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Abstract

In a polynomial regression model, the divisibility conditions im-
plicit in polynomial hierarchy give way to a natural construction of
constraints for the model parameters. We use this principle to derive
versions of strong and weak hierarchy and to extend existing work
in the literature, which at the moment is only concerned with mod-
els of degree two. We discuss how to estimate parameters in lasso
using standard quadratic programming techniques and apply our pro-
posal to both simulated data and examples from the literature. The
proposed methodology compares favorably with existing techniques in
terms of low validation error and model size.
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1 Introduction

This paper is concerned with polynomial regression models and within this class
of models, hierarchical polynomial models. Our primary goal is to develop param-
eter constraints that enforce hierarchy for such linear models. In this paper we
develop constraints for both strong and weak hierarchy, using to our advantage
the divisibility conditions of model terms.

A polynomial model is hierarchical when the presence of an interaction term
such as x1x2 implies that both terms x1 and x2 are also in the model, in the sense
that the coefficients of the terms involved are not zero. This type of hierarchy is
known in the literature as strong hierarchy [4] and implies that hierarchical poly-
nomial models must contain an intercept term. Weak hierarchy is a less restrictive
form of hierarchy that has also been studied in the literature. In weak hierarchy,
the interaction term x1x2 would only vanish from the model when both terms x1
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and x2 have vanished. In this paper the terms “hierarchy” and “strong hierarchy”
are interchangeable, while “weak hierarchy” refers only to this type of hierarchy.

There are several arguments for the relevance of hierarchy in modelling. For
instance, often the analysis is performed in linearly translated coordinates. If
the model under consideration in the transformed scale is not hierarchical, when
translating back to the original scale, model terms that were not present in the
transformed scale appear [19]. Another case for hierarchy is that, e.g. were the
intercept term be removed from the model, this would force it to pass through
the origin. This type of model constraint should not be allowed to happen unless
there is a strong reason for it [14].

Practical sparsity, the number of variables measured, is another argument used
for hierarchy. Small models in the sense of low value of practical sparsity are
achieved through hierarchy. Indeed hierarchy “reuses” variables through interac-
tions and higher order terms and should be preferred to modeling without hierarchy
considerations [4].

There are several challenges for using and implementing hierarchy in models. A
paramount challenge is to have a simple, consistent and intuitive way to formulate
hierarchical models. As part of modeling and data analysis, a challenge is to
estimate model parameters. Estimation methodologies should be fast and efficient
and the computational burden implied must be kept to a minimum.

Another challenge is model size. Despite having relatively low practical spar-
sity, a hierarchical model may still have many parameters. For example, if k is the
number of explanatory variables, a model with linear terms and squarefree inter-
actions of order two has k(k+1)/2 parameters excluding intercept, and k(k+3)/2
if pure quadratic terms are added. Once triple interactions are considered, the
size of a full square free model is (k + 1)(k + 2)(k + 3)/6. In short, model size
can increase considerably depending on the number of variables and the degree of
terms used. Hence when using hierarchy there is a need to balance between the
benefits of relatively big models and keeping the models to a manageable size.

1.1 Hierarchy in the literature

Our work is developed for a standard linear polynomial regression model

Y = Xθ + ε,

were X is the design-model matrix, assumed to have full rank. It has size n×p with
n > p, and the p columns of X correspond to polynomial terms in k explanatory
variables, and n is the number of observations. The response vector is Y and θ
is the vector of model parameters, while ε is a vector of independent error terms
with zero mean and variance σ2.
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Polynomial models that satisfy strong hierarchy are also known in the literature
as “well-formulated polynomial regression models” [19, 20]. Hierarchical models
are also known in statistical literature as models that have the the property of
marginality, see [14, 15, 16, 17]. Marginality, that is hierarchy, is routinely used
for modeling in experimental designs see [1].

There are several versions of polynomial hierarchy available in the statistical
literature and that have been implemented in R packages. The authors in [4]
considered a second order polynomial model. For this model, constraints were
developed to achieve versions of strong and weak hierarchy. This proposal was
developed to create the package hierNet which is Lasso for hierarchical second
order models. These ideas were later explored and developed further for hypothesis
testing, see [3]. Another development, termed VANISH, also considers a second
order model as well as a functional extension of it, and they constructed a penalty
that imposes strong hierarchy while keeping the criterion convex [22]. In the
development known as FAMILY, convex penalty functions are created using the rows
and columns of the matrix of quadratic and second order interaction coefficients.
This development has also been implemented in R package and considers different
penalties that allow both cases of strong and weak hierarchy [11].

A two step hierarchical approach for the quadratic model is available in the
package glinternet which first screens candidate main effects and interactions
and implements group lasso to select variables while enforcing strong hierarchy
[13]. A recent contribution is the sequential search for hierarchical models while
simultaneously keeping low a notion of false rejections. This search has been
implemented in the package rai and is potentially able to explore models with
higher order polynomial interactions [12].

A different approach for hierarchical polynomial model selection is that by [2],
who sequentially search and discard model terms. A model is then selected with a
compound criterion based on model curvature and validation error. This approach
is not limited to polynomial models of second degree, however the search can be
prohibitively expensive.

Finally, the authors in [6] explored a general model parametrization that guar-
antees hierarchy, but in the face of nonlinearity of this approach, they developed
hierarchy in a Bayesian context. Another proposal within the context of Bayesian
analysis is [18].

1.2 Contributions

Our first contribution is the development of general, non Bayesian methodology
for the analysis of data with hierarchical models. Our methodology is in practice
as close as possible to standard lasso, while still enforcing hierarchy. Consider the
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plots in Figure 3, where the plot (a) is standard unconstrained lasso. The results
for constrained (b) are already hierarchical but still quite restrictive and we are
able to ease the constraints to (c) and then (d) which is closer to (a) but keeping
hierarchy.

Our contributed methodology has also low validation error and compares fa-
vorably with lasso and other existing methods from the statistical literature. For
example, in Figure 7, validation errors obtained for our hierarchical models (blue
boxplots) improve over lasso and perform well when compared against other meth-
ods from literature.

Another contribution is the development of theory for our proposal. The
methodology we develop is based on Hasse diagrams. For a given candidate
polynomial model, the divisibility conditions between terms can be encoded as
a Hasse diagram. Therefore, such diagram serves to represent the constraints for
the parameter vector θ that guarantee hierarchy. The use of Hasse diagrams was
motivated by the experimental design literature, where they are routinely used
to analyze hierarchical models (see [1]) but the constraints are novel and to the
best of our knowledge, such diagrams have not been used previously to construct
constraints.

In terms of parameter estimation, we use lasso [23], which we adapt for hier-
archy. To guarantee hierarchy, the minimization of lasso criterion L is constrained
to the conditions on θ read from the Hasse diagram and in practice we use an
implementation of the quadratic programming methodology by [10].

1.3 Order of the paper

The order of the rest of the paper is as follows. In Section 2 we define and then
use the divisibility conditions implicit in a hierarchical polynomial model. We
build a Hasse diagram from which we read parametric constraints that guarantee
model hierarchy. We then discuss the generation of strong and weak hierarchies
as well as the relation between such parametric constraints. In Section 3 we apply
the constraints from Section 2 as part of estimation in lasso. We develop this
constrained estimation within standard lasso and also develop a relaxation of it.
In Section 4 we apply our methods to examples from the literature. We add
a discussion in Section 5 in which we comment on potential extensions to the
methodology.
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2 Hierarchical polynomial modelling

We first define polynomial notation, and elaborate on hierarchical polynomial mod-
els which satisfy divisibility conditions. Then using Hasse diagrams, we develop
the constraints on parameters implied by hierarchy. The basic reference for poly-
nomial notation is [7], and for the use of this notation in statistics, see [21].

Consider k indeterminates x1, . . . , xk. A monomial term xα is defined as the
power product xα :=

∏k
i=1 x

αi
i , where α is the exponent vector α = (α1, . . . , αk)

whose entries are non negative integers. The degree of the term xα is the sum
of its exponents

∑k
i=1 αi. Let M be a finite set of exponent vectors so that the

expectation of a linear regression with terms in M is

E(Y (x)) =
∑
α∈M

θαx
α, (1)

where θα is the coefficient associated with the term xα. Each coefficient θα is a
fixed real quantity and thus the right hand side of Equation (1) is a polynomial.
We refer to M as the model, as it is the set of candidate terms which will be used
to model the response.

A model M satisfies strong hierarchy when for every term xα, α ∈ M , all the
divisors of xα have exponents in M as well. This is the strong hierarchy described
in the introduction of this paper, and we imply that the corresponding coefficients
are non zero. The list of elements of a hierarchical M can be retrieved from the list
of directing monomials of M , where a directing monomial is a monomial xα, α ∈M
that cannot be divided by other monomial terms from M , see [2].

A polynomial model M satisfies weak hierarchy, when, for every term xα with
α ∈M , at least one of the divisors of xα have exponents in M as well. In a model,
strong hierarchy implies weak hierarchy.

2.1 Hierarchy and partial ordering

There is a natural ordering of monomials implied by monomial division and de-
noted with the symbol ≺. Consider two distinct monomial terms xα, xβ. We say
xα ≺ xβ when xα divides xβ or conversely, when xβ is a monomial multiple of xα.
Note that xα ≺ xβ is attained when β ≥ α componentwise, i.e. when β − α ≥ 0.

Example 1 Consider the set of monomials {1, x1, x2, x3, x1x2, x1x3} in k = 3
variables. The divisibility condition x1 ≺ x1x2 is equivalent to checking compo-
nentwise that β − α = (1, 1, 0) − (1, 0, 0) = (0, 1, 0) ≥ 0. The following are all
the divisibility relations between monomials in the list above: 1 ≺ x1, x1 ≺ x1x2,
x1 ≺ x1x3, 1 ≺ x2, x2 ≺ x1x2, 1 ≺ x3 and x3 ≺ x1x3.
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For a set of monomials with exponents from M , the ordering ≺ generated by
divisibility is a transitive relation. An instance of this in Example 1 is that 1 ≺ x1,
x1 ≺ x1x2 so that 1 ≺ x1x2 holds. The ordering ≺ has guaranteed a unique
minimum in M only if the set M includes (0, . . . , 0), i.e. the polynomial contains
the intercept term 1. This is always the case when the model M is hierarchical.
However note that ≺ defines only a partial order and not a total order in M .
This is because in general, divisibility cannot uniquely sort a list of monomials. A
simple instance of this, also taken from Example 1, is that ≺ per se cannot order
x1 from x2. Despite the divisibility relation ≺ not being a total order, in this
paper we do not require divisibility to satisfy this property and to define hierarchy
constraints in the model, it is sufficient to have a partial order.

2.2 Hasse diagrams and model constraints

The collection of partial orderings among monomials which appear by divisibility
conditions translates naturally into domination constraints for model parameters.
We list those relations ≺ in the model M and later use the list to establish nat-
ural linear constraints between the model parameters. Let R be the collection of
ordering relations between monomials in M :

R := {xα ≺ xβ : α, β ∈M such that β − α ≥ 0 componentwise}. (2)

We restrict R to only contain those relations xα ≺ xβ when the degrees of mono-
mials xα and xβ differ only by one. The aim of this restriction is to keep R to a
minimum size by only listing essential relations, and as ≺ is transitive, there is no
lack of generality by doing this. The construction of the ordering relations R for
a model M is given in Algorithm 1.

All relations of the type 1 ≺ xi are excluded from R when the exponent
(0, . . . , 0) is removed from M in the algorithm. Removing the intercept can be
done because the intercept term is often of little practical interest. Indeed after
standardisation of data, the intercept term is absent from the modelling process.
Unless stated otherwise, in the rest of this paper any relations or constraints in-
volving the intercept have been removed from both M and the analysis.

The relations listed in R can be depicted with a Hasse diagram [5]. To build
this diagram, model terms are nodes and edges are drawn when terms are related
by divisibility ≺. Ascendant terms are divisors of other model terms and they are
located at the top of the Hasse diagram. Conversely, descendant terms can be
written as polynomial multiples of other model terms and they are located in the
lower part of the diagram. We put ascendant terms such as x1 at the top of the
Hasse diagram to reflect the importance of such terms in the parameter constraints
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x1 x2 x3

x1x2 x1x3

Figure 1: Hasse diagram for model {1, x1, x2, x3, x1x2, x1x3}.

to come later. The hierarchy of terms in the diagram we propose coincides with
the hierarchy in Hasse diagrams used in the analysis of designed experiments [1].

Input: List of exponents M
Output: List of divisibility conditions R
Initialization M := M \ {(0, . . . , 0)} and R := {};
for α, β ∈M with α 6= β do

if β − α ≥ 0 then

if
∑k

i=1(βi − αi) = 1 then
R := R ∪ {xα ≺ xβ};

end

end

end
Algorithm 1: Generation of divisibility conditions R

Example 2 For the model M of Example 1, the set of divisibility conditions is
R = {x1 ≺ x1x2, x1 ≺ x1x3, x2 ≺ x1x2, x3 ≺ x1x3}. These relations were used to
build the Hasse diagram shown in Figure 1.

A Hasse diagram can be built even when the model M does not fully satisfy
hierarchy. In such case the diagram would reflect the hierarchical part of M
between terms that whose degree differ by one.

In summary, what we describe in this Section is model preprocessing, to be
done before data analysis. The model preprocessing does not involve response data,
but only applying Algorithm 1 to model M and then building Hasse diagrams and
developing model constraints.

We now explore simple forms in which we can create and combine parameter
constraints to obtain different forms of hierarchy. These parameter constraints are
read from the Hasse diagram built for the model M using the divisibility conditions
encoded in the set R.
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2.2.1 Using the edges of the Hasse diagram

The simplest way is to read parameter constraints directly from the edges in the
Hasse diagram. For every relation xα ≺ xβ in the list R, we associate the constraint
|θα| ≥ |θβ| to the model. This constraint ensures that if in the model the coefficient
for xα is zero, i.e. θα = 0, then the term xβ will be absent from the model as its
coefficient will be forced to satisfy θβ = 0. Let H be the list of all such constraints:

H :=
{
|θα| ≥ |θβ| for every pair α, β ∈M such that xα ≺ xβ ∈ R

}
. (3)

The constraints imposed by H correspond to strong hierarchy and there are as
many constraints of this type as edges in the Hasse diagram.

If there is a model term xα for which there are no divisors (ascendants) nor
multiples of it (descendants), then for such term there will be no divisibility con-
ditions in R and hence no parameter constraints appearing on the set H. The
simplest example of this is when fitting a model with only linear terms so that,
after discarding the intercept, the expectation is E(Y (x)) =

∑k
i=1 θixi. The sets

R and H are empty and estimation of model parameters involves no constraints.

Example 3 (Continuation of Example 2) From the Hasse diagram of Figure 1,
the following parameter constraints are directly read: |θ1| ≥ |θ12|, |θ1| ≥ |θ13|,
|θ2| ≥ |θ12| and |θ3| ≥ |θ13|. These parameter constraints are associated to the
model to ensure that it remains hierarchical.

2.2.2 Adding over descendant nodes in the Hasse diagram

We can constrain by adding over multiples of model terms. For every term xα

with exponent α ∈ M , define B(α) as the collection of exponents of multiples of
xα, taken from the list R, that is B(α) := {β ∈ M : xα ≺ xβ ∈ R}. To build the
constraint, let wα be a positive weight and add over coefficients of multiples of the
monomial xα:

wα|θα| ≥
∑

β∈B(α)

|θβ|. (4)

Recall that B(α) is the list of descendants of xα in the Hasse diagram, restricted to
the immediate descendants. Hence if no monomials are below xα in the diagram,
then B(α) will be empty and no constraint is built for θα. The constraint (4) im-
plies strong hierarchy, as the vanishing of θα implies vanishing of all its descendant
terms. Define S to be the set of all such constraints, built over all terms that have
multiples (descendant terms)

S :=

wα|θα| ≥ ∑
β∈B(α)

|θβ| : α ∈M such that B(α) 6= ∅

 .
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The selection of the weight wα can be arbitrarily made. There are three obvious
choices. One is to let the weight of |θα| in (4) to be the number of descendants
of xα, that is wα = |B(α)|, where |B(α)| is the cardinality of the set B(α). This
selection of wα is equivalent to constrain by letting the absolute value of each
parameter exceeding the mean of the absolute values of the parameters of its
immediate descendants. A second possibility is to let all the weights wα in S be
equal to one, i.e. |θα| exceeds the sum of absolute values of descendants of xα.
The second instance is a more restrictive, penalizing heavily parameters of higher
order terms. A third possibility is to let the weight wα exceed |B(α)|. This is
a less restrictive form of strong hierarchy. The relation between these choices is
discussed in Section 2.3.

Remark 1 When the model M corresponds to a polynomial of degree two, our
formulation of strong hierarchy S with weights wα = 1 coincides with the strong
hierarchy as developed by [4].

The symmetry constraint for strong hierarchy by [4] is precisely equal to our
constraint S with unit weights, which is a collection of inequalities of the form

|θj | ≥
p∑
i=1

|θij | = |θ1j |+ |θ2j |+ . . .+ |θjj |+ . . .+ |θpj |,

where j runs over all variables j = 1, . . . , p. If the model M only includes double
interactions but not quadratic terms in the variables then the parameter θjj is ab-
sent from the above inequality. In both versions of it, the correspondence between
constraints of Remark 1 holds.

2.2.3 Adding over parent nodes in the Hasse diagram

We can constrain parameters by adding over divisors of model terms. In a similar
manner as above, for every term xβ with exponent β ∈ M , define A(β) as the
collection of exponents of ascendant terms taken from the list R, formally A(β) :=
{α ∈ M and xα ≺ xβ ∈ R}. Let wβ be a positive weight and constrain the
parameter of xβ by adding over its ascendants∑

α∈A(β)

|θα| ≥ wβ|θβ|. (5)

The set A(β) lists all terms that are higher up than xβ in the Hasse diagram,
restricted to those immediate ascendants. Akin to the earlier development, if
no monomials are above xβ in the Hasse diagram, then A(β) is empty and no
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constraints would be created for θβ. The constraint (5) implies weak hierarchy,
as the coefficient of term xβ would only vanish when all the coefficients of its
ascendant terms have vanished. Mirroring what was done earlier, define W to be
the set of all constraints (5), built over terms that have ascendants

W :=

 ∑
α∈A(β)

|θα| ≥ |θβ| : β ∈M such that A(β) 6= ∅

 .

The specification of each weight wβ is arbitrary and we also consider three
cases. The first is to let this weight to be the number of ascendants, which we
write wβ = |A(β)| and this means that the absolute value of the coefficient for xβ is
smaller than the mean of absolute values of its ascendants nodes. The second case
is to let all weights to be wβ = 1. This is less restrictive than the case above, being
easier to attain. A third case is to let weights wβ be smaller than one, making the
constraints much less restrictive than the first two cases. In the next example we
give the explicit constraints for the different cases of hierarchy.

Example 4 We build different parameter constraints using the set M of Examples
1 and 2. The model constraints appearing from the edges of the diagram are

H = {|θ1| ≥ |θ12|, |θ1| ≥ |θ13|, |θ2| ≥ |θ12| and |θ3| ≥ |θ13|} .

Using weights wα = 1, we add over multiples of every node in the diagram (adding
over descendants) to obtain strong hierarchy S

{|θ1| ≥ |θ12|+ |θ13|, |θ2| ≥ |θ12| and |θ3| ≥ |θ13|}

while with weights wβ = 1 and adding over divisors of every node (ascendants) we
have weak hierarchy W

{|θ1|+ |θ2| ≥ |θ12| and |θ1|+ |θ3| ≥ |θ13|}.

The version of strong hierarchy S using weights wα = |B(α)| is

{2|θ1| ≥ |θ12|+ |θ13|, |θ2| ≥ |θ12| and |θ3| ≥ |θ13|},

while weak hierarchy W with weights wβ = |A(β)| is

{|θ1|+ |θ2| ≥ 2|θ12| and |θ1|+ |θ3| ≥ 2|θ13|}.
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S
wα < 1

⇒ S
wα = 1

⇒ S
wα = |B(α)| ⇒ S

wα > |B(α)|
⇓ ⇓

W
wβ > |A(β)| ⇒ W

wβ = |A(β)| ⇒ W
wβ = 1

⇒ W
wβ < 1

Figure 2: Implications between constraints.

2.3 Relations between constraints

Consider the constraint |θ1| ≥ |θ12| + |θ13| taken from set of strong hierarchy
constraints S of Example 4. It is clear that, if this constraint is satisfied, it
follows that both |θ1| ≥ |θ12| and |θ1| ≥ |θ13| are also satisfied. This is because
|θ12| + |θ13| ≥ |θ12| and |θ12| + |θ13| ≥ |θ13| simultaneously. Thus, stemming from
a constraint in S, we have recovered some constraints from the set H. Lemma 2
gives the conditions under which the set of constraints H, built over the edges if
the Hasse diagram, can be deduced from the addition over descendants S.

Lemma 2 If every weight wα in the set of constraints S satisfies 0 < wα ≤ 1,
then the constraints in S imply the set of hierarchical constraints H.

Theorem 3 establishes the relation between the sets of constraints for strong
hierarchy S and weak hierarchy W . The implications of the theorem depend on
the weights specified in each case. The proof of both results is in the Appendix.

Theorem 3 Let the sets of constraints S and W be as defined in Section 2.2.
Then, depending on the specification of weights wα and wβ for sets of constraints
S and W , the implications shown in the diagram in Figure 2 hold.

In the top row of the diagram in Figure 2, we have the constraints associated
with strong hierarchy S, while the bottom row has constraints associated with
weak hierarchy W . In the same diagram, the constraints are also ordered from
left to right from the most restrictive instances to the least restrictive. The choice
of weights provides the modeler with a wide range of models, all of which would
satisfy the required type of hierarchy.

Finally, we must distinguish between the hierarchy as built with parameter
constraints that we have related in this section and hierarchy when built with
arbitrary values of the parameters. While it is true that if a model with exponent
set M is strongly hierarchical then it is also weakly hierarchical, it is also true
that the parameters associated with such models may not necessarily satisfy the
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implications of the theorems in this section. Indeed it is possible to have a model
that is strongly hierarchical that does not satisfy any of the sets of constraints
S as defined in this paper. Our contribution provides a useful set of parameter
constraints that guarantee model hierarchy, and while it does not cover all possible
cases, it gives a general and flexible modeling framework.

3 Parameter estimation

The development below is based around the lasso shrinkage methodology [23]. This
methodology estimates θ by minimizing over Rp the criterion

L =
1

2
||Y −Xθ||22 + λ||θ||1. (6)

If no shrinkage is needed, set λ = 0 in L to coincide with least squares estimation.
We next discuss constrained lasso and then a relaxed version of it.

3.1 Constrained lasso

The estimation problem for θ is to minimize L of Equation (6) over Rp subject
to a set of constraints, and we refer to this as constrained lasso. In our proposal,
the constraints are given by one of the sets S, H or W , selected by the modeler.
With a slight abuse of notation, let |θ| denote the column vector whose entries
are absolute values of coefficients, i.e. |θ| = (|θα|)α∈M . The parameter constraints
take the form

A|θ| ≥ 0,

where A is a matrix of constants with p columns, read from the earlier Hasse
development of Section 2.2, and the inequality is interpreted componentwise.

Example 5 Consider the hierarchy H as developed in Example 4, and let the
vector of absolute values of coefficients be |θ| = (|θ1|, |θ2|, |θ3|, |θ12|, |θ13|)T , then
the matrix A for the constrained optimization would be

A =


1 0 0 −1 0
1 0 0 0 −1
0 1 0 −1 0
0 0 1 0 −1

 .

For a given vector |θ|, simultaneous attainment of all the inequalities means that
|θ| satisfies H. For the cases of strong hierarchy S with weights wα = |B(α)| and
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for unit weights, the matrix A would be 2 0 0 −1 −1
0 1 0 −1 0
0 0 1 0 −1

 and

 1 0 0 −1 −1
0 1 0 −1 0
0 0 1 0 −1

 ,

respectively. For weak hierarchy W with weights wβ = |A(β)| and for unit weights,
the matrices A would be(

1 1 0 −2 0
1 0 1 0 −2

)
and

(
1 1 0 −1 0
1 0 1 0 −1

)
.

For a given value of λ, the numerical minimization of constrained lasso is a
minimization of a quadratic form with absolute constraints. Note that for every
orthant of Rp, the minimization remains a standard quadratic problem with linear
constraints. This is because inside every orthant, the vector of absolute values |θ|
is linear with respect to each of its coordinates θα.

In practice we use the following minimization procedure: select an initial or-
thant based on the least squares estimate, then for a set of values of λ, compute
lasso estimates in the selected orthant. The minimization is done using the stan-
dard R package quadprog and by default, the values of λ range from λ = 0 to
λ = max{|(XTY )i|}. As part of our search procedure, we also explore if neighbor-
ing orthants given by a sign change may have a better estimate than our selected
orthant and thus for every value of λ we explore |M | + 1 orthants. We do not
claim that our search is a universally optimal procedure, but it has worked well
in practice and it is much cheaper than a brute force exploration of all 2|M | full
dimensional orthants of Rp.

3.2 Relaxed constrained lasso

An alternative approach to L is to do a convex relaxation of the lasso problem,
see [9]. This relaxation is used to linearize the sum of absolute values ||θ||1 in
Equation (6). In the relaxed lasso, instead of the parameter vector θ, we have two
non-negative parameter vectors θ+ and θ−, which for simplicity we collect in the
column vector u which has 2p rows and is uT = (θ+

T
, θ−

T
). The non-negative

condition of u from the relaxation implies that u ∈ R2p
≥0. The vector of parameters

θ is built as the difference θ = θ+ − θ−, that is

θ =
(
I −I

)
u, (7)

where I is an identity matrix of size p. The proxy vector of absolute values of θ is
defined as the addition of these nonnegative vectors

|θ| = θ+ + θ− =
(
I I

)
u
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so that ||θ||1 is replaced by the addition of all the elements in θ+ − θ−, that is by
uT1 with 1 a column of ones with 2p rows. After collecting terms, the relaxed
version of the Lasso criterion is

Lr =
1

2
Y TY − uT

((
XTY

−XTY

)
− λ1

)
+

1

2
uT
(

XTX −XTX
−XTX XTX

)
u. (8)

The problem of estimation of θ minimizing (6) has been turned into minimization
of the relaxed criterion Lr(u) of (8) subject to Bu ≥ 0 (component wise). The
matrix B contains the constraints imposed by hierarchy as discussed earlier as well
as the non negativity constraints for values of u. The constraints matrix B has
the following block form

B =

 A A
I 0
0 I

 ,

whereA is a matrix with p columns that has the parameter constraints as developed
in Section 2.2; the matrix I is an identity matrix of size p and in both cases above
the matrix 0 is of size p × p. Note that when there are no edges in the Hasse
diagram, then the matrix A does not exist and matrix B for the relaxation of
Lasso only contains the lower part with identity and zero matrices.

The estimation of the lasso path for the relaxed constrained lasso is performed
in a similar manner to the procedure in Section 3.1: for a collection of values of
λ, estimates are computed using the same R package quadprog. Note that an
advantage of the relaxation is that there is no need to explore different quadrants,
as the nonnegativity of u and hierarchy constraints are all handled by Bu ≥ 0.

We briefly discuss the construction of B through an example. Consider the
model M of Example 1 and let θT = (θ1, θ2, θ3, θ12, θ13) be the parameter vec-

tor so that for the relaxation we have θ+
T

= (θ+1 , θ
+
2 , θ

+
3 , θ

+
12, θ

+
13) and θ−

T
=

(θ−1 , θ
−
2 , θ

−
3 , θ

−
12, θ

−
13) and uT = (θ+

T
, θ−

T
). Any constraints for this model that

involve absolute values, such as those given in Example 4, are reformulated using
the component wise convention |θα| = θ+α +θ−α . For instance, when considering hi-
erarchy H in the relaxed Lasso for model M , the constraint |θ1| ≥ |θ12| is replaced
by θ+1 +θ−1 ≥ θ

+
12+θ−12. This constraint is rearranged as (θ+1 −θ

+
12)+(θ−1 −θ

−
12) ≥ 0,

where the brackets separate components of θ+ from those of θ−. Note the repe-
tition of roles of elements of θ+ and of θ− inside each bracket. Rearranging the
inequality, we read the constraint (1, 0, 0,−1, 0, 1, 0, 0,−1, 0)u ≥ 0, where the du-
plication of roles in terms in brackets above implies the repetition of the coefficients
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as noted earlier. The rest of the constraints in H give the hierarchy constraints
1 0 0 −1 0 1 0 0 −1 0
1 0 0 0 −1 1 0 0 0 −1
0 1 0 −1 0 0 1 0 −1 0
0 0 1 0 −1 0 0 1 0 −1

u ≥ 0,

where, as in earlier developments, the inequality is interpreted component wise.
This is simply a case of (

A A
)
u ≥ 0 (9)

where the matrix A is the same as the development in the text of Section 3.1. The
nonnegativity constraints for θ+ and for θ− are simply written as(

I 0
)
u ≥ 0 and

(
0 I

)
u ≥ 0, (10)

respectively. In summary, for the hierarchy H in model M , the relaxed lasso uses
a constraints matrix B of size 14× 10; the first four rows impose the hierarchy H,
and the remaining ten rows are an identity of size ten that gives non-negativity
constraints for the relaxed parameterisation.

Relaxed constrained lasso appears to be a simple alternative to constrained
lasso of Section 3.1. The relaxed method does not have to consider multiple or-
thants and move around them, as this is automatically handled by the problem
formulation. Hierarchy is rigorously held for the vector of proxy absolute values
θ+ + θ−, but paradoxically, the method does not guarantee that hierarchy will be
enforced for the vector of proxy parameters θ+− θ−, nor that the model retrieved
will coincide with that of constrained lasso, see the numerical comparison of meth-
ods in Section 4.4. We would advocate this simple, approximate method for cases
where strong hierarchy is not a crucial requirement, or for a first stage screening
of model terms where only a rough list of active terms is required.

4 Examples

4.1 Small example, synthetic data

Consider the data set in k = 3 factors given in Table 1. The model under consider-
ation has terms for the intercept and all linear factors together with the interaction
terms x1x2 and x1x3. Figure 3 shows the lasso paths for standard lasso in (a) as
well as the lasso paths built using the following constraints as defined in this paper:
H in (b), S with weights given by wα = |B(α)| in (c), S with all weights equal
wα = 8 in (d).
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X1 X2 X3 Y
0 -1 -1 -2

-1 0 0 0
-1 -1 -1 1
-1 0 1 1
-3 -1 1 -1
-1 0 1 -1
7 3 -1 2

Table 1: Simulated data for Example 4.1.

The lasso path in Figure 3 (a) was computed with the standard package lars

and added for reference, noting that the coefficients in this path do not obey
hierarchy. The rest of the paths in Figure 3 were computed minimizing L subject
to absolute constraints. We note that the introduction of hierarchy H severely
constraints the lasso path to the point that the coefficient estimates for terms
x3 and x1x3 become zero for all the path and the paths of x1 and x2 are fully
correlated. This is of course too limiting, as seen in (b) in the said figure. The
path of hierarchy S shown in (c) is still limiting as the same coefficients as in H
are still zero, but the gradual change in the path towards lasso starts to become
evident. Finally, the path in (d) is much closer to the original lasso, while still
keeping hierarchy.

4.2 Prediction comparison: strong hierarchy and lasso

We carried out a simulation study to compare the performance of our constrained
lasso S proposal versus standard lasso. To this end, we considered data from
a hierarchical model assumed true with 11 terms (excluding intercept) in k =
2 variables, and integer coefficients taken from the interval [−3, 3] and an error
term was added to the deterministic part of the model. The model had directing
monomials x1x

3
2, x

2
1x

2
2 and x31.

The above simulated data was modelled with a candidate model with p = 24
terms and directing monomial x41x

4
2. The design used was a random uniform

design in [−1, 1]2 with 100 training, 40 validation and 40 prediction points. After
training, the validation error was used to pick a model from the path for each of
the trajectories of lasso and constrained lasso S. Finally, using the selected model
and the prediction data, we computed the prediction error and compared for both
models. This comparison was repeated 1000 times for each of 18 levels of variance
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Figure 3: Lasso paths for Example 4.1: (a) standard Lasso and hierarchical
according to (b) H; (c) S with wα = |B(α)| and (d) S with wα = 8. The
colors of coefficients of terms x1, x2, x3, x1x2, x1x3 in the path are black, red,
green, dark blue and cyan, respectively.
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Figure 4: Proportion of times that error from strong hierarchy equaled or
outperformed lasso error.

of Gaussian error, and for nine different values of weights wα ranging from wα = 1
to wα = 100.

Figure 4 shows the proportion of times that the prediction error of constrained
lasso S was smaller than or equal to that of lasso, plotted against weight wα.
Firstly, in all simulations, this proportion was at least 60%, and for increasing
levels of error variance, the figure settled at around 85%. An interesting case
appeared for lower values of the weight wα, for which the proportion was initially
much higher than the rest of cases, to finally settle for a similar proportion as the
rest of cases.

4.3 Benchmarking techniques with engine data set

This data set was generated by a computer experiment involving 5 input variables
and one output. The first 48 observations of the data were used to train the model
and the remaining 49 observations of the data were used for validation purposes.
Two initial models were considered for analysis.

In the original analysis by Bates et al. (2003), they considered a saturated
model of 48 terms. For our analysis, in order to have a non-saturated initial
model, we removed the single term of degree five in their model. This initial model
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Initial model BGW Quadratic
Method (weight) Size MSE Hier. Size MSE Hier.

S (wα = 1) 21 1.3788 Y 13 1.6124 Y
H 22 1.4575 Y 9 1.7124 Y
S (wα = |B(α)|) 21 1.5171 Y 12 1.6142 Y
S (wα = 100) 21 1.3476 Y 12 1.6142 Y
W (wβ = |A(β)|) 20 1.6501 N 10 1.6756 N
W (wβ = 1) 22 1.4849 N 10 1.6756 N
Lasso 19 1.6179 N 10 1.6756 N
BGW 11 1.5742 Y — — —
RAI — — — 6 2.0909 Y

FAMILY 21 2.2487 Y — — —

Table 2: Validation error for the selected models, engine emissions data.

is referred to as ‘Initial BGW’. Using the training data, we built constrained lasso
paths and for each model in the path, we reestimated the coefficients using least
squares estimates. We then selected a model from the path using the validation
error. This analysis was performed for hierarchy H and several choices of weights
for hierarchies S and W .

The models, sizes and validation mean squared errors for this study are given in
Table 2, and the last column of the table states whether the model satisfies strong
hierarchy. The constrained lasso models in the first six rows of Table 2 are ordered
according to a reading from left to right by row in the diagram of Theorem 3.
The first four rows correspond to strongly hierarchical models which are ordered
in decreasing order of restriction. For example, the large weight wα = 100 in
row four made this model considerably less restrictive than any model above it,
while still obeying strong hierarchy. The fifth and sixth row correspond to weak
hierarchy are also ordered in decreasing order of restriction. Table 2 also shows
in its last three rows the results from a standard lasso path, from the final model
by [2], termed BGW; as well as the model termed RAI from the greedy stepwise
regression search by [12].

A common feature in all the models we tried was that the term involving the
second variable was absent from the selected model, a desirable analysis conse-
quence noted in [2]. From the models, the best result was obtained with strong
hierarchy S and the large weight wα = 100, which is the least restrictive of our
constrained lasso with strong hierarchy. The second best model is also a strongly
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Figure 5: Proportion of times final relaxed models coincided with those of
constrained lasso.

hierarchical. Interestingly enough, the entirely unconstrained standard lasso came
second to last with its only benefit being a slightly smaller model size. The model
BGW, while having a relatively large MSE in Table 2 has a very reduced size.
This is a consequence of that model being obtained through a compound crite-
rion that penalized heavily higher order terms by their curvature, in contrast with
our methods that penalize higher order terms concerning hierarchy. The smallest
model was RAI, with the trade-off of having the largest validation error in the
table.

4.4 Comparison between methods of constrained esti-
mation

We compared the performance of constrained lasso against the relaxed version of it
using simulated data of the non-polynomial model y = 1 + 2 exp(x1) + 3 sin(πx3)

2,
suggested by [2]. We modeled and compared two scenarios with k = 3 and k = 5
variables. In the first scenario, the data does not depend on one input factor x2
while on the five dimensional scenario, factors x2, x4 and x5 have no influence in
the output.
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For the three factor scenario, we generated a random latin hypercube design
(LH) of 40 points which were used to train a model of degree three with 19 terms.
A second latin hypercube of 15 points was used to compute validation error which
selected a working model. We did this for constrained lasso and relaxed lasso with
constraints, using the strong hierarchy S. We recorded the proportion of times
that the final model of relaxed lasso concided with that of the constrained version
in both terms and respective coefficient signs. We also recorded the proportion
when they coincided on the terms only, disregarding the signs of coefficients. These
proportions were computed using 1000 replications of this experiment, performed
for a variety of weights wα for constraint S.

For the five factor scenario, we used a LH design of 100 points in five dimensions
to train a model of 55 terms with the same degree three and hierarchy S as the
previous scenario. The validation design consisted of a second LH of 30 points, and
we recorded the same proportions as the earlier case, using instead 100 replications.

Figure 5 shows the experiment results. For moderate to large values of the
weight wα, the coincidence of terms reaches a value of around 60% for both three
and five-dimensional scenarios. Coincidence of terms and signs is much lower
for both scenarios, never reaching even 50% of the cases. The results suggest that
while the relaxed lasso has the ability to detect active terms that obey the required
hierarchy, it does not do that with a very high probability.

4.5 Run times of the calculations

This example is concerned with a comparison of the run times of the implemen-
tation of our computational procedure. We randomly generated data scenarios
varying numbers of input factors and candidate models M and to which each of
the constraints S,H and W was fitted to generate lasso paths in both versions of
constrained lasso and as relaxed lasso. Run times for a standard laptop (64 bit
processor 1.8GHz, 8GB RAM) were recorded for each scenario and method.

The details of the simulation are as follows. The number of factors k ranged
from 1 to 19. For each value of k we generated a random latin hypercube with
n points. The number of points for this design was n = 2

(
k+m
m

)
, where m was

taken at random between 2 and 7. Output data values consisted of only simulated
uniform noise with no specific trend, and to each design-output configuration we
randomly choose a candidate model M with hierarchical structure which was then
fitted to data. The size of M determines the dimension of θ and consequently,
the complexity of the estimation. In total we ran 400 such scenarios and for each
scenario, the fit was performed for both constrained lasso and relaxed methodolo-
gies as described in Section 3. We generated a fit using each of the constraints
S,H and W , using 60 values of λ. For S and W hierarchies we used weights
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Figure 6: Run time for constrained S, relaxed S and standard lasso.

wα = 10 = 1/wβ, respectively. The run time was recorded for each case. In
summary, for each of the 400 simulations, there were 7 run times measured: three
for each of S,H and W constraints using constrained lasso; another three for the
same hierarchy cases with relaxed lasso; for comparison we also fitted standard,
unconstrained lasso.

The scatterplot in Figure 6 shows run times for hierarchy S against model size.
This plot is representative of what happens for the other cases W and H. The run
times for constrained lasso are between one and two orders of magnitude bigger
than those of relaxed constrained lasso. Indeed this is one advantage to be had
when using the relaxed version of constrained lasso, while the obvious drawback
of it is the potential lack of hierarchy of models, as discussed earlier in Section 3.2.

The increasing pattern of run times is similar in shape for both constrained
lasso and relaxed lasso. This fact is not surprising as both methods consist on
quadratic minimization over orthants and what we are plotting are in essence,
runtimes of quadprog. In both cases, the logarithm of run time appears to depend
on the square root of the model size. Note in the same figure the different pattern
and much lower run times of lasso which does not depend on constraints hence
lasso models are not generally hierarchical. Interestingly enough, occasionally lasso
has similar run times than the constrained versions.
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Label Hierarchy Description and notes

S1 Strong S (wα = 1), concides with [4] for quadratic model
H Strong H
SB Strong S (wα = |B(α)|)
SH Strong S (wα = 100)
WA Weak W (wβ = |A(β)|)
WA Weak W (wβ = |A(β)|)
W1 Weak W (wβ = 1)
L No Standard lasso of [23]
ML No Lasso for model with main effects only [23]
R Strong RAI by [12]
F Strong FAMILY by [11]

Table 3: Labels for scenarios used in the olive oil data.

4.6 Comparison between methodologies: olive oil data

We compared the performance of existing methodologies using the olive oil data
set by [8]. The response was the indicator variable for oils coming from the region
of Apulia, modelled as a function of eight other variables in the dataset. The data
set was split randomly in two halves, one was used to training the model, while
the other half of the data was used to compute the validation error. The smallest
validation error in the path was recorded, and this procedure was repeated 100
times for different random splits of the data.

The analysis was carried out for three different candidate models M . The
candidate model labelled as “Quadratic (full)” consisted of all terms of degree less
than or equal to two in eight variables totalling 44 terms. The model labelled as
“Quadratic (square free)” had 36 terms, obtained by removing the pure terms of
degree two from the model “Quadratic (full)”. A more complex model labelled
“Cubic” with 108 terms was built adding pure terms of degree three and triple
interactions to the model “Quadratic (full)”. To each of these candidate models
M , seven different constraints were tried to have 21 scenarios. In addition to these,
a simple lasso with main effects only was tried as well as the proposals RAI and
FAMILY, see [12, 11]. Boxplots with the results for all these scenarios are shown
in Figure 7. The boxplots corresponding to strong hierarchy S or H are shown in
blue, while weak hierarchy W are colored in green, while simple lasso is shown in
red and boxplots in black correspond to other methodologies. Table 3 contains a
description and labels of the cases that are shown in Figure 7.
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Figure 7: Validation error for different scenarios for the olive oil data.

Overall, adding extra terms of higher degree than two resulted in a model with
better prediction capabilities. Indeed the results for candidate model “Cubic” were
smaller than the rest of scenarios. Within this candidate model “Cubic”, the result
labelled ‘H’ in the figure was the more consistent in the sense of having smaller
range of the MSE. The strong hierarchy S with bigger weights, labelled ‘SH’ in the
plot, had the smallest errors but also had the second biggest spread in this group.
For the candidate model “Quadratic (full)”, the result were very similar amongst
methods, with the strong hierarchy labelled as ‘SB’ being slightly better. In this
cathegory note that the method FAMILY with label ‘F’ has slightly worse results.
For candidate model “Quadratic (square free)”, the results for five of the models
are very similar, with the case ‘SB’ being a little better with smaller range. Note
that for these two cases of quadratic candidate model, the cases ‘S1’ are precisely
the hierNet analyses by [4]. In the “Quadratic (full)“, the case ‘S1’ is slightly
improved by ‘SB’, while for “Quadratic (square free)” initial model, clearly ‘S1’
is the worst, although not by much. Finally, we note that apart from a main
effects only lasso ‘ML’ which is the second worst of the methods tried, there is
not much difference in each case between lasso and the rest of methodologies. In
other words, adding constraints of the types S, H or W does not impair severely
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the predictive capabilities of the model. The recent methodology RAI searches for
models with higher interactions, and while it has the potential to produce good
models, in the examples we tried it had the biggest variability, and the boxplot
shown was trimmed due to its very large right tail.

5 Discussion

We perceive there is a lack in the literature for a single, comprehensive approach to
polynomial hierarchy that is efficient and compares favorably with existing results.
Our proposal gives direct, intuitive restrictions over the model coefficients so that
the resulting model satisfies hierarchy. Using this idea in a Lasso context also
provides a simple, efficient search over a potentially large set of candidate models.

The proposed methodology requires knowledge of a candidate model M . If
this candidate model is not known, it could be tempting to fit a relatively complex
hierarchical model and let the constrained lasso procedure determine a suitable
model. Theoretically this is possible and uses the dual nature of lasso as estima-
tion and screening procedure. For example, if M is a model of degree two, then our
methodology coincides with that of [4], depending on selected weights. However in
general we would not advocate to start with a complicated model with expensive
parameter estimation and we would rather advocate a standard two stage proce-
dure. An initial screening stage would firstly reduce the number of factors and
once a reduced set of factors is available, then a more complex model could be
tried.

A line of future work is concerned with the application and development of
constraints for other statistical models. In concrete, a natural development is to
adapt our constrained methodology for the linear predictor η(x) of a generalized
linear model so that η(x) =

∑
α∈M θαx

α. This could be particularly advanta-
geous as the linear predictor would have more flexibility to describe different, non
monotonic patterns.

Concerning implementation of our constrained lasso methodology of Section
3.1, work is under progress for efficient computation of the lasso path. An ini-
tial step is to take advantage of the recently developed package quadprogXT, a
development based upon the techniques of the quadprog library [10, 24].

The minimization of the relaxed constrained lasso problem in Section 3.2 is
easily implemented using existing the quadratic programming library quadprog

see [24]. However, a point that needs clearer understanding is the matrix in the
the third summand of (8). This matrix is at the core of the relaxed version of
Lasso and is not a full rank matrix. To overcome this difficulty, a solution was to
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add a multiple of identity to the lower (2, 2) block of that matrix to have instead(
XTX −XTX
−XTX δI +XTX

)
.

This solution has worked well in practice but its stability and accuracy needs
further study.

For both approaches of constrained lasso, R software code based upon quadprog

is in development, currently available from the authors on request.
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Appendix

Proof of Lemma 2

Proof. We note that the sum of absolute values is greater than or equal than the
any of its absolute components, that is

∑
β′∈B(α) |θβ′ | ≥ |θβ| for any β ∈ B(α),

and the notation β′ above is simply to distinguish terms inside the summation.
Hence a consequence of the inequality in Equation (4) is that wα|θα| ≥ |θβ| for all
β ∈ B(α), so that when 0 < wα ≤ 1 we have |θα| ≥ wα|θα| ≥ |θβ|. All the above
holds for coefficients of descendants (multiples) xβ of xα with exponents β ∈ B(α).
As we scan over all constraints of the form (4) in S, we recover all of H.

Proof of Theorem 3

Proof. We first show the implications in the first row involving strong hierarchy
S. To deduce them it is enough to manipulate the inequality (4).

S with wα < 1 implies S with wα = 1. This first implication follows from not-
ing that wα < 1 implies that |θα| > wα|θα| so that the following holds
|θα| > wα|θα| ≥

∑
β∈B(α) |θβ|.

S with wα = 1 implies S with wα = |B(α)|. For this implication, we first use
Lemma 2 to retrieve a collection of inequalities of the type |θα| ≥ |θβ| for
β ∈ A(β), that is, constraints from the set H. We then add the terms in
each side of the inequality to retrieve the desired implication.

S with wα = |B(α)| implies S with wα > |B(α)|. The third and last implica-
tion follows from noting that if (4) holds, then wα|θα| > |B(α)||θα| ≥∑

β∈B(α) |θβ| also holds, where wα > |B(α)|.

We now go through the implications in the second row that involve weak hierarchy
W . The implications are deduced by manipulating the inequality (5).

W with wβ > |A(β)| implies W with wβ = |A(β)|. This first implication fol-
lows from the fact that if wβ > |A(β)|, then wβ|θβ| > |A(β)||θβ| so that∑

α∈A(β) |θα| ≥ wβ|θβ| > |A(β)||θβ|.

W with wβ = |A(β)| implies W with wβ = 1. This implication is a consecuence
of the fact that as |A(β)| ≥ 1 then the right hand side of inequality obbeys
|A(β)||θβ| ≥ |θβ|.

W with wβ = 1 implies W with wβ < 1. The implication follows from the fact
that if (5) holds for wβ = 1, then we have

∑
α∈A(β) |θα| ≥ |θβ| > wβ|θβ| for

wβ < 1.
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We are only left to show the implications that link sets S and W .

S with wα = 1 implies W with wβ = |A(β)|. We first use Lemma 2 for all con-
straints in S with wα = 1 to retrieve the full collection of constraints H.
Now for every β ∈ M with A(β) 6= ∅, we add each side of inequalities of
the the type |θα| ≥ |θβ| for α ∈ A(β) to retrieve the constraint (4) with
wβ = |A(β)|.

S with wα = |B(α)| implies W with wβ = 1. Consider a term xβ for which we
want to determine weak constraints of the type W with wβ = 1. In the
development that goes below, refer to this exponent as β′. From the set of
constraints S with wα = |B(α)|, consider those constraints that involve xα

for α ∈ A(β′), that is
{
|B(α)||θα| ≥

∑
β∈B(α) |θβ| : α ∈ A(β′)

}
. As A(β′)

is the set of parent terms to xβ then for each constraint, clearly one of the
elements β ∈ B(α) in each sum is precisely the given β′ of interest and we
obtain the following inequality |B(α)||θα| ≥

∑
β∈B(α) |θβ| ≥ |θβ′ |.

In short, we have the collection of inequalities{
|B(α)||θα| ≥ |θβ′ | : α ∈ A(β′)

}
and our task is to show that these inequalities imply the constraint∑

α∈A(β′)

|θα| ≥ |θβ′ |.

The proof is completed by an indirect argument, and we negate the latter
constraint to |θβ′ | >

∑
α∈A(β′) |θα| so that |θβ| > |θα| for α ∈ A(β′). We

immediately verify that this implies the negation of the former inequalities
|θβ| > |B(α)||θα| ≥ |θα| for α ∈ A(β′) which completes the proof.
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