Waveform strain

In this subsection we compare the waveform strain for eccentric binaries in GR and in
different Horndeski theories. For the latter, we consider both the G2 and the G3 theories
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Figure 5.1: Orbits of the two black holes in Horndeski for g2 = 0.02 and GR. For clarity,
in the Horndeski case we only show one of the black holes.

for different values and signs of the coupling constants. In figures 5.2 and 5.3 we present
the (ℓ,m) = (2, 2) mode of the plus polarisation of the strain, h+, extrapolated to null
infinity using 6 radii between 50 − 150M , for the G2 and G3 theories respectively, using
the method described in section 5.2. The strains for higher (ℓ,m) modes have lower
amplitude and more noise, but exhibit qualitatively similar features.

Referring to figures 5.2 and 5.3, the two peaks that can be seen at t ∼ 400M and t ∼
850M correspond to the bursts of radiation emitted during the first two close encounters
of the eccentric binary13 before the final merger phase. The latter starts at around
t ∼ 1100M and ends by t ∼ 1200M , depending on the theory and the value and sign of
the coupling constants. As for the final state, to the best of our knowledge, it is not known
if the class of theories that we consider admit stationary hairy black holes.14 However,
we find evidence that the end state of the evolution is an approximately Kerr black
hole surrounded by a scalar cloud that decays in time on a time scale much longer than
that set by the initial ADM mass. This evidence is reinforced by the similarity between
the final scalar cloud profiles between GR and Horndeski, as described in section 5.3.2.

13It may be useful for the reader to match the gravitational wave signal in these figures with the visual
animation of one of our simulations: https://www.youtube.com/watch?v=uOed4AG1ulg.

14For the theories considered in this chapter and in the shift-symmetric case, Refs. [252–255] have
proven that no slowly rotating hairy black holes exist, but in our case the mass term explicitly breaks
the scalar shift symmetry in the equations of motion.

https://www.youtube.com/watch?v=uOed4AG1ulg
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Figure 5.2: Comparison of gravitational wave between Horndeski theory with g2 = 0.02,
g2 = 0.04 and GR in retarded time, u = t−r∗, where r∗ is the tortoise radius. Displaying
the (ℓ,m) = (2, 2) mode of the plus polarisation of the strain, h+

22, extrapolated to null
infinity. There is a visible misalignment between GR and Horndeski that builds up over
time, becoming larger during the merger phase.

For the runs shown in figures 5.2 and 5.3, the estimated parameters of the final black
holes are summarised in Table 5-A. Note that any junk radiation caused by the initial
constraint violations or choice of initial data is very small on the scale of these figures,
but still visible in the first ∼ 50M .

Coupling Final Mass MF /M Spin Parameter a/M
GR 0.973 ± 0.001 0.676 ± 0.001

g2 = 0.005 0.973 ± 0.001 0.676 ± 0.001
g2 = 0.02 0.973 ± 0.001 0.675 ± 0.001
g2 = 0.04 0.973 ± 0.001 0.673 ± 0.001
g3 = 0.05 0.975 ± 0.001 0.680 ± 0.001
g3 = −0.03 0.972 ± 0.001 0.672 ± 0.001

Table 5-A: Parameters of the final state Kerr black hole for each coupling g2 and g3. The
mass and spin are estimated from the final apparent horizon since the ADM quantities
are typically significantly nosier. The errors are estimated from the differences between
the medium and high resolution runs.

As figures 5.2 and 5.3 show, the waveforms obtained in GR and in the various Horn-
deski theories that we considered, coincide during the initial stages of the binary, but a
clear misalignment builds up over time, starting from the second close encounter of the
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Figure 5.3: Comparison of gravitational wave between GR and Horndeski theories with
g3 = 0.05 and g3 = −0.03, in retarded time, u = t− r∗, with r∗ the tortoise radius. Dis-
playing the (ℓ,m) = (2, 2) mode of the plus polarisation of the strain, h+

22, extrapolated
to null infinity. As in the G2 theory, figure 5.2, we observe a misalignment that builds
up over time.

binary and becoming more pronounced in the merger phase. This misalignment is much
larger than the smallness parameters η2,3 ∼ O(10−5), controlling the weak coupling con-
ditions of the initial data. In subsection 5.3.3 we will provide evidence showing that a
suitable local weak coupling condition remains small during the whole evolution of the
binary and hence, in our setting, the Horndeski theories should be valid (and predictive)
classical EFTs. The large misalignment that we observe in figures 5.2 and 5.3 is a cumu-
lative effect arising from the locally small differences between GR and Horndeski, and it
gets enhanced whenever the system enters the strong field regime, which happens in each
close encounter of the eccentric binary and in the merger phase. This is expected since
the corrections to GR are sourced by spacetime and scalar curvature and those become
more important precisely in the strong field regime. Therefore, eccentric binaries seem
to be useful to potentially detect deviations from GR sourced by curvature through the
built up of small cumulative effects and their enhancement in the close encounters. It is
conceivable that linearising the Horndeski theories around GR may allow one to compute
some of the misalignment (at least for some small enough couplings) during the merger
phase since its duration is relatively short and secular effects may not be an issue. How-
ever, it seems unlikely that such an approach would be able to capture the cumulative
large deviations that arise from successive close encounters of an eccentric binary, such
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as in the examples considered here. The relatively long times that we have evolved the
binaries require a full non-perturbative treatment of the theory to avoid potential secular
effects.

For the G2 theory (5.1), a positive g2 coupling induces a delay of the waveform when
compared to GR, whilst a negative g2 gives rise to an advancement of the signal. On
the other hand, for the G3 theory (5.2) the effect is the opposite: a positive g3 coupling
leads to an advancement of the signal while a negative g3 leads to a delay when compare
to the GR waveform. In general, the observed misalignment between GR and Horndeski
seems to be a rather generic effect that does not depend on the specifics of the theory.
Of course, the details such as the amount or the sign of the deviations will depend on
the details theory under consideration. Therefore, we are tempted to conjecture that
gravitational strain computed in general Horndeski theories of gravity that do not admit
equilibrium hairy black holes but with dynamical long-lived scalar clouds surrounding
black holes will be misaligned with respect of the GR signals. Finally we note that
the peak amplitude of the waveforms seems to be very similar across all theories and
couplings. We will point out in the section 5.4 how this misalignment may be potentially
detected in gravitational wave observations.

Note that the final state of GR and Horndeski simulations for g2 ≤ 0.04 seems to
have the same exact mass and only tiny differences in spin (see Table 5-A). This is
counter-intuitive given the differences that the gravitational waveforms exhibit and it
could be related to the fact that the trajectories of the black holes in the two theories
visibly differ in the intermediate stages of the binary, but coincide again near the merger
phase (see figure 5.1). The physical mechanisms behind this observation may be related
to the frequency shifts analysed in subsection 5.3.4. The fact that the initial and final
state coincide and yet the waveforms are different indicates that, at least for equal mass
non-spinning binaries, the degeneracy between the class of Horndeski theories that we
have considered and GR is broken. This suggests that the degeneracy between GR and
Horndeski may also be broken for unequal mass non-spinning configurations. It would
be interesting to study the effects of the intrinsic spins in alternative theories of gravity.

When comparing the waveforms between different theories, one might alternatively
want to align the main peaks15. However, clearly the misalignment would not disappear;
it would simply be translated along the time axis. This can be seen in figure 5.4, where
the misalignment is now seen at the early encounters of the inspiral. This shows that
the gradual phase shift is a physical effect that cannot be ignored by a constant phase or

15The time of merger may also be estimated from the time when the common apparent horizon forms,
but due to the inaccuracy of detecting this precisely, the peak of the amplitude of the strain is a more
suitable measure.
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Figure 5.4: Comparison of re-aligned h+
22 between Horndeski theory with g2 = 0.02,

g2 = 0.04 and GR. The waves were aligned so the peak of the amplitude of the complex
strain coincides.

time shift and does not depend on how one does the comparison. For long lived inspirals
beyond the strong field regime simulated with NR, the effect would be enhanced and
the misalignment would be present regardless of the time or phase shift considered. An
analysis in the frequency domain done in section 5.3.4 will corroborate this point.

5.3.2 Scalar cloud

In figure 4.1 we display a snapshot of a binary for the G2 theory with g2 = 0.005 at
a representative instant of time before the merger. This figure shows that the energy
density of the scalar field (in blue) is localised in the region near the black holes, being
largest near the horizons. It is in these regions where the spacetime and scalar field
curvatures are largest, even though the WCCs remain small on and outside the black
holes.

For the Horndeski theories that we considered, the accumulation of non-linear effects
is possible due to the presence of long lived scalar cloud surrounding the black holes.
This scalar cloud survives all the way up to and well beyond the merger. This is due
to the presence of a mass term in the scalar potential, since it is well-known (see e.g.,
[234, 237, 256–259]) that the effective potential that the scalar field “sees” has a wall
that makes it difficult for it to escape to infinity. A scalar mass parameter of m = 0.5 is
comparable to what has been seen to give rise to long lived scalar clouds [259], though
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Figure 5.5: Energy density (in blue) of the scalar field surrounding the binary black holes
for the Horndeski theory with g2 = 0.005 at a representative instant of time during the
inspiral phase, t ∼ 450. The apparent horizon of the black holes is shown in orange.
The region where the weak coupling conditions are larger than one is depicted in brown.
Clearly this region is contained well inside the apparent horizon, as required.

the effects observed in this chapter did not require any fine tuning. We have also carried
out simulations of binaries with massless scalars and the absence of a significant scalar
cloud trivially removes any long term effects of the scalar field on the evolution.

In figure 5.6 we display the evolution of the total energy of the scalar field Eϕ and
the evolution of the maximum of the energy density ρ for GR (green), for the G2 theory
with g2 = 0.005 (red) and for the same Horndeski theory but with a massless scalar field
(blue). These quantities are defined as ρ = nµnνTµν , where Tµν the energy-momentum
tensor of the scalar field, and Eϕ =

∫
V ρ

√
γdV , where V is the spatial volume on a given

spacelike hypersurface. After the initial gravitational collapse, most of the scalar field
is absorbed by the black holes, but in the massive scalar cases, a long lived scalar cloud
forms around the black holes. After the first close encounter of the eccentric binary
(t ∼ 400M), the maximum energy density of the scalar cloud is of order 10−5M−2 for
the massive scalar cases (GR and Horndeski), and it decreases very slowly with time.
This long lived cloud makes it possible for the scalar field to interact with itself and
with the geometry and give rise to the build up of significant differences in the physical
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Figure 5.6: Total energy of the scalar field Eϕ and maximum value of energy density ρ
on the spacetime (excluding black holes, by removing from the volume of integration the
interior of apparent horizons) for Horndeski with g2 = 0.005 and a massive scalar field
(in red), the same theory with a massless field (in blue) and GR with a massive scalar
field (in green). A dashed black line is used to indicate the estimated merger time for
the Horndeski run with a massive scalar field.

observables such as the gravitational strain.

On the other hand, in the massless case, figure 5.6 shows that a much larger amount
of scalar field is absorbed by black holes during the collapse phase. Furthermore, both
the total energy of the scalar field and its energy density show a pronounced dip at
t ∼ 850M , namely in the second close encounter of the binary, indicating that any
leftover amount of scalar field in the vicinity of the black holes gets absorbed. Beyond
this point, the energy density of the scalar field is less than 10−10M−2 while the total
energy is of the order of 10−5M (corresponding to scalar waves radiated to infinity), and
both continue to steadily decrease with time. By the time the merger takes place the
maximum energy density of the scalar field is compatible with numerical error. Therefore,
we conclude that in the massless case, after the second close encounter of the binary,
there is basically no significant amount of scalar field left in the neighbourhood of the
black holes (as expected from no-hair theorems [252–255]) to give rise to any sizeable
effect, at least for the duration of our simulations. As a consequence, no noticeable
differences between GR and Horndeski are observed in the massless scalar field case.

Comparing Horndeski with GR in figure 5.6 shows that local differences (in time)
in the energy density between GR and Horndeski for the massive scalar field are not
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Figure 5.7: L2 norm of the weak coupling conditions (4.18) integrated over the apparent
horizon and normalised by the coupling constant g2 or g3. For the binary that we have
evolved, this shows that M2WCC/|g2| ≲ 50 and M2WCC/|g3| ≲ 20, which in turn
implies that |g2| ≲ 0.02 and |g3| ≲ 0.05 to guarantee that the WCC (4.18) is roughly less
than one. The dashed black line corresponds to the peak of the amplitude of the strain
for g2 = 0.02.

significant for most of the binary, including the two close encounters; only during the
merger phase one can see some small differences of order 10−5M−2. These results are
expected if the weak coupling conditions are satisfied. Furthermore, the fact that the
energy density of the massive scalar field around the black holes is small during the
highly dynamical stages of the binary is necessary but not sufficient to ensure that the
WCCs are satisfied.

5.3.3 Weak coupling conditions during the evolution

The results reported in subsection 5.3.1 can only be trusted as long as the Horndeski
theories that we consider are valid (truncated) EFTs. In this subsection we provide
evidence that for the initial data and couplings that we considered in this chapter, the
local WCCs from equations (4.18) and (5.5) are satisfied at all times, thus ensuring the
predictivity of the EFTs.

In figure 5.7 we display the L2 norm of the WCCs (4.18) integrated on the black
holes’ apparent horizons, as a function of time for an eccentric binary evolved with the
G2 theory with different values of the coupling constant g2 and one value g3 coupling for
the G3 theory. Excluding the interior of black holes, the apparent horizons are where
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the WCCs have the largest values in the whole domain. This plot shows that the weak
coupling condition (4.18) remains approximately constant during the evolution, except
in the close encounters of the binary and the final merger phase. The latter events
correspond to the peaks in figure 5.7 that can be seen at t ∼ 400M , t ∼ 850M and
t ∼ 1100M , when the system enters the strong field regime. The constancy of (4.18)
during the inspiral phase is related to the fact the energy density of the scalar field in
the vicinity of the black hole remains approximately constant during this phase. The
fact that the WCCs exhibits local maxima at the close encounters indicates that in an
eccentric binary, we probe the strong field regime during various phases of the binary
and not only near and during the merger phase as in a circular binary. It is interesting to
see that when one normalises the WCCs (4.18) by the coupling constant g2,3, the curves
for the g2 couplings collapse onto a single curve, except in regions where the system is in
the strong field regime. This indicates that the WCC depends on the coupling constant
in a trivial way (linearly) when the system is not in the strong field regime.

Figure 5.7 shows that for our choice of initial data, M2WCC/|g2| ≲ 50 and also
M2WCC/|g3| ≲ 20 at all times. This implies that if we want the WCCs (4.18) to be
roughly less than one at all times, and hence guarantee that that the Horndeski theory
is a valid EFT throughout the evolution, then one must choose |g2| ≲ 0.02 or |g3| ≲ 0.05.
For values larger than these, the WCCs become comfortably larger than one at different
(or all) stages of the binary. Not to confuse validity of the EFT with well-posedness
of the evolution equations, after the initial collapse stage, even for large values of the
coupling g2 well-beyond the regime of validity of EFT (e.g. g2 = 0.1), the equations of
motion of the scalar field remain hyperbolic throughout the inspiral and merger phases
as long as the scalar density is small enough near the black holes.

When evaluating the WCCs (4.18) on the apparent horizon to produce figure 5.7,
one has to be careful as we are actually dealing with different trapped surfaces. Due
to the slicing condition used, each black hole has a trapped surface that during merger
shrinks to the puncture, while a larger common apparent horizon forms, surrounding the
previous ones (see appendix 7 for details on apparent horizon formation during binaries).
This implies that if one is computing the WCCs (4.18) on the trapped surfaces collapsing
to the punctures, it will result in unreasonably large values. To get around this gauge
issue, we interpolate the data for the WCC of the original black hole apparent horizons
just before merger with the data for the common apparent horizon just after it forms,
excluding the unphysically large values right at the merger. The details of how one
does the interpolation and which data points are excluded do not affect significantly the
bounds M2WCC/g2 ≲ 50 and M2WCC/g3 ≲ 20.

We close this subsection emphasising that our assessment of the regime of validity
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Figure 5.8: Real part of h̃+
22, the discrete Fourier transform of h+

22 for positive frequencies.
Notice that for frequencies around f ∼ 0.07M−1, Horndeski and GR align, but for lower
and higher frequencies they separate in phase in opposite directions. This effect cannot
be mitigated by a constant time or phase shifts of the waveform.

of EFT is qualitative at best and, up to O(1) factors, the unity value of the WCCs is a
mere order of magnitude; a more detailed study is needed in order to precisely identify
this regime for the cases that we have considered. The conditions (4.18) are only local;
over time, the small effects accumulate giving rise to large deviations in some non-local
observables such as the waveforms. In the context of complex scalar field with a Mexican
hat type of potential, Reall and Warnick [260] proved that, for sufficiently long times,
the truncated EFT will inevitably deviate from the UV theory. Therefore, one has to
be cautious when using a truncated EFT for very long times compared to the UV mass
scale, even if the local weak coupling conditions hold (see also [261]).

5.3.4 Mismatch

In this subsection we discuss our results for the mismatch between the GR and Horndeski
waveforms. We start focusing on comparing the G2 theory with g2 = 0.02 to GR, since
this is an example of the limiting coupling that still satisfies the WCCs. Hence, the
results for the mismatch presented should be understood as upper bounds. The mismatch
depends on the coupling constants in the expected way, and the results are qualitatively
the same for the G3 theory.

In figure 5.8 we compare the frequencies of the real part of h̃+
22, the discrete Fourier
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Figure 5.9: Mismatch for h+
22 between GR and Horndeski for g2 = 0.02, as a function

of the final black hole mass (in units of solar masses, M⊙). As power spectral densities,
we used the updated Advanced LIGO sensitivity design curve (aLIGODesign.txt in [13],
which imposes fmin = 5 Hz) and a flat noise mismatches (Sn = 1). This allows us to
estimate a range for expected mismatches of 10 − 13%.

transform of the (ℓ,m) = (2, 2) mode of the strain, extrapolated to null infinity, as de-
scribed in section 5.2.6. Interestingly, this figure shows that in spite of both theories
having approximately the same amplitudes for each frequency in the spectrum, the spec-
trum of the phase of the complex-valued Fourier transform differs. In range of medium
frequencies, i.e., f ∼ 0.07 − 0.08M−1, GR and Horndeski theory agree very well. How-
ever, for both lower and higher frequencies, a significant discrepancy can be clearly seen.
This effect cannot be mitigated by a constant time or phase shift of the time-domain
waveform and hence we conclude that it is a physical effect. This discrepancy of both
the high and low frequencies suggests that Horndeski theory exhibits both an inverse
and a direct energy cascades. It would be interesting to confirm if this is indeed the case
and quantify these cascades. Note that because the weak cosmic censorship holds in our
scenarios, there is a natural UV cutoff for the frequencies that are accessible to external
observers. As long as this cutoff is at lower energies, i.e., larger distances, than the UV
cutoff of the theory, then the EFT should be valid; the fact that the WCCs hold in our
case, indicates that this is indeed the case.

In figure 5.9, we quantify the mismatch for a detector setup receiving the plus polari-
sation of the strain, extrapolated to null infinity, between GR and the Horndeski theory.
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Figure 5.10: Mismatch between the G2 Horndeski theory for several values of g2 and
GR (blue curve) and between the same G2 theory and the G3 theory with g3 = −0.03
(yellow curve), for a flat PSD. The two Horndeski theories appear to be degenerate for
certain values of the couplings.

We limit ourselves to the (ℓ,m) = (2, 2) mode, h+
22, as this is the dominant mode by

an order of magnitude when compared to higher modes. We use the updated Advanced
LIGO sensitivity design curve (aLIGODesign.txt in [13], which imposes fmin = 5 Hz) and
flat noise (Sn = 1) following the procedure described in section 5.2.7. We compute the
mismatch for black hole masses in the typical range of stellar mass black holes binaries
observed so far, M ∈ [10, 200]M⊙ [165], where M⊙ is one solar mass. As mentioned in
section 5.2.2, the parameter g2 is dimensionful, with units of M2, and hence this value
also varies as we probe different masses in figure 5.9. This figure shows that the mis-
match varies between ∼ 13% at the low mass end and ∼ 10% at the high mass end16.
To confirm accuracy of these results, the mismatch between two different resolutions of
the same GR evolution ranges between 0.3 − 0.5% for the same mass ranges. On the
other hand, as a reference, for a signal to noise ratio of 25, similar to GW150914 [21],
the minimum expected mismatch for detection is about 0.6% [262, 263]. Additionally,
Lindblom et al. [248] estimated that a mismatch of 3.5% would result in a 10% lower
detection rate. Therefore, the large mismatches obtained for big enough values of the
couplings suggest that if the underlying theory of gravity was Horndeski with a massive
scalar field, some events happening in the past years would have gone undetected if the

16This mismatch would be reduced if the minimisation included variation over the binary parameters,
such as mass and spin.
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black holes had sufficient scalar field surrounding them.

We additionally explore the degeneracy between G2 and G3 Horndeski theories con-
sidered in this chapter by evaluating the mismatch between the waveforms obtained for
different values of the coupling g2 and a fixed value of g3 = −0.03 respectively.17 The re-
sults are shown in figure 5.10. We can see that the waveforms in the two theories appear
to be nearly degenerate for g2 ≈ 0.04 and g3 = −0.03. For these values of the couplings,
the mismatch is about 0.1%, significantly below any detectability threshold or numerical
errors. As an additional remark, notice how the mismatch between the G2 theory and
GR starts decreasing for g2 ≳ 0.1. This effect happens because for these values of g2,
the delay of the Horndeski waveform corresponds to more than half one period of the
GR wave in the region close in the frequency domain, resulting in more aligned peaks
and hence smaller mismatch. Hence, we expect the mismatch to oscillate as we vary
g2 due to this effect, with a local minima bounded above zero since the waveforms are
significantly different in spite of aligned peaks.

5.3.5 Circular binaries
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Figure 5.11: Comparison of the orbit of one of the black holes of the GR binary, between
the previously analysed elliptic orbits and the circularised binary. Both have approxi-
mately 5 orbits.

In this subsection we analyse the impact of the elliptic orbits in the results obtained
before. One could wonder if the gravitational wave effects observed increase or not: on

17We thank the anonymous referee for suggesting this calculation.
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the one hand, one could say that elliptic binaries have closer encounters enhancing the
strong gravity regime, but on the other hand, circular binaries spend more time overall
closer to each other. With the spare computational resources available, we setup not a
fully circular binary, but a more circularised binary (without any fine-tuning of the initial
speed). To effectively use computational resources, we reduced the initial separation of
the scalar bubbles to obtain roughly the same amount of circularised orbits as the elliptic
orbits. The separation was changed from D = 40 to D = 14. The smaller and more
circularised orbits can be seen in figure 5.11.
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Figure 5.12: Comparison of gravitational wave between Horndeski theory with g2 = 0.02
and GR in retarded time, u = t − r∗, where r∗ is the tortoise radius. Displaying the
(ℓ,m) = (2, 2) mode of the plus polarisation of the strain, h+

22, extrapolated to null
infinity.

At this smaller separation, to ensure the bubbles were minimally affected by the
presence of each other, each bubble was made thinner and with bigger amplitude,
(A, r0, ω) = (0.314, 2, 0.3), as to ensure the mass of each bubble would remain the same
(M ≈ 0.52). The boost applied to the scalar momentum Π was |v⃗| = 0.4, resulting in
a speed of the black hole after collapse of 0.076, still a value much smaller than 1, the
speed of light. The scalar mass was kept at m = 0.5. For GR, the resulting ADM mass
of the superposed boosted system is M = 1.0272 ± 0.001. For comparison of the results,
we evolved a Horndeski simulation with g2 = 0.02, matching what was done for figure
5.2. For this coupling, we have η2 ∼ O(10−4), opposed to O(10−5) as for the wider
bubbles, which indicates more likeliness of hyperbolicity problems and potentially also
bigger deviations in the gravitational waveform.
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As analysed for the elliptic case, we display in figures 5.12-5.14 the (ℓ,m) = (2, 2)
mode of the plus polarisation, h+, extrapolated to null infinity; the real part of its
discrete Fourier Transform, and the mismatch between GR and Horndeski for different
masses, as detailed in section 5.3.4.

Qualitatively, the effects observed are as expected: a positive g2 leads to a positive
phase shift in the waveform. The effects are quite significant for this more circular
binary, to the extent that mismatches reach ∼ 40%18. At these values one can claim the
mismatch computation does not even make sense anymore, as we are simply treating
two very different waveforms. It would be interesting to run a full long circular binary
(10 or more orbits) and see the full extent that a small coupling (ten times smaller for
instance, such that no questions of weak coupling condition violations are raised) can
still have in the orbit dynamics.

5.4 Conclusions

In this chapter we have studied eccentric and circularised black hole binary mergers
in certain cubic Horndeski theories (5.1)–(5.2) with a massive scalar field with mass
parameter m = 0.5. We have chosen initial data and small enough coupling constants
such that a certain local weak coupling condition (4.18) is satisfied at all times during

18Similarly to the previous section, the mismatch would be reduced if the minimisation included
variation over the binary parameters, such as mass and spin.
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Figure 5.14: Mismatch for h+
22 between GR and Horndeski for g2 = 0.02, as a function

of the final black hole mass (in units of solar masses, M⊙). As power spectral densities,
we used the updated Advanced LIGO sensitivity design curve (aLIGODesign.txt in [13],
which imposes fmin = 5 Hz) and a flat noise mismatches (Sn = 1). This allows us to
estimate a range for expected mismatches of 30 − 40%.

the evolution. This condition monitors the size of the Horndeski terms in the equations
of motion compared to GR terms, and the fact it holds, ensures that the EFTs are in
their regime of validity and hence we can trust their predictions.

One of the goals of this chapter was to identify potential deviations from GR in some
physical quantities that Horndeski theories of gravity may exhibit. We have observed
that locally small deviations from GR build up over time and get enhanced whenever the
system enters the strong field regime. In the case of the eccentric binaries, this happens
during the successive close encounters of the black holes and in the final merger phase,
while in circular binaries the effect continuously accumulates. Since the modifications
of GR are locally small, large deviations may still arise in non-local observables, such
as gravitational waveforms, through a cumulative build up. This cumulative effect gets
reflected in the gravitational waveforms as large shifts with respect to the analogous
waveforms computed in GR coupled to a massive scalar field with the same mass and
angular momentum.

Whilst the details, such as its sign and size, of the observed shift in the waveforms
depend on the details of the theory and value of the coupling constants, the effect seems
to be generic, at least within the class of Horndeski theories that we have explored
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here. We conjecture that the same effect should be present in a subset of more general
Horndeski theories. We have quantified the misalignment of the (ℓ,m) = (2, 2) mode
of the plus polarisation of the strain, h+

22, for one of the Horndeski theories that we
have considered. We find that the spectrum differs both for low and high frequencies.
Furthermore, for large enough values of the couplings, still in the regime of validity of
the EFT, we find that the mismatch is around 10 − 13% for elliptic binaries and more
than 30% for circularised binaries, in the whole mass range of current detections, without
including variations over mass and spin. This is quite significant and it suggests that if
the underlying theory of gravity differs from GR, some events where the black holes have
sufficient scalar field surrounding them may have been and continue to go undetected.
For smaller values of the couplings, the mismatch would be smaller.

The misalignment that we have observed is a cumulative effect and hence it only
occurs if the black holes are surrounded by a long-lived scalar cloud. In our case this is
possible because of the mass term in the scalar potential, which ensures that a non-trivial
scalar energy density remains in the vicinity of the black holes for very long periods of
time, thus allowing the scalar field to interact with itself and with the geometry. We
have also considered massless scalars, but in this case we do not observe any significant
difference between Horndeski and GR. This is expected because the theories considered
do not admit stationary hairy black holes for massless scalar fields (at least in the slowly
rotating limit [252–255]) and, hence, a massless scalar field gets absorbed by the black
holes or disperses to null infinity on a time scale much shorter compared to the binary
lifetime. In our particular example, the scalar field is essentially completely absorbed in
the second close encounter of the binary and by then there has not been enough time to
build up any sizeable deviation from GR.

In this chapter we considered both G2 and G3 Horndeski theories and, as we have
already mentioned, even though the initial and final states are the same, both lead to
misaligned waveforms with respect to GR. Therefore, at least for equal mass non-spinning
binaries, the degeneracy between the class of Horndeski theories that we have considered
and GR is broken. However, we do not see any visible difference between the waveforms
obtained in the G2 or in the G3 theories. It would be interesting to investigate if (or how)
the degeneracy of the waveforms is broken in Horndeski theories of gravity. It would be
interesting to extend our studies to unequal mass and spinning binaries to see if the
degeneracy with GR and with the various Horndeski theories is broken when considering
different mass ratios and non-zero spins.

We have considered Horndeski theories simply as toy models for EFTs with higher
derivatives; in the Horndeski case, the higher derivatives are in the matter (scalar) sector
and the equations of motion are of second order. However, more fundamental theories of
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gravity, such as string theory, predict higher curvature corrections of the Einstein-Hilbert
action. In general, such new terms in the action will result in equations of motion of
order higher than two. Refs. [93, 94, 99] have outlined how the strong field regime of
such theories may be probed, but it would be very interesting to do so in the context of
a black hole binary. Our work suggests that in the weakly coupled regime, where these
theories are valid EFTs, some of the problems that may arise in general, such as loss of
hyperbolicity or shock formation, can be controlled in a physical situation that probes
the strong field regimes such as a black hole binary merger.

The main goal of the present chapter was to identify what features in the physical
observables extracted from black hole binaries in Horndeski theories can allow one to
differentiate these theories from GR. Given that the corrections to GR have to be locally
small in order for these theories be valid EFTs, non-local observables such as gravitational
waveforms are particularly useful because small effects can accumulate and, for long
enough times, give rise to large deviations from GR. These or other deviations from
alternative theories of gravity are potentially being undetected by current gravitational
wave observatories. Therefore, our results stress the importance of modelling waveforms
in alternative theories of gravity treating them fully non-linearly. It would be interesting
to identify other observables where large deviations show up. In the case of waveforms,
until complete waveform templates are built for alternative theories, a potential way
to detect the misalignment that we have identified is the following: future space-based
gravitational wave observatories such as LISA [264, 265] are expected to be able to detect
gravitational waves produced in stellar mass black hole binaries during earlier stages of
the inspiral phase. From these waveforms one should be able to extract the parameters
of the binary and, by using GR, predict the time of merger of the binary. Some binaries
should enter the LIGO band in the final stages of the inspiral and merger phase, thus
allowing to contrast the GR prediction for the merger time with the observation; a certain
advancement or delay of the merger could be attributed to the fact that GR corrections
modify the theory.



Chapter 6

Black hole binaries in higher deriva-
tive effective field theories

6.1 Introduction

The detection of gravitational waves with modern detectors is a feat of enormous pre-
cision. The LIGO interferometer has arms extending 4 km and the gravitational waves
detected cause the distance between its mirrors to change by roughly 1/1000th the di-
ameter of a proton. In order to find these gravitational waves in the data, experiments
require theoretical templates for the gravitational waveforms, i.e. patterns to find a
matches for, in the data. For precise tests of GR using gravitational waves, we require
precise predictions for how a deviation from GR would affect gravitational waves.

On general grounds, one expects that at sufficiently small distances, Einstein’s theory
will be modified by some form of quantum corrections. Without a preferred UV-complete
theory of quantum gravity, effective field theory (EFT) provides a framework for the con-
struction of possible candidates. Some theories emerge from a bottom-up methodology,
adding to GR all possible consistent higher derivative terms which can then be con-
strained by observational data; or a top-down approach, attempting to derive the low
energy behaviour of quantum gravity candidates, such as string theory. Either way, from
the point of view of EFT, these corrections can be organised in a series expansion in-
volving increasing powers of the curvature tensor, and consequently higher derivatives
of the spacetime metric. The argument is that, since in current experiments we are
only probing gravity at low energies, we should only be sensitive to a finite number of
terms in the otherwise infinite series of corrections to GR. Moreover, the details of the
UV completion of gravity should not be important at such low energies. Any of these
alternative theories of gravity should be understood as truncated low energy EFT and,
as such, they only make sense if the corrections to GR are small. These corrections may
be important in certain situations, as small effects may accumulate over time [2].

Given one such theory, it is often non-trivial to find a suitable formulation of GR
which does not admit ‘runaway’ solutions that exhibit cascades of energy to the UV,
which are unphysical, inconsistent with the regime of validity of EFT and inconsistent
with current observations. A general approach to find well-posed formulations of general
alternative theories of gravity has been proposed by [93, 94]. This proposal is inspired by

105
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the Müller-Israel-Stewart (MIS) formulation of relativistic viscous hydrodynamics [95–
98], and in principle can work even for theories with higher-than-second order equations
of motion, as recently shown by Cayuso and Lehner [99] for a certain eight-derivative
theory of gravity. This method is described in section 2.8. Higher derivative corrections
are just one example of the myriad of possible modifications to GR that have been
considered, and the method has been applied as well for scalar-tensor theories of gravity
[100–103], with two derivative equations of motion, but in formulations of GR where the
theory would originally not be well-posed.

In this chapter, we aim to extend the work in spherical symmetry done by Cayuso and
Lehner [99], to evolve binary black holes in a certain eight-derivative higher derivative
theory of gravity, applying the method described in section 2.8. This is part of work in
collaboration with Ramiro Cayuso, Pau Figueras and Luis Lehner [3].

6.1.1 Outline

The rest of the chapter is organised as follows. In section 6.2 we extend the work
done by Cayuso et al. [93] with further analysis and other applications of the method
considered. In section 6.3, we describe the target higher derivative theory, application
of the fixing procedure to this theory, and numerical techniques required for simulations
and data processing. Section 6.4 describes the results of the chapter. In 6.4.1, we analyse
numerically the stability of the fixing procedure in toy models. In section 6.4.2, we evolve
single boosted black holes to confirm the accuracy of the method, before running binary
black holes. Finally, section 6.4.3 shows the waveforms and waveform mismatch of a
binary black hole when comparing the EFT with GR. It further verifies consistency of
the method and satisfaction of the weak coupling conditions. Section 6.5 summarises
the results and discusses future directions.

6.2 Fixing toy models

6.2.1 Fourth order ODE - wave equation toy model

Let us illustrate an explicit example of how this procedure can take place. This follows
an adaptation of the construction by Cayuso et al. [93]. Perturbations around a GR
background are known to follow wave equations, called gravitational waves (see section
2.3 for details). With the intent of exploring higher derivative perturbations to GR, con-
sider the following one-dimensional perturbed wave differential equation for the complex
scalar field ϕ in Cartesian coordinates (t, x):

□ϕ = −ϵ ∂4
t ϕ , (6.1)
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where ϵ is some real parameter and □ = ηµν∇µ∇ν = −∂2
t +∂2

x. This is a linear equation,
but can be seen as well as the linearisation of non-linear equations around some solution,
e.g. the linearisation of the equation □φ = −φ∂4

t φ around a constant solution φ = ϵ+ϕ.
Nonetheless, we take ϵ to be small, representing small deviations from the standard wave
equation.

To analyse the behaviour of solutions, consider a Fourier mode:

ϕ(t, x) = Aest+ikx , (6.2)

for some A, k ∈ R, s ∈ C. The dispersion relation has 4 solutions:

s(±,±)(k) = ±

√
1 ±

√
1 + 4ϵ k2

2 ϵ . (6.3)

This has one solution (both positive branches, s(+,+)) with real positive values for any
k, revealing blowing-up modes. This can be visualised in figure 6.1. This is a problem.
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Figure 6.1: Real and imaginary parts of the dispersion relation of the original system,
(6.3), denoted S i

O for i = 1, 2, 3, 4, with ϵ = 10−3.

For negative ϵ, the conclusions are similar.

6.2.2 Time order reduction

Let us perform time order reduction as described in section 2.8.2.1. Notice that to first
order in ϵ, ∂2

t ϕ = ∂2
xϕ+ O(ϵ). Hence:

□ϕ = −ϵ ∂4
xϕ+ O(ϵ2) . (6.4)

This is the time order reduced equation leaving us with higher order spatial derivatives.
If we analyse the dispersion relation for this equation, we find:

s±(k) = ± ik
√

1 − ϵ k2 . (6.5)
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These solutions are purely imaginary for small k, but become real (and positive for one
of the solutions) for sufficiently high k, high frequencies. This can be easily seen in figure
6.2. This is better than the original system, because we now can see the meaning of the
low frequency behaviour that we want to preserve while getting rid of the spurious high
frequency growing modes.
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Figure 6.2: Real and imaginary parts of the dispersion relation of the time reduced
system, (6.5), denoted S i

R for i = 1, 2, with ϵ = 10−3.

For negative ϵ, the system is stable for all frequencies, but has acausal propagation.

6.2.3 “Fixing” the equations

6.2.3.1 Naive approach

We proceed by “fixing” the time reduced equation. Introduce a variable Π that replaces
second spatial derivatives of ϕ. The simplest equation one could write is:

□ϕ = −ϵ ∂2
xΠ ,

τ∂tΠ = ∂2
xϕ− Π ,

(6.6)

where τ is a damping timescale. Using the Fourier mode ansatz Π(t, x) = Aβ(s, k)est+ikx,
for some function β(s, k), this system implies:

−s2 − k2 = ϵ β(s, k)k2 ,

τ β(s, k) s = −β(s, k) − k2 .
(6.7)

We can eliminate β and obtain the equation:

(1 + τs)(s2 + k2) = ϵ k4 . (6.8)

This equation has growing modes, as one can easily see that as k → ∞, there is a solution
s →

(
ϵ
τ

) 1
3 k

4
3 , which is a positive real growing mode. Hence, this modified system does
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not fix correctly the problem of growing modes. This can be visualised in figure 6.3.
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Figure 6.3: Real and imaginary parts of the dispersion relation of the naive fix of the
system (6.8), denoted S i

τ for i = 1, 2, 3, with ϵ = 10−3 and τ = 1.

Even though the time order reduced equations for negative ϵ were stable, the naive
fix approach actually breaks this stability. Similar to the case analysed above, it has two
solutions growing as s →

(
1±i

√
3

2

) (
|ϵ|
τ

) 1
3 k

4
3 , where

(
1±i

√
3

2

)
are two complex cubic roots

of negative unity, which have positive real part.

6.2.3.2 Educated ansatz

We try a better educated fix by using a damped wave equation for Π:

□ϕ = −ϵ ∂2
xΠ ,

−σ□Π + τ ∂tΠ = ∂2
xϕ− Π ,

(6.9)

where σ, τ are positive real constants. To understand in what sense this is a damped
wave equation, if one sets β = 1 and looks at the homogeneous equation of (6.9) (i.e.
ignoring the first equation and setting ϕ = 0 in the second equation), the dispersion
solutions are shom.(k) = − τ

2σ ±
√
τ2−4σ(1+k2σ)

2σ . For σ ⪅
(
τ
2
)2 and small k, the solutions

are real and negative if k is small, while for σ ⪆
(
τ
2
)2 or high k, they are complex with

negative real part. It is important to note that larger τ and smaller σ lead to faster
damping. To analyse the new system, we use the same strategy as before to reduce the
dispersion equation to a quartic polynomial equation:(

1 + τs+ σ(s2 + k2)
)

(s2 + k2) = ϵ k4 . (6.10)

We can first notice that as k → ∞, this equation implies that s(k) → αk, such that
σ
(
α2 + 1

)2 = ϵ, with solutions:

α(±,±) = ±
√

−1 ±
√

ϵ
σ . (6.11)
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The next leading order term is a constant, and as k → ∞, s(±,±)(k) → α(±,±) · k − τ
4σ .

From this we can see that for σ < ϵ, there are solutions, namely α(+,+), for which has a
real positive part for large k. This can be observed in figure 6.4.
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Figure 6.4: Real and imaginary parts of the dispersion relation of the fixed system (6.10),
denoted S i

σ for i = 1, 2, 3, 4, with τ = 1, ϵ = 10−1, σ = 0.05, not satisfying the stability
condition σ > ϵ, and hence having a positive real part.

We now analyse the case σ ≥ ϵ1. For any k, take s(k) = α+β i, for α, β ∈ R dependent
on k. The imaginary part of equation (6.10) is β

(
4α3σ + α(4k2σ − 4β2σ + 2) + 3α2τ +

(
k2 − β2) τ) =

0, which has solutions β1 = 0 and β2 =
√
k2 + α (2+4α2σ+3ατ)

4αστ . Replace this back into
equation (6.10) and we get an equation with only real numbers:

β = β1, k2 + α4σ + k4 (σ − ϵ) + α2
(
1 + 2k2σ

)
+ α3τ + αk2τ = 0 , (6.12)

β = β2, 64α6σ3 + 96α5σ2τ + k4ϵ τ2 + 8α3τ
(
4σ + 8k2σ2 + τ2

)
+ 16α4σ

(
2σ + 4k2σ2 + 3τ2

)
+ 4α2

(
σ
(
1 + 4k4ϵ σ

)
+
(
2 + 5k2σ

)
τ2
)

+ 2α
(
τ + 4k4ϵ σ τ + k2τ3

)
= 0 . (6.13)

Equation (6.12) reveals that if α > 0 and σ ≥ ϵ, then all the terms are positive (or some
are zero for k = 0, for which α = β = s(0) = 0 is one of the solutions), leading to an
impossible equality. Similarly, equation (6.13) has only non-negative terms if α > 0.
Therefore, α > 0 is an impossibility, and we thus prove that if σ > ϵ, then Re [s(k)] ≤ 0
for all k ∈ R. For completeness, we just note that for k = 0 there is a double zero
s(0) = 0 and two other solutions s±(0) = − τ

2σ ±
√
τ2−4σ
2σ , which is the same as σhom.(0)

defined above after equation (6.9). The later solutions create two branches of behaviour,
depending on the condition σ <

(
τ
2
)2, for which the real part of s±(0) is the same or

not. These cases can be easily seen in figure 6.5.
1The original paper [93] presents an alternative proof. Its equation (15) is only applicable to the

s(0) = 0 solutions, which is all that matters since the other 2 solutions s±(0) in equation (14) are already
negative. Equation (15) should be corrected to: s(1)(0) = ±i, s(2)(0) = 0, s(3)(0) = ∓3i λ, s(4)(0) =
−12λτ , for which s(4)(0) is still correct and the final result is not spoiled.
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Figure 6.5: Real and imaginary parts of the dispersion relation of the fixed system
(6.10), denoted S i

σ for i = 1, 2, 3, 4, with ϵ = 10−3 and σ = 0.05, satisfying the stability
condition σ > ϵ. The top figures show the real and imaginary parts for τ = 1, for which
σ <

(
τ
2
)2, and the bottom figures the opposite case, with τ = 0.1.

We have created a fixed system, controlled by the parameters σ and τ , with a dis-
persion relation s(k) that has non-positive real part for small and large k, preventing
the existence of blow-up modes of the original equation if σ ≥ ϵ. This allows for stable
numerical evolution with the simple cost of adding an auxiliary variable with its own
new evolution equation. Nevertheless, by comparing figures 6.1-6.5, one can see that the
imaginary low frequency behaviour is reproduced for all dispersion relations (which is
the trivial solution s(k) → ±ik for k → 0), showing that the low energy dynamics are
preserved and were not spoiled, as intended.

For negative ϵ, the solutions (6.11) always have a branch with real positive part,
showing the breakdown of the system.

6.2.3.3 Alternative approach

We can try to perform fixing of the equations without full time order reduction. One of
the ways to explain it is be considering only one iteration of the time order reduction
procedure, which results in:

□ϕ = −ϵ ∂2
t ∂

2
xϕ+ O(ϵ2) . (6.14)
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We can then fix this system in the same way, with a variable Π that approaches ∂2
xϕ. This

is equivalent to first attempting to apply the fixing procedure to the original equations,
using Π = ∂2

t ϕ, and only after using time order reduction to simplify reduce Π = ∂2
t ϕ =

∂2
xϕ+ O(ϵ).

We then must choose a second order evolution equation for Π such as (6.9), because
a first order equation as (6.6) does not allow for a straightforward computation of ∂2

t Π.
This results in the system:

□ϕ = −ϵ ∂2
t Π ,

−σ□Π + τ ∂tΠ = ∂2
xϕ− Π ,

(6.15)
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Figure 6.6: Real and imaginary parts of the dispersion relation of the fixed system (6.15),
denoted S̄ i

σ for i = 1, 2, 3, 4, with ϵ = 10−1 and σ = 0.05, not satisfying the stability
condition σ > ϵ, but yet with stable negative real parts. The top figures show the real
and imaginary parts for τ = 1, for which σ <

(
τ
2
)2, and the bottom figured the opposite

case, with τ = 0.1.

where ∂2
t Π in the first equation can always be obtained from a replacement using

the second equation. A Fourier analysis of this system results in a stable system for all
frequencies for any σ > 0 and ϵ > 0, independent of their relation. This can be proven
exactly in the same way as the procedure in equations (6.12)-(6.13). For completeness,
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the asymptotic solution is s(k) → αk with:

α(±,±) = ±

√
−1 − ϵ±

√
ϵ2 + 4 ϵ σ
2σ , (6.16)

which is always imaginary, because − ϵ+
√
ϵ2+4 ϵ σ
2σ is always negative, leading to negative

square root, and − ϵ−
√
ϵ2+4 ϵ σ
2σ may be positive, but is bounded by 1 as ϵ → ∞, also

leading to a purely imaginary α. This can be observed in figure 6.6.

For negative ϵ and any σ > 0, this system is not stable.

6.3 Methodology

6.3.1 Action and equations of motion

Let us follow the setup by Cayuso and Lehner [99]. This consists of using no new
degrees of freedom besides the gravitational ones and parameterising new physics as
higher powers of the Riemann curvature tensor that preserve unitarity, causality and
locality. With no new fields, quadratic terms involving the Riemann tensor can be
reduced to the Gauss-Bonnet topological invariant via field re-definitions [266]. Cubic
terms in the Riemann tensor lead to acausal propagation [267]2. The lowest expected
terms are then quartic, and with the requirements above they reduce to the 4D action:

SEFT =
∫
d4x

√
−g

(
R − ϵ C2 − ϵ̃ C̃2 − ϵ− CC̃ + . . .

)
, (6.17)

where C = RαβγδRαβγδ, C̃ = RαβγδR̃αβγδ, with R̃αβγδ = ϵαβρσRρσγδ, (ϵ, ϵ̃, ϵ−) =(
1

Λ6 ,
1

Λ̃6 ,
1

Λ6
−

)
, and the + . . . corresponds to sub-leading corrections. We restrict the

analysis3 to the case ϵ̃ = ϵ− = 0:

SEFT =
∫
d4x

√
−g

(
R − ϵ C2 + . . .

)
. (6.18)

Note how the first correction to the Einstein-Hilbert action starts at Λ−6 corrections,
which is only a leading interaction for the case of vacuum [268].

2This statement is in fact contentious and a matter of current debate, according to de Rham and
Tolley [268].

3We also omit the CCZ4 Z terms from the action below to simplify the explanation.
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From the action above one can derive the equations of motion,

Gµν = ϵ

[
C
(
−8R α

µ Rνα + 8RαβRµανβ + 4R αβγ
µ Rναβγ − 1

2gµνC − 4∇µ∇νR + 8∇α∇αRµν

)
− 16 (∇αC) ∇(µR α

ν) + 16 (∇αC) ∇αRµν + 8R α β
µ ν ∇β∇αC

]
.

(6.19)
These equations have up to fourth order derivatives and also non-linear terms in second
derivatives, being a good model to test if fixing approach can tame such problems. Given
that in vacuum for this theory Rµν = O(ϵ), to simplify things further, we apply order
reduction by replacing any Ricci tensor contributions to the right hand side by O(ϵ2)
terms that can be discarded, leaving the equations:

Gµν = ϵ
(
4 C R αβγ

µ Rναβγ − 1
2C2 gµν + 8 R α β

µ ν ∇β∇αC
)

+ O(ϵ2) . (6.20)

It is often useful to replace the Riemann with the Weyl tensor, Cαβγδ, since Rµνρσ =
Cµνρσ + O(ϵ). Up to O(ϵ), it is also true that C = Cαβγδ C

αβγδ + O(ϵ).

Gµν = ϵ
(
4 C C αβγ

µ Cναβγ − 1
2C2 gµν + 8C α β

µ ν ∇β∇αC
)

+ O(ϵ2) . (6.21)

Cayuso and Lehner [99] provide several ways to fix (6.21), leading to equations with
second time derivatives at most. We must take a different approach to solve the problem
away from spherical symmetry but in full 4 dimension generality.

6.3.2 Constraints on the energy scale parameter Λ

To guide the choice of the value ϵ = Λ−6, we look at some literature analysing bounds
for this particular EFT.

From gravitational wave data, Sennett et al. [269] obtain a bound of dΛ < 150 km,
with dΛ = Λ−1, and Silva et al. [270] improves this bound with lqEFT < 50 km, with
lqEFT = dΛ. In geometrised units, the later tighter bound corresponds to dΛ ⪅ 33.8M⊙,
where M⊙ ≈ 1.48 km is the solar mass. LIGO-Virgo [163–165] detected final mergers
have masses ranging 20 − 100M⊙, leading to a bound of dΛ ⪅ 0.34 − 1.69M , where M is
the total mass of the binary system. This result makes intuitive sense, as the maximum
energy scale the EFT should probe should be smaller than the size of the black hole,
which is approximately M . Finally, this leads to ϵ

M6 = dΛ
M

6
⪅ 10−3 − 101.

The high power relating the energy scale to the action parameter ϵ, makes bounds
on dΛ very sensitive. The biggest conclusion to draw is that definitely one should care
about dΛ ≪ M for consistency of the EFT.

Using causality arguments, de Rham et al. [271] argues for the inviability of testing
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this model. It shows that it is only valid for any ϵ < 0 or for ϵ > 0 and low azimuthal
numbers, with a minimal (potentially much higher) bound of |Λ| > 7 ∗ 10−11eV , in units
where ℏ = c = 1. Using ℏc

1eV = 1.97 ∗ 107m, this implies |dΛ| < 2.8 km = 1.9M⊙. For
a black hole mass around 30M⊙, this leads to a bound of dΛ ⪅ 0.063M , or ϵ

M6 ⪅ 10−7.
This tight bound shows the claim of inviability to test the model. One should then bear
in mind when testing any ϵ that this is a complete theory and that the objective is, first,
to probe effects that might appear in extensions of GR, and second, to test the methods
available to potentially probe such theories.

6.3.3 Adapting toy models to gravity systems

6.3.3.1 Alternative systems

In the previous sections, we understood how to develop a fixed system that can stably
evolve the low energy modes of the original equation, seen as an EFT. In gravity settings,
we encounter an issue that is not as clear in the wave model above. Gravitational
perturbations also act as waves, but there are also stationary solutions such as black
holes. Systems like (6.15) lack one property: if there is a stationary solution ϕ(x), then
Π = ∂2

xϕ is not a static solution of the evolution equation for Π, meaning that Π is
not tracking appropriately the variable it was supposed to, even though any wave-like
perturbations of it are being dissipated as intended.

The first thing one might be tempted to do is to remove all spatial derivatives of Π
from the fixed equation in (6.15), evolving instead:

□ϕ = −ϵ ∂2
t Π ,

σ∂2
t Π + τ∂tΠ = ∂2

xϕ− Π .
(6.22)

The solution Π = ∂2
xϕ satisfies this equation if ϕ is a static solution, and perturbations

around it also satisfy proper damping. Indeed, a Fourier analysis on the homogeneous
equation σ∂2

t Π + τ∂tΠ = −Π clearly has solutions s = − τ
2σ ±

√
τ2−4σ
2σ , which are real and

negative if σ <
(
τ
2
)2 and complex with negative real part if σ >

(
τ
2
)2.

This system works well for static solutions, but the issue with such system is the
lack of advection. Using only the local time coordinate in the fixing equation, instead
of covariant quantities, implies the variable Π will not be naturally guided to follow the
change in coordinates due to a non-zero shift vector. To ameliorate the situation, we
replace the operator ∂t with an advection operator ∂t − βi∂i, resulting in the system:

□ϕ = −ϵ ∂2
t Π ,

σ
(
∂2
t − 2βi∂it + βiβj∂ij

)
Π + τ

(
∂t − βi∂i

)
Π = ∂2

xϕ− Π .
(6.23)
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Analysing perturbations of the principal part of this equation in one dimension, one gets
the solutions s(k) = ikβx − τ

2σ ±
√
τ2−4σ
2σ , which have real negative parts and are hence

stable. To reinforce the idea, this is still not done in a covariant way to reduce the
amount of spatial terms required that lead the stationary solution astray, as we shall see
in the following sections.

6.3.3.2 Further improvements

There is a lot of potential improvements one can make for added stability in the system.
Here we describe some good and some apparently good yet useless things to do.

Comparing the Laplacian version (6.29), when adapting this to the advection system
(6.27), one might be tempted to also add the replacement τ → τ

α and σ → σ
α2 , where α

is the lapse function. This proves useless in the sense that very close to the black hole, as
the lapse collapses to zero, the ratio τ

σ → α τ
σ (which governs the control of perturbations,

as seen in 6.2) goes to zero, effectively not promoting a good damping to the desired
solution.

To approximate equation (6.23) to (6.22), one might be tempted to replace βi∂i →
ηβi∂i, for some η < 1, to reduce the effect of spatial derivative terms while still promoting
advection. Using η = 1 indeed leads the the biggest deviation in static solutions, as
expected. Yet, when using boosted solutions with η < 1, the additional “effort” the
equation has to do to keep track of the moving solution leads to poorer tracking due to
a time lag. Hence, using η = 1 is still the best approach for the best tracking of the
solution.

Additionally, one might infer an instability at low resolutions when using small σ or
τ . These parameters define timescales of evolution and coarse grids with bigger time
evolution steps that might lead to numerical instability. This is very much like the
instability found with the η time scale parameter in the Gamma driver equation (3.37)
for the shift vector [272]. As described by Schnetter [272], a simple solution is to make
a spatially varying σ and τ , asymptoting to larger values at spatial infinity. It turns
out this addition was not required for τ , but proved essential for σ. This can be done
with a radial profile or a profile depending on the conformal factor χ. The latter was
implemented, making a smooth transition from whatever σ is used in a simulation to an
asymptotic σ = 1, transitioning after χ > 0.92. This choice requires no fine tuning.

Finally, we know that σ and τ should be as small as possible for good tracking of the
auxiliary variable, while at the same time making them too small leads to instabilities
in the evolution. The merger is a period of intense dynamics that places a cap on
how small these values can be, but arguably, the initial stages of the simulation are
equally problematic, if not worse, due to the rapid gauge adjustment of the initial data
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to moving puncture gauge. To avoid this initial artificial and unphysical dynamics and
allow evolution with small σ and τ , a simple solution was to “turn on” the EFT ϵ

gradually with time. We opted for:

ϵt(t) =


0 t ≤ t0 ,

ϵ
(
t−t0
tF −t0

)2
t0 < t ≤ tF ,

ϵ t > tF ,

(6.24)

for some constants t0 and tF , typically t0 = 10M and tF = 30M .

6.3.3.3 Parameter dependence and stability

As advocated in section 2.8.2.2, the fixed equation should be independent of the choice of
parameters. For system (6.23), we can check for the validity of this principle. It is trivial
to understand that bigger σ and τ lead to bigger spatial terms that deviate Π from the
physical variable it is tracking, while at the same time being essential for stability. We
detail briefly in this section the balance between these two effects.

A fixing equation in dynamical scenarios has to solve in parallel two independent
problems: rigorously keeping track of some physical variable and stably damping high
frequency modes.

The limitation of effectively damping high frequency perturbations is an obvious
constraint on the kind of fixing equation one can “design”, as seen in the toy model
analysis made. But toy models are typically linearised around a constant solution and
do not worry about having to accurately keeping track of some dynamic profile in space
and time. This tracking of the physical variable involves three different aspects:

• coordinate changes, due to non-zero shift vector, βi;

• physical wave propagation in the grid, for example gravitational waves;

• shape of the solution changing, for which the auxiliary variable has to adapt its
profile to.

Covariance of the equations in the Laplacian system or simple advection terms in
the advection system described above are useful to tackle such issues. But on top of
that, one still faces a balance between two effects: how accurate the tracking is and how
fast it adapts to the system dynamics. For instance, small τ leads to slow tracking but
to the right solution, while big τ leads to fast tracking but to a less accurate solution.
Maximising adaptation to the evolving dynamics leads one to the Laplacian system
(6.29), which fails to match the physical variable precisely, while maximising accuracy
of the solution, as it happens in the system with time derivatives only (6.22), fails to
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adapt to moving solution dynamics. Ultimately, desiring both, one is led to a system
that lands somewhere in between, resulting in the advection system (6.23).

6.3.4 “Fixing” the equations - Weyl system

Cayuso and Lehner [99] analyse this model in spherical symmetry. With a simplification
of the equations, this allows for proceeding with the standard procedure of time order
reduction and fixing of the equations. For the full system, as discussed in 6.2.3.3, we
may want to proceed to fixing the equations first and apply time order reduction to the
fixed system, to avoid expanding all the metric terms of Weyl contractions, as described
in 6.2.3.3 and as we shall understand below.

One important note is that, besides achieving stability under high frequency pertur-
bations, as done for instance by Franchini et al. [102], we also want, for pure numerical
convenience, to use the fixed system auxiliary variables to remove any higher than second
spatial derivative. Inspired by the toy models in 6.2, the trivial approach to obtain this
is using the Weyl tensor itself as auxiliary variable, resulting in the system:

Gµν = ϵ
(
4 Ĉ Π αβγ

µ Πναβγ − 1
2 Ĉ2 gµν + 8 Π α β

µ ν ∇β∇αĈ
)
.

σ∇2Πµνρσ = τ LnΠµνρσ + Cµνρσ − Πµνρσ ,
(6.25)

where Πµνρσ is the auxiliary variable approaching Wµνρσ, Ln is the Lie derivative along
the timelike normal nµ orthogonal to spacelike hypersurfaces, and Ĉ = ΠµνρσΠµνρσ tracks
the Kretschmann scalar. Note that we use a second order equation for Π as the last term
in the metric equation of motion, ∂β∂αĈ requires second derivatives of Π. Furthermore,
note that indeed this approach involves only computing second derivatives of the metric
and Πµνρσ. Time order reduction comes in when computing Cµνρσ, following the formulae
in D.2, where the matter terms are ignored, leading to the Weyl tensor computed only for
the vacuum GR theory without leading order corrections in ϵ. The disadvantage of this
system is that the Weyl tensor is a rank 4 tensor with only 10 independent components
in four dimensions and the obvious way to have an explicit decomposition is using the
electric and magnetic parts of the Weyl tensor (see D.2 for details). Taking this into
consideration, along with the considerations in section 6.3.3.1, we develop the EB system
presented in the next section.

6.3.5 “Fixing” the equations - EB system

Following D.2, one can decompose that Weyl tensor into an electric and magnetic spatial
tensors, Eij and Bij , using formula (D.10). Then, one can pick as auxiliary variables Eij
and Bij that evolve to the physical electric and magnetic parts Eij and Bij , such that
the auxiliary Weyl tensor and Kretschmann scalar, Πµνρσ and Ĉ, computed with these
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auxiliary variables, also track the corresponding physical Weyl tensor and Kretschmann
scalar, Cµνρσ and C. The physical electric and magnetic tensors in the CCZ4 formulation
can be computed using (D.13) and (D.14), the Weyl tensor can be re-constructed using
(D.10), and the Kretschmann scalar can be computed directly, ignoring terms of order
O(e), using (D.18).

Following the intuition from 6.3.3.1, we propose a damped second order system for
Eij and Bij :

Gµν = ϵ
(
4 Ĉ Π αβγ

µ Πναβγ − 1
2 Ĉ2 gµν + 8 Π α β

µ ν ∇β∇αĈ
)
.

σ
(
∂2
t − 2βi∂ij + βiβj∂ij

)
Eij + τ

(
∂t − βi∂i

)
Eij = Eij − Eij ,

σ
(
∂2
t − 2βi∂ij + βiβj∂ij

)
Bij + τ

(
∂t − βi∂i

)
Bij = Bij − Bij ,

(6.26)

which can be further re-written as a first order system. This system is incredibly pow-
erful, as using the electric and magnetic parts of the Weyl tensor can be used to evolve
many EFTs, namely the full action (6.17) or any gravitational part of GR extensions
that involves powers of the Riemann tensor.

As a side remark, using equation (D.15), other systems making use of these auxiliary
variables can be developed, namely if one lifts the convenient restriction of using only
up to second spatial order derivatives.

6.3.6 “Fixing” the equations - C system

As a further alternative, one can develop yet another system, which even though not
generic and particular to this present theory, is very easy to implement. It is important
to remember there is no unique way to fix a theory à la Israel-Stewart and all should
agree in the infrared regime [273, 274].

We set the scalar C itself as a new independent variable Ĉ damped to the physical
one:

Gµν = ϵ
(
4 Ĉ C αβγ

µ Cναβγ − 1
2 Ĉ2 gµν + 8C α β

µ ν ∇β∇αĈ
)
.

σ
(
∂2
t − 2βi∂ij + βiβj∂ij

)
Ĉ + τ

(
∂t − βi∂i

)
Ĉ = C − Ĉ .

(6.27)

This system is less well understood mathematically, as from the PDE point of view, it
still has terms with the original Weyl tensor squared, i.e. with second order derivatives
multiplied together. Note that this involves only spatial derivatives as one can compute
the Weyl tensor using C = 8

(
EijE

ij −BijB
ij
)
, ignoring first order terms in ϵ (see ap-

pendix D.2 for details). In spite of this, it has proven to be stable, as we shall see in
the results section. With the addition of a single extra variable and simple equations,
this system is an easy add-on to any numerical code. One can reduce it to first order by
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doing:
∂tĈ = Π ,

∂tΠ = 1
σ

(
C − Ĉ − τ

(
Π − βi∂iĈ

))
+ 2βi∂iΠ − βiβj∂ij Ĉ .

(6.28)

We shall refer to this as the advection C system, and refer as the Laplacian C system
to the version using:

σ∇2Ĉ = τ LnĈ + C − Ĉ . (6.29)

6.3.7 Excision

We implement excision as explained in section 4.3.6 in a slightly modified form explained
below. This form of excision proved extremely useful to solve this problem. Given an
energy-momentum tensor (we treat the right-hand side of equation (6.21) as such), we
damped it by a factor e · Tµν , where:

e(χ,W ) = 1 − σ(χ; χ̄, ωχ)σ(W ; W̄ ,−ωW ) ,

σ(x; x̄, ωx) = 1

1 + 10
1

ωx
( x

x̄
−1) ,

(6.30)

where W is a weak field measure, χ is the conformal factor of the metric, χ̄ and W̄ are
thresholds for the excision cutoff region and ωχ and ωW are smoothness widths. Roughly,
σ(x; x̄, ωx) < 10−k for x > x̄(1 + k ωx) and σ(x; x̄, ωx) > 1 − 10−k for x < x̄(1 − k ωx).
The idea is if χ < χ̄ and W > W̄ , then e(χ,W ) exponentially approaches 0, and is 1
otherwise. Since we know that the χ contours track quite well the AH, we can choose an
appropriate threshold for χ to ensure we are only excising (that is, applying e = 0) inside
the AH. During gauge adjustment, the exact contour of χ that tracks the AH changes.
Hence, for accurate tracking, we make use of the analysis of appendix 7.3 and use a
dynamic threshold χ̄ = p · χAH, t (opposed to a fixed one as in section 4.3.6), where p is
a small fraction that forces the contour to be inside of the black hole (most simulations
used p = 0.35) and χAH, t is based on formula (7.17).

To be more specific about the weak field measure W , we use {ρ, Si, Sij} from the
d + 1 decomposition components of Tµν to compute W =

√
ρ2 + SiSjδij + SijSklδikδjl.

This is not a covariant scalar as TµνTµν , but one just needs some measure to use as
threshold4. We often take W̄ → 0 such that σ(W ; W̄ → 0,−ωW ) is always effectively 1
and we excise only based on χ. However, we monitor W as a way to keep track of the
weak field condition.

4Using ρ may sound like a good idea as well, but this goes to zero at the puncture, making it not
ideal by itself.
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6.3.8 Weak coupling conditions

Similarly to the analysis in chapters 4 and 5, valid EFTs requires systems in the weak
field regime. To ensure this is the case, we develop a weak coupling condition that
informs about the size of the corrections when compared to GR terms. With that in
mind, we use the dimensionless scalar WCC =

√
TµνTµν

C , where C, the Kretschmann
scalar, represents the size of GR terms, and Tµν corresponds to the ϵ terms in the right
hand side in equation (6.21).

As a mere inspection of this metric, on the horizon scale, TµνTµν is roughly, up
to numerical factors, O(ϵ2C4), resulting in WCC ∼ ϵ C3/2. For a Schwarzschild black
hole, on the horizon scale, C ∼ O(M−4), meaning that WCC ∼ ϵ/M6, precisely as
expected. A precise calculation for the Schwarzschild case yields at the horizon that
WCC ≈ 2.7 ϵ/M6, showing the previous estimation is accurate. Additionally, in isotropic
coordinates, the WCC peaks at the horizon, being smaller inside and outside the black
hole.

In summary, this analysis leads to the conclusion that as long as ϵ/M6 ≪ 1, we are in
the weak field regime of the EFT. Note however that for an equal mass binary evolution,
for a final black hole of mass M , each individual black hole has mass M/2, leading to an
effective ϵ that is 26 = 64 times bigger, or a bound of ϵ/m6 ≪ 1, where m is the smallest
mass in the system.

6.3.9 From gravitational waveforms to mismatch

Computing the mismatch between two waveforms requires transforming the numerical Ψ4

Weyl scalar into gravitational strain, h. The methods used to extract the gravitational
wave and compute the strain and the mismatch are described in chapter 5, sections 5.2.5
- 5.2.7.

6.3.10 Initial data

First, we choose the Ĉ system as the easiest approach to evolving this EFT, both for
single and binary black holes. For auxiliary variables, specifically in the C system (6.27),
the variable C is initialised to the Kretschmann scalar, computed numerically from the
metric initial data. The first order auxiliary variable Π = ∂tC (6.28) is initialised to
0. This is unphysical, as in puncture gauge there are non-trivial dynamics. This time
derivative can be computed using the formulae for the time derivative of the electric and
magnetic components (see D.2). While experimenting with this, we learnt that changing
this could minimally improve initial instabilities, but ultimately was a useless addition,
as initialising it to zero converged to the correct value within 2 to 3 timesteps.



Chapter 6. Black hole binaries in higher derivative effective field theories 122

For the single black hole case, standard Schwarzschild black hole metrics are not
a good representation of the system we want to evolve unless they have non trivial
shift vector and are boosted, as they will be for the case of binaries. Hence, we evolve
numerical simulations of a boosted Schwarzschild black hole, and wait for it to stabilise
in its stationary solution in moving puncture gauge, leading to the the black hole solution
that binary black holes will actually evolve. Hence, for initial data in single black holes,
we use a boosted black hole solution derived from the conformal transverse-traceless
decomposition [14, p. 73-74] (see also section 3.6.1), which uses an approximate conformal
factor solution to the Hamiltonian constraint, valid for small boosts |P⃗ | ≪ M , where P⃗
is the initial momentum of the individual black hole and M is its mass. For binary data,
the single black hole initial data is superposed, resulting in non-spinning Bowen-York
data.

A few extra remarks on the accuracy of this initial data. First, GRChombo has the
TwoPunctures spectral solver [275, 276] integrated. This improves the accuracy of the
initial data, but resulted in no significant change in the gravitational waves. Second,
one could also realise that for any non-zero ϵ, GR initial data does not satisfy the con-
straints, due to the “matter” terms in them. To test the relevance of this, Ramiro Cayuso
developed a spherical symmetry initial condition solver for this EFT, as described by
Cayuso and Lehner [99, IV.A]. In spherical symmetry, the constraints for the conformal
factor and Krr can be integrated radially. To find a solution, a shooting method can
be implemented from iterating some inner boundary numeric guess, integrated to some
outer boundary, where the solution is sufficiently close to a Schwarzschild spacetime such
that the expected boundary condition solution is known and enforced. This is valid as
we expect the deviations from GR to be of the order of ϵ and rapidly decay with radius
[277]. Overall, this implies that for ϵ/M6 ≪ 1, this initial data provides little added
accuracy, similar to the comparison between the boosted black hole and TwoPunctures

initial data. Moreover, for binary black hole initial data, our approach involves adding a
Lorentz boost to the spherically symmetric data and superposing two of such solutions.
In spite of the accuracy of the spherically symmetric data, the final boosted superposed
binary data resulted in bigger constraints than simply using the GR Bowen-York initial
data, even though ϵ is non-zero. It is important to also recall that the CCZ4 formulation
ensures stable control of any of these small constraint deviations.

Single boosted black holes evolved have a mass of 0.5M with a boost of P x = 0.08M ,
representing approximately one of the black holes intended to simulate in binaries. The
binary black holes have circularised orbits5, have a mass of m = 0.48847892320123, a sep-

5Note that finding the right momenta for an initial circular trajectory is in general a hard problem in
NR - simply setting the momentum to the Newtonian approximation will result in elliptic orbits even for
well separated initial BHs. One must use the Post-Newtonian approximations [278], and then adjust the
momentum manually over several iterations to achieve an initial eccentricity of less than 1% [279–281].
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aration of D = 12.21358M and initial momentum of P i = (0.0841746, 0.000510846, 0)M
(and opposite for the other black hole).

Finally, we use a time dependent ϵ as described in (6.24) with t0 = 6M , tF = 12M
for single black holes and t0 = 10, tF = 30M for binary black holes. All simulations use
ϵ = 10−5 unless made explicit otherwise.

6.3.11 Numerical scheme

On top of what was already described in section 3.8.2.3, for the simulations presented
in this chapter, we use a tagging criterion that triggers the regridding based on second
derivatives of the conformal factor, forcing certain levels around the location of apparent
horizons6 and around gravitational wave extraction regions. We use Kreiss-Oliger nu-
merical dissipation with fixed σ = 2 (this bigger value was useful to stabilise the several
systems developed) in all our simulations. As of boundary conditions, we use Sommer-
feld boundary conditions and take advantage of the asymmetric symmetry of a boosted
black hole to evolve only one quarter of the grid and of the reflective/bitant symmetry
of the binary problem to evolve only half of the grid. Sixth order spatial stencils are
used in order to improve phase accuracy of the binaries [251]. For the results presented
in this chapter, we have a CFL factor of 1/4. Single boosted black holes used a coarse
level resolution of ∆x = 1 with 6 additional refinement levels in a computational domain
of size L = 384, while the binaries used ∆x = 4, with 8 additional refinement levels, and
a computational domain of size L = 1024.

Unlike most simulations ever evolved in GRChombo, the Gamma driver η parameter
caused trouble for some of the evolved systems at large radii. This is in fact a simple
and known problem related to η imposing a time size constraint much like the CFL
condition, for which the solution is creating a radial profile reducing η for large distances
[272]. This is related to the radial profile used for σ as described in section 6.3.3.2.

Finally, since the mass of the black hole is affected by O(ϵ), the smallness of the values
used implied greater care in the perturbations of the ADM mass of the system. AMR
boundaries and the evolution scheme contribute to small noise accumulation throughout
a binary, which we found to grow above 1% in the ADM mass during a binary, for some
large values of ϵ or particular fixing systems in use. By changing the κi parameters of
the CCZ4 formulation to κi = (1,−0.8, 1), the mass drift improved to < 3 · 10−3M per
1000M of time evolution for a black hole of mass 0.5M .
We are grateful to Dr Sebastian Khan at Cardiff University for providing the GRChombo team with these
initial data values.

6Here, we reinforce that ensuring a good buffer between the finest AMR level and the apparent horizon
is very important to avoid energy ‘leaks’ and a monotonous mass drift over time.
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6.4 Results

6.4.1 Toy model parameter stability

As mentioned before, it is essential to trust that the fixing procedure is robust and its
details do not affect the physics. Specifically, it is important to verify to what extent
the results are invariant to the arbitrary parameters introduced, namely σ and τ of the
several toy models discussed before.

With that in mind, we performed simulations of the modified wave equation with the
advection fixing method, as shown in equation (6.23), further reduced to a first order
system. This was a 1D simulation7, with third order spatial derivatives, Runge-Kutta
of fourth order for time stepping, Kreiss-Oliger dissipation with N = 2 and σ = 2 and
CFL condition of 1

4 . The domain had size L = 100, resolution ∆x = 1
16 and periodic

boundary conditions. As initial data, we used a trivial moving wave Gaussian profile
ϕ = Ae− 1

2

(
x−x0

ω

)2

, with A = 0.001, x0 = 50, ω = 1. This profile is not a solution of the
equation for ϵ ̸= 0, developing a long oscillatory tail as the dynamics evolve. For these
runs, we used ϵ = 10−3.
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Figure 6.7: 3D plot of the tracking accuracy (which compares the 1D integral over the
domain of auxiliary variable Π to the physical variable it tracks ∂2

xϕ) for several values
of σ ad τ , with a fixed ϵ = 10−3. In red, we display the simulations that crashed due to
instabilities, and in blue the ones that were stable, with a value representing the result
of computing the metric T (Π, ∂2

xϕ) in the interval [0, L], using (6.31).
7We thank Ramiro Cayuso for the development and maintenance of the code.



Chapter 6. Black hole binaries in higher derivative effective field theories 125

To measure accuracy of the tracking of the auxiliary variable Π to the physical variable
∂2
xϕ, we define a tracking metric T between two quantities Q1 and Q2 as:

T (Q1, Q2) =
∫

|Q1(r) −Q2(r)|dr∫
Q1(r) dr . (6.31)

We evolved the system for ϵ = 10−3 for many values of σ and τ . We evolved for
7 ·104 time steps, after which the long tail becomes comparable to the size of the domain
and the evolution becomes unphysical. At the final step, we compute a tracking metric
T (Π, ∂2

xϕ) in the interval [0, L].

The result is displayed in figure 6.7. A few remarks:

• One can observe an area of red dots, or evolutions that crashed, for very low σ. This
is approximately at the level of σ = 10−4, suggesting some stability relationship
between σ and ϵ.

• As expected, the tracking improves linearly with decreasing σ,

• As for τ , we can also observe a linear dependence for big values of τ , which inter-
estingly flattens to a plateau dependent only on the value of σ.

All in all, for all these simple cases, the profile at the final timestep is very similar, up
to 0.1% errors, for almost all values of σ and τ . Nevertheless, for black hole simulations,
the accuracy of tracking does matter and small errors can easily accumulate over time.
Hence, we learnt that this system is stable and that, as predicted, we should aim for low
σ and τ to get as much accuracy as possible. If they are small enough, we should also
in the black hole case get into a regime where the final profile is independent of these
parameters.

6.4.2 Single black hole

6.4.2.1 Comparing fixing systems

In this section we show how several fixing equations for this system compare in terms
of tracking accuracy, leading to the conclusion that the advection C system is the best
candidate for simulations of single and binary black holes. We compare three versions:
the Laplacian system (6.29), the advection system (6.23) and the version with only time
derivatives (6.22).

At t = 40M , the gauge adjustment has stabilised to a fixed profile, and we compute
a tracking metric that evaluates the difference between the evolved variable and the
physical Kretschmann scalar for this profile. We perform this over a radial ray starting
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on the apparent horizon and finishing at some ‘large’ radius8 R = 20M , in a direction
perpendicular to the direction of motion9, using T (Ĉ, C) in the interval [rAH, R].
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Figure 6.8: Evolution of the tracking metric T (Ĉ, C) in the interval [rAH, R] over time
for the Laplacian system (6.29), the advection system (6.23) and the version with only
time derivatives (6.22). The solid, dashed or dotted line show several combinations of
the presence of boost and values of σ. We use ϵ = 10−5 and τ = 0.005.

In figure 6.8 we display the tracking metric for the three systems mentioned in 3 types
of simulation: with boost P x = 0.08M for σ = 0.1, with the same boost for σ = 0.05
and with no boost with the original σ = 0.1. A few conclusions one can draw from this
figure:

• the Laplacian system has deviations bigger than 10%, while the system with only
time derivatives has sub-percent errors. While true, it is important to know that
even though the Laplacian system has worse accuracy, it can withstand smaller
values of σ while remaining stable. However, this effect is sub-leading and does
not alter the conclusion that this system is, in general, worse.

• The evolution with or without boost does not affect the result of the Laplacian or
advection system.

• Halving σ from σ = 0.1 to σ = 0.05 approximately halves the value of the tracking
accuracy, showing a linear behaviour much like what was seen in section 6.4.1.

8As the tracking gets more accurate with increasing distance from the black hole, the value of this
large radius does not affect the result.

9The results are very similar in any direction.
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• The run in blue does not finish at t = 30M as at about t ∼ 12 − 14M it crashes.
Notice this corresponds to when the system is evolving with non-zero ϵ, as the time
dependent ϵ reaches the value ϵ = 10−5 at tF = 12M (see equation (6.24)).

Finally, we attempted to change τ from 0.005 to 0.0025, and this change does not
affect the solution (much like the boost and no boost solutions in figure 6.8). This hints
that this parameter is already in a region of stability where the solution is independent
of its value, an effect also observed in section 6.4.1.

Overall, we conclude the advection system is the best approach out of the systems
developed, as the Laplacian system has errors too great that cannot be minimised and
the time derivatives system is not stable, though most accurate. Note that the value of
ϵ affects what the lowest values for σ and τ can be while preserving stability.

6.4.2.2 Accuracy of advection system
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Figure 6.9: Evolution over time of the tracking metrics for the advection system (6.23),
comparing C between σ = 0.1 and σ = 0.05 (orange), and likewise for Ĉ (blue), using
T (Cσ=0.1, Cσ=0.05) and T (Ĉσ=0.1, Ĉσ=0.05) in the interval [rAH, R]. We use ϵ = 10−5 and
τ = 0.005.

One can now ask: given the accuracy of the tracking at the level of 2−5% observed in
figure 6.8 for the tracking in the advection system, what does this translate to in terms
of accuracy of the simulation? To answer this, we compare the physical Kretschmann
scalar and the evolved Kretschmann auxiliary variable between the two runs of figure
6.8 of a single boosted black hole with σ = 0.1 and σ = 0.05. The results are in figure
6.9. One can observe that, even though the auxiliary variable Ĉ differs between runs on
the level of 2%, the physical variables C differ by less than 0.1%. In spite of this, seeing
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clearly that this deviation in the physical variable C is growing with time, one can worry
that over long ranges of time this effect will accumulate and built up to a large effect.
Even though we saw that the solution was independent over changes of τ , there is still
an undesired sensitivity to σ, which one must take into account when comparing results
in the EFT to GR. We will analyse this issue in the binary black hole case.

6.4.3 Binary black holes

In this section we present the results of our numerical simulations for circular binary
black holes in EFT compared to GR, with initial data as described in section 6.3.10.

6.4.3.1 Consistency of the fixing method

Figure 6.10: Comparison of the physical Kretschmann scalar (in green) with the evolved
variable Ĉ tracking it (in red) for a 1D profile of a binary black hole with ϵ = 10−5,
τ = 0.005, σ = 0.1, around the time of merger, t = 2430M . In grey, we display the
relative difference in log scale, log10

(
C−Ĉ

C

)
. One can see that the auxiliary variable tracks

the physical variable extremely well. In particular, outside each black hole, located at
x = 2M and x = 3M , where x is distance measure in the horizontal axis, the accuracy
is in the sub-percent level.

We start by a quick check that the fixing procedure is working as expected, by
inspecting at late times how the auxiliary variable tracks the physical variable. More
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than just at late times, we perform this comparison in the moment of highest dynamical
activity, when the two black holes are merging, about 1M apart. The result of a 1D
profile passing through each puncture is shown in figure 6.10. By visually comparing
the green and red line in this plot, one can see great agreement between the auxiliary
variable, Ĉ, and the physical variable C. More quantitatively, the difference is below
0.1% for distances bigger than 1M from the centre of each black hole, while about 1%
difference close to the apparent horizon. Recall these black holes have masses of about
0.5M and that in puncture gauge the apparent horizon approximately sits at r ≈ M (see
section 7.3 for details).

6.4.3.2 Weak coupling conditions during the evolution

Figure 6.11: Weak coupling condition normalised by ϵ, WCC
ϵ/M6 = 1

ϵ

√
TµνTµν

C , for a binary
black hole with ϵ = 10−5, τ = 0.005, σ = 0.1, around the time of merger, t = 2430M . The
white line represents the contour χ = 0.25, approximating the location of the common
apparent horizon forming. One can see that WCC/ϵ is in the range 1−10 in the apparent
horizon area delimited in white, and is strictly less than this outside of this region.

We also know that the results of the theory can only be considered in the EFT
truncated regime. To confirm evidence of this, we look at the WCC, as described in
section 6.3.8, also at late times at the time of merger, when the black holes at 1M apart
and the dynamics are the strongest. The result, shown in figure 6.11, shows that on
and outside the apparent horizon, the WCC is smaller or equal to O(ϵ), as predicted in
section 6.3.8. This shows validity of the EFT for all times of the evolution of the binary.
Even though locally its effects are very small, global observables may result in larger
deviations from the build up of small effects over time.
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6.4.3.3 Waveform strain
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Figure 6.12: Comparison of gravitational wave between EFT with ϵ = ±10−5 and GR,
aligned by the peak of amplitude of the strain. Displaying the (ℓ,m) = (2, 2) mode of the
plus polarisation of the strain, h+

22, extrapolated to null infinity. The advection system
was used with σ = 0.05 and τ = 0.005.

Coupling Final Mass MF /M Spin Parameter a/MF

ϵ = −10−5 0.947 ± 0.001 0.688 ± 0.001
GR 0.943 ± 0.001 0.688 ± 0.001

ϵ = 10−5 0.939 ± 0.001 0.688 ± 0.001

Table 6-A: Parameters of the final state Kerr black hole for each value of ϵ and σ. The
mass and spin are estimated from the final apparent horizon since the ADM quantities
are typically significantly noisier. The errors are estimated from the mass drift in the
apparent horizon over 500M of time after the merger.

We now compare the waveform strain for the circular binaries between GR and the
EFT, for different values of ϵ. We extract the mode with highest amplitude, (ℓ,m) =
(2, 2), of the plus polarisation of the strain, h+, extrapolated to null infinity using 6 radii
between 50 − 150M , as described in 6.3.9. Figure 6.12 shows the gravitational strain for
ϵ = 10−5, ϵ = −10−5 and GR, all aligned by the time of merger, estimated as the peak
of the complex amplitude of the strain. Junk radiation in the first 100M of evolution
were cropped from the waveform. The advection system was used with σ = 0.05 and
τ = 0.005. Taking the final state to be approximately a Kerr black hole (valid up to
O(ϵ)), the estimated black hole parameters in table 6-A.
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Figure 6.13: Real part of h̃+
22, the discrete Fourier transform of h+

22 for positive frequen-
cies. The case of ϵ = 10−5 has faster oscillations in phase, which cannot be mitigated by
constant time or phase shifts in the waveform.

Figure 6.12 shows the waveforms match to great agreement in the merger, but exhibit,
in a similar manner to what was found in the Horndeski case 5.2.6, a frequency change
resulting in phase shift noticeable in the earlier stages of the inspiral. This can be
confirmed by inspecting the frequency domain of the waveform in figure 6.13, where
indeed one can see matching amplitudes but a discrepancy in the complex phase for
intermediate frequencies. This cannot be mitigated by constant time or phase shifts in
the waveform.

Additionally, it is interesting to notice in figure 6.12 and table 6-A a linear regime
in ϵ, with positive and negative ϵ displaying symmetric behaviour around GR. This is
another positive indication we are in the low energy regime of the EFT.

The analysis of quasi-normal modes and inspection of the ringdown is commented in
the next section.
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6.4.3.4 Mismatch
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Figure 6.14: Mismatch for h+
22 between GR and EFT for ϵ = 10−5, as a function of the

final black hole mass (in units of solar masses, M⊙). As power spectral densities, we used
the updated Advanced LIGO sensitivity design curve (aLIGODesign.txt in [13], which
imposes fmin = 5 Hz) and a flat noise mismatches (Sn = 1).

In figure 6.14, we quantify the mismatch between the EFT, for ϵ = 10−5, and GR for a
detector setup receiving the plus polarisation of the strain. Here, we finally quantify the
sensitivity to σ discussed in the results section 6.4.2.2, by using not only σ = 0.05, but
also two bigger values, σ = 0.075 and σ = 0.1. Using different values of σ is essential to
identifying any physical accumulation of EFT deviations over time and not an artefact
of systematic errors related to the poor accuracy of the tracking equation. In terms of
gravitational wave strain, related to figure 6.12, these bigger values of σ show simply a
bigger deviation at early times (not shown to avoid confusion in the plot without much
added value). We keep τ = 0.005 constant, after the conclusion of section 6.4.2 that this
choice does not affect the system.

As in chapter 5, section 5.3.4, we limit ourselves to the (ℓ,m) = (2, 2) mode, h+
22, as

this is the dominant mode by an order of magnitude when compared to higher modes.
We use the updated Advanced LIGO sensitivity design curve (aLIGODesign.txt in [13],
which imposes fmin = 5 Hz) and flat noise (Sn = 1) following the procedure described
in section 5.2.7. We compute the mismatch for black hole masses in the typical range of
stellar mass black holes binaries observed so far, M ∈ [10, 150]M⊙ [165], where M⊙ is
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one solar mass.
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Figure 6.15: Mismatch for h+
22 between GR and EFT for ϵ = 10−5, as a function of the σ

parameter of the advection system. We use as power spectral density a flat noise and the
LIGO sensitivity curve previously mentioned. As an attempt to extrapolate to σ = 0,
we mix the result of two methods: a quadratic interpolation over 3 points, which we
then extrapolate to σ = 0, and a linear fit, also extrapolated to σ = 0.

Figure 6.14 shows that the mismatch varies significantly between different σ, revealing
that the small effects observed in section 6.4.2.2 accumulate and dominate over the effects
of ϵ ̸= 0. As an attempt to absorb this systematic error, we extrapolate the mismatch
to σ = 0, for which the advection system would theoretically have perfect tracking.
This is shown in figure 6.15. For extrapolation, given the limited amount of data, we
quantify the error by using two methods: a quadratic interpolation and a linear fit, both
extrapolated to σ = 0. This is done for flat noise PSD and LIGO PSD fixed with a final
black hole mass of 50M⊙. As we can observe, there is a huge uncertainty in the result.
This can be aggregated into a final value of the mismatch between EFT for ϵ = 10−5 and
GR, without errors associated to the fixing procedure, of mismatch = −0.39 ± 4.10%.

Overall, we conclude that the effects observed are due the sensitivity of the fixing
approach to the unphysical parameters introduced, and the effects of ϵ ̸= 0 are negligible
at this scale, as perhaps expected given the small value of ϵ. We note that it is therefore
also unfruitful to attempt to evaluate quasi-normal modes or compare properties of the
ringdown, as likely any effects are also artefacts of the fixing procedure. We have learned
that in any work involving a fixing procedure, appropriate damping of high frequencies
to obtain a stable system is not enough. It is extremely important to check the accuracy
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of the fixing equations, to check if indeed they reproduce the low energy behaviour
of the theory, or are otherwise merely introducing spurious unphysical deviations. To
obtain a significant value, the accuracy T (C, C) = 0.1% found in section 6.4.2.2 has
to likely be reduced to T ≪ ϵ/M6. This can be done by improving the tracking, but
also by increasing ϵ significantly and performing an extrapolation over the unphysical
parameters to some asymptotically stable value. Supposing such a procedure works, it
appears the price to pay with this new method of successfully evolving theories with
higher derivatives is the requirement of evolving multiple binaries in order to guarantee
the successful invariance against the choice of fixing procedure.

As a final remark, the results for null convergence condition (NCC) violations iden-
tified by Cayuso and Lehner [99], in which negative values are found in regions outside
of the black holes, were verified at all stages of the binaries evolved.

6.5 Conclusions

The goal of this chapter was to simulate binary black holes fully non-linearly in a theory
with higher derivative terms in extension to GR, with the hope that small local effects
from such deviation to GR can build up over time and leave an imprint in observables
as gravitational waves.

After analysing several toy models and their stability properties, with the intuition
built from this, we used the fixing method described in section 2.8 to propose multiple
methods in which this theory could be evolved in three spatial dimensions with no
symmetry assumptions and the CCZ4 formulation. Picking the most straightforward
approach, referred to as the C system, we analysed its accuracy in reproducing the low
energy physics of the original truncated theory.

On of the main goals of the fixing method is to remove UV cascades from the trun-
cated theory without spoiling its low energy physics. Knowing the fixing procedure is
not unique, one way in which this manifests, besides simulations not crashing due to
high frequency noise, is by demonstrating independence of the result to changes in the
unphysical parameters introduced. We analysed several forms of the C system and, af-
ter picking the most accurate one, referred to as the advection C system. We showed
invariance over changes of the τ parameter, yet linear sensitivity for its σ parameter.
The direct implication of this is that this parameter must be further reduced to enter
the regime of insensitivity in which the result will not change regardless of its value.
This proved unfeasible without leading to simulations crashing, but we demonstrated
accuracy of the solutions on the order of T = 0.1% for the smallest possible values of σ
this system could use, in the case of single boosted black holes.
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When performing binary black hole evolutions, we verified the system remained in
the weak regime of EFT even during whole evolution by inspecting the final stages of
merger phase. Nonetheless, the small effects originating from inaccuracy (between the
auxiliary variable and the physical variable it tracks) dominated over any small effects
originating from the low energy behaviour of the theory. In spite of the great success and
future possibilities of this method, this brings up the extreme importance of verifying
consistency of the methods used. Namely, in our role as theoretical physicists to guide
the development of waveform templates of modified theories of gravity it is important
to understand if we are evolving the physical gravity theory originally proposed or if the
auxiliary parameters introduced make us fool ourselves with unphysical results. After
careful analysis, we obtained a mismatch between the EFT, using ϵ = 10−5, and GR of
mismatch = −0.39 ± 4.10%, showing the original apparent deviations from GR observed
turned out to be consistent with no deviations. In order to obtain significant results, it
is likely the accuracy must be T ≪ ϵ/M6, but it is likely that the use of this method
will require evolving multiple binaries to ensure the results obtained are physical.

The work presented results from on-going work [3], and there are clear avenues for
improvement. The first of which is convergence tests, which, in spite of the trust in
GRChombo, are essential to confirm accuracy of the results. These will be presented in [3].
More interestingly, it is relevant to find better ways to improve the C system, allowing
for more accurate and stable tracking, or allowing for the use of smaller values of σ
(and hence more accurate results). Alternatively, using different systems can be a good
avenue for improvement as well. Namely, the EB system, proposed in section 6.3.5,
is a very promising direction. It has equivalent simplicity to the C system, although
requiring the addition of 10 auxiliary variables instead of 1 (the Eij and Bij spatial
tensors have 5 independent components each). Moreover, the C system is specific to the
eight-derivative theory studied here and may not apply to other six or eight derivative
corrections. However, the EB system, if successful, may be able to be used in all such
theories that need a correction for Riemann-like terms and reduce them to lower order
equations (second-order in most cases). On the other hand, if one considers equations
that use higher than second spatial derivatives, by incorporating third or fourth spatial
stencils in the code, new systems can be devised. In the spirit of EFT and the claim the
fixing procedure is not unique, it would be remarkable if one could find multiple accurate
formulations, such as some form of the C system and some form of the EB system, and
show they both lead to the same low energy description.

Ultimately, one is looking for (physical) deviations of GR originated from well moti-
vated extensions of it. This implies analysing quasi-normal modes, tidal effects and the
presence of higher modes in the ringdown [282, 283]. If a more accurate fixing procedure
is developed, this may only be possible if one can also use bigger values of ϵ, e.g. 10−3,
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while still in the valid regime of EFT according to section 6.3.2. Besides this, analysing
more accurately the differences in the present theory for positive and negative ϵ is also
of interest.

Finally, while our studies were restricted to a particular theory and particular fixing
method, the generality of the technique can hopefully inspire further improvements and
be adopted for better results in other scenarios of this and other theories.



Chapter 7

AHFinder - apparent horizon finder

For the purpose of the research presented in this thesis, we developed the AHFinder, a
public tool now extensively used by the GRChombo collaboration, capable of dynamically
tracking apparent horizons in many situations. In this chapter, we briefly describe im-
portant mathematical and numerical details of finding apparent horizons. Section 7.1
describes basic concepts about black hole horizons. In section 7.2, we describe the tools
required to find an apparent horizon. Finally, in section 7.3, we analyse an approxi-
mation of the location of the apparent horizon typically useful for AMR simulations.
Details on numerical aspects of GRChombo can be found in section 3.8.

7.1 Event horizons and apparent horizons

One of the most important predictions of general relativity is the existence of solutions of
the Einstein equations describing spacetimes that contain one or more black holes. Clas-
sically, a black hole is a region of spacetime where the gravitational pull is so strong that
nothing can escape, not even light. Geometrically, a black hole is a closed region causally
disconnected from the exterior spacetime, meaning that outside observers cannot receive
any signals generated in its interior (even though anything can enter). Remarkably, black
holes can exist even in vacuum, without the presence of any matter. The boundary of
the black hole is called an event horizon. This is a D − 1 dimensional surface in the
D dimensional spacetime, and the intuitive notion of a black hole, the event horizon at
coordinate time t, is only its cross section, a spacelike slice of the actual event horizon.

When evolving black hole spacetimes it is of course of extreme utility to know where
the black holes are (e.g. to know how their mass evolves, know the formation of a merger
in binaries, ensure enough resolution is used, etc.). But, as we mentioned above, finding
the event horizon requires knowledge of the entire spacetime, which practically speaking
means tracking geodesics through the full evolution of spacetime. In numerical relativity,
this is impractical to say the least, and ideally we would like a local measure at a given
time slice that could give us the location of the cross section of the event horizon at a
particular time. This brings us to the concept of an apparent horizon.

An apparent horizon is defined as the outermost marginally trapped surface. Before
describing this mathematically, a trapped surface intuitively is a surface where a spher-
ical flash of light rays emitted outwards remains constant in area. Such an experiment

137
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would not work in flat spacetime (the flash of light surely increases in area) nor close to
a singularity (where light is trapped and reduces in area while falling into the singular-
ity). This is why this notion makes sense as a measure of some form of horizon. More
precisely, a trapped null surface is a closed co-dimension 1 hypersurface on a spatial
slice of spacetime, such that the outgoing expansion of null geodesics (a quantity we
describe below) vanishes on all its points; and the apparent horizon is the outermost
such surface. Being a local measure on a spatial slice, in dynamic spacetimes, it may not
coincide with the event horizon, as for example an expanding flash of light at a given
point in time might be invariably trapped at a later point in time. Given the apparent
horizon depends on the slice it is evaluated on, it is a gauge dependent quantity, while
the event horizon is a gauge invariant. It can be shown that apparent horizons always
lie inside the event horizon in any gauge [18, p. 221], which means their interior is surely
causally disconnected from its exterior and that the area one can measure from it is
a lower bound of the actual black hole area. Note that the converse is not true: the
absence of an apparent horizon does not imply the absence of an event horizon. Both
coincide for static spacetimes.

To describe this analytically, consider a d−1 surface S immersed in the d dimensional
spatial hypersurface Σ. Let sµ be the spacelike unit outward-pointing normal vector to
S, and nµ the timelike unit future pointing normal vector to Σ, as depicted in figure
7.1. The outgoing null vector on S is kµ = nµ + sµ. The induced metric on S is
hµν = γµν − sµsν = gµν + nµnν − sµsν . The expansion of the null lines, Θ, is essentially

Figure 7.1: A 2 dimensional surface S embedded in Σ, with a outward pointing normal
to S, sµ, a normal to Σ, nµ, and outgoing and ingoing null vectors kµ and lµ. Figure
taken from Baumgarte and Shapiro [14, p. 236].

the change in the area elements of S along kµ [14, p. 238] [18, p. 221]:

Θ = hµν∇µkν =
(
γij − sisj

)
(Disj −Kij) = Dks

k −K +Kijs
isj . (7.1)

We now define trapped regions as regions where Θ < 0 everywhere, and the boundary
of the outermost such region, where Θ = 0, as the apparent horizon. It is important to
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note, as it is a common matter of confusion, that the expansion Θ is a property of a
given surface, not a field that can be attributed to each point in spacetime.

7.1.1 Apparent horizons in binary black holes

Apparent horizons do not evolve in a smooth way. One could think that during a black
hole merger the apparent horizons of each black hole merge and dynamically form a
new joint one. This is not the case. In the typical slicing conditions used, each black
hole has a trapped surface that during merger shrinks to the puncture, while a larger
common apparent horizon forms, surrounding the previous ones [284–286]. This is not
a discontinuity, but an artefact of observing the domain of Θ only via a projection at
Θ = 0. Figure 7.2 depicts the emergence of a new apparent horizon (see also Pook-Kolb
et al. [284, fig. 1]). It can be seen that there are in fact two trapped surfaces forming,
an inner one which shrinks to the puncture, and the outermost one, the newly formed
apparent horizon of the merger black hole.

Figure 7.2: Merging of two black holes. At time τ1, there are two apparent horizons inside
the event horizon. At time τ2, the event horizon has merged into a single region and
a third apparent horizon formed surrounding both previous apparent horizons. Figure
taken from Hawking and Ellis [15, p. 322].

This implies that detecting apparent horizons in dynamical simulations requires track-
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ing more surfaces than the number of black holes. A binary black hole requires looking
for the appearance of a third trapped surface which pops up at some point when the orig-
inal punctures get close enough, with the added care of converging to the outermost one
and not some other existing trapped surface1. For a triple black hole, one may need five
trapped surface trackers. This requires great flexibility from the AHFinder, which ends
up extending to the ability to detect appearing apparent horizons during gravitational
collapse and even cosmological horizons in expanding universes. In figure 7.3 one can
observe evolution of the apparent horizon area for the GR binary evolved in chapter 5.
One can identify: an initial growth in area when the black hole forms after gravitational
collapse, and the appearance of a third AH while the two smaller AHs disappear. Note
that even though the area remains constant, their coordinate radius is reducing to zero
until convergence is no longer possible, accompanied with a distorted metric that keeps
the physical area constant. See also figure 7.4.

7.2 Finding apparent horizons

7.2.1 Parameterising apparent horizons

Finding an apparent horizon entails finding a surface that satisfies Θ = 0. Numerically,
this implies parameterising surfaces and solve Θ = 0 as a PDE over the surface. A
common approach when parameterising apparent horizons relies on level sets, by finding
a scalar function which is zero over a given surface, L(xi) = 0, such that the unit normal
vector si can be written as:

si = DiL

|DL|
, (7.2)

where |DL| =
√
γij (DiL) (DjL). This results in:

Θ =
(
γij −

(
DiL

) (
DjL

)
|DL|2

)(
DiDjL

|DL|
−Kij

)
= 0 . (7.3)

This function L can now be parameterised with some height function H via L(xi) =
h − H(xAS ) for some coordinates x′i = (h, xAS ) well-adapted for the problem at hand,
where xAS parameterises the surface S. For 3d black holes, one can parameterise “star-
shaped” shapes (in which we can always find an inner point such that all rays leav-
ing this point intersect the surface only once - see Alcubierre [18, fig. 6.7]) by a level
set L(xi) = r − H(θ, ϕ), using xAS = (θ, ϕ) and where (r, θ, ϕ) are the usual spheri-
cal coordinates, transformed from xi in the usual way. This corresponds from “shoot-
ing” rays from some central point with some radius H for each (θ, ϕ). For this case,

1This typically simply requires setting an initial guess bigger than the expected surface.
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Figure 7.3: Evolution of the apparent horizons for a GR black hole binary as described
in chapter 5. The top figure displays the surface physical area and the bottom figure
displays the coordinate radius. One can observe the appearance of a third apparent
horizon surrounding the inner two trapped surfaces of each black hole, which in turn
shrink to zero. The initial growth around t ∼ 0 is related to the formation of a black
hole during gravitational collapse.

dL = dr − (∂θH) dθ − (∂ϕH) dϕ, where ∂θh and ∂ϕH (and second derivatives required)
are computed numerically, while all other derivatives related to spherical coordinates
are known analytically. For a two dimensional black string such as in the work done by
Figueras et al. [6], one can simply pick L(xi) = y −H(x), where (x, y) is the horizontal
and vertical Cartesian coordinates, which corresponds to “shooting” rays vertically from
the y = 0 axis. More intricate problems require more generic surfaces, such as reference
surfaces [284, 287], which has not yet been used in GRChombo. For reviews on different
algorithms for apparent horizon finding, see [285, 286, 288].
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7.2.2 Numerical method

Given the parameterisation given in the previous section, the only ingredient missing is
a discretisation over the surface S, which can be seen in figure 7.4. Given a set of N
points over the surface S, one wants to solve the multi-dimensional problem Θ⃗

(
h⃗
)

= 0,
where h⃗ ∈ RN is the numerical array of the level set height function at each grid point
(simply flatten out all the points into a one dimensional array), and Θ⃗ is the numerical
evaluation of the expansion over the discretisation of the surface h⃗, using interpolation
and numerical derivatives where necessary.

To solve this, one can use any suitable nonlinear solver. The AHFinder uses the
nonlinear solver framework (SNES) provided by PETSc [289], which is based on a quasi-
Newton iterative method with an auxiliary linear system solver based on Krylov methods,
for determining the Jacobian of the expansion. In short, it uses the typical Newton
method iterations:

h⃗n+1 = h⃗n − γ∆h⃗n ,

∆h⃗n =
[
∇
h⃗
Θ⃗
(
h⃗n
)]−1

Θ⃗
(
h⃗n
)
,

(7.4)

where γ is a constant determining the step of iteration, but where the Jacobian is not
inverted. Instead, we compute ∆h⃗n via solving the linear system:[

∇
h⃗
Θ⃗
(
h⃗n
)]

∆h⃗n = Θ⃗
(
h⃗n
)
, (7.5)

As an additional note, it is often the case that numerical algorithms may have diffi-
culty finding highly distorted shapes in highly dynamic environments, but, as previously
mentioned, often simply re-using the shape of previously found horizons as initial guess
for current time slices is enough, a feature integrated in the AHFinder. To estimate the
position of the centre C⃗(tn) for a timestep tn, given previous timesteps, one can use
first and second numerical derivatives over the previous time steps: C⃗(tn) = C⃗(tn−1) +[
C⃗(tn−1) − C⃗(tn−2)

]
+
[
C⃗(tn−1) − 2 C⃗(tn−2) + C⃗(tn−3)

]
= C⃗(tn−1)−3 C⃗(tn−2)+3 C⃗(tn−3).

This is equivalent to an extrapolation of a quadratic fit. One can use only a linear extrap-
olation if not enough points are available. C⃗(tn) is an approximation of the geometric
centre of the surface found, which can be computed in many ways, but for ellipsoid
shapes can be very well approximated by computing the average between the maximum
and minimum coordinates in each direction for the points that cover the surface S.

7.2.3 Optimising convergence

With experience of many people using the AHFinder, it was noticeable its sensitivity to
the initial guess: initial guesses that were too big were tricky to result in convergence,
even though it was obvious a black hole was present. This was the case especially in the
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Figure 7.4: Evolution of the numerical apparent horizon during an equal mass black hole
merger. The points over the surface of each trapped surface is show for t = 36M, 64.5M
in the top panel and t = 70M, 100M in the bottom panel. One can observe the formation
of a new trapped surface surrounding the original apparent horizons, which in turn shrink
to zero size, leaving a remaining perturbed black hole relaxing to a Kerr black hole.

case of cosmological horizons [8] and mergers (where the initial guess for the common
apparent horizon is better put at a large overestimated radius). This can be easily
understood by looking at a simple example.

Consider the usual 4D Schwarzschild spacetime in isotropic coordinates and take the
induced spatial interval:

dl2 = ψ(r)4
(
dr2 + r2dΩ2

)
, (7.6)
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Figure 7.5: Different apparent horizons found for a single black hole with different boosts,
with speeds ranging from v = 0 to v = 99.5% the speed of light.

where ψ(r) = 1 + M
2r . Being a spherically symmetric spacetime, assume the black hole

to be spherical and take si to be the normal vector to spheres: si =
(

1
ψ(r)2 , 0, 0

)
, which

has unit norm. The resulting expansion is:

Θ =
2
(
1 − M

2r

)
r
(
1 + M

2r

)3 , (7.7)

which clearly implies r = M
2 to get Θ = 0, as expected for the location of the horizon

in isotropic coordinates. But, as it can be seen from figure 7.6, at around r ∼ 1.87M
there is a maximum, meaning that any initial guess in Newton’s method to the right of
this point will lead to divergent results. To fix such issue, one can notice in figure 7.6
that the quantity r · Θ has no maximum and converges to the correct root as long as the
iteration step γ is not big. This procedure is also mentioned by Thornburg [285, sec.
8.6.2].
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Figure 7.6: Plot of the expansion for spherical surfaces in a Schwarzschild spacetime
with mass M in isotropic coordinates. On the right, we see instead r · Θ to depict how
under Newton’s iterative method, this quantity is much better suited to find the Θ = 0
root.

Hence, the AHFinder solves for rΘ = 0 for improved convergence. As a matter of
fact, the AHFinder provides an easy way to change this and find any quantity, whether
that is the shape with Θ = 0, but also χ = constant (often useful) or even ∂tβ

x = 0.

7.2.4 Computing observables

After finding the apparent horizon, besides knowing its location, it is also important
to compute quantities like mass, spin and boost. These can be estimated numerically
from the AH shape found numerically. We first transform the Cartesian metric γij into
a metric γ′

ij in the adapted coordinates x′i = (h, xAS ):

γ′
ij = ∂xk

∂x′i
∂xl

∂x′j γkl . (7.8)

The induced metric on the co-dimension 1 surface S over the coordinates xAS is:

γSAB = ∂x′i

∂xAS

∂x′j

∂xBS
γ′
ij , (7.9)

where one should use the fact that ∂h
∂xA

S

= ∂H
∂xA

S

on the level set. This can now be used to
compute the area of the black hole via:

A =
∮
S

√
det

(
γSAB

)
d2xS . (7.10)

For 3d spacetimes, one can compute the spin of the black hole using the equator length.
For coordinates xAS = (θ, ϕ), fixing θ = π

2 , the metric reduces to a single component
γSϕϕ = γij

(
∂ϕx

i + ∂ϕH ∂rx
i
) (
∂ϕx

j + ∂ϕH ∂rx
j
)

which can be used to compute the equa-
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tor length via:

Leq =
∫ 2π

0

√
γSϕϕdϕ . (7.11)

Assuming 4D and Kerr-ness of the black hole (which is only approximately valid for non
isolated black holes or for highly dynamic phases, such as the merger, or in the absence
of vacuum, if we have matter sources coupling to gravity), one can then compute the
dimensionless spin, s:

s =

√√√√1 −
(

2πA
L2
eq

− 1
)2

, (7.12)

for which the angular momentum is J = sM2. The mass can be computed with several
formulas:

M = Leq
4π =

√√√√ A

8π
(
1 +

√
1 − s2

) =

√
A

16π + 4πJ2

A
. (7.13)

Alternatively, one can compute approximations of the linear and angular momentum
vector coordinate independent quantities using a Killing vectors in Minkowski space for
boosts and SO(3) rotations. The linear momentum:

P l = 1
8π

∮
S

√
det

(
γSAB

) (
φlL

)i
sjKijd

2xS , (7.14)

using the generators
(
φlL

)i
= δil. Similarly the angular momentum J l can be computed

using the rotational Killing vectors
(
φlA

)i
= ϵiljxj , where ϵilj is the Levi-Civita symbol

[290, 291].

Finally, GRChombo often integrates the Cartoon method, a method to reduce the
dimensionality of a spacetime with SO(n) symmetry (see Cook et al. [292] for details,
and applications with GRChombo in Figueras et al. [6, 194, 195] and Cheung et al. [293]).
For those cases, computations like the area (7.10) or the linear and angular momentum
(7.14) require including in the integrand the term

(
xw

√
γww

)n
Sn, where, following the

notation of Cook et al. [292], n is the number of Cartoon reduced dimensions, xw is the
Cartoon coordinate, γww is the cartoon metric component and Sn is the surface area of
a unit n-sphere, Sn = 2π

n+1
2

Γ( n+1
2 ) , with Γ the Euler Gamma function.

7.2.5 Code development

A precursor of an apparent horizon finder integrated for GRChombo existed from the work
by Tunyasuvunakool [209], able to find isolated Kerr black holes at specific timesteps
(and tweaked for higher dimension problems in specific projects; see also Cook [294]).
The AHFinder was developed as the integration into the modern and public GRChombo
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code with user-friendly controlled parameters adaptive to any simulation, but overall
working as an easy add-on without the researcher having to know many details. It also
integrates standard IO tools to allow seamless restarting from checkpoints, including an
interpolation algorithm to allow changing the number of points over the horizon surface,
and plotting tools, such as what was used to plot figure 7.4. The issue with such public
integrations is that a lot of use cases must be supported. This lead to many improvements
over time that make the AHFinder a robust tool:

• the generalisation of the code to finding any quantity contours (not just Θ = 0) in
any type of surface (spheres, cylinders, strings, as long as they can be defined via
a level set) in any dimension (currently tested in 2 + 1 and 3 + 1 dimensions);

• the support of Cartoon evolution with reduced dimensions;

• the requirement of tracking multiple black holes and estimating future positions of
moving black holes for the case of black hole binaries;

• the improved convergence by solving rΘ = 0 and by re-using previously found
surfaces as initial guesses;

• to adapt to highly parallelisable supercomputing environments, the development
of an MPI subcommunicator to process the root finding algorithm in a subset of
the computing nodes;

• the compatibility with all types of boundary conditions;

• the development of tools to integrate custom quantities over the apparent horizon
surface, such as the area, angular momentum, or any user-defined custom diagnos-
tic variables.

In numerical relativity, we often simulate black holes. When we simulate black holes,
it is obviously useful to know where the black holes are. As a consequence, this small
project required for the development of chapter 4 led to a multipurpose user-friendly
tool used by the GRChombo collaboration in many projects. Future work might revolve
around extending current surfaces to reference surfaces, as by Pook-Kolb et al. [284, 287],
making the Cartoon equations compatible with matter, and extending the code for non-
zero cosmological constant, such as AdS spacetimes.

7.3 Apparent horizon approximation

In moving puncture gauge, the profile of evolution variables such as the lapse or the
conformal factor, and diagnostics such as the location of the horizon are not known
very accurately other than from some early studies [17, 295, 296]. The location of the
black hole horizon, both in terms of coordinate distance to the puncture and in terms
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of the conformal factor on its surface, turns out to be quite essential for tasks such as
quickly finding the location of the horizon on the grid (often for visualisation purposes),
to perform excision (as in sections 4.3.6 and 6.3.7) or to improve tagging of AMR codes.
Regarding the tagging criteria, which refers to the criteria AMR algorithms use for the
creation and destruction of AMR levels and boxes within them (see appendix D.1 for
details), it is known that refinement levels close or crossing the apparent horizon can
cause drifts in the mass of black holes and even add full orbits in the case of binaries
[5]. Common dynamic tagging criteria may fail to cover the AH, and hence forcing the
levels to cover the black hole is clearly something that can help preventing this issue.

With that in mind, we performed evolutions from quasi-isotropic Kerr black hole
initial data [16] with different spins, to find the relation between spin and the conformal
factor and coordinate radius of the apparent horizon. This is illustrated in figure 7.7 and
resulted in the fit against the dimensionless spin of the black hole, j:

⟨χ⟩AH ≈ (0.266 ± 0.003)
√

1 − j2 ,

RAH/M ≈ (0.294 ± 0.006) + (0.75 ± 0.01)
√

1 − j2 .
(7.15)

It is important to note that even though χ varies across the apparent horizon surface,
even with spin, the horizon is still topologically spherical, having constant coordinate
radius. One other key fact is that this does not depend on the mass of the black hole,
making it a very useful metric to identify black holes in a numerical grid. Although
we would expect the plots to vary for different gauge parameters (in particular, as η is
varied, see Bruegmann et al. [17]), these plots provide a rough rule-of-thumb. It is valid
as a tagging criteria as these do not require precision, and in fact we should gladly take
an extra buffer around the black hole as safety margin. This as been used to develop
tagging criteria for chapters 4 and 5.

For techniques like excision, described in 4.3.6 and 6.3.7, slightly more precision is
required (though not exactness). For such purposes, one can use the analytic values for
the Kerr BH initial data with mass M and dimensionless spin j:

rAH, t=0 = M
4

(
1 +

√
1 − s2

)
,

χAH, t=0 =
[

(1−s2)1/6

16

(
1+

√
1−s2

2

)2/3
for θ = 0, (1−s2)1/6

16

(
1+

√
1−s2

2

)1/3
for θ = π

2

]
,

(7.16)
and make a smooth interpolating function that approximates the apparent horizon lo-
cation over time:

χAH, t = χAH, t→∞ + e−λ t(χAH, t=0 − χAH, t→∞) . (7.17)
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Figure 7.7: Plots illustrating the dependence of the value of the conformal factor χ and
the coordinate radius R on the apparent horizon surface in the moving puncture gauge for
different values of the dimensionless spin j. For all plots, we use the quasi-isotropic Kerr
initial data [16] and the default values of the gauge parameters with Mη = 1. Although
we would expect the plots to vary for different gauge parameters (in particular, as η
is varied, see Bruegmann et al. [17]), these plots provide a rough rule-of-thumb. The
left panels show the mean value of χ (top) and R (bottom) as a function of time with
the error bands around each curve corresponding to the maximum and minimum on
the apparent horizon. The right panels shows the mean value of χ and R over the
interval t/M ∈ [40, 100] for each j with the error bars corresponding to the minimum
and maximum values of χ over the same interval. Furthermore, we show a fit of the
mean value of χ and R against j which takes the form ⟨χ⟩AH ≈ (0.266 ± 0.003)

√
1 − j2

and RAH/M ≈ (0.294 ± 0.006) + (0.75 ± 0.01)
√

1 − j2.

Note that this is a lower bound estimate, meaning that the apparent horizon is guaranteed
to be outside of the region delimited by it, given an appropriate choice of λ.

The specific contour of χ to be used depends strongly on the number of dimensions.
The dependence on χ can be seen for the case of 5D black strings in figure 7.8, and
more details in Andrade et al. [192]. Being just a rule-of-thumb, a rough estimate can
be quickly assessed and it has been used in simulations of several higher dimensional
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spacetimes such as black rings [192–195] and black strings [6].

Figure 7.8: Apparent horizon and several χ contours during the evolution of the Gregory-
Laflamme instability of a black string in 5D, done in the context of the work in Figueras
et al. [6]. The horizontal and vertical axis are the coordinates of the computational
domain for a black string with a four-dimensional mass parameter M = 1 and a Kaluza-
Klein circle with asymptotic length L = 16.

Finally, other valid approximation technique involves using a puncture tracker (see
section 3.8.2.2) and estimating the size of the black hole from its known or estimated
mass. This turns out to be unfeasible in situations involving gravitational collapse, where
the initial data has no initial puncture to keep track of, as was the case of chapters 4
and 5.



Chapter 8

Conclusions

8.1 Summary

In this thesis, we studied gravitational waves in modified theories of gravity, with the goal
of investigating generic effects these theories have on physical observables that may allow
for detection of deviations from GR in future observational data. Given the corrections
to GR have to be locally small for any modified theory to make sense as valid EFTs, only
non-local observables, such as gravitational waves, may have large deviations originated
from cumulative small effects over time.

• In chapter 4, we started by exploring the regime of validity of certain cubic Horn-
deski theories of gravity that have a well-posed initial value problem, with the goal
of finding regions in the space of couplings and initial data which have future de-
velopments globally compatible with the weak field regime of the theories as valid
EFTs and hence suitable to use in binary black holes.

In this study, we identified that the breakdown of hyperbolicity in the future de-
velopment can happen for initial data which satisfies strict weakness conditions.
Using gravitational collapse of a scalar field bubble, we found Tricomi type transi-
tions for g2 > 0 in the G2 = g2X

2 theory, and Keldysh type transitions for g2 < 0
or any value of the sign for the cubic theory G3 = g3X. We provided analytic
justifications and predictions of when these effects occur. Interestingly, even for
coupling constants that would break hyperbolicity for low amplitudes of the scalar
field, for big enough amplitudes that still satisfies the WCC, the region of validity
is unexpectedly extended, as the earlier appearance of a trapped surface shield
observers from any pathology of the theory. Numerically this translates to the
possibility of excising any problematic region inside apparent horizons from the
computational domain.

This analysis gave an understanding that, while not necessarily present in all theo-
ries, many similar models will suffer from the same pathology wherein valid initial
data may evolve into regions where the evolution equations turn elliptic or parabolic
and the theory and formulation used break down.

• Chapter 5 focused on studying binary black holes in cubic Horndeski theories,
using couplings and initial data in the regime of validity found via chapter 4. We
identified a mismatch of the gravitational wave strain between Horndeski and GR
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(coupled to a scalar field) as large as 10 − 13% for elliptic binaries and more than
30% for circular binaries, in the Advanced LIGO mass range. Being a non-local
observable, this is due to a distinct frequency spectrum and, as a consequence an
accumulated phase shift over time much smaller than the local deviations Horndeski
introduces. These effects are likely generic to many other theories, suggesting
that many events might be undetected by current detectors if certain conditions
are present, such as the existence of a scalar cloud in the vicinity of the black
hole galactic environment, for the case of cubic Horndeski. They can be detected
and the couplings can be constrained in future more precise observations if one
can detect gravitational waves produced in early stages of a binary, extract its
parameters in order to predict the time of merger according to GR, and observe
potential deviations between the GR prediction and the observed merger time.

We confirmed certain weak field conditions are satisfied at all times, including
during the merger phase. We concluded that certain cases have the degeneracy
between Horndeski and GR broken, even though we observe degeneracy between
different Horndeski theories, in the cases G2 and G3 analysed.

• In chapter 6, the goal was to simulate fully non-linearly black hole binaries in
theories with higher derivative corrections to GR, again, with the hope that small
local effects at low energies can build up over time and leave an imprint in non-local
observables such as gravitational waves.

With well-posedness clearly gone out of the window for these theories, we made
use of the fixing method described in section 2.8. After gaining intuition from a
toy model adding higher derivatives to a wave equation, we build several systems
capable of reproducing the low energy behaviour of the theory while damping high
energy frequencies.

We analysed the accuracy of several fixing systems, their invariance to changes
in unphysical parameters and obtain an evolution error of T = 0.1% for the best
model in simulations of single boosted black holes. For binary black holes, this lack
of accuracy was a more significant effect than the local changes due to ϵ = 10−5,
leading to a mismatch of −0.39 ± 4.10%, compatible statistically with zero.

Our work demonstrated that phase shifts seem to be generic effects of modified the-
ories, yet emphasises the importance that any research using the fixing procedure
must verify if it accurately tracks the physical variables it claims to approach.

• Finally, in chapter 7, we presented AHFinder, an open-source and user-friendly
tool developed in the context of the GRChombo collaboration to identify apparent
horizons in multiple spacetimes with high parallelisation. This includes single or
multiple moving black holes and its mergers, cosmological horizons and also higher
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dimensional black holes, such as black strings, as it supports Cartoon reductions
[292]. The AHFinder can find any contour in any user-defined level set surface in
any number of dimensions, and integrate any custom quantities over the converged
surfaces.

8.2 Future work

Based on the conclusions drawn above, further work can be carried out in the following
topics:

• Regarding the analysis done about gravitational collapse in chapter 4, it would
be very relevant to perform the same study for massive scalar fields, as we found
this was essential for the findings of 5. Analysing other G2 and G3 theories is also
of interest, as some theories are known not to have hyperbolicity concerns [110].
Finding more general conditions in the initial data considered and other classes of
initial data is also of interest, to pursue a more complete map of the Horndeski
theory landscape.

• Regarding chapter 5, besides investigating gravitational waves in more Horndeski
theories or in systems with spin and unequal mass, it can be very fruitful to analyse
binary black holes with initial data other than scalar field bubbles collapsing to
black holes. For instance, considering black holes already formed surrounded by
scalar field halos may be a physical situation more likely to approximate the real
universe. Furthermore, understanding the degeneracy of gravitational waves in
modified theory versus GR is of great importance. Additionally, it is important to
try to match theoretical predictions as the ones found in this thesis to observational
data, in order to (further) constrain the size of the couplings of several Horndeski
theories. Finally, besides the work done for Horndeski theories, understanding the
detectability of scalar fields (even for minimally coupled scalar fields, as in Barsanti
et al. [297]), opposed to vacuum waveform predictions, is also very pertinent.

• We consider that studies made in chapter 6 are very promising to study many EFTs
that can lead to important discoveries of how GR is extended and how extensions
are constrained. It is important to continue the exploration of the fixing method to
find new ways of performing the procedure that are both more accurate and that
allow the use of bigger coupling constants. It is also relevant, on the one hand,
to verify that indeed the form of the system chosen is not unique and not crucial,
and on the other hand, to systematise the confirmation of the accuracy of a given
new proposed system or of a system previously successful being applied to a new
theory.
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On the computational front, several possibilities would allow to extend this work
and open many opportunities to study a wide range of problems in numerical relativity.
Namely:

• The AHFinder is publicly available, but the task of adding it to the main GRChombo

code is in progress, as well as adding documentation for all its use cases and
capabilities.

• Developing within the GRChombo collaboration a 1D gravity code that is easy to
integrate with existing classes can prove miraculously useful and speed up our
research tremendously, as much of our research is or can be done in spherical
symmetry, for which a 3D code is not required.

• Concluding the integration in the public open-source GRChombo code of the 2D
Cartoon code started originally by Pau Figueras for studies in higher dimensions
[194, 195, 292] and used during my research for other projects [7] can be very useful
to speedup 3D simulations with asymmetry, as is the case of head-on mergers, and
hence speedup research of various groups as well. Adding matter sources to the
Cartoon code is also of interest.

• Katy Clough is directing an initiative to aggregate modified gravity codes under
the umbrella of GRChombo. Adding the Horndeski and the EFT codes developed
for this thesis could be incredibly fruitful to lower the barrier of entry in studying
modified gravity theories fully non-linearly.

• Finally, though preliminary steps have been taken in joint work with Llibert Aresté
Saló, Justin Ripley and Pau Figueras, the addition of the modified generalised
harmonic gauge [50, 51] to the GRChombo public code, either in a full 4D or in a
3 + 1 re-formulation of it in a similar way to the work by Brown [298, 299], may
be extremely useful in order to create an easier formulation of GR which does not
require conformal decompositions. It would also allow the evolution of new theories
such as the 4∂ST theory mentioned in section 2.5 and as done in a conformal way
in [57].

In summary, I am confident that the research described in this thesis presents novel
and unexpected results, proposes new numerical methods and opens new avenues for the
exploration of modified gravity theories and their effect on gravitational waves, with the
use of numerical relativity, for us to hopefully find, one day, what Einstein missed.
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Appendix A

Gravitational collapse in cubic Horn-
deski theories

A.1 3 + 1 conformal decomposition

A.1.1 Equations of motion

In this appendix we present the conformal 3+1 form of the stress tensor and the scalar
equation (4.4) as we have implemented in our code.

Consider the usual timelike vector nµ normal to the spatial hypersurfaces; the pro-
jector γµν = gµν +nµnν defines the spatial 3-metric γij with the corresponding covariant
derivative Di. From these, we obtain the following decomposition for the first derivatives
of the scalar field:

Π := Lnϕ = nµ∇µϕ , (A.1)

Πi := Diϕ , (A.2)

where Ln denotes the Lie derivative along nµ. It follows that ∇µϕ = Πµ − nµΠ and
X = 1

2
(
Π2 − ΠiΠi

)
. We also decompose the second derivatives of the scalar field, defining

the auxiliary variables:

Ln⃗Π := nµnν∇µ∇νϕ = Ln⃗Π − ΠiD
i lnα ,

τi := γµi n
ν∇µ∇νϕ = KijΠj +DiΠ ,

τij := γµi γ
ν
j ∇µ∇νϕ = KijΠ +D(iΠj) ,

(A.3)

and hence τ := τ i
i = KΠ +DiΠi. Therefore, we get

∇µ∇νϕ = Ln⃗Πnµ nν − 2n(µτν) + τµν ,

□ϕ = τ − Ln⃗Π ,
(A.4)

with nµτµ = 0 and nµτµν = 0. In terms of the usual conformal spatial metric γ̃ij := χγij

(with det(γ̃ij) = 1) and its associated covariant derivative D̃i, we define the conformal
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variables for the scalar field as,

Π̃i := D̃iϕ , τ̃i := τi , τ̃ij := χτij . (A.5)

Note that the indices of τ̃ij are raised with the conformal metric γ̃ij so that τ̃ := τ̃ i
i = τ ,

and similarly for all other conformal variables. For example, Π̃i = 1
χΠi, which implies

X = 1
2(Π2 − χΠ̃iΠ̃i). With these definitions in place, the 3+1 conformal decomposition

of the scalar energy-momentum tensor is:

κρ := κnµnνTµν

= V −G2 + 1
2
(
Π2 + χΠ̃iΠ̃i) (1 + 2∂ϕG3) + ∂XG3(τ̃Π2 − χΠ̃iΠ̃j τ̃ij) + Π2∂XG2 ,

(A.6)

κSi := − κnµγ n
i Tµν

= − Π Π̃i
(
1 + ∂XG2 + 2∂ϕG3

)
+ ∂XG3(χΠ̃iΠ̃j τ̃j + Π Π̃j τ̃ij − τ̃Π Π̃i − Π2τ̃i) ,

(A.7)

κSij := κ γ µ
i γ

ν
j Tµν

= Π̃iΠ̃j
(
1 + ∂XG2 + 2∂ϕG3

)
+ 1

χ γ̃ij
(
G2 − V +X + 2X∂ϕG3

)
(A.8)

+ ∂XG3
[
τ̃ Π̃iΠ̃j + 2Π Π̃(iτ̃j) − 2Π̃kΠ̃(iτ̃j)k − γ̃ijΠ̃k(2Πτ̃k − Π̃lτ̃kl)

+ Ln⃗Π( 1
χ γ̃ijΠ

2 − Π̃iΠ̃j)
]
,

Similarly, the scalar field evolution equation (4.4) in first order form is given by (A.1)
and:

Ln⃗Π
[
1 + ∂XG2 + 2∂ϕG3 + 2τ̃ ∂XG3 −X2(∂XG3

)2 − χΠ̃iΠ̃j τ̃ij∂
2
XXG3 − 2X∂2

ϕXG3

+ Π2
(
2X
(
∂XG3

)2 + ∂2
XXG2 + τ̃ ∂2

XXG3 + 2∂2
ϕXG3

) ]
=

= ∂ϕG2 − ∂ϕV + τ̃
[
1 + ∂XG2 + 2∂ϕG3 + τ̃ ∂XG3 −X2(∂XG3

)2 − 2X∂2
ϕXG3

]
+
[
∂2
XXG2 + 2∂2

ϕXG3 + 2X
(
∂XG3

)2 + τ̃ ∂2
XXG3

]
χ(2Π Π̃iτ̃i − Π̃iΠ̃j τ̃ij)

− (∂2
ϕXG2 + ∂2

ϕϕG3)2X

+ χ∂2
XXG3

[
(Πτ̃i − Π̃j τ̃ji)(Πτ̃ i − Π̃kτ̃

ki) − χΠ̃iΠ̃j τ̃iτ̃j
]

− ∂XG3
[
G2X − 2χτ̃iτ̃ i + τ̃ij τ̃

ij +X2(2 + ∂XG2 + 4∂ϕG3)
]
.

(A.9)
Note that one can obtain the standard 3+1 evolution equations without a conformal
transformation by setting χ = 1 and dropping any ‘˜ ’ superscripts.
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A.1.2 Effective metric

As discussed in section 4.3.1, the quantities −α2h00 and det (hµν) are useful to monitor
the hyperbolicity of the scalar equation of motion and determine whether its change of
character is of the Tricomi or Keldysh type. Here we present −α2h00 and hµν in terms
of the 3+1 conformal variables, which is how we have calculated them in our code:

h0
i = 1

α

{
Π Π̃i

[
2X

(
∂XG3

)2 + ∂2
XXG2 + τ̃ ∂2

XXG3 + 2 ∂2
ϕXG3

]
+ τ̃i

(
2 ∂XG3 + Π2 ∂2

XXG3
)

− ∂2
XXG3

(
Π̃k τ̃ki Π + χ Π̃i Π̃k τ̃k

)}
,

h0
0 = βkh0

k − α2h00 ,

hij = − βih0
j − χ Π̃i Π̃j

[
2X
(
∂XG3

)2 + ∂2
XXG2 + τ̃ ∂2

XXG3 + 2 ∂2
ϕXG3

]
+ δij

[
1 + ∂XG2 + 2 ∂ϕG3 + 2 τ̃ ∂XG3 −X2(∂XG3

)2 − 2X ∂2
ϕXG3

− χ Π̃k Π̃l τ̃kl ∂
2
XXG3 + 2χΠ Π̃k τ̃k ∂

2
XXG3

]
− 2 ∂XG3 τ̃

i
j + χ∂2

XXG3
(
Π̃i τ̃jk Π̃k + Π̃j τ̃

ik Π̃k − Π Π̃iτ̃j − Π Π̃j τ̃
i
)

− Ln⃗Π
[
δij

(
2 ∂XG3 + Π2∂2

XXG3
)

− χ Π̃i Π̃j ∂
2
XXG3

]
,

hi0 = βkhik − α2χγ̃ikh0
k + α2h00 βi ,

(A.10)

and,
−α2h00 = 1 + ∂XG2 + 2 ∂ϕG3 + 2 τ̃ ∂XG3 −X2(∂XG3

)2
− χ Π̃i Π̃j τ̃ij ∂

2
XXG3 − 2X∂2

ϕXG3

+ Π2[2X(∂XG3
)2 + ∂2

XXG2 + τ̃ ∂2
XXG3 + 2 ∂2

ϕXG3
]
.

(A.11)

From (A.10) one can readily compute det(hµν). If necessary, the effective metric with
both indices up can also be obtained by raising the lower index in (A.10) with the
spacetime metric. For completeness, one can write the extra inverse relations with the
raised metric, convenient for numerical purposes:

h0i = −βih00 + χ γ̃ikh0
k ,

hij = βiβjh00 − χβj γ̃ikh0
k + χγ̃jkhik .

(A.12)

A.2 Determinant of the effective metric

We can compute det (hµν) in full generality using Cayley–Hamilton’s theorem and New-
ton’s identities. The general case, with both G2 ̸= 0 and G3 ̸= 0, is not particularly
insightful and in practice it is preferable to directly compute the determinant of the
metric with a lowered index numerically. For use in section 4.3.5, in this appendix we
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provide the explicit expression for the determinant in the case G2 = 0 and G3 = g3X:

det (hµν) = 1 + 6g3□ϕ+

+ g2
3
[
14 (□ϕ)2 − 2 (∇µ∇νϕ) (∇µ∇νϕ)

]
+ g3

3

[
44
3 (□ϕ)3 − 2□ϕ

(
2 (∇µ∇νϕ) (∇µ∇νϕ) +X2

)
− 4X (∇µϕ) (∇νϕ) (∇µ∇νϕ) − 8

3 (∇µ∇νϕ) (∇µ∇ρϕ) (∇ν∇ρϕ)
]

+ g4
3

[
6 (□ϕ)4 − 4 (□ϕ)2

(
X2 + (∇µ∇νϕ) (∇µ∇νϕ)

)
− 6X4

− 8□ϕX (∇µϕ) (∇νϕ) (∇µ∇νϕ) − 8X (∇µϕ) (∇νϕ) (∇µ∇ρϕ) (∇ρ∇νϕ)

− 4 (∇µ∇νϕ) (∇ν∇ρϕ) (∇ρ∇σϕ) (∇σ∇µϕ)

+ (∇µ∇νϕ) (∇µ∇νϕ)
(
−4X2 + 2 (∇ρ∇σϕ) (∇ρ∇σϕ)

) ]
+ g5

3

[
2□ϕX2

(
2 (∇µ∇νϕ) (∇µ∇νϕ) − 7X2

)
− 4 (□ϕ)3X2

+ 8X2 (∇µ∇νϕ) (∇ν∇ρϕ) (∇ρ∇µϕ)

− 16X (∇µϕ) (∇νϕ) (∇ρ∇µϕ) (∇σ∇νϕ) (∇ρ∇σϕ)

+ 8X (∇µϕ) (∇νϕ) (∇µ∇νϕ)
(
− (□ϕ)2 +X2 + (∇ρ∇σϕ) (∇ρ∇σϕ)

) ]
+ g6

3

[
8□ϕX3 (∇µϕ) (∇νϕ) (∇µ∇νϕ)

+ 3X4
(
2 (∇µ∇νϕ) (∇µ∇νϕ) − 5 (□ϕ)2

)
+ 8X6 + 8X3 (∇µϕ) (∇νϕ) (∇µ∇ρϕ) (∇ν∇ρϕ)

]
+ g7

3X
5 (10□ϕX − 4 (∇µϕ) (∇νϕ) (∇µ∇νϕ)) − 3g8

3X
8 .

(A.13)

A.3 Solving the Hamiltonian and Momentum constraints

In Horndeski, for non-zero G2 and/or G3, even a scalar field with zero momentum will
have non-trivial momentum constraints. In vacuum GR, this is not the case, and one can
often get away with simple solutions such as K = Ãij = 0, since Si = 0 for a minimally
coupled scalar field. In GR, for the leftover Hamiltonian constraint, several solutions are
often introduced: relaxing the conformal factor χ with the Hamiltonian constraint (this
has slow convergence, but works as a simple method); or for instance taking advantage
of CCZ4 damping of the constraints assuming that the initial constraints are very small
(which is true if the scalar field has low density). The later could work for Horndeski as
well, but given the objective of chapter 4 was to explore the evolution of gravitational
collapse when varying the initial data parameter space, it was desirable to remove po-
tential sources of error such as constraints in the initial data. For Horndeski, to solve
the joint Hamiltonian and Momentum constraints, we used the conformal transverse-
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traceless decomposition (introduced in section 3.6.1). Note how Baumgarte and Shapiro
[14, p. 64] use a different rescaling for Ãij based on the conformal factor (as mentioned
in section 3.6.1).

For the purpose of chapter 4, we considered spherically symmetric initial data. This
has the advantage of reducing the 3 Momentum constraints to 1, in the radial direction.
In the case of non-vacuum equations with non trivial Si, the constraints are coupled
elliptic equations that we solve numerically in Mathematica. Following the naming in
3.6.1, as typical choices for the degrees of freedom, choose the conformal metric to be
conformally flat (5 degrees of freedom), choose the trace of the extrinsic curvature to
be zero (called maximal slicing, see section 3.5), K = 0 (1 degree of freedom) and the
divergence-less traceless part of the extrinsic curvature to be zero, ÃijTT = 0 (2 degrees
of freedom). This leaves us with 4 equations to solve and 4 degrees of freedom. These
are the conformal factor, χ, and the 3 components of the vector potential, W i. Noting
that given conformal flatness, R̃ij = 0 and, in Cartesian coordinates, the constraints in
4D reduce to:

H = 1
2

[
2∂i∂iχ− 5

2χ∂
iχ∂iχ− ÃijÃ

ij
]

− κ
2ρ = 0 ,

Mi = ∂j∂jWi + 1
3∂i∂

jWj − 3
2ÃijD̃

j lnχ− κ
2Si = 0 .

(A.14)

Let us now turn to spherical coordinates. In conformal flatness, the spherical coordinate
system x̄i = (r, θ, ϕ) has its metric in the form:

γ̃ij =


1 0 0
0 r2 0
0 0 r2 sin θ2

 . (A.15)

Let us assume that the vector potential has radial symmetry, Wθ = 0, Wϕ = 0, meaning
that Wi = (Wr, 0, 0). Any such vector has covariant derivatives as follows1:

D̃iWj =


∂rWr 0 0

0 rWr 0
0 0 r sin θ2Wr

 . (A.16)

1It applies equivalently to a scalar field second covariant derivatives D̃iD̃jϕ, using Wj ≡ D̃jϕ.
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From this we can conclude the following useful expressions2:

D̃iW
i = ∂rWr + 2Wr

r = 1
r2∂r

(
r2Wr

)
,

D̃2ϕ = ∂2
rϕ+ 2

r∂rϕ = 1
r2∂r

(
r2∂rϕ

)
= 1

r∂
2
r (rϕ) ,(

D̃jD̃jWi

)
r

= 1
r∂

2
r (rWr) − 2Wr

r2 = ∂2
rWr + 2

r∂rWr − 2Wr
r2 =

= ∂r
(
∂rWr + 2Wr

r

)
=
(
D̃iD̃

jWj

)
r
.

(A.17)

From a radial vector potential, one can show that, from equations (3.38)-(3.40), Ãij can
be written in spherical coordinates as:

Ãij = 4
3

(
∂rWr − Wr

r

)
1 0 0
0 − r2

2 0
0 0 − r2 sin θ2

2

 = Ãrr


1 0 0
0 − r2

2 0
0 0 − r2 sin θ2

2

 . (A.18)

Looking at the form of A.15, Ãij can be seen as clearly traceless. One can also see
that the contraction of Ãij with itself yields ÃijÃij = 3

2Ã
2
rr. One can now re-write the

constraints to solve in spherical coordinates as:

2H = 2
r∂

2
r (rχ) − 5

2χ (∂rχ)2 − 3
2Ã

2
rr − κρ = 0 , (A.19)

Mr = 4
3

(
∂2
rWr + 2

r∂rWr − 2Wr
r2

)
− 3

2χÃrr∂rχ− κ
2Sr = 0 . (A.20)

This is a system of two couple equations solving for the conformal factor, χ and the radial
lowered vector potential, Wr. Let us now worry about the matter terms. Following
equations (A.6)-(A.7), and the choice G2 = g2X

2, G3 = g3X and V (ϕ) = 1
2m

2ϕ2 as
described for chapters 4-5 (see 4.2.1 and [237]) , one gets:

κρ = 1
2

(
Π2 + χΠ̃iΠ̃i

)
+ g2

(
−X2 + 2XΠ2

)
+ 1

2m
2ϕ2 + g3

(
τ̃Π2 − χΠ̃iΠ̃j τ̃ij

)
,

κSi = −Π Π̃i (1 + 2g2X) + g3
(
χΠ̃iΠ̃j τ̃j + Π Π̃j τ̃ij − τ̃Π Π̃i − Π2τ̃i

)
.

(A.21)

2See Wolfram MathWorld - Spherical Coordinates expression 93 for the vector Laplacian. Expressions
53-61 have also proved useful.

http://mathworld.wolfram.com/SphericalCoordinates.html
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For the chosen initial data:

X = 1
2

[
Π2 − (∂rϕ)2

]
,

τ̃ = χD̃2ϕ− 1
2Π̃kD̃kχ = χ

r ∂
2
r (rϕ) − 1

2∂rϕ∂rχ ,

τ̃i = ÃijΠ̃j + D̃iΠ =⇒ τ̃r = Ãrr∂rϕ− ∂rΠ [τ̃θ = 0 = τ̃ϕ] ,

τ̃ij = ÃijΠ + χD̃iΠ̃j + Π̃(iD̃j)χ− 1
2 γ̃ijΠ̃

kD̃kχ [diagonal]

=⇒ τ̃rr = ÃrrΠ + χ∂2
rϕ+ 1

2∂rϕ∂rχ ,

Π̃iΠ̃j τ̃ij = Π̃rΠ̃r τ̃rr = (∂rϕ)2 τ̃rr ,

Π̃j τ̃j = Π̃r τ̃r = ∂rϕτ̃r ,(
Π̃j τ̃ij

)
r

= Π̃r τ̃rr = ∂rϕτ̃rr

[(
Π̃j τ̃ij

)
θ

= 0 =
(
Π̃j τ̃ij

)
ϕ

]
.

(A.22)

There is one left over issue to result: boundary conditions. For χ, one can easily choose
∂rχ

∣∣
r=0 = 0 (due to spherical symmetry) and χ

∣∣
r=∞ = 1. For Wr, one can find its

boundary conditions by analysing the boundary conditions we wish for Ãij . These are:
∂rÃij

∣∣
r=0 = 0 and Ãij

∣∣
r=∞ = 0. Expanding Ãij and its derivatives as a function of Wr,

we get:

Ãrr = 4
3

(
∂rWr − Wr

r

)
, (A.23)

Ãθθ = −Ãrr r
2

2 , (A.24)

Ãϕϕ = Ãθθ sin θ2 , (A.25)

∂rÃrr = 4
3

(
∂2
rWr − ∂rWr

r + Wr
r2

)
, (A.26)

∂rÃθθ = −∂rÃrr r
2

2 − Ãrrr (A.27)

= −2r2

3

(
∂2
rWr + ∂rWr

r − Wr
r2

)
,

∂rÃϕϕ = ∂rÃθθ sin θ2 . (A.28)

We explicitly show 2 ways of deriving the same conclusions:

1. First, looking at leading order terms. If we want A.23 to be zero at infinity, the
leading order term ∂rWr has to be zero at infinity, and Wr can take any finite
value. Then, if we want A.26 and A.27 to be zero at the origin, the leading order
term at the origin implies Wr

∣∣
r=0 = 0.

2. Second, looking at the full solutions. The solution to Ãrr = 0 is Wr = C r as
r → ∞, for some constant C. For it to be bounded at infinity, we choose C = 0 and
hence Wr

∣∣
r=∞ = 0. The solutions to ∂rÃrr = 0 and ∂rÃθθ = 0 are, respectively,

Wr = Ar + B r ln r and Wr = A′ r + B′

r , for constants A,A′, B,B′. Requiring
regularity at r = 0, this implies B = B′ = 0 for both cases and hence Wr = Ar as
r tends to 0, i.e. Wr|r=0 = 0 (with ∂rWr some arbitrary constant).
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We hence conclude that the boundary conditions for this problem are:

∂rχ
∣∣
r=0 = 0, χ|r=∞ = 1, Wr

∣∣
r=0 = 0, Wr|r=∞ = 0 . (A.29)

In practical purposes, numerically, we took r = 0 to be a very small number (r0 = 10−4)
and r = ∞ a large enough number (r∞ = 5000), solving the equations between r ∈
[rmin = r0, rmax = r∞].

Having solved the 2 constraint equations A.19 and A.20, one has to reconstruct
the ÃCij in Cartesian coordinates from the tensor in spherical coordinates, ÃSij , which
can be done by a coordinate transformation using the Jacobian matrix from Cartesian
coordinates, xi = (x, y, z):

M i
j ≡ ∂x̄i

∂xj
=


x
r

y
r

z
r

xz

r2
√
x2+y2

yz

r2
√
x2+y2

−
√
x2+y2

r2

− y
x2+y2

x
x2+y2 0

 , (A.30)

ÃCij = ÃSklM
k
iM

l
j =

(
MT · ÃS ·M

)
ij

= Ãrr


3x2

2r2 − 1
2

3xy
2r2

3xz
2r2

3xy
2r2

3y2

2r2 − 1
2

3yz
2r2

3xz
2r2

3yz
2r2

3z2

2r2 − 1
2

 =

= Ãrr
(

3
2r2xixj − 1

2 γ̃ij
)

= Ãrr
(

3
2r2xixj

)TF
, (A.31)

where Ãrr = 4
3

(
∂rWr − Wr

r

)
, γ̃ij = δij in Cartesian coordinates and xi are lowered with

this metric (and hence identical to xi).

We have now all the tools to obtain our initial data. For some sample parameters,
using the initial data of equations (4.5)-(4.6) with r0 = 5, ω = 1√

2 and g2 = g3 = 0 (we
already know the difference for small coupling is small based on figure 4.2), the resulting
solutions for varying amplitude A are shown in figure A.3.1. The behaviour for large
radius of χ follows a 1

r asymptote as expected3, while Wr seems to decay with 1
r2 and

Arr with 1
r3 . The behaviour for small r of Wr follows a linear behaviour Wr = Ar as

also understood when analysing the boundary conditions of the problem.

The way spherically symmetric data is converted into 3D data in our numerical code
GRChombo is using interpolation, based on a grid of points from the numerical solution
of the coupled constraint equations solved. As a summary, the process for generating
initial data is:

3This could indeed be used to estimate the mass of the spacetime, but a more accurate method is
provided in appendix A.7.
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Figure A.3.1: Initial data solutions for χ, Wr and Arr for several values of scalar field
profiles (top, in orange, right y-axis) with in-going momentum.

1. Solve numerically the coupled constraint equations A.19 and A.20, with boundary
conditions (A.29) in Mathematica;

2. Extract a grid of points from the interpolated numerical result;

3. Solve an interpolation method for its coefficients for the points chosen. We use
Cubic Spline interpolation method, outlined in appendix D.4;

4. Export grid points and interpolation coefficients;

5. In GRChombo, read grid points and coefficients and perform interpolation in each
cell based on equation (A.31).

A.4 Convergence

In this appendix we provide details of some of the convergence tests that we have carried
out. As an illustrative example, we consider the weak coupling g2 = 0.005 case presented
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Figure A.4.1: Convergence test for the g2 = 0.005 run with different coarse resolutions:
low (LR: 963), medium (MR: 1283) and high (HR: 1603) resolutions, in addition to 7
refinement levels. Top: evolution of χ at a fixed radius of r = 3. Bottom: |MR − LR|
and |HR − MR| errors and the expected values for |MR − LR| assuming 2nd and 4th

order convergence.

in 4.4.1.1. To carry out the convergence tests, we used simulations with coarsest level
resolutions ∆x = 1 (low resolution, LR), ∆x = 0.75 (medium resolution, MR) and
∆x = 0.6 (high resolution, HR) respectively, all with the same 7 additional levels of
refinement. The results of the simulations for the 4 cases analysed are shown in figure
A.4.1. The bottom panel shows the error estimates |MR − LR| (solid green curve)
and |HR−MR| (solid purple curve), and compares them to the expected errors for 2nd

(dashed blue) and 4th (dashed red) order convergence. The latter were obtained from the
|HR−MR| error using the continuum limit of the convergence factor: (∆xLR)n−(∆xMR)n

(∆xMR)n−(∆xHR)n .
We see that our numerical results are consistent with convergence order between 2 and
4. Notice that it appears that the evolution has not reached a stationary state, but
this should not be a concern since the outcome in terms of well-posedness and possible
pathologies has already been determined after collapse occurred.

We also monitor the behaviour of the Hamiltonian and Momentum constraints for the
simulation with g2 = 0.005 presented in 4.4.1.1. We measure the L2 norm of a quantity
Q by the volume average:

L2Q =
√

1
V

∫
V

|Q2|dV , (A.32)
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where V is the volume of the box except the region excised inside black holes (if there
are any present). We normalise the constraints by the norm of the sum of the absolute
value of each term in the constraints. We show in figure A.4.2 that violations are under
the 0.1% level during gravitational collapse. Constraint violations increase at late times
due to the following reasons. Firstly, some of the scalar field (or all of it in Cases 1 and
2) disperses to infinity; as the scalar field propagates towards the boundaries, it moves
away from the centre of the grid into coarser refinement levels, and thus resolution is
lost. Secondly, as the scalar field disperses or is absorbed by the black hole, matter terms
in the constraints become increasingly smaller and, as a consequence, the normalisation
factors used also significantly decrease. Therefore, we can conclude that we have a good
numerical control over our simulations.
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Hamiltonian Constraint

Momentum Constraint

GR Contraints

Case 1

Case 2

Case 3

Case 4
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Figure A.4.2: L2 norm of constraints for the g2 = 0.005 run with coarsest level resolution
of ∆x = 1 and 7 additional levels of refinement. We normalise the constraints by the
norm of the sum of the absolute value of each term that composes it.
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A.5 Implementation verification

It is not an easy task to ensure the equations of motion evolved in the code are the
ones of the original theory intended to study without any errors in derivation or in
conversion of equations to code. To ameliorate derivation errors, all the equations of
motion, from the 4D equations 4.2.2 to the 3 + 1 decomposition A.1.1, were derived
using the Mathematica package xAct [300]. One has to handle 3 different metrics (the
4D metric, the 3+1 metric and the 3+1 conformal metric) in xAct for a derivation with
no assumptions that achieves a full proof of the equations.

After obtaining the equations, one could use software to convert them into C++
code, but this proves unfeasible for two reasons: first, GRChombo is heavily templated
and makes use of custom primitives, and second, generated code is often unreadable and
hard to edit or inspect manually. Instead, we used xCoba, part of the xAct package [300],
to generate random initial data, evaluate the evolution equations for this data with both
the analytical data in Mathematica and the numerical code in GRChombo, and ensure the
two agree numerically up to machine precision. To perform this, a random polynomial
of sufficiently high degree on the Cartesian coordinates (x, y, z) (a combination of terms
αxaybzc for integers a, b, c and a real constant α) was generated for each variable, such
that first and second derivatives can be easily evaluated, as well as computing from
these composite variables such as the Riemann tensor. After derivatives are evaluated,
one can evaluate the result in a few points and confirm the answers match between the
code and xCoba. It is important however to preserve physical properties, such as the
tracelessness of Ãij or the unit determinant of γ̃ij , which are assumed in the derivation
of equations. Hence, polynomials were generated for γij ,Kij ,Θ, Γ̂, α, β, ϕ,Π,Λ, which
also naturally define valid γ̃ij , χ, Ãij and K. Note that this initial data is definitely not
constraint satisfying, but this is not a problem, as the CCZ4 equations do not assume the
constraints are satisfied and hence we validate the right hand side of all the equations,
including the right hand side for Θ and Θi, without the need of constraint satisfaction.

A.6 Other cases of interest

In figures A.6.1, A.6.2 and A.6.3 of this appendix we collect the results of some simula-
tions that are relevant for parts of the discussion in the main text of chapter 4.
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Figure A.6.1: det(hµν) (top) and −α2 h00 (bottom) for an intermediate positive coupling:
g2 = 0.2. The corresponding values of η2, from left to right, are: 2×10−5, 8×10−5, 3.9×
10−4, 8.7 × 10−4. For small enough initial data (Case 1) the evolution is perfectly con-
sistent, while it breaks down in a Tricomi-type of transition in Cases 2 and 3. For large
enough initial data (Case 4), the pathologies that may develop during the evolution are
hidden behind the black hole horizon. In this case, the weak field condition is small on
and outside the black hole horizon.
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Figure A.6.2: det(hµν) (top) and −α2 h00 (bottom) for G3 = g3X with g3 = 0.4. The
corresponding values of the dimensionless coupling η3, from left to right, are: 1.6 ×
10−5, 3.2 × 10−5, 7 × 10−5, 1 × 10−4. In all cases the evolution breaks down because
−α2h00 → 0, signalling a Keldysh-type-of transition.
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Figure A.6.3: Characteristic speeds of the outgoing (top) and ingoing (bottom) scalar
modes for G3 = g3X with g3 = 0.4. v− diverges at the transition, but v+ remains finite.

A.7 ADM mass in spherical symmetry

To calculate the ADM mass, one can use equation (3.128) of Baumgarte and Shapiro
[14, p. 85] (see also Brewin [301]):

MADM = 1
κ

∫
∂Σ∞

√
γγjnγim (∂jγmn − ∂mγjn) dSi , (A.33)

where ∂Σ∞ is the 2-dimensional surface boundary of some spatial slice Σ, dSi = σi
√
γ∂Σ∞d2z

is the outward-oriented surface element of ∂Σ∞, zi’s are the coordinates on ∂Σ∞, γ∂Σ∞

the induced metric on it and σi the unit normal to it (σiσi = 1). To calculate this explic-
itly in conformal language, realise that in D = 4: √

γ = χ− 3
2 , γij = χγ̃ij , γij = 1

χ γ̃ij . For
spherical symmetry and conformal flatness: σi ∝

[
x
r ,

y
r ,

z
r

]
(which for consistency should

be normalised to 1 using the induced metric γij) and finally
√
γ∂Σ∞ = r2 sin θ

χ . Putting
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this all together:

MADM = 1
κ

∫
∂Σ∞

χ−3/2γ̃jnγ̃im (χ (∂j γ̃mn − ∂mγ̃jn) − (γ̃mn∂jχ− γ̃jn∂mχ)) dSi =

= 1
κ

∫
∂Σ∞

χ−5/2γ̃jn (χ (∂j γ̃in − ∂iγ̃jn) − (γ̃in∂jχ− γ̃jn∂iχ)) dSi , (A.34)

where dSi = σi

χ

(
r2 sin θdθdϕ

)
for some large radius r tending to infinity. Defining σ̄i =[

x
r ,

y
r ,

z
r

]
we get the normalised σi = σ̄i√

γij σ̄iσ̄j
= σ̄i√χ√

γ̃ij σ̄iσ̄j
and σi = γijσ

j = γ̃ij σ̄
j√

χγ̃klσ̄kσ̄l
.

For spherical symmetry and assuming a conformally flat metric (γ̃ij = δij):

MADM = lim
r→∞

r2

2χ3∂rχ . (A.35)

A.8 Variation of G3 Horndeski term

Varying actions is something that most physicists should know how to do. But it is the
type of exercise that one does not necessarily do that often and there are usually several
subtleties. For reference of the bits that are usually hard to make mistakes on, here we
show how to calculate the variation with respect to the metric gµν of the G3 term in the
(4.1) metric: ∫

d4x
√

−g G3(ϕ,X)□ϕ . (A.36)

Useful identities:

δ
√

−g = −1
2
√

−ggµνδgµν ,

δgρσ = −gρµgσνδgµν ,

δX = −1
2∇µϕ∇νϕδg

µν ,

δΓρµν = 1
2g
ρσ
[
(δgµσ);ν + (δgσν);µ − (δgµν);σ

]
,

δ∇µ∇νϕ = −δΓρµν∇ρϕ = −1
2∇σϕ

[
(δgµσ);ν + (δgσν);µ − (δgµν);σ

]
.

(A.37)

Using these identities and the fact that ∇µX = −∇νϕ∇µ∇νϕ:

δ

∫ √
−g G3(ϕ,X)□ϕ = {int. by parts} = −δ

∫ √
−g∇µϕ (∂ϕG3∇µϕ+ ∂XG3∇µX) =

=
∫

{variation of
√

−g} + 1
2
√

−ggµν
(
∂ϕG3(∇ϕ)2 − ∂XG3∇ρϕ∇σϕ∇ρ∇σϕ

)
δgµν−∫

{variation of gµν ’s} −
√

−g
(
∂ϕG3∇µϕ∇νϕ− 2∂XG3∇(µϕ∇ν)∇σϕ∇σϕ

)
δgµν+∫

{variation of X’s of G3} + 1
2
√

−g∇µϕ∇νϕ
(
∂2
ϕXG3(∇ϕ)2 − ∂2

XXG3∇ρϕ∇σϕ∇ρ∇σϕ
)
δgµν−∫

{variation of ∇∇ϕ} − 1
2
√

−g∂XG3 (δgµν);ρ ∇µϕ∇νϕ∇ρϕ .
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Integrating by parts the last line:∫
−1

2
√

−g∂XG3 (δgµν);ρ ∇µϕ∇νϕ∇ρϕ = {int. by parts} = −
∫
δgµν 1

2
√

−g
[
∂XG3

(
∇µϕ∇νϕ□ϕ+

+2∇(µϕ∇ν)∇ρϕ∇ρϕ
)

+ 1
2
√

−g∇µϕ∇νϕ
(
∂2
ϕXG3(∇ϕ)2 − ∂2

XXG3∇ρϕ∇σϕ∇ρ∇σϕ
) ]

.

All in all:

δ

∫ √
−g G3(ϕ,X)□ϕ = −

∫
δgµν

√
−g
[

1
2

(
∂ϕG3(∇ϕ)2 − ∂XG3∇ρϕ∇σϕ∇ρ∇σϕ

)
−

−
(
∂ϕG3∇µϕ∇νϕ− ∂XG3∇(µϕ∇ν)∇σϕ∇σϕ

)
− ∂XG3∇µϕ∇νϕ□ϕ

]
.

(A.38)



Appendix B

Black hole binaries in cubic Horn-
deski theories

B.1 Convergence

In this appendix we provide some details of the convergence tests that we have car-
ried out. As a representative example, we considered the binary in the G2 Horndeski
theory with coupling constant g2 = 0.02, and we performed three simulations with dif-
ferent resolutions to study convergence. Our simulations are evolved with a coarsest
level resolution of ∆x = 16

7 (medium resolution), with 8 additional refinement levels and
a computational domain of size 10243. To carry out the tests, we used one lower reso-
lution changing ∆x = 8

3 (low resolution) and one higher resolution with ∆x = 2 (high
resolution).

In figure B.1.1 we show the error estimates in the quadrupole mode h22 extrapolated
to null infinity1 between low, medium and high resolutions and the estimates for the
expected error assuming third and fourth order convergence. We decompose the complex
strain into its amplitude and phase2, hℓm = h+

ℓm− ih×
ℓm = hAℓme

ihϕ
ℓm . We then interpolate

the resulting functions (because different resolutions have points at different times) and
compute the expected errors using the continuum limit of the convergence factor of order
n:

Qn = (∆xLow)n − (∆xMed)n

(∆xMed)n − (∆xHigh)n . (B.1)

This indicates the convergence order of h22 is consistent with three.

We also tested convergence of other variables; for instance, the trajectories of the two
black holes, xi1(t) and xi2(t), shown in figure 5.1, can be used to test convergence. We
rewrite these trajectories in terms of the radial distance between the black holes,

D(t) = |xi1(t) − xi2(t)| , (B.2)
1The extrapolation to null infinity has been assumed to work well without any check of the convergence

of the wave with extrapolated radii, but indeed this is generically very much the case. Not only do the
waves vary little over extraction radii, about 1% in peak amplitude and minimally in phase after tortoise
time alignment, but the strain values fit very well to a 1

r∗ model, as described in section 5.2.6.
2We continuously add multiples of 2π to the phase such that we obtain a monotonic function for the

phase.
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Figure B.1.1: Convergence test for g2 =
0.02 with different coarse resolutions: low
(3843), medium (4483) and high (5122).
Convergence performed on the amplitude
and phase of the complex strain, h22, ex-
trapolated to null infinity. ∆t = 0 is the
peak of the amplitude for the highest res-
olution. This figure indicates consistency
with third order convergence.

and the phase relative to the initial positions,

θ(t) = arccos
[

(xi
1(t)−xi

2(t))
D(t) · (xi

1(0)−xi
2(0))

D(0)

]
, (B.3)

where · here denotes internal product. These quantities for the Horndeski theory are
shown in the top panel of figure B.1.2 for the same binary as in figure 5.1. The con-
vergence analysis of these quantities across the three resolutions is shown in the middle
and bottom panels of figure B.1.2. These figures indicate that both quantities exhibit
between third and fourth order convergence.
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Figure B.1.2: Top panel: Radial distance D(t) and relative phase θ(t) of the black holes’
trajectories as functions of time for the g2 = 0.02 Horndeski theory. Convergence tests
for the radial distance ∆D(t) (middle panel) and relative phase θ(t) (bottom panel).
Both of these quantities exhibit between third and fourth order convergence.
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Figure B.1.3: L2 norm of the Hamiltonian and the Euclidean norm of the momentum
constraints for the medium resolution of the g2 = 0.02 Horndeski binary.
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For completeness, in figure B.1.3 we show the L2 norms3 of the Hamiltonian and
the Euclidean norm of the momentum constraints over the full computational domain.
This figure shows the constraint violations remain stable at the level of 10−6 − 10−5M−2

respectively throughout the whole evolution, with a significant and sudden reduction
at the merger. Considering the results of our convergence analysis, we conclude our
simulations are stable and in the convergent regime.

B.2 Computing accurate gravitational strains

To compute the gravitational strain from the gravitational wave Ψ4 data spherical har-
monics, given formula (5.8), one may be tempted to compute the strain from a simple
double time integration:

h(t) = −
∫ t

t0

∫ t′

t0
Ψ4(t′′)dt′′dt′ , (B.4)

where t0 is as close to −∞ as evolved. However, numerical errors in the first and second
integral will lead to constants of integration as:

−
∫ t

t0

∫ t′

t0
Ψ4(t′′)dt′′dt′ ≈ h(t) + C1t+ C0 , (B.5)

for some constants C0, C1. C0 has a physical meaning known as the memory effect,
while C1 is a noise term from the integral. This can be fixed with a high-pass filter
which removes low-frequencies to minimise C1, but a robust way of handling it is by
performing the integration in Fourier space, where equation (B.4) becomes:

h̃(f) = − Ψ̃4(f)
(2πf)2 , (B.6)

where h̃(f) and Ψ̃4(f) denote the Fourier transforms of h(t) and Ψ4(t) for frequency f .
The details of the Fourier method are described in section 5.2.6. Several parameters are
manually chosen but have no effect on the final result:

• the size of the Tukey window, as long as not too big to interfere with where the
signal is not compatible with noise;

• the t0 cutoff to remove junk radiation, as our simulations have very little junk
radiation, and changing this does not affect the result;

• the final time the wave is extracted at, as long as oscillations are already compatible
with noise;

• how big the zero-padding at the end of the data set is, which is done to increase

3For a given quantity Q, we compute L2Q =
√

1
V

∫
V

|Q2|dV .
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the frequency resolution of the discrete Fourier transform;

• the high frequency cut-off is also negligible and even though it proved unneeded
for our case, it may be added for numerical noise errors if the frequencies removed
are bigger than the frequency corresponding to about the size of the black hole;

The only parameter that has to be carefully chosen is the low frequency cutoff. This
parameter can be chosen in many ways, but it proven enough to simply use direct
inspection. Take the example of the GR case displayed in section 5.3.1. For cutoff
frequencies f0 = [0.002, 0.005, 0.01, 0.15, 0.2] the resulting strain is displayed in figure
B.2.1. Very low frequencies, f = 0.002, lead to spurious errors. Very high cutoffs,
f = 0.02, damps errors but also physical effects. For this problem, a cutoff in the
range f ∈ [0.005, 0.015] is ideal, balancing between spurious errors and no physical effect
damping. If this is kept fixed, all results should remain consistent.

Figure B.2.1: Strain of the GR elliptic binary black hole discussed in section 5.3.1 using
different low frequency cutoffs when performing the double time integration in the fre-
quency domain.



Appendix C

Black hole binaries in higher deriva-
tive effective field theories

C.1 EFT numerical code

In this appendix we describe relevant details in the construction of the code to evolve
the EFT described in chapter 6. The aim was to build a code that was generic to evolve
this and many other EFTs, with and without matter, in many potential future scenarios,
hence requiring great flexibility.

GRChombo is already compatible with generic matter, which implies the implemen-
tation of the Horndeski equations for chapters 4 and 5 was relatively straightforward.
One simply had to make use of the 3+1 conformal decomposition described in appendix
A.1.1, equations (A.6)-(A.8).

The right-hand side of the EFT equation of motion, (6.21) can be interpreted as
‘matter’ from which one computes matter decomposition terms, ρ, Si, Sij . But the 3 + 1
decomposition and further conformal decomposition turns out to be a process much
more laborious than it is for the Horndeski case, and not generic if one chooses to
slightly change the EFT. The advantage of this procedure is speed, in the sense that it
reduces the equation to its simplest form using directly the evolution variables directly
accessible from the numerical grid.

Faced with this main difficulty and prioritising flexibility, we took a less standard
approach: instead of a priori decomposing the 4D stress-energy tensor into 3+1 confor-
mal form, the code dynamically takes the 3+1 conformal evolution variables to compute
3+1 non-conformal variables, which in turn are used to compute 4D quantities, e.g. the
spacetime Riemann tensor or the spacetime Christoffel symbols. This can then be used
to compute the full stress-energy tensor, which is numerically decomposed in 3 + 1 form,
ρ, Si, Sij , and fed into the BSSN/CCZ4 right-hand side.

This method has one further advantage: the computation of each new quantity “along
the way” can be individually verified as correct, such that adapting the code to new
theories is a matter of putting together pieces of a puzzle already pre-built. The main
disadvantage is speed, not only because the right-hand side of the EFT is in itself heavier
to compute than GR alone, but because building 4D tensors to then decompose them is
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more computational work than what is typically done. To tackle this, on a given cell at
a given timestep, individual quantities computed, such as the spatial extrinsic curvature
Kij built using equation (3.9), are stored and re-used if any other computation requires
it again. For instance, computing the extrinsic curvature Kij is required to compute the
CCZ4 right-hand side (ignoring the matter terms), but also required to the Kretschmann
scalar in the EFT via the electric and magnetic components of the Weyl. As a more
intricate example, the computation of ∂jΓ̃k is required for the electric part of the Weyl,
when computing Rij + D(iΘj), and also when computing the spacetime Ricci tensor,
as the CCZ4 formulation requires the term ∇µZν and Zi depends on Γ̃k. This makes
computations faster and comparable to the standard GRChombo code. As suggested above
as advantage of the method, we implemented verifications of every sub-computation using
the same method described in A.5, making use of xAct package of the Mathematica
software, initialised with random variables.

As a final note, to reduce human error during implementation (the last thing we want
is evolving the wrong theory due to a wrong index or minus sign or factor of 2 in the
code), we extended the existing GRChombo tensor algebra tools to include contractions,
traces, external products, dot products and covariant derivatives of any tensor of any
rank and any dimension, such as three dimensional spatial tensors or 4D spacetime
tensors. This was made possible using C++ functions templated over both the tensor
rank and dimension. We hope to make these tools public in the future.

As a final remark, an alternative functional method may be the use of the modified
generalised harmonic gauge [50, 51] in the GRChombo public code. Preliminary steps
have been taken in join work with Llibert Aresté Saló, Justin Ripley and Pau Figueras
(see also Aresté Saló et al. [57]). This may enable a full 4D or a 3 + 1 non-conformal
reformulation of the code, in a similar way to the work by Brown [298, 299]. If this is
possible, it may be extremely useful in order to create an easier formulation of GR which
does not require conformal decomposition when starting a new research project on a new
EFT.

C.2 Diffusion

The interior of black holes turns out to be considerably more challenging in non-standard
settings. Even with the excision technique of section 6.3.7, divergences inside the AH
often creep in, typically for variables that involve second derivatives in the equations of
motion [195]. To solve this, we can introduce a dissipative diffusion operator of the form:

cL∆2
x


√√√√ 2
D(D − 1)

∑
i,j,k

(∂kγ̃ij)2

σ(χ; χ̄, ωχ)
(
∇2γ̃ij

)TF
, (C.1)
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where cL is some constant, ∆x the grid spacing, γ̃ij the conformal spatial metric of
the CCZ4 formulation, and σ(χ; χ̄, ωχ) as defined in equation (6.30) plays the role of
activating this operator only for χ < χ̄. ∇2γ̃ij is some notion of the spatial Laplacian of
the metric being diffused, for which one can apply a simple flat space operator δkl∂k∂lγ̃ij .
(·)TF stands for “trace-free” and needs to be applied to the conformal metric diffusion
operator to ensure the determinant of this metric remains 1. Replacing the variable inside
the Laplacian term, a similar operator should be applied to other variables that have
second derivatives in the equation of motion: the lapse, the shift, the conformal factor,
and any other variable a given EFT fix might introduce (e.g. Ĉ for the C system of section
6.3.6). The philosophy is that since the theory itself breaks down near the singularity, we
can replace it with something that ensures that our evolution variables remain smooth
and under control. In this case, the coefficient ∆2

x ensures only small wavelengths that
the numerical grid cannot resolve get damped, and that the CFL condition does not get
affected.

This technique proved useful during experimentation with single boosted and non-
boosted black holes with the several systems described in section 6.3. However, it was
not required in order to successfully evolve any of the final simulations presented, which
made use of a small value of ϵ = 10−5. Yet, given divergences often appear inside the
black hole, this technique can be a useful last resource in an attempt to stabilise the
simulation.



Appendix D

GRChombo - code development work

D.1 Tagging criteria

In AMR, creation and destruction of grid boxes and new finer refinement grids is deter-
mined by the tagging of cells for refinement, which in turns is controlled by a tagging
criterion. Although this ability to refine regions can be incredibly powerful, in practice
it can be difficult to manage the exact placement of refined grids. For instance, the
presence of level boundaries in dynamically sensitive regions of spacetime, such as near
apparent horizons, plays an essential role in the accuracy of results1. In this section
we explain some of the tagging criteria developed for the purposes of chapters 4-6. For
details on how the tagging of cells leads to formation of new grids, see Radia et al. [5].
We have adopted mainly the following types of tagging criteria:

• χ tagging: realising that the conformal factor has steeper curves closer to black
holes, one can tag based on:

∆x
√
δijδkl (∂i∂kχ) (∂j∂lχ) > σχ , (D.1)

where ∆x is the grid spacing and σχ is a custom refinement threshold. The criterion
is multiplied by the grid spacing such that higher levels (smaller ∆x) require bigger
derivatives of χ to be activated. Second derivatives are used because the first
derivative of χ is actually zero at the puncture. Alternative, one can use first
derivatives of χ−1 [174].

• ϕ tagging: in the presence of scalar fields, often the conformal factor may not be
steep enough in spite of large gradients of scalar field. For this, we add a similar
criterion using derivatives of the scalar field and its momentum:

∆x
(

1
σϕ

√
δijδkl (∂i∂kϕ) (∂j∂lϕ) + 1

σΠ

√
δijδkl (∂i∂kΠ) (∂j∂lΠ)

)
> A , (D.2)

where σϕ and σΠ are user defined constants, and A is the initial amplitude of
the scalar field (typically both ϕ and Π are proportional to A, so this makes the
criterion robust to changes of initial data).

• Puncture tagging: even though mathematically the region inside apparent horizons
1When it comes to resolution, a common rule-of-thumb is to have as minimum at least 40 grid points

across the horizon.
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is causally disconnected from the exterior, numerically, artefacts from discretisation
can leak errors that propagate superluminally. Having refinement levels across the
horizon turns out to introduce significant inaccuracies, typically manifesting as an
unphysical drift in the black hole mass and, in the case of binaries, a loss of phase
accuracy and/or a drift in the BH trajectory (see Radia et al. [5]). If using a
puncture tracker and if the mass of the black holes are known (see section 3.8.2.2),
this can be fixed by enforcing tagging of cells within the horizon plus a buffer
radius.

• AH tagging: for the cases where a puncture tracker is not as easily feasible (e.g.
gravitational collapse, where the initial data has no initial puncture), one can use
the apparent horizon (its centre and average radius) to estimate where to force
levels to regrid. In practice, when all we want is to roughly cover the black hole, a
much easier and equivalent method is to use contours of χ, which turn out to be
extremely good proxies for the location of the apparent horizon without the need
to know their location or masses a priori. For details, see section 7.3.

• GW tagging: when we want to extract gravitational waves far away from the centre
of the grid, we force tagging cells that are at a distance smaller than the wave
extraction radius if the resolution is lower than the desired extraction resolution.

• Fixed tagging: for specific dynamic environments such as gravitational collapse
have quick dynamics that can lead to too much regridding, spurious unwelcome
numerical noise and inconsistency between different runs. In such cases, similar to
a many-box-in-many-boxes approach, one can specify fixed regions to be tagged, as
a square around the gravitational collapse region. One can also force certain levels
to appear at a certain stage, e.g. when the collapse is close enough to forming a
small black hole that requires more resolution.

• Other tagging criteria, such as asymmetric grid tagging or truncation error tagging,
have been developed for GRChombo, but have not been used for the work developed
in this thesis. See details in Radia et al. [5].

One or more tagging criteria can be used per simulation. On top of this, the the
minimum and maximum size of boxes, how frequently to actually tag and regrid each
level, how many cells need to be tagged in a region to proceed to regridding and buffer
regions of forced tagging around a given identified tagged cell2 are some of the parameters
a user can tune. Overall, AMR is a powerful tool that can deal with extremely dynamic
scenarios, but it also has a significant overhead of experimentation to get fundamental
pieces such as regridding to work well.

2This is useful to set mesh boundaries further apart from each other and reduce errors from high
frequency resonances bouncing off neighbouring boundaries [5].
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D.2 Weyl tensor

Given a Riemann tensor Rµνρσ related to a metric gµν in D > 3 dimensions, the Ricci
tensor is its trace, Rµν = Rα

µαν , and the Ricci scalar is R = R µ
µ . The symmetries of

the Riemann tensor are:

Rµναβ = R[µν][αβ] , Rµναβ = Rαβµν , R[µνα]β = 0 , (D.3)

as well as the Bianchi and contracted Bianchi identities:

∇[ρRµν]αβ = 0 , ∇µRµναβ = ∇αRβν − ∇βRαν , ∇µRµν = 1
2∇νR . (D.4)

The Weyl tensor is complementary to the Ricci tensor, being defined as the trace free
part of the Riemann tensor, preserving its symmetries[18]:

Cµνρσ := Rµνρσ − 2
D−2

(
gµ[ρ Rσ]ν − gν[ρ Rσ]µ

)
+ 2

(D−1)(D−2)gµ[ρgσ]ν R . (D.5)

It is easy to check the extra symmetry: Cµαµβ = 0. The analogue of the contracted
Bianchi identity for the Weyl tensor is:

∇ρCρσµν = 2(D−3)
(D−2)

(
∇[µRν]σ + 1

2(D−1) gσ[µ∇ν]R
)
. (D.6)

It is well known that the Riemann tensor has D2(D2−1)
12 independent components and

the Ricci tensor D(D+1)
2 . Hence, the Weyl has the leftover D(D+1)(D+2)(D−3)

12 independent
components. In D = 4 dimensions, the Riemann tensor has 20 independent components,
while both the Ricci and the Weyl tensor have each 10 independent components.

Additionally, the Weyl tensor is invariant under conformal transformations:

gµν → g̃µν = Ω gµν =⇒ Cµνρσ = C̃µνρσ . (D.7)

D.2.1 Electric and magnetic decomposition

In D = 4, to calculate the Weyl tensor from d = 3 dimensional quantities, it is usual to
use its decomposition into its electric and magnetic parts, defined respective as:

Eµν = nαnβCαµβν ,

Bµν = nαnβC∗
αµβν ,

(D.8)
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where C∗
αµβν is the dual Weyl tensor defined by:

C∗
µνρσ = 1

2Cµναβϵ
αβ
ρσ , (D.9)

where ϵαβµν is the Levi-Civita tensor, computed with ϵαβµν =
√

|g| ϵαβµν , where ϵαβµν
as the Levi-Civita symbol.

Both the electric and the magnetic part are symmetric, traceless and spacelike, in
the sense that nµEµν = 0 = nµBµν . One can recover the Weyl tensor from these using
[18, p. 290]:

Cµνρσ = 2
(
lµ[ρEσ]ν − lν[ρEσ]µ − n[ρBσ]βϵ

β
µν − n[µBν]δϵ

δ
ρσ

)
, (D.10)

where
lµν := γµν + nµnν = gµν + 2nµnν . (D.11)

According to [18, p. 290], the standard decomposition in the ADM formalism for
D = 4 is:

EADMij = Rij +KKij −KimK
m
j − κ

4

[
Sij + 1

3γij (4ρ− S)
]

− 2
3Λ γij ,

BADM
ij = ϵ mni

[
DmKnj − κ

4γjmSn
]
,

(D.12)

where, ϵβµν = nαϵαβµν is the projected Levi-Civita tensor. The above formulas assume
the Hamiltonian and Momentum constraints are satisfied, and do not include the Z4
vector. The full CCZ4 expression is:

Eij = EADMij − 1
3γijH +

(
D(iΘj) −KijΘ

)TF
=

=
(
Rij +D(iΘj) + (K − Θ)Kij −KimK

m
j − κ

4Sij
)TF

, (D.13)

Bij = BADM
ij − 1

2ϵ
m

ij Mm = ϵ mni DmKnj − 1
2ϵ

m
ij (DnK

n
m −DmK) = ϵ mn(i DmKj)n ,

(D.14)

where H and Mi are the Hamiltonian and Momentum constraints (discussed in section
E.3). Notice as well how these forms, unlike (D.12), are explicitly symmetric and traceless
without recurring to the constraints. Being spatial, symmetric and traceless, each have 5
independent components, together totalling the 10 independent components of the Weyl.
This decomposition cannot be done directly for the Riemann tensor and is only valid for
D = 4. Notice as well how in the CCZ4 evolution equations (see section 3.4), the typical
quantities showing up are K − 2Θ and Rij − 2D(iΘj) and not K − Θ and Rij −D(iΘj)

as above. This complicates computation slightly, but it happens as we are doing normal
projections of the Weyl tensor and not of the Riemann tensor (for which those factors



Appendix D. GRChombo - code development work 186

of 2 appear).

To understand why these tensors are called the electric and magnetic components
of the Weyl tensor, we can do a spatial and normal projection of (D.6), which leads to
Maxwell-like evolution equations for the electric and magnetic parts of Cµναβ [302]:

£nEαβ = ϵρσ(αD
σBρ

β) − 5E λ
(α Kβ)λ + 2KEαβ + EρσK

ρσ γαβ − 2 aρ ϵρλ(αBβ)λ ,

£nBµν = −ϵρσ(αD
σEρβ) − 5B λ

(α Kβ)λ + 2KBαβ +BρσK
ρσ γαβ + 2 aρ ϵρλ(αEβ)λ ,

(D.15)
and the constraints,

DβEβα = −ϵ ρσ
α B λ

ρ Kσλ ,

DβBβα = ϵ ρσ
α E λ

ρ Kσλ .
(D.16)

Here aν = nµ∇µn
ν is the acceleration vector and Dµ is the covariant derivative compat-

ible with the induced metric γµν = gµν +nµ nν . It is worth noting that equations (D.15)
and (D.16) should be entirely equivalent to the wave-like equation that one can derive
from (D.4) [302].

D.2.2 Kretschmann scalar

The Kretschmann scalar, defined as C = RµνρσRµνρσ, is a commonly used scalar as it
is non-zero in vacuum, unlike the Ricci scalar. For the Kerr black hole of massM and spin
parameter a, it takes the value of C = 48M2

(r2+a2 cos2 θ)6
(
r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ

)
,

which reduces to C = 48M2

r6 for the Schwarzschild black hole, with a = 0.

One straightforward way to compute it is using the Weyl tensor. Defining the equiv-
alent scalar using the Weyl tensor, W = CµνρσC

µνρσ, the Kretschmann scalar can be
computed using [303]:

C = W + 4
D − 2RµνRµν − 2

(D − 1)(D − 2)R2 . (D.17)

Regarding Rµν and R, they are either zero in vacuum or they can be computed
from the stress energy tensor Tµν from the equations of motion. Notice that if using
formulations such as the CCZ4 formulation, the relation between the Ricci tensor and
the stress energy tensor is not the same as GR (see equation (3.22)), and the Ricci tensor
and scalar may not be zero even in vacuum if the constraints are not identically satisfied.

To compute W , in D = 4 one can make use of the electric and magnetic parts:

W = 8
(
EijE

ij −BijB
ij
)
. (D.18)

Away from D = 4, one can use the Gauss-Codazzi equation, Codazzi-Mainardi equation
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and the double normal project of the Riemann [18] to reconstruct the Riemann tensor
fully from 3+1 quantities and compute the Kretschmann scalar from it. Additionally, to
compute the full Riemann tensor, one can also compute the Weyl tensor using equation
(D.10) and then use (D.5), where again the Ricci tensor and scalar can be obtained from
the equations of motion.

D.2.3 Weyl scalar Ψ4

In the Newman-Penrose formalism [210], one introduces a complex null tetrad (lµ, kµ,mµ, m̄µ),
where we follow the notation of Alcubierre [18] in order to avoid confusion with the nor-
mal nµ to the foliation (see 3.2). The Newman-Penrose scalar, or Weyl scalar, Ψ4 is
defined by

Ψ4 = Cαβγδk
αm̄βkγm̄δ , (D.19)

which can be shown to reduce to [18]

Ψ4 = (Eij − iBij)m̄im̄j . (D.20)

We use the approach described by Baker et al. [240, sec. V A, step (a)] to construct a
null tetrad with the inner products:

−lαkα = mαm̄
α = 1, (D.21)

and all other inner products vanishing. Following Bruegmann et al. [17] and Fiske et
al. [304], we omit the null rotations in order to bring the tetrad into a quasi-Kinnersley
form [240, sec. V A, step (b)].

D.3 Scaling tests

GRChombo has been extensively used as a high performance code. During progress made
for this thesis, it was necessary to demonstrate it can scale efficiently on large super-
computing systems.

There are two common metrics used to measure performance: strong scaling and
weak scaling. Strong scaling refers to how much faster a simulation gets using more
and more resources. An ideally paralysed program would double in speed if we double
resources. In practice, both the computational workload is not infinitely parallelisable
or as the parallel components become faster and faster, the serial sections of the code
keep running with the same performance. Weak scaling refers to the ability to run a
more computationally expensive setup using proportionally more resources. In an ideally
scenario, doubling the number of grid points can achieve the same speed of evolution if
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we double the resources. Weak scaling is referred to as such as it is typically easier to
obtain when compared to strong scaling, as the parallel sections of the code are kept
constant as we increase both computational work and resources.

In the following sections we show that GRChombo exhibits excellent weak scaling prop-
erties for a vast range of jobs sizes.

D.3.1 Overview

The scaling tests described in this section were performed in one of the largest and
newest supercomputers of the world: MareNostrum4. It has 48 racks housing 3456
nodes with a grand total of 165, 888 processor cores and 390 Terabytes of main memory.
Each node has 2 sockets Intel Xeon Platinum 8160 CPUs with 24 cores each with 2.10
GHz for a total of 48 cores per node, and 96GB of main memory. For all tests the
code was compiled with the Intel 2017 compilers, AVX-512 vectorisation and hybrid
MPI/OpenMP parallelisation.

In the tests presented here we fix the box size to 16 cells in each direction. With
load balance, boxes are distributed across MPI processes and, for each process, work
is further distributed between OpenMP threads (see details in section 3.8.1.4). Due to
memory constraints, we run the simulations with 4 OMP threads per task and we keep
this constant in all the jobs to avoid running out of memory.

We run small, medium and large simulations for evolutions ranging from quick single
black hole experimentation to production high resolution black hole binary convergence
tests. These make full use of AMR, with a hierarchy of 7 levels of refinement (8 in
total) set to a 2:1 ratio. Some of these levels are enforced by hand while some others are
adjusted dynamically and automatically by our code at every coarse timestep according
to some tagging criterion that estimates the local numerical error. In performing the
tests, the measurements presented include all necessary ghost cell communication and
interpolation, and full regridding and load balancing operations. We excluded the initial
data calculation as it takes at most one minute and is only done once in a simulation with
a wall-clock time of several days. We have also turned off the HDF5 outputs, since they
are infrequent in a real run whilst they could have a misleading impact in the short run
of a test. Similarly, some diagnostics such as finding the apparent horizon (AH) of black
holes and extracting gravitational waves that we expect to run either infrequently or not
at all in the real simulations were not included. All other diagnostics that we expect
to need in subcycling steps of a real simulation, such as measurement of hyperbolicity
and stability conditions of the equations, are included since they represent an accurate
reflection of the type of jobs described in our proposal. Finally, we set the Courant factor
to 0.2.
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D.3.2 Strong scaling

GRChombo has excellent strong scaling as long as there are enough boxes for all the
MPI processes. In this section we will show the problem described in chapter 4 can be
strong-scaled to a large number of cores. For three types of jobs (small, medium and
large), we perform a fit to Amdahl’s law of theoretical speedup with the parallel fraction
of the algorithm as a free parameter. In all cases we find extremely good agreement with
Amdahl’s law, which indicates that our small, medium and large jobs are in the regime
of strong scalability.

Small jobs test

The small jobs needed were varied, but typically they were mostly related to parameter
searches. In order to have an accurate reflection of a typical “small” job that tests the
relevant aspects of the simulation, we have chosen to study gravitational collapse in
Horndeski theory as in chapter 4. This problem involves the dynamical generation of
new relevant length scales, such as the size of the black hole, and hence it makes full
use of AMR. In addition, for the theory that we consider, the r.h.s. of the evolution
equations is significantly more involved than in standard general relativity. Therefore,
we can also test the efficiency in the computation of a very complex r.h.s., similar to
what we encounter in the rest of the chapters.

For this type of job, the coarsest grid size is 643 for a computational domain of
L = 64M in each direction. We evolve a spacetime of mass 0.5M as in Case 3 of section
4.4.1.1 for 20 time steps of the coarsest level, including all subcycling steps on the finer
levels. The initial data was constraint satisfying and thus constitutes a physically correct
proof of principle. The results of the strong scaling tests for the “small” jobs are shown
in figure D.3.1 and the precise numbers are given in Table 4-A.
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Figure D.3.1: Left: Illustration of the job performed: gravitational collapse in Horndeski
theory and mesh structure at the last time step of the test. Right: strong scaling test
for small sized jobs, showing a useful speedup up to 2400 cores. The typical core count
for a small job is shown in red.

Number of cores Average Speed (M/hr) Speedup Ideal speedup

240 11.9 1.00 1.00
480 21.5 1.80 2.00
720 30.8 2.58 3.00
960 37.9 3.18 4.00
1440 47.4 3.97 6.00
1920 55.5 4.65 8.00
2400 60.8 5.10 10.00

Table 4-A: Results for the strong scaling tests for small jobs. The typical small job
described in our proposal is highlighted in boldface.

Medium jobs test

The medium sized jobs are also varied, but a typical example is the study of scalar field
environments around binary black holes (BHs). An illustrative example of the case we
ran is shown in figure D.3.2 (left). Unlike the smaller gravitational collapse example
of our previous scaling test, these studies necessitate a larger region of resolution, both
around the BHs and asymptotically, which justifies the medium job size proposed.

The coarsest level of refinement has a grid size of 3843 for a computational domain of
L = 768M in each direction. We consider two 0.5M BHs surrounded by scalar field with
mass parameter µ = 0.5M−1, with initial separation of 40M and tangential velocities
of ∼ 0.05. This constitutes initial data exactly as we intend to use for the results of
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chapter 5 and hence it is a reliable example of the resources required. We evolve this
system for 10 full time steps. The strong scaling is shown in figure D.3.2, and the exact
results are provided in Table 4-B. To carry out the tests, we halve and double the the
number of cores around 3840 cores, which is the typical “medium” job size described in
our proposal. For this type of job, we could not run the simulation with 960 cores and
4 OMP threads without running out of memory.

Figure D.3.2: Left: Illustration of the job performed: scalar environment of a black hole
binary and mesh structure. Right: strong scaling test for medium sized jobs, showing a
useful speedup up to 7680 cores. The typical core count for a medium job is shown in
red.

Number of cores Average Speed (M/hr) Speedup Ideal speedup

1920 13.5 1.00 1.00
2880 19.1 1.41 1.50
3840 24.2 1.80 2.00
5760 32.4 2.40 3.00
7680 39.2 2.91 4.00

Table 4-B: Results for the strong scaling tests for the medium sized jobs. The typical
medium job described in the proposal is highlighted in boldface.

Large jobs test

The large sized jobs proposed in our application will be used for high resolution runs
and convergence tests for the final production simulations. These jobs make use of the
excellent weak scaling properties of GRChombo by increasing both the resources and the
resolution in order to get adequate and reasonable runtime.

To illustrate this, we ran the same configuration as in the medium jobs test, changing
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only the coarsest level resolution to 4323. This would correspond to a higher resolution
run that we expected to use for a convergence test. The strong scaling is shown in figure
D.3.3, and the exact results are provided in Table 4-C. We halve and double the number
of cores around 7680 cores, which is the typical size for a “large” job in our proposal.
For this type of job, we could not run simulation with 1920 cores and 4 OMP threads
without running out of memory. Although beyond 7680 cores we still have good strong
scaling, we observe a more erratic behaviour. The reason for this is that even though
the job is such that there are boxes for all ranks, at higher core counts each rank has
fewer boxes, which results in an uneven load balance. Increasing the resolution of the
coarsest level should give rise to more boxes per level, a more even load balance, and
hence better strong scaling. Unfortunately we were not able to check this since we ran
out of resources.

Figure D.3.3: Strong scaling test for large sized jobs, showing a useful speedup up to
15360 cores. The typical core count for a large job is shown in red.
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Number of cores Average Speed (M/hr) Speedup Ideal speedup

3840 16.5 1.00 1.00
5760 22.5 1.37 1.50
7680 27.4 1.66 2.00
9600 28.7 1.74 2.50
11520 34.9 2.12 3.00
13440 36.1 2.19 3.50
15360 39.2 2.37 4.00

Table 4-C: Table of results for the strong scaling tests for large sized jobs. The typical
large job described in our proposal is highlighted in boldface.

D.3.3 Weak scaling

To test the weak scaling of GRChombo, we use the same configuration as for the medium
jobs strong scaling test on 3840 cores as a starting point. We then decrease and increase
the resolution while adjusting the number of nodes and the grid size to keep the number
of cells per node fixed. We show the results of the weak scaling test in figure D.3.4. In
Table 4-D we show the speedup per full coarse time step as well as the ratio between
grid size and core count to demonstrate that the work per process is kept approximately
constant as the number of cores changes.

We see extremely good weak scaling around small, medium and large jobs, with the
performance even improving when increasing both the resources and the resolution. We
attribute this effect firstly to the dynamical addition of finer levels. At low resolutions,
coarser levels need larger boxes around the regions of interest, ending up covering more
physical space. On the other hand, higher resolutions are able to have more precise
contours of the deeper refinement levels around the regions of interest and hence refine
smaller regions, which results in a slight efficiency boost. Another reason for this effect
is that with more resolution there are more boxes per level and hence it is simply easier
to obtain an evenly distributed load balance of boxes over ranks, which boosts the
performance.
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Figure D.3.4: Results for the weak scaling test, showing excellent weak scaling for the
range of jobs (small, medium and large) described in our proposal.

Number of cores Average Speed (s/step) 3√Grid size 3
√

Grid size / core

480 67.6 192 24.52
1152 64.9 256 24.42
1632 66.1 288 24.46
2208 63.8 320 24.57
2976 63.8 352 24.47
3840 59.5 384 24.52
4896 60.9 416 24.50
6096 60.4 448 24.52
7488 61.8 480 24.53
9120 64.1 512 24.51
12960 64.0 576 24.52

Table 4-D: Results for the weak scaling tests.

D.4 Cubic spline interpolation

When generating initial data for chapters 4, 5 and 6, it was common to them all that
spherically symmetric data was generated in one dimension in some external software,
and had to be ported to GRChombo 3D code. Excluding the aspects of transforming
spherically symmetric data to Cartesian volume coordinates (details in section A.3),
simply exporting 1D data (discretised with some articular numerical grid) into 3D (with
some other numerical grid requiring points at various radii) required the usage of a
method like Cubic Spline for interpolation.



Appendix D. GRChombo - code development work 195

There are several methods of interpolation. GRChombo uses fourth order Lagrange
interpolation to compute stencils. But when the intention is to interpolate a discrete
set of points approximating some function, interpolating all the data across domains
with different behaviour with a single high order polynomial leads to poor results and
wild oscillations. A common technique is polynomial interpolation, in which the set of
points is divided in chunks (e.g. 2 points), a polynomial of some degree is interpolated
between them (with some boundary conditions to match with the surrounding chunks)
and the overall function becomes defined by piecewise polynomials. A common method
of this kind, known for generating smooth continuous curves, is cubic spline. The main
advantages of cubic spline are: the smoothness of the generated curves; the spacing
between the interpolated points can be arbitrary and uneven; the interpolated function
passes by design in points being interpolated (opposed to, for example, fitting methods);
uses cubic polynomials and hence is reasonably cheap and stable to compute, and finally
it requires knowledge of the function alone without its derivatives.

The outline of the method for one dimensional data is as follows3: divide all the set
of points into pairs of adjacent points. Using linear interpolation would require a lot
of points along each curve to obtain enough precision. Furthermore, it is not smooth.
If we require smoothness of the first and second derivatives across segments with only
a reasonable amount of points, we need to use a cubic polynomial for each segment,
resulting in Cubic Spline. More technically, there are many ways to describe the method.
Below follows a particular one that we found to be particularly clean and intuitive.

Suppose there is a function f(x) that we want to recover via interpolation, and we
discretise it with n + 1 points, (xi, yi = f(xi)) for (i = 1, . . . , n + 1) (these are ordered
yet arbitrary points in the domain of f). On every interval [xi, xi+1], we’ll interpolate
with an auxiliary set of functions fi,i+1 = fx∈[xi,xi+1] for each subdomain [xi, xi+1] with
(i = 1, . . . , n) defined as the cubic polynomial (D.22) and subject to the conditions
(D.23)-(D.26):

fi,i+1(x) = ai + bi(x− xi) + Ci
2 (x− xi)2 + di

3! (x− xi)3 , (D.22)

fi,i+1(xi) = yi , (D.23)

fi,i+1(xi+1) = yi+1 , (D.24)

f ′
i,i+1(xi) = f ′

i−1,i(xi) , (D.25)

f ′′
i,i+1(xi) = f ′′

i−1,i(xi) , (D.26)

where ai, bi, Ci, di are constants for (i = 1, . . . , n). Since with n+1 points there are n
segments, this results in 4n parameters to fix. Then there are 2 zeroth-order constraints

3Cubic Spline is easily applied to multiple dimensions, in fact it is quite a common method practised
in computer graphics for 2D and 3D data (see https://en.wikipedia.org/wiki/Cubic_Hermite_spline).

https://en.wikipedia.org/wiki/Cubic_Hermite_spline
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per segment, (D.23) and (D.24), plus 2 for each point connecting segments (all except
the extremes), (D.25) and (D.26). This total 2n + 2(n − 1) = 4n − 2 constraints. This
results in two missing conditions, arising from our lack of knowledge of the derivatives
at the extremes. To complete the set of constraints, we choose second derivatives at
the extremes to be zero: f ′′

1,2(x1) = C1 = 0 and f ′′
n,n+1(xn+1) = Cn + dn(xn+1 − xn) :=

Cn+1 = 0. This is often referred to as a “no bending” condition at the endpoints, as it
extends the first derivative along the extremes with the same slope it had before.

The n− 1 conditions (D.26) result in di = Ci+1−Ci

xi+1−xi
, (i = 1, . . . , n), where Cn+1 = 0

from the no bending condition at xn+1. This results in making the second derivative for
any segment a simple linear interpolation:

f ′′
i,i+1(x) = Ci + (Ci+1 − Ci)

x− xi
xi+1 − xi

= Ci+1(x− xi) + Ci(xi+1 − x)
xi+1 − xi

, (D.27)

thus eliminated the 3rd order coefficients. Integrating twice and redefining the constants
ai and bi, we can re-write D.22 as:

fi,i+1(x) = 1
xi+1 − xi

[
Ci
6 (xi+1 − x)3 + Ci+1

6 (x− xi)3
]

+Ai(xi+1 − x) +Bi(x− xi) .

(D.28)

Using constraints D.23 and D.24 we get:

Ai = yi
xi+1 − xi

− Ci
6 (xi+1 − xi) ,

Bi = yi+1
xi+1 − xi

− Ci+1
6 (xi+1 − xi) .

(D.29)

So, overall we have:

fi,i+1(x) = Ci
6

[
(xi+1 − x)3

xi+1 − xi
− (xi+1 − x)(xi+1 − xi)

]
+ (D.30)

+ Ci+1
6

[
(x− xi)3

xi+1 − xi
− (x− xi)(xi+1 − xi)

]
+ yi+1(x− xi) + yi(xi+1 − x)

xi+1 − xi
,

f ′
i,i+1(x) = −Ci

2

[
(xi+1 − x)2

xi+1 − xi
− xi+1 − xi

3

]
+ Ci+1

2

[
(x− xi)2

xi+1 − xi
− xi+1 − xi

3

]
+ yi+1 − yi
xi+1 − xi

,

(D.31)

f ′′
i,i+1(x) = Ci+1(x− xi) + Ci(xi+1 − x)

xi+1 − xi
. (D.32)

We have left the job of finding the Ci second order coefficients. This is done by using D.25,
the first derivative condition, together with the no bending conditions C1 = 0 = Cn+1.
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The former results in:

Ci−1(xi − xi−1) + 2Ci(xi+1 − xi−1) + Ci+1(xi+1 − xi) = 6
(
yi+1 − yi
xi+1 − xi

− yi − yi−1
xi − xi−1

)
≡ ∆i ,

(D.33)

for i ∈ (2, . . . , n). We now have to solve the linear algebra problem of these n − 1
coupled equations, together with the condition C1 = 0 := ∆1. Using the vectors C⃗ =
(C1, . . . , Cn)T and ∆⃗ = (∆1, . . . ,∆n)T , we have:

A C⃗ = ∆⃗ , (D.34)

A =



1 0 0 . . . 0 0 0
(x2 − x1) 2 (x3 − x1) (x3 − x2) . . . 0 0

0 (x3 − x2) 2 (x4 − x2) . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 2 (xn − xn−2) (xn − xn−1)
0 0 0 . . . (xn − xn−1) 2 (xn+1 − xn−1)


.

(D.35)

The matrix A is a tridiagonal matrix which can be efficiently solved with tridiagonal ma-
trix inversion algorithms (e.g. https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm).
Recovering the final vector C⃗, then the function f(x) and its first and second derivatives
can be approximated by the piece-wise functions (D.30)-(D.32).

D.5 Higher order Richardson extrapolation

Standard Richardson extrapolation is a common technique when looking for the con-
verging or asymptote value of some sequence, some value f∗ = limh→0 f(h), when we
are only able to evaluate f for several values of h and having to extrapolate to h = 0. It
is often useful when computing derivatives is unfeasible or imprecise, and when a fitting
method is not well suited or has not enough points. It allows one to get rid of first order
errors, leaving us with second order perturbations, as we shall see. For the research
of this thesis, it was not suited for several extrapolations needed as extrapolating the
Weyl-4 scalar for gravitational waves, as these carry a significant amount of noise that
strongly interferes with the accuracy of Richardson extrapolation, but it proved very
useful for measures like the ADM mass at infinity, by measuring it at finite radii. It
also proved useful to get a higher accuracy extrapolation, since getting rid of first order
errors may not be good enough. Finally, Richardson extrapolation is also at the core
of convergence testing, where we test numerical evolutions by checking the expected be-
haviour as we approach infinite resolution (or zero grid spacing). Below we describe the

https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
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standard version of Richardson extrapolation and a higher order version which was used
for extrapolations like the ADM mass of the spacetime.

Take any quantity that follows a known power law or constant asymptote behaviour
as it approaches infinity. This could be the ADM mass, which is computed in spherical
shells of increasing radius and takes the limiting value MADM at spatial infinity; or the
Weyl-4 scalar, which decays as Ψ4(r) ∝ 1

r . Re-scale it to obtain a function, A(r), that
asymptotes to a constant at infinity (the ADM mass already does; for the Weyl-4 scalar,
use A(r) = r ·Ψ4(r)). We will now treat the smallness parameter h = 1

r , such that h → 0
as r → ∞. Expanding A(r) around infinity:

A(r) = A∞ + B

r
+ C

r2 + D

r3 +O
(
r−4

)
. (D.36)

The goal is to find out the value of A∞ (i.e. the ADM mass, the asymptotic decay of
the gravitational wave, etc.). Using 2 points r1 and r2 (assume r1 > r2), we can easily
see that:

A(r1) − r2
r1
A(r2)

1 − r2
r1

= A∞ − C

r1r2
+O

(
r−3

)
= A∞ +O

(
r−2

)
. (D.37)

What did we achieve? Based on computing 2 points, we achieved a ratio which allows
us to compute A∞ up to precision of O(r−2) instead of O(r−1), significantly improving
the result provided we started with an error which is already small.

If we want to improve this result by achieving O(r−3) precision, we can do so by
using 3 points. Using 3 points such that r1 > r2 > r3, one can eliminate one further
term, result in:

A(r1) − r2
r1

(
1− r3

r1
1− r3

r2

)
A(r2) + r3

r1

(
1− r2

r1
r2
r3

−1

)
A(r3)

1 − r2+r3
r1

+ r2r3
r2

1

= A∞ + D

r1r2r3
+O

(
r−4

)
= A∞ +O

(
r−3

)
.

(D.38)

As expected, D.38 reduces to D.37 if we set r3 = 0.

D.5.1 General order decay

It is often known that the quantity A(r) that asymptotes to some A∞ decays not as 1
r

but some higher power 1
ro . For this more general order decay, results (D.37) and (D.38)

become:

Ao(r) = A∞ + B

ro
+ C

ro+1 + D

ro+2 +O
(
r−(o+3)

)
, (D.39)
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Ao(r1) −
(
r2
r1

)o
Ao(r2)

1 −
(
r2
r1

)o = A∞ − C

r1r2

(
r1 − r2
r1o − r2o

)
+O

(
r−(o+2)

)
= A∞ +O

(
r−(o+1)

)
,

(D.40)

Ao(r1) −
(
r2
r1

)o (1− r3
r1

1− r3
r2

)
Ao(r2) +

(
r3
r1

)o (1− r2
r1

r2
r3

−1

)
Ao(r3)

1 −
(
r2
r1

)o (1− r3
r1

1− r3
r2

)
+
(
r3
r1

)o (1− r2
r1

r2
r3

−1

) = A∞ +O
(
r−(o+2)

)
. (D.41)

As expected, we can recover the previous formulas by setting o = 1.

D.5.2 Convergence testing

In convergence testing, this technique can help figuring out the limiting value of numer-
ically evolves variables if you have 2 or 3 different resolutions available. But more often,
it is desirable to double check the convergence rate of the code, the order of decay o of
section D.5.1. For that, start by re-writing A(r) explicitly with a smallness parameter h
representing the grid spacing ∆x:

Ao(h) = A∞ +B ho +O
(
ho+1

)
. (D.42)

Notice that, given h1 < h2 < h3:

co := Ao(h3) −Ao(h2)
Ao(h2) −Ao(h1) = ho3 − ho2

ho2 − ho1
(1 +O (h3)) . (D.43)

For a constant rate of resolution improvement where h2/h1 = r and h3/h2 = r, then
co → ro. In general, give each resolution and the values of Ao for each, one can solve
the previous equation and find o, the order of convergence of the evolution scheme.
Numerical noise often brings a lot of error to this measurement, and it is often enough
to use the factor co = ho

3−ho
2

ho
2−ho

1
and the product co · (Ao(h2) −Ao(h1)) as a predictor of

Ao(h3)−Ao(h2). By computing this predictor using different values of o when computing
co (2,3,4 if one expects second, third, fourth order convergence), one can qualitatively
see what convergence rate a given solution follows. For examples of this, see appendixes
A.4 and B.1 related to convergence of simulations of chapters 4 and 5.



Appendix E

Numerical relativity formulations

This appendix is a quick review of the main formulations in numerical relativity, mainly
the BSSN and CCZ4 formulations used in GRChombo, supporting the summaries provided
in 3.2-3.4.

E.1 ADM formulation

E.1.1 d + 1 decomposition

The ADM decomposition1 starts with a foliation: splitting spacetime in successive non-
intersecting d dimensional spacelike surfaces, each identified by a scalar interpreted as a
global time function, t, which may not coincide with the proper time of any particular
observer. A spacetime that allows such foliation is called globally hyperbolic and each
time slice is called a Cauchy hypersurface, Σt.

Introducing spatial coordinates xi(t) labelling each hypersurface, define:

• dl2 = γijdx
idxj , defines the proper distance dl in each hypersurface measured by

an induced spatial metric γij ,

• dτ = α(t, xi)dt, for proper time τ defines the lapse function, α,

• xi(t+ dt) = xit − βi(t, xi)dt, defines the shift vector, βi.

The lapse function encodes our freedom to pick the time evolution of each slice and
describes the proper time distance between hypersurfaces for observers at rest relative
to the slices (moving in the normal direction to each). A value less than one means
that proper time runs slower than our time coordinate t, and it does not change the
physical interactions that occur. The shift vector allows re-parameterisation of the spatial
coordinates, which is often essential to keep numerical stability as observers labelled by
xi move relative to fixed points. Using vector addition one can with this re-write the
spacetime interval ds and the spacetime metric as:

ds2 = −α2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
=

=
(
−α2 + βiβ

i
)
dt2 + 2βidxidt+ γijdx

idxj . (E.1)

1Originally derived by Arnowitt-Deser-Misner [305] and re-written to its final form by York [306].
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Figure E.1.1: Two adjacent hypersurfaces showing the meaning of the lapse function α
and the shift vector βi. Figure taken from Alcubierre [18, p. 66].

gµν =
(

−α2 + βiβ
i βi

βj γij

)
, gµν =

(
− 1
α2

βi

α2
βi

α2 γij − βiβj

α2

)
. (E.2)

Note the metric determinant results in
√

−g = α
√
γ. The unit and timelike normal

vector to each slice of constant time, nµ = −∇µt
|∇µt| is2:

nµ = (−α, 0) , nµ =
(

1
α ,−

βi

α

)
, (E.3)

where nµnµ = −1. Finally, the normal vector allows to define a projector operator from
spacetime tensors to the spatial hypersurface:

P ν
µ = δ ν

µ + nµn
ν = γ ν

µ . (E.4)

Note we associated this with the induced metric γij , which is consistent with a constant
time spacetime interval (E.1). This can by checked by verifying that:

P α
µ P β

ν gαβ = gµν + nµnν = γµν . (E.5)

E.1.2 Extrinsic curvature

As a set of second order PDEs, Einstein equations require information about time deriva-
tive of the spatial metric γij . This can intuitively be seen as curvature, but it is important
to distinguish between two types of curvature. Intrinsic curvature is curvature within
each hypersurfaces, associated with the d dimensional Riemann tensor. Extrinsic curva-
ture: related to how each slide is embedded in the full spacetime, describes how much
the normal vector nµ is deformed from point to point along each slice. As shown in

2The minus sign ensures nµ is future directed, aligned with increasing t.
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figure E.1.2, the parallel transported normal is deformed as we changed positions. This
change in a given direction is parameterised by ∇µnν . When projected back to the
spatial surface with the projector (E.4), this defines the extrinsic curvature on a given
slice3:

Kµν = −γ α
µ γ

β
ν ∇αnβ = − (∇µnν + nµn

α∇αnν) . (E.6)

Figure E.1.2: Representation of extrinsic curvature. The normal vector is deformed as
we parallel transport it along a given hypersurface. Figure taken from Aurrekoetxea [12,
p. 30]

The time components of Kµν can be safely ignored, as by definition it is a purely spa-
tial tensor where nµKµν = 0. Computing this explicitly using the necessary Christoffel
symbols ([18, p. 409]), one gets:

Kij = 1
2α

(
−∂tγij +D(iβj)

)
, (E.7)

where Di represents the d dimensional covariant derivative with respect to the induced
metric γij . The trace of the extrinsic curvature is written as K = K i

i . Equation (E.7)
provides our first evolution equation:(

∂t − βk∂k
)
γij = −2αKij + γij∂jβ

k + γkj∂iβ
k . (E.8)

The metric and extrinsic curvature (γij ,Kij) are the d(d+1) fundamental variables of our
initial value problem measuring the state of the gravitational field over time, equivalent
to the positions and velocities of classical mechanics.

E.1.3 Evolution and constraint equations

In order to complete the system, we have to obtain the evolution equation for Kij . The
Einstein field equations (see 2.2) must be decomposed into spatial and normal directions,
using projections of nµ and γ ν

µ . This is a long calculation which will only be summarised
here, more details can be found in Alcubierre [18, sec. 2.4-2.5].

3The extrinsic curvature is often also defined as the Lie derivatives of the spatial metric along the
normal direction nµ.
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• Normal Projection:

nµnν
(
Gµν + Λgµν − κ

2Tµν
)

= 1
2

(
R+K2 −KijK

ij
)

− κ
2ρ− Λ = 0 , (E.9)

• Mixed Projections:

γiµnν
(
Gµν + Λgµν − κ

2Tµν
)

= Dj

(
Kij − γijK

)
− κ

2S
i = 0 , (E.10)

• Spatial Projections:

γ µ
i γ

ν
j

(
Gµν + Λgµν − κ

2Tµν
)

= 0 ⇔(
∂t − βk∂k

)
Kij = 2Kk(i∂j)β

k −DiDjα+ α
(
Rij +KKij − 2KikK

k
j

)
+ ακ

2

(
γij

S−ρ
d−1 − Sij

)
− 2α

d−1γijΛ , (E.11)

where Rij and R are the d dimensional Ricci tensor and scalar on the hypersurface,
respectively, and the stress-energy tensor Tµν is decomposed into:

ρ = nµnνTµν ,

Si = −γiµnνTµν , (E.12)

Sij = γiµγjνTµν ,

where ρ is typically denominated energy density.

Equations (E.9) and (E.10) are called the Hamiltonian and Momentum constraints,
respectively. They are not evolution equations as they do not involve time derivatives.
Instead, they are constraints the dynamic variables (γij ,Kij) must satisfy at all times,
showing us we are not free to specify them arbitrarily. These constraints are also inde-
pendent of the gauge parameters α and βi, except if the matter content Tµν is not gauge
independent but specific to some coordinate observers.

Equation (E.11) closes the system with the evolution equation for Kij . Together with
(E.9) and (E.10), these make up the ADM equations.

A few remarks to close this section. Firstly, note that Einstein equations involve
second derivatives of the metric and equation (E.11) replaces these by Kij making the
system of equations first order. Second, to obtain (E.11), the constraint equations had
to be used. Additionally, it can be shown that if the constraint equations are satisfied
on the initial slice, they remain preserved along time. Numerically, this is typically not
enforced, but simply monitored as an accuracy indicator (called free evolution). Finally,
a check on degrees of freedom: Einstein equations are D(D+1)

2 = (d+1)(d+2)
2 equations,
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decomposed into d+1 constraint equations and d(d+1)
2 evolution equations. The definition

of Kij brings (E.8) to evolve the metric γij , an additional d(d+1)
2 evolution equations,

totalling d(d + 1) evolution equations. This matches our evolved variables, (γij ,Kij),
which are d(d + 1). In D = 4, the six degrees of freedom of the metric, taking into
account the D constraint equations, leave two physical degrees of freedom corresponding
to the polarisations of gravitational waves.

E.2 BSSNOK formulation

In spite of all the work to develop the ADM equations, these are known to be weakly
hyperbolic. This means they are not suited for long numerical simulations, as errors
(namely, constraint violations) propagate exponentially, leading to a crash of the code
even for simple vacuum spacetimes. The most popular alternative satisfying strong
hyperbolicity [307] (when supplemented with appropriate gauge conditions, see details
in section 3.5) is the BSSNOK formulation (Baumgarte, Shapiro, Shibata, Nakamura,
Oohara and Kojima), commonly known simply as BSSN formulation. The original work
was presented in 1987 by Nakamura, Oohara and Kojima [84] and then evolved to the
current version, based on the work of Shibata and Nakamura [85], and Baumgarte and
Shapiro [86].

The basic features new to BSSNOK explained in this section have to do with intro-
ducing 4 changes: a rescaling factor in the metric, splitting traceless components of the
extrinsic curvature, new independent variables and multiples of the constraints added to
the evolution equations.

• Conformal rescaling: to isolate big numerical factors in the spatial metric, γij ,
we re-written with a conformal factor, χ, and a conformal metric, g̃ij , such that
the conformal metric has unit determinant4:

γ̃ij = χγij , (E.13)

det γ̃ = 1 =⇒ χ = det γ− 1
d . (E.14)

• Split of the Extrinsic curvature: with the intention of splitting the evolu-
tion equations of transverse and longitudinal modes, the extrinsic curvature, Kij ,
is separated into its trace, K = K i

i , and its trace-free part, Aij , which is also
4The conformal factor can be written in other ways as well, like g̃ij = Ψ4gij. We adopt χ for consistent

with the CCZ4 formulation E.3 and what our code GRChombo uses.
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conformally rescaled5 into Ãij :

Ãij = χAij = χ
(
Kij − 1

dγijK
)
. (E.15)

• Conformal connection functions: three auxiliary variables are introduced to
adjust the form of the characteristic matrix that affect hyperbolicity. These are the
conformal contracted Christopher symbols, Γ̃i (equation E.17), using the Christof-
fel symbols associated with the conformal metric, Γ̃ijk, related to the original
Christoffel symbols by equation E.16:

Γijk = Γ̃ijk − 1
2χ

(
δij∂kχ+ δik∂jχ− γjkγ

il∂lχ
)
, (E.16)

Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij , (E.17)

where the last simplification uses the fact that γ̃ = 1 and holds only for Cartesian
coordinates, using the relation γmk∂iγmk = ∂i ln det γ.

• Add multiples of the constraints to the evolution equations: to improve
stability, the Ricci is removed from equation (E.11) using the Hamiltonian con-
straint, and a divergence term ∂jÃ

ij when computing ∂tΓ̃i is removed using the
Momentum constraints, resulting in equation (E.22). This affects hyperbolicity of
the system without affecting the physics.

A few notes follow. First, Ãij and other conformal objects should be raised and
lowered with the conformal metric. For example, Ãij = 1

χA
ij and γ̃ij = 1

χγ
ij . Second,

new algebraic constraints such as det γ̃ = 1, Ã i
i = 0 and Γ̃i = −∂j γ̃ij can, like the

constraints, be either enforced or simply tracked. For GRChombo, trace-free property
of Ãij is enforced at every timestep [4], while the remaining two are well preserved
numerically.

Putting all this together, the d(d+1) evolution variables (γij ,Kij) become
(
χ, γ̃ij ,K, Ãij , Γ̃i

)
,

5This rescaling is not unique and often different sources may use different powers of the conformal
power.
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with evolution equations:(
∂t − βk∂k

)
χ = 2

dχ
(
αK − ∂iβ

i
)
, (E.18)(

∂t − βk∂k
)
γ̃ij = −2αÃij + 2 ˜γk(i∂j)β

k − 2
d γ̃ij∂kβ

k , (E.19)(
∂t − βk∂k

)
K = −γijDjDiα+ α

(
ÃijÃ

ij + 1
dK

2
)

(E.20)

+ ακ
2(d−1) (S + (d− 2)ρ) − 2

d−1αΛ ,(
∂t − βk∂k

)
Ãij = χ

(
−DiDjα+ αRij − ακ

2 Sij
)TF + α

(
KÃij − 2ÃikÃkj

)
(E.21)

+ 2Ãk(i∂j)β
k − 2

dÃij∂kβ
k ,(

∂t − βk∂k
)
Γ̃i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃkj − d

2 Ã
ij ∂jχ

χ − d−1
d γ̃ij∂jK − κ

2 γ̃
ikSk

)
− Γ̃j∂jβi + 2

d Γ̃i∂jβj + d−2
d γ̃ki∂k∂jβ

j + γ̃kj∂j∂kβ
i , (E.22)

where (. . . )TF denotes ’trace-free’6 and where the Ricci scalar, R, can be computed from
conformal variables using the decomposition into the conformal Ricci tensor, R̃ij and a
component dependent only on the conformal factor, Rχij :

Rij = R̃ij +Rχij , (E.23)

R̃ij = −1
2 γ̃

lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃k + Γ̃kΓ̃(ij)k + γ̃lm
[
2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

]
, (E.24)

Rχij = d−2
2χ

(
D̃iD̃jχ− 1

2χD̃iχD̃jχ
)

+ 1
2χ γ̃ij

(
D̃kD̃kχ− d

2χD̃
kχD̃kχ

)
, (E.25)

where D̃i is the covariant derivative associated with the conformal metric, also raised
with this metric. The purpose of the new variables Γ̃i can now be better understood, by
noticing the term ∂jΓ̃k in equation (E.24) now reduces the second order derivatives in
Ricci tensor to a simple (hyperbolic) Laplacian operator, γ̃lm∂l∂mγ̃ij .

E.3 CCZ4 formulation

As explained in section E.1, constraints conditions satisfied in the initial data can be
proven to propagate and be satisfied at all times. With numerical noise from discretisa-
tion errors, constraint violations can spoil accuracy by growing and accumulating signifi-
cantly without being controlled dynamically. For most of the numerical results presented,
we have used a refinement of the BSSN system which tackles this issue, called the Con-
formal Covariant Z4 (CCZ4) formulation [87–90]. The fundamental idea is to convert
the constraint equations into dynamically fields that can have its own evolution equation
to which we can introduce damping terms. The CCZ4 damped formalism replaces the

6Enforcing the trace-free property on a spatial tensor Tij corresponds to (Tij)T F = Tij − 1
d

γijT k
k .
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original field equations 2.10 by introducing a new variable, Zµ:

Rµν+2∇(µZν)−κ1
[
2n(µZν) − 2

D−2(1 + κ2)gµνnσZσ
]
− 2
D−2Λgµν = κ

2

(
Tµν − 1

D−2gµνT
)
,

(E.26)
where κ1 and κ2 are constants. With this modification, the Hamiltonian and Momentum
constraint become evolution equations for Z0 and Zi, respectively. It can be shown that
effective damping is achieved only with κ1 > 0 and κ2 > −1 [308]. For these values,
the constraints evolve according to a damped wave equation, which means that besides
damping, they also propagate and leave the numerical grid (if the boundary conditions
allow so).

When writing this system as a d + 1 formalism along the lines of the BSSNOK
formulation, the following changes are introduced:

• The D-vector Zµ is decomposed into its spatial components, Zi, and the normal
component, Θ, defined as:

Θ = −nµZµ = αZ0 . (E.27)

• The spatial components, Zi, replace the BSSNOK variables Γ̃i with the indepen-
dent variables Γ̂i:

Γ̂i = Γ̃i + 2γ̃ijZj . (E.28)

The condition Zµ = 0 that recovers the original Einstein equations reduces to the
two additional algebraic constraints Θ = 0 and Γ̂i = Γ̃i. We now have the variables(
χ, γ̃ij ,K, Ãij ,Θ, Γ̂i

)
, and the resulting equations of motion are:

(
∂t − βk∂k

)
χ = 2

dχ
(
αK − ∂iβ

i
)
, (E.29)(

∂t − βk∂k
)
γ̃ij = −2αÃij + 2 ˜γk(i∂j)β

k − 2
d γ̃ij∂kβ

k , (E.30)(
∂t − βk∂k

)
K = −γijDjDiα+ α

(
R+ 2DiZ

i +K(K − 2Θ)
)

(E.31)

− 2d
d−1ακ1 (1 + κ2) Θ + ακ

2(d−1) (S − dρ) − 2d
d−1αΛ ,(

∂t − βk∂k
)
Ãij = χ

[
−DiDjα+ α

(
Rij + 2D(iZj) − κ

2Sij
)]TF

(E.32)

+ α
[
(K − 2Θ) Ãij − 2ÃikÃkj

]
+ 2Ãk(i∂j)β

k − 2
dÃij∂kβ

k ,(
∂t − βk∂k

)
Θ = α

2

(
R+ 2DiZ

i − 2KΘ + d−1
d K2 − ÃijÃ

ij − κρ− 2Λ
)

(E.33)

− Zi∂iα− ακ1 (2 + κ2) Θ ,(
∂t − βk∂k

)
Γ̂i = −2Ãij∂jα+ 2α

(
Γ̃ijkÃkj − d

2 Ã
ij ∂jχ

χ − d−1
d γ̃ij∂jK − κ

2 γ̃
ikSk

)
(E.34)

− Γ̃j∂jβi + 2
d Γ̃i∂jβj + d−2

d γ̃ki∂k∂jβ
j + γ̃kj∂j∂kβ

i − 2ακ1γ̃
ijZj

+ 2γ̃ij
(
α∂jΘ − Θ∂jα− 2

dαKZj
)

+ 2κ3
(

2
d γ̃

ijZj∂kβ
k − γ̃jkZj∂kβ

i
)
,
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where a new damping parameter κ3 was introduced in equation (E.34) as extra damping
useful when simulating black hole spacetimes [87, 309].

A few remarks follow. First, since in black hole spacetimes with common gauges (see
section 3.5) the lapse freezes to zero, it is useful to replace (ακ1) → κ1 [88]. Second,
during evolution, Zi is calculated using (E.28), where Γ̃i is computed directly from the
metric and Γ̂i is an evolved variable. Note as well how equation (E.33) reduces to the
Hamiltonian constraint if we set Θ = 0 = Zi. Finally, notice how the Ricci tensor always
appears in the combination Rij + 2D(iZj), which in equation (E.23) amounts to adding
RΘ
ij and replacing Γ̃i by Γ̂i, thus not affecting hyperbolicity properties of the system:

Rij + 2D(iZj) = R̂ij +Rχij +RΘ
ij , (E.35)

R̂ij = −1
2 γ̃

lm∂l∂mγ̃ij + γ̂k(i∂j)Γ̂k + Γ̂kΓ̃(ij)k + γ̃lm
[
2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

]
, (E.36)

RΘ
ij = 1

2χ

(
Γ̂k − Γ̃k

)
(γ̃ki∂jχ+ γ̃kj∂iχ− γ̃ij∂kχ) , (E.37)

where R̂ij is R̃ij with Γ̃k replaced by Γ̂k and where Rχij is as defined in equation (E.25).

Given the constraint damping properties of CCZ4 formulation, it is common to use
initial data which is only approximately constraint solving (without the need for a full
initial data solver that generates initial data perfectly satisfying the Hamiltonian and
Momentum constraints, a hard task for non trivial spacetimes). CCZ4 terms will quickly
damp initial violations before any physical effect takes place.

E.4 Other formulations

The BSSN and CCZ4 conformal 3 + 1 formulations are extensively used in the field.
Based on Alcubierre [18], we briefly describe other formulations used in the literature.

The Hamiltonian formulation is often useful for analytical considerations, espe-
cially in the realm of quantum gravity.

The Characteristic formalism performs foliation of spacetime into null hypersur-
faces, instead of spacelike hypersurfaces, typically compactified to infinity. This has
advantages for gravitational wave extraction, for setting boundary conditions, evolv-
ing fewer variables, and finally, it lacks constraint equations as the ADM formulation.
Caustics can easily form in this formalism, making it hard to handle numerically.

The Conformal formalism has a similar spacelike formulation as the 3 + 1 for-
malism, but brings asymptotic null infinity to a finite region in coordinate space. This
is advantageous also for gravitational wave extraction without the issue of caustics.
Boundary conditions and hyperboloidal initial conditions are two of the challenges of
this formulation.
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Finally, and perhaps more important, the Generalised Harmonic Formulation
(GHC) [82, 83, 310] is a full 4D formulation that imposes a generalised harmonic gauge,
which can be written as □xµ = −Γµ = −gρσΓµρσ = Hµ for some generalised gauge
functions Hµ. It has very well understood well-posedness properties as in this gauge the
principal part of the equations behaves as wave equations, gρσ∂ρ∂σgµν = Fµν(gαβ, ∂ρgαβ)
for some functions Fµν (see the section 2.6 for details on hyperbolicity). It also shares
the constraint damping properties of the CCZ4 formulation (for its constraint Cµ =
Hµ + Γµ = 0). Moreover, its elegance when compared to the lengthy BSSN/CCZ4 cal-
culations make it a simple and flexible approach. As disadvantages, there is first a less
well understood control over the gauge evolution, and second, as this approach cannot
deal with physical singularities, the requirement of the use of excision, by excluding the
interior of horizons from the computational domain. Excision requires an apparent hori-
zon finder, stable one-sided stencils and boundary conditions in the excision boundary,
and a moving grid as black holes move in the computational domain. This was the ap-
proach has been used extensively, such as for the first successful numerical binary black
hole evolution [162] or higher dimension studies (e.g. [311]). Is it important to mention
the only known strongly hyperbolic formulation for modified theories of gravity such as
general Horndeski theory or Lovelock theories: the modified generalised harmonic
(MGH) formulation [50, 51]. This extends the GHC formulation by introducing two
auxiliary metrics that break the degeneracy in the characteristics speeds of the physics,
the coordinate and the constraint violating degrees of freedom.
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