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Abstract

Smoooth supersaturated models are interpolation models in which the underlying
model size, and typically the degree, is higher than would normally be used in statis-
tics, but where the extra degrees of freedom are used to make the model smooth
using a standard second derivative measure of smoothness. Here, the solution is
derived from a closed-form quadratic programme, leading to tractable matrix rep-
resentations. This representation aids considerably in the choice of optimal knots
in the interpolation case and in the optimal design when the SSM is used as a way
of obtaining kernels, but where the statistical problem is set up separately. Some
somple examples are given in one and two dimensions.
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1 Introduction

The basic idea of smooth supersaturated models (SSM) on which this paper
is founded appears in [2], and follows a few years of development (an arXiv

version has been available since 2009), particularly in the context of computer
experiments. In the present paper a theory of optimal experimental designs
for SSM is developed. In so far as a high order SSM can be considered as an
approximation to a multidimensional spline, a solution to the optimal design
problem for SSM gives an approximate solution to optimal design for splines
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which, in high dimensions is not very much studied: but see [11,4] for some
work in the area.

As with splines there is the problem of the choice of knots. We shall explain
how optimal design and optimal knots as two different problems and suggest
solutions to each.

Let (x1, . . . , xk) be a general point in Rk. A monomial is defined by a non-
negative integer vector α = (α1, . . . , αk):

xα = xα1
1 · · ·xαk

d .

Following the experimental design avenue of algebraic statistics [9], it is clear
that for observations over any design Dn with n points in Rk there is at least
one exact polynomial interpolator. Specificaly, let a design be defined as a set
of distinct points D = {x(1), . . . , x(n)} in Rk. A general polynomial model can
be written as

η(x) =
∑

α∈M

θαx
α, (1)

for some set M of distinct index vectors, α. The algebraic theory shows that
there is always a set of indicesM for which we have an exact interpolation of a
set of observations y = {y1, . . . , yn} at design points x(1), . . . , x(n) respectively
and for which the size of M is n: |M | = n. Moreover there is a method of
finding M based on Gröbner bases and M has a hierarchical structure: if
α ∈ M then β ∈ M , for any β ≤ α, where ≤ is the usual entrywise ordering.
We speak informally of “the model M”. The algebraic method is the starting
point or at least a theoretical underpinning for SSM.

A supersaturated polynomial model is one which the number of parameters, p,
is larger than is suggested by the size of the design, the number of observations
n. In the present day terminology we may say this is a “p bigger than n
problem”. However, the SSM approach is a little different. Initially we increase
the size of the model, |M | so that |M | > p. In statistical terminology this leaves
|M | − n “free” degrees of freedom which we use to increase the smoothness of
the model, in a well defined sense, while still interpolating the original data
set y.

2 The SSM construction

We start with a data set y over a design Dn, with n points (D for short). The
data y is given as a column vector of size n. Write the vector of model terms
as f(x) = (xα : α ∈M)T so that

η(x) = f(x)T θ, (2)
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where θ is the vector of coefficients for monomials in f(x) in a suitable order
according to elements of M . Denote the number of model terms as |M | = N
and assume that N > n. Let the region of interest be Ω ⊂ Rk, which we call
the “integration region”. Our measure of smoothness is

φ(M,Ω) =
∫

Ω

∑

1≤i,j≤k

(

∂2η(x)

∂xi∂xj

)2

dx.

The smooth supersaturated model given by {y,M,D,Ω} is η(x) with θ chosen
to solve the optimisation problem

minφ(M,Ω), subject to η(x(i)) = yi, i = 1, . . . , n. (3)

In short, the SSM is a maximally smooth interpolator. A key observation
is that this problem can be written as a constrained quadratic optimisation
problem and therefore has a closed form solution. We summarise the results
of [2]. First write

K =
∫

Ω

∑

1≤i,j≤k

f (i,j)Tf (i,j)dx, (4)

where f (i,j) = ∂2f(x)
∂xi∂xj

. The matrix K is symmetric of size N , whose elements

are roughness measures between pairs of monomials in f(x).

Example 1 In one dimension (k = 1), the hierarchical basis with N elements
is 1, x, x2, . . . , xN−1, i.e.M = {0, 1, . . . , N−1}. If the integration region is Ω =
[0, 1] then for 0 ≤ i, j ≤ N−1, the entryKi+1,j+1 ofK is (i2−i)(j2−j)/(i+j−3)
if i + j 6= 3 and zero otherwise. When N = 6, then K is of size six, with the
first two rows and columns being equal to zero, and the lower right block is





















4 6 8 10

6 12 18 24

8 18 144/5 40

10 24 40 400/7





















.

Example 2 ConsiderM = {(0, 0), (0, 1), (1, 0), (0, 2), (1, 1), (1, 2)} for k = 2,
i.e. the model has terms 1, x2, x1,x

2
2, x1x2,x1x

2
2. For Ω = [0, 1]2, the matrix K

has the first three rows and columns equal to zero, and lower right block















4 0 2

0 2 2

2 2 4















.
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Let the design matrix for the model given by M and the design D be

X = {xα}x∈D,α∈M .

The n rows of X are indexed by the design points in D and the N columns by
the model monomials of M . This is the familiar supersaturated design matrix
which has more columns than rows. We shall assume that X has full rank,
n. The choice of M to guarantee this is discussed at some length in [2] and
it is here where the methods of algebraic statistics are useful as a guide. For
example, we may just add model terms to a model basis with n terms which
we already know, from the algebra, is full rank.

The optimisation problem (3) can be stated as minimisation of θTKθ subject
to Xθ = y. This constrained problem is equivalent to the system







X 0n,n

K −XT













θ

λ





 =







y

0





 (5)

where λ is a vector of Lagrange multipliers, see [2]. The following lemma states
the form of the inverse matrix required to solve the problem.

Lemma 3 Let C be the (n+N)× (n+N) matrix in the left of Equation (5).
This matrix C is created by concatenation of X, K and a zero matrix of size
n× n. Assume that C is invertible. Then

(1) its inverse C−1 can be written in the following block form

C−1 =







H P

Q −HT





 , (6)

where P and Q are symmetric matrices of sizes N and n respectively and
H is a matrix of size N × n.

(2) the matrices inside C−1 and C satisfy the following relations: XH = In,
XP = 0n,N , KH = XTQ and PK +HX = IN , where In, IN are identity
matrices of sizes n and N .

The optimum θ is given by
θ∗ = Hy. (7)

The optimal (minimum) value of φ is given by the quadratic form in the data

φ∗ = ytQy.

Recall that the matrix Q is the bottom left n × n submatrix of the inverse
matrix C−1 above. An equivalent expression for Q shows that it is symmetric
and positive semidefinite:

Q = HTKH.
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Fig. 1. Smooth kernels g1(x), . . . , g4(x) of Example 4.

2.1 The fit: smooth kernels

From the linearity of the θ∗ in the data y we can write the fit

η̂(x) = f(x)T θ∗ =
n
∑

j=1

gj(x)yj, (8)

where the polynomials gj(x), j = 1, . . . n, have the indicator property at the
design points:

gj(x
(i)) = δi,j for i, j = 1, . . . , n. (9)

Note that the indicator property is equivalent to XH = In above. We refer to
the polynomials gj(x) as smooth kernels and they are the elementary building
blocks for the smooth model, i.e. the fit in (8) is a linear combination of kernels,
where the coefficients are the data values yj.

We find the kernels gj(x) by substituting y for unit basis vectors ej in the
formula for η̂(x):

gj(x) = f(x)T θ∗j ,

where
θ∗j = Hej (10)

for j = 1, . . . , n. That is, the vector θ∗j is the j-th column of matrix H defined
above, and thus H of Equation (6) has the following form:

H = ( θ∗1 : θ∗2 : · · · : θ∗n ). (11)

Example 4 Consider the one-dimensional model with N = 6 of Example 1,
and design D = {0, 0.265, 0.735, 1}. Four smooth kernels of degree five were
constructed; they are depicted in Figure 1 together with design points to show
that they satisfy the indicator property of Equation (9).
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We emphasize that these kernels depend on the original design D via the full
design model matrix X . But the terminology of splines encourages us to call
the points in D knots. The construction of kernels does not depend on the
data y. We can use the knots simply as an ingredient in constructing kernels.
We are then free to take observations at any other points and fit a model using
the basis vector g(x) = (g1(x), . . . , gn(x))

T . For clarity, we refer to the original
designD as the knot design, which leaves us free to use the term design, labeled
d, for the points at which actual observations are taken. It may be that the
knot design and the design are the same, but this is not essential and typically
not optimal. Indeed we will separate out the optimal knot problem from the
optimal design problem, and this is a main heuristic of this paper.

3 Large bases and splines

The optimality criteria φ is precisely that for which splines, particularly cubic
beta splines and thin plate splines are known to be optimal in the class of
functions with bounded, continuous derivatives of given order. It ought to be
true that as the size of the basis given by |M | gets large in an appropriate
way, we tend to splines. We state a somewhat more general definition than is
available in the literature and refer to [6].

Definition 5 Let Ω be a bounded Lebesgue integrable region in Rd, let D =
{x(1), . . . , x(n)} be a knot design, and let y be a set of observations at D. Then
a generalised Duchon spline given {Ω, D, y} is a function which achieves

inf φ(s(x)) = φ∗(Ω, D, y)

over all twice continuously differentiable functions s(x) which interpolate y
over D.

We need a basic approximation theorem, which is adapted below without
further exposition from the Sobolev representation theorem [6].

Lemma 6 Let s(x) be a twice continuously differentiable function over a
bounded integrable region Ω ⊂ Rd. Let s(x) interpolate values y over D. Then
given δ > 0 there exists a multivariate polynomial p(x), also interpolating y
over D such that, for all x ∈ Ω,

|p(x)− s(x)| < δ.

Define the degree of a monomial α as |α| =
∑d

i=1 αi. We need one more
property, which is defined for an index set M .
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Definition 7 The degree order r(M) of an index set M with associated basis
{xα ∈ M} is the minimum value of r such that M contains all α with |α| ≤ r.

Our main theorem is as follows.

Theorem 1 Let φM be the value of criterion φ for an SSM built with model
basis {xα, α ∈M} in a bounded integrable region Ω with a knot design D and
data y. Then for any nested sequence of models Ms, s = 1, . . . with r(Mk) →
∞, the quantity φM converges to φ∗(Ω, D, y) of the Duchon spline.

Proof. Let M1 ⊂ M2 ⊂ · · · be a nested sequence of M such that r(Mj) → ∞
with j. Let sj(x), j = 1, . . ., be a sequence of twice continuously differentiable
function interpolating y over D with φ(sj(x)) ↓ φ∗(Ω, D, y). Fix j, let pj(x)
be the approximating polynomial to sj(x) according to Lemma 6, and let rj
be the maximal degree of polynomials in the set {pk(x) : j = 1, . . . , j}. By the
definition of degree order there will be an integer k(j) such that r(Mk(j)) ≥ rj .

Note that r > s implies φMr
≤ φMs

, because for SSM the optimisation problem
based on Mr has more degrees of freedom that that based on Ms. We thus,
given δ > 0, have the inequalities

φ∗ ≤ φMq
≤ φMk(j)

≤ φ(pj(x)) ≤ φ(sj(x)) + δ,

for any q ≥ k(j). Now letting δ → 0 and using the convergence of sj(x), we
are done. 2

4 Orthogonal polynomials and computation

The computations required for smooth supersaturated models can be easily
implemented when the number of factors is small, say less than ten, and also
the number of observations and terms is not huge, say in the region of a
few hundred observations and a few hundred extra terms. However, as the
number of factors increase, computations may slow considerably. Computing
the matrix K involves summation over k2 pairs of factors, and in each case a
matrix of size N × N is to be computed. Some efficiency can be attained by
noting that only k +

(

k

2

)

pairs are needed, but even for a moderate number
of factors such as k = 15 and if the model involves, say, N = 200 terms,
computing the matrix K requires summing 10 +

(

15
2

)

= 115 matrices of size
200 × 200. Among other issues is the inversion of matrix C, which can be
prone to numerical instability. Therefore there is pressing need for efficient
and numerically stable computations.

Building the models using orthogonal polynomials instead of pure monomials
is appropriate when the region for interpolation and the integration region Ω
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are the same. When Ω = [−1, 1]k, or Ω = [0, 1]k, the orthogonal polynomials
with respect to uniform measure are the appropriate Legendre polynomials,
and we will study the Ω = [−1, 1]k case here. We will discuss briefly the more
general case in the last section; [12] is the classical text.

The Legendre-based SSM model is

ηL(x) =
∑

α∈M

γαLα(x), (12)

where γα is the parameter for term Lα(x), defined as Lα(x) :=
∏k

i=1 Lαi
(xi)

where Lαi
(xi) is the usual Legendre polynomial. The first few Legendre polyno-

mials are L0(x) = 1, L1(x) = x, L2(x) = (3x2−1)/2 and L3(x) = (5x3−3x)/2.
They are ortogonal over [−1, 1].

Due to the hierarchical structure of M , the Legendre-based SSM is linearly
related to the general formulation of Equation (2). Consider the index setM =
{0, 1, 2, 3}, then ηL(x) = (1, x, (3x2 − 1)/2, (5x3 − 3x)/2)γ = (1, x, x2, x3)Aγ
where the matrix A contains in each column the coefficients of the Legendre
polynomials, i.e.

A =





















1 0 −1/2 0

0 1 0 −3/2

0 0 3/2 0

0 0 0 5/2





















.

It is a direct consequence that the models (2) and (12) are linearly related,
and their parameters are linked in general through the matrix A as θ = Aγ.

As a more complicated example, a monomial term such as x1x
2
2x4 with index

(1, 2, 0, 4) will be replaced by L1(x1)L2(x2)L0(x3)L1(x4) = x1(3x
2
2 − 1)x4/2 =

3x1x
2
2x4/2 − x1x4/2. Given that the set M is hierarchical, if term x1x

2
2x4 is

in the model, so is term x1x4 and therefore no extra terms apart from those
already in M appear in the model.

Computations of the K matrix are also simplified when using the Legendre
basis, attaining matrices with a more sparse structure. Also in our experience,
the matrices obtained are better conditioned.

Example 8 For the same M as in Example 1 and region Ω = [−1, 1], the
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lower right block of K is





















18 0 60 0

0 150 0 420

60 0 690 0

0 420 0 2310





















.

The condition number for the non singular submatrix of K above is 188.3.
This is a considerable reduction compared with that of the submatrix shown
in Example 1 which is 8467.2.

The following theorem states the general case for the construction of K. We
omit the proof, which is by direct construction.

Theorem 2 Let M be the set of indexes of a multivariate basis of Legendre
polynomial products g(x)T = {Lα(x) : α ∈ M}. Let m,n ∈ 1, . . . , N index
pairs of elements in M ; let i, j ∈ 1, . . . , k index pairs of indeterminates and
let αi = min(αmi, αni), α

I = max(αmi, αni), and α
j = min(αmj , αnj). Then

(1) the entry (m,n) of the matrix
∫

Ω g
(i,j)Tg(i,j)dx with Ω = [−1, 1]k is given

by gmn(i, j) as follows:
(i) gmn(i, j) =

1

24
αi
(

αi − 1
) (

αi + 1
) (

αi + 2
) (

3αI2 + 3αI + 6− αi2 − αi
)

∏

r 6=i

2δαmrαnr

2αmr + 1
,

if αmi and αni are both even or both odd and i = j,
(ii) gmn(i, j) = αiαj (αi + 1) (αj + 1)

∏

r 6=i,j

2δαmrαnr

2αmr+1
,

if i 6= j, and αmi, αni are both odd or both even, and αmj , αnj are both
odd or both even, or

(iii) gmn(i, j) = 0, otherwise.
(2) The entry (m,n) of the K matrix is

(i) zero if three or more entries of αm, αn are pairwise different,
(ii) gmn(i, j) if αm, αn differ in two entries,
(iii)

∑k
l=1 gmn(i, l) if αm, αn differ in only one entry and

(iv)
∑

i,j gmn(i, j) if m = n, i.e. αm = αn.

In the theorem above, δαmrαnr
is the delta function that equals one if αmr = αnr

and zero otherwise.

Example 9 Consider the basis of Example 8. We compute the element 3, 5 of
K so m = 3, n = 5. Being a univariate model, i = j = 1 so that αm = α3 = 2,
αn = α5 = 4 and thus αi = 2, αI = 4 and αj = 2. Since αm and αn have only
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one element and k = 1 the entry is given by gmn(i, j). We compute this using
the case 1(i) above since αm and αn are both even and i = j = 1 thus

gmn(i, j) =
2

24
(2− 1)(2 + 1)(2 + 2)(3 · 42 + 3 · 4 + 6− 4− 2) = 60.

Example 10 As a more complex case, consider the multivariate basis with
N = 27 elements and highest term with exponent (2, 2, 2), i.e. the basis is
M = {(r, s, t) : 0 ≤ r, s, t ≤ 2}. The matrix K has N2 = 729 entries and here
we give an example of entries of K showing the sparsity achieved by the use
of Legendre polynomials. The parity condition in the definition of gmn(i, j)
results in every non-diagonal entry of K being zero since the only possible
pair αmi, αni that fulfils the condition of having the same parity and being
different is (0, 2). Hence αi = 0 and gmn(i, j) = 0 for the first two cases in
the definition. We need to see indices of degree 3 or more before non-zero
off-diagonal entries appear.

Example 11 Now consider the multivariate basis with N = 64 elements
and highest term with exponent (3, 3, 3), i.e. the basis is M = {(r, s, t) :
0 ≤ r, s, t ≤ 3}. The matrix K has N2 = 4096 entries. The entry (K)m,n

corresponding to a crossing of terms with indices that differ on three or more
entries such as (1, 1, 0) and (0, 2, 2) is zero as stated in the first case above;
this first case induces 1728 entries of K to be zero. There are 1728 entries
corresponding to crossed terms with exactly two different indices entries, such
as (1, 2, 3) and (1, 0, 2) and these vanish if any of the four differing indices
are 0 or if there is a parity difference between either index, because of the
definition of gmn(i, j). This induces a further 1680 zeroes. Should the crossed
terms differ in only one index entry, the corresponding entry will disappear
if one of the differing indices is zero or they have different parity. Hence 486
more entries vanish. Finally, any diagonal entry will vanish if the associated
term is the constant term or linear in only one variate, so in this example that
is another 4 entries. In total we have 3898 zero entries in this K matrix out
of a possible 4096.

5 Optimal knots

If one considers the interpolation discussed here as a method which can be
applied to any data set y, at the selected knot design D, then there is a sense
in which D should be independent of the actual (true) underlying process
yielding the data.

For a model given by M and given that φ∗ = yTQy, we may consider sim-
ple measures on the matrix Q. Consider, for motivation the case when the
vector of observations y has a multivariate distribution with mean vector µ

10



and covariance matrix Σ. Then the expected roughness of the SSM model is
E(φ∗) = E(yTQy) = trace(QΣ) + µTQµ. The second term depends on the
unknown mean and matrix Q. If we consider uncorrelated observation with
equal variance σ2 and zero mean we have Σ = σ2I and then

E(φ∗) = σ2trace(Q).

Several generic criteria suggest themselves at this point. If λ1(Q) ≥ · · · ≥
λn(Q) ≥ 0 are the ordered eigenvalues of Q, possible criteria are

ψ1(Q) =λ1(Q),

ψ2(Q) = trace(Q) =
∑

i

λi(Q) and

ψ3(Q) =
∏

j:λj(Q)>0

λj(Q).

In each case we would seek to minimise the criteria over the choice of the knot
design D for a fixed modelM . Note that each kernel gj(x) is optimally smooth
under the kernel restriction given by (9). Thus, we can interpret criteria ψ2

above as minimising the average smoothness of the kernels.

Example 12 Consider a univariate model with terms 1, x, x2,. . ., xN−1 and
the criterion ψ1(Q) which we use to create a design with n = 4 points. This
implies that the number of model terms has to satisfy N ≥ 5, i.e. the smallest
model has monomials up to degree four. Analytic computation of eigenvalues
of Q = HTKH is possible, and we searched for knot designs of four points
using values of N up to 26 and restricting the knots to be inside Ω = [0, 1]. For
N = 5, knots are {0, 0.2351, 0.7649, 1}, and when N = 6 we obtain the knots
which we used for the kernels in Example 4. Figure 2 depicts the knot designs
obtained against values of N ; the right panel shows a close-up of the left plot.
In the close-up an interesting feature appears, which consists of knots being
equal for some adjacent values of N . For N > 20, knots seem to converge to
a limiting value and for N = 26 the knots are {0, 0.2732, 0.7268, 1}.

Example 13 A bivariate supersaturated model with N = 25 terms was built,
consisting of all monomials which divide the term x41x

4
2, i.e. the exponent set

wasM = {(i, j) : 0 ≤ i, j ≤ 4}. This model was used to search for a Q-optimal
set of n = 16 knots in the region Ω = [0, 1]2, using criterion ψ1(Q). Although
numerical search of the knots in general position in Ω is possible, we searched
for a product set of knots of the form D = {0, a, 1−a, 1}⊗{0, a, 1−a, 1} and
numerical optimization yielded the value a = 0.2304. When the supersaturated
model was enlarged to be of size N = 36, using all monomials that divide
x51x

5
2, the Q-optimal design with a product structure as above was found with

a = 0.2689.

11



5 10 15 20 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

N

D
4(

N
)

5 10 15 20 25

0.
26

6
0.

26
8

0.
27

0
0.

27
2

0.
27

4

N

D
4(

N
)

Fig. 2. Q-optimal knots (left) and detail of the plot (right), see of Example 12.

6 Optimal design

As discussed briefly above we shall study the pure optimal design problem for
the kernel basis given by the SSM basis: g(x) = (g1(x), . . . , gn(x))

T . For this
we take the classical approach. We assume that we have a design d with m
points: d = {z(i), i = 1, . . . , m}. The model for observation Yi, taken at point
z(i), is

Yi = g(z(i))Tβ + εi.

Here β is the vector of parameters and errors εi are independent and normally
distributed with zero mean and variance σ2. To study design we need the
design matrix

Z =
(

gj(z
(i))
)

.

But from (9) and for j = 1, . . . , n we have

gj(z
(i)) = f(z(i))T θ∗j ,

therefore for optimal design we need to consider

ZTZ = HTXT
d XdH, (13)

where Xd is design matrix with the model f(x) but with the design d and

H = ( θ∗1 : · · · : θ∗n ) as defined in (11) with the θ∗j given by (10). Note that H

depends on the choice of knot design.

The form of (13), makes it, as expected, straightforward to import some opti-
mal design theory. In the continuous design theory of Kiefer and Wolwitz [7],
a discrete design d is replaced by a design measure ξ over a design space X
and the matrix XTX by a moment matrix

M(ξ) =
∫

X
f(x)f(x)T ξ(dx).

12



The optimal design theory then relies heavily on the fact that over the class of
moment matrices many of the best known optimal design criteria are convex.
But because of the nice form (13) we have

HTM(ξ)H,

where M(ξ) is the moment matrix for the measure extension of the design d.

Thus we have DQ-optimality, defined as

max det(HTM(ξ)HT ).

This criterion has a general equivalence theorem which is obtained by writing
down the General Equivalence Theorem (GET) of Kiefer and Wolfowitz for
the model with g(x) = (g1(x), . . . , gn(x)).

Theorem 3 The following are equivalent for a design measure ξ∗ on X

(1) ξ∗ is DQ-optimal,
(2) ξ∗ achieves: minξ maxx∈X dQ(x, ξ),
(3) maxx∈X dQ(x, ξ

∗) = n,

where

dQ(x, ξ) = f(x)TH(HTM(ξ)H)−1HTf(x)

is the (generalised) variance function for the smooth kernel model based on
g(x) = (g1(x), . . . , gn(x)).

The optimal measure theory embodied in Theorem 3 is a special case of a
range of duality theorems for convex functional in measure, or moment space
{M(ξ)}, familiar from optimal design theory and given general expression in
the book [10]. Theorem 3 may be the first to incorporate smoothness into the
optimal design criteria. However, rather than develop the measure-based re-
sults in greater detail we simply give some examples of the same calibre as the
introductory and the optimal knot examples. These are computed numerically
but part (3) of Theorem 3 is used to verify optimality to a substantial degree
of accuracy.

Example 14 Here we continue with the set of n = 16 knots for the basis
with N = 25 terms of Example 13. An exact DQ-optimal design of m = 16
runs was built for the linear model with kernels g1(x), . . . , g16(x) and design
region X = [0, 1]2. Numerical search yielded the DQ-optimal design d∗, which
was in general position in X . The left panel of Figure 3 shows countour plot
for the standardized variance function dQ(x, d

∗)/n, together with points in
the knot design D (squares) and optimal design d∗ (circles). Recall that the
knots were chosen to lie in a grid, see Example 13. The design points in d∗

are virtually in a grid configuration; indeed points in d∗ are close to points in

13



x1

x2

 0.45 

 0.45 

 0.45 

 0.45 

 0.5 

 0.5 

 0.5 

 0.5 

 0.55 

 0.55 

 0.55 

 0.55 

 0.6 

 0.6 

 0
.6

 

 0.6 

 0.6 

 0.6 

 0.6 

 0
.6

 

 0.65 
 0

.6
5 

 0.
65

 

 0.65 

 0.65 

 0.65 

 0
.6

5 

 0.65 

 0.65 

 0.
65

 

 0.65 

 0.7 

 0.7 

 0.7 

 0.7 

 0
.7

 

 0
.7

5 

 0.75 

 0.75 

 0.75 

 0.75 

 0
.8

 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0
.8

 

 0.85 

 0
.8

5 

 0.85 

 0.85 

 0.85 

 0.85 

 0.85 

 0.85 

 0.85 

 0.85 

 0
.8

5 

 0.85 

 0.9 

 0
.9

 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 0
.9

 

 0.9 

 0
.9

5 

 0.95 

 0.95 

 0.95 

 0.95 

 0.95 

 0.95 

 0
.9

5 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1

x2

 0.5 

 0.5 

 0.5 

 0.5 

 0.55 

 0.55 

 0.55 

 0.55 

 0.6 

 0.6 

 0.6 

 0.6 

 0.6 

 0.6 

 0.6 

 0.6 

 0.65 

 0.65 

 0.65 

 0.65 

 0.65 

 0.65 

 0.65 

 0.65 

 0.7 

 0
.7

 

 0.7 

 0.7 

 0.7 

 0.7 

 0.7 

 0.7 
 0.7 

 0.75 

 0.75 

 0.75 

 0.75 

 0.75 

 0
.7

5 

 0
.8

 

 0.8 

 0.8 

 0.8 

 0.8 

 0.8 

 0.85 

 0.85 

 0.85 

 0.85 

 0.85 

 0
.8

5 

 0.9 

 0
.9

 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 0.9 

 0
.9

 

 0.9 

 0.95 

 0
.9

5 

 0.95 

 0.95 

 0.95 

 0.95 

 0
.9

5 

 0.95 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 3. Standardized variance function contours and knot design D (squares) and
optimal design d∗ (circles) for Example 14 (left) and Example 15 (right).

grid d̃ = {0, 0.2687, 0.7313, 1}2. The efficiency of d̃ relative to d∗ was 99.52%
and standardized efficiency of 99.97%.

Example 15 It is possible to construct D-optimal designs for kernels starting
from an arbitrary set of knots. Using the same extended basis of Example 14
and a knot design with grid structure D = {0, 1/3, 2/3, 1}2, a D-optimal
design was built for the kernels gj(x). The search this time yielded a grid
design d∗ = {0, 0.286, 0.714, 1}2. The right panel in Figure 3 shows countours
for the standardized variance function, together with points in D (squares)
and d∗ (circles). Note how relative to the left panel in the same Figure, the
variance function is slightly lower in the central region which suggests a flatter
central region for the DQ-optimal design of Example 14.

7 Discussion

An issue not covered in this paper is that fact that the integration region can
be quite general (provided the integral exists) and one could also change the
measure integration of Equation (4) all without changing the basic theory.
This is implied by also by the general definition of a Duchon spline given
in Section 3. We could also have given a version for general measures. Thus
one can see the paper as an approach to solving spline-like problems of a
quite general nature, approximately. By problems we mean: fitting functions,
optimal knot designs and optimal statistical designs. Clearly it has not been
possible to cover all region, all models M and all criteria, but we trust that
we have indicated the possibilities.

The use of orthogonal polynomials we feel is important both theoretically
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and computationally. It is of interest that the use of orthogonal polynomials
in Sobolev spaces, motivated by the theory of splines, is an active branch of
approximation theory. So, theoretically, one can consider our use if them, com-
bined with large |M | = N as remaining in the space of traditional orthogonal
polynomials but using them for models which may be close to, or a sub-class
of, a more general space. It is straightforward to define orthogonal polynomials
in terms of moments for a general measure in Rk, and therefore, for example,
for uniform measure over some non-standard region.

Although there are recent papers on Lasso and other regularized methods for
hierarchical models, such as [3], for the p > n case and extensive work on
regularization for non-parametric regression, we believe that the SSM meth-
ods which can be interpreted as a type of smoothness regularization deserve
a place for complex modelling over complex regions, partly because of the
tractability of using polynomials. It is notable that the approach of working
with polynomials as building material to create kernels with special properties
is already being used in signal processing, see [8].
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