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Abstract If F is a full factorial design and D is a fraction of F , then for
a given monomial ordering, the algebraic method gives a saturated polyno-
mial basis for D which can be used for regression. Consider now an algebraic
basis for the complementary fraction of D in F , built under the same mono-
mial ordering. We show that the basis for the complementary fraction is the
Alexander dual of the first basis, constructed by shifting monomial exponents.
For designs with two levels, the Alexander dual uses the traditional definition
for simplicial complexes, while for designs with more than two levels, the dual
is constructed with respect to the basis for the design F . This yields various
new constructions for designs, where the basis and linear aberration can easily
be read from the duality.

Keywords Alexander dual · Factorial design · Linear aberration

1 The algebraic method in experimental design

Pistone andWynn (1996) first proposed the use of computational commutative
algebra approach to analyze full factorial designs and their fractions. This
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approach allows us to identify models for a design and extend the confounding
relations which previously were mostly studied for regular fractions.

Algebraic techniques are applicable to any design defined in continuous
factors, see the monograph Pistone et al. (2001) and also Riccomagno (2009).
The techniques have been extended to a variety of cases, such as the identifia-
bility analysis of mixture experiments in Maruri-Aguilar et al. (2007) and the
study of orthogonality when the factorial levels are defined via roots of unity in
Pistone and Rogantin (2008). Recently, the concept of minimal “linear aberra-
tion” in algebraic models has been studied in Bernstein et al. (2010), together
with a description of models in terms of their border complexity measured
with Betti numbers, see Maruri-Aguilar et al. (2012).

This paper is concerned with the study of models identified with fractions
of factorial designs. The main result is that for a given fraction, Alexander
duality, a concept from algebraic topology, relates the algebraic model of the
fraction with that for the fraction complement.

A short summary of algebraic method is first presented. In Section 1.1 we
present results concerning full factorial designs and designs which are special
hierarchical subsets of such full grids. In Section 1.2 we study Alexander duals
of hierarchical sets of monomials, both in the square-free (multilinear) case
and as subset of a lattice. Our main result is in Section 2, namely that the
model for a fraction and the model for the complement of that fraction are
related by Alexander duality. We then extend the bounds on minimal aberra-
tion in Bernstein et al. (2010) using Alexander duality. In Section 3 we present
some special cases which still yield Alexander duality but without resorting
to operations with ideals. The first case is based on the aliasing table for reg-
ular fractions of factorial designs 2k, while the second case concerns designs
obtained by complements and reflections.

We start with a short summary of the algebraic method in experimental
design. The reader is referred for further references on polynomial ideals to
Cox et al. (2007), and for monomial ideals to Herzog and Hibi (2011) and to
Miller and Sturmfels (2005). Consider d indeterminates x1, . . . , xd. For a set
of non-negative integers α = (α1, . . . , αd) we define a monomial as

xα = xα1
1 xα2

2 · · ·xαd

d .

Any monomial xα can be represented by its exponent α = (α1, . . . , αd) ∈ Z
d
≥0.

The total degree of a monomial xα is |α| =
∑d

i=1 αi.
In statistics we are familiar with monomials as linear, quadratic, interac-

tion, and so on: x1, x
2
2, x1x2, . . ., etc. By taking linear combinations of mono-

mials with coefficients in a base field k we obtain a ring of polynomials,
R := k[x1, . . . , xd]. We can write a polynomial in R compactly as

f(x) =
∑

α∈M

θαx
α,

where M is a set of distinct multi-exponents. For example, the standard
quadratic response surface in two variables is:

f(x1, x2) = θ00 + θ10x1 + θ01x2 + θ20x
2
1 + θ11x1x2 + θ02x

2
2,
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and M = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)}.
A design D is considered to be a finite set of n distinct points in R

d. Each
point in D is sometimes referred to as treatment combination. We ignore repli-
cation, that is, repeated observations at the same design site. In the algebraic
method the design is expressed as the solution of a set of equations and thus
thought of as a zero dimensional algebraic variety. The set of all polynomials
that vanish on all points of D is the design ideal, I(D) ⊂ R.

We define a monomial term ordering (monomial ordering, for short) which
is a total ordering ≺ on all monomials satisfying a) 1 ≺ xα for all α 6= 0,
and b) if xα ≺ xβ then xα+γ ≺ xβ+γ , for all integer γ ≥ 0. Given a term
ordering, there is a unique reduced Gröbner basis (G-basis) for I(D). This
reduced Gröbner basis is a finite set of polynomials {g1, . . . , gm} ⊂ I(D) which
is a generator of I(D), that is I(D) = 〈g1, . . . , gm〉. Additionally, the ideal
generated by the leading terms of the Gröbner basis equals the ideal of leading
terms of I(D), i.e. 〈LT (gi) : i = 1, . . . ,m〉 = 〈LT (f) : f ∈ I(D)〉. Recall that
the leading term LT(f) of a polynomial f is the largest term with non-zero
coefficient under the monomial ordering ≺.

The quotient ring
k[x1, . . . , xk]/I(D) (1)

can be seen as a vector space spanned by a special set of monomials. This
monomial basis can be found using the Gröbner basis of I(D), as the set of
all monomials which are not divisible by the leading terms of the G-basis. In
terms of exponent vectors, L = {α : α < βi for all βi where LT(gi) = xβi};
note that the inequality is applied coordinate-wise. We call this set {α ∈ L}
the quotient basis and note that |L| = |D|, see Cox et al. (2007) and Pistone
and Wynn (1996).

The set of multi-indices (exponents) in L has the “order ideal” property:
α ∈ L implies β ∈ L for any 0 ≤ β ≤ α (coordinatewise). For example, if
x2
1x2 is in the quotient basis so are 1, x1, x2, x1x2 and x2

1. This order ideal
property of a model basis is well known in statistical literature, where a linear
model that satisfies it is termed a “hierarchical model”, see Nelder (1977) and
Peixoto (1990). Several free software systems are available for determining
quotient bases, such as Macaulay2 or CoCoA; see Grayson and Stillman (2009)
and CoCoATeam (2009).

Any function y(x) : D → R has a unique polynomial interpolator over D
given by

f(x) =
∑

α∈L

θαx
α (2)

such that y(x) = f(x), x ∈ D. For a given pair (D,L) the “design matrix” (or
X-matrix) is a n× n matrix with rows indexed by design points and columns
indexed by the monomials in L:

X = {xα}x∈D,α∈L.

The fact that L is a basis for the quotient ring (1) implies that X has full rank
n, see Babson et al. (2003). If Y is a column vector that contains values y(x)
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for x ∈ D, then X−1Y gives the values of coefficients θα that guarantee that
(2) interpolates values at design points.

A final remark, in this section, is that the algebraic analysis of experimental
designs helps considerably to understand aliasing or confounding. An algebraic
version of this is that two polynomials p(x), q(x) are aliased if they agree on
the design: p(x) = q(x) for all x ∈ D. Equivalently p(x) − q(x) ∈ I(D), see
Pistone and Wynn (1996).

1.1 Full factorial and staircase designs

A full factorial design F in d variables is a product set in which factor xi takes
ni distinct levels {xi,0, . . . , xi,ni−1} for i = 1, . . . , d:

F =

d
⊗

i=1

{xi,0, . . . xi,ni−1}.

Throughout this paper the vector whose entries are the number of levels of
each factor will be denoted as n := (n1, . . . , nd), and the notation 1 indicates
the vector (1, . . . , 1). It can easily be established that, under any monomial
ordering, the Gröbner basis of I(F ) is the set







ni−1
∏

j=0

(xi − xi,j), i = 1, . . . , d







,

with leading terms {xni

i , i = 1, . . . , d}. The unique quotient basis is thus

L = {xα, 0 ≤ α ≤ n− 1}, (3)

where the inequality is verified for every coordinate.
The property that we obtain a single quotient basis, L, for any monomial

ordering is also true of an important class of designs called echelon designs in
Pistone et al. (2001), which contains the full factorial as a special case. These
are designs of staircase shape, such as the example below for d = 2:

x2,4 •
x2,3 • •
x2,2 • •
x2,1 • • • •
x2,0 • • • •

x1,0 x1,1 x1,2 x1,3

Note that for the design to be of this form we do not require the spacings
between points to be equal, as above. These designs are defined formally via
a set of “directing” design points:

{x(k) = (x1,k1 , . . . xd,kd
), k = 1, . . . ,m},
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so that

D = {(x1,i1 , . . . , xd,id) : (0, . . . , 0) ≤ (i1, . . . , id) ≤ (ik1 , . . . , ikd
), k = 1, . . . ,m}.

For the above design, the directing points have indexes (3, 1), (1, 3) and (0, 4).
The G-basis for this design can be found from the staircase, but it is easier to
go directly to the quotient basis L. We simply take L to be of the same shape
as the design but use the integer grid:

L(D) = {α : (0, . . . , 0) ≤ (α1, . . . , αd) ≤ (ik1 , . . . , ikd
), k = 1, . . . ,m}.

Continuing with the above design, the basis L(D) is the set of monomials with
exponents {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1), (0, 2), (1, 2), (0, 3),
(1, 3), (0, 4)}. The directing monomials of L are x3

1x2, x1x
3
2, x

4
2 and mirror the

role of directing points above. The leading terms of the G-basis are x4
1, x

2
1x

2
2,

x1x
4
2 and x5

2. We add the position of the leading terms of the G-basis in the
diagram, with crosses.

×
• ×
• •
• • ×
• • • •
• • • • ×

Note that due to the staircase structure of the design, until this point all
the analysis has been performed without knowledge of the actual design levels.
Now assume that levels of x1 in the design are 0, 1, 2, 3 and of x2 are 0, 1, 2, 3, 4.
The G-basis itself is constructed again using the diagram. We simply present
the form for this example,

{x1(x1 − 1)(x1 − 2)(x1 − 3), x1(x1 − 1)x2(x2 − 1),
x1x2(x2 − 1)(x2 − 2)(x2 − 3),
x2(x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)}.

1.2 Alexander duality

The Alexander dual of a simplicial complex ∆ in a ground set V is the simpli-
cial complex ∆∗ constructed by those subsets of V whose complement is not
in ∆. Alexander duality plays an important role in simplicial topology, indeed
an important homological connection exists between a simplicial complex ∆
and its Alexander dual ∆∗. Alexander duality consequently arises when con-
sidering the ideals generated by complements of those complexes, see Miller
and Sturmfels (2005) and Herzog and Hibi (2011).

In this development we are concerned with the role of Alexander duality for
models of fractions of factorial designs. The main interest lies in the relation
of the model of a fraction of a design, with the model of the complementary
fraction. We first examine the two level case which corresponds precisely to
the above definition of Alexander duality, and then examine a generalization
of the duality.
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1.2.1 Simplicial case: fractions of factorial designs with two levels

If the factors have only two levels in the design, the quotient basis given by L
is square-free. That is to say no element of a exponent vector in L is greater
or equal than two, i.e. the model is multilinear. The basis L then naturally
forms an (abstract) simplicial complex with vertices indexed by the linear
terms x1, x2, . . ., edges by interactions xixj , and a k − 1 dimensional simplex
indexed by a k-th order interaction. Thus the hierarchical property corresponds
to the simplicial complex property, i.e. if a simplex is in the complex so are
all of its sub-simplexes. We can abuse the notation a little by referring to the
simplicial complex as L, and in what follows we will sometimes use L(D) to
emphasize the dependence of the simplicial complex (model) on design D.

The Alexander dual L∗ is obtained from L in the following way. First note
that the full factorial two-level design F basis has the basis consisting of all
square free monomials: L(F ) = {xα : α ∈

⊗d
i=1{0, 1}}. Now list all square-free

monomials (in the same d factors) not in L, namely L(F ) \ L. Note that this
set generates the Stanley-Reisner ideal, associated with L when thought of as
simplicial complex. Then take complements of the binary strings in L(F ) \ L.
The Alexander dual is

L∗ = {1− α : α ∈ L(F ) \ L}.

Example 1 Take L to be the model with directing monomials x1x2x3 and x3x4,
i.e. L = {1, x1, x2, x3, x4, x1x2, x1x3, x2x3, x3x4, x1x2x3}. The set of mono-
mials in the complement of L is L(F ) \ L = {x1x4, x2x4, x1x2x4, x1x3x4,
x2x3x4, x1x2x3x4}. We now take complements of monomials in L(F ) \ L, for
instance the complement of x1x4 is x2x3, obtained using the complement of
exponent vector above 1 − α = (1, 1, 1, 1)− (1, 0, 0, 1) = (0, 1, 1, 0). Thus the
Alexander dual is L∗ = {1, x1, x2, x3, x1x3, x2x3}, see Figure 1.

FIGURE 1 ABOUT HERE
Alternatively, if L is considered as a simplicial complex, its Stanley-Reisner

ideal (see Miller and Sturmfels (2005)) is IL = 〈x1x4, x2x4〉. Thus L∗ has
directing monomials x2x3 and x1x3, obtained as complements of generators of
IL.

1.2.2 Designs with more than two levels

The notion of Alexander duality extends to the general case, see Miller and
Sturmfels (2005). We take the design D to be embedded in a full factorial grid
F , and thus L(D) is a subset of the model for a full factorial L(F ). Recall
that the model L(F ) is defined in (3) by the directing term with exponent
vector n− 1 (see notation in Section 1.1). The Alexander dual L∗(D) of L(D)
is computed relative to L(F ).

The first step is, as before, to take L(F )\L(D). One can see that this tends
to give higher degree monomials, and for non empty D, the set L(F ) \ L(D)
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will never contain the monomial 1. The Alexander dual is based on pivoting
downwards from the “corner” point of L(F ). We call this operation “flipping”:

L∗(D) = {n− 1− α : α ∈ L(F ) \ L(D)}.

Example 2 In the left panel in Figure 2, bullets represent exponents of L(D)
as a subset of the model for a 4 × 3 full factorial design F with directing
exponent n− 1 = (3, 2). The crosses represent term exponents in L(F )\L(D).
The Alexander dual L∗(D) is obtained by flipping the crosses to give the right
panel in the same figure. In this example, the Alexander dual of L(D) =
{1, x1, x2, x

2
1, x1x2} relative to the 4 × 3 full factorial is L∗(D) = {1, x1, x2,

x2
1, x1x2, x

2
2, x

3
1}. For the same design with model L(D), the Alexander dual

relative to the 3× 2 full factorial is very simple: L∗(D) = {1}.

FIGURE 2 ABOUT HERE

2 The main result

Given a design D embedded in a full factorial F , that is to say a fraction of a
full factorial, we can consider the complementary design (fraction) D̄ := F \D.
Our main result says that the basis of the complementary design obtained
by the algebraic method under a monomial ordering is the Alexander dual
(relative to F ) of the basis of the original design obtained with the same
ordering. Put as succinctly as possible:

L∗(D) = L(D̄). (4)

Theorem 1 Let ≺ be a fixed monomial ordering. Let F be a full factorial
design F with a fraction D ⊂ F . Then the bases of the quotient rings of D
and the complementary design D̄ = F \ D, with respect to ≺, are Alexander
dual, relative to F .

We start with a lemma.

Lemma 1 Let {gi} and {hj} be the G-bases for D and D̄, respectively, with

respect to term ordering ≺. Let the leading terms be LT (gi) = xα(i)

, LT (hj) =

xβ(j)

. Let the basis for F be given as in Equation (3). Then for all i, j

α(i) + β(j) ∈ Z
d
≥0 \ L(F ).

Proof Since the polynomial gi is zero on D, and hj is zero on D̄, then gihj

is zero on D ∪ D̄ = F . It follows that LT (gihj) is in the leading term ideal
of F which consists of all monomials xδ, δ ∈ Z

d
≥0 \ L(F ). By the properties of

monomial orderings,

LT (gihj) = LT (gi)LT (hj) = xα(i)+β(j)

.

It follows that α(i) + β(j) ∈ Z
d
≥0 \ L(F ). �
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To prove Theorem 1, we need to establish (4) above, the proof is by con-
tradiction.

Proof Firstly, the cardinalities agree:

|L(F )| = |L∗(D)|+ |L(D)|.

Thus, if we suppose (4) is not true then there is a vector γ ∈ L(F ), neither in
(L∗(D))c nor in L(D)c. This follows from the identity

|C| = |A|+ |B| − |A ∩B|+ |Ac ∩Bc|,

when A,B ⊆ C and where C = F , Ac = F \ A, Bc = F \ B, taking A =
L(D), B = L∗(D̄).

Then γ /∈ L(D) and (flipping back) n− 1−γ /∈ L(D̄). But then monomials
with exponents γ and n− 1−γ must be in their respective leading terms ideals.
Thus there exist an α(i) ≤ γ and a β(j) ≤ n− 1 − γ. But then α(i) + β(j) ≤
n− 1 which is in L(F ). So α(i) + β(j) ∈ L(F ), contradicting Lemma 1. �

2.1 Algebraic fan, aberration and Alexander dual

Theorem 1 has direct implications for models obtained using algebraic tech-
niques. Recall that the algebraic fan of a design A(D) is the collection of all
models obtained by the techniques in Section 1 when considering all term
orderings

A(D) := {L≺(D) : over all term orderings ≺ in k[x1, . . . , xk]},

where we have written L≺(D) to emphasize the dependance of basis for the
quotient ring (1) on term ordering ≺. Mora and Robbiano (1988) showed
that this collection of bases is finite. Furthermore each basis is in one-to-one
correspondence with a cone in the Gröbner fan and with a vertex of a special
polytope called the state polytope, see Bayer and Morrison (1988) and Babson
et al. (2003). A number of algorithms and implementations are available to
compute A(D), such as the package Gfan by Jensen (2011), or the algorithms
for universal term orderings Babson et al. (2003).

A corollary of Theorem 1 relates the algebraic fan of a design A(D) to
that of its complement, relative to a full factorial design F . Indeed both sets
A(D) and A(F \ D) have the same cardinality, and models in A(F \ D) are
the Alexander duals of those in A(D).

Corollary 1 The bases in the algebraic fan of D are in one-to-one correspon-
dence with bases in the algebraic fan of F \D.

Using model aberration and the state polytopes of I(D) and of I(F \D), we
now provide a description of the relation between the two collections of models
for D and for F \ D. For a basis L, define its full state vector as V (L) :=
∑

α∈L α, i.e. the coordinate-wise sum of exponent vectors of monomials in
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L. As an example, for the models L and L∗ of Example 1 we have V (L) =
(4, 4, 5, 2) and V (L∗) = (2, 2, 3, 0). The state polytope of a design ideal I is
built with the convex hull of all full state vectors in the algebraic fan:

S(I) := conv ({V (L) : L ∈ A(D)}) + R
d
≥0,

where the last term above is added with Minkowski summation. Inspecting
the vertices of the state polytope index models in the design fan, and their
polytopes, we can compare designs in terms of model aberration and minimal
linear aberration of designs, see Bernstein et al. (2010).

Alexander duality allows a direct link between the vertexes of the state
polytopes for I(D) and for I(F \ D). We state this result in the following
Lemma. The lemma is based on a direct calculation, noting that

V (L(F )) = V (L(D)) + V (L(F ) \ L(D)) .

Lemma 2 Let F be the full factorial design with size n1n2 · · ·nd; let L be the
model for a subset D of F , and let L∗ be the Alexander dual of L relative to
F . Then

V (L∗) = (n− 1)
|L∗| − |L|

2
+ V (L). (5)

The first summand on the right hand side of (5) depends only on the lattice
F and on the sizes of fractions |D| = |L| and |F \D| = |L∗|. A summary of
Corollary 1 and Lemma 2 is that the state polytope of I(D) and that of
I(F \D) are related by a shift, given by the first summand in (5).

Corollary 2 Let F be a full lattice design with an even number of points and
let D and D̄ = F \ D be half fractions of F , i.e. |D̄| = |D|. Then the state
polytopes for I(D) and for I(F \D) coincide.

The corollary follows from Lemma 2, noting that fractions D and comple-
ment F \D have the same size, then |L| = |L∗| above and thus V (L∗) = V (L).
This in turn implies that both state polytopes for I(D) and for I(F \D) are
equal as they have the same set of vertices. However, note that two designs
having the same state polytope does not imply that models in the algebraic
fans are the same, as next example shows.

Example 3 Consider F to be a 4×4 full factorial design with levels 0, 1, 2, 3, and
the fraction D = {(0, 1), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (3, 1), (3, 3)}. For the
standard term ordering in CoCoA, the model for D is L = {1, x1, x2, x

2
1, x1x2,

x2
2, x

2
1x2, x1x

2
2}, while its Alexander dual and basis for F \D is L∗ = {1, x1, x2,

x2
1, x1x2, x

2
2, x

3
1, x

3
2}. We observe L 6= L∗, yet V (L) = V (L∗) = (7, 7). For the

same design D ⊂ F , and a reverse lexical term ordering, the model for D is
L = {1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2}, which equals its Alexander dual L∗. In

this second case the full state vector is V (L) = V (L∗) = (9, 5).
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The aberration of a model L measures the (weighted) degree of L, and
is defined in Bernstein et al. (2010) as A(w,L) := 1

nV (L)wT , where w =

(w1, . . . , wd) is a nonnegative weight vector with
∑d

i=1 wi = 1. The result of
Lemma 2 implies a direct relation between aberrations for L and its Alexander
dual L∗:

A(w,L∗) = b(1− c) + cA(w,L) (6)

with

b =
1

2
w(n− 1)T

and c = |L|/|L∗|. In other words, the aberration of Alexander dual L∗ consists
of a shifting and scaling of the aberration of model L.

We finish by considering the minimal aberration of a design. Recall that
the minimal aberration is computed for a fixed weighing vector by minimizing
A(w,L) over all models L in the algebraic fan A(D). This minimisation is
equivalent to linear minimization over the vertices of the state polytope, i.e.
for fixed w, the minimal value of wxT over x ∈ S(I) is attained at a vertex of
S(I). Values of minimal aberration achieve their lowest value over all designs
when considering a generic design. A design D is generic when it identifies
the set of all corner cut models (of the same size n and dimension d as the
design), and recall that a model is a corner cut when its set of exponents
can be separated from its complement by a single hyperplane, see Onn and
Sturmfels (1999).

If the design D is generic, then the algebraic fan A(D) consists of corner
cut models, and bounds on minimal aberration of D are

A+ − 1 ≤ Ã(w,L) ≤ A+ + 1 (7)

with A+ = (|L|d!w1 · · ·wd)
1/d d

d+1 and Ã(w,L) is the minimum value of A(w,L)
computed over all models in A(D), see Bernstein et al. (2010). By the result
in (6) above, the bounds in Equation (7) translate directly into bounds on the
minimal aberration of F \D, whose fan is the collection of Alexander duals of
corner cuts:

b(1− c) + c(A+ − 1) ≤ Ã(w,L∗) ≤ b(1− c) + c(A+ + 1). (8)

Here Ã(w,L∗) is the minimum value of aberration over all Alexander duals
of corner cuts. In other words, the bound on corner cuts in (7) maps linearly
to bounds (8) for complements of corner cuts. Note that if L is corner cut
model, its Alexander dual L∗ relative to F is not necessarily a corner cut, see
Example 4. There are however at least two simple cases when the Alexander
dual of a corner cut remains so: when F is a 2 × 2 design and D comprises
points in opposite corners of F ; and when F is a factorial design of two points
and D and F \D have only one point.

FIGURE 3 ABOUT HERE
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Example 4 Consider the design D = {(1, 3), (0, 0), (2, 2), (4, 1), (3, 4)} in two
factors. The design D is generic and thus its algebraic fan A(D) has six corner
cut models with full state vectors (10, 0), (0, 10), (6, 1), (1, 6), (4, 2) and (2, 4).
Now considerD as subset of the full 5×5 factorial design F with levels 0, 1, 2, 3
and 4. The algebraic fan of the complement ofD in F , namely A(F \D), has six
models with full state vectors (40, 30), (30, 40), (36, 31), (31, 36), (34, 32) and
(32, 34). As expected, none of the models in A(F \ D) are corner cuts, for
instance the corner cut model {1, x1, x2, x

2
1, x

3
1} ∈ A(D), with full state vector

(6, 1) has a non corner cut Alexander dual consisting of twenty monomials
which are directed by x4

1x
2
2, x

3
1x

3
2, x

4
2, and that has full state vector (36, 31).

The state polytopes of I(F \ D) and that of I(D) are related by a shift
of coordinates, as explained by Equation (5). The bounds for minimal linear

aberration of Equation (8), are 5
4 +

√
10
6

√

w1 − w2
1 and 7

4 +
√
10
6

√

w1 − w2
1 ,

computed with b = 2 and c = 1
4 . Figure 3 shows the computed bounds,

together with the minimal linear aberration of that family of non-corner cut
models in A(F \D).

3 Special constructions

3.1 Regular fractions

There are classes of designs for which the natural models are given by other
types of algebraic constructions. Here we show how the Alexander duality
applies to classical regular factorial fractions. We confine ourselves here to the
2k case. The prime power case is similar.

The 2d full factorial design in the ±1 coding is {−1, 1}d. For any term
ordering, the reduced G-basis is: {x2

1−1, . . . , x2
d−1}. To obtain a regular 2d−k

fraction we set k algebraically independent square free “defining” monomials
each equal to ±1, giving the “defining equations”. This yields 2k disjoint frac-
tions (often called blocks) each of size 2d−k. Selecting one of these blocks as
the design D above we can compute L(D) which has 2d−k terms.

We now consider as an abelian group under the relations x2
1 = 1, . . . , x2

d =
1. The equations defining the fraction, together with all their pairwise products
are the equations that generate the “defining sub-group”. The alias classes,
that is equivalence classes of monomials congruent under division by I(D)
cause the monomials of the full design model to fall in 2d−k classes which
provide the rows of the alias table. They are the cosets of the defining subgroup.
If we take a single block as our design the rule is we should take at most one
monomial term from each row of the alias; two terms from the same row
lead to equal columns of the X-matrix (up to sign change). But terms from
different rows of the table give orthogonal columns, leading to wide usefulness
and efficiency in practice.

As a simple example let d = 5 and take the defining relations

x1x2x3 − 1 = 0, x3x4x5 − 1 = 0. (9)
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This gives the 1
4 fraction:

D = { (1, 1, 1, 1, 1), (−1,−1, 1, 1, 1), (1, 1, 1,−1,−1),
(−1, 1,−1,−1, 1), (−1, 1,−1, 1,−1), (1,−1,−1, 1,−1),
(1,−1,−1, 1,−1), (−1,−1, 1,−1,−1)}

Using the algebraic method and the DegRevLex monomial ordering (see Co-
CoATeam (2009)), the quotient basis is L(D) = {1, x1, x2, x3, x4, x5, x1x5, x2x5}.
The alias table is built as a table in which the monomials for the defining sub-
group appear in the first row; terms in the model L(D) are listed in the first
column, and each entry has the complements of model term in the row with
respect to the defining monomial in the column. For the current example the
relation x1x2x4x5 − 1 = 0 appears as the pairwise product of generators in
(9), and thus the table is:

1 x1x2x3 x3x4x5 x1x2x4x5

x1 x2x3 x1x3x4x5 x2x4x5

x2 x1x3 x2x3x4x5 x1x4x5

x3 x1x2 x4x5 x1x2x3x4x5

x4 x1x2x3x4 x3x5 x1x2x5

x5 x1x2x3x5 x3x4 x1x2x4

x1x5 x2x3x5 x1x3x4 x2x4

x2x5 x1x3x5 x2x3x4 x1x4

For a general two-level design with the ±1 coding, the flip operation is simply
multiplication by the full product g =

∏d
i=1 xi and reduction using x2

i = 1 for
i = 1, . . . , d. For example x2x3x5 → x2x3x5 · x1x2x3x4x5 = x1x4.

Following this remark we can use Theorem 1 to write down the Alexander
dual basis, under the same monomial ordering, for the 3

4 fraction F \D. We
express this as a derived 8×3 table, constructed from the last three columns of
the alias table above by transforming each monomial using the “flip” operation.

x4x5 x1x2 x3

x1x4x5 x2 x1x3

x2x4x5 x1 x2x3

x3x4x5 x1x2x3 1
x5 x1x2x4 x3x4

x4 x1x2x5 x3x5

x1x4 x2x5 x1x3x5

x2x4 x1x5 x2x3x5

This represents a hierarchical model with eight three-way interactions as max-
imal simplices (cliques).

Some of the orthogonality of the original model is preserved. To repeat,
for design D, theory says that any monomial terms in L(D) in different rows
of the alias table give orthogonal vectors over D. For F \ D and any terms
in different rows of the derived matrix (which come from different rows in
the original table) lead to orthogonal columns of the X-matrix for D̄ and
L(D̄) = L∗.
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Take α, β ∈ L(D̄) = L∗, α 6= β, be in different rows of the derived table.

Note that if g =
∏d

i=1 xi then g2 = 1, over the full factorial design F . Then

0 =
∑

x∈D̄ xαxβ = g2
∑

x∈D̄ xαxβ

=
∑

x∈D̄ gxαgxβ

=
∑

x∈F\D gxαgxβ

=
∑

x∈F gxαgxβ −
∑

x∈D gxαgxβ

=
∑

x∈F xαxβ −
∑

x∈D gxαgxβ .

Since all monomial terms are orthogonal over L(F ) the first term on the right
hand side is zero. The second terms is zero, because the terms gxα, gxβ are in
different rows of the original alias table.

3.2 Self-dual designs

A special type of designs is given by certain half fractions of 2d designs for
which the algebraic fan of both fractions coincide.

Definition 1 Let D and F \D be half fractions of a 2d design. The design D
is called self-dual if all the models in its algebraic fan are self Alexander dual,
i.e. L = L∗ for every model L in A(D).

The definition above implies that the algebraic fans of D and of F \D are
equal. The following theorem follows from close examination of the alias table
of regular half fraction design, in which every monomial in the model has only
one monomial aliased with it.

Theorem 2 Let D be a regular 1/2 fraction of factorial design 2d. Then each
model L in the algebraic fan A(D) equals its Alexander dual L∗ ∈ A(F \ D)
and the algebraic fan A(D) equals A(F \D)

Proof We first identify an algebraic model for D. Without lack of generality,
consider the fraction with generator xβ − 1 = 0, for a squarefree exponent
vector β 6= (0, . . . , 0). For every monomial xα in L(F ), pair it with the mono-
mial xα⊕β , where ⊕ is the bitwise XOR operation performed over elements
of exponent vectors. Note that β 6= (0, . . . , 0) guarantees that each pair con-
tains different monomials; also that trivially the monomial xα⊕β is always
an element of L(F ) and thus the pairing is well defined, with every mono-
mial appearing only once in a pair. This action creates 2d−1 pairs of aliased
monomials. Now set a term order ≺, order each pair and list the collection
of smallest monomials (per pair). This list is an identifiable algebraic model,
and the list of largest monomials gives the second column in the aliasing table,
which contains 2d−1 rows, one per pair of monomials.

We next show that the models identified are self Alexander duals. There are
two cases. Firstly, if β = 1 then the operation α⊕β = β⊕α equals 1⊕α = 1−α
and thus each monomial pair has a monomial and its complement xα and
x1⊕α. The Alexander dual of the model is obtained by taking complement of
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the largest monomial for each pair, which gives the same model and thus the
model is Alexander self dual.

Secondly, if β 6= 1 then for a monomial xα1 there exists a monomial xα2

in a different pair, such that α2 = 1 ⊕ α1, i.e. xα2 and xα1 are comple-
ments of each other. This matching of pairs always exists as all monomials
in L(F ) are present in the list of pairs. The monomial xα1⊕β is complement of
xα2⊕β = x1⊕α1⊕β . In other words, for a pair of monomials xα1 , xβ⊕α1 there is
another pair which contains complementary monomials x1⊕α1 , x1⊕β⊕α1 . Note
that both xα1 and its complement x1⊕α1 cannot be identified simultaneously
as this would contradict the term ordering selected ≺. By taking complements
of the largest monomials, Alexander duality of the model is verified. �

Thus a regular half fraction of 2d is a self-dual design. For example, con-
sider the half fraction D obtained from the 25 design using the generator
x1x2x3x4x5 = 1. The algebraic fan of D has 81 models and equals the fan of
its complementary fraction F \D with generator x1x2x3x4x5 = −1. In some
cases where the fraction is non-regular, the design is still self-dual, as the next
example shows.

Example 5 Consider the design D shown in Table 1 (left side), where symbols
+ and − stand for 1 and −1 respectively. This is a non-regular half fraction
of 24, whose algebraic fan A(D) has three models, see Figure 4. The three
models are self Alexander dual, and thus the design is a self-dual design and
A(D) = A(F \D).

FIGURE 4 ABOUT HERE

However the equality of algebraic fans does not hold in general for non-
regular half fractions of 2d factorial designs. In this situation the sizes of the
fans A(D) and A(F \D) still coincide and the state polytopes of the design
and its complementary fraction are still the same object, but models are not
necessarily self Alexander dual.

FIGURE 5 ABOUT HERE

Example 6 The set D in Table 1 (right side) forms a sixteen run, non orthog-
onal half fraction of a 25 design. The algebraic fan A(D) has 15 models, of
which 8 are of total degree 26 and 7 of degree 27. The state polytopes of I(D)
and of I(F \D) coincide, despite the fact that there are no common models in
both fans. In other words, the fan A(F \D) has the same size and distribution
of models by degree as that for D.

Two models L ∈ A(D) and L∗ ∈ A(F \D) are shown in Figure 5. Models L
and L∗ have of total degree 27 and are related by Alexander duality. Lemma 2
is verified as they have the same full state vector V (L) = (4, 5, 5, 7, 6) = V (L∗).
However the models are not equal, and they share only twelve out of their
sixteen monomials.

TABLE 1 ABOUT HERE
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3.3 Complements and reflections

Taking the complement of designs for which we immediately know the basis
leads to bases for a whole hierarchy of designs. It is pleasing to explain this
with diagrams. To start let us take the complement of a 22 full factorial in an
a symmetrically placed 42 full factorial. The diagram showing D and F \D is

× × × ×
× • • ×
× • • ×
× × × ×

The complement of the full factorial (bullets) is the crosses. The two bases
L(D) and L∗(D) are shown below, where we have preserved the bullet and
cross notation.

• •
• •

× ×
× ×
× × × ×
× × × ×

The second diagram gives the basis:

L∗(D) = {1, x1, x2, x
2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2, x

3
1x2, x1x

3
2}.

Now take the design of 12 points shown above with crosses and obtain
its complement within a 6 × 6 factorial. Both designs are shown in the next
diagram. The 12 points signalled by crosses as before, and its complement
shown with diamonds:

� � � � � �
� × × × × �
� × � � × �
� × � � × �
� × × × × �
� � � � � �

To compute the basis for the design with diamonds, the only action required
is to compute the Alexander dual of the model for the design with crosses.
The basis has diagram:

� �
� �
� � � �
� � � �
� � � � � �
� � � � � �
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To generate easily more designs we shall use a extension of the staircase designs
using symmetry. Consider the following diamond-shaped pattern.

•
• • •

• • • • •
• • •
•

(10)

We claim that this has basis given by the diagram

•
•
• • •
• • •
• • • • •

(11)

We have used the following symmetry result.

Theorem 3 Let D be a design which (i) is invariant under all ± reflections
through the origin in all coordinates (ii) D+ = D ∩ R

d
≥0 is a staircase de-

sign. Then under any monomial order, the basis L(D) is constructed from the
(staircase) basis L(D+) using the following rule. Replace any basis element xα

for which r of the αj components are non-zero by a block of 2r monomials with
“edges” {x2αj , x2αj+1} for αj 6= 0.

This is explained for the diamond (10) by boxing the points in (11):

•
•

•
•

• •
• •

• • • • •

The proof relies on the explicit construction of the G-basis. For clarity, we
highlight below, for the diamond, the correspondence between the position of
a leading term on L(D+) and L(D).

Proof Let {xβ(k)

, k = 1, . . . ,m} be the set of leading terms for the design

D+. We first exhibit the leading terms for the design D. They are {xβ̃(k)

, k =
1, . . . ,m}, where

β̃
(k)
j =

{

2β
(k)
j − 1 if β

(k)
j > 0

0 otherwise

For D+ the Gröbner basis is {gk(x), k = 1, . . . ,m}, where gk(x) has an explicit

formula, well known from the staircase property, gk(x) =
∏d

i=1

∏β
(k)
j −1

j=0 (xi−j).

In the diagram below, for the monomial marked with a star, x2
1x2 is the leading

term of x1(x1 − 1)x2.
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Every element of the Gröbner basis for D+ gives us exactly one element for
the Gröbner basis for D which is obtained by adding the sign changes. They

are g̃k(x) =
∏d

i=1

(

xi

∏β
(k)
j

−1

j=1 (xi ± j)

)

, where (xi± j) = (xi− j)(xi+ j). The

element of the Gröbner basis in the above example is x1(x1 − 1)(x1 + 1)x2

whose corresponding leading term for D is x3
1x2.

We claim that the zero set of {g̃k(x), k = 1, . . . ,m} is the design D. This
claim is verified by intersecting the zero set of all the g̃k(x), see (Miller and
Sturmfels 2005, Section 18.2). The fact that this set is a Gröbner basis is stan-
dard and follows from the position of the exponents in the staircase structure
L(D), and indeed it is also a universal Gröbner basis which establishes the
result for any term ordering. �

•
• • ×
• • •

•
•
• • •
• • • ×
• • • • •

The full Gröbner basis for the diamond shape in (10) is

{x2(x2 + 1)(x2 − 1)(x2 + 2)(x2 − 2), x1x2(x2 + 1)(x2 − 1),
x1(x1 + 1)(x1 − 1)x2, x1(x1 + 1)(x1 − 1)(x1 + 2)(x1 − 2)}.

Using symmetry and complements we can produce a large variety of designs
and read off the basis directly. As a final example consider the 72 tableau below
in which the dot design is based on a double use of the reflection.

× • × × × • ×
• • • × • • •
× • × × × • ×
× × × × × × ×
× • × × × • ×
• • • × • • •
× • × × × • ×

Using Theorem 3, the respective bases are given by the following patterns;

• •
• •
• •
• •
• • • • • •
• • • • • •

×
×
× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × × × ×
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3.4 Combining interpolators over fractions

In experimental design, it is often of interest to combine information coming
from different experiments. In the following example we describe a technique
to combine interpolators, where the emphasis is on combining information
and still achieving interpolation. This technique is a variation of the general
interpolation technique described by Becker and Weispfenning (1991). The
validity of this two-stage construction of interpolators holds in general and we
state it without proof.

Theorem 4 Let F be a full factorial design, and let D and D̄ be complemen-
tary fractions of F . For a fixed term ordering, let yF , yD and yD̄ be the exact
interpolators of data with respect to their basis L(F ), L(D) and L(D̄). Then
yf = NF (yD1D + yD̄(1− 1D), I(F )), where 1D and 1D̄ are the polynomial in-
dicator functions of D and D̄ over F , and NF(f, I) is the normal form of the
polynomial F with respect to the ideal I.

Proof The polynomial indicators of the design fraction D and of its com-
plement D̄ := F \ D are linear combinations of monomials in L(F ), de-

fined as 1D(x) =

{

1 if x ∈ D
0 if x ∈ D̄

and 1D̄(x) = (1 − 1D(x)). The interpolat-

ing polynomial functions yD and yD̄, when multiplied by indicators yield

1D(x)yD(x) =

{

yF (x) if x ∈ D
0 if x ∈ D̄

and 1D̄(x)yD̄(x) =

{

0 if x ∈ D
yF (x) if x ∈ D̄

and

thus yD1D + yD̄(1 − 1D) equals yF over all points in F . However this sum
yD1D + yD̄(1− 1D) contains terms of high degree and does not coincide with
yF outside points in F . By taking its normal form we achieve the desired
result. The uniqueness of the normal form guarantees the equality with yF .�

Example 7 The numbers 12, 10, 6, 16, 18, 20, 24, 14 are synthetic response val-
ues for a full factorial experiment F in three factors x1, x2, x3, each with two
levels ±1. The response values above are presented in Yates’ order, see Box
et al. (2005).

Set D to be the regular 23−1 fraction of F with generator x1x2x3 = 1 and
set D̄ to be the complementary fraction of D so that D ∪ D̄ = F . For the
standard term ordering in CoCoA, the basis for D is L(D) = {1, x1, x2, x3}.
By Theorem 2, bases L(D) and L(D̄) are mutual Alexander duals and so
L(D̄) = L(D). Using the above data, the interpolator for response values
over D is yD = 18 + 2x2 + 4x3, and the corresponding interpolator over D̄ is
yD̄ = 12− 2x2 + 4x3.

We now combine interpolators over the fractions to obtain a global inter-
polator. To achieve this, we use indicator functions 1D = (1 − x1x2x3)/2 and
1D̄ = 1− 1D so that

yD1D + yD̄(1− 1D) = 15 + 4x3 − 3x1x2x3 − 2x1x
2
2x3, (12)

which although interpolating the data, contains higher order terms. A reduc-
tion of (12) computing the normal form (see Cox et al. (2007)) with respect
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to the ideal of the full design F gives the interpolator

yF = 15 + 4x3 − 2x1x3 − 3x1x2x3.

This reduced polynomial still interpolates the given response values over the
full design F , and coincides with the interpolating polynomial using all of the
design and data.

The results above concern interpolation. Using Alexander duality ideas to
attain relationships between testing, residuals etc. over D and D̄ is under
development.
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Fig. 1 Simplicial model L (left) and its Alexander dual L∗ (right).

× × × ×
• • × ×
• • • ×

•
• •
• • • •

Fig. 2 Model L(D) (bullets, left panel) and Alexander dual L∗(D) relative to L(F ) with
directing exponent (3, 2) (right panel).
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Fig. 3 Minimal linear aberration (solid) and bounds (dashed) for design F \D of Example
4.
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Fig. 4 Self Alexander dual models of Example 5.
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Fig. 5 Model L (left) and Alexander dual L∗ (right), see Example 6.
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x1 x2 x3 x4

− − − −
− − + −
− + − +
− + + +
+ − − −
+ − + −
+ + − −
+ + + +

x1 x2 x3 x4 x5

− − − − +
− − + − −
− − + − +
− − + + −
− − + + +
− + − − −
− + − − +
− + − + −
− + − + +
− + + − −
− + + + +
+ − + + +
+ − − − +
+ + − + +
+ + + + −
+ + + + +

Table 1 Non orthogonal half fractions of 24 (left) and of 25 (right).


