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Abstract Polynomial interpolators may exhibit oscillating behavior which often
makes them inadequate for modeling functions. A well known correction to this
problem is to use Chebyshev design points. However, in a sequential strategy it is
not very clear how to add points, while still improving polynomial interpolation.
We present a sequential design alternative by allocating anextra observation where
the difference between consecutive interpolators is largest. Our proposal is inde-
pendent of the response and does not require distributionalassumptions. In simu-
lated examples, we show the good interpolation performanceof our proposal and its
asymptotical convergence to the Chebyshev distribution.

1 Introduction

In classical optimal design theory, a connection can be established between a certain
optimality criterion, a linear polynomial model and a design constructed with zeros
of Chebyshev polynomials, i.e. Chebyshev points. This connection was first noted
by Studden (1968). Subsequent research led to various articles and books which also
exhibited designs whose points are zeros of Jacobi, Laguerre, or Hermite polyno-
mials, among others. Among some of the better known examplesof the connection
between polynomial models and Chebyshev points, we may cite, classified by op-
timality criteria, Pukelsheim and Torsney (1991) forA-optimal designs, Fedorov
(1972, pp.85), Pázman (1986, pp.178), Pukelsheim (1993, pp.214–216) and Kar-
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lin and Studden (1966) forD-optimality, Dette (1993) forDs-optimality; and Dette
(1993) and Heiligers (1998) forE-optimality.

In the analysis of computer experiments, usually there is norandom error asso-
ciated with the response and models interpolate the observed response values. A
variety of models are available for the analysis of such experiments. Spline models
can be used, but also models based on radial bases and krigingare have become
widely used, see Müller (2001), O’Hagan (2006) and Fedorovand Müller (2007).

We are concerned with sequential polynomial interpolation. Polynomials are
simple and potentially effective models, often with a straightforward interpretation.
However, they have a tendency to oscillate between design points. Those oscilla-
tions are called theRunge phenomenon, which in some cases can only get worse
as the number of data points increases. It is a well-known classical result that the
oscillation caused by Runge’s phenomenon can be minimized by interpolating at
the Chebyshev nodes. In Epperson (1987), additional conditions for mitigating the
phenomenon are studied. In the literature of approximationtheory there are several
proposals which use Chebyshev points and may be used to interpolate. In Boyd and
Ong (2009) and Boyd and Xu (2009) the authors use a subsample of the uniform dis-
tribution to generate “mock Chebyshev” (i.e. approximate Chebyshev) points, while
in Platte and Driscoll (2005), interpolation points are selected using more general
polynomial approximation techniques. The methods producegood interpolation re-
sults, although the strategies are non-sequential.

The aim of the present paper is to introduce a sequential design strategy for uni-
variate polynomial interpolation. Our proposal is based onan equivalent form of
the Lagrange interpolator called barycentric interpolator. In Section 2 we review
the Lagrange and barycentric interpolators. In Section 3 wepresent our sequential
problem, introduce a design algorithm and prove that it doesnot depend on response
values. Section 4 presents simulated examples to evaluate the performance of our al-
gorithm. Conclusions, future work and a conjecture are presented in Section 5.

2 Barycentric Lagrange interpolation

Let Dn = {d1, . . . ,dn} be a design ofn distinct univariate points. The values
f1, . . . , fn are observations, one for every design point. Those values are assumed
to be evaluations of a deterministic (but unknown) functionwhich is to be interpo-
lated. A classic solution is the Lagrange interpolatorgn(x) = ∑n

j=1 f j ∏n
i=1,i6= j

x−di
d j−di

.
Lagrange interpolation exhibits numerical and computational drawbacks and an al-
ternative form of it is available, known as the barycentric interpolator:

gn(x) = mn(x)
n

∑
j=1

wn, j f j

x−d j
, (1)
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with barycentric weights defined bywn, j =
(

∏n
i=1,i6= j(d j −di)

)−1
and mn(x) =

∏n
i=1(x− di). The first subindex inwn, j denotes number of design points used for

computing it, while the second subindex relates the weight to a design point.

3 Sequential interpolation

Barycentric formulæ allow sequential interpolation of data, that is, adding an extra
observation to an existing data set and updating the barycentric interpolator. Sequen-
tial updating can be made part of an adaptive procedure, in which using information
from the interpolation process helps in selecting a new design point.

3.1 Response based update

Consider two interpolators, one of which is considered to bemore accurate than
the other, as it is built with one extra observation. We postulate that the difference
between them can be used as a guide to future experimentation. In other words, the
more accurate interpolator may be used to validate the less accurate fit and to insert
another design point where this difference is largest over an arbitrary design region.
We set the design region to[0,1] but it can be adapted to other design region[a,b].

The starting point isgn(x), the barycentric interpolator as defined in Equation
(1). Consider an extra design pointd∗

n+1 and its corresponding observation. We term
d∗

n+1 a dummy pointand only require it to be different from existing design points.
Denote byGn+1(x) the interpolator constructed with the temporary design consist-
ing of the original design plus the dummy point,Dn∪d∗

n+1. A new design point is
selected according to

dn+1 = arg max
x∈[0,1]

|Gn+1(x)−gn(x)|. (2)

After the search, the dummy pointd∗
n+1 is discarded and the original designDn is

augmented toDn+1 = Dn∪dn+1. The search problem is well posed, i.e. maximisa-
tion of a bounded function over a closed compact set.

Example 1.Consider the functionf (x) = 1/(1+25(2x−1)2), which is to be inter-
polated using the designD10 = {0, 1

9, . . . ,1}. Let g10(x) be the interpolator function
constructed with observations off (x) atD10. The dummy pointd∗

11=
1
2 is added to

build an updated interpolatorG11(x). The next point is selected where the absolute
difference between the interpolatorsG11(x) andg10(x) is largest over[0,1]; this oc-
curs at the points 0.0325 and 0.9675. Any of these two points can be added toD10

andd∗
11 is discarded.
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3.2 Sequential design algorithm

The sequential design procedure described above simplifiesto a response-independent
alternate maximization and update ofmn(x). We now describe the algorithm.

Input An initial designDn of n distinct pointsd1, . . . ,dn ⊂ [0,1]; a numberk of
extra design points required.

Output A set of additional runsdn+1, . . . ,dn+k ⊂ [0,1].
Initialization Setmn(x) := ∏n

i=1(x−di); set j := 0.
Step 1 Maximize|mn+ j(x)|with respect tox, in the interval[0,1], i.e. letdn+ j+1 :=

argmaxx∈[0,1] |mn+ j(x)|.
Step 2 Updatemn+ j+1(x) := mn+ j(x)(x−dn+ j+1) and j := j +1. If j < k, repeat

from Step 1.

The algorithm does not depend on actual response values observed, but only on
the design points. Additionally, it does not depend on the actual location of the
dummy point. These two characteristics are implied by Theorem 1, which is proven
in the Appendix.

Theorem 1. For n> 0, let gn(x) and Gn+1(x) for n> 0, be two barycentric interpo-
lators, where gn(x) is defined as in Equation (1); and Gn+1(x) is constructed with
an additional dummy design point d∗

n+1. Then

Gn+1(x)−gn(x) = mn(x)
n+1

∑
j=1

wn+1, j f j . (3)

The right hand side of Equation (3) is the product ofmn(x), which depends on
x and onDn (but not on the dummyd∗

n+1), and a second quantity∑n+1
j=1 wn+1, j f j

that depends on design points and responses (including dummy data), but not on
x and thus it can be ignored when searching for the new design point. Theorem
1 makes the search for a new design point independent of the response, indeed it
makes Equation (2) equivalent todn+1 = argmaxx∈[0,1] |mn(x)|.

Example 2.Consider again the design of Example 1. The sequential algorithm is
applied fork= 10 extra runs and pointsd11 to d20 are sequentially obtained: 0.0325,
0.9684, 0.9335, 0.0662, 0.8306, 0.1677, 0.4999, 0.0099, 0.9902 and 0.2813.

A special condition arises from Equation (3), when∑n+1
j=1 wn+1, j f j = 0 holds. This

implies thatGn+1(x)−gn(x) ≡ 0, in other words, that the dummy pointd∗
n+1 does

not update the interpolator and consequently, this step does not yield information for
the next design pointdn+1. This condition appears, for instance, when allf j values
are equal. This could occur when sampling a constant function or a periodic function
at the same point in every period. A different instance appears when response data
truly comes from a polynomial of degree at mostn−1. In any of the above situa-
tions, any point in the interval[0,1] could be selected as new design point. However,
in all the examples we tried, none of them occurred and we suggest that they should
not be cause of concern.
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4 Performance and large sample properties

In this section we first evaluate the performance of our sequential design strategy to
interpolate. We then study the large sample properties of our sequential designs.

4.1 Interpolating performance

The accuracy of polynomial interpolators with our sequential design algorithm
was assessed in a simulation study. The following four functions with domain
[0,1] were used as test functions:s1(x) is the function of Example 1;s2(x) =
1
20 exp(u1/3)sin(u/2)φ(u) with φ(u) the Heaviside unit step function andu =

60x−30;s3(x) = sin(10x) ands4(x) = 21−cos(v)
v2 with v= 35x−15. The functions

were selected to exhibit features which are not easy for modeling with polynomials,
such as flat regions followed by regions with sharp change, orperiodic behavior.

Fig. 1 Maximum distance
between simulators and
barycentric interpolators,
plotted against number of
extra pointsk added.
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From a uniform design of size ten, fifteen points were sequentially added, to-
talling 25 points. At every step, barycentric interpolators were fitted independently
for each function. The maximum distance between the true functions1(x), . . . ,s4(x)
and its barycentric interpolator, over the design region, was recorded. Decreasing
values of this distance show good approximation, while or increasing values point
to the presence of Runge phenomenon.

The results are plotted in Figure 1, where a decreasing trendis evident, thus
showing good approximation to simulators for all cases. Convergence to the true
functions3 was faster than the other cases, while convergence was slower for s2.

4.2 Large sample properties of points

The points generated with our algorithm cluster in the borders of the design region.
We studied whether the points converge asymptotically to a known distribution.
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To study large sample behavior, points were sequentially added to each of the fol-
lowing eight initial designs of sizen: uniform designs 0, 1

n−1, . . . ,1 (termed UI) and
1

n+1, . . . ,
n

n+1 (termed UII); firstn points of Sobol’s space filling sequence (termed
S), see Bratley and Fox (1988); Chebyshev type I and II points(CI and CII, re-
spectively), see Berrut and Trefethen (2004); the designs labelled TI and TII were
generated by transforming UI and UII to the symmetric triangular distribution with
mode in 1

2; and a design with random points (termed R). We used initial design
sizesn = 5,10,35,50,100,150, in each case sequentially adding points with our
algorithm up to one thousand. Two statistics were computed:a) Quantile-Quantile
(QQ) plot and b) goodness of fit Kolmogorov-Smirnoff (KS) statistic. The Beta dis-
tributionβ (1

2,
1
2) (also known as the Chebyshev or arcsine distribution) was used in

computations. This choice was suggested by literature on polynomial interpolation
convergence Berrut and Trefethen (2004).

Fig. 2 QQ plot for design UI.

We show results forn= 50, which are representative of the results for other initial
sizes. Figure 2 shows QQ plot for UI, which converges to Chebyshev distribution
with 20 extra points. QQ plots for other initial designs exhibit similar pattern.
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Fig. 3 KS statistic vs. design size.The left-hand panel is a close up view of the right-hand panel.

The KS statistic “grouped” designs according to their initial performance, with
best (i.e. low) values obtained by Chebyshev points (CI, CII). In second place were
uniform designs (UI, UII, S), followed by random design R. The worst values were
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observed for designs with points clustered in the centre of the design region (TI, TII).
Figure 3 shows the evolution of KS statistic for one design for each of the observed
“groups”: CII, R, S and TII. After adding about two times as many points as the
initial design size, designs behave similarly, showing non-monotonous decreasing
linear trend (in the log-log scale) for the KS statistic. Simulation results suggest a
value for the slope of the linear trend between−0.8 and−1, see also Figure 3.

5 Discussion and future work

We introduced a univariate sequential adaptive design algorithm. In the examples
we tried, the algorithm produced good points for polynomialinterpolation, which
converged rapidly to the Chebyshev distribution and lead tothe following claim.

Conjecture 1.For any initial design in[0,1], as the number of extra pointsk tends to
infinity, the algorithm of Section 3.2 produces samples fromthe distributionβ (1

2,
1
2);

and the KS statistic is of orderO(kα ), with α a suitable constant.
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Appendix A: Proof of Theorem 1

The barycentric interpolatorGn+1(x) is

Gn+1(x) = mn(x)(x−d∗
n+1)

(

n

∑
j=1

wn+1, j f j

x−d j
+

wn+1,n+1 fn+1

x−d∗
n+1

)

,

where barycentric weightswn+1, j are computed using design and dummy point. We
have thatGn+1(x)−gn(x) = mn(x)A, where

A= (x−d∗
n+1)

(

n

∑
j=1

wn+1, j f j

x−d j
+

wn+1,n+1 fn+1

x−d∗
n+1

)

−
n

∑
j=1

wn, j f j

x−d j
.

We now show thatA does not depend onx. After simplifying and using the updating
formula of barycentric weightswn+1, j = wn, j(d j −d∗

n+1)
−1, we have

A =
n

∑
j=1

f j

x−d j

(

(x−d∗
n+1)

wn, j

(d j −d∗
n+1)

−wn, j

)

+wn+1,n+1 fn+1

=
n

∑
j=1

wn, j f j

(d j −d∗
n+1)

+wn+1,n+1 fn+1 =
n+1

∑
j=1

wn+1, j f j .
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