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Abstract 

 

 

Genome-wide association studies (GWAS) have revealed thousands of genetic loci, 

establishing itself as a valuable method for unravelling the complex biology of many 

diseases. As GWAS has grown in size and improved in study design to detect effects, 

identifying real causal signals, disentangling from other highly correlated markers 

associated by linkage disequilibrium (LD) remains challenging. This has severely 

limited GWAS findings and brought the method’s value into question. Although 

thousands of disease susceptibility loci have been reported, causal variants and genes 

at these loci remain elusive. Post-GWAS analysis aims to dissect the heterogeneity of 

variant and gene signals. In recent years, machine learning (ML) models have been 

developed for post-GWAS prioritisation. ML models have ranged from using logistic 

regression to more complex ensemble models such as random forests and gradient 

boosting, as well as deep learning models (i.e., neural networks). When combined with 

functional validation, these methods have shown important translational insights, 

providing a strong evidence-based approach to direct post-GWAS research. However, 

ML approaches are in their infancy across biological applications, and as they continue 

to evolve an evaluation of their robustness for GWAS prioritisation is needed. Here, I 

investigate the landscape of ML across: selected models, input features, bias risk, and 

output model performance, with a focus on building a prioritisation framework that is 

applied to blood pressure GWAS results and tested on re-application to blood lipid 

traits. 
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1 Introduction 

 

In this introductory chapter, I review the scientific literature and outline the key 

concepts that set the foundation for this research project. I give an overview of how 

genetic association studies are investigated in downstream analysis and how for 

complex traits, specifically cardiovascular diseases and blood pressure, these genetic 

associations are prime for machine learning prioritisation. I then provide an overview 

of machine learning concepts and how they have great potential to illuminate patterns 

in complex genetic data. The potential of this then defines how I conclude the chapter 

and lay out my research objectives, with the focus of this thesis being on developing 

a machine learning methodology that can be applied to prioritise genes that are most 

likely influential to cardiovascular diseases. 

 

1.1 Genome-wide Association Studies 

Genome-wide association studies (GWAS) investigate genetic variants across 

genomes, aiming to identify statistically significant variants associated with a disease 

or phenotype (Figure 1.1). Variants, also known as single nucleotide polymorphisms 

(SNPs), are deemed to be associated with a phenotype if they more frequently occur 

in individuals with the phenotype in comparison to a control population – and these 

associations are statistically significant if they reach genome-wide significance. 

However, significant association does not equate to causality alone and SNPs are also 
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confounded by linkage disequilibrium (LD). Linkage disequilibrium is where variants 

at different genomic regions (loci) are frequently inherited together more or less often 

than by random chance. In GWAS, LD creates a crucial obstacle as it clouds the 

causality of SNPs, for example, a SNP may be inherited with a truly causal SNP, 

leading to its statistical significance on association testing, yet it is not causal itself.  

To address this challenge, downstream analysis of associated SNPs is directed by 

functional investigation of the most likely causal variants driving the genetic 

association behind a phenotype, which aims to pinpoint molecular functions and 

pathways of interest for biological and translational investigation. However, the need 

to decipher causality and increase the certainty that a SNP functionally affects a 

disease - so that the truly most likely causal variants are being researched in follow-

up experimentation - has led to the development of several post-GWAS analysis 

methods (fine-mapping, mendelian randomisation, network analysis, and most 

recently machine learning) that are a hot point of interest for determining causality. 

 

For complex diseases, such as cardiovascular diseases (CVD), which affects tens of 

millions globally1, the potential of GWAS to guide the translation of genomic findings 

is promising. CVD traits, such as blood pressure (BP), are one of the most powered 

examples of GWAS with recent studies genotyping over 1 million individuals2. 

However, as GWAS studies have scaled up to discover ever more disease variants2-4 

it has become impossible to perform a functional investigation on all disease-relevant 

loci to confirm real signals. With this being further affected by often high signal-to-

noise ratios from these genes mapping to loci, which casts doubt on each gene’s true 
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causality or effect size - presenting a challenge for developing clear and streamlined 

follow-up investigation post-GWAS.  

 

Figure 1.1 An overview of genome-wide association studies. a Genome-wide 

association studies (GWAS) genotype individuals and analyses their genetic variations 

to detect variants genetically associated with a trait/disease in a population. 

Genotyping methods involve either genotype arrays followed by imputation of single 

nucleotide polymorphisms (SNPs), or whole genome sequencing (WGS), and quality 

control (QC). Statistical association of genotyped SNPs then identifies regions of 

variation that associate with a phenotype with significance across the genome. 

Linkage disequilibrium (LD) is then calculated to identify alleles that frequently occur 

together more often than by chance, identifying causal variants that are not necessarily 

genotyped but are in LD with genotyped SNPs. The genetic variants are then 

functionally characterised, identifying candidates for experimental follow-up 

research. b Most causal variants identified by GWAS are common variants with small 
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effects, intermediate frequency variants with moderate effects, or highly penetrant 

mutations5. 

 

Several GWAS limitations impact post-GWAS analysis. For example, studies have 

variable GWAS reporting - differing from the gold standard approach of 

independently replicating results in another cohort – which creates questionable 

confidence in some discovered loci. Furthermore, as the GWAS sample sizes increase, 

the ability to corroborate results in matching independent cohorts becomes ever more 

challenging. A large number of associated genetic markers contribute to a multiple 

testing problem and call for a balance between stringent p-values to correct for false 

discovery and avoiding overly stringent corrections leading to false negative 

associations. These challenges are compounded by the need to differentiate causal 

variants/genes from other genes associated by LD, confounding the detection of causal 

genes within a locus. The LD then makes it unclear which variants and genes warrant 

further analysis and functional study.  

 

These issues undermine the robustness of GWAS in the current landscape, and 

challenge the validity of downstream analyses and biological hypothesis development, 

critically opposing some of the major motivators for performing GWAS in the first 

place, such as target validation6. Ultimately this highlights the need for bioinformatic 

solutions to improve the signal-to-noise ratio of GWAS results and to triage variants 

and genes that are most likely to be causal.  

 

 



 

 

 

18 

 

1.2 Post-GWAS Analysis Methods 

The definition of causality itself is a challenge. Causality is only truly known on 

experimental validation of a SNP’s functional role in a disease7, however, reaching 

this conclusion when associated variants are amassing in GWAS results is difficult 

and has become exponentially laborious. For example, whilst variants that cause 

monogenic forms of the disease are causal, polygenic presentations, wherein many 

variants or genes can have more subtle contributions to a phenotype to provide 

collective causality, make it hard to isolate individual variant contributions. 

Meanwhile, getting to the point of experimental validation that is needed to understand 

such variants is blocked by previously described obstacles (confounding LD, false-

positive p-values, and lack of result corroboration in independent cohorts). Functional 

characterisation of genes and variants cannot overcome these challenges alone to 

ensure a genetic association has a biological effect on the phenotype. This is a key 

driver for developing post-GWAS analysis methods, which aim to prioritise variants 

and genes that are most likely to be causal – as defined by the strength of supporting 

biological evidence, with each method varying in the use and types of biological data 

that infer causality. Methods that identify genetic associations with high-quality 

biological evidence also provide a clearer biological definition of what might make a 

variant or gene most likely causal for a disease – leading to targeted hypothesis 

generation that can expedite experimental validation. 
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From the most commonplace methods downstream of GWAS (Figure 1.2) fine-

mapping is often the method of choice. Fine-mapping is the use of statistical methods 

combined with orthogonal data (e.g., epigenomic data) to identify the causal variant(s) 

in a locus. Whilst fine-mapping can be a powerful tool due to its in-depth annotation 

of variants - with several methods, such as PolyFun8, CAVIARbf9, fGWAS10, and 

PAINTOR11, developed to take advantage of specific annotations available - it is 

reliant on LD, sample size and effect size. With the strongest association at a locus 

capable of being an artefact due to LD correlation, this casts doubt on using only fine-

mapping to identify causal variants. The doubt is also amplified by fine-mapping 

treating each locus independently, and so the orthogonal information the method uses 

cannot account for biological relatedness between loci.  

Figure 1.2. Common post-GWAS prioritisation methods12. Figure from Olczak et 

al. (2021) provides an outline of post-GWAS (genome-wide association study) 

analysis methods and their advantages/disadvantages. Each method can improve 

varying GWAS insights. For example, fine-mapping and network analysis for 
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identifying candidate disease genes, Mendelian randomization for PRS (polygenic risk 

scores), or machine learning for several applications including improving GxG (gene-

gene) and GxE (gene-environment) interaction detection12.  

 

Another frequently used method is network analysis13, 14, which uses interaction 

networks of associated genes to link them to known disease-causing genes or genes 

associated with similar phenotypes15. This method is particularly useful to identify 

genes playing a role in novel disease pathways, due to potentially unexplored network 

connections and can consider interacting causal variants/genes from multiple loci. 

However, a crucial caveat to network analysis performance is the quality of 

gene/protein connections (which can be based on text-mining or unstandardised 

database curation), where high-quality laboratory-validated data is few and far 

between – especially for non-coding genes. 

 

Mendelian randomisation (MR), is another statistical method that uses genetic variants 

as instrumental variables to infer causality and has also been developed for post-

GWAS prioritisation16. MR tests for causality between its instrumental variables 

(variants) and the exposure of interest (phenotype), with this in the case of GWAS 

aggregating variant estimates and applying a regression framework to understand a 

variant’s impact on a phenotype. This method is advantageous due to its ability to 

control confounders and avoid reverse causation16. However, MR also assumes 

vertical pleiotropy - that the variant affects only the phenotype of interest - and ignores 

the capability of singular SNPs affecting multiple traits at once, which is common in 

variants associated with complex traits17. This disadvantage implies that MR is limited 
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when aiming to account for underlying biological relationships indicated by GWAS 

results. 

 

1.2.1 Machine Learning for Post-GWAS Prioritisation  

One method that has been generating attention across areas of research and has great 

potential in post-GWAS analysis is machine learning (ML). Machine learning 

algorithms build statistical models from training data to make predictions or decisions. 

Machine learning consists of supervised, semi-supervised, unsupervised, and 

reinforcement learning methods (Figure 1.3), with supervised and unsupervised 

learning being the most commonly implemented with GWAS data. Supervised 

learning provides ML algorithms with labelled training data and aims to infer a 

mapping function from the input variables to the output variable - or label for 

classification tasks. This mapping function may then be used to predict the labels of 

new ‘testing’ data. Unsupervised learning, by contrast, has no response variable. 

Instead, the algorithm must attempt to find patterns in the data, such as clusters or 

outliers. 

Figure 1.3. Types of machine learning classification. Machine learning is divided 

into several types (supervised, semi-supervised, unsupervised and reinforcement 
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learning) depending on the training data and problem.  These methods are beginning 

to have an application to genetic data whether for gene/variant prioritisation18, 19, 

prediction functions of non-coding variants20, disease gene subtyping21, or more recent 

approaches for epistasis detection or enhancing text-mining22, 23. 

 

Supervised learning has been applied to better understand GWAS data, from 

predicting variant function to prioritising associated genes, however, the models used 

within this approach have been variable in previous research18-20. The overall 

framework of supervised learning involves algorithmic principles (that vary from 

model to model) being applied to training data. The algorithm will then initialise its 

internal parameters – parameters that are defined by a model’s algorithmic principles 

- and then iterate over that training data, making predictions on each iteration that 

allow the model to update its internal parameters and optimise itself (Figure 1.4). 

However, an important concept in ML that is prevalent in supervised learning is the 

risk of overfitting. This is when a model optimises itself too closely to the training 

data to have a high training performance but cannot then generalise its understanding 

and replicate its high performance on new test data. Techniques exist to combat this 

issue, such as cross-validation (dividing the training data into k folds with some folds 

withheld for testing model performance) and performance metrics focused on 

assessing overfitting (e.g., precision, recall and the F1 score in classification or the 

predicted r2 in regression analysis). However, “some amount of overfitting is 

inevitable, but extreme cases can render a model useless”24. Recent studies applying 

ML to biological problems have also focused on addressing overfitting risk, e.g., by 
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developing bias-auditing25, as it is crucial to ensure robust ML that gives reliable 

biological insights. 

 

Figure 1.4. Step-by-step training of a supervised learning algorithm24. Figure from 

Nicholls et al. (2020). a Labelled training data (e.g., genes labelled as most likely 

causal or least likely causal for blood pressure – BP) and annotations of those genes 

are features input into a machine learning algorithm. A machine learning model 

initialises itself by algorithmic principles that are applied to the training data and its 

features at random. A model’s first iteration can involve assigning feature importance 

at random (importance denoted by the size of the feature image). Based on this the 

model will then classify genes into either affecting BP (red genes) or not affecting BP 

(blue genes). These practice predictions can then be used to calculate loss (an error 

rate) and iterate over the data again by applying the previous iteration’s loss 

calculation to adjust feature importance (b). By using the loss calculations, the model 

can improve its performance with each training iteration. 
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Alongside overfitting, a key aspect of ML for biological applications is the degree to 

which a model’s decision-making is transparent and explainable. Whilst some models 

have an algorithmic design based on interpretability (e.g., explainable boosting 

machines) and some models have a degree of interpretation via their internal 

parameters (e.g., calculated internal feature importance or weightings), most models 

deal in opaque decisions. Explanability tools have been developed that use a model’s 

inputs and its output predictions to interpret the model’s decision-making - such as 

SHAP (SHapley Additive exPlanations) or LIME (Local interpretable model-agnostic 

explanations). Most recently SHAP has gained popularity among ML researchers, due 

to its ability to provide both local and global model understanding alongside its 

efficient application as a package with many visualisation options to view under the 

hood of a model (Figure 1.5). SHAP is based on game theory using Shapley values26. 

Game theory aims to understand the interactions of two or more players (ML features) 

that are involved in a strategy to achieve the desired outcome (model prediction). 

Shapley values are the average expected marginal contribution of one player (one 

feature) after all possible combinations (of features) have been considered. Using these 

values SHAP can calculate overall feature importance and each feature’s influence on 

model-decision making, also doing so for every single data point26.  

 

Overall, SHAP’s ability to give both global and local understanding of predictions 

makes it an ideal tool for interpreting ML applied to biological problems – which is 

necessary to justify a further functional investigation of any biological predictions that 

come from ML. This conclusion is also supported by recent research that has begun 
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to adapt SHAP to biological data, such as PoSHAP (positional SHAP) which modifies 

the explainability tool to consider peptide sequence positions in the ML predictions of 

protein binding27. 

 

Figure 1.5. SHapley Additive exPlanation overview. A machine learning (ML) 

model’s inputs and output predictions are used in a SHAP (SHapley Additive 

exPlanation) surrogate model that then uses Shapley values to calculate feature 

importance per each data point/prediction made by the model. SHAP then allows for 

visualisations giving both a local understanding of individual data points and a global 

understanding of overall feature importance. SHAP plots are colour coded by feature 

values or SHAP values, with both plotted in relation to the other to show how each 

feature influences decision-making for each data point. 

 

Machine learning has had applications built in recent years to enhance GWAS 

performance and downstream interpretation28, 29. When tailored for understanding 
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GWAS data, ML predictions can provide an improved statistical foundation of 

evidence to support or improve GWAS results. For instance, ML in GWAS has been 

applied to identify loci, increase the statistical power of GWAS30, detect epistatic 

interactions31, improve polygenic risk scoring produced from GWAS32, and prioritise 

genes and variants on post-GWAS analysis33. 

 

The development of systematic prioritisation post-GWAS using ML has been 

researched as early as 200734. Since then, several computational methods for 

prioritising GWAS-associated loci have been developed with growing attention on 

ML applications13, 29, 35. Machine learning for prioritising GWAS results has used 

common models (Figure 1.6) such as logistic regression (LR), decision tree (DT) 

classifiers – e.g. gradient boosting machines (GBM) and random forests (RF)36, 37 - 

and support vector machines (SVM)33, and recent advances also including deep 

learning models38, 39. However, unlike other methods, whilst interest in ML applied to 

GWAS data is growing there has been little evaluation between methods, requiring 

further assessment of the reliability of ML for enhancing GWAS results.  



 

 

 

27 

 

Figure 1.6. Commonly used supervised machine learning models24. Figure from 

Nicholls et al. (2020) showing the most common supervised learning approaches, each 

category has had varying algorithms applied to post-GWAS prioritisation24. 

 

1.3 Post-GWAS Prioritisation for Complex Diseases 

The growth of GWAS over the past decade has identified thousands of associated loci, 

in November 2022 the NHGRI-EBI GWAS catalog contained 434,351 variant-trait 

associations from 6,096 publications1. Thousands of variant associations can now be 

found within a single complex disease or trait; such is the case for inflammatory bowel 

diseases (IBD) with 2,020 variant associations, schizophrenia with 4,988 variant 

associations, and lipid measurements with 53,236 variant associations1. Although, it 

 

1 https://www.ebi.ac.uk/gwas/ 
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should be noted that there is a potential for overlap between these large association 

numbers, with multiple reports of variants from various studies. However, complex 

diseases with large GWAS investigations such as these are ideal candidates for ML 

application, as they potentially offer a large number of training samples and need 

methods like ML that can illuminate underlying novel pathways.  

 

Individual GWAS loci have already shown the potential for large-scale prioritisation 

by providing novel biological insights and potential drug targets and drug re-purposing 

opportunities40. Evangelou et al. (2018) discussed 7 loci from their blood pressure 

(BP) GWAS that had genes with re-purposing potential, and the idea of modulating 

BP by re-purposing drugs has been discussed in other literature41 but not further 

investigated. For example, Evangelou et al. (2018) found associations in the SLC5A1 

gene, which is also a drug target of a type 2 diabetes drug, canagliflozin, highlighting 

an opportunity for drug re-purposing to treat hypertension3. Researching re-purposing 

opportunities from GWAS associations such as this is ideal for complex conditions 

such as hypertension, where effective treatment frequently requires prescribing 

multiple antihypertensive drugs42. However, drug re-purposing for BP from genetic 

associations has had little research, with more generally only 12 of the associated 

genes by Evangelou et al. (2018) in BP clinical trials and none focusing on re-

purposing43.  

 

Similarly, GWAS for lipid traits have amassed results with ample opportunity for 

analysis. Most recently Ramdas et al. (2021) developed a multi-functional analysis for 

a large multi-ancestry GWAS of five blood lipid traits - high-density lipoprotein 
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(HDL), non-high-density lipoprotein (nonHDL) low-density lipoprotein (LDL), total 

cholesterol (TC), and triglycerides (TG). This work incorporated information from 

several biological layers (gene expression, chromatin structure, and cell and tissue 

enrichment) alongside a variant prioritisation framework to not only identify the most 

likely causal disease variants and genes but use supporting information to suggest their 

underlying biological mechanisms at play in lipid metabolism44. For example,  

Ramdas et al. (2021) identified RRBP1 (ribosomal binding protein 1) as having 

evidence at each layer of their functional analysis that validated the gene’s potential 

role in lipid metabolism – from expression quantitative trait loci (eQTL) colocalisation 

in the liver to its variant having an open chromatin structure that interacts with the 

RRBP1 promoter in adipose tissue.  These results then converged with another study 

finding that RRBP1 affects lipid homeostasis in mice, emphasizing how integrated 

evidence can streamline post-GWAS analysis. Another study by Kanoni et al. (2021) 

used the same multi-ancestry meta-analysis and combined established gene 

prioritisation methods: Polygenic Priority Score (PoPs), Data-driven Expression 

Prioritized Integration for Complex Traits (DEPICT), closest gene to the sentinel SNP, 

genes with coding variants in credible sets, eQTL localisation, and transcriptome-wide 

association study (TWAS). By combining prioritisation methods Kanoni et al. (2021) 

add another further integration of information to inform downstream analysis and 

increase the confidence in their output gene ranking. In comparison Ramdas et al. 

(2021) also prioritised RRBP1 with high confidence. However, these results then 

require an in-depth functional study of such highly prioritised genes to truly validate 

their disease impact and push forward genetic research with translational benefits. 
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Understanding the functional impact of associated variants for complex traits is a 

challenge, with most studies also varying in their downstream approach post-GWAS, 

adding another layer of difficulty to assess best practices. However, the downstream 

functional analysis is subsumed by a greater problem in that differentiating variants 

and inferring causality is very challenging without further laboratory investigation. 

For example, BP associations have been found in several SMAD family genes and the 

TGFβ gene, which collectively participate in the TGFβ pathway, leading to the 

suggestion that these may affect sodium transport in the kidney and ventricular 

remodelling3. However, multiple genes impacting the same pathway raise the question 

of which gene should be functionally investigated first. Usually, the evidence is not 

strong enough to warrant laboratory investigation of all the associated genes in a 

particular pathway. The follow-up laboratory studies to date have developed without 

a standardised method for selecting causal genes consequently, and they are likely to 

be susceptible to personal or “cherry picking” bias. These issues highlight the need for 

a pipeline that methodically triages variants and genes based on their likelihood of 

affecting a trait. Only then will there be consistency in the follow-up of genetic results 

using functional analysis with minimised risk of investigating false positives or low-

impact genes. The standardised in silico identification of the most likely causal genes 

at a genome-wide scale may be an opportunity to gain higher-level systems insights 

into complex trait biology. This in turn may help to fine-tune ML prioritisation 

algorithms, as seen with research using ML variant prioritisation as a feature fed into 

gene prioritisation46. 
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1.4 Post-GWAS Prioritisation for Blood Pressure 

Hypertension serves as a common denominating risk factor for complex conditions 

such as coronary heart disease and stroke. High BP with unknown aetiology (essential 

hypertension) dominates 90-95% of high BP cases and involves multiple organ 

systems contributing to the phenotype (Figure 1.7), yet 8-12% of hypertensive 

individuals show resistance to current treatments47. This need for improved 

understanding and treatment presents an opportunity for GWAS, which is unlocking 

novel insights into the genomic regions associated with BP at an unprecedented speed. 

However, the largely unexplored BP GWAS associations have untapped potential for 

functional insights via an optimised post-GWAS analysis approach. 
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Figure 1.7. The biology of blood pressure.  Regulation of blood pressure (BP) 

involves the interactions of several organ systems, which are predominantly 

cardiovascular, renal and neurological. These systems each have drug targets to 

regulate BP, however, the genetic component of BP is poorly understood in 

comparison and has the potential to develop more targeted treatments. 

 

At present, the GWAS catalog reports 7,982 BP associations (with some possibly 

overlapping and not all being independent associations)48. BP is measured by three 

quantitative traits in GWAS - systolic BP (SBP), diastolic BP (DBP), and pulse 

pressure (PP). This growing number of associations holds great potential for biological 

insights and has already begun to bear fruit. For example, most recently a rare variant 

BP-GWAS in over 1.3 million individuals identified a missense variant (rs45573936) 
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in SLC29A1, affecting the function of equilibrative nucleoside transporter (ENT1), for 

which inhibitors have anti-cancer, cardio- and neuro-protective properties2. These 

findings suggest a potential for investigating ENT1 inhibitors for BP regulation. 

However, due to the signal-to-noise ratio from genes mapping to loci derived from 

variants in high LD, only a few genes have been identified as causal BP genes, 

providing an incomplete picture of the genetic role in BP that is needed to better treat 

hypertension.  

 

The most commonplace approaches to post-GWAS analysis (such as fine-mapping or 

network analysis) provide an ability to prioritise associated genes and variants and 

guide functional research. However, their application to highly polygenic traits can be 

challenged by the assumption that most fine-mapping methods assume only one 

variant contributes to the trait per loci, or treat loci as independent, and can be affected 

by factors like effect size and LD. For traits such as BP surpassing these disadvantages 

is crucial, as finding novel drug targets and BP pathways requires nuanced 

investigation of associations across organ systems and an understanding of their 

underlying gene interactions. ML offers an alternative approach that has already begun 

to show promise for advancing the current understanding of BP. Mishra Manoj et al. 

(2020) provide a proof-of-concept for the use of ML and highlight its potential as a 

post-GWAS analysis tool for complex traits. They applied a deep learning model to 

gain an understanding of the functionality of non-coding BP SNPs – finding a higher 

than expected frequency acting in CTCF-binding regions and predicting that 

rs9337951 affected the secondary structure of mRNA from JCAD20. They followed 

this ML result with experiments transfecting the rs9337951 allele in kidney cell lines, 
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which showed decreased JCAD expression in cells with the allele, validating their 

model’s prediction20.   

 

An increasing number of studies are investigating how ML can be tailored to prioritise 

genetic associations across diseases19, 33, but the ML pipelines for GWAS prioritisation 

are mainly non-benchmarked and case-specific applications49, 50. In this thesis, I 

investigate the application of ML for post-GWAS analysis. I aim to benchmark an 

optimised approach to BP GWAS, based on testing ML approaches (multiclass 

classification and regression analysis) and ML models (tree-based ensemble models, 

generalised linear models, and deep learning). With the further objective of creating a 

ML framework that is re-applicable to other phenotypes to prioritise genes most likely 

influencing cardiovascular traits. Additionally, whilst I focus on gene-level 

prioritisation, I also aim to investigate variant-level prioritisation. Overall exploring 

how ML can aid in reaching the endgame for GWAS by developing an evidence based 

post-GWAS analysis approach.  
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2 Exploratory Analysis of Blood Pressure GWAS Data 

2.1 Introduction 

To investigate how ML can be applied to the findings of BP GWAS, careful data 

curation and feature quality control are needed to achieve the best possible 

performance. In this chapter, I explore the integration of a range of multi-omic 

databases and their potential as features to be used in ML, alongside the curation of a 

subset of training genes from an individual GWAS. This exploratory data analysis 

provides an overview of the training data that is then used in chapters 3 and 4. The 

data is curated for ML to prioritise genes that are most likely to be causal in BP traits, 

with causal genes being defined as those that are likely to contribute to BP - as 

recognised by ML outputs that are trained on curated genes with known BP roles. 

 

2.1.1 Biological Annotations 

GWAS associations are typically annotated to a wide range of biological annotations 

from growing multi-omic databases, which contain data that can be applied to ML. 

Biological features range from eQTL (expression quantitative trait loci), RNA, 

epigenetic, and protein data to describe a variant or gene's functionality. The growing 

integration of related biological features suggests they will provide a clearer insight 

for models to be able to pinpoint the most likely disease-causing genes in a locus51, 52. 

In the past decade, this integration has been built upon by databases such as the 

Genotype-Tissue Expression (GTEx) project53. GTEx collects genetic variation data, 

with several annotations such as transcripts per million (TPM) - provided at the gene-

level as a median expression measure - for genes across 53 human tissues and has been 
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used in data for GWAS prioritisation models19, 33. Well-curated databases such as 

GTEx benefit ML as they offer a point of direct comparison between studies taken 

from the same resource, and the range of tissue types available also adds to the ability 

of models to identify genetic roles in tissues that are not a known site of action for a 

phenotype of interest. GTEx is also consistently updated and as it continues to grow, 

it will provide a standardised source of expression data to optimise how models use 

gene expression in their predictions. 

 

The use of other biological features, e.g., RNA and epigenomic features, has also 

grown in recent years. These features may provide further insights into associated loci 

located in non-coding regions. For example, Mishra Manoj et al. (2020) used deep 

learning to predict functional annotations of BP-associated SNPs, using several 

features: CpG islands, CTFC binding sites and conservation, enhancer sites, regulatory 

element activity, microRNAs, mRNA splicing sites, and lncRNAs among others. 

From collecting these datatypes, the researchers gained an understanding of the SNP's 

relationships to each feature in turn offering insight into the binding of transcriptional 

factors, enhancer function, chromatin conformation, mRNA splicing, or the function 

or expression of regulatory RNA20. These researchers found from their model that BP-

associated SNPs were more likely to be located in CTCF-binding regions and that the 

SNPs were more likely to affect CTFC binding20. Such results show how ML 

combined with optimal feature collection can be used to illuminate the functions of 

non-coding SNPs. As understanding of the non-coding genome improves, this type of 

information can fit into a prioritisation pipeline to streamline GWAS results in non-

coding regions. 
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There are also several underused features in genetic prioritisation such as gene 

essentiality scores, loss-of-function (LoF), and haploinsufficiency measures. Gene 

essentiality measures aim to capture a gene's importance to reproductive success, 

creating metrics that impact evolutionary and systems biology that can aid in drug 

development by identifying genes less likely to cause drug resistance54. However, to 

the best of our knowledge, only the Mantis-ml model by Vitsios et al. (2020) uses gene 

essentiality, only looking at this datatype in mice. This highlights, that whilst many 

emerging biological datatypes are becoming commonly used in ML, there is still room 

for improvement. The lack of gene essentiality features is also likely in part due to 

fewer databases with small-scale analysis, and most databases only offering 

measurements for protein-coding genes. Jia et al. (2020) recently developed a 

subcellular diversity index (SDI) to quantify gene essentiality, which focused on 

protein localisation to understand gene essentiality via Gene Ontology (GO) terms55. 

Beyond developing the SDI score they also used that measure to calculate a drug 

interaction probability per gene55, which could potentially be used to develop clinical 

insights from ML prioritisation. However, this SDI score is limited to their annotated 

genes that are mostly protein-coding. 

 

Loss-of-function mutations are also crucial to understand as they illuminate molecular 

functions directly impacted by the mutated genes, holding great potential for new drug 

targets56. When focusing on LoF measures, metrics often provide variant-level 

scores57. However, a probability of loss-of-function (pLI) score was developed by Lek 

et al. (2016) that calculated the measure for protein-coding genes in humans using 
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exomes from the Exome Aggregation Consortium (ExAC). Lek et al. (2016) found 

their pLI metric outperformed other measures58. However, it should be noted that a 

high probability or predicted measure of loss-of-function does not guarantee the 

variant is lethal and this needs to be considered when analysing how a ML model 

interprets LoF scores. Recent research has analysed the human LoF in exomes with 

supporting whole-genome information to gain a better understanding of LoF variants 

in the context of the whole-genome56. This work has also been followed by research 

focusing on LoF impacts on untranslated regions of protein-coding genes59, providing 

novel insight into how LoF variants may impact the regulation of protein-coding genes 

to alter their function. Such work provides a roadmap for future human knockout 

investigation56 that is beneficial to population studies dedicated to understanding LoF 

variants (such as East London Genes & Health, which focuses on British Bangladeshi 

and British Pakistani people in east London60) and the identification of new drug 

targets. 

 

Another example that investigated both human and mouse LoF is by Cacheiro et al. 

(2020) who developed a comprehensive gene essentiality measure - Full Spectrum of 

Intolerance to Loss-of-function61  - that has subcategories depending on the organism 

and cellular viabilities (based on mouse phenotyping screens and human cell lines). 

This measure provides greater opportunities for ML with both human and mouse data; 

however, the analysis was only for 4,000 genes requiring further investigation across 

the genome. As studies such as these increase in scale, gene essentiality is likely to 

become more frequently used in ML and may offer insight into how essential genes 
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that do not tolerate loss-of-function interact with other biological characteristics to 

affect complex traits.  

 

Haploinsufficiency scores (a measure of gene function when there is only one viable 

gene copy) have had little to no use as a feature in ML. This may be due to their 

previously limited curation that relied on protein-protein interactions (PPI) 

networks62. Shihab et al. (2017) developed HIPred to measure haploinsufficiency by 

ML, aiming to score both well-studied and lesser-studied genes with no bias towards 

those in PPI networks63. They benchmarked HIPred against other haploinsufficiency 

measures (RVIS,  EvoTol, GHIS, HIS and IS) finding an improved performance on 

several human and mouse model datasets, and that HIPred outperformed methods 

incorporating PPI data when scoring less-studied genes63. These results suggest scores 

provided by methods such as HIPred can enable more comprehensive features that can 

aid models prioritising genes across the whole genome. 

 

2.1.2 Pathogenic Features 

Alongside general biological characterisation, disease-specific data is gradually 

increasing. Vitsios et al. (2020) for example prioritised chronic kidney disease genes, 

using annotations from the Chronic Kidney Disease database among their features to 

improve stratification. This implies the potential of future models to take advantage 

of similar disease databases, with databases such as DisGeNET64 or phenotype-

specific resources (e.g. AutismKB 65 or CardioGenBase66) currently being untapped 

for ML prioritisation in published work beyond Mantis-ml33. There are also text-
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mining tools that will provide data on gene significance in publications related to a 

specific disease. However, this is subject to bias within the text-mining, depending on 

the methods used and the reliability of the source material being text-mined. A 

stronger phenotypic measure, however, is from curating gene-drug interactions 

directly, which can be curated from databases such as the Drug Gene Interaction 

Database and the British National Formulary – although, this requires time and effort 

with clinical validation to ensure correct drug interactions are being recorded. Non-

public databases such as Ingenuity Pathway Analysis provide disease-specific data 

(such as molecule and pathway associations to a disease) which is stringently curated 

and could provide powerful insight for a model, but the lack of accessibility to such 

databases then creates a re-usability problem. There are also public disease-specific 

prioritisation tools that provide variant-level information that can be abstracted to the 

gene-level (e.g. Exomiser, which prioritises disease-causing variants using clinical 

and animal model data, offering a disease-specific gene score with curation67). 

Furthermore, the GWAS catalog provides publicly available disease-specific 

information (such as p-values for phenotypic associations), however, this returns to 

the caveats of GWAS with potential false-positive risk in collected data. 

 

2.1.3 Variant-level Annotations 

Variant annotations are also used for prioritisation (e.g., algorithmic scores such as 

Eigen, CADD, DANN, GWAVA, REVEL, DeepSea). These scorings predict the 

pathogenicity of variants based on their expected functional consequences and have 

been used as ML features in variant prioritisation46. Such measures are also supported 

by variant annotation databases that are improving data quality. For instance, 
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ENCODE which has investigated ~98 % of the non-coding genome68, or the Exome 

Aggregation Consortium (ExAC) which has analysed 125,748 exomes and 15,708 

whole genomes in diverse populations69. Databases such as these create a wealth of 

data from which offshoot tools are also able to provide more potential features (e.g. 

HaploReg which identifies SNPs of epigenetic interest from ENCODE data70). This 

presents a lot of descriptive features for variant prioritisation but also suggests these 

scores could be useful when collapsed at the gene-level. However, collapsing variant 

information has been performed by varying methods with no standardised approach. 

For example, Kolosov et al. (2021) developed a disease-agnostic gene prioritisation 

method (GPrior) and they used variant annotations (functional annotations and GERP 

pathogenic scores). To use these features, they took both mean and median scores per 

gene, selecting either summary measure depending on the feature – e.g., for GTEx 

tissues median is preferred due to potential data skewing of gene expression. In 

comparison Khan et al. (2018) do not define how they condense variant annotations 

to their genes for prioritisation, however, GPrior provides a standardised procedure 

that can add reliability to future work. Furthermore, collated scores are being 

developed, such as seen with the GenePy tool which amalgamates 16 pathogenic 

variant scores for one gene-level score71, which could be re-purposed as a ML feature. 

 

2.1.4 Feature Importance and Feature Selection 

Beyond data collection, studies also need to consider feature importance and feature 

selection to gain an understanding of model decision-making – ensuring that the 

features provide relevant information and preferably meet i.i.d (independent and 

identically distributed) assumptions. This is in part due to an encompassing problem 
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for all of ML of having many features and few samples (the “curse of dimensionality”) 

and the need to reduce features to increase computational efficiency. This is often a 

part of why researchers choose L1 regularised logistic regression, which automatically 

performs feature selection. Several prioritisation studies have used logistic regression, 

such as Isakov et al. (2017) using the elastic net, who found positive feature 

coefficients (predicting causal genes) were highest for immune and inflammatory 

response features from GO. Gettler et al. (2019) also used logistic regression – as part 

of their gene prioritisation regression model (GPRM) - to prioritise genes for Crohn's 

disease. While Gettler et al. (2019) do not discuss the impact of feature importance, 

they note that GO enrichment analysis showed immune and inflammatory genes were 

significantly enriched. This enrichment is to be expected from an autoimmune disease, 

however, it also suggests validation for the feature importance found by Isakov et al. 

(2017). Maciukiewicz et al. (2018) applied L1 logistic regression to identify 

significant features and followed up with SVM for predicting causal variants for 

duloxetine response in major depressive disorder. They found a non-coding RNA 

annotation had the largest positive coefficient. However, unlike the study of IBDs50, 

Maciukiewicz et al. (2018) is the first prioritisation study to focus on their drug 

response phenotype, requiring further work to validate feature importance and to 

suggest how these important annotations may fit into the biological understanding of 

GWAS results.  

 

Additionally, besides using a model’s internal feature weightings, several other 

methods can provide feature importance. Permutation is also able to provide feature 

importance, doing so for any model by shuffling feature values and viewing the model 
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error rate. Vitsios et al. (2020) use permutation via the boruta algorithm, which creates 

synthetic features from a random permutation to weigh the importance of original 

features and remove any unimportant annotations. However, permutation has been 

noted as disadvantageous for dealing with correlated features73. There are also 

explainability tools that give feature importance that can be used for selection, such as 

SHAP. Using SHAP alone for feature selection, however, has a risk of selection being 

influenced by the model that the SHAP’s inputs came from (incorporating the model's 

bias into feature selection). However, SHAP has been combined with the boruta 

algorithm for selection (in a tool named BorutaShap), creating an optimised feature 

selection method where SHAP feature importance is considered in combination with 

testing randomised features74.  

 

2.1.5 Bias in Biological Characterisation 

Bias within features and their selection, and throughout a ML pipeline, is also a crucial 

area that needs exploration relating to GWAS prioritisation. Due to the nature of 

biological experiments, their collected features are highly likely to contain artefacts or 

experimental noise that needs to be factored into ML. Also, a lot of databases develop 

annotations from a restricted number of cell lines (e.g. ENCODE75) or predominantly 

male model organisms, and specifically for GWAS, the majority of individuals 

genotyped are white Europeans76. These examples highlight just some of the biases in 

biomedical data that will be amplified on ML and risk harm further down the pipeline 

as false-negative or less impactful genes may be prioritised. Database curators are 

starting to account for biased data. In 2020 GTEx published sex-biased data, 

identifying “that 37% of genes in at least one of the 44 tissues studied exhibit a tissue-
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specific, sex-biased gene expression”77. For ML applications, this publication offers 

one example of bias that can be tracked and audited on output prioritisation, as several 

prioritisation methods use GTEx as a source for features19, 33.  

 

Some elements of feature bias, such as noisy features can be initially addressed with 

data cleaning (e.g., removing features that are heavily missing values for most 

genes/variants or removing correlating features with redundant information). 

However, the exact protocol for data cleaning is often case-specific, requiring a user 

to set thresholds (e.g., the percentage of missingness before a feature is removed, or a 

correlation threshold to remove highly correlating features) and risking either 

including bias or a loss of useful information. In the case of correlation, Guyon et al. 

(2003) note that if features are not perfectly correlating they may provide non-

redundant information that a model can use, suggesting only extremely highly 

correlating features should not be removed. On the other hand Darst et al. (2018) show 

correlating features providing redundant information can be particularly harmful to 

certain models, requiring feature pre-processing that is model-dependent. Random 

forests for example are affected by correlation as correlation can mask the interactions 

of other features79. In contrast, models that assume feature independence, such as 

Naïve Bayes, can use correlated features with less risk80. Overall, this highlights that 

methods for cleaning correlated features are case-dependent and will likely 

incorporate biasing features if one method is used for several models without care. 

Another risk with data cleaning is the degree of missingness allowed in the data. 

Vitsios et al. (2020) set a 25% missingness threshold before removing features33. This 

enables the model to predominantly learn from real-world data. However, for several 
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biological features missingness is prevalent, e.g., many features account for only 

protein-coding genes and so non-coding features have missing data that cannot be 

given to an ML model for reliable prediction. Vitsios et al. (2020) address this by 

prioritising only the protein-coding exome. Overall, the risk of biased features requires 

investigation in any ML pipeline, with cleaning methods tailored to the specific 

problem, and needs to be developed with standardised practices for use cases of ML 

in biology.  

 

How biological characteristics interact with one another is also a key bias point that is 

regularly unaddressed in ML studies. One example of this is gene length, which has 

been used as a standalone input feature in models33, or as a factor in calculating new 

biological features (e.g., DNA scores such as GenePy71). Gene length is known to 

create artefact correlation where longer genes have more opportunities for 

measurement signals due to their increased length81. It has been established for 

techniques such as RNA-sequencing that adjusting for gene length is necessary to 

avoid bias53, yet this is unexplored in ML and how model decision-making may be 

impacted. Lopes et al. (2021) investigated the impacts of gene length on gene function, 

finding gene size correlates with several traits (transcript length, intron count, protein 

size, the type of tissue the gene is likely to be expressed in, natural selection 

suppression, gene co-expression, and PPIs). Each of these traits has been used in ML 

models prioritising genes19, 33, however, the relationship between such features and 

gene length is not always accounted for. 
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Studies that do investigate gene length relationships, and whether to use gene length 

as a feature or in creating other features, also vary in their methods. The development 

of HIPred measurements accounted for gene length bias, following a method laid out 

by previous work which identified other haploinsufficiency scores, namely RVIS, as 

biased by gene length62. This method involved comparing HIPred analysis with an 

equal number of random genes based on matched coding sequence length62. Vitsios et 

al. (2020) use gene length as an input feature, regulating it by prioritising protein-

coding genes and taking the median length of exomes per gene. This approach reduces 

bias and also by having gene length as a feature this enables the model to identify the 

relationship gene length may have with other features, with models being able to 

identify correlating features and reduce their weight in prediction. Clark et al. (2007) 

accounted for gene length bias when investigating patterns of SNPs in Arabidopsis 

thaliana83. They found no significant relationship between gene size and observed 

variation patterns. However, this study was conducted in 2007, when SNP research 

was in its infancy, suggesting the relationship between gene length and SNPs would 

likely be different on re-analysis. The inclusion of gene length correction in studies as 

early as Clark et al. (2007) do however provide a precedent for gene length correction 

in post-GWAS analysis as a standard practice that will allow for better interpretation 

of prioritisation results. 

 

Gene length also needs to be considered not only for features but in the curation of 

training genes. This is particularly true for studies which develop gold and negative 

standard genes using biological information influenced by gene length, such as 

OpenTargets using PPIs. Gene length has a relationship with PPIs which has been 
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shown by Lopes et al. (2021) who found shorter genes more frequently had zero 

recorded PPIs. Meanwhile, OpenTargets identified PPIs, using them as a sign of gold 

standard positive or negative genes depending on if a direct PPI with a disease-causing 

gene was present, presenting an opportunity for bias with smaller genes being more 

likely to be labelled as negative. However, whilst Mountjoy et al. (2020) publicly 

provide OpenTargets gold standard positives (with the smallest gene being OR10G3 

at 941 base pairs and the largest gene being RBFOX1 at 1,694,245 base pairs, and all 

genes being protein-coding with a mean size of 85,65 base pairs) they did not publish 

their list of their gold standard negatives for comparison. Additionally, Lopes et al. 

(2021) note short genes may become more refined in their definitions in the future 

(e.g., some short genes may be due to annotation errors), showing it is important to 

repeatedly consider the impacts of biological characteristics, such as gene length, as 

data quality increases. 

 

Protein-protein interactions themselves are another biological factor that needs to be 

regulated. Machine learning studies using PPIs vary in their criteria for what 

constitutes a trustworthy interaction. For example, OpenTargets counted PPIs with a 

confidence >0.7 in the STRING database84. Setting high confidence is a double-edged 

sword as it allows assurance in your interactions, but true interactions may be missed 

if they were measured at lower confidence – risking training genes that are false 

positives/negatives. Mountjoy et al. (2020) note that they removed negatively labelled 

genes from their training data if they had a >0.7 confidence PPI with a positive labelled 

gene, with this removing 229 out of a total of 9,171 negatively labelled genes84. This 

was, alongside genes not being within 500kb of loci, the only defining criteria for 
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negatively labelled genes, creating a great risk of bias in part due to the large class 

imbalance versus 445 positive genes, but also due to the nature of STRINGdb’s protein 

data. STRINGdb offers several interaction measures (co-expression, gene fusion, gene 

neighbourhood, text-mining, experimental data, and pathway database knowledge) 

which it gives in a combined default score85. However, the inclusion of several of these 

datatypes risks false positive/negative interactions, especially for text-mining-based 

interactions collected from PubMed abstracts85. A possible way to minimise bias by 

using PPIs for data labelling, or also for its use as a feature in other studies, would be 

to collect interactions using the least biased measures available – e.g., using only the 

experimentally recorded interactions – or implementing bias-reducing methods 

tailored to protein interaction data as they develop86. 

 

An optimal ML model hinges on data size and quality for reliability and performance, 

but for genomic applications, extra considerations are needed to avoid any biological 

biases impacting model learning. In this chapter, I focus on feature curation and 

exploratory data analysis of BP GWAS data to curate bespoke training data for post-

BP GWAS prioritisation using ML. 

 

2.2 Methods 

2.2.1 GWAS Description 

The BP GWAS analysed in this research project was performed by Evangelou et al. 

(2018) for three BP traits (SBP, DBP and PP) in individuals of European ancestry. 

They used cohort data from the UKBiobank (n=458,577), International Consortium 
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for Blood Pressure (ICBP) (n=299,024), Million Veteran Program (MVP) 

(n=220,520) and the Estonian Genome Center, University of Tartu (EGCUT 

(n=28,742)). This study used the UKBiobank and ICBP data (with a combined n of 

757,601 used in meta-analysis) for discovery. In replication, they had a one-stage 

analysis (using combined UKBiobank and ICBP data) and a two-stage analysis using 

the MVP and EGCUT data (in total providing a combined n of 1,006,863 in meta-

analysis). For the UKBiobank GWAS, the data underwent imputation from the 

Haplotype Reference Consortium (HRC) panel followed by an additive genetic model 

for all three BP traits. For the ICBP GWAS, the SNPs were imputed from the 1000 

Genomes project or HRC panel and quality control previously reported in 72 

combined cohorts was used. Post-quality control and summary effect sizes were 

calculated for ~7 million SNPs. By identifying genome-wide significance at p-values 

< 5x10-8 this analysis found 535 novel BP loci, confirmed 92 previously reported loci 

and found support for all 274 BP loci previously published before this study. 

 

2.2.2 Data Collection 

In total 20 databases were downloaded, providing 114 features that entered data pre-

processing (Appendix A Table 1). Overall, these databases aimed to comprehensively 

describe the genes across various categories, such as gene expression, epigenetics, 

genetic functionality, pathogenicity, gene essentiality, and phenotypic measures 

specific to BP. 

 

The GWAS summary statistics for three BP phenotypes (SBP, DBP and PP) were 

collected to be used as feature input47. To collect gene-level data bedtools (v2.28.0) 
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was used to map variants to the hg19/GRCh37 reference genome from Ensembl 

(release 92, Homo sapiens.GRCh37.87). A gene was assigned to a variant if the variant 

was within a 5kb window distance from the start and end of transcription of the gene. 

All variants in the GWAS (n=7 million variants) were annotated to genes within 5kb. 

These genes were then divided into two groups: 

1. BP-genes: collated from the genes annotated to the variants in high LD (r2> 

0.8) with a lead BP-associated variant (from the 901 reported loci by 

Evangelou et al. (2018)) and a curated list of previously reported loci in other 

studies (including various ancestries, rare variants and gene-

environment/lifestyle interaction GWAS (n=2,004))2, 4, 87-89. 

2. Non-BP genes: not in LD, p-value >0.15, not within 500kb +/- loci and no 

direct or secondary protein-protein interactions with BP genes. 

The BP-gene and non-BP gene groups underwent annotation from all collected 

databases, with their grouping divisions used at a later stage to curate the training data 

(further details in section 2.2.3). 

 

Variant annotation was performed using ANNOVAR (2018Apr16)90 – providing 10 

features detailing pathogenic scorings and epigenetic information. Variant annotations 

from other databases (UCSC and DeepSEA) were also collected, alongside the 

variant-level GWAS summary statistics (beta values for DBP, SBP and PP). These 

variant annotations were then collapsed to the gene-level, grouping variant annotations 

by their genes and selecting the most significant variant scores per each gene for each 

feature. For the beta values of each variant, the maximum absolute value between all 
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three BP phenotypes' beta values (SBP, DBP and PP) was selected while also retaining 

a positive or negative direction of effect for model interpretation, creating one final 

and singular beta feature. This beta value pre-processing step was enabled by 

Evangelou et al. (2018) using three sets of GWAS summary statistics, one for each of 

the three BP traits assessed by their study. 

 

All other databases provided gene-level annotations that could be directly merged into 

the main dataset. Whilst Exomiser usually provides a variant-level prioritisation, gene-

level scores were curated by experts – identifying Exomiser scores for genes under 

increased blood pressure and hypertension HPO terms that were divided into three 

features (human, mouse and fish Exomiser scores). 

 

2.2.3 Training Data 

Genes used in the training data were assigned into one of four categories for label-

based classification from most to least likely to impact BP. The previously identified 

BP-genes group had three gene groupings subset from it with each gene group 

assigned a label: 

1) Genes were labelled as most likely BP genes if they were known to interact 

with and be involved in BP mechanisms, having BP-regulatory roles, curated 

by an expert in the field (Appendix A Table 4).  

2) Genes were assigned a probable label if they were evaluated by a text-mining 

tool (Génie91) as having an adjusted p-value <0.01 in relation to its significance 
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in BP in publications; or genes were also labelled as probable if there were 

known to interact with drugs that had BP side-effects as identified by an expert. 

3) Genes were labelled as possible BP genes if they had annotation in Ingenuity 

Pathway Analysis (IPA) relating them to BP from experimental analysis within 

the IPA database.  

Any of the BP-genes that did not meet any of the criteria to enter the training data in 

these three categories were reserved as genes to be predicted by the trained model 

(n=1,804). 

 

2.2.3.1 Least Likely Blood Pressure Gene Curation 

From the non-BP genes group, the fourth and final group of training genes were 

labelled as least likely to affect BP. These genes underwent several curation steps to 

be identified:  

1) The genes had no variants with a p-value <0.15 across the gene in the whole 

BP GWAS consisting of all 7 million variants (with multiple p-value 

thresholds tested on ML performance to select this 0.15 threshold, detailed 

further in section 2.2.3.2). 

2) The total gene length was outside a +/-500kb window of any BP loci (across 

several collated BP GWAS with >1000 loci2, 4, 87-89). 

3) The genes had no evidence of LD (r2 < 0.1) with BP SNPs (SNPs defined as 

having r2 > 0.8 LD with a sentinel SNP across the collated BP GWAS2, 4, 87-

89). 
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4) The genes had no direct or secondary PPIs with BP-genes across collated BP 

GWAS2, 4, 87-89 (3,786 genes with variants in high LD, r2> 0.8, across studies). 

The PPIs were counted from STRINGdb, using only PPIs measured from 

experimental data only with a >0.15 confidence threshold (multiple 

thresholds tested alongside the p-value threshold in step 1) to filter genes that 

give the best ML performance, detailed further in section 2.2.3.2.  

 

After PPI filtering this resulted in 93 genes that passed all five steps and ML testing 

to be assigned as genes least likely to affect BP.  

 

These four groupings provided 377 training genes in total (51 genes labelled most 

likely, 149 genes labelled probable, 84 genes labelled possible, and 93 genes labelled 

least likely to impact BP) (Appendix A Tables 5 and 6). The training data categories 

were further investigated by the possible gene group being either kept in the training 

data to give a 4-label dataset (n=377) or removed from the training data creating a 3-

label training dataset (n=293). The 3-label gene group tested model performance with 

the IPA annotation being included as a feature when it is not being used as labelling 

criteria to identify possible training BP genes. 

 

2.2.3.2 Machine Learning to Test Training Gene Curation 

As mentioned in the least likely BP gene curation, ML tests were run to decide on the 

best gene size for this least likely gene group to be used in the training data. The ML 

application of these test runs involved testing training datasets with 51 most likely 
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genes, 149 probable genes, and a variable number of least likely genes (depending on 

the p-value threshold and the PPI confidence threshold tested in the iteration). 4-label 

testing of least likely gene size on multiple ML test iterations was not included due to 

poor ML performance, with the 4-label group using the best least likely gene curation 

identified by the 3-label ML test iterations. In total four p-value thresholds were tested 

on ML iterations to filter least likely genes (p-values between 0.1-0.25, chosen by the 

filtered gene sizes being comparable to the other groups in the training data for class 

balance). Also, only 0.15 or 0.4 STRINGdb confidence levels for only experimentally 

measured PPIs were chosen for the least likely gene group’s PPI filtering – to capture 

as many PPIs as possible and to filter out potentially false negative least likely genes 

by using only experimental evidence in STRINGdb.  

 

Each ML application for these test runs used features that passed data pre-processing 

(detailed in section 2.2.4). Due to the data size of iterations, only tree-based models 

were benchmarked for computational efficiency: random forest (RF), gradient 

boosting (GB), extreme gradient boosting (XGB), CatBoost (CB), light gradient 

boosting (LGBM), decision tree (DT), extratrees. All models were applied using 

scikit-learn (v0.23.2) except extreme gradient boosting (xgboost package v1.2.0), light 

gradient boosting (lightgbm package v3.3.2), and CatBoost (CatBoost package 

v1.0.6). 

 

The ML test runs had multiclass iterations and regression analysis iterations to assess 

least likely gene curation that applied to the differing ML approaches detailed in 

chapters 3 and 4 respectively. The results of the top-performing model for each 
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iteration of these test runs were recorded for comparison, to select the optimal least 

likely gene group that entered the final training data curation (n=93). 

 

2.2.3.3 Assessing Genomic Bias 

To assess biological bias, all four training groups had their genomic characteristics 

visualised. For feature cleaning and feature selection, only the 3-label training data 

(n=293 genes) was visualised due to higher ML performance (further explored in 

chapter 3), excluding a comparative visualisation of selected feature pairwise 

distributions for the 3-label versus 4-label training data (Figure 2.7). All further 

exploratory data analysis of features for the 4-label training data can be found in: 

https://github.com/hlnicholls/PhD-

Thesis/tree/main/Chapter2/BP%20GWAS%20EDA/4%20label  

 

After the training genes were grouped, the distance between the genes along the 

genome was recorded to avoid genomic distance as a confounder. This test showed 

whether the labelled gene groupings were likely to have similar annotations due to 

close genomic distance - identifying genes dispersed across chromosomes in the 

genome for each group. 

 

2.2.4 Data Pre-processing 

Machine learning, from exploratory data analysis to output model scoring of the 

trained top-performing model, was conducted using Python (v3.8.5). All 114 features 

were assessed for missingness and correlation (Appendix A Table 2).  
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All variant-level features that were collapsed to the gene-level had their missingness 

and correlation with gene length assessed (Appendix A Table 3) to avoid gene length 

bias and clean these features before entering ML. Sixteen variant-level features had a 

high proportion of data missing (> 25%) and so were removed. Variant-level features 

correlating with gene length measured by an absolute value >0.3 correlation were then 

explored in sensitivity analysis and removed in data pre-processing (9 of the variant-

level features were removed, which were all counts of epigenetic sites per each gene, 

Appendix A Table 2). The probability-loss-of-function (pLI ExAC) whilst provided 

by ExAC as a gene-level score was also assessed for gene length correlation, finding 

that it had correlations of 0.31 (Pearson correlation) and 0.29 (spearman correlation) 

for the training genes (Appendix A Table 3). As the study curating pLI scores notes 

that it has minimal gene length correlation (0.17) in coding sequences58, this led to the 

feature still being included to pass on to ML. For all other variant-level features, only 

beta value, GWAS catalog p-value, and chromatin state segmentation counts were 

complete enough variant-level features - with < 0.3 absolute correlation with gene 

length - to enter further feature pre-processing to be used in ML (Appendix A Table 

2).  

 

All gene-level features were removed if found to be missing for all genes by >25%. 

For correlation between all feature-feature relationships, a sensitivity analysis was 

performed using correlation coefficient and testing thresholds >0.9, >0.99 and > 0.85. 

Features were removed for each threshold and tested on ML benchmarking identifying 

the best correlation threshold at >0.9 for model performance (Appendix A Table 7).  

After removing the variant-level features highly correlated with gene length, any 
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features >25% missing, and any features with >0.9 correlation between all feature-

feature relationships were removed. This led to 21/114 collected features that were 

imputed using random forest imputation (using the missingpy package, v0.2.0).  

 

The feature distributions were compared between the training and test folds used in 

ML k-fold cross-validation (defined further in Chapter 3 Methods section 3.2.2), 

identifying features with any significant differences (<0.01 p-value) using 

Kolmogorov-Smirnov testing. Features with significant differences in training versus 

testing data were also removed to maintain i.i.d assumptions (i.i.d testing found in 

https://github.com/hlnicholls/PhD-

Thesis/blob/main/Chapter3/3%20label/correlation09/Kfolds/iid%20assumption%20t

esting.ipynb). For the best performing 0.9 correlation threshold, 15/114 features 

remained to enter feature selection. 

 

The 15 cleaned features underwent feature selection using the BorutaShap package 

(v1.0.13). BorutaShap selects features by comparing their importance to that of the 

randomised copies of each feature; known as shadow features. Feature importance 

from BortuaShap is derived from an input tree-based model. To select an optimised 

model to run the feature selection, a preliminary ML model benchmarking was 

performed, giving seven tree-based models (extreme gradient boosting, light gradient 

boosting, CatBoost, gradient boosting, random forest, decision tree and extra trees) all 

15 cleaned features to undergo nested cross-validation with parameter-tuning. To run 

ML, scikit-learn (v0.23.2), xgboost (v1.2.0), CatBoost (v1.0.6) and lightGBM (v3.3.2) 

packages were used (further details can be found in Chapter 3 Methods). The top-
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performing tuned model (extreme gradient boosting) then served as the input model 

for BortuaShap, which selected 6/15 features. All feature cleaning and feature 

selection steps were repeated for training data curated at 0.99 and 0.85 correlation 

thresholds for comparison (correlation comparison for ML performances found in: 

https://github.com/hlnicholls/PhD-Thesis/tree/main/Chapter3/3%20label).  

 

The selected features then underwent further visualisation of their relationships, 

plotting their correlation and mutual information using the seaborn package (v0.11.2). 

Pairwise distributions of the selected features for the 3-label dataset and the 4-label 

dataset were visualised. For the 3-label data, the training dataset versus the dataset of 

all other genes to be predicted by the trained model were visualised in R using the 

ggplot2 package (v3.3.5). The distributional differences for all features between the 

training genes and predicted genes also underwent Kolmogorov-Smirnov significance 

testing with adjusted p-values to assess any distributional differences that may affect 

the i.i.d assumptions and ML generalisation to new data. 

 

2.3 Results 

2.3.1 Least Likely Blood Pressure Gene Analysis 

To curate robust training genes, the least likely BP gene group underwent multi-

layered filtering to ensure that the group contained genes that are as unlikely as 

possible to have an influence on BP and reduce the chance of false negative training 

examples. This led to the testing of multiple p-value thresholds (selecting genes 

containing only variants with high p-values on BP GWAS) and PPI thresholds 
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(filtering out genes with direct and secondary interactions with BP-genes) (Table 2.1). 

Four ML benchmarking iterations were tested against these thresholds finding 93 least 

likely genes (filtered with a p-value > 0.15 and PPIs > 0.15 experimental confidence) 

gave the best ML performance across metrics for both multiclass and regression 

analysis (Table 2.1). 

 

 

 

 

Table 2.1. Least likely blood pressure gene group testing on machine learning. a 

shows the machine learning performance on multiclass classification (with the results 

recorded for the top-performing model per each iteration, measured by balanced 

accuracy and F1 score. b shows the machine learning performance on regression 

p-value 
threshold 

STRINGdb PPI 
confidence filter 

Number of 
least likely 

genes passing 
thresholds r2 

predicted 
r2 MAE 

0.1 0.15 159 0.78 -89834.63 0.13 
0.15 0.15 93 0.74 0.897 0.12 
0.2 0.4 98 0.81 -0.63 0.05 
0.25 0.4 68 0.54 -0.7 0.16 

p-value 
threshold 

STRINGdb 
PPI confidence 

filter 

Number of 
least likely 

genes 
passing 

thresholds 
Balanced 
Accuracy F1 

0.1 0.15 159 0.66 0.77 

0.15 0.15 93 0.65 0.73 

0.2 0.4 98 0.57 0.64 

0.25 0.4 68 0.6 0.67 

b 

a 
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analysis – also with the results recorded for the top-performing model per each 

iteration, measured by r2, predicted r2 and mean absolute error (MAE). Each table 

shows least likely gene groups filtered by p-value thresholds and protein-protein 

interactions (PPIs) with blood pressure genes measured by STRINGdb at different 

confidence thresholds. 

 

2.3.2 Genomic Characteristics 

I analysed the genome coverage of all sentinel BP SNPs and their LD SNPs (>0.8 r2), 

collated across all BP GWAS as of 20202, 4, 87-89, finding they cover 8.3% of the 

genome, representing almost 10% of the known gene complement. These results 

represent an important insight into the complex systems regulating BP and offer a 

basis for a better understanding of BP biology and the personalisation of hypertension 

treatment.  

 

The training data curated from genes within the Evangelou et al. (2018) GWAS 

comprised of 293 rows of genes by 114 total annotations. The genomic characteristics 

of these genes were investigated, focusing on their genomic distance from one another, 

their distributions in gene lengths and the gene types per each group in the training 

data. Comparing the genes distributions across chromosomes showed each labelled 

group had genes varying in their positions across the genome (Figure 2.1). 

Furthermore, 17/181 loci in the training data contained multiple genes, leaving minor 

positional relatedness that could affect correlated genetic annotations.  
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Figure 2.1. Training genes distributions across chromosomes. Counts of training 

gene groups across the four developed labels (most likely, probable, possible and least 

likely) at each chromosome across the genome. 

 

On investigating gene lengths in the training data, all gene groups have genes 

predominantly shorter than 500,000 bp (Table 2.2). The least likely gene group was 

found to have the shortest genes of any group, with the shortest gene being 206 bp 

(Table 2.2). Furthermore, the correlation gene length had with the variant-level 

features found all features counting epigenetic sites per gene to have high positive 

correlations with gene length in the training data (Appendix A Table 3), showing these 

annotations should not be used as features. However, variant-level features for beta 

values, log p-values from the GWAS catalog, methylation site signal values, and 

counts of chromatin segregation states from ENCODE were found to have a minimal 

absolute positive correlation (<0.3), allowing for these features to pass further into the 

ML pipeline. 
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Table 2.2. Gene length per labelled group in the training data. Gene length 

summary statistics measured by base pair (bp) for each training gene group. 

 

The final biological characteristic visualised was gene types, showing all the most 

likely, probable and possible gene groups are protein-coding or processed transcripts 

(Figure 2.2), reflecting the higher likelihood of these genes having more study and 

therefore more complete data to be useable in ML. The least likely gene group was 

also curated by analysing only protein-coding genes to avoid developing a gene group 

with less annotation, affecting which features would enter ML and how much the least 

likely gene group consisted of heavily imputed data. In comparison, the genes to be 

predicted (n=1,804) were also predominantly protein-coding, however other gene 

types (pseudogene and antisense) are also present, highlighting that these genes will 

need further analysis on output prioritisation by ML. 

 

Gene label Minimum 

gene length 

(bp) 

Maximum 

gene length 

(bp) 

Median gene 

length (bp) 

Most likely 1467 722156 45142 

Probable 2410 1125646 36394 

Possible 2052 2298477 91717 

Least likely 206 95203 1415 
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Figure 2.2. The proportion of gene types in the training data and predicted data. 

The training data (n=377) contains only protein-coding gene groups, whilst the genes 

to be predicted (n=1,804) contain predominantly protein-coding genes with also 

processed transcripts, antisense and pseudogenes. 
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2.3.3 Feature Cleaning and Feature Selection 

Following gene curation, collected annotations were then assessed for their potential 

use as ML features. From the 114 total annotations collected, 66 had less than 25% 

missingness in the training data (Figure 2.3, Appendix A Table 2). This was followed 

by 45 features having a greater than 0.9 r2 correlation, and therefore removing these 

45 correlated features (correlation threshold filtering detailed earlier in section 2.2.4, 

Appendix A Table 8). On testing the remaining 21 features and their i.i.d assumptions 

on cross-validation folds, a further 6 features were removed, leaving 15 features to 

undergo BorutaShap feature selection for multiclass classification. 

 

BorutaShap feature selection identified six accepted features (HIPred, Heart - Atrial 

Appendage TPM, Pituitary TPM, Exomiser mouse score, SDI, pLI ExAC) and two 

tentative features (Fallopian Tube TPM and EBV-transformed lymphocytes TPM) 

(Figure 2.4). Tentative features are due to the Boruta algorithm reaching its designated 

number of iterations (default=100) without assigning importance to that feature in 

comparison to the most important shadow feature. This result requires a fix to be 

applied by comparing the median feature importance of the feature and the maximum 

shadow feature. For this analysis, running the additional step for tentative features then 

rejected both the Fallopian Tube TPM and EBV-transformed lymphocytes TPM from 

feature selection.  
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Figure 2.3. Feature missingness for the training and predicted data. Bar plots of 

the training data missingness (n=293, blue) and the predicted data missingness 

(n=1.804, orange).



 

 

 

66 

 

Figure 2.4. BorutaShap Feature Importance and Selection. BorutaShap identifies 

feature importance by comparing features against their randomised shadow features – 

with features calculated to be more important than the most important shadow feature 

(‘max shadow’) being selected. The selected features are coloured in green, summary 

shadow feature importances in blue, and tentative features (requiring comparison 

against the tentative feature’s median importance against the maximum shadow 

feature) are in yellow. Feature importance is calculated via Shapley values and 

normalised using the z-score. 

 

On examining the relationships between selected features, their correlation, mutual 

information gain and distributions were visualised (Figures 2.5-2.7). The correlation 

matrix identified that all features had minimal to negative correlation excluding 
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HIPred and pLI EXaC – with the two features having a positive correlation (0.63 r2). 

To test the influence of the correlation between HIPred and pLI EXaC, I investigated 

partial dependence plotting between the two features (Figure 2.6). Partial dependence 

plots showed both features interacting affect model prediction with different 

directionality per each class (Figure 2.6), with linearity for the probable and least 

likely classes (the higher both features are in value, the more likely a probable 

prediction, and vice versa with lower feature values for a least likely prediction). Their 

interaction’s influence on most likely BP gene prediction is less linear, with a 0.3 

probability of predicting most likely genes when pLI has a value (approximately 

between 0.1-0.2) and HIPred has a value between 0.55-0.7 (Figure 2.6). The 

probability then drops to 0.24 when pLI remains between the same but HIPred either 

increases or decreases in value. The mutual information gain identified all features as 

offering information about the target variable (the gene labels scored between 0-1), 

with pLI ExAC providing the least information and Exomiser mouse scores providing 

the most information (Figure 2.5b).  
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Figure 2.5. Relationships between selected features. The correlation matrix (a) 

shows all selected features and their correlation coefficients with a high correlation 

denoted in purple and a low correlation denoted in red. The mutual information shows 

the average information each feature conveys about the target variable. 

b 

a 
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Figure 2.6.  Partial dependence plotting between HIPred and pLI ExAC features. 

Class 0 denotes most likely blood pressure genes; class 1 denotes probable genes and 

class 2 denotes least likely genes. Each plot presents a colour scale from blue to yellow 

indicating the expected probability a gene is classified in that group depending on the 

values of the two features. 
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Pairwise plotting of selected features also showed that within each feature there are 

varying distributions between each of the 3 labelled gene groups (Figure 2.7a). This 

was plotted in comparison with the 4-labelled data, identifying that the fourth 

additional training gene group and their selected features offered less distinctive 

distributions in comparison to the 3-label groupings (Figure 2.7b).  

 

 

 

 

a 
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Figure 2.7. Pairwise distribution plots of the selected features.  a) Distributions for 

the 3-labelled training data’s selected features. Each selected feature is plotted against 

one another, with each blood pressure (BP) gene group identified (using the 3-label 

dataset). Most likely BP genes are scored at 1, probable genes scored at 2, and least 

likely genes scored at 3. b) Distributions for the 4-labelled training data’s selected 

features. Most likely BP genes are scored at 1, probable genes scored at 2, possible 

genes scored at 3 and least likely genes scored at 4. 

 

b 
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The distributions of the selected features showed both GTEx features (pituitary and 

atrial appendage TPMs) have distributions skewed to the left for both the training and 

predicted data (Figure 2.8). When comparing the training data distribution versus the 

predicted data, all differences have significant adjusted p-values excluding pLI EXaC. 

Figure 2.8. Distributions of selected features in training and predicted data. The 

annotations from the selected features for all training genes (n=293) were plotted in 
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blue against the data to be predicted (n=1,804) in red, with any significant differences 

calculated by Kolmogorov-Smirnov tests with false discovery rate adjusted p-values.  

 

2.4 Discussion 

A key focus of this chapter was the curation of exemplar genes that were of high 

enough quality to act as ML training data. To ensure this aim was met, expert clinical 

curation was used to define the most likely BP genes, providing 51 genes with 

established BP-related functions, alongside probable and possible gene group curation 

– which are supported by relevant literature and experimental evidence that justifies 

their labelling. However, the least likely BP gene curation posed the greatest 

challenge. Defining genes as non-causal is not a common research focus and there is 

great potential for false negative genes to be included that have unexplored impacts 

on BP. Furthermore, as BP is a complex trait that involves multiple organ systems this 

also increases the likelihood that a given gene may have even a small additive impact 

on BP, making least likely gene curation especially challenging. To address this 

obstacle as thoroughly as possible, I expanded on negative gene filtering seen in 

previous work (namely OpenTargets which identifies negative genes by only filtering 

out genes that had direct PPIs with disease-causing genes84), by using additional p-

value filtering and also PPI filtering that considering not only direct but any secondary 

interactions with BP-genes associated across several GWAS2, 4, 87-89.  

 

However, the threshold filters themselves also needed evidence supporting their 

selection – otherwise cherry-picked settings of p-value and PPI thresholds may bias 
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ML performance.  I tested four threshold settings, based on their output least likely 

gene size having as much class balance as possible with 51 most likely and 149 

probable BP training genes (Table 2.1). These four ML performances on classification 

and regression had least likely gene sizes ranging from 159-68. The highest ML 

balanced accuracy and r2 performances were using the 0.1 p-value and 0.15 PPI 

confidence (giving 159 least likely genes). However, notably for the regression 

analysis, the predicted r2 (which performs a leave-one-out cross-validation and gives 

insight into model overfitting) was heavily negative (-89834.63) indicating that model 

is fitting to noise added into the data by the larger least likely gene group and causing 

overfitting. On the other hand, the classification showed a positive balanced accuracy 

and F1 scoring (0.66 and 0.77) respectively, suggesting the overfitting is not reflected 

in classification. However, the 0.15 p-value and 0.15 PPI threshold (n=93 least likely 

genes) gave good ML performances on both classification and regression iterations, 

with a slightly lower classification performance (0.65 balanced accuracy and 0.73 F1 

score) alongside an encouraging predicted r2 of 0.897. This performance, alongside 

the gene size being 93 – which makes the group become a more balanced minority 

class, unlike the 159 gene group that would make the least likely BP genes the majority 

gene group in the training data – led to the 0.15 p-value and PPI thresholds and this 

93 gene size being selected for further use in the BP training datasets. Although it 

should be noted that future work will need to track these curated least likely genes, 

ensuring that as BP research advances these genes are still reliable training examples, 

and not false negatives, which in turn will also validate the use of the p-value and PPI 

thresholds set here.  
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Analysis of genetic characteristics in the curated training data shows that bias risks 

due to genomic distance and gene length are minimised (with genes spread across the 

genome and gene length assessed to remove any biasing variant-level features 

including gene length itself). However, most genes being protein-coding highlights an 

unavoidable issue, as genes with greater completeness in their features are more likely 

to be protein-coding and will be more beneficial to ensure a trustworthy ML model. 

In the future, as non-coding genes become more frequently annotated, these genes can 

be incorporated into the ML pipeline as databases improve in size and quality for non-

coding regions. However, for the time being as ML needs robust input data for its 

outputs to be reliable, this limitation led to training data with only protein-coding 

genes, falling in line with other gene prioritisation methods that also predominantly 

focus on protein-coding genes19, 33.  

 

Annotations were collected across molecular scales that aimed to provide a range of 

data for ML. In this collection, it was key to ensure annotations did not come from 

overlapping sources. For example, Exomiser has PPI data that is taken from 

STRINGdb that would overlap with the PPI filtering of least likely genes that also 

used STRINGdb, and so this was not an included feature. Fortunately, many databases 

have varying methodologies and data sources which means overlapping information 

can be avoided. For example, the Exomiser mouse score uses the Mouse Genome 

Database (MGD) and International Mouse Phenotyping Consortium (IMPC) data67, 

SDI uses semantic similarity of GO terms55, HIPred uses Ensembl and ENCODE62, 

ExAC uses exome sequence data58, and GTEx uses genotyping of tissues53. However, 

whilst most databases use tailored formulas or experimental methods to collect their 
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data, HIPred is the only feature that comes from a ML calculation itself. HIPred’s use 

of ML suggests that this feature is exposed to ML biases such as overfitting, which 

could compound when the measure is used within further ML. Although, HIPred’s 

development focused on minimising the study bias risks that are present in other 

haploinsufficiency measures that use biological networks62. Furthermore, Steinberg et 

al. (2015) tested HIPred’s application on multiple datasets and used cross-validation, 

indicating that it has undergone assessments to minimise overfitting and can provide 

reliable information for gene prioritisation.  

 

Also, it should be noted that for GTEx several datatypes exist that could have been 

explored, such as gene expression fold change. Initially fold change, a measure of cis-

eQTL effect size, was collected but found to be heavily missing (Appendix A Table 

9). Furthermore, recent work by Mostafavi et al. (2022) focusing on systematic 

differences between GWAS and eQTL signals has shown that eQTLs are skewed to 

unimportant genes92, suggesting fold change data may provide less reliable 

information than other gene expression measures. In contrast, TPM provides a direct 

interpretation of the transcripts per gene that is normalised for gene length in GTEx, 

giving less room for it to convey biased information. However, fold change and TPM 

are still different understandings of gene expression, which suggests both datatypes 

could be included in the same training data supporting each other to inform a model. 

In this way, they would not provide overlapping information but different 

interpretations of gene expression, and this should be explored in future work (with a 

more complete fold change in the training data enabling its use as a feature in other 

phenotypes). 
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Overall, the range of features collected here are from publicly available databases 

(excluding IPA) that are comprehensive and still expanding. As databases develop and 

increase the feature optionality available to ML researchers, it will be important for 

future work to employ standardised feature collections (e.g., making sure to consider 

how the database collects its data, which data type to collect as a feature, and how that 

data might overlap with other features) to have not only robust methodology but also 

transparency for comparisons between ML and other methods that use orthogonal data 

such as fine-mapping. 

 

Several features that would have provided more detailed information were heavily 

missing from the training data, such as cell-type data. Cell-type expression provides 

granularity into a gene’s functions in different cellular systems, which would likely 

better inform a ML model. However, whilst single-cell RNA sequencing is growing 

in popularity, the access to the deposits of such data is variable and challenging93, with 

few databases focused on this datatype across a wide variety of cell-types. In this 

chapter I used PangloaDB93,  which pre-processes single-cell RNA sequencing data 

from hundreds of studies in humans and mice, providing a ubiquitous index – 

measuring how often a gene is expressed across cell-types. However, this feature was 

61% missing in the training data, showing the need for further expansion of such 

single-cell databases before they can reliably inform ML applications. Databases such 

as the Expression Atlas94 and the Human Cell Atlas95 are devoted to developing 

cellular data, indicating that it is only a matter of time until this datatype becomes a 

common contender as a feature in ML. 
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Feature missingness also showed variant-level features particularly suffer from 

missing annotations. This is partly due to a lack of experimental variant data 

(especially for the majority that are in non-coding regions) and a lack of 

standardisation in methods that are annotating potentially pathogenic variants96. This 

lack of variant-level information also reduces the granularity of information available 

to the model and highlights a need for research to focus on understanding pathogenic 

variants, which can then better inform the understanding of gene functions in diseases. 

 

However, overall features from several omics databases met the <25% complete 

criteria (gene expression, gene essentiality, haploinsufficiency, phenotypic scores, and 

methylation data). This was followed by 45 GTEx tissues being removed for being 

highly correlated (>0.9 r2, chosen after testing multiple correlation thresholds on ML 

performance). Highly correlated GTEx tissues may be unavoidable due to there being 

correlations between related tissues (e.g., all arterial tissues had > 0.98 correlation with 

each other in the training data, Appendix A Table 2) which has already been 

established in previous work97. However, highly correlating features may still hold 

useful information, which is why (alongside best ML performance) the 0.9 correlation 

was chosen as the threshold to remove only extremely correlating features. Highly 

correlating information may still be of use due to various models being able to 

differentiate between a feature’s correlative noise and its impactful values – such as 

ensemble models that test different hypotheses. However, depending on the model 

type correlation can still bias an algorithm – for example, random forest is known to 

decrease the importance of features that are highly correlated98, losing out on valuing 
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features that individually may provide important information about the target variable 

- and so this was accounted for with the testing of lower correlation thresholds (0.85 

and 0.99) on ML (with ML performance on different correlation tests further discussed 

in chapter 3).  

 

BorutaShap feature selection then identified 6 features to enter multiclass 

classification. All selected features have similar importance calculated by BorutaShap 

(Figure 2.4), with heart (atrial appendage) gene expression, HIPred and Exomiser 

mouse scores being the most important features. The importance of mouse Exomiser 

scores is to be expected as the scores convey the phenotypic impact that a gene has on 

BP (calculated from mouse phenotype data for increased BP) and validates the use of 

BorutaShap for feature selection. However, the high importance put on mouse 

Exomiser scores also flags a risk as genes with higher scores will already have known 

relationships with BP, therefore reducing a ML model’s ability to prioritise novel 

genes if it is heavily reliant on this score. Furthermore, whilst mouse Exomiser scores 

are less likely to overpower model decision-making, as it is the third most important 

feature, the heart gene expression being the most important feature also indicates that 

the ML may be susceptible to circular pattern recognition. As only GTEx tissues are 

selected that have established BP relationships (heart and pituitary tissues) and so a 

model cannot leverage information in novel tissues about BP.  

 

Ultimately, the selection of features related to BP is a double-edged sword, as whilst 

they may encourage circular pattern recognition, they also validate the BorutaShap 

feature selection method and the ML decision-making, ensuring that the model will 
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use relevant information and is less likely to be valuing noise in the data. Furthermore, 

the selection of BP-related features may identify genes in established BP pathways 

that have not yet been investigated but may hold potential as novel therapeutic targets. 

Additionally, the BP-related features are also accompanied by more general genetic 

information that describes gene functionality (haploinsufficiency from HIPred, gene 

essentiality from SDI and probability of LoF from pLI). These functionality features 

offer the opportunity for a model to stratify genes with greater functional impacts, 

potentially then enabling the prioritisation of genes that have a greater functional effect 

on BP regulation. These features were also shown to interact with each other to inform 

ML, giving a model information that would lead ML away from circular BP pattern 

recognition. This was shown by the partial dependence plotting between HIPred and 

pLI, which suggests their relationship is informative for each labelled gene group in 

the training data (Figure 2.6).  

 

Meanwhile, whilst the IPA BP annotation (the other phenotypic annotation collected 

alongside Exomiser measures) was ranked 7th important by BorutaShap it was not 

more important than its shadow feature and therefore not selected, despite this feature 

being a BP-specific phenotypic annotation. IPA annotations of genes were based on 

identifying which genes had experimental analysis relating the genes to BP in the IPA 

database. This IPA annotation was curated as a categorical feature (scoring genes at 1 

for those that have a direct link to BP and 0 for those that do not) suggesting it may 

not be as informative as continuous variables that can offer the decision tree used in 

BorutaShap several values for splitting nodes within a tree. From a domain biology 

perspective, however, the strength of the IPA phenotypic feature to provide more BP 
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information from functional evidence suggests that it may still serve not as a feature 

but as an additional criterion for creating another gene group to expand the training 

data. This reasoning developed the possible gene group category (for which ML is 

tested further in chapter 3 in comparison to the 3-label training data focused on here). 

Creating a fourth gene group is also one of the few ways to test improving the training 

data size, as the most likely gene group of 51 BP genes could only be expanded on 

with further expertly validated BP-drug interacting genes being published. 

 

The selected features passed feature cleaning partly due to them meeting i.i.d 

assumptions within the training data (investigating each feature’s distributional 

differences within k-folds and whether they were statistically significant). However, 

on comparing these features in the training data (n=293) with the data to be predicted 

by the fitted model (n=1,804) the comparison showed distributional differences. 

Kolmogorov-Smirnov testing found significant differences between all features 

excluding pLI ExAC. For the phenotypic features, such as mouse Exomiser scores this 

is expected as genes with BP annotations are more likely to appear in the curated BP 

training data. However, the significance of all other features indicates that it will be 

important to explore the model interpretation of the predicted data in comparison to 

the training data (as doing so may ascertain whether a model has been impacted by 

these distributional differences). 

 

In conclusion, the training data curated here was shown to have minimised genetic 

bias risks, with this bias being minimised for both training data approaches with both 

3-labels and 4-labels. The features collected also contain a variety of information from 



 

 

 

82 

genomic, epigenetic, and phenotypic data, arming a ML model with a range of 

datatypes to better understand the BP training genes. However, the exploratory data 

analysis of the selected features highlights the need to follow how they are being 

interpreted by ML models, with thorough benchmarking of model performance and 

decision-making to ensure a robust ML pipeline from start to finish. 
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3 Multiclass Classification for Prioritising Blood Pressure 

Genes 

 

3.1 Introduction 

In this chapter, I apply ML benchmarking to the training data curated in chapter 2, 

posing gene prioritisation as a multiclass supervised learning problem. This approach 

allows for a thorough assessment of model performance across several metrics, with 

various methods (curation of training data, models, and class balancing approaches) 

tested to optimise the ML framework. 

 

3.1.1 Machine Learning Models 

The landscape of ML for prioritisation of genes post-GWAS has focused primarily on 

labelled supervised learning approaches. Involving both simplistic and complex 

models in applications for post-GWAS prioritisation (Appendix B Table 1), across 

studies ML performance varies depending on the problem requirements and data 

available. Most commonly, five types of models have been implemented: logistic 

regression, support vector machine, random forest, gradient boosting, and deep neural 

networks. Logistic regression is a frequently applied statistical method that can be 

contemplated as a generalised linear model. In logistic regression, a regularisation 

term is usually applied - e.g., L1 (the sum of the absolute value of feature weights) 

and L2 (the sum of squared feature weights) – that introduces some bias while 

reducing variance, thereby improving predictive ability99. Isakov et al. (2017) used 
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elastic net logistic regression100 which combines L1 and L2 penalties to prioritise IBD 

genes. This method performs both feature selection (L1) and shrinks coefficient sizes 

to reduce variance (L2)101. Regularised logistic regression with elastic net aims to 

minimise the ‘curse of dimensionality - where data has a larger number of features 

than samples – which is a particular blight on genomic datasets such as GWAS data. 

For example, Isakov et al. (2017) used data consisting of 314 positive genes and 1,736 

negative genes each annotated with 1,027 features. By applying logistic regression 

with elastic net, they could then select the best data for their models (309 features 

selected that were predominantly from biological ontologies). However, due to the 

growing size of genetic data, and the broader range of features becoming available to 

describe genes and variants, the increased computational demand requires more 

advanced models. 

  

Nine out of 23 ML models for post-GWAS prioritisation reviewed in this thesis 

(Appendix B Table 1) are ensemble models, namely random forests, and gradient 

boosting. Ensemble methods combine multiple models to improve performance and 

are ideal for heterogeneous GWAS data. Deo et al. (2014) developed a GBM (OPEN 

- Objective Prioritisation for Enhanced Novelty) for prioritising causal genes in 

multiple diseases. They used data comprising more than 40,000 genomic features from 

public databases - Gene ontology (GO), Mouse Phenotype database, Human 

Phenotype Ontology (HPO), and Online Mendelian Inheritance in Man (OMIM) - 

aiming to benefit from unbiased features. GBM is a tree-based model, with tree 

branches performing yes/no decisions based on feature value thresholds that lead to a 

sample’s classification102. GBM operates one tree at a time, attempting to optimise 



 

 

 

85 

with each tree. Deo et al. (2014) made accurate predictions with GBM identifying 

genes affecting CVD-related traits. Performance was measured by the area under the 

receiver operating characteristic curve (AUROC), with values ranging between 0.75-

0.9 across traits18. The model’s consistently high scores are due in part to ensemble 

methods providing the opportunity for predictive mistakes to be removed in aggregate, 

due to multiple models testing different hypotheses and taking an average, expanding 

the representational space of a classification problem103. This is seen with gradient 

boosting across research, with the model known for reducing bias and variance and 

offering improved accuracy102. However, there is also a need to benchmark model 

performance, as whilst ensemble models are reliable, a singular approach to a novel 

classification problem provides a risk of unnoticed overfitting - when a model 

performs well on training data but poorly on new/unseen datasets that do not exactly 

match the patterns present in the training data. Some amount of overfitting is 

inevitable, but extreme cases can render a model useless. Overfitting is also a known 

issue for gradient boosting depending on the regularisation techniques used.  

 

Vitsios et al. (2020) built a semi-supervised learning (models using both labelled and 

unlabelled data during training) framework in which they benchmarked seven models 

(random forest, extra trees, GBM, extreme gradient boosting, SVM, deep neural 

networks and a stacking classifier using all models) to prioritise genes for three 

diseases - amyotrophic lateral sclerosis, chronic kidney disease and epilepsy33. In total, 

they used data containing more than 1,200 features describing tens of thousands of 

genes for each disease. They found that random forest was the top-performing 

classifier, with this ensemble model consisting of multiple decision trees predicting in 
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parallel104. Gradient boosting was the second most accurate, showing the high 

performance of tree-based ensemble classification. However, the AUCs between all 

algorithms were deemed too similar to conclude one model outperformed all others 

across datasets. These results were also supported by comparison with a combined 

framework using all models in prioritisation, the stacking classifier, ensuring the 

highest reliability in the chosen classifier for each disease33. Meanwhile, Kafaie et al. 

(2019) aimed to prioritise genes associated with colorectal cancer by comparing 

various models (SVM, random forest, logistic regression with stochastic gradient 

descent and K‐nearest neighbours). They found that logistic regression was the 

highest-performing ML model. The contrast in these results emphasizes that a 

classification problem may require simpler solutions and that GWAS prioritisation for 

all traits may not be encompassed by a one-size-fits-all model. 

 

Besides ensemble learning and logistic regression, SVM is also consistently used 

within studies performing benchmark comparisons50, 72, 106, 107. SVM aims to plot a 

decision boundary between groups by measuring hyperplanes - based on the distances 

between the most extreme samples of each classification group108 (Figure 1.3). SVM 

is regularly compared due to its effectiveness in high dimensional spaces and 

computational efficiency. However, within benchmarking studies, SVM has not 

shown itself to be the highest performing model. For example, Vitsios et al. (2020) 

found it had the lowest AUC (0.83, only slightly lower than the top-performing 

random forest at 0.85) of their seven models, while Kafaie et al. (2019) found SVM 

performed better than random forest yet worse than logistic regression. The varying 

performance of SVM also highlights the importance of input data, as Kafaie et al. 
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(2019) were one of the only studies to focus on comparing feature selection methods 

as well as models. Kafaie et al. (2019) found SVM performed well given certain 

features, whilst in comparison logistic regression had a more stable high performance 

regardless of the external feature selection, emphasizing the value of logistic 

regression’s internal feature selection via regularisation. 

 

Deep learning has also been explored for prioritisation. This method can increase 

sensitivity in larger datasets due to the method's ability to incrementally capture 

abstract representations of high-level information. In general, this is beneficial for 

GWAS prioritisation where the data is growing dramatically in size and heterogeneity 

with increasing annotations post-GWAS and currently few labelled samples (known 

disease-causing variants/genes) for supervised learning. Deep learning becomes 

advantageous in this scenario as it identifies complex patterns via supervised and 

unsupervised learning from large datasets109 and can be applied for further insights 

into GWAS data. However, whilst deep learning enables the consideration of millions 

of parameters, its application to date has mostly flourished in image classification and 

natural language processing110-112, requiring an investment in its development and 

benchmarking with traditional models for developing GWAS applications. A deep 

neural network (ExPecto) applied by Zhou et al. (2018) used natural language 

processing to prioritise causal variants for immune-related diseases using sequence-

based features. This dataset contained more than 140 million promoter-proximal 

mutations and allowed for the unidirectional flow of information from base-sequence 

to functional predictions which enabled variant prioritisation. To approach this large 

dataset ExPecto applies a spatial transformation to the data, weighting transformations 
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based on transcription start site distances. This was performed on a tissue-specific 

basis of over 200 tissues39, providing hundreds of features for the model to process. 

ExPecto is also able to perform pattern recognition and prioritisation of rare and 

unobserved variants. However, whilst models such as deep learning are selected based 

on their suitability to the data, performance can also be dependent on class balance 

and data quality available.  

 

Another example using deep learning is Bao et al. (2020) developing a deep learning 

kernel method to infer gene causality within loci for gastric cancer, colorectal cancer, 

lung cancer, and psychiatric disorders113. In this method, the neural network layers 

encode raw SNPs as abstracted information, which is followed by a kernel regression 

layer that tests the SNP's significance in disease-associated pathways - with kernel 

methods being particularly useful in identifying non-linear relationships114. Deep 

learning is able to augment itself by incorporating other ML methods into its network 

and this shows how the method is uniquely advantageous with increased 

computational power. The method also highlights how ML has the potential to break 

free from circular pattern recognition, as the disease-pathway data used allowed for 

the model to identify SNPs as significant in disease pathways that they had not been 

associated with previously. For example, the model by Bao et al. (2020) found a link 

between SNPs acting on dilated cardiomyopathy and schizophrenia113, suggesting 

they have shared biological pathway(s) that are yet to be explored in functional work. 

On further analysis, Bao et al. (2020) did find relevance in clinical studies with 

schizophrenia patients shown to develop dilated cardiomyopathy. These results differ 

from other studies where ML faces issues with prioritising genes in shared pathways 
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of known causal disease genes (due to input data describing the genes usually being 

circular in nature) providing less novel biological insight that can be translated to new 

drug targets. 

 

3.1.2 The Ideal Machine Learning Method 

Applying a reliably optimal model is difficult to ascertain for any ML problem. An 

ideal ML model for post-GWAS prioritisation would have thousands of positive and 

negative examples to learn from in training. However, in GWAS this is far from the 

case and there are varying definitions of positive and negative genes/variants for 

diseases, with most diseases having a great class imbalance on ML as there are 

minimal positive or negative disease-causing genes. One approach to address this class 

imbalance and quality of labelling has been developed by OpenTargets who have been 

curating gold standard positive and negative cases for their extreme gradient boosting 

model to prioritise genes post-GWAS with a ‘locus 2 gene’ (L2G) score84. This 

method focuses on prioritising variants and genes within an individual GWAS, 

providing an interface for researchers to view locus-level prioritisation for published 

GWAS research. In comparison, other studies address class imbalance by developing 

positive-unlabelled learning frameworks with bagging techniques19, 33. Positive-

unlabelled learning allows for models to learn from equal sample sizes and for the 

training data to not need negative/non-disease-causing examples, however, overfitting 

is also a risk in this approach as the model will learn specific patterns from a bagged 

sample that it then generalises to the rest of the input data. 
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Another important aspect of an ideal model applied to biological problems is its ability 

to recognise novel patterns and not get trapped within circular predictions. For 

example, the OpenTargets researchers note their positively labelled loci are biased 

towards nonsynonymous variants115, making the model less likely to prioritise novel 

variants with a smaller effect size. To improve their output, they present the ML score 

with several other metrics (fine-mapping, disease-disease colocalisation analysis and 

disease-molecular trait colocalisation analysis across 92 tissues and cell types, 

phenome-wide association study analysis, and enriched trait evidence), creating a 

stronger evidence-base to support their ML outputs. Whilst this approach overall is a 

slow-growing and labour-intensive way to define many gold standards and curate 

additional biological metrics, it is a clear-cut way to develop high-quality training data 

and reliable output prioritisations of new data. In contrast, many other studies do not 

define their criteria for positive/negative examples or provide further analysis of 

prioritised genes, with other studies following gene rankings with only discussion of 

complementary studies to their findings113. This lack of comparison between studies 

then creates difficulty in knowing the true performance of a model for a given disease, 

indicating the need for improved detail and clarity in training data collection. 

 

Overall, there is a need for benchmarking to select the model best suited to the data 

and a particular prediction problem. This, in combination with a focus on the size and 

quality of the training data curated will enable robust optimisation of a ML framework. 
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3.2 Methods 

3.2.1 Training Data 

From exploratory data analysis to output model scoring of the trained top-performing 

model, all steps of the machine learning pipeline were conducted using Python 

(v3.8.5). The BP GWAS data that underwent pre-processing and feature selection was 

fully described in chapter 2. From the 7 million variants that were annotated to genes, 

these genes had 114 features collected that were assessed for missingness and 

correlation, undergoing feature cleaning and selection described in chapter 2. Features 

were removed if found to be missing for all genes by >25%. Features with a person’s 

correlation coefficient >0.9 and not meeting in i.i.d assumptions between train and test 

data were also removed (i.i.d testing found in https://github.com/hlnicholls/PhD-

Thesis/blob/main/Chapter3/3%20label/correlation09/Kfolds/iid%20assumption%20t

esting.ipynb). Features passing data cleaning were then imputed using random forest 

imputation (using the missingpy package, v0.2.0) and went into BorutaShap (v1.0.13) 

feature selection. 

 

The feature cleaning and selection steps were completed for two training datasets – 

one dataset with three labels and another with four labels (defined in chapter 2 

Methods 2.2.2 and 2.2.3). The 3-label dataset (n=293) consisted of three gene groups 

(51 most likely genes identified as BP-regulators, 149 probable genes identified from 

text-mining, and 93 least likely genes to affect BP identified through their lack of 

GWAS significant or PPIs with BP genes, Appendix A Table 6), and the 4-label 

(n=377) included an extra fourth category of 84 possible genes identified by their 
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annotation to BP in IPA (Appendix A Table 5). The four gene groups and how they 

were curated were defined in chapter 2 Methods section 2.2.3. 

 

Any of the BP-genes group (group defined in chapter 2 Methods section 2.2.2) that 

did not meet any of the criteria to enter the training data were reserved as genes to be 

predicted by the training model (n=1,804 for genes that did not enter the 3-label 

training dataset, and n=1,720 for the genes that did not enter the 4-label dataset). 

 

3.2.2 Machine Learning Model Benchmarking Methods 

Fourteen multiclass models were benchmarked: random forest (RF), gradient boosting 

(GB), extreme gradient boosting (XGB), CatBoost (CB), light gradient boosting 

(LGBM), decision tree (DT), extratrees (ET), k-nearest neighbours (KNN), support 

vector machine (SVM), a sequential neural network (NN), logistic regression (LR), a 

voting model and a stacking model both consisting of all performing models 

(excluding k-nearest neighbours in the voting model due to incompatibility within 

scikit-learn) and finally a bagging model using the top-performing model (CatBoost). 

All models were applied using scikit-learn (v0.23.2) except extreme gradient boosting 

(xgboost package v1.2.0), light gradient boosting (lightgbm package v3.3.2), CatBoost 

(CatBoost package v1.0.6), and the neural network (TensorFlow v2.9.1 and Keras 

v2.9.0). Multiclass classification was chosen over binary classification due to the 

small sample size of most likely BP genes. These models were benchmarked on both 

the 3-label and 4-label datasets, providing a performing comparison between the two 

curations of training data. 
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Each model underwent hyper-parameter tuning using Bayesian optimisation (using 

scikit-optimize v0.8.1) and nested 10-fold stratified nested cross-validation. Nested 

cross-validation involves two cross-validation loops performed in parallel (outer and 

inner loops), minimising the risk of overfitting and enabling hyper-parameter tuning. 

For every iteration of an outer cross-validation fold, all inner cross-validation folds 

are also performed. Running on all inner folds finds the optimal model parameters that 

are further tested on that outer cross-validation fold. This was performed with ten k-

folds of the training data for each outer and inner cross-validation. Parallel computer 

processing was not enabled for model assessment (as this invalidates the nested aspect 

of the cross-validation). Model performance was evaluated with accuracy, balanced 

accuracy, F1 score, precision and recall selecting the top-performing model for further 

analysis. 

 

Hyper-parameter tuning and benchmarking performance for all models excluding the 

neural network took 6-8 hours per iteration (depending on training dataset size). 

However, due to the higher level of complexity of tuning neural network hyper-

parameters, the tuning for the sequential neural network via Bayesian optimisation 

was significantly more time-consuming (>1 day run time). To address this time-

inefficiency a hyperband tuner within the Keras package was first implemented – 

identifying tuned hyper-parameters within minutes. However, due to the hyperband’s 

incompatibility with scikit-learn’s nested cross-validation function, it was not possible 

to tune the neural network this way and have directly comparable results to the other 

models. These hyperband-tuned parameters were instead used to set smaller ranges to 

test within scikit-learn’s Bayesian optimisation for the neural network’s tuning. 
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Overall, allowing for hyper-parameters to be tested that decreased the runtime for the 

neural network to a few hours. 

  

To combat class imbalance, an oversampling iteration and a balanced class weights 

iteration of model benchmarking were tested using the imblearn package (v0.9.0). 

Each of these tests were performed with the top-performing training dataset only (the 

3-label dataset). Within imblearn, Synthetic Minority Oversampling Technique 

(SMOTE) was used to oversample all minority classes, giving matching numbers of 

genes in each group as the majority class. This created a training dataset with 149 

genes in each group (oversampling to match the ‘probable’ majority gene group size, 

n=447 for the total 3-label training data). Meanwhile, the balanced class weights were 

applied using scikit-learn’s class weight computation on model fitting, which 

penalises misclassifications of the minority class with greater penalty weights. 

Furthermore, after using class balancing, probability calibration was performed on the 

top-performing model’s output classifications using scikit-learn’s sigmoid calibration. 

This method fits a regressor to calibrate the probabilities predicted by a model fitted 

to the training data, supporting probability estimates so that they can be interpreted as 

confidence level for the classification. 

 

Model performances were assessed using scikit-learn’s metrics and confusion matrix 

functions, and these were further plotted in R (v4.1.2) using ggplot (v3.3.6). The top-

performing class weight balanced CB model underwent interpretation using the 

python SHAP package (v0.36.0), providing feature importance values both globally 

for overall model performance and individually for each gene. Plots of the feature 
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importance (for both overall predicting and individual predictions) were created 

alongside feature-feature interactions. All ML code can be found in: 

https://github.com/hlnicholls/PhD-Thesis/tree/main/Chapter3  

 

3.2.3 Gene Prioritisation Analysis 

I used Enrichr116 to compare Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways in three groups: 1) the most likely predicted genes, 2) the genes containing 

sentinel SNPs from the GWAS by Evangelou et al. (2018), and 3) the training genes 

related to BP (genes labelled most likely and probable respectively, curated as 

described in Chapter 2). KEGG gene enrichment analyses were visualised using 

ComplexHeatMap (v2.6.2) in R.  

 

 

 

 

 

 

 

 

 

 



 

 

 

96 

3.3 Results 

3.3.1 Multiclass Machine Learning Framework 

Two iterations of the training data were devised: a 3-label dataset consisting of the 

most likely, probable and least likely genes, and a 4-label dataset consisting of all three 

groups plus the fourth possible labelled group. This resulted in 293 training genes in 

the 3-label dataset and 377 genes in the 4-label dataset. From the 114 collected features 

for the 3-label data (focused on due having higher ML performances detailed in 

section 1.3.2), 48 were removed due to missingness, and a further 45 were removed 

due to being highly correlating. I then used BorutaShap to perform feature selection 

on the 20 features that remained after cleaning (with all feature cleaning and selection 

detailed in chapter 2). Six features (HIPred, Heart - Atrial Appendage TPM, Pituitary 

TPM, Exomiser mouse score, SDI, pLI ExAC) were selected and used as model input, 

with benchmarking fourteen models on repeated nested cross-validation. After data 

pre-processing, model benchmarking was performed on both datasets followed by 

class balancing approaches being tested (oversampling versus class-weighting). The 

top-performing model was fitted to the top-performing training data (3-label). This 

left 1,804 BP-genes that were taken from one GWAS47 and were not included in the 

training data that were then prioritised by that top-performing model (Figure 3.1).  
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Figure 3.1. Multiclass classification framework overview. Blood pressure genome-

wide association study (BP-GWAS) variants from Evangelou et al. (2018) were 

annotated to genes and evaluated by benchmarked machine learning. Data pre-

processing involved annotating variants to genes from the whole GWAS and 

collecting gene-level annotations from several databases. The genes were then filtered 

to identify BP-genes (with linkage disequilibrium, LD, r2 > 0.8 and a p-value <5x10-

8) and non-BP genes that are genes least likely to affect BP (selected by meeting 

criteria of: not in LD, p-value >0.15, not within 500kb +/- loci and no direct or 
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secondary protein-protein interactions with BP genes). The BP-genes were 

categorized into three groups: BP-regulator genes (clinically evidenced regulators of 

BP, labelled most likely), text-mining BP genes (genes with published evidence of BP 

interactions, labelled probable) and BP genes labelled as possible due to having 

experimental analysis relating to BP in IPA. The genes, alongside a least likely BP 

gene group, created two training datasets (3-label and 4-label depending on the 

presence of the possible gene group) and unlabelled genes are those to be predicted by 

the top-performing model with regression. Model benchmarking was then applied to 

compare 14 models using 6 selected features, testing the two training datasets and then 

oversampling versus class balancing approaches. The top-performing trained model 

(CatBoost) was then used for gene prioritisation, with the genes undergoing 

downstream analyses in which each predicted class grouping was compared. 

 

3.3.2 Three Label versus Four Label Performance 

On comparing model performances between the two datasets curated to identify most 

likely to least likely BP genes, the training data with three labels (n=293) had 

consistently better performance for all models across all metrics versus the training 

data with four labels (n=377) (Table 3.1). The performance per each labelled gene 

group showed the models all have low F1 scores for predicting the most likely gene 

group in both training datasets, and the four-labelled gene group also had low F1 

scores for predicting the possible gene group (Figure 3.2). 
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  Three Label Four Label 

Model Accuracy 

Balanced 

Accuracy F1 Precision Recall Accuracy 

Balanced 

Accuracy F1 Precision Recall 

XGB 0.75 0.64 0.72 0.74 0.75 0.6 0.53 0.56 0.58 0.6 

LGBM 0.71 0.63 0.69 0.71 0.71 0.59 0.51 0.53 0.52 0.59 

CB 0.76 0.68 0.73 0.74 0.76 0.54 0.46 0.46 0.43 0.54 

GBM 0.72 0.62 0.7 0.74 0.72 0.59 0.48 0.51 0.53 0.59 

RF 0.7 0.6 0.68 0.65 0.7 0.56 0.48 0.49 0.5 0.56 

DT 0.69 0.61 0.68 0.69 0.69 0.49 0.39 0.43 0.39 0.49 

ET 0.72 0.6 0.68 0.64 0.72 0.53 0.43 0.43 0.4 0.53 

KNN 0.72 0.66 0.71 0.72 0.72 0.5 0.44 0.47 0.5 0.5 

SVM 0.73 0.67 0.73 0.7 0.73 0.54 0.49 0.48 0.45 0.54 

LR 0.59 0.48 0.55 0.57 0.59 0.49 0.42 0.42 0.43 0.49 

NN 0.66 0.58 0.62 0.62 0.67 0.5 0.39 0.39 0.36 0.5 

Stacking 0.72 0.64 0.7 0.69 0.72 0.57 0.5 0.53 0.54 0.57 

Voting 0.72 0.6 0.69 0.68 0.72 0.6 0.51 0.52 0.53 0.6 

Bagging 0.76 0.67 0.72 0.72 0.76 0.59 0.5 0.55 0.52 0.59 

 

Table 3.1. Model performance comparison between training data with three or four 

labels. Each model was benchmarked on two training datasets, one with three labels 

(n=293) and one with four labels (n=377), with each model assessed across accuracy, 

balanced accuracy, F1, precision and recall. The fourteen models were benchmarked: 

extreme gradient boosting (XGB), gradient boosting (GBM), CatBoost (CB), 

LightGBM (LGBM), random forest (RF), decision tree (DT), Extratrees (ET), K-

nearest neighbours (KNN), support vector machine (SVM), logistic regression (LR), 
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neural network (NN), and three meta-ensemble methods – stacking, bagging, and 

voting models. 

 

Figure 3.2. F1 Score Performances for all models on 3-labelled and 4-labelled training 

data. a) F1 score performance on the 3-labelled training data (n=293), b) F1 score 

a 

b 
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performance on the 4-labelled training data (n=377). Lines connect the labels for each 

model to visualise the model’s ability to predict each class. 

 

3.3.3 Three Label Oversampling versus Class Weighting Performance 

From the 3-label versus 4-label comparison, the better-performing 3-label training 

data was explored in further analysis. SMOTE oversampling compared with class 

weighting found SMOTE to give a higher performance for all models (Table 3.2, 

Figure 3.3). However, class weighting shows more conservative benchmarking results 

(e.g., 71% median balanced accuracy of the top-performing model CB, Table 3.2).  
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  Three Label Oversampling Three Label Class Weighting 

Model 
Accur
acy 

Balanced 
Accuracy F1 Precision 

Rec
all 

Accur
acy 

Balanced 
Accuracy F1 Precision 

Rec
all 

XGB 0.82 0.82 0.82 0.83 0.82 0.72 0.69 0.72 0.72 0.72 

LGBM 0.82 0.82 0.82 0.84 0.82 0.73 0.7 0.73 0.75 0.73 

CB 0.79 0.79 0.79 0.8 0.79 0.73 0.71 0.72 0.73 0.73 

GBM 0.84 0.84 0.84 0.85 0.84 0.72 0.68 0.72 0.3 0.72 

RF 0.78 0.77 0.77 0.77 0.78 0.69 0.66 0.69 0.7 0.69 

DT 0.69 0.69 0.69 0.71 0.69 0.71 0.62 0.69 0.71 0.71 

ET 0.7 0.7 0.68 0.72 0.7 0.65 0.67 0.63 0.7 0.66 

KNN 0.74 0.74 0.73 0.74 0.74 NA NA NA NA NA 

SVM 0.71 0.71 0.71 0.71 0.71 0.68 0.67 0.68 0.73 0.68 

LR 0.55 0.55 0.55 0.55 0.55 0.5 0.51 0.49 0.51 0.5 

NN 0.71 0.7 0.69 0.7 0.71 0.64 0.68 0.62 0.69 0.64 

Stacking 0.82 0.82 0.82 0.84 0.82 0.72 0.68 0.72 0.74 0.72 

Voting 0.82 0.82 0.82 0.82 0.82 0.69 0.65 0.68 0.7 0.69 

Bagging 0.83 0.83 0.83 0.83 0.83 0.75 0.69 0.74 0.75 0.75 
 

Table 3.2. Model performance using oversampling on training data with three 

labels. Each model was benchmarked on the 3-label training dataset, testing 

performance on oversampling (n=447) or class weight adjustment (n=293). Each 

model was assessed across accuracy, balanced accuracy, F1, precision and recall 

metrics. The fourteen models were benchmarked: extreme gradient boosting (XGB), 

gradient boosting (GBM), CatBoost (CB), LightGBM (LGBM), random forest (RF), 

decision tree (DT), Extratrees (ET), K-nearest neighbours (KNN), support vector 

machine (SVM), logistic regression (LR), neural network (NN), and three meta-

ensemble methods – stacking, bagging, and voting models. 
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Figure 3.3. Comparison of F1 scores for all models predicting three labels after 

oversampling. a) F1 score performance on the oversampled training data (n=447), b) 

F1 score performance on the class weighted training data (n=293).  Lines connecting 

the four labels for each model visualise the model’s ability to predict each label. 

 

b

b 
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Despite oversampling’s improved model performance, a more conservative choice 

was made to select the class weighting approach to take on to downstream analysis. 

Class weights adjust model regularisation whilst SMOTE adjusts the data directly 

(thereby directly adjusting the generalisability of the model to value-specific data 

patterns that may not be representative of the minority class the sampling was taken 

from). Class weighted model performances identified CatBoost as the top-performing 

model (71% median balanced accuracy on 10-fold cross-validation) (Table 3.2, Figure 

3.4), which was closely followed by LGBM and XGB (70% and 69% median balanced 

accuracy respectively). 

Figure 3.4. Model benchmarking performance on 10-fold stratified cross-

validation. Fourteen models were benchmarked: extreme gradient boosting (XGB), 

gradient boosting (GBM), CatBoost (CB), LightGBM (LGBM), random forest (RF), 

decision tree (DT), Extratrees (ET), K-nearest neighbours (KNN), support vector 

machine (SVM), logistic regression (LR), neural network (NN), and three meta-

ensemble methods – stacking, bagging, and voting models. The model performance 

was assessed on stratified 10-fold nested cross-validation. 
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3.3.4 CatBoost Model Interpretation 

The CB model was further investigated to interpret model decision-making. Class 

weight balancing was applied followed by probability calibration of CB’s predictions, 

improving performance (0.509 log loss on the uncalibrated probabilities versus 0.452 

log loss on calibrated probabilities) (Figure 3.5). Confusion matrices identified the 

model’s strongest ability to predict least likely genes (aligned with the F1 scores also 

being highest for this group), followed by probable and most likely genes (Figure 3.6). 

The model’s performance on the test data showed its conservative approach to 

predicting most likely genes (Figure 3.7b). CB also provides internal feature 

importance interpretation, showing HIPred as the most important feature overall 

(Appendix B Table 2). SHAP plots were used to show feature interpretation for each 

gene class, finding the mouse Exomiser score was most important to identify most 

likely genes, and HIPred was most important for probable and least likely genes 

(however with HIPred values having opposite directionality for its importance in each 

gene group). 
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Figure 3.5. Probability calibration of the fitted CatBoost model. Simplex plot 

shows each class as a vertex of the simplex with perfectly predicted classes 

represented by one of three dots (e.g., the red dot is the perfect most likely prediction 

with probabilities of 1, 0 and 0 for each respective class). Each vector starts at the 

uncalibrated probability for that gene made by CatBoost and the end point of the 

vector/the arrowhead is at the calibrated probability. The colour of the arrows 

represents the classes (red for most likely, purple for probable and blue for least likely 

genes). 

 

 



 

 

 

107 

 

 

Figure 3.6. Training and test data predictions by CatBoost. Confusion matrices of 

the model’s predictions for all the training data (a) and the test dataset (b). 
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Figure 3.7. SHAP summary plots of each label by XGB. Feature interpretations by 

CatBoost were measured via SHAP values. Summary plots of each feature 

interpretation are for most likely BP genes (a), probable genes (b), and least likely 

genes (c). The SHAP value on x-axis indicates the direction of model influence from 

that feature for each gene (e.g., a higher SHAP value indicates a more positive output 

model score). The colour-coding of points (genes) indicates whether their feature 

a 

b 
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value was high (red) or low (blue), and the ordering of features on the y-axis is by 

descending feature importance. 

 

3.3.5 CatBoost Gene Prioritisation 

From selecting CB as the top-performing model, it was fitted to 293 training genes to 

then classify the 1,804 BP-genes that were unlabelled – with the fitted model using 

class weight balancing and calibrated probabilities. In total, CB classified 223 genes 

as most likely, 1069 genes as probable, and 512 genes as least likely to affect BP 

(Appendix B Table 3). Individual investigation of the top prioritised genes showed 

most likely and probable predicted genes had publications and animal models with 

cardiovascular and renal phenotypes (Table 3). The top three least likely predicted 

were olfactory genes. However, due to heavy missingness in the predicted least likely 

genes and 172 genes having almost all the exact same imputed values (Appendix B 

Table 4), 172 genes had the same probability of 0.9397 to be classed as least likely 

with the fourth highest probability in that class. 
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Most Likely Classified Genes 

Gene Most likely 

Prediction 

Probability 

Probable 

Prediction 

Probability 

Least 

likely 

Prediction 

Probability 

Gene Description 

MLIP 0.926 0.058 0.017 

Muscular LMNA Interacting Protein; 

unknown protein function and associated 

with cardiac abnormality in mouse 

models117. 

JPH2 0.847 0.134 0.019 

Junctophilin 2; component of junctional 

complexes and associated with impaired 

cardiac contractility in mouse models118. 

NOTCH3 0.836 0.149 0.0149 

Notch receptor 3; receptor for ligands that 

regulate cell-fate determination119 and 

associated with the adaptive response of 

vasculature in mouse models120 

MRVI1 0.83 0.159 0.032 

Murine Retrovirus Integration Site 1; 

lymphoid-restricted protein associated 

with acting as a tumour suppressor 

gene121. 

CSRP3 0.814 0.153 0.016 

Cysteine and glycine rich protein 3; 

cytoskeletal protein and associated with 

cardiomyopathy in mice122. 

Probable Classified Genes 

Gene 

Most likely 

Prediction 

Probability 

Probable 

Prediction 

Probability 

Least 

likely 

Gene Description 
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Prediction 

Probability 

LEF1 0.06 0.92 0.01 

Lymphoid enhancer binding factor 1; 

transcription factor associated with Wnt 

signalling and several mouse phenotypes 

including abnormal heart morphology 

(MGI:96770). 

SYT1 0.056 0.919 0.025 

Synaptotagmin 1; membrane protein of 

synaptic vesicles associated with 

preweaning lethality (MGI:99667) in 

mice and carcinogenesis123 

GRM7 0.48 0.916 0.368 

Glutamate metabotropic receptor 7; G 

protein-coupled receptor associated with 

embryonic neurogenesis124. 

GRM4 0.059 0.915 0.026 

Glutamate metabotropic receptor 4; G 

protein-coupled receptor associated with 

major depressive disorder125. 

MPPED2 0.063 0.913 0.023 

Metallophosphoesterase Domain 

Containing 2; associated with 

tumourgenesis126. 

Least Likely Classified Genes 

Gene 

Most likely 

Prediction 

Probability 

Probable 

Prediction 

Probability 

Least 

likely 

Prediction 

Probability 

Gene Description 
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Table 3.3. Top genes for each class predicted by CatBoost.  Each gene has a predicted 

probability per class made by CatBoost for most likely, probable and least likely 

classes. The highest probability out of the three classes is used to then assign a gene 

to that probability’s class. The top five genes with the highest probabilities for the 

most likely and probable classes had their gene functionality described. The least likely 

gene class had only the top three genes described due to 172 genes having the same 

probability (0.9397) to be potentially ranked fourth. 

 

The genes with the highest probabilities for being classed as most likely and probable 

(MLIP and LEF1 respectively) had their ML prediction visualised via SHAP (Figure 

3.8). Their difference in influencing features for model decision-making highlight the 

inverse influence of HIPred for each of the two classes. The higher the HIPred scores 

strengthening probable gene classification, whilst the lower HIPred scores influence 

most likely gene prediction. This different use of the feature per class by the model is 

also shown by the distribution comparison across all predicted classes for the feature 

(Figure 3.9). 

OR5AS1 0.0145 0.0376 0.948 

Olfactory receptor family 5 subfamily AS 

member 1; involved in olfactory 

signalling. 

OR5I1 0.0145 0.076 0.948 

Olfactory receptor family 5 subfamily 

member 1; involved in olfactory 

signalling. 

OR5B12 0.016 0.037 0.947 

Olfactory receptor family 5 subfamily B 

member 12; involved in olfactory 

signalling. 
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Figure 3.8. Shapley interpretation of predictions for MLIP and LEF1. Both (a) 

and (b) provide SHAP force plots and decision plots of CatBoost decision-making for 

prediction of individual genes MLIP (a) and LEF1 (b). The horizontal force plots show 

the directionality of influence each feature had on model decision-making for each 

gene’s predicted class, and the decision plots show the feature influences for all classes 

(most likely, probable and least likely model predictions). 

 

 

a 

b 
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Figure 3.9.  HIPred distribution comparison across predicted classes. The 

distributional difference of HIPred between the predicted gene groups (223 genes 

predicted most likely in green, 1069 genes predicted probable in blue, and 512 genes 

predicted as least likely in red). 

 

The most likely predicted genes (n=223) acted as a gene group for enrichment analysis 

comparisons. KEGG analysis of that predicted class, alongside sentinel genes from 

the GWAS, and the training genes classed as most likely and probable, were compared. 

Pathway analysis showed less significant enrichment for known BP pathways across 

all three predicted gene groups (Figure 3.10). The most likely gene group had its most 

significant enrichment for cardiovascular and renal pathways matching the BP training 
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genes, however, the BP training genes were more significantly enriched across all 

pathways 

 

Figure 3.10. Pathway analysis of classified most likely blood pressure genes. 

Heatmap of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The 

heatmap shows more significant values are indicated by darker shades of red. The 

heatmap compares three gene lists, composed of sentinel genes (identified by the 

Evangelou et al. (2018) genome-wide association study), BP-related training genes 
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(most likely and probable labelled training genes), and genes predicted as most likely. 

The top 20 most significant pathways for the BP training genes group were visualised. 

 

3.4 Discussion 

The training data curated here gave two approaches to multiclass classification, 3-

labelled and 4-labelled datasets, providing ML that learnt from a stratified scale of 

example genes. The 3-label approach proved to give a better performance for all 

models, indicating that the 4th added possible gene group increased the difficulty of 

prediction. This lower performance could be due to the possible gene group adding 

more noise to the selected features than recognisable and distinguishing patterns. To 

investigate this, I visualised the 4-labelled pairwise feature distributions on 

exploratory data analysis (chapter 2 Figure 2.7b) showing several features with 

minimal distinguishing differences between each group. In contrast, the 3-label 

training data showed almost all of the selected feature’s distributions had different 

distributions for each curated gene group (only excluding the pituitary gene expression 

feature) (chapter 2 Figure 2.7a). The possible gene group may have also created 

difficulty in ML prediction by the genes themselves and their curation using IPA not 

being robust enough to use standalone as a class identifier. IPA was chosen due to the 

resource curating experimental analysis of whether each gene has had BP study, giving 

the possible gene group functional evidence to create its category. However, its poor 

performance as a gene grouping criterion, it not being selected as a feature in the 3-

label classification, and the added fact that IPA’s data is collected from behind a 

paywall overall suggests that it is likely not a worthwhile data point to collect for ML. 
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The better performance of 3-label classification also suggests binary classification 

may improve ML performance, as two classes with more significant differences (i.e., 

most likely versus least likely genes) may give a more confident model. However, due 

to the small sample size of most likely BP genes (n=51), this was not investigated as 

there is minimal ability to expand upon this group without rigorous experimental 

validation and provide a ML model with more diverse knowledge. 

 

Overall, the ML performance on the 4-labelled training data indicates that the possible 

gene group hindered ML and needed either to be removed, further curated, or 

integrated with the probable BP gene group. However, integration with the probable 

gene group would have also amplified the class imbalance. Stratified training data 

curation beyond binary classification is an ongoing area of research as multi-labelling 

between positive and negative examples is often difficult to curate with a strong 

evidence base that justifies having a gradient of classes. Whilst most gene 

prioritisation studies focus on binary classification50 or positive-unlabelled learning33, 

this issue is an ongoing area of ML research in general. For example, packages are 

being developed such as Snorkel127 that focus on programmatically labelling and 

managing groupings within training data, providing a statistical evidence base for 

groupings. However, thus far this tool has focused on natural language processing and 

medical imaging ML problems127 and further development would be needed to re-

direct such tools to tabular biological data. 
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On taking the 3-label training data into further analysis, SMOTE oversampling and 

class weighting were compared to address the underlying class imbalance. SMOTE 

creates synthetic example data points, doing so by duplicating data points that are 

closest to decision boundaries for their labels (avoiding duplicating data points that 

are further from the decision boundary and therefore easily defined, and so avoiding 

overfitting on well-understood patterns). However, SMOTE has an unavoidable 

overfitting risk if the data is non-linear and therefore all data points are not well 

defined128, causing patterns to be amplified in the data that the model may overfit to. 

The SMOTE approach benchmarked here has the highest performance for any ML 

iteration tested, suggesting a potential risk of overfitting that is also overriding metrics 

used to catch overfitting such as F1, precision and recall.  

 

Meanwhile, class weighting is a cost-sensitive approach that involves assigning 

greater penalties for each model when it misclassifies the minority class, forcing the 

model to make greater adjustments to try and more accurately predict that gene group. 

Whilst this does not directly alter the training data, class weighting still also provides 

an overfitting risk if the model is overestimating the value of minority class 

distributions that are not representative of the true population. On comparing these 

two approaches to address the class imbalance, class weighting shows more 

conservative benchmarking results (e.g., 71% median balanced accuracy of the top-

performing model CB, Table 3.2), which led to it being the method chosen for further 

downstream analysis when supported by probability calibration. However, ultimately 

the underlying class imbalance is still a limitation within the training data, and both 

oversampling and class reweighting by design are creating new local minima in the 
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cost function of ML models that may not be optimal. Testing the reliability of class-

balancing would be best performed by having an external validation training set of 

more most likely BP-regulator genes, however for most disease-gene prediction 

problems these genes are laborious and difficult to identify. Due to the lack of such 

known BP-regulating genes this validation test set could not be curated and in the 

future, these genes will be crucial for validating any chosen prioritisation model and 

its findings. 

 

Using the 3-label training dataset and class weighting approach, the model 

benchmarking of the best approach showed CB to be the top-performing model 

alongside most other models having comparably high performances (between 65% to 

71% median balanced accuracy) except for LR (51% balanced accuracy). The lower 

performance of LR suggests that the heterogeneity of the training data needs a more 

complex model that can test several hypotheses to understand the gene groupings, as 

shown by the higher-performing ensemble models. This result is further emphasized 

by the F1 scores for all ML iterations tested, where LR consistently had a score of 0 

for the most likely gene group (Figures 3.2 and 3.3) and had the lowest F1 scores for 

each class on class-weighted data (Figure 3.3).  

 

CB being the top-performing model aligns with studies benchmarking models on 

multiple dataset types, finding CB (alongside XGB) is a top performer across 

supervised learning problems129. CB is also unique in its algorithmic principles that 

are designed to combat overfitting, for example by adding an extra regularisation 

parameter (Bayesian matrix regularisation), suggesting its 71% balanced accuracy has 
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more reliability than other models. From exploring its feature interpretation, HIPred 

and mouse Exomiser scores were the most important features (Appendix B Table 2), 

indicating the models understanding of the BP phenotype and gene functionality. 

However, the output predictions by CB indicate a degree of confusion in interpreting 

the model’s classifications. For example, the most likely predicted genes have the 

potential for further research. MLIP (predicted with a 0.926 probability of being a 

most likely BP gene) has been shown to induce cardiac hyperactivation in knockout 

mouse models of the gene117. However, from the top five most likely genes to the best 

of our knowledge only NOTCH3 has had functional research concluding it may play 

a role in BP120. Meanwhile, the probable gene group showed genes that are also strong 

contenders, such as LEF1 which has been shown to modulate the expression of 

angiotensin II130, bringing into question how CB is distinguishing these genes from 

being classified as probable instead of most likely. For MLIP, SHAP shows the mouse 

Exomiser and pLI scores are the most important features, meanwhile for LEF1 HIPred 

is the most important feature followed by the atrial heart gene expression (Figure 3.8). 

Notably, MLIP has a lower HIPred score than LEF1 (0.1233 versus 0.8265 

respectively), which may be affecting how the two differ in classification, as SHAP 

shows the higher HIPred score drives up MLIP’s probability of being a probable BP 

gene. This difference in HIPred aligns with the summary SHAP values showing 

HIPred as the least important feature for most likely gene predictions and the most 

important for probable gene predictions. The distributional difference of HIPred 

between the two predicted gene groups (223 genes predicted most likely versus 1069 

genes predicted probable) shows the probable predicted genes have higher HIPred 

scores (Figure 3.9) and that most likely genes are more similar to least likely predicted 



 

 

 

121 

genes with lower HIPred scores. These results conflict with the domain biology 

expectation that more likely disease-causing genes would be more often 

haploinsufficient and have greater functional impacts on loss-of-function, suggesting 

a misinterpretation by the model as it tries to discern categorically between most likely 

and probable BP genes, when their differences may be more opaque than multiclass 

classification can capture.  

 

In further contrast, for 172/1,804 predicted genes that had similar missingness patterns 

(Appendix B Table 4) that led to all 172 genes having the same exact probability and 

least likely classification, making it impossible to discern between them. This result 

highlights the difficulty in the least likely gene classification, as such genes are, by 

their unexplored nature, less likely to be as well annotated as genes more likely to 

impact disease. 

 

The gene enrichment analysis also presents difficulty in analysing the gene groups to 

identify genes pathways worth further investigation. The most likely predicted genes 

had less significant gene enrichment in comparison to the BP training genes, and 

pathways that were the most significantly enriched were established cardiovascular 

and BP pathways (e.g., renin secretion, dilated and hypertrophic cardiomyopathies, 

etc.) (Figure 3.10). Alongside the circularity of pattern recognition, this issue is 

potentially impacted by the classification ML approach itself. The multiclass 

classification does not treat the labels as ordinal, possibly leading to a misclassification 

between the gene classes as the differences between the groups is not distinct enough 

to have them act as categorical groupings.  
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Overall, the class imbalance and difficulty of distinct gene labelling in the training 

data greatly impact the multiclass classification approach. The model’s predictions 

suggest each grouping of prioritised genes has various levels of evidence linking the 

genes to BP in predominantly cardiovascular pathways. These conclusions suggest the 

multiclass classification developed here requires further comparison with other 

methods to ensure an optimised approach is being applied to prioritise BP genes.  
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4 Regression for Prioritising Blood Pressure Genes  

4.1 Introduction 

In this chapter, I applied fourteen ML algorithms and benchmarked them on the BP-

GWAS47 data curated previously, however, reframing the methodology from a 

classification problem to a regression analysis. I explore the genetic landscape of the 

top-performing model’s highly prioritised genes, investigating the prioritised genes at 

their loci, and compare the ML method’s concordance with other ML prioritisation 

methods, providing a stronger evidence-base for how GWAS results fit into the broad 

biology of blood pressure. 

 

One aspect that is the most time-consuming in supervised machine learning is training 

data curation. Having representative and plentiful examples is pivotal for a model’s 

training, however, these qualities can be difficult to ensure when it comes to 

identifying disease-causing and non-disease-causing genes. With methods, such as 

OpenTargets Genetics’ Locus 2 Gene score taking several filtering steps to identify 

gold standard positive and gold standard negative genes115. For example, their training 

gene curation involved collecting 400 gold-standard positive loci by identifying: loci 

overlapping with drug target-disease pairs, loci with strong orthogonal evidence, loci 

with functional follow-up, and loci inferred from observational functional data84. 

These distinctions would then classify loci between high, medium, and low gold 

standard quality. They also identified gold-standard negatives, doing so by finding 

genes that were not within 500kb of any positively labelled locus and that had low to 
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no PPIs with the positive labelled genes. Whilst gold-standard positive genes can be 

difficult to identify due to lack of causal evidence, it could be argued negative gold 

standards are even harder to find as their criteria in most cases hold a risk of false 

negatives and biased labelling criteria – a point which is made in studies opting to use 

positive-unlabelled learning19. This is particularly true for the use of PPI data where a 

lot of interactions have not been experimentally proven, or for when an interaction 

with a causal gene does not necessarily mean causality for the connected gene in the 

PPI. Negative labelling is also made difficult by the lack of research focusing on non-

causal/negative gene identification. However, a ML model with no distinction of 

negative examples risks a more limited understanding of gene diversity and potentially 

increases the risk of false positive predictions.   

 

Ultimately the pros and cons of negative labelling for non-disease-causing genes 

suggest stringent criteria are needed to use them. However, it also presents an 

opportunity for an alternative approach using gene scoring and applying a regression 

analysis machine learning approach – which has had little to no exploration in post-

GWAS prioritisation, although it has been used in other bioinformatics applications 

such as predicting protein expression levels131 and in time-series analysis of gene 

expression132. In ML, regression is used when the measurement of the target variable 

is continuous, and classification is applied when the target variable is categorical and 

usually has no natural order. Regression analysis applied to the BP training data 

curated here would avoid the prioritisation of genes into fixed categories and allow a 

greater degree of freedom for prioritisation on a continuous scale that accounts for all 

three gene groupings having an order from most to least likely BP genes. Also, giving 
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all prioritisations in one output ranking as opposed to the three separate probabilities 

given in multiclass classification. Furthermore, a regression analysis approach 

combats the difficultly of non-disease-causing gene curation in the training data, as 

these genes can be assigned a score reflecting the uncertainty of their grouping (e.g., 

having a score of 0.1 as opposed to 0 on a scale between 1-0 of most to least likely BP 

genes).  

 

In comparison the previously applied multiclass classification aimed to prioritise 

genes based on predefined classes, dividing any new data space into three discrete 

groupings based on probabilities. This approach is less interpretable than regression 

as it outputs probabilities based on model weights and biases, whilst regression can be 

expressed as an equation that uses coefficients, which in turn can be directly 

interpreted to understand how the input features change the output model 

prioritisation. Also, in the direct comparison between multiclass classification and 

regression, regression can consider ordinal data while the classification applied in 

chapter 3 will only consider categorical groups. From a ML perspective this allows 

for the loss function calculated on each training data iteration by a model to consider 

ordinal error rates133, as opposed to only correct or incorrect classifications, giving a 

model a better chance of getting closer to the true values of ordinal groups. These 

benefits of a regression analysis justify its exploration in gene prioritisation. However, 

it should be noted that, as regression is not predicting predefined classes and is instead 

aiming for prioritisations as close to the original/true prioritisation as possible, it 

cannot be directly aware of class imbalance and so is still susceptible to overfitting 

despite its advantages134. 
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In this chapter. I explore the optimisation of a regression analysis ML framework, 

informed by the results of chapters 2 and 3, to finalise a methodology that can prioritise 

most likely BP genes post-GWAS for further investigation. 

 

4.2 Methods 

4.2.1 Data Collection and Pre-processing 

From exploratory data analysis to output model scoring of the trained top-performing 

model, all steps of the machine learning pipeline were conducted using Python 

(v3.8.5). The BP GWAS data that underwent pre-processing and feature selection was 

fully described in chapter 2. From the 7 million variants that were annotated to genes, 

these genes had 114 features collected that were assessed for missingness and 

correlation, undergoing feature cleaning and selection described in chapter 2. Features 

were removed if found to be missing for all genes by >25%. Features with a pearson’s 

correlation coefficient >0.9 and not meeting in i.i.d assumptions between train and test 

data were also removed (i.i.d testing found in https://github.com/hlnicholls/PhD-

Thesis/tree/main/Chapter4/Machine%20learning/).  

 

Different correlation thresholds (0.85 and 0.99) were also tested for feature cleaning 

(test runs included in https://github.com/hlnicholls/PhD-Thesis/tree/main/Chapter4). 

The initial feature removal resulted in 20 features entering feature selection. The 20 
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features were imputed using random forest imputation (using the missingpy package, 

v0.2.0) and underwent feature selection using the BorutaShap package (v1.0.13).  

 

4.2.2 Training Data 

Genes used in the training data, that were labelled with one of 3 gene groupings 

between most likely, probable and least likely to affecting BP in previous chapters 2-

4, were scored with values between 0 to 1 for regression analysis. Firstly, the genes 

known to interact with BP drugs, curated by an expert in the cardiovascular field 

(herein referred to as BP-regulator genes, that were labelled as most likely BP genes 

in multiclass classification) were scored at 1 (Appendix A Table 4). Genes were 

assigned a score of 0.75 if they were considered probable to affect BP (genes labelled 

as probable in multiclass classification, herein referred to as text-mining genes 

Appendix A Table 6). Finally, the genes labelled as least likely BP genes, as defined 

in chapter 2, were given a score of 0.1. 

 

These three scorings provided 293 training genes (51 BP-regulator genes scored at 1, 

149 text-mining genes scored at 0.75, and 93 least likely BP genes scored at 0.1) 

(Appendix C Table 1). Scores 1, 0.75 and 0.1 were designated to reflect the degree of 

certainty provided by the grouping criteria, with multiple scoring intervals tested on 

ML performance (such as 1, 0.6 and 0.1; 1, 0.5 and 0; 1, 0.75 and 0.1 – Appendix C 

Table 2, with all benchmarking test runs also included in 

https://github.com/hlnicholls/PhD-Thesis/tree/main/Chapter4). Each scoring scale for 

the three gene groups had fourteen ML models benchmarked - further described in the 
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next section (4.2.3) - with the best ML performance selecting the final scoring to use 

in further analysis. 

 

4.2.3 Machine Learning Model Benchmarking Methods 

Fourteen models were benchmarked: random forest, gradient boosting, extreme 

gradient boosting, catboost, lightgbm, decision tree, extratrees, k-nearest neighbours, 

support vector regressor, linear regression using elastic net and LASSO, a voting 

model and a stacking model both consisting of all other models, and a bagging model 

using the top-performing model (extreme gradient boosting). All models except 

extreme gradient boosting, lightgbm, and catboost were applied using scikit-learn 

(v0.23.2), and extreme gradient boosting was applied from the xgboost package 

(v1.2.0), lightgbm using the lightgbm package (v3.3.2), and catboost using the 

catboost package (v1.0.6). Each model underwent hyper-parameter tuning using a 

Bayesian optimisation to tune hyper-parameters and nested 5-fold cross-validation 

repeated three times - giving 15 model performances to take average and median 

assessments from. The 15 folds of training and test data underwent i.i.d (independent 

and identically distributed) assumptions testing using the kolmogorov-Smirnov test, 

finding only GDI scores to have significant differences – with this feature not being 

selected for final model benchmarking. Model performance was evaluated with r2, 

predicted r2, mean squared error, mean absolute error, and explained variance to select 

the top-performing model for further analysis. The top-performing model was then 

chosen to prioritise the remaining BP-genes that were not in the training data 
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(n=1,804), scoring the genes on a continuous scale. The output prioritised genes could 

then undergo downstream analysis (described in 4.2.4). 

 

The top-performing model, XGB, also underwent interpretation using the SHAP 

package26 (v0.36.0), providing feature importance values both globally for overall 

model performance and individually for each gene. Plots of the feature importance 

(for both overall predicting and individual predictions) were created alongside feature-

feature interactions. 

 

4.2.4 Gene Prioritisation Analysis 

After ML prioritisation, an algorithm was developed to select the top prioritised gene 

per locus (genes within a 500kb+/- region of sentinel SNPs – SNPs with a GWAS p-

value <5x10-8). This algorithm enables tiebreaking gene selection for when XGB 

scores are close (e.g., < 0.01 difference between scores) for multiple genes in a locus 

and offers a failsafe step to select genes that may have false negative prioritisation by 

XGB but still have strong evidence of a BP relationship. This strategy combines the 

XGB scores with supporting PPI information (PPI data not used in the model) to select 

the most likely BP gene(s) at a locus. The algorithm consisted of seven steps:  

1) If there is a training gene scored at 1 (a gene labelled as most likely to impact 

BP) in the locus that gene is retained. 

2) The top-scored gene per locus is selected if the score is greater than +1 

standard deviation (SD) of the ML model score distribution for all genes at 

that locus. 
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3) If no genes are more than +1 SD and only one gene has a score greater than 

the average score of that locus, then that gene is selected. 

4) If multiple genes have a higher-than-average score at their locus, then all 

genes with scores larger than the average are selected to be compared with 

PPI filtering.  

5) The gene with the largest number of PPIs directly with known BP genes is 

selected. 

6)  If more than 1 gene has equal direct PPIs, then the gene with the largest 

number of secondary PPIs of BP genes (interactors of the gene that interact 

with interactors of the known BP genes) is selected.  

7) If the genes have both equal direct and secondary PPI counts, then the 

multiple genes are all selected for that locus. 

 

All genes prioritised (including training genes scored at 1 and 0.75) entered this gene 

selection algorithm. Application of this selection algorithm gave 768 loci with 794 

genes selected to enter enrichment analysis (19 loci having more than one gene 

selected per locus). These 794 genes selected per loci are herein referred to as the 

“selected-genes”. 

 

I investigated the genes scored > 0.8 by XGB - herein referred to as the “highly-scored 

genes” - and the selected-genes in downstream analysis by investigating their 

distributional differences for several collected annotations using the Mann-Whitney U 
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test in R and plotting their gene expression across all tissues in GTEx (v8) using 

ComplexHeatMap (v2.6.2). Clustered gene identified on plotting GTEx analysis were 

further explored in STRINGdb (v11.5). The R package GeneOverlap (v1.30.0) was 

used to perform hypergeometric tests on gene hits in IMPC mouse model phenotypes, 

testing the overlap of gene hits for the highly-scored genes and the selected-genes 

against the total number of genes in each phenotype in comparison to a total 1,875 

genes annotated in IMPC. I also explored gene enrichment using the R package 

enrichrplot (v1.14.1).  

 

I collected Kyoto Encyclopedia of Genes and Genomes (KEGG)  pathways from the 

2021 KEGG database within Enrichr116 and compared pathway enrichment in four 

groups: the selected-genes, the highly-scored genes, the genes containing sentinel 

SNPs47 GWAS, and the BP genes used in training (BP-regulator genes and text-

mining genes scored at 1 and 0.75 respectively). KEGG gene enrichment analyses 

were visualised using ComplexHeatMap (v2.6.2). On investigating the interacting 

genes within the most significantly enriched pathways, I plotted pathway interactions 

and overlaid the druggability of genes from the Drug Gene Interaction database 

(DGIdb), showing interactive genes in BP pathways that are also potential drug 

targets. 

 

Gene-drug interactions were taken from DGIdb and drugs with BP side effects were 

identified using Side Effect Resource (SIDER)135 and the British National Formulary 

(BNF). Genes with encoded protein-protein interactions with proteins involved in drug 

mechanisms were recorded using STRINdb. Total DGIdb recorded drug interactions 
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were plotted using Circlize (v0.4.15) in R. SIDER was used to extract all the drugs 

with BP side effects by searching for ‘hypotension’ and ‘hypertension’ terms in the 

data resource. 555 of drugs with hypertension side effects were downloaded and 660 

drugs for hypotension were downloaded. These drugs were queried in DGIdb to 

identify their gene-drug interactions, identifying genes also prioritised by XGB. 

DGIdb collates crowdsourced databases, each with varying methods of curating gene-

drug interactions136. The level of validation differs between gene-drug interactions; 

however, all interactions were reported to be able to identify those of high interest. 

 

4.2.5 Machine Learning Prioritisation Methods Comparison 

The ML method developed was compared with other methods applying ML for gene 

prioritisation (OpenTargets Genetics L2G137, Mantis-ml33, ToppGene 138, and 

GPrior19). OpenTargets Genetics L2G scores were already predicted for the Evangelou 

et al. (2018) GWAS and available to download from the OpenTargets web-interface137 

- with L2G scores being provided for the three BP traits (SBP, DBP and PP) 

individually. GPrior, Mantis-ml and ToppGene required an input of positive genes, 

being given the 51 genes – most likely labelled BP training genes (scored at 1 for 

regression analysis) as positive examples19, 33, 138. They then required different 

parameters run. ToppGene only required the gene list to be prioritised as input, all 

other parameters were set to their default training parameters138. Mantis-ml required 

the phenotype term of interest input alongside any exclusion terms33 – for this we input 

‘blood pressure’ and ‘hypertension’ whilst excluding ‘pulmonary hypertension’. 

GPrior is the only method that allows the user to input their own features19, and so for 
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this method we input the features also used by our XGB model corresponding with 

our gene list to be prioritised.  

 

XGB prioritisation was also compared with the commonly used gene-based test 

MAGMA (multi-marker analysis of genomic annotation)139. Gene-based tests 

aggregate associations across a gene to calculate their statistical significance, with 

aggregation enabling improved statistical power and few tests allowing for a lower 

significance threshold when correcting for multiple testing140. MAGMA was ran via 

the FUMA web-interface (https://fuma.ctglab.nl/)141, requiring the GWAS summary 

statistics from Evangelou et al. (2018) as input with the UK Biobank selected as the 

reference panel. 

 

 

  

 

4.3 Results 

4.3.1 Data Pre-processing 

I developed a ML framework for prioritising BP-associated genes post-GWAS (Figure 

4.1), in which the model aims to interpret biological knowledge of genes in regions 

using a range of data types such as genetic (e.g., gene expression across tissues in 

GTEx), epigenetic (e.g., methylation and DNase sites), and phenotypic (e.g., Exomiser 
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scores that are calculated using clinical phenotype terms for BP). I applied this 

framework to the UK Biobank BP-GWAS performed by Evangelou et al. (2018), in 

which over 7 million SNPs were analysed in over 750k individuals. Genes were 

curated and annotated to act as ML training data (n=293), with each gene receiving a 

score for regression analysis. Eight features (HIPred, pLI, Exomiser mouse scores, 

IPA BP annotation, SDI, and gene expression from the liver, pituitary, and EBV-

transformed lymphocytes) were selected and used as model input (Figure 4.2), with 

benchmarking fourteen models on repeated nested cross-validation. From the selected 

features only one feature (pituitary gene expression) was in a correlating pair r2>0.9, 

with the other correlating feature in the pair being removed (Appendix A Table 8). 

After model benchmarking, the top-performing model (XGB) was fitted to the training 

data and the 1,804 BP-genes - that were taken from the GWAS47 and were not included 

in the training data - were then prioritised by that model for further analysis. 
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Figure 4.1. Overview of the Gene Prioritisation Framework. Blood pressure 

genome-wide association study (BP-GWAS) variants tested or included in the analysis 

by Evangelou et al. (2018) were annotated to genes and evaluated by benchmarked 

machine learning. Data pre-processing involved annotating variants to genes from the 

whole GWAS and collecting gene-level annotations from several databases. The genes 

were then filtered to identify select subsets of BP-genes (with linkage disequilibrium, 

LD, r2 > 0.8 and a p-value <5x10-8) and non-BP genes that are genes least likely to 

affect BP (selected by meeting criteria of: not in LD, p-value >0.15, not within 500kb 
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+/- loci and no direct or secondary protein-protein interactions with BP genes, with 

interactions defined by experimentally measured interactions at > 0.15 confidence in 

STRINGdb, n=93). A subset of the BP-genes was categorised in two groups to be used 

in training data depending on if they met selection criteria: most likely labelled BP 

genes (BP-regulator genes with clinical evidenced, n=51), and probable labelled BP 

genes (text-mining genes with published evidence of BP interactions, n=149). These 

select groups of BP-genes (n=200) and non-BP genes (n=93) create the training 

dataset and are each assigned scores for regression analysis. After model 

benchmarking the unscored BP-genes that did not meet the training dataset criteria are 

those to be predicted by the top-performing model. The top-performing trained model 

(extreme gradient boosting) was then used for gene prioritisation, with the genes and 

their corresponding scores being assessed within their loci to select the best gene(s) 

per locus. The prioritised genes underwent downstream analyses and were compared 

with other prioritisation methods. 
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Figure 4.2. Overall feature importance for all features by BorutaShap. 102 

features pass data cleaning (removing heavily correlating or missing features) to then 

enter BorutaShap feature selection which applies the boruta algorithm measured by 

SHAP feature importance. The box plot shows all 20 cleaned features (<25% 

missingness and <0.9 r2) and their measured importance by BorutaShap over 200 

iterations of the BorutaShap algorithm (using z-scores), ordered from left to right in 

descending feature importance. Green boxes indicate selected features, red boxes 

indicate rejected features, and blue boxes indicate shadow features. 

 

 



 

 

 

138 

4.3.2 Model Benchmarking 

From the fourteen models benchmarked, XGB was selected as the top-performing 

model to use for further analysis. All models were evaluated using repeated 5-fold 

nested cross-validation to calculate median performances. Assessment of performance 

was measured by metrics r2, predicted r2, mean squared error, root mean square error, 

explained variance, and median absolute error (Table 4.1). XGB was selected as the 

top-performing model to use for further analysis. The XGB model had the highest 

median r2 (0.744) (Figure 4.3) and predicted r2 (0.897). The predicted r2 importantly 

measures how well the model will generalise to new data, which led to XGB being the 

selected model for further analysis. XGB was closely followed by other gradient 

boosting models such as CB, GBM, and LGBM (with 0.721, 0.718, and 0.71 median 

r2 respectively). 

Figure 4.3. Model benchmarking performance on repeated nested cross-

validation. Fourteen models were benchmarked: extreme gradient boosting (XGB), 

gradient boosting (GBM), catboost (CB), LightGBM (LGBM), random forest (RF), 

decision tree (DT), Extratrees (ET), K-nearest neighbours (KNN), support vector 

regressor (SVR), two linear models using regularisation of elastic net and LASSO, 

respectively, and three meta-ensemble methods – stacking, bagging, and voting 



 

 

 

139 

models. The model performance was assessed on 5-fold nested cross-validation 

repeated three times.  

Table 4.1. Model benchmarking performance. Median performance comparison on 

nested 5-fold cross-validation across several metrics - r2, predicted r2, mean squared 

error, root mean square error (RMSE), explained variance, and median absolute error. 

Only predicted r2 measurements were not median calculations but calculated from 

each model’s performance after hyper-parameter tuning. The fourteen models 

benchmarked were: extreme gradient boosting (XGB), gradient boosting (GBM), 

Model Median 
r2 

predicted 
r2 

Mean 
Square 
Error 

RMSE Explained 
Variance 

Mean 
Absolute 

Error 

XGB 0.744 0.897 0.031 0.176 0.745 0.125 

GB 0.712 0.968 0.035 0.188 0.714 0.131 

CB 0.721 0.886 0.034 0.184 0.738 0.138 

LGBM 0.71 0.85 0.033 0.183 0.719 0.138 

RF 0.664 0.752 0.04 0.2 0.667 0.145 

DT 0.483 0.582 0.057 0.241 0.498 0.146 

ET 0.558 0.589 0.054 0.231 0.564 0.185 

KNN 0.636 0.663 0.044 0.21 0.638 0.133 

SVR 0.203 0.233 0.088 0.297 0.294 0.248 

LASSO 0.254 0.19 0.087 0.296 0.258 0.26 

ElasticNet 0.274 0.2 0.083 0.288 0.303 0.254 

Stacking 0.659 0.83 0.042 0.205 0.666 0.127 

Bagging 0.71 0.849 0.035 0.188 0.722 0.137 

Voting 0.646 0.784 0.04 0.2 0.664 0.155 
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catboost (CB), LightGBM (LGBM), random forest (RF), decision tree (DT), 

Extratrees (ET), K-nearest neighbours (KNN), support vector regressor (SVR), two 

linear models using regularisation of elastic net and LASSO, respectively, and three 

meta-ensemble methods – stacking, bagging, and voting models.  

 

SHAP values showed Liver GTEx expression, haploinsufficiency scores (HIPred), 

and mouse Exomiser scores were the most important features for the XGB model 

(Figure 4.4a). All the 51 most likely BP training genes (scored at 1) were successfully 

scored highly by the model (with a minimum score of 0.68 a median score of 0.88 and 

all genes scored above SHAP’s expected baseline score of 0.59) (Figure 4.4b). On 

investigating how feature-feature interactions influenced the model several features 

were shown to interact with one another. For example, the interaction between 

haploinsufficiency scores (HIPred) and probability of being loss-of-function intolerant 

(pLI ExAc) had the strongest influencing interaction for XGB, followed by liver 

expression interacting with mouse Exomiser and HIPred scores (Figure 4.5). 
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Figure 4.4. Shapley additive explanation of model decision-making. a SHapley 

Additive exPlanation (SHAP) summary plot of the top-performing model (extreme 

gradient boosting) predictions of all training genes (n=293) and how they were each 

influenced by each feature. The SHAP value on x-axis indicates the direction of model 

influence from that feature for each gene (e.g., a higher SHAP value indicates a higher 

output model prioritisation). The colour-coding of points (genes) indicates whether 

their feature value was high (red) or low (blue), and the ordering of features on the y-

axis is by descending feature importance overall. b SHAP summary plot of the 51 

most likely labelled BP genes (scored at 1) predictions, visualising the model’s use of 

features for predicting each of the gene’s predicted scores (on the x-axis) – with these 
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also being plotted against a black vertical line which is the average model score for all 

training data (0.59).  

Figure 4.5. Shapley additive explanation of feature interactions. Absolute SHAP 

value of feature-feature interactions, measuring the impact feature interactions had on 

model decision-making overall, with a red colour gradient indicating a larger influence 

on the model and a blue colour gradient indicating less to no model influence.  

 

4.3.3 Gene Prioritisation and Downstream Analyses 

Once benchmarked and fitted to the training data, the top-performing model, XGB, 

was used to prioritise all BP-genes (n=2,004 with r2 > 0.8 LD and p-value < 5x10-8) 

(Appendix C Table 3). I investigated all the prioritised genes in two groups: the highly-
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scored genes and the selected-genes (Appendix C Table 4). I investigated these gene 

groups by assessing intolerance metrics which were not used by the XGB model due 

to missingness > 25% or not passing feature selection. The Mann-Whitney U test was 

used to give an indication as to whether the highly prioritised genes by XGB had a 

significantly different distribution for these annotations in comparison to other gene 

groups. The highly-scored genes had significantly different values on Mann-Whitney 

U tests in comparison to genes with an XGB score < 0.8 for gene essentiality 

(measured by Avana mean), mutational damage (measured by the GDI, gene damage 

index), genic intolerance (measured by RVIS, residual variation intolerance score) and 

level of ubiquitous expression across cell types (measured by PanglaoDB) (Appendix 

C Table 5, Figure 4.6). The most significant difference was the Avana mean, a gene 

essentiality measure, with a Mann-Whitney U test adjusted p-value of 7.8x10-77 when 

comparing the annotation for the highly-scored genes against all other XGB scored 

genes (Appendix C Table 5). The highly-scored genes had negative Avana mean 

values indicating that more essential genes were highly prioritised (Figure 4.6).  
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Figure 4.6. Distributions of annotations for genes prioritised > 0.8 versus genes 

scored < 0.8 (a) and genes > 0.8 versus total database annotations (b). Annotations 
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not used in machine learning were plotted comparing genesets across several 

measures: mutation damage (GDI), gene essentiality (Avana mean), genic intolerance 

(RVIS), and ubiquitous cell-type expression (panglaoDB). Genes scored > 0.8 had 

their annotations compared against that of genes < 0.8 (a), and that of the total genes 

in database for each annotation (b). The Mann-Whitney U test identified significance 

differences in distributions. 

 

When comparing the selected-genes, 329/434 of the highly-scored genes by the model 

passed the selection strategy to be the selected genes per their locus. Exploring Mann 

Whitney U tests for the selected-genes showed significant differences in the 

distribution of several measures (Appendix C Table 5, Figure 4.7). The selected-genes 

had the most significant difference on comparing their RVIS scores with that of all 

other genes scored by XGB (adjusted p-value = 3.41x10-7) (Appendix C Table 5, 

Figure 4.7). The selected-genes had lower RVIS scores than all other scored genes 

(Figure 4.7), indicating that genes with more intolerance to variation were highly 

prioritised by XGB.  
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Figure 4.7. Density distributions of annotations for selected genes per locus 

versus all other scored genes (a) and selected genes per locus versus total database 
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annotations (b). Annotations not used in machine learning were plotted comparing 

genesets across several measures: mutation damage (GDI), gene essentiality (avana 

mean), genic intolerance (RVIS), and ubiquitous cell-type expression (panglaoDB). 

Genes scored > 0.8 had their annotations compared against that of genes < 0.8 (a), and 

that of the total genes in the database for each annotation (b). The Mann-Whitney U 

test identified significance differences in distributions. 

 

Furthermore, I used the International Mouse Phenotyping Consortium (IMPC) 

database142 to explore the gene groups annotated to mouse knockout phenotypes. 

216/434 highly-scored genes have knockout mouse models with 56 of the genes 

having phenotypes relating to BP physiology (e.g., cardiovascular and kidney 

abnormalities, Appendix C Table 6). Enrichment testing for highly-scored genes and 

their overlap with all genes annotated to IMPC phenotypes showed 210 statistically 

significant phenotypes in total (adjusted p-value < 0.01), with “preweaning lethality, 

complete penetrance” being the most significantly enriched (adjusted p-value 

=1.27x10-11) followed by “increased heart weight” (adjusted p-value = 7.45x10-9) and 

“increased circulating cholesterol level” (adjusted p-value = 5.7x10-8) (Figure 4.8, 

Appendix C Table 7). For the selected-genes, 375/794 genes have knockout models, 

with 96 of those having phenotypes relating to cardiovascular or kidney abnormalities. 

Enrichment testing for selected-genes overlap with IMPC phenotypes showed 278 

statistically significant phenotypes in total, with “preweaning lethality, complete 

penetrance” also being the most significantly enriched phenotype (adjusted p-value = 

4.31x10-20) followed by “hyperactivity” (adjusted p-value = 1.15x10-12), and 
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“abnormal kidney morphology” (adjusted p-value = 1.27x10-12) (Figure 4.8, Appendix 

C Table 7). 

Figure 4.8. Bar plot of the most frequent mouse knockout phenotypes for highly 

scored genes (a) and for selected genes per locus (b). Each bar indicates the number 

of genes present for each knockout mouse phenotype for that gene group out of the 

total number of genes annotated to each phenotype in the International Mouse 

Phenotyping Consortium (IMPC) database. Each phenotype had hypergeometric 

a 

b 
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testing for adjusted p-value significance of gene overlap. a) Counts of highly scored 

genes (scored > 0.8) by XGB and their phenotype hits in the IMPC are coloured in 

purple and b) counts of selected genes’ phenotype hits were coloured in blue.  

 

Overall COL15A1 was the top scored predicted gene (0.978) with other highly 

prioritised predicted genes by XGB including: SMOC2I (0.958), MLIP (0.956), SGCD 

(0.945), CHRM2 (0.94), ELK3 (0.929), SNTB2 (0.929), ARHGEF26 (0.921), PTPN3 

(0.92), NOTCH3 (0.919) (Table 4.2). Several of these genes have had experimental 

and in vivo model research investigating their roles in BP143 and related cardiovascular 

conditions such as cardiomyopathy144, pulmonary arterial hypertension145, and 

atherosclerosis146. Furthermore, 62 of the predicted genes have interactions, as 

recorded by DGIdb, with drugs that have potential BP side effects (recorded by 

SIDER) (Appendix C Table 12). For example, CHRM2 is listed as interacting with 6 

drugs with either potential hypertensive or hypotensive side effects (Appendix C Table 

8). From the selected-genes that have encoded proteins that interact with any kind of 

drug, regardless of BP side effects, there are 2,478 total interactions (Figure 4.9, 

Appendix C Table 9). 743 genes have interactions with at least one drug mechanism, 

while 548 interact with drugs with a BP indication. 246 ranked-genes do not interact 

with any drug with a BP indication, while 199, 176 and 173 ranked-genes respectively 

interact with 1-2, 3-4 or >5 drugs with BP mechanisms. The pathways that were 

represented in these four groups of genes were evaluated compared to all selected-

genes (Fig. 6c).  From each of the BP drug mechanisms, 4.5-26.1% of their total 

interactions recorded in STRINGdb are with selected-genes (Table 4.3).  
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Table 4.2. Description of the top ten prioritised genes. The top ten scored genes by 

XGBoost (XGB) and descriptions of: their druggability as annotated by the Drug-

Gene XGB 

Score 

Potential 

Druggability 

Most 

Significant 

Pathway 

(KEGG) 
 

Locus Gene(s) Median 

GWAS 

p-value 

OpenTargets 

Score 

COL15A1 0.978 Druggable 

genome 

Protein 

digestion and 

absorption 

COL15A1 1.13E-16 0.89 

SMOC2 0.958 Druggable 

genome 

NA SMOC2 4.45E-07 0.82 

MLIP 0.956 NA NA MLIP 9.17E-11 0.79 

SGCD 0.945 NA Viral 

myocarditis 

SGCD 1.15E-08 0.53 

CHRM2 0.94 Druggable 

genome 

Cholinergic 

synapse 

CHRM2 1.37E-08 0.86 

ELK3 0.929 Transcription 

factor 

NA CDK17, ELK3 2.72E-09 0.3 

SNTB2 0.929 NA NA CHTF8, CIRH1A, 

SNTB2, TERF2 

4.15E-10 0.28 

ARHGEF

26 

0.921 NA Bacterial 

invasion of 

epithelial cells 

ARHGEF26, 

ARHGEF26-AS1, 

RPL21P42 

1.63E-12 0.88 

PTPN3 0.92 Druggable 

genome 

phosphatase 

NA PTPN3 7.15E-12 0.42 

NOTCH3 0.919 Clinically 

actionable 

Notch 

signaling 

pathway 

NOTCH3 6.23E-17 0.74 
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Gene Interaction database, their most significant KEGG pathway, their other locus 

gene(s), their median GWAS p-value, and their prioritisation scored predicted by 

OpenTargets. 

 

 

 

Figure 4.9. Drug mechanism overlaps between selected genes per loci. a Chord 

diagram of fifteen categories of drug mechanisms annotated as interacting with the 
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selected genes per loci. Each sector denotes a drug mechanism with the numbering per 

section representing the number of genes interacting with that drug mechanism that 

also overlap with another mechanism. Each mechanism is also annotated with the 

percentage of interactions between selected-genes out of all total interactions per 

mechanism. b barplot of the number of drug mechanism overlaps counted across all 

genes, e.g., showing only one gene had interactions with 14/15 drug mechanisms. 203 

genes from the 794 selected genes at their loci do not have an overlap with multiple 

mechanisms (interacting with only one drug mechanism) and 51 genes had no 

interactions with any drug mechanisms. c heatmap of enriched pathways for selected-

genes grouped by number of drug interactions by mechanism (genes with no blood 

pressure drug mechanism interaction, genes interacting with 1-2 mechanisms, genes 

interacting with 3-4 mechanisms, genes interacting with more than 5 mechanisms and 

all selected-genes). 
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Mechanism 

Number 

loci 

interactions 

Total Drug 

Mechanism 

interactions 

Total 

(%) 

Other medications 733 16175 4.53 

Other BP medications 313 4989 6.27 

Alpha/Beta Blockers 194 1627 11.92 

ACE Inhibitors 136 1544 8.81 

Renin inhibitors 135 1502 8.99 

Potassium sparing diuretics 130 1376 9.45 

Endothelin/ECE Inhibitors 130 498 26.10 

Angiotensin II receptor 105 996 10.54 

Guanylate cyclase 88 1302 6.76 

Alpha-2 adrenergic receptor 

agonists 79 1197 6.6 

Neprilysin inhibitors 75 980 7.65 

Loop Diuretics 59 675 8.74 

Aminopeptidase A 54 870 6.21 

No mechanism linked 51 NA NA 

Thiazide-like diuretics 49 507 9.66 

Total 2529 
  

Table 4.3. Total number of loci with encoded protein drug interactions across 

drug mechanisms. For each drug mechanism collected, the number of selected genes 

per loci with interacting encoded proteins were counted (giving the number of loci 
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interactions per each drug mechanism). This was compared against the total number 

of protein-protein interactions for each drug mechanism, and the total percentage of 

loci interacting within those total protein-protein interactions was calculated per 

mechanism. 

 

4.3.4 Gene Expression 

I next explored gene expression across all 54 tissues available in GTEx147 for both the 

highly-scored genes and selected-genes (Figure 4.10 and 4.11). For the highly-scored 

genes, k-means clustering found one cluster of genes (DUSP1, S100A4, RRAS, 

CD151, LTBP4, and CAV1) that had high expression in arterial tissues (aorta, coronary 

and tibial arteries), adipose tissue, and the bladder (Figure 4.10). The selected-genes 

identified a group of genes (HLA-B, MYH11, ACTA2, IGFBP7, and TPM2) with a 

similar pattern of high gene expression across the same arterial tissues alongside colon 

and reproductive tissues (Figure 4.11). On analysis in STRINGdb, the GTEx cluster 

for the selected-genes (HLA-B, MYH11, ACTA2, IGFBP7, and TPM2) showed 

MYH11, ACTA2 and TPM2 have PPIs with one another, and they also act in smooth 

muscle contraction and were annotated to arterial diseases - aligning with their 

clustered gene expression in cardiovascular tissues by GTEx.  
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Figure 4.10. Heatmap of gene expression for the most highly expressed genes 

scored > 0.8 for all 54 tissues in GTEx. Gene expression is measured in median 

transcripts per million (TPM) with the 51 known interacting BP used in XGB training 

also marked in black and all other genes marked by grey. 
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Figure 4.11. Heatmap of gene expression for the most highly expressed genes 

selected per loci for 54 tissues in GTEx. Gene expression is measured in median 

transcripts per million (TPM) with the 51 BP-regulator genes used in XGB training 

also marked in black and all other genes marked by grey. 
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4.3.5 Gene Enrichment Analysis 

Pathway analysis showed the highly-scored genes with the most significant pathways 

being cardiovascular-related (e.g., hypertrophic and dilated cardiomyopathies 

followed by cGMP-PKG signalling) (Figure 4.12a, Appendix C Table 10). Pathway 

interactions and the overlaid druggability of genes showed interactive genes in BP 

pathways that are also potential drug targets (Figure 4.12b). For example, SLC8A1 

(scored 0.86 by XGB) interacts in the pathways of cardiomyopathies and cGMP-PKG 

signalling and is also a druggable target (Figure 4.12b). 

 

Figure 4.12. Gene enrichment analysis of prioritised genes. a Heatmap of the top 

20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and b Gene 

interaction network of the top five most significantly enriched KEGG pathways for 

the highly-scored genes. The heatmap a shows more significant values are indicated 

by darker shades of red and both compare four gene groups, composed of: highly-

scored genes (genes with a > 0.8 XGB score), BP training genes (most likely and 

probable labelled BP training genes), selected-genes (genes elected at their locus), and 
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sentinel genes (identified by the Evangelou et al. (2018) genome-wide association 

study). The gene pathway interactions in b have gene nodes colour-coded with higher 

prioritised genes by extreme gradient boosting in dark red and lower scored genes 

scored in light red. Pathway node size indicates enrichment log p-value for each 

pathway node. Square symbols represent whether the gene had druggability recorded 

in the Drug Gene Interaction Database. 

 

4.3.6 Machine Learning Methods Comparison 

All prioritisation methods compared showed positive correlations for prioritising BP 

genes used in the training data (the 51 BP-regulator and 149 text-mining BP training 

genes) and for all predicted genes (the 1,804 genes prioritised by the trained model) 

(Table 4.4, Figure 4.13). The highest positive correlations were for the predicted genes 

(when against GPrior and ToppGene with 0.63 and 0.62 correlations respectively) 

followed by 0.19 correlation for the most likely BP gene group with both OpenTargets 

and Mantis-ml. Whilst all comparisons had a positive correlation, only the correlation 

with predicted genes showed statistical significance, for example, with OpenTargets 

having a p-value of 2.8x10-10 for its 0.18 correlation with XGB predictions. 
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Table 4.4. Comparison of machine learning gene prioritisation methods. Table 

comparing the prioritisation of training genes that were scored as BP-regulator genes 

(scored at 1.0, n=51) or text-mining genes (scored at 0.75, n=149) and predicted 

genes (n=1,804) by several methods in comparison to extreme gradient boosting, 

measured by their correlation (R) for their predicted gene scores.  

 

 

 

 

 

 

 OpenTargets GPrior Mantis-ml ToppGene 

BP-regulator 
genes (scored 

1.0 on 
training) 

0.19 NA 0.19 NA 

Text-mining 
genes (scored 

0.75 on 
training) 

0.14 0.12 0.12 0.16 

Predicted 
genes 0.18 0.63 0.3 0.62 
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Figure 4.13. Prioritisation method comparison on predicting blood pressure 

genes. The extreme gradient boosting (XGB) method was plotted against OpenTargets 

c 
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Genetics locus 2 gene (L2G) score (a), Mantis-ml (b), GPrior (c), and ToppGene (d) 

prioritisation methods comparing gene prediction. The comparison of scores between 

XGB and each method shows how the methods score the BP training genes (the 51 

BP-regulator genes and 149 text-mining BP genes scored at 1 and 0.75 respectively) 

and all other BP genes predicted by the trained model (predicted genes, n=1,804). For 

each plot, the score the XGB model gave to each gene is plotted along the x-axis in 

comparison to the other method’s prediction for each gene plotted on the y-axis. 

Correlation (R) between the two methods for each prediction is calculated alongside 

the p-value significance of the R. The 51 BP-regulator genes are coloured in red, the 

text-mining BP genes are coloured in yellow, and the 1,804 predicted genes are 

coloured in blue. 

 

4.4 Discussion 

The regression approach applied here is, to the best of our knowledge, the first of its 

kind for post-GWAS prioritisation. Regression removes the need for models to 

categorise genes, as is the case in multiclass classification. The curation of non-BP-

genes (labelled as least likely genes in previous chapters and scored at 0.1) also 

develops model knowledge, with predictions made by regression allowing for the 

implication of uncertainty in the least likely gene predictions. I.e., a score of 0 reflects 

definitively negative cases whilst a score of 0.1 indicates a degree of uncertainty that 

can be assessed by the model. However, it should be noted that the underlying class 

imbalance that was prevalent in the ML performances on multiclassification is still 

underlying in the same training data converted to regression analysis. Furthermore, 
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the setting of gene scores for regression (1, 0.75 and 0.1) provides a beneficial ordinal 

understanding of genes for a model, but the exact scoring was based on ML tests of 

multiple scoring intervals and may provide biased predictions if a model is overfitting. 

These adaptations of the framework are difficult to optimise without a further external 

validating dataset that could confirm the benefits of regression over multiclass 

classification and confirm or rule out any overfitting. The benchmarked models 

explored also compared a range of commonly used methods to reach an optimised 

approach. The top-performing model being XGB, and its performance being similar 

to other gradient boosting models (CB, LGBM, and GBM) aligns with previous ML 

prioritisation research post-GWAS19, 33 and research that found XGB and CB are top-

performing models on tabular datasets for supervised learning (when compared 

against 15 other models, including those benchmarked here)129. 

 

On exploring the performance of XGB, SHAP interpretation showed BP-regulator 

genes were predicted based on HIPred followed by mouse Exomiser scores and pLI 

measures as the most important features (Figure 4.3b). The use of these genetic 

intolerance and phenotypic features shows the model highly prioritises genes that are 

more haploinsufficient, have more observed mouse phenotypes relating to BP via 

Exomiser, and have a higher probability of being loss-of-function intolerant genes. 

This model interpretation is also validated by our Mann-Whitney U test analysis 

finding other annotations not used in ML showed that the highly prioritised genes were 

more likely to have intolerant variations and have significantly enriched 

cardiovascular and renal mouse phenotypes (Appendix C Tables 6 & 7) – suggesting 

the model develops a BP-tailored understanding for more informed decision-making. 
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Furthermore, the feature-feature interactions between gene expression features in the 

selected GTEx tissues (e.g., liver and lymphocytes Figure 4.5) have large SHAP 

values alongside that of the gene intolerance and phenotypic features. These 

interactions highlight how the model identifies relevant biological relationships and 

suggests novel directions for downstream analysis to investigate potential BP 

pathways. For example, both the liver and lymphocytes have published roles in BP 

both separately148, 149 and interacting together150. However, this research requires 

further investigation, and the gene prioritisation here presents opportunities for 

specific genetic BP hypotheses focused on these tissues. 

 

Downstream analysis validated the ML approach, highlighting supporting evidence 

for the highest-scored genes and their potential roles in BP. Notably, CHRM2, ELK3 

and NOTCH3 have had research focusing on their roles in BP regulation, with 

downregulation of CHRM2 worsening hypertension in rats151, ELK3 being a repressor 

of nitric oxide synthase152, and NOTCH3 knockout mice having shown vascular 

abnormalities that alter BP120. All of the top ten genes have had either cardiovascular 

or renal research, e.g., SMOC2 has been shown to develop kidney fibrosis (and 

therapeutic silencing of SMOC2 has been shown to maintain kidney function)153. The 

top prioritised gene, COL15A1, encodes the alpha chain of type XV collagen protein 

and has had research relating to cardiomyopathy144 and atherosclerosis146, with it also 

being druggable in the genome (and having an interacting drug ocriplasmin in DGIdb 

that is used to break down fibronectin in vitreomacular adhesion). 
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In comparison, from all 1,804 predicted genes, 62 of them interact with drugs that 

have either potential hypertensive or hypotensive side effects as recorded by SIDER, 

and 52/62 genes were also validated by having hypertensive/hypotensive side effects 

recorded by the British National Formulary (BNF) (Appendix C Table 8). Attention 

deficit hyperactivity disorder and central nervous stimulant drug methylphenidate had 

the most gene interactions (with CORO7, FARP2, SENP3, FXR2, ARHGAP12, and 

ELP5) followed by the BP-lowering angiotensin-receptor antagonist drug candesartan 

(DOT1L, PLEKHJ1, and SULTC3). Nine of the 62 genes (DOT1L, PTPRD, ATXN2, 

CBX1, TBX2, RRP1B, ATAD5, PLEKHJ1 and SULT1C3) were shown by DGIdb to 

interact with drugs indicated for hypertension treatment by the BNF. For example, 

PTPRD (scored 0.853 by XGB) interacts with calcium channel blocker verapamil - 

used to treat hypertension and angina (Appendix C Table 8). On investigating this 

interaction, Gong et al. (2015) found a PTPRD polymorphism (rs4742610) associated 

with resistant hypertension in those taking verapamil, suggesting this gene may be 

beneficial in understanding clinical BP response. Overall, each of these examples 

validates the ML framework and puts forward new avenues for further translational 

research. 

 

From the top 10 prioritised genes, DGIdb showed CHRM2 has an agonistic interaction 

with antidepressive drugs (olanzapine, doxepin and desipramine) - with SIDER and 

BNF both identifying olanzapine and doxepin as having hypotensive side effects 

(Appendix C Table 8). Padmanabhan et al. (2021) have also written about CHRM2 

amongst other BP loci that have interactions with antidepressive drugs that have BP 

side effects, suggesting such drugs could have a multi-purpose use for treating those 
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with depression and hypertension155. CHRM2 is a muscarinic acetylcholine receptor 

and its potential link to BP (both via its indicated drug interactions and by research in 

rats that has shown its downregulation in combination with other genes worsens 

hypertension156) suggests that focusing on such nervous signalling roles possibly 

underpinning BP may highlight targets with therapeutic potential and novel biological 

insights that are not in the cardiovascular and renal sites of action for BP. 

 

Another notable gene-drug interaction in DGIdb was INSR (scored 0.863 by XGB) 

interacting with the migraine drug topiramate which has a hypotensive side effect 

(recorded in both SIDER and BNF) and has had clinical research finding it lowered 

BP in obese patients with essential hypertension157. The interaction between INSR and 

topiramate has also been focused on in a pharmacogenetic study, finding genetic 

variants in INSR impacted the effectiveness of topiramate to treat weight loss and that 

insulin-related genes regulated topiramate response158. These results imply an 

impactful relationship between INSR and topiramate, and that this interaction may 

relate to the drug’s potential effects on BP.   

 

The total interactions between each selected-gene’s encoded proteins and drug 

mechanisms were annotated, showing the potential novel drug targets within BP 

GWAS loci awaiting discovery (Figure 4.5, Appendix C Table 9). 246 of selected-

genes genes interact with 4 to 14 drug mechanisms each, suggesting those genes 

possibly have more ubiquitous effects, whilst most genes (n=548) had 1-3 interactions 

that involve both BP-related and non-BP-related drug mechanisms. Three genes had 

interactions between BP drug mechanisms only (BRD1, MFSD6, and PLEKHG1), 
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suggesting these could have more targeted drug effects for further investigation, 

however, these genes are not annotated with any interacting drugs, as recorded in 

DGIdb. Examining the selected-gene interactions at each BP drug mechanism also 

presented subsets of genes with translational potential. For example, 9.3% of the total 

gene-drug interactions for calcium channel blockers recorded in STRINGdb interact 

with selected-genes (Appendix C Table 9), which make up 194 of the 768 loci 

investigated here, validating their prioritisation, and highlighting these genes for 

further targeted study. 

 

Furthermore, the gene expression analysis found MYH11 (scored 0.915 by XGB), 

ACTA2 (scored 0.9 by XGB), and TPM2 (scored 0.865 by XGB) as highly expressed 

in cardiovascular tissues and have interconnected PPIs. In comparison, studies have 

found all three of these genes are coexpressed in vascular smooth muscle cells to 

weaken the aortic wall159 and to be markers of pulmonary hypertension160. I also 

analysed these clustered genes in DGIdb, finding MYH11 and ACTA2 are both 

clinically actionable drug targets, suggesting these highly prioritised genes and their 

interaction network also offer targeted directions of investigation with putative drug 

targeting for BP. 

 

In total, 794 genes were selected per loci as most likely BP genes with 747 of them 

having a model score >0.5 and 515 of them also being genes associated from sentinel 

SNPs by Evangelou et al. (2018) (Appendix C Table 4) – indicating that the 

prioritisation results align with the genes’ significance found in their GWAS summary 

statistics. The most significantly enriched pathways for the highest prioritised genes 
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are also known BP pathways (e.g. renin secretion161 and cGMP-PKG signaling162 – 

Figure 4.12, Appendix C Table 10), validating the model’s prediction of most likely 

BP genes but also showing the circular pattern recognition underlying ML prediction, 

as seen in chapter 3. However, novel genes were shown to be highly prioritised in 

these established pathways, such as SLC8A1 (Figure 4.12b), which is annotated as a 

druggable target in DGIdb, and encodes a Na+/Ca2+ exchanger that has had multiple 

studies linking its function to hypertension163, 164. 

 

When comparing the XGB prioritisation to other ML methods, the approach was 

validated by positive correlations for all gene predictions. The OpenTargets L2G score 

overall, followed by Mantis-ml, had the highest positive correlations for all training 

genes across BP traits (Table 4.4). This may be due to both methods using XGB 

(although differing in using classification or regression) and both being optimised to 

the data of individual GWAS, supporting bespoke data collection. Uniquely, the XGB 

method developed in this chapter incorporates phenotypic data specific for BP and 

positive training examples that were curated specifically from the BP GWAS 

depending on whether they had an interacting BP drug. Meanwhile, OpenTargets L2G 

uses co-localisation and fine-mapping data amongst their features, suggesting that 

highly prioritised genes by both methods have a strong evidence base across different 

resources indicating their link to BP. For example, there are 286 genes both methods 

score >0.7 and 76 genes both methods score >0.8 (Appendix C Table 11), creating 

tailored gene lists for functional follow-up. 
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Furthermore, the XGB’s prioritisation was also compared against gene prioritisation 

using MAGMA139 (Appendix C Table 12). This comparison showed that the 

MAGMA p-values for each BP trait had no strong positive or negative correlation 

with XGB prioritisation or the median GWAS p-values (Appendix C Table 12), with 

no absolute correlation value greater than 0.1. However, on investigating the log-

transformed p-values, and thereby comparing the prioritisation methods on the same 

scale, each BP trait had positive correlations between 0.33 – 0.44. These correlations 

highlight agreement between the methods and suggest that their overlapping highly 

prioritised genes warrant further investigation. For example, 196 of the 1,804 

prioritised BP genes had significant MAGMA and GWAS p-values (less than 5x10-8 

as also used MAGMA’s default p-value threshold) for all three BP traits. Furthermore, 

103 of those 196 genes are also selected-genes and 55/196 are highly-scored genes.  

 

As XGB does not use any GWAS summary statistics as input features the lack of 

overlapping information used by MAGMA and XGB offers the ability to use both 

methods to have a more selective gene list - utilising concordance across the 

prioritisation methods to identify genes for further investigation. The overall lack of 

correlation between MAGMA and XGB prioritisation or GWAS p-values emphasizes 

the differences in the underlying methodology. For example, MAGMA uses linear 

regression to estimate the effect size of each genetic variant on the phenotype and then 

aggregates these effect sizes across all variants within each gene, outputting gene-level 

statistics139. Meanwhile, XGB uses optimised decision trees for non-linear pattern 

recognition from various datatypes measured across molecular scales. Additionally, 

XGB was developed to prioritise the 1,804 associated genes (from 47,249 SNPs in LD 
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r2 > 0.8 and with p-values less than 5x10-8) while MAGMA is run on the whole GWAS 

summary statistics (approximately 7 million variants and their 33,847 annotated 

genes). To create a more direct comparison with equal gene subsets, MAGMA was 

run on only the 47,249 SNPs in LD r2 > 0.8 and with p-values less than 5x10-8. This 

test showed that MAGMA had an extremely high correlation with the median GWAS 

p-values directly (0.998), alongside a 0.37 correlation when comparing log-

transformed p-values, and a 0.025 correlation with the XGB prioritisation. However, 

MAGMA is designed to be run on whole GWAS summary statistics, making this 

comparison less reliable, but it does represent that the data size and subset differences 

between MAGMA and XGB may impact their interpretation of gene significance, 

making them difficult to directly compare. Moreover, when benchmarking the 

methods, linear regression methods were the lowest performers - with 0.27 median r2 

and 0.19 predicted r2 for linear regression using elasticnet and 0.25 median r2 and 0.19 

predicted r2 for linear regression using LASSO. This performance highlights the non-

linear patterns within the data curated for ML and emphasizes that different gene 

prioritisation methods may have different strengths and weaknesses depending on the 

specific data.  

 

Overall, the ML prioritisation provides a different interpretation of potential BP genes 

in comparison to MAGMA, presenting an opportunity to use these methods in parallel 

to validate highly prioritised genes for functional follow-up. To explore the potential 

of this ML prioritisation further, a re-application of the framework was also developed 

for the post-GWAS analysis of blood lipid traits (detailed in full in Appendix D). 
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While this chapter successfully optimises the ML framework to achieve promising 

gene prioritisation, limitations are still underlying in the methodology. For example, 

similar to chapter 3, XGB prioritises genes that are enriched for already known BP 

pathways, as proven by gene enrichment analysis (Figure 4.5). While this validates 

the model’s decision-making it also indicates less opportunity for identifying novel 

insights downstream with enough evidence to justify functional research. As more 

functional data becomes available there may be more insight into important genes and 

mechanisms that can then act as inputs to increase the current training data in size and 

quality. Also, the gene per locus selection method was developed to combat situations 

where a ML model may score genes closely at a locus, without large score margins 

between genes that clearly identify one most likely causal gene at a locus. With the 

use of BP gene PPI data for the gene(s) selection, this filters out less likely top genes 

per loci via a known BP biology filter. However, this selection method is also limiting, 

with PPI information relating to known BP genes abetting circular selection for genes 

with more PPI evidence. Additionally, given that there are few genes with interacting 

BP drugs, and with the model using these genes in its training data, it was not possible 

to create an external validation set for further model testing. This testing will be 

required as new BP-regulator genes are discovered in order to assess any inaccurate 

modelling assumptions165. Curation of the non-BP-genes that are least likely training 

genes with any certainty is also a challenge across diseases, despite stringent criteria 

for selecting our non-BP-genes, there is a risk of false negative examples being used 

in training. Also, for our downstream analysis of prioritised genes, it should be noted 

that the mouse Exomiser Scores are derived partly using IMPC data, indicating 

circularity in the mouse phenotype analysis.  
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Overall, this research puts forward a novel method to navigate and interpret most 

likely causal signals within the thousands of BP-associated genes being identified by 

GWAS. It identifies new genes of interest from the GWAS whilst also validating 

previous downstream analysis. The method provides an opportunity as a 

complementary tool to support fine-mapping and functional investigation, ultimately 

leading to increased evidence available for BP GWAS and an enhanced understanding 

of causality within loci. Furthermore, the performance of this ML framework suggests 

that it could also have success when re-applied to other phenotypes, especially other 

traits that have undergone large GWAS research and so present ample opportunity for 

high-quality training gene curation. Re-applying the methodology developed here to 

a trait with similar quality training data would also validate the performance seen in 

this chapter and suggest the framework has potential as an automatable application 

across phenotypes. 

 

5 Discussion 

5.1 Key Findings 

In comparison to other traits, genetic insight into blood pressure has reached an 

enviable level of depth and complexity. This has been enabled by some of the largest 

GWAS studies performed to date, highlighting over 901 loci in over 1 million 

individuals2. Yet this wealth of information presents a huge bottleneck that genetic 

analysis is not well placed to resolve. The machine learning approach optimised in this 
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work not only addresses the current bottleneck of genetic BP locus to gene 

prioritisation but capitalises on it and presents opportunities for re-application to other 

phenotypes with amassing GWAS data. The size and quality of BP genetic association 

studies serve as an opportune source for the high standard of training data that is 

needed in robust machine learning. Building on this potential for advancing post-BP 

GWAS analysis curated training data tailored to BP was used to benchmark ML 

prioritisation methods, finalising a tuned regression analysis approach. The model 

successfully prioritised candidate genes with a high likelihood of causality in 768 BP 

loci, emphasizing key processes and pathways in BP biology and bringing new insight 

into the genetic basis of antihypertensive drug action. The ML framework was then 

re-applied to prioritise genes from blood lipid trait GWAS data, and separately a 

variant-level prioritisation framework was developed, showing the promise of ML to 

discover novel insights across post-GWAS analysis with varying aims. 

 

5.1.1 Exploratory Data Analysis Summary 

In this thesis I employed in-depth exploratory data analysis that considered genetic 

characteristics (i.e., gene length and genomic distance of training genes), going 

beyond the common explored factors such as feature distributions, correlation, and 

missingness. Whalen et al. (2022) reviewed how ML is applied to genomic problems 

and the common pitfalls, focusing on the importance of checking genomic distance 

due to potential annotations being correlated for neighbouring genes. They also note 

such pitfalls are common and need thorough inspection166, which I have aimed to 

employ in this thesis. The exploratory genomic data analysis implemented here 

provides a template for genomic data pre-processing before ML application post-
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GWAS, as seen with the gene length and genomic distance assessment developed in 

chapter 2 and re-applied in Appendix D for BP and blood lipid trait GWAS 

respectively. Furthermore, the results in chapters 2 and Appendix D indicate that in 

both cases the training genes have no outstanding risk of bias based on genomic 

position and gene length (due to the features impacted by gene length being removed 

and gene length itself not being included as a feature). However, as genetic data 

expands to better encapsulate gene relationships (in not only gene distance and size 

but also possible interactions with one another) all such genetic relationships need to 

be understood in training data to ascertain how well the model can generalise its 

learning to the rest of the genome that it may be applied to.  

 

Chapter 2 also showed the curation of features across molecular scales and datatypes 

with both continuous and categorical variables, making for a complex multi-omic 

dataset. The predominant features collected were from GTEx with all 53 tissues 

having an individual feature for their TPM expression alongside gene functionality 

and phenotypic measures. This curation followed similar feature collections by other 

genetic prioritisation studies. For example, GPrior also uses median GTEx TPM 

expression for all 53 available tissues and variant-level pathogenic scores in their 

applications to their case studies (IBD, educational attainment, coronary artery 

disease, and schizophrenia)19. In their prioritisation of IBD genes, for example, from 

the GTEx tissues, the most important features were from the colon, oesophagus, 

salivary gland, skin, kidney, and whole blood – with the researchers highlighting the 

importance of these features and their specificity to IBD19. In comparison, the BP gene 

prioritisation in chapter 4 identified gene expression from the pituitary gland, which 
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is a site of hormone signalling for BP, as well as liver and EBV-transformed 

lymphocytes. These tissues highlight how the model identified relevant biological 

relationships but also suggests directions to investigate potential BP pathways. As 

seen in the example between the liver and lymphocytes, which both separately have 

published roles in BP167, 168, and have a recent study identifying a relationship between 

the two to regulate BP150. Specifically, the liver has been shown to relate to BP via 

liver-derived insulin-like growth factor 1167, lymphocytes relate to BP by neural 

signalling168, and one study has found both tissues interact as the “constitutive 

sulfhydration of liver kinase B1 by cystathionine γ lyase-derived H2S activates its 

target kinase, AMP-activated protein kinase, and promotes Treg differentiation and 

proliferation, which attenuates the vascular and renal immune-inflammation, thereby 

preventing hypertension.” 150 The ML selection of these tissues’ features in parallel 

with this research supports such studies focusing on the importance of the tissues that 

produce signalling molecules to regulate BP - with the XGB algorithm also prioritising 

pituitary gene expression and not the immediate sites of action for BP (i.e., 

cardiovascular and renal tissues).  

 

The valuing of gene expression data by feature selection and XGB (as interpreted via 

SHAP) in this thesis also validates the use of gene expression across all GTEx tissues 

as ML features. Using all 53 tissues as input, as opposed to singling out only tissues 

believed relevant to the phenotype, presents an opportunity to combat and avoid 

reinforcement of existing knowledge that ML is potentially biased towards. A model 

can also identify genes known to act in established BP pathways but newly link them 

to tissues with unknown contributions to BP, thereby developing novel directions of 
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research. However, as discussed in Appendix D, the influence of sex-biased gene 

expression, which has been shown in 38% of genes for at least one tissue in GTEx169, 

may bias the measure of relevance a gene has in a tissue – showing that follow-up 

research should be approached with caution to validate the gene’s true impact. 

 

The feature collection was curated in a bespoke manner to specifically study BP, 

providing unique features that may not be available for similar studies of other 

phenotypes. The work also benefitted from a close collaboration with the Exomiser 

development team, who provided, Exomiser scores for increased BP. This, alongside 

IPA annotation for genes reported in experimental BP studies, provides disease-

specific information for machine learning. The use of such phenotypic features is also 

recommended by other methods (Mantis-ml33 and GPrior19), and publicly available 

resources such as Exomiser provide an opportunity to annotate disease-specific 

information with increased efficiency on re-application of an ML framework. 

Uniquely, Exomiser scores integrate disease information from human, mouse and fish 

model databases. In comparison, other methods such as Mantis-ml have similar data 

queried from several databases (MGI, OMIM and disease-specific databases such as 

the Chronic Kidney Database)33, aggregating several disease-specific measures from 

varying sources. Meanwhile, Exomiser offers a similar diversity in collating data from 

both human and animal model databases (HPO, IMPC and MGD) in one method 

requiring only one query for annotation. Furthermore, the benefit of Exomiser’s 

disease-specific annotation was shown as important in both BP and blood lipid ML 

frameworks developed in this thesis, validating its benefit and use as a ML annotation 
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for GWAS, in contrast to the intended use of Exomiser for disease variant 

prioritisation in individual patients. 

 

On the other hand, IPA BP annotation was also an important feature for BP 

prioritisation, but IPA lipid annotation was not selected for the blood lipid trait 

application. The IPA data is curated as a binary feature, identifying if a gene had a 

disease-specific annotation in the database, which may make it less informative than 

continuous Exomiser scores. Furthermore, as the annotation is provided from a 

commercial database it may be of more limited wider utility to the research 

community. It seems likely that other public domain sources of disease annotation, 

such as those provided in OpenTargets115 would be suitable replacements for 

proprietary data.  

 

This thesis also explored the curation of other novel datatypes. For example, I 

collected cell-type data from PangloaDB but this data was not complete enough to 

pass feature cleaning, and will be interesting to include in future work as the 

experimental data expands. Other novel databases, such as the Human Cell Atlas and 

Expression Atlas, are also building cell-type data, suggesting that over time cell-type 

information will become available. This data may be particularly important feature 

input as it could provide ML models with potentially more granular information that 

could lead to more specific biological insights. For instance, from the BP ML 

framework, the top prioritised gene (COL15A1) was shown in PangloaDB to have its 

highest cell clustering in human endothelial cells and smooth muscle cells in the testis 

– which has also been shown to interact with the renin-angiotensin system to affect 
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antihypertensive drugs170. Such cell-type data can increase the specificity of 

supporting evidence and so it should be revisited to both incorporate as a feature in 

ML and overlay with previously prioritised genes to better understand their biology. 

 

In addition to cell-type data, animal model, epigenetic, and variant-level data (e.g., 

pathogenic scores and LoF measures) were also too missing to enter ML, indicating 

that as experimental data becomes more readily available, features should be updated 

to reflect more complete information that could advance ML for gene prioritisation. 

This point is especially pertinent as with improved annotations ML can be readily 

applied to prioritise genes in the non-coding genome, which is understudied in post-

GWAS machine learning prioritisation24.  

 

5.1.2 Evaluation of Supervised Learning Approaches 

Alongside the curation of features, the training genes identified in chapter 2 showed 

how BP genetics is ideally suited to a ML approach, with thousands of associations 

from which to subset training data for supervised learning. The 7 million variants from 

the BP GWAS allowed for the testing of various filters for dividing gene groups. 

Specifically, from the 33,847 genes annotated to the 7 million variants, genes with BP 

drug interactions, genes with text-mining significance in relation to BP literature, 

genes with BP annotations in IPA, and genes meeting several selection criteria 

(outlined in the chapter 2 methods section 2.2.3) to be deemed least likely BP genes 

were partitioned into four groups. These four groups then served as classifications in 

ML, used in both multiclass classification and regression analysis. The multiclass 

approach in chapter 3 showed that three of the gene groups as opposed to all four gave 
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a better ML performance. This difference may be due to the IPA annotation not truly 

being informative enough (which is supported by it not being a selected feature on the 

3-label multiclass approach). It may also be due to simple chance, as a 3-label 

approach increases the odds of a model predicting correctly (1/3 probability of a 

correction prediction at random) in comparison to a 4-label approach (1/4 probability 

of a correct prediction at random). However, whether these observations are true 

would need to be further tested, with using balanced classes as the training data size 

and class imbalance differences between the 3-label and 4-label data will also heavily 

influence a model’s accuracy. 

 

In comparison, binary classification could also have been investigated. However, each 

group in a multiclass approach provides more distinction than binary classification as 

models can recognise similar or differential patterns between definitively known 

causal genes and probable BP genes that have a less established BP relationship. 

Unlike in binary classification, which is a common ML prioritisation approach19, 33, 

where the opaquer intermediate gene groupings will be forced into either definitively 

positive or negative classes, and their probability for their positive prediction is used 

as a prioritisation score, overall providing less stratification and therefore a less 

informative gene ranking.   

 

One interesting aspect explored here is the diverse range of supervised-learning 

methods. Multiclass classification in chapter 3, showed a poor ML performance 

overall on balanced accuracy for training data with both 3 labels and 4 labels (the 

highest being 68% balanced accuracy from the 3-label dataset) - suggesting the 
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training data would need further curation or class balancing approaches to improve 

the performance. Oversampling and class weighting with probability calibration were 

also able to improve performance (81% balanced accuracy for oversampling versus 

71% for class weighting). However, due to the risk of overfitting known in class 

balancing approaches128 the more conservative improvement in model performance 

with class weighting was selected for further analysis. Furthermore, probability 

calibration was used to adjust output predictions, providing a confidence-level 

interpretation of the predicted probabilities by overlaying a regression on to the output 

multiclass probabilities. However, on exploring the prioritised genes, in 

multiclassification, 172/512 of the genes classified as least likely had the same 

probability and almost entirely missing features. The classification of these genes may 

be due in part to the quality of least likely training gene curation, with insufficient 

information about non-causal BP genes to prioritise them in a way which reflects the 

possibility that they may act in unexplored BP mechanisms. However, on re-framing 

the ML into a regression analysis (using the same features and training data) these 172 

genes had various predicted scores. For example, the multiclassification predicted all 

olfactory genes, which have had research identifying their potential link with BP171, 

in the data had a least likely label of the same probability. Meanwhile for the 

regression analysis, selected olfactory genes were prioritised with scores > 0.5 (e.g., 

OR2I1P scored at 0.67 on regression but classed as least likely on multiclassification) 

showing the benefit of applying ML prioritisation on a continuous scale rather than 

classes. However, there is a risk that these prioritisations and their selection at their 

locus are spurious. In comparison, the regression method prioritised 68 out of the 172 

genes with the same low prioritisation score (0.102 XGB score) – suggesting the 
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underlying issue is still present and that this will need improved least likely training 

gene curation in further work. 

 

As mentioned in chapter 4, the regression approach applied here is, to the best of our 

knowledge, the first of its kind for post-GWAS prioritisation. In the context of 

optimising the ML framework, changing from classification to regression uniquely 

provides more flexibility in model-decision making despite the underlying class 

imbalance being unchanged. The regression approach also provided further ML 

comparison, which became necessary due to the overfitting performance on 

classification and the ML decision-making conflicting with domain biology (as seen 

in chapter 3, where the most likely and probable BP gene classifications indicated 

conflicting use of HIPred to discern between the groups). While classification and 

regression metrics measure model error in ways that are not directly comparable, 

regression analysis provided a slightly increased feature selection (including IPA BP 

annotation, liver gene expression, EBV-transformed lymphocytes gene expression and 

dropping heart atrial appendage gene expression in comparison to the selected 

classification features). Notably, the selection of IPA BP annotation increases the 

phenotypic understanding of the regression model, whilst the selected tissues that are 

not sites of action for BP potentially increase the ability for a model to recognise novel 

biological BP functions – overall suggesting the regression analysis may have more 

data to develop more nuanced pattern recognition.  
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5.1.3 Model Benchmarking for Gene Prioritisation 

The models tested here matched the performances of previous studies. The top-

performing model being XGB in chapters 4 and 5, and its performance being very 

close to other gradient boosting models (CB, LGBM, and GBM) aligns with previous 

ML prioritisation research post-GWAS19, 33 and research that found XGB and CB are 

top-performing models on tabular datasets for supervised learning (when compared 

against 15 other models, including those benchmarked here)129. Meta-ensemble 

models also showed similarly high performances to the gradient boosting models, with 

voting and stacking meta-ensemble models consisting of each of the benchmarked 

models and the bagging model using the top-performing model. However, whilst the 

meta-ensemble models perform well and validate the performance of their base 

learners, they were also more time-consuming on hyperparameter tuning for 

equivalent or slightly lower performances in comparison to the base models in 

chapters 3-5. Overall, suggesting they are beneficial to benchmark for validation but 

should only be selected for further analysis if they have a notably stronger 

performance that would make the computational efficiency trade-off worthwhile.  

 

 Vitsios et al. (2020) found from their benchmarked models (RF, XGB, GBM, ET, 

DNN, and SVM) all had performances between 0.831-0.85 AUC, with XGB being the 

top-performing and SVM the lowest. However, whilst their SVM and DNN performed 

very similarly to the tree-based approaches, the benchmarking in this thesis found both 

performed worse than other models. For example, on multiclass classification SVM 

and NN had 0.7-0.71 balanced accuracy compared to 0.79-0.84 for the gradient 

boosting models, and on regression SVM performed poorly (0.2 median r2 versus 
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0.744 median r2 for XGB). SVM’s lower performance (alongside the lower 

performances also seen in linear regression models in chapters 3-5) is possibly due to 

the complexity of the data, having non-linear features of both categorical and 

continuous data, creating difficulty as the underlying decision-making of the models 

is driven by linear functions. In comparison, NNs are known to perform badly on 

tabular data in comparison to other commonly used models (XGB, CB, GBM, KNN 

etc.)129, and on application, in chapter 3 it had lower performance combined with the 

additional computation time (>12 hours required to tuned a benchmark on 

classification due to the larger number of neural net parameters that are possible to 

tune). Furthermore, tuning the hyperparameters of NNs is complex due to deep 

learning architecture having hundreds if not thousands of possible structures to test 

and tune to create a neural network172. Each of these points led to the NN model not 

being benchmarked on regression analysis. 

 

Overall the model benchmarking here, alongside that also explored by Vitsios et al. 

(2020), agree with the no free lunch theorem. There is no one-size-fits-all model for 

ML applied to gene prioritisation and benchmarking a range of models is a crucial step 

in developing robust prioritisation. However, models such as XGB and CB which are 

known to perform well on tabular data and have had validation as top performers, 

highlight themselves as leading models of choice for gene prioritisation. Furthermore, 

their speed and functions to address overfitting (additional regularisation parameters 

beyond that in GBM) also best position them for biological problems where it is 

important to understand as much as possible within model decision-making. 
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5.1.4 Gene Prioritisation Key Findings 

5.1.4.1 Defining Causal Genes for High Blood Pressure 

The optimised ML prioritisation of genes in BP GWAS loci offers a ranked list of 

putative causal genes for functional investigation. The prioritised genes represent 

many functional categories, including genes that may represent novel drug targets, or 

which interact with known BP drug targets, new genes acting in established BP 

pathways, and genes with overlapping high prioritisation across all methods. Each of 

these categories demonstrate the benefit of using a comprehensive ML framework and 

presents good evidence to streamline hypotheses development to improve 

understanding of BP biology and identify new drug targets. 

 

The prioritised genes from the total 1,804 predicted genes by the optimised XGB 

model found several genes worthy of functional follow-up, whether by taking directly 

from the highest prioritised genes (such as the top-prioritised COL15A1144, 146), gene-

drug interactors (e.g., PTPRD154, CHRM2156 or INSR158), or gene enrichment analysis 

(SLC8A1163, 164). While each of these putative candidate genes may warrant further 

investigation, their true impact on BP (and the accuracy of their ML prioritisation) can 

only be confirmed by experimental follow-up. However, many prioritised genes 

already have some evidence of therapeutic potential, at the highest level, 9 genes are 

recorded to interact directly with BP drugs, while 62 genes interact with drugs that 

have BP side effects. Although it should be noted that these findings were annotated 

from drug databases (BNF, SIDER and DGIdb), all require validation, some database 

annotations may be spurious, and ultimately, laboratory follow-up and clinician input, 
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may be required to confirm their potential. Clinical validation, especially for the 9 BP-

drug interacting genes, would also indicate that these genes could serve as additional 

training data, increasing the most likely BP training gene size from 51 to 60, possibly 

increasing ML performance as well as our understanding of BP biology.  

 

The analysis of selected-gene PPIs with BP-drug mechanisms found hundreds of 

prioritised genes with potential roles in BP mechanisms (Figure 4.5, Appendix C Table 

9) awaiting discovery. Furthermore, these genes at most represented 26.1% of PPIs 

for a given BP-drug mechanism, suggesting that the genes posited as having 

therapeutic potential here are the tip of the iceberg. From the selected-genes, 733 also 

interact with a drug mechanism that is not a BP drug, suggesting there is potential in 

these mechanisms to have a re-purposed effect on BP regulation. Additionally, BRD1, 

MFSD6 and PLEKHG1 were highlighted as having multiple BP drug mechanism 

overlaps only and there were also 7 other genes (TRPC4AP, INO80, CCDC68, 

ODF2L, TNRC6A, OR4C13, LAMB2) that interacted with singular BP drug 

mechanism PPIs (and no other drug mechanisms). Only LAMB2 interacts with a drug 

annotated in DGIdb, interacting with ocraplasmin (similar to the top prioritised gene 

COL15A1 as discussed in chapter 4). Ocraplasmin is used to treat vitreomacular 

adhesion by breaking down extracellular matrix components. It has also been shown 

to be beneficial to diabetic macular oedema173. Further study of this treatment 

mechanism in diabetes may increase the understanding of the genes interacting with 

ocraplasmin, and particularly their role in fluid balancing for oedema more generally 

– with this being of interest as it is also a related mechanism that impacts BP. However, 

while this suggestion is speculative, the fact that COL15A1 and LAMB2 are highly 
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prioritised and interact with this drug suggests there is an underlying mechanism of 

interest for further BP research. 

 

It is also intriguing to note, that pathway analysis of selected-genes, divided into four 

groups with increasing known drug mechanism interaction (Figure 4.9), shows that 

the strongest pathway enrichment seen in all selected-genes, is substantially 

represented by under 25% of selected-genes which interact with 5 or more drug 

mechanisms.  

 

These genes may offer immediate opportunities for genetic stratification of patients 

who are more likely to respond to certain classes of drugs, using recently described 

pharmacogenomic polygenic risk scores174. Perhaps more importantly, the 621/794 

(78%) selected-genes with <5 drug mechanism interactions, potentially define a 

substantial range of novel or less-exploited biological mechanisms underpinning BP, 

suggesting that antihypertensive drug discovery has so far focused on a quite limited 

mechanistic range of BP biology. These genes include 124 drugged (only 7 with BP 

indication) and 174 druggable genes, all of which could potentially represent highly 

novel target mechanisms for blood pressure. Considering some potential repositioning 

opportunities among these 621 genes, melatonin receptor 1B (MTNR1B) has a 

selective agonist ramelteon, approved for insomnia, which has been shown to 

attenuate age-associated hypertension and weight gain in spontaneously hypertensive 

(SHR) rats175. In some cases, molecules are identified which act on a number of targets 

among the selected-genes. Hesperadin is a naturally occuring citrus flavanone, with 

aurora kinase inhibitor activity, it is known to act on over 24 kinase targets, including 
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7 selected-genes (EIF2AK4, MERTK, FER, FES, BLK, CSK, FYN)176. A number of 

studies highlight the cardioprotective properties of hesperidin and its aglycone, 

hesperitin177, including reduction of systolic BP, endothelial dysfunction and oxidative 

stress in SHR rats178. Mechanistic understanding of hesperidin action is limited, but 

multiple hypotheses are proposed177, identification of a network of kinase targets of 

hesperidin with BP association, may offer a valuable insight into a potentially novel 

drug mechanism.  

 

Novel pathway enrichment observed among selected-genes (Figure 4.9c) with <5 drug 

mechanism interactions, include Autophagy (MAP2K2, RRAS, ATG7, MRAS, VMP1) 

which has been extensively linked with BP via mechanisms of mitochondrial and 

endothelial dysfunction179, 180. Two pathways show enrichment potentially with a 

common angiotensin II mediated mechanism. Neutrophil extracellular traps 

(MAP2K2, RELA, HDAC9, ATG7, HDAC7, H2BC12, CDK6, HLA-B) are released by 

angiotensin II and mediate essential hypertension by a fibrotic mechanism leading to 

endothelial dysfunction181. Conversely, hedgehog signalling (BCL2, CSNK1G3, 

BTRC) has been shown to correct angiotensin II-induced hypertension and endothelial 

dysfunction in aorta through induction of NO production and reduction of oxidative 

stress182. 

 

Total interactions between each selected-gene’s encoded proteins and drug 

mechanisms were annotated, showing the potential for novel drug targets within BP 

GWAS loci (Fig. 4.9). 173 of selected-genes genes interact with more than five drug 

mechanisms, possibly having more ubiquitous effects, whilst the majority of genes 
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(n=374) had 1-5 interactions all involving BP-related and non-BP-related drug 

mechanisms. Overall, the heavy interconnectivity between the selected-genes 

interacting with multiple BP drug mechanisms, alongside their higher enrichment 

across pathways especially those that are BP-related such as renin secretion and 

cGMP-PKG signalling (Figure 4.9), shows that genes that overlap in multiple drug 

mechanisms are likely to overlap in multiple pathways. This result, combined with the 

selected-genes’ prioritisation, puts forward a stratified view of the genetics 

underpinning BP drug mechanisms for further investigation.  

 

The drug mechanisms also have a range of representations among the prioritised genes 

by GWAS. For example, the largest coverage by the selected-genes was 26.1% of the 

total endothelin inhibitor mechanism PPIs, meanwhile, the smallest coverage was 

6.6% of the alpha-2 adrenergic receptor agonist interaction mechanisms (Table 4.3), 

suggesting further work is needed to illuminate the genes relevant to these drug 

mechanisms. However, from the mechanism interactions represented by the selected-

genes, and their heavy interconnectivity between the BP drug mechanisms (Figure 

4.9a), suggests they may all be acting on similar pathways that affect BP. The selected-

genes being active in overlapping BP-relevant drug pathways indicates the reliability 

of their ML prioritisation, but also shows a need for further analysis to put forward 

novel drug mechanisms for BP. 

 

The prioritised genes discussed in chapter 4 as having potential translational insights 

are also highly prioritised by OpenTargets L2G score137 (for example the L2G score 
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for CHRM2 is 0.879, for INSR it is 0.83, and for PTPRD it is 0.878), with these genes 

being a part of the 76 genes prioritised highly by both methods. The L2G score 

prioritises genes with similar ML principles (for example XGB is used, although 

binary classification is then applied as opposed to regression) but uses a different set 

of features (fine-mapping, disease-disease colocalisation analysis and disease-

molecular trait colocalisation analysis across 92 tissues and cell types, phenome-wide 

association study analysis, and enriched trait evidence), making its pattern recognition 

based on entirely different influences compared to the regression analysis developed 

in chapter 4. The high prioritisation by both methods further emphasizes that these 

genes are key findings that need further investigation and shows how combined 

approaches of prioritisation can be used to support findings. Moreover, the different 

ML methodologies make their concordance even more validating for their prioritised 

genes. Therefore, whilst the ML framework developed here can suggest potential 

candidate BP genes for further investigation, the overlaying of additional prioritisation 

methods can strengthen the biological evidence - which then will enable less laborious 

experimental research with an even more refined gene list. 

 

From the 794 selected-genes several key findings arose that expand research directions 

and can better illuminate the biology of high BP (Figure 5.1). Notably, selected-genes 

genes that interact with nervous system targeting drugs have highlighted themselves 

(CHRM2 and INSR) as their interacting drugs approved for other conditions 

(depression, migraines and weight loss) show promise as re-purposing targets for 

hypertension155, 157. The understanding of cardiovascular and hormone signalling 

genes with likely BP roles has also grown, with selected-genes such as SLC8A1 
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(scored 0.86 by XGB) being shown here as interacting across BP-drug mechanisms 

and in the enriched pathways of renin secretion, cardiomyopathies, and cGMP-PKG 

signalling. Importantly, many selected-genes were found to have impacts on multiple 

pathways and mechanisms across BP biology. For example, alongside SLC8A1, 

PPP3CA (scored 0.78 by XGB) acts on renin secretion, cGMP-PKG signalling, and 

oxytocin signalling, all of which were significantly enriched pathways (Figure 4.12). 

Such results emphasize the knotted tangle of overlapping genetic contributions for BP, 

with more examples likely to be discovered in the future. However, the gene 

prioritisation and downstream analysis presented here sets the foundation for targeted 

functional investigations, which may more effectively unravel the genetic influences 

underpinning the landscape of BP biology. 

Figure 5.1. Overview of blood pressure biology and the implications of gene 

prioritisation. Regulation of blood pressure (BP) involves the interactions of several 
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organ systems, which are predominantly cardiovascular, renal and neurological. 

Furthering the understanding of the genetic component of BP by machine learning 

prioritisation in this thesis has led to an emphasis on the importance of nervous and 

hormonal signalling pathways for BP, it has highlighted genes with roles in established 

cardiovascular disease pathways that warrant further investigation, and it has shown 

gene-drug interactions with highly prioritised genes having interactions with BP drug 

mechanism as well as other drugs (such as antidepressant and migraine drugs which 

act on nervous signalling pathways) that have potential for drug re-purposing. 

 

5.1.4.2 Extending the ML Framework to Blood Lipid Traits 

Extension of this ML framework to blood lipid traits identified novel insights to better 

understand the regulation of lipid metabolism. However, to meet the requirements of 

this different GWAS trait, the framework had to be adapted (with differing least likely 

gene curation) and the training data groups (gold and silver set genes) were previously 

developed in another study not focused on ML183. These differences also led to a 

framework applied to all five blood lipid traits at once, as opposed to individually, and 

overall gave a comparable ML performance to that of the BP prioritisation. For 

example, XGB was the selected top-performing model and had a median r2 of 0.707 

and predicted r2 of 0.826 for blood lipid trait prioritisation, whilst for BP prioritisation 

XGB was also the top-performing model with 0.744 median r2 and 0.897 predicted r2. 

These similar ML performances, despite bespoke tweaks to the framework, suggest 

that the ML framework is robust enough to perform well on re-application - even when 

the framework is altered to meet the needs of a specific phenotype and its GWAS data. 
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However, considering the blood lipid prioritisation framework was most notably 

altered to have less least likely gene filtering, this also indicates that the ML 

performance could still be improved with opportunities for higher-quality training 

data. 

 

On exploring the model decision-making, the SHAP feature importance showed 

consistency in highly ranked features compared to the BP prioritisation (e.g., HIPred, 

Exomiser scores, and pLI), however, it uniquely valued sex-specific GTEx tissues and 

also several GTEx tissues passed feature selection that were then shown to have 

minimal XGB model influence (Appendix D Figure 5.5). This feature importance 

ranking indicates that the model may be identifying the biological relevance of sex-

specific tissues that are known to have roles in lipid metabolism184-186, but on the other 

hand, the model may also be being swayed by sex-specific bias, which has been noted 

in GTEx data169. Overall, this result highlights a limitation of the ML framework and 

its black-box nature, making further research reliant on functional validation to 

understand any sex-specific genetic relationships being prioritised by ML. 

 

When focusing on the training data, the gold and silver standard genes were not 

curated using drug or text-mining data like the BP framework, and this is potentially 

reflected in the highly prioritised genes. For example, on analysing the highest 

prioritised selected-genes, none have interacting drugs in DGIdb for any condition and 

only two have been points of focus in lipid metabolism research (KHK187 and 

CREB3L3188), with the rest being briefly mentioned in other lipid or cardiovascular-

related research (e.g. due to their transcriptomic expression189). Whilst these results 
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do not eliminate the genes from potentially being influential lipid-regulating genes, 

they imply the impact of the differing training gene criteria and feature selection 

compared to the BP ML. For instance, despite having little drug or literature evidence, 

the actual proteins encoded by each of the top ten genes have metabolic functions that 

relate to lipid metabolism (e.g., fructose metabolism or bile synthesis, Appendix D 

Table 5.2) suggesting that with further research these genes may reveal translational 

insights. This implication is also validated when considering the genes scored >0.8 

and the selected-genes have significantly higher SDI drug probabilities in comparison 

to the lower prioritised genes and all genes in the SDI database (Appendix D Table 

5.7). 

 

Furthermore, the most significantly enriched pathways for the selected-genes were 

known lipid metabolism pathways (e.g., cholesterol metabolism and PPAR signalling 

– Appendix D Figure 4.5, Appendix D Table 10). This result, similar to that of the BP 

prioritisation, shows that further analysis of the genes inside these pathways may be 

informative. For example, CD36 was shown as interacting within the top five enriched 

pathways (Appendix D Figure 5.10). The gene also interacts with the angiogenesis 

inhibitor and cancer drug ABT-510190 and it has known roles in atherosclerosis and 

lipid metabolism191. This gene highlights the circularity in pattern recognition being 

provided by the ML framework, however, it also suggests that by further researching 

genes such as CD36, we may improve drug target specification in known disease-

causing pathways. 
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One of the key findings in Appendix D was the comparison of ML prioritisation with 

other methods, particularly those from recent studies that also focused on ranking 

genes from the same GWAS. In a similar way to the BP prioritisation in chapter 4, the 

blood lipid trait prioritisation had positive correlations with all other prioritisation 

methods it was compared with (Appendix D Table 5.3). It also showed concordance 

with confidence assignments given to genes by Kanoni et al. (2021), suggesting 

reliability in the model’s decision-making. However, the model also had conflicting 

prioritisations of genes with medium-low and low confidence assignments by Kanoni 

et al. (2021). Ultimately, conflicting prioritisations of individual genes provide 

opportunities for future targeted research. For example, a broader comparison of 

prioritisation methods or multi-layered evidence could be collected to confirm a 

gene’s prioritisation (as shown by Ramdas et al. (2021)), or conflictingly prioritised 

genes could be removed to develop an even more select gene list, ensuring the most 

concordantly prioritised genes are efficiently ranked for functional research. 

Furthermore, conflicting gene rankings also suggest that gene groupings could be 

altered to improve prioritisations. For instance, the medium-low and low-confidence 

gene groups by Kanoni et al. (2021) could be combined and have a stronger evidence 

base for their grouping. Meanwhile, for the XGB model the silver set training group 

provides a large class imbalance, suggesting this gene group could be further filtered 

to identify genes with stronger blood lipid relationships than mouse models alone, and 

this may then reduce the majority of genes that XGB prioritised ~0.7 and improve 

model performance.  
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5.2 Limitations 

Although powerful, machine learning approaches applied to data analysis do have 

limitations which should not be overlooked and taken at face value could hinder 

efficient locus prioritisation. For example, any ML framework is susceptible to 

overfitting, and this is also further impacted by a lack of complete transparency in 

model interpretation via SHAP. While in chapter 4 overfitting is somewhat 

circumvented by switching from multiclass classification to regression analysis, the 

class imbalance is still present in the unchanged training data. The regression analysis 

has metrics for assessing overfitting (e.g., predicted r2 or adjusted r2) however in all 

model performances no model had a perfect performance in these measures, and even 

then, these metrics are not able to catch all overfitting. This prevents an unavoidable 

limitation of this work that can only be further investigated with external validation 

datasets, enabling exploration of how well a model generalises to unseen data.  

 

I also explored model decision-making using SHAP, providing an interpretation of 

how features influenced prediction, which could be aligned with domain biology to 

check a model’s understanding of disease-causing genes. However, SHAP can only 

illuminate so much of the black-box decision-making being undertaken, providing 

insight only into how features influence model predictions and not into how the 

features influence the true target variable. This means that there are still unanswered 

questions in relation to which of the highly prioritised genes are truly causal and why, 

and that answering such questions can likely only be found in functional research. 
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Perhaps one of the greatest challenges is model training that enables accurate 

predictions on non-training data – sometimes referred to as “knowable unknowns”. 

The work in this thesis is limited by this challenge. The optimised XGB model 

prioritising genes in chapters 4 and 5 output highly ranked genes that were enriched 

for already known BP and blood lipid pathways, as proven by gene enrichment 

analysis. While this validates the model’s decision-making it also indicates less 

opportunity for identifying novel insights downstream with enough evidence to justify 

functional research. Furthermore, the gene per locus selection method was developed 

to combat situations where a ML model may score genes closely at a locus, without 

large score margins between genes that clearly identify one most likely causal gene at 

a locus. With the use of BP and blood lipid gene PPI data for the gene(s) selection per 

loci there are also limitations. The PPIs collected were lists of genes with direct and 

secondary PPIs with the BP-regulating and gold standard blood lipid genes, which 

were then used to select genes with the highest number of these PPIs per locus, if ML 

prioritisation did not distinctly prioritise any one gene at a locus. These PPIs filter out 

less likely top genes per loci via a known biology filter. However, this selection 

method is also limiting, with PPI information relating to known disease-related genes 

abetting circular selection for genes with more PPI evidence.  

 

Additionally, for the BP GWAS application, given that there are few genes with 

interacting BP drugs, and with the model using these genes in its training data, it was 

not possible to create an external validation set for further model testing (with this also 

being an issue for the small gold standard set in the blood lipid application). This 

testing will be required as new known disease-causing genes are discovered to assess 



 

 

 

197 

any inaccurate modelling assumptions165. Curation of the non-BP-genes that are least 

likely causal training genes with any certainty is also a challenge across diseases, 

despite stringent criteria for selecting the non-BP-genes, there is a risk of false 

negative examples being used in training. These issues in training gene curation also 

created an imbalanced minority class that, whilst regression analysis and nested cross-

validation aim to minimise, is still underlying in the training data and poses an 

overfitting risk. This issue is also present in the blood lipid application, with few least 

likely genes that provide minimal training opportunities for a model in comparison to 

the majority probable gene grouping. Furthermore, both least likely gene curations for 

BP and blood lipids produced genes with the smallest gene lengths in their training 

data, which in turn will provide less opportunity for these genes to have annotations 

across databases. 

 

Also on training, more features (e.g., cell-type data or pathogenic variant scores) were 

not tested on ML due to heavily missing features – however, it is with more diverse 

features at different molecular scales that ML may become more empowered to 

recognise novel patterns and provide new insights. In theory, the approach of imputing 

all missing values with zeros could be applied. However, this would in turn limit the 

model benchmarking, requiring models that are robust to such noisy features, and this 

also still does not guarantee the more robust models (such as XGB) are not being 

affected by overfitting. Furthermore, genomic data such as gene length was collected 

to assess any risk of genetic bias, however further testing of biological bias could still 

be performed (e.g., by identifying interacting genes) and will be needed in future work 

to ensure robustly selected genes are entering the training data. 



 

 

 

198 

 

Another key limitation of this work is the focus on protein-coding gene prioritisation. 

This was due to the training genes being protein-coding, which is also because protein-

coding genes are better studied and therefore more likely to have annotations that 

equate to more complete features in ML. As the non-coding genome is researched and 

data is collected this will hopefully expand the possible training data and ability for 

ML to prioritise genes across the whole genome. Overall, as research expands (such 

as larger GWAS across more diverse populations, and the development of more 

comprehensive annotations) new inputs for BP gene prioritisation will develop that 

can advance ML prioritisation. 

 

5.3 Future Work 

For multiclass classification, improvement in the training data quality would be the 

most beneficial step forward to the framework built in this chapter. Hyper-parameter 

tuning of the models could also be more comprehensive. For example, Bayesian 

hyper-parameter tuning was performed here, but a more thorough grid search of a 

large range of hyper-parameters could be investigated to ensure the global optimum is 

being selected. However, this comes at a cost of computational efficiency.  

 

The regression analysis could be further developed by advancing the model 

benchmarking phase – again by testing more comprehensive hyper-parameter tuning, 

but by also comparing with deep learning. While the time investment required in a 

deep learning test would further hinder the computational efficiency, confirming the 
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deep learning regression analysis and whether it performs similarly to its 

benchmarking in multiclass classification would work to validate the model 

comparison seen in chapter 3 and affirm whether it should be included in future 

benchmarking tests. 

 

Beyond ML improvements, a key focus point for future work of the top-performing 

model will also be in furthering model decision-making interpretation. For example, 

SHAP was used throughout this thesis as it has comprehensive visualisation 

parameters as well as both local and global ML interpretation. However, other 

explainability tools exist (such as LIME) that would confirm or rebuke local model 

interpretations, identifying which gene prioritisations may need further analysis. 

Furthermore, a developing area of ML is bias auditing, and ML fairness toolkits are 

being built by companies such as IBM and Google, which develop metrics for 

assessing model bias193. However, these are susceptible to “fairness gerrymandering” 

where the metrics are generated as they are more likely to produce more appealing 

results193. Whilst such packages are still being developed, dedicated ML for bias 

auditing that is tailored to genomic data could be developed in future work, such as 

that shown by Eid et al. (2021) for drug and PPI ML prediction problems. 

 

For the future work of blood lipid trait prioritisation, there are several potential 

directions to improve the ML framework built in Appendix D. For example, training 

gene curation could be further fortified with expert clinical validation of the gold and 

silver set genes, overlaying the BP training gene criteria with that already defined by 

Kanoni et al. (2021), which would likely improve ML performance and address the 
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large class imbalance. Exomiser scores could be calculated for more stratified HPO 

terms. ‘Abnormal lipid circulating concentration’ was used in Appendix D as it is the 

highest overarching lipid term in HPO, however, sub-branching terms for high 

cholesterol, triglyceride levels, HDL and LDL levels could be used to divide the ML 

framework into iterations per each blood lipid trait. The development of individual 

Exomiser scores tailored to each trait would warrant their individual prioritisation 

framework, as otherwise, the features provided would not differ per the training data 

for each trait. Five individual re-applications per each blood lipid trait would increase 

the amount of computational effort needed. However, the number of genes prioritised 

per trait would be smaller, and if the features can be more bespoke to that blood lipid 

trait it may provide a more informed trait-specific ML prioritisation, alongside making 

each individual re-application more efficient. Also, the number of least likely blood 

lipid training genes would increase as the least likely gene filtering criteria (LD, p-

value, and PPIs) would only need to be filtered against genes associated with one 

blood lipid trait as opposed to all five. Furthermore, alongside altering the training 

data, the comparative prioritisation by Kanoni et al. (2021) also highlights the potential 

for future work to combine prioritisation methods, For example, a meta-analysis 

merging the prioritisations from ML and other methods using different input features 

(e.g., fine-mapping, TWAS, PoPs, OpenTargets L2G, Mantis-ml etc.) may produce a 

more robust gene ranking. 

 

The machine learning explored in this thesis also has potential as a variant 

prioritisation framework. However, such an approach needs high quality variant 

annotations to address data missingness and positive-labelling of disease-specific 
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pathogenic variants. If such roadblcoks are addressed there is great potential for ML 

including deep learning, for which whislt it has shown poor performance on tabular 

data, it has been shown to prioritise variants impacting immune disease accurately 

when given sequencing data39. This suggests deep learning could uniquely use natural 

language processing and input textual data (e.g., reference and alternative allele 

information or even variant function descriptions) to potentially have a more 

competitive ML performance for variants than seen at the gene-level. 

 

 

5.4 Future Implications 

5.4.1 Machine Learning Methodology Post-GWAS 

The results of this work enable researchers of complex traits to analyse genes without 

selecting them based on ‘cherry-picking’ bias but by selecting prioritised genes with 

a stronger evidence base for their potential impact. However, as multi-omic data 

improves the prioritised genes and the ML methods underlying them should also be 

updated. Particularly, as ML is a broad research field with methodologies that have 

not yet been tested in genomic applications. For example, unsupervised ML has not 

been focused on in this thesis due to a lack of interpretability, however, unsupervised 

methods do exist that give a view of models under the hood. For example, one-class 

learning (using a training set with only one gene group) is an unsupervised method 

that plots a decision boundary between one group versus everything else and is 

interpretable via packages such as SHAP. It is usually used for problems such as 

anomaly detection, but it could be tested for identifying the least likely disease-causing 
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genes as ‘outliers’ from a list of known disease-causing genes. Furthermore, 

unsupervised learning could be applied after supervised learning – for example, by 

using output SHAP values to cluster genes and gain an abstraction of gene-gene 

relationships with ML. More complex ML could also be developed, such as 

reinforcement learning, which has been used to detect SNP-SNP interactions or deep 

learning194. Deep learning has had success with sequence data as input, however, it 

has yet to have equivalent success with gene-level tabular data. Methods are being 

developed to address deep learning’s often poorer performance on tabular data129, 

suggesting it should not be ruled out from model benchmarking in the future. 

Another key aspect of ML for prioritisation that needs future focus is interpretability. 

Whilst in this thesis I focus on SHAP, other explainability tools exist that could also 

be compared - and due to different underlying mathematical principles, they may 

interpret model influences differently. This has been a focus of a recent package 

interpretML developed by Microsoft, which allows the user to create explainability 

dashboards showing model interpretations from several methods (SHAP, LIME, and 

sensitivity analysis). Furthermore, they also developed an explainable boosting 

machine which aims to be a ‘glass box’ model and have more transparent decision-

making than black box models – by the approach learning one feature at a time as an 

additive model. However, currently, this method is very time-consuming to train or 

tune the parameters and so would need improved computational efficiency to be 

effective on large GWAS data. 
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5.4.2  Accessibility and Combinational Approaches 

Research should continue to develop models aiming to prioritise genes across 

diseases, with methods that can be reused by other researchers, and with consideration 

for the size of present GWAS data, varying datatypes, and feature importance. Doing 

so could then lead to more accessible and reusable models - for example with source 

code or web interfaces that are useable by a wider range of GWAS researchers – and 

create more globally implemented ML applications for GWAS prioritisation, thus 

accelerating researchers towards the post-GWAS endgame of understanding disease. 

OpenTargets is one of the leading methods on this front, addressing this need for an 

accessible tool with a web interface containing interactive gene rankings per loci for 

many GWAS’137.  

Future work may benefit most from exploring combinational methods, enabling 

augmented results with a stronger statistical evidence base. This works as each method 

can lessen the limitations of the other or work together as a voting system to support 

or disagree with each other’s predictions, providing more reliable evidence and 

allowing for functional researchers to make more informed decisions. A few 

combinational approaches have already been developed, such as that used by Kanoni 

et al. (2021). Although in most combined approaches, when ML is applied it is used 

as a pre-processing step, whether developing priors in fine-mapping or in developing 

MR tests195, 196. Using ML particularly for providing functional information in fine-

mapping may shed more insight on biological trends underpinning select variants and 

indicates ML can solidify its place in the post-GWAS pipeline whether as a standalone 

tool, such as the frameworks developed in this thesis, or in hybrid methods. Beyond 

this, ML is also on a steep curve of research attention across many domains, suggesting 
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that it unlike other methods may advance further with intersectional developments and 

implies the full potential of ML in post-GWAS analysis is still to come. 

 

5.5 Conclusion 

This thesis shows how ML is gradually proving itself to be a valuable tool for post-

GWAS analysis. The methodology and training data developed here show an 

optimised performance for prioritising loci. The output prioritisation results have the 

potential for functional and translational validation. For complex diseases, such as 

hypertension, the ML method’s ability to generate hypotheses has streamlined 

functional work that gives biological insights - enabling the unravelling of how 

associated loci may affect cardiovascular traits. However, before ML models, such as 

the frameworks put forward in this thesis, can consolidate their role in the post-GWAS 

analyses, research needs to address several aspects ranging from genomic training data 

curation to reproducibility, and accessibility. There also needs to be a greater 

comparison between ML and other prioritisation methods to understand ML’s place 

in the post-GWAS pipeline and enable GWAS to truly provide the projected biological 

insights and translational capability that it has been so long promised. 

 

 

6 Abbreviations 

Abbreviation Description 
BNF British National Formulary 
BP Blood pressure 
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CB CatBoost 
CV Cross-validation 
DBP Diastolic blood pressure 
DEPICT Data-driven Expression Prioritized Integration for Complex Traits  
DGIdb Drug Gene Interaction Database 
DT Decision tree 
EDA Exploratory data analysis 
eQTL Expression quantitative trait loci 
GB Gradient boosting 
GDI Gene damage index 
GO Gene ontology 
GWAS Genome-wide association study 
HIPred Haploinsufficiency prediction score 
i.i.d independent and identically distributed 
IPA Ingenuity Pathway Analysis 
IMPC International mouse phenotyping consortium 
KNN k-nearest neighbours 
LD Linkage disequilibrium 
LGBM Light gradient boosting (lightgbm) 
LIME Local interpretable model-agnostic explanations 
LoF Loss-of-function 
LR Logistic regression 
ML Machine learning 
NN Neural network 
pLI Probability loss-of-function 
PoPs Polygenic priority score 
PP Pulse pressure 
PPI Protein-protein interaction 
RF Random forest 
SBP Systolic blood pressure 
SDI Subcellular Diversity Index 
SHAP SHapley Additive exPlanations 
SNP Single nucleotide polymorphism 
SVM Support vector machine 
TPM Transcripts per million 
XGB eXtreme Gradient Boosting 
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8 Appendix 

All appendix tables have been submitted separately and can also be downloaded from: 

https://doi.org/10.5281/zenodo.7339851  

Code for all chapters can be found on: https://github.com/hlnicholls/PhD-Thesis   

 

8.1 Appendix D - Re-application to Prioritise Blood Lipid Traits 

8.2 Introduction 
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A key benefit of applying a ML approach to prioritise genes is its re-applicability – 

with a framework finalised, prioritising genes for another phenotype only needs 

bespoke training data curation. This benefit is utilisable for complex traits such as 

blood lipids which have had large GWAS studies, with one study taking advantage of 

the Global Lipids Genetics Consortium to perform a GWAS for 1.6 million individuals 

for five blood lipid traits197: high-density lipoprotein (HDL), non-high-density 

lipoprotein (nonHDL) low-density lipoprotein (LDL), total cholesterol (TC), and 

triglycerides (TG). This GWAS was followed by two further functional genomic 

analyses183, 192, prioritising blood lipid trait genes that could serve as opportune 

examples in training data for ML prioritisation. In this chapter, I investigate using 

blood lipid GWAS data in a re-application of the ML framework developed in chapters 

2-4 and explore output prioritised genes and their potential roles in blood lipid biology. 

 

8.2.1 Gene Prioritisation for Blood Lipid Traits 

When blood lipids reach abnormal levels in circulation they pose a great 

cardiovascular disease risk198, with abnormal lipid levels having the ability to disrupt 

crucial biological functions (such as cell signalling, cell structure integrity, and energy 

storage). GWAS research has focused on this phenotype since 2007199, aiming to 

better understand the genetic component underlying lipid biology that could 

potentially illuminate therapeutic targets and improve cardiovascular disease 

treatments. Most recent blood lipid GWAS’ have amassed in size and diversity, with 

the 1.65 million individuals genotyped by Graham et al. (2021) tested across five 

ancestries in which 350,000 people were of non-European ancestry. They identified 

941 loci associated with five blood lipid traits. In total 53,236 associations with lipid 
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measurements are recorded in the GWAS catalog (with potentially overlapping 

associations from various studies unaccounted for), with lipid phenotypes again 

presenting a bottleneck of genetic data that a ML approach can capitalise on. 

 

The genetic associations identified by Graham et al. (2021) had follow-up 

investigation over two studies, Ramdas et al. (2021) and Kanoni et al. (2021), that 

found candidate genes and drug targets. Ramdas et al. (2021) found 1,067 genes 

colocalised between lipid GWAS signals and eQTL signals, and their functional 

annotations allowed for tissue-specific and regulatory insights for non-coding 

variants. They focus on exemplar genes prioritised in their approach (RRBP1 and 

CREBRF), with for example CREBRF having 30 candidate variants identified on 

colocalisation, and the multi-layered functional information then narrowing these 

candidates to one single variant (chr5:172,566,698) that interacts with the gene’s 

promoter site in adipose tissue192. However, it should be noted that the annotation step 

is crucial for verifying the eQTL prioritisation approach, considering Mostafavi et al. 

(2022) showed eQTLs skew to unimportant genes92. For example, Mostafavi et al. 

(2022) found that eQTL signals cluster near transcription start sites and have less 

functional annotations and regulatory complexity92. Overall, suggesting that eQTL 

colocalisation may provide a biased prioritisation, and their importance on functional 

annotation was a by-chance finding.   

 

Meanwhile, Kanoni et al. (2021) investigated six gene prediction methods (PoPs, 

DEPICT, closest gene to the sentinel SNP, genes with coding variants in credible sets, 

eQTL localisation, and transcriptome-wide association study), combining them to 
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assign a high to low confidence measure for 2,286 sentinel SNP associations across 

all five blood lipid traits. They also performed a further evaluation of their 

combinational prioritisation by re-applying their framework to curated gold standard 

Mendelian dyslipidaemia genes (n=21) and silver standard genes with mouse model 

knockouts that have lipid phenotypes (n=739). The prioritisation combining all six 

methods found 118 genes prioritised with high confidence, with 97/118 having the 

same high confidence across 5/6 prioritisation methods183. On the evaluation of their 

gold standard genes, they found “the proportion of gold standard genes in the gene 

list selected by each approach were: 79.4% by TWAS, 78.4% by PoPS, 62.9% by 

DEPICT, 58.8% by protein coding variants 44.3% by the closest gene and 26.8% by 

eQTL”183. These results validate the findings of Mostafavi et al. (2022), as the eQTL 

prioritisation is the least capable of recognising gold standard genes. It also 

emphasizes the benefits of a combinational prioritisation approach that enables one 

method’s disadvantages to be compensated for, as shown by Kanoni et al. (2021) then 

using eQTL in their combined approach to identify ‘low confidence’ genes. 

 

However, while the method developed by Kanoni et al. (2021) investigates several 

methods, they do not compare a ML prioritisation approach. Furthermore, the gold 

and silver standard genes curated by Kanoni et al. (2021) present an opportunity for 

streamlined training data curation. Where the gold and silver standard can be 

integrated with the training data criteria developed in this thesis, acting as most likely 

and probable lipid-regulating genes respectively. Providing training data for re-

application of the BP gene prioritisation framework to blood lipid traits. In this 

chapter, I develop a re-application of the gene prioritisation framework previously 
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applied to BP GWAS, applying the prioritisation to the blood lipid traits GWAS 

performed by Graham et al. (2021). I investigate how to best adapt the BP framework 

to larger lipid GWAS data and explore the downstream ML performance and gene 

prioritisation in comparison to the BP gene prioritisation applied in chapter 4 and other 

lipid prioritisation techniques. 

 

8.3 Methods 

 
8.3.1 GWAS Description 

GWAS results were aggregated from the Global Lipids Genetics Consortium, 

genotyping 1,654,960 individuals from 201 studies in five ancestry groups (African, 

East Asian, European, Hispanic, and South Asian)197. Each cohort give summary 

statistics for all five blood lipid traits and underwent imputation using the 1000 

Genomes, with those of European ancestry being additionally imputed using the HRC 

panel – providing 91 million imputed variants. 52 million variants passed quality 

control to then enter multi-ancestry meta-analysis of the five blood lipid traits. 

 

8.3.2 Data Collection 

Re-applying the framework developed in Chapter 4 (Chapter 4 results 4.3.1) to the 

GWAS for all five blood lipid traits by Graham et al. (2021) required several data pre-

processing steps to be tailored. Firstly, on variant annotation, due to the highly missing 

annotations of pathogenic variants seen in the BP GWAS and the larger size of the 

total lipid GWAS data (n=52 million variants) requiring more computational time, 
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ANNOVAR annotation of pathogenic features was not collected. All other databases 

collected in the BP GWAS pipeline were annotated following the same protocol 

outlined in Chapter 4 results 4.3.1. Lipid genes were collated from the genes mapping 

to associated variants with p-values < 5x10-8 (n=7,209 from all five blood lipid 

traits197).   

 

Phenotypic data for blood lipids was curated from IPA (searching for genes annotated 

to ‘hyperlipidaemia’ in the database) and from Exomiser using the HPO search term 

‘abnormal circulating lipid concentration’. For the summary statistics, effect sizes 

calculated by Metal200 for each of the five blood lipid traits were used, exploring taking 

the absolute maximum value per gene or median value. However, the Metal effect was 

found to be heavily missing in the training data (as not all of the gold and silver set 

genes were in the GWAS with a significant association < 5x10-8, a filter set for 

computational efficiency when collating and annotating genes from all five blood lipid 

trait GWAS) and so was removed on feature cleaning (Appendix D Table 1).  

 

Bedtools (v2.28.0) was used to map variants to the hg19/GRCh37 reference genome 

from Ensembl (release 92, Homo sapiens.GRCh37.87). For each blood lipid trait 

GWAS individually, a gene was assigned to a variant if the variant was within a 5kb 

window distance from start and end of transcription of the gene. Variants in the whole 

GWAS of each trait (n=~20-35 million variants per each blood lipid trait) were 

annotated to genes within 5kb. To combine all files into one at a size that could be 

handled locally, genes annotated to each blood lipid trait were filtered to those that 
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had at least one variant with a p-value < 5x10-8, n=7,209 genes). Only UCSC variant-

level features for methylation sites were collected as additional variant annotations. 

 

8.3.3 Training Data 

Genes used in model training data were scored with values between 0 to 1 for 

regression analysis. The 21 genes labelled as gold standard genes by Kanoni et al. 

(2021), were scored at 1. These genes were labelled as such due to being Mendelian 

dyslipidaemia genes, which were only required to have proximity with GWAS loci 

but did not need to be associated. Genes were assigned a score of 0.75 if they were 

labelled as silver standard genes by Kanoni et al. (2021) – with 739 total silver genes 

filtered to 723 due to not including genes that were also in the gold standard gene 

group. This silver set was annotated by identifying genes with mouse model knockouts 

that have lipid phenotypes in IMPC or the Mouse Genome Informatics database that 

also had the closest proximity to any sentinel SNP. Genes scored at 0.1 were least 

likely to affect blood lipid traits and were identified by having only variants with a p-

value >0.05 and no LD with a sentinel SNP across all five blood lipid traits (n=60 

genes). LD was calculated for all blood lipid sentinel SNPs using UKBiobank data 

that has passed QC and PLINK (v.1.9) with an LD threshold r2 > 0.1 and a 1Mb 

interval region. Due to the low number of least likely genes that met the >0.05 p-value 

thresholds across all five blood lipid traits, no further PPI filtering was performed. 

These three scorings provided 804 training genes (21 genes scored at 1, 723 genes 

scored at 0.75, and 60 genes scored at 0.1) (Appendix D Table 2).  
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8.3.4 Data Pre-processing and Machine Learning Model Benchmarking 

Data pre-processing assessed genetic bias risks (gene length and gene distance), 

removed heavily missing and correlating features, and involved BorutaShap feature 

selection. Any variant-level features highly correlated with gene length (>0.3) were 

removed (Appendix D Table 3), alongside any features that were >25% missing or 

had a >0.9 correlation (Pearson r2) (Appendix D Table 4). ML with different 

correlation thresholds (0.85 and 0.99) were tested (test runs included 

https://github.com/hlnicholls/PhD-Thesis/tree/main/Chapter5). Further details of 

these data pre-processing methods can be found in Chapter 2 Methods section 2.2.2 

and Chapter 4 Methods section 4.2.3.  

 

The features were imputed using random forest imputation201 (using the missingpy 

package, v0.2.0) and underwent feature selection using the BorutaShap package 

(v1.0.13).  

 

Fourteen regression models were benchmarked, re-applying the ML methods from 

Chapter 4 Methods section 4.2.3. The top-performing model, underwent interpretation 

using the SHAP package26 (v0.36.0), providing feature importance values both 

globally for overall model performance and individually for each gene. Plots of the 

feature importance (for both overall predicting and individual predictions) were 

created alongside feature-feature interactions.  
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8.3.5 Blood Lipid Traits Gene Prioritisation Analysis 

After ML prioritisation, the gene selection per locus algorithm developed in Chapter 

4 was applied – with the algorithm steps outlined in Chapter 4 methods section 4.2.4. 

All genes prioritised (including training genes scored at 1 and 0.75) entered the gene 

selection algorithm. With genes sorted into 923 loci via having 500kb +/- distance 

with a sentinel SNP (n=2,624) as defined by Graham et al. (2021). In comparison, the 

BP GWAS loci ordering used both 500kb+/- distance as well as identifying genes with 

SNPs in LD (r2 > 0.8) with a sentinel SNP. LD was not provided by Graham et al. 

(2021) and so was not used in the loci ordering here. However, for confirmation, LD 

calculated for all sentinel SNPs using PLINK was used to identify genes in a locus by 

them having SNPs in high LD (r2 > 0.8) with a sentinel SNP. To ensure a full 

comparison with the loci also prioritised by Kanoni et al. (2021), LD was not used to 

filter lipid genes or order genes into loci, enabling the prioritisation of as many genes 

as possible. 

 

I investigated the genes scored > 0.8 by the top-performing model (known as highly-

scored genes) and the selected genes per locus (known as selected-genes) in 

downstream analysis by investigating their distributional differences for several 

collected annotations using the Mann-Whitney U test in R and plotting their gene 

expression across all tissues in GTEx (v8) using ComplexHeatMap (v2.6.2). I further 

explored GTEx annotations by collecting statistically significant sex-specific gene 

expression bias annotated in GTEx’s most recent data release169 – in which they 

identify statistically significant sex effect sizes in gene expression across tissue meta-

analysis. This annotation allowed for analysis of sex-specific bias as defined by GTEx 
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across 44 of their tissues for all prioritised genes and enabled further focus of potential 

sex-specific biased expression for the selected GTEx features used by the ML model.  

 

The R package GeneOverlap (v1.30.0) was used to perform hypergeometric tests on 

gene hits in IMPC phenotypes, testing the overlap of gene hits for the highly-scored 

genes and the selected-genes against the total number of genes in each phenotype in 

comparison to a total 1,875 genes annotated in IMPC. For gene enrichment analysis, 

I used KEGG to compare four groups: the selected-genes, the highly-scored genes, the 

genes containing sentinel SNPs47 GWAS, and the gold and silver set genes used in 

training (genes scored at 1 and 0.75 respectively). Gene enrichment analyses were 

visualizsd using the ComplexHeatMap package (v2.6.2) in R. 

 

8.3.6 Priortisation Methods Comparison 

The ML prioritisation was compared with other methods applying ML for gene 

prioritisation (Mantis-ml33, ToppGene 138, and GPrior19), alongside OpenTargets 

association scores202, and the combined confidence given from all six prioritisation 

methods performed by Kanoni et al. (2021). Unlike the BP GWAS, OpenTargets 

Genetics L2G scores were not available for the GWAS by Graham et al. (2021). 

Instead, OpenTargets overall association scores for hyperlipidaemia were used for 

comparison, which aggregates data from 12 databases in a harmonic sum202. GPrior, 

Mantis-ml and ToppGene required an input of positive genes, being given the 21 genes 

– gold standard lipid genes (scored at 1 for our ML) as positive examples19, 33, 138. They 

then required different parameters to run. ToppGene only required the gene list to be 

prioritised as input, and all other parameters were set to ToppGene’s default training 
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parameters138. Mantis-ml required the phenotype term of interest33 – for input 

‘abnormal circulating lipid concentration’ and ‘hyperlipidaemia’ were input and no 

excluded terms were set. GPrior is the only method that allows the user to input their 

own features19, and so for this method I input the selected features also used by our 

model corresponding with our gene list to be prioritised. The combined confidence 

assignment by Kanoni et al. (2021) ranged from ‘low’, ‘medium low’, ‘medium high’ 

and ‘high’ based on the combinational criteria from the prioritisation methods they 

investigated: 

• High confidence: Mendelian gene183. 

• Medium high confidence: coding variants or mouse knockout gene or PoPS183. 

• Medium low confidence: closest gene or DEPICT or TWAS183. 

• Low confidence: eQTL183. 

 

8.4 Results 

8.4.1 Framework Re-application 

Re-applying the framework developed in Chapter 4 (Chapter 4 results 4.3.1) to the 

GWAS for all five blood lipid traits by Graham et al. (2021) required several data pre-

processing steps to be tailored (Figure 5.1). Firstly, ANNOVAR annotation of 

pathogenic features was not collected due to the larger size of the total lipid GWAS 

data (n=52 million variants).  Secondly, the training data had gold standard and silver 

standard lipid genes provided by Kanoni et al. (2021), giving gene groups scored at 

1.0 and 0.75 respectively (n=744 in total).  
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Notably unlike the BP GWAS training data, these training genes were not required to 

be also found within the GWAS with only 395/744 also being identified in the 7,209 

lipid genes. For each of the five blood lipid traits, least likely protein-coding genes 

were then identified by having p-values > 0.05 across all five traits, giving only 60 

genes that met this criterion. Overall, this gene curation gave a total of 804 training 

genes that had 85 annotations that underwent feature cleaning and BorutaShap feature 

selection to enter model benchmarking of fourteen models. 

Figure 5.1. Overview of the machine learning framework re-applied to blood 

lipid trait GWAS. Blood lipid trait genome-wide association study variants from  

Graham et al. (2021) were annotated to genes and evaluated by benchmarked machine 
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learning. Data pre-processing involved annotating variants to genes from the whole 

GWAS and collecting gene-level annotations from several databases. The genes were 

then filtered to identify lipid genes (with linkage disequilibrium, LD, r2 > 0.8 and a p-

value <5x10-8) and that are genes least likely to affect blood lipid traits (selected by 

meeting criteria of having all variants with p-values > 0.05 across all five traits). 

Training genes of gold and silver standard for impacting blood lipid traits were 

previously identified by Kanoni et al. (2021). These genes in combination with the 

least likely lipid genes then created the training dataset and remaining lipid genes were 

reserved to be predicted by the top-performing model with regression. Model 

benchmarking was then applied comparing 14 models using 17 selected features. The 

top-performing trained model (extreme gradient boosting) was then used for gene 

prioritisation, with the genes and their corresponding scores being assessed within 

their loci to select the best gene(s) per locus. The prioritised genes underwent 

downstream analyses and were compared with other prioritisation methods. 

 

8.4.2 Exploratory Data Analysis 

Training data curation produced a dataset of 804 genes (21 scored at 1, 723 genes 

scored at 0.75, and 60 genes scored at 0.1). On exploring the genomic characteristics 

of the three gene groups, they were found to vary in their chromosome position and 

gene length (Figure 5.2 and Appendix D Table 5). The 0.1 scored genes had the 

shortest gene lengths measured by median, maximum and minimum gene lengths in 

the group (Appendix D Table 5). Feature cleaning removed 20 heavily missing 

features. Followed by all highly correlating (>0.3) variant-level features being 

removed to avoid gene length bias (5 features for histone methylation and DNase 
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cluster signal values). Then, 38 highly correlating features with a > 0.9 correlation 

threshold (which were all GTEx tissue features) were also removed (Appendix D 

Table 4), giving 27 features in total passing data cleaning. Finally, this was followed 

by BorutaShap feature selection identifying 17 important features (12 GTEx tissues, 

Exomiser human scores, HIPred, SDI, gene damage index - GDI - and pLI ExAC 

scores) to enter model benchmarking, with all selected features having similar 

importance (Figure 5.3).  It should also be noted that from the 12 selected GTEx 

tissues, six of them (amygdala, atrial appendage, kidney, lung, small intestine ileum, 

and ovary) were in correlative pairs with > 0.9 r2 (Appendix D Table 4), however, the 

other feature was the one removed (with one feature of each correlating pair being 

dropped at random). 

 

 

 

 

Figure 5.2. Training genes distributions across chromosomes. Counts of training 

gene groups across the three labels - most likely (gold standard, n=21), probable (silver 

standard, n=723), and least likely (n=60) - at each chromosome across the genome. 
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Figure 5.3. Feature importance measures. Box plot of all features that underwent 

BorutaShap (<25% missingness and <0.9 r2) and their measured importance by 

BorutaShap over 100 iterations of the BorutaShap algorithm (using z-scores), ordered 

from left to right in descending feature importance. Green boxes indicate selected 

features, red boxes indicate rejected features, and blue boxes indicate shadow features. 
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8.4.3 Model Benchmarking 

The benchmarked models showed similar trends to the performance in Chapter 4 on 

BP GWAS data (Figure 5.4). All tree-based models performed similarly, with XGB 

being the top-performing amongst them (0.708 r2 and 0.826 predicted r2) (Table 5.1). 

Meanwhile, from the meta-ensemble models, the bagging XGB model had a higher r2 

and lower predicted r2 (0.715 and 0.795 respectively). The lower predicted r2 led to 

XGB without bagging being the selected model for further investigation. 

 

Figure 5.4. Model benchmarking. Fourteen models were benchmarked: extreme 

gradient boosting (XGB), gradient boosting (GBM), catboost (CB), LightGBM 

(LGBM), random forest (RF), decision tree (DT), Extratrees (ET), K-nearest 

neighbors (KNN), support vector regressor (SVR), two linear models using 

regularization of elastic net and LASSO, respectively, and three meta-ensemble 

methods – stacking, bagging, and voting models. The model performance was 

assessed on 5-fold nested cross-validation repeated three times. 
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Table 5.1. Model benchmarking performance. Median performance comparison on 

nested 5-fold cross-validation. Only predicted r2 measurements were not median 

calculations but calculated from each model’s performance after hyper-parameter 

tuning. The fourteen models benchmarked were: extreme gradient boosting (XGB), 

gradient boosting (GBM), catboost (CB), LightGBM (LGBM), random forest (RF), 

decision tree (DT), Extratrees (ET), K-nearest neighbors (KNN), support vector 

regressor (SVR), two linear models using regularization of elastic net and LASSO, 

Model Median 

r2 

Predicted 

r2 

Mean Square 

Error 

RMSE Explained 

Variance 

Mean Absolute 

Error 

XGB 0.708 0.826 0.009 0.01 0.716 0.046 

GB 0.701 0.938 0.009 0.0973 0.702 0.045 

CB 0.674 0.796 0.009 0.095 0.68 0.0457 

LGBM 0.66 0.757 0.009 0.0968 0.672 0.0478 

RF 0.649 0.706 0.01 0.1054 0.663 0.046 

DT 0.468 0.525 0.0167 0.1293 0.4704 0.0471 

ET 0.434 0.443 0.0178 0.1334 0.4342 0.0699 

KNN 0.557 0.985 0.0135 0.116 0.5675 0.0455 

SVR 0.002 -0.048 0.0311 0.1764 0.043 0.1256 

LASSO 0.039 -0.007 0.0297 0.1723 0.045 0.0952 

ElasticNet 0.046 0.03 0.0298 0.1726 0.046 0.0965 

Stacking 0.682 0.793 0.009 0.0973 0.686 0.0389 

Bagging 0.716 0.795 0.009 0.01 0.717 0.045 

Voting 0.629 0.79 0.01 0.107 0.65 0.058 



 

 

 

236 

respectively, and three meta-ensemble methods – stacking, bagging, and voting 

models. 

 

8.4.4 Model Interpretation 

SHAP was used to interpret XGB’s performance, finding the most important feature 

was the human Exomiser score, followed by testis gene expression, probability loss of 

function (pLI), pituitary gene expression and the GDI score as the top five features 

(Figure 5.5.a). Examining XGB’s prioritisation of all gold standard genes (assigned a 

training score of 1) showed the model was successful in identifying all 21 of these 

genes had a higher score, with the lowest scored gold standard gene being CYP27A1 

prioritised at 0.743 (Figure 5.5.b). Notably from the 17 selected features, several 

GTEx tissues’ gene expression had minimal SHAP values (Figure 5.5.a and 5.5.b), 

and they also had minimal feature-feature interaction, with the strongest influencing 

relationship identified by SHAP being between HIPred and pLI (Figure 5.6). 
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Figure 5.5. Shapley additive explanation summary plots of model decision-

making. a SHapley Additive exPlanation (SHAP) summary plot of the top-

a 

b 
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performing model (extreme gradient boosting) predictions of all genes and how they 

were each influenced by each feature. The SHAP value on the x-axis indicates the 

direction of model influence from that feature for each gene (e.g., a higher SHAP value 

indicates a more positive output model score). The colour-coding of points (genes) 

indicates whether their feature value was high (red) or low (blue), and the ordering of 

features on the y-axis is by descending feature importance. b SHAP summary plot of 

the 21 gold standard gene predictions, visualising the model’s use of features for 

predicting each of the gene’s predicted scores (on the x-axis) – with these also being 

plotted against a black vertical line which is the average model score for all training 

data (0.7).  
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Figure 5.6. Shapley additive explanation heatmap of model decision-making. 

Heatmap showing the absolute SHAP value of feature-feature interactions, measuring 

the impact feature interactions had on model decision-making overall, with a red 

colour gradient indicating a larger influence on the model and a blue colour gradient 

indicating less to no model influence.  

 

8.4.5 Blood Lipid Traits Gene Prioritisation 

Once benchmarked and fit to the training data, the top-performing model, XGB, was 

used to prioritise all lipid genes (n=7,209) (Appendix D Table 6). I investigated the 
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highly prioritised genes by assessing intolerance metrics which were not used by the 

XGB model, using the Mann-Whitney U test. All the genes scored greater than 0.8 by 

the XGB model (‘highly-scored genes’) had significantly different values on Mann-

Whitney U tests in comparison to genes with a XGB score < 0.8 for gene essentiality 

(measured by Avana mean), and drug target probability (measured by SDI) (Appendix 

D Table 7, Figure 5.7). The most significant difference was the Avana mean with a 

Mann-Whitney U test adjusted p-value of 4.4x10-53 between the highly-scored genes 

and all other genes scored less than 0.8 by XGB (Appendix D Table 7). The highly-

scored genes had more negative Avana mean values indicating that more essential 

genes were highly prioritised (Figure 5.7).  
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Figure 5.7. Distributions of annotations for genes prioritised > 0.8 versus genes 

scored < 0.8 (a) and genes > 0.8 versus total database annotations (b). Annotations 
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not used in machine learning were plotted to compare genesets across several 

measures: subcellular diversity index (SDI) drug probability, gene essentiality (avana 

mean), genic intolerance (RVIS), and ubiquitous cell-type expression (panglaoDB). 

Genes scored > 0.8 had their annotations compared against that of genes < 0.8 (a), and 

that of the total genes in a database for each annotation (b). The Mann-Whitney U test 

identified significant differences in distributions. 

 

From the selected gene(s) per locus (the “selected-genes”), in total, 2,327/7,209 genes 

were selected for 923 total blood lipid loci (Appendix D Table 8), with 343 loci having 

> 1 gene selected at their loci.  Genes were sorted into 923 loci via having 500kb +/- 

distance with a sentinel SNP (n=2,624) as defined by Graham et al. (2021). LD was 

not provided by Graham et al. (2021) and so was not used in the loci ordering here. 

However, for confirmation, LD was calculated, which when applied to identify genes 

in LD with r2 > 0.8 with a sentinel SNP gave genes that filtered into only 457 of the 

923 loci. 

 

The selected-genes also had significant differences on Mann-Whitney U tests in their 

annotations across several measures (Appendix D Table 7, Figure 5.8). The selected-

genes had the most significant difference in comparing their SDI drug probability with 

that of all other genes in the SDI database (adjusted p-value = 3.28x10-23) (Appendix 

D Table 7, Figure 5.8), indicating that genes with a higher likelihood of being drug 

targets were highly prioritised by XGB. 
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Figure 5.8. Density distributions of annotations for selected genes per locus 

versus all other scored genes (a) and selected genes per locus versus total database 

annotations (b). Annotations not used in machine learning were plotted to compare 

genesets across several measures: subcellular diversity index (SDI) drug probability, 
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gene essentiality (avana mean), genic intolerance (RVIS), and ubiquitous cell-type 

expression (panglaoDB). Genes scored > 0.8 had their annotations compared against 

that of genes < 0.8 (a), and that of the total genes in the database for each annotation 

(b). The Mann-Whitney U test identified significant differences in distributions. 

 

Overall KHK was the top scored novel gene (0.895 XGB score) with other highly 

prioritised genes by XGB including GLYCTK, SORD, UNC13D, PPOX, CREB3L3, 

PIGT, SLC25A20, PCYT1A and ACOX2 (Table 5.2). Some of these genes have been 

the focus of in vivo and clinical research investigating their roles in lipid metabolism 

and cardiovascular conditions such as KHK187, and CREB3L3188.  

 

Gene XGB 

Score 

Gene Description Potential 

Druggability 

(DGIdb) 

Most 

significant 

Pathway 

(KEGG) 

Median 

GWAS 

p-value 

KHK 0.895 Ketohexokinase - 

catalyses conversion 

of fructose 

Druggable 

genome 

Fructose and 

mannose 

metabolism 

5.62x10-12 

GLYCTK 0.892 Glycerate Kinase - 

catalyses the 

phosphorylation of 

(R)-glycerate 

Kinase Pentose 

phosphate 

pathway 

5.13x10-12 

SORD 0.891 Sorbitol 

dehydrogenase - 

catalyses conversion 

Druggable 

genome 

Fructose and 

mannose 

metabolism 

1.02x10-8 
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of polyols and 

ketoses 

UNC13D 0.871 Unc-13 Homolog D – 

acts in vesicle 

maturation and 

regulation of 

cytolytic granules 

secretion 

NA NA 6.85x10-15 

PPOX 0.871 Protoporphyrinogen 

Oxidase - the 

penultimate enzyme 

of heme biosynthesis 

Druggable 

genome 

Porphyrin and 

chlorophyll 

metabolism 

2.1x10-08 

CREB3L3 0.869 CAMP Responsive 

Element Binding 

Protein 3 Like 3 - 

transcription factor 

activated by cyclic 

AMP stimulation 

Transcription 

factor 

Vasopressin-

regulated 

water 

reabsorption 

7.92x10-13 

PIGT 0.868 Phosphatidylinositol 

Glycan Anchor 

Biosynthesis Class T 

- involved in 

glycosylphosphatidyli

nositol (GPI)-anchor 

biosynthesis 

Druggable 

genome 

Glycosylphos

phatidylinosit

ol (GPI)-

anchor 

biosynthesis 

1.72x10-10 



 

 

 

246 

Table 5.2. Description of the top ten novel prioritised genes. The top ten scored 

genes by XGBoost (XGB) and descriptions of: their gene function, their druggability 

as annotated by the Drug-Gene Interaction database, their most significant Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway, their other locus gene(s), and 

their median GWAS p-value. 

 

SLC25A2

0 

0.854 Solute Carrier Family 

25 Member 20 - 

mitochondrial-

membrane carrier 

protein 

Druggable 

genome, 

transporter 

Thermogenesi

s 

1.85x10-11 

PCYT1A 0.852 Phosphate 

Cytidylyltransferase 

1A, Choline - 

involved in the 

regulation of 

phosphatidylcholine 

biosynthesis 

Enzyme Phosphonate 

and 

phosphinate 

metabolism 

1.26x10-8 

ACOX2 0.85 Acyl-CoA Oxidase 2 

- involved in the 

degradation of long 

branched fatty acids 

and bile acid 

intermediates in 

peroxisomes 

Enzyme Primary bile 

acid 

biosynthesis 

3.59x10-10 



 

 

 

247 

8.4.6 Gene Expression 

I next explored gene expression clustering across all 54 tissues available in GTEx147 

for both the highly-scored genes and selected-genes. The highly-scored genes had no 

notable clusters, however, the selected-genes identified a group of genes (RPL13A, 

RPS11, RPL19, RPS27, RPL5, EEF2, EEF1G, RPS6, RPL4, RPS7, VIM, FN1, and 

MUC7) containing predominantly ribosomal proteins with high gene expression 

across 33 tissues including those relating to lipid metabolism (such as adipose tissue, 

arteries, and pancreatic tissue). 

 

In considering the sex-specific tissues selected as features and the potential sex-

specific bias leaking into model decision-making, I also compared whether the 

prioritised genes were also identified as having sex-specific bias as defined by GTEx 

across 44 of their tissues169 (Appendix D Table 8). This showed that 54.3% of selected-

genes were annotated as having a sex-specific bias in their gene expression for various 

tissues by GTEx169. From the most important tissues used by XGB, 120 selected-genes 

had a sex-specific bias in their pituitary tissue expression (out of 1,420 genes with sex-

specific bias in that tissue in the total GTEx database), 236 genes had a sex-specific 

bias for amygdala expression (out of 2,398 genes with sex-specific bias in that tissue 

in total in GTEx) and 65 genes had a sex-specific bias for liver expression (out of 717 

genes with sex-specific bias in that tissue in total in GTEx). However, while these 

genes are annotated as individually being statistically significant for sex-biased 

expression in GTEx169, on hypergeometric testing of all prioritised genes biased for 

each tissue no gene group with overlapping selected-genes had statistical significance. 
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8.4.7 Gene Enrichment Analysis 

The prioritised genes were further explored in four gene groups (genes scored > 0.8, 

selected genes per locus, sentinel genes, and gold and silver standard lipid training 

genes combined). Enrichment analysis of these gene sets found that all gene groups 

were most significantly enriched for cholesterol metabolism and lipid metabolism 

pathways such as PPAR signalling and fat digestion (Figure 5.9). Plotting the gene 

interaction network between these top five pathways showed only CD36 (scored 0.763 

by XGB) acts within all five, with it having druggability identified by DGIdb, 

alongside several genes that overlap with at least 2 of the pathways (e.g., FABP1 

scored 0.771 by XGB and FABP2 scored 0.752 acting in PPAR signalling and fat 

digestion and absorption) (Figure 5.10). 
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Figure 5.9. KEGG pathway analysis. Heatmap of the top 20 Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathways. The heatmap shows more significant values 

are indicated by darker shades of red, and no enrichment in grey. Four gene groups 

are compared, composed of genes with a > 0.8 XGB score (n=60), lipid training genes 

(gold and silver standard lipid genes) (n=744), sentinel genes (identified in the 

genome-wide association study by  Graham et al. (2021)) (n=1,222), and selected-

genes (genes selected at their locus) (n=2,327). 
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Figure 5.10. Gene interaction network of the top five most significantly enriched 

pathways. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway 

interactions have gene nodes colour-coded with higher prioritised genes by extreme 

gradient boosting in dark red and lower-scored genes scored in light red. Pathway node 

size indicates enrichment log p-value for each pathway node. Square symbols 

represent whether the gene had druggability recorded in the Drug Gene Interaction 

Database. For example, CD36 is denoted in the centre of the plot, interacting with all 

five pathways, with annotated druggability and a high XGB score (0.763).  

 

8.4.8 Prioritisation Methods Comparison 

I selected other gene prioritisation methods to compare against XGB and analyse their 

predictions for the blood lipid genes. 1) OpenTargets association scores to 

hyperlipidaemia, 2) Mantis-ml: a positive-unlabelled learning approach that 
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benchmarks several models33, 3) ToppGene: an unsupervised learning method138, and 

4) GPrior: a positive-unlabelled learning tool that consists of bagging ensemble 

models19, 5) all six prioritisation methods used by Kanoni et al. (2021) (PoPs, 

DEPICT, closest gene to the sentinel SNP, genes with coding variants in credible sets, 

eQTL localisation, and transcriptome-wide association study). However, it should be 

noted that prioritisation methods 1-4 output scores between 0-1 whilst the use of six 

methods by Kanoni et al. (2021) output labels of low to high confidence. All methods 

1-4 showed positive correlations for prioritising lipid genes used in our training data 

(the 21 gold standard lipid genes and 723 silver standard lipid genes) and for all 

predicted genes (the 7,209 genes prioritised by the trained model) (Table 5.3, Figure 

5.11).  I then compared the confidence assignments using six prioritisation methods 

by Kanoni et al. (2021) (Table 5.4) (Appendix D Table 9).  All genes assigned ‘high’ 

confidence levels were scored > 0.5 by XGB with the lowest gene scored at 0.59 

(UBE2L3) and a median XGB score being 0.76 (followed by slightly lower median 

XGB scores for the lower confidence levels albeit only by 0.01 difference, Table 5.4) 

(Appendix D Table 9). 
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Table 5.3. Comparison of gene prioritisation methods. Table comparing the 

prioritisation of training genes that were scored as the gold standard (scored at 1.0) or 

probable (scored at 0.75) BP genes (n=744) and predicted genes (n=7,209) by several 

methods in comparison to extreme gradient boosting, measured by their correlation 

(R) for their predicted gene scores. 

 

Gene 

Confidence 

Median XGB 

Score 

Maximum XGB 

Score 

Minimum XGB 

Score 

High (n=118) 0.7603 0.9188 0.5936 

Medium high 

(n=1716) 

0.75080 0.89540 0.05998 

Medium low 

(n=2,897) 

0.74735 0.89672 -0.02496 

Low (n=261) 0.7473 0.9188 0.1774 

Table 5.4. Prioritisation comparison between confidence levels and XGBoost 

scoring. Confidence levels used to prioritise genes by Kanoni et al. (2021) were 

compared with their predicted scores by XGBoost, investigating the gene 

prioritisations for each of the confidence levels (from low to high).  

 

 

OpenTargets 
Association 

Score 
GPrior Mantis-

ml ToppGene 

Gold standard genes 
(scored 1.0 on training) 0.31 NA 0.24 NA 

Silver standard genes 
(scored 0.75 on training) 0.11 0.24 0.18 0.033 

Predicted genes 0.038 0.64 0.21 0.36 
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b 

a 
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Figure 5.11. Gene prioritisation method comparison. XGB was plotted against four 

other methods comparing gene prediction; Overall association scores by OpenTargets 

d 

c 
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(a), Mantis-ml (b), ToppGene (c) and GPrior (d) prioritisation methods, investigating 

how each of the methods scored the lipid training genes (gold and silver standard set 

genes) and all other lipid genes (predicted genes) from the GWAS by Graham et al. 

(2021). For each plot, the score our XGB model gave to each gene is plotted along the 

x-axis in comparison to another method’s prediction plotted on the y-axis, with the 

correlation (R) between the two methods calculated alongside the p-value significance 

of the R. The 21 gold set genes are coloured in red; the 723 silver set genes are 

coloured in yellow, and the 7,209 predicted genes are coloured in blue. 

 

8.5 Discussion 

Similar to the BP data analysed in chapters 2-4, the curated lipid training data showed 

genetic characteristics with minimised genetic bias risk. For example, similar to the 

EDA in chapter 2, only counts of epigenetic sites (CpG islands and methylation sites) 

had high correlations with gene length (Appendix D Table 3), leading to their removal 

of features. This result also suggests that the curation of counts of epigenetic sites per 

gene may not be beneficial to collect as ML features, when considering that these 

features did not pass gene length correlation in either ML framework application. 

When analysing gene length alone, the least likely genes curated and scored at 0.1 had 

the shortest genes – which also potentially impacted the ability to collect PPI data to 

further filter these genes, as shorter genes have been shown to have less PPIs203.  

 

The curation of the least likely genes was one of the few key aspects of the ML 

framework that were altered in this re-application. The change in gene curation was 
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due to the lack of genes that had all variants with large p-values (set to be greater than 

0.05 to get the maximum number of genes) across all five blood lipid traits. Whilst 

analysing five blood lipid traits at once creates this limitation, making it less likely to 

have genes passing the filter for all five traits, it was also a necessity to apply the ML 

framework to all five blood lipid traits combined and not individual. This approach 

using five traits in a single model was chosen due to several reasons: the genetic and 

phenotypic correlation of all five phenotypes197, 204, the gold and silver set genes not 

being curated from any evidence relating to individual blood lipid traits (but to lipid 

metabolism more generally), them being the same training examples that would be 

used in all five individual ML applications, and the Metal effect size feature (which 

would give the only unique data points per each trait for the gold and silver standard 

genes) not passing data cleaning. Furthermore, having one approach prioritises genes 

across all five traits at once enabled a more time-efficient approach, as opposed to 

running the framework five times. 

 

The performance of the models benchmarked and the top-performing model, XGB, 

follows the model benchmarking trends discussed in chapter 4. However, GBM had 

the highest predicted r2 on this re-application (0.938, Table 5.1) but despite this, XGB 

was chosen due to the 0.938 being an unexpectedly high increase in predicted r2 (in 

comparison to GBM’s 0.701 median r2 and also in comparison to all other models’ 

more conservative predicted r2 measures). Notably, the algorithmic principles that 

underly gradient boosting are known to cause an overfitting risk. This is due to the 

gradient boosted tree optimising its tree over iterations on the training data, using 

residual errors from its previous trees - unlike for example random forest in which 
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each tree is trained on subsets of differing data divisions in parallel. Other gradient 

boosting models aim to minimise the overfitting risk in their design by having 

additional parameters (e.g., XGB has L1 and L2 regularisation and CB has ordered 

boosting). Also, the large class imbalance in the blood lipid data (21:723:60 for each 

of the training gene groups) increases the overfitting risk, requiring a more 

conservative approach. These reasons lead to XGB being selected with the model 

having the next best performance with a median r2 of 0.707 and predicted r2 of 0.826, 

with all other metrics (mean squared error, explained variance, RMSE, and mean 

absolute error) having similar performances across gradient boosting ensemble models 

with less than 0.001 difference. 

 

On exploring SHAP interpretation, it showed the gold standard genes were predicted 

based on the human Exomiser score followed by pLI measures as the most important 

features (Figure 5.5b). The use of these genetic intolerance and phenotypic features, 

similar to that of their importance in chapter 4, validates the re-application of the 

framework and shows the model highly prioritises genes that have more observed 

human phenotypes relating to blood lipids in Exomiser (with the human score 

calculated in Exomiser by the semantic similarity of related HPO terms) and have a 

higher probability of being loss-of-function intolerant genes. However, the positive 

SHAP values here are shown to be predominantly driven by the human Exomiser 

scores (Figure 5.5) suggesting the model could be being overpowered and biased by 

this one feature. Furthermore, as the Exomiser feature is a phenotypic measure, if used 

to make the majority of decisions in XGB it may be encouraging a redundancy in 

comparison to using the Exomiser score itself as a prioritisation measure. However, 
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similar to the BP GWAS application, HIPred and pLI are measured by SHAP as 

having the highest influencing interaction, followed by the Exomiser score with the 

amygdala gene expression (Figure 5.6), suggesting, that despite the large influence of 

the Exomiser score alone, model-decision making is informed by multiple factors.  

 

The significance of the amygdala, as both its interaction with Exomiser scores and its 

position as the most important tissue feature for prioritising gold standard genes 

(Figure 5.5b) highlights its potential impacts on lipid metabolism that could be further 

investigated. For example, research has shown the amygdala acts to innervate 

interscapular brown tissue via its insulin receptors205, which in turn regulates lipid 

metabolism. Furthermore, XGB also highly valued gene expression in pituitary and 

testis tissues, which are known to act together to regulate lipid metabolism and free 

circulating cholesterol in men206, 207, alongside the pituitary gland also acting in the 

pituitary-adrenal axis which is known to be affected by a high-fat diet208. The 

importance of these tissues, similar to that of the tissues selected in chapter 4, suggests 

the XGB model prioritises genes acting in lipid-related signalling pathways as 

opposed to the sites of action. In contrast, several GTEx tissues were selected that have 

minimal model influence according to SHAP (e.g., lung, kidney, atrial appendage, 

spleen, cultured fibroblasts, ovary and the terminal ileum), suggesting the model and 

the computational efficiency could be further optimised with the removal of these 

features or that these features were only of notable benefit for certain genes. Six of the 

selected GTEx tissues were also in feature-feature correlating pairs with an r2 > 0.9 

(although their correlating feature counterpart was the removed feature), suggesting 
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these importance of these features needs further exploration that would ideally be 

using further testing data to confirm or deny their importance. 

 

Also, from the selected features sex-specific tissues testis and ovary were selected, 

with the testis being the second most important GTEx feature in the training data 

(Figure 5.5). This aligns with lipid metabolism research that has identified sex 

differences in blood lipid traits and the roles played by sex-specific tissues such as 

testis in lipid metabolism184, 185. However, this also poses a bias risk in the ML 

framework, as the ovary TPM expression is not as highly valued by the model 

(although it is a selected feature), despite the ovaries also having a studied relationship 

to lipid metabolism186. This interpretation implies that the model, and its higher 

importance placed on testis gene expression, may have a preference for understanding 

sex-specific biological patterns. To further investigate this, I performed additional 

annotation of the model’s gene ranking to indicate which genes are more likely to have 

biased sex-specific GTEx tissue expression (Appendix D Table 8). From the training 

genes, 126/744 genes were annotated as having sex-specific biased expression (across 

any of the tissue including those that were selected features), suggesting the ML model 

may be influenced by biased expression measures. The top prioritised gene, KHK, was 

annotated in GTEx as having sex-biased expression in 17 tissues including skeletal 

muscle tissue, which was a tissue focused on by Miller et al. (2018) who explored the 

gene’s impact on fructose metabolism in knockout mice. Miller et al. (2018) found 

significant levels of fructose metabolites in the mice’s skeletal tissue, suggesting KHK 

impacts fructose metabolism in skeletal muscle. However, whilst these findings link 

KHK to lipid regulation via fructose metabolism187, the potential for biased sex-
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specific expression as identified in GTEx indicates that caution is needed in follow-

up research. Functional research focusing on sex-specific impacts of genes on lipid 

metabolism would also confirm whether the XGB model is truly identifying sex-

specific biological patterns in its genes and selected features, which is difficult to 

ascertain from the model output alone. 

 

Unlike the results of chapter 4, this model was more conservative in prioritising genes 

greater than 0.8, with the majority of genes being scored ~0.7. This result reflects the 

underlying larger class imbalance in comparison to that of the BP GWAS data, 

requiring more gold standard genes to overcome the lack of higher prioritisations. In 

total, the model prioritised 72 genes greater than 0.8, which on the Mann-Whitney U 

tests showed that these genes were more likely to be essential genes but that they had 

insignificant distributions in other metrics (RVIS, cell-type expression, and SDI drug 

probability). Furthermore, these genes also had predominantly insignificant 

enrichment for IMPC mouse phenotypes, with only 10/72 genes having a phenotype 

related to lipid or cardiovascular disease. Overall, a conservative model is beneficial 

as the higher-scored genes become a more refined list that may be easier to 

functionally investigate one by one. However, future research requires an increased 

size of gold standard genes to increase a ML model’s understanding of what makes a 

most likely causal gene. 

 

Downstream analysis validated the ML approach, highlighting supporting evidence 

for the highest-scored genes and their potential roles in lipid metabolism. Notably, 

KHK187 and CREB3L3188 have had direct lipid metabolism research. The top 



 

 

 

261 

prioritised gene KHK, for example, has knockout mouse model research showing the 

model has fructose intolerance that is known to impact lipogenesis, dyslipidemia, and 

insulin resistance187. Meanwhile, CREB3L3 has had research into relation to 

hypertriglyceridemia, finding patients with a loss-of-function of the gene were 

significantly more likely to have severe hypertriglyceridemia188. Several of the other 

top 10 genes (GLYCTK209, SORD184, SLC25A20189, PCYT1A210, UNC13D211, 

ACOX2212) have been involved in research related to lipid regulation but have not been 

the focus of any lipid metabolism study. For example, GLYCTK has been shown to be 

hypermethylated in rat models that were studied focusing on lead exposure leading to 

weight gain209. Furthermore, UNC13D mutations in patients with familial 

hemophagocytic lymphohistiocytosis have had clinical study showing they also have 

hypertriglyceridemia211.  

 

In total, 2,327 genes were selected per loci as most likely lipids genes with 2,312 of 

them having a model score greater than 0.5. The majority of selected-genes being 

scored greater than 0.5 again highlights the class imbalance using 723 silver set genes 

scored at 0.75 out of a total 804 training genes, however, it also highlights a limitation 

of the gene per locus selection algorithm as having a large pool of highly scored 

prioritised genes (with also fewer PPIs than the BP prioritisation which used collated 

GWAS’ for 7,705 BP gene direct and secondary PPIs in total, versus 3,266 direct and 

secondary lipid gene PPIs found here) led to more opportunity for multiple genes to 

be selected per loci. In total, 343 loci had more than one gene selected, suggesting 

there is still further opportunity for refinement in these loci that ML and the selection 

algorithm could not provide. However, future work could overlay prioritisation 
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approaches, such as assessing prioritisation with other methods, e.g., DEPICT or PoPs 

as seen by Kanoni et al. (2021), which would enhance the gene selection algorithm 

developed here.  

 

This would also optimise the selected-gene list that went into gene enrichment 

analysis. For example, the GTEx analysis showed only one cluster of 13 genes from 

the selected-genes with higher expression across 33 tissues than other selected-genes.  

Whilst the increased strength of their expression in lipid-related tissues suggests they 

may impact lipid regulation, the majority of these 13 genes encode ribosomal proteins 

and had only protein-translational roles identified in STRINGdb, suggesting their 

impacts are likely to be ubiquitous and their increased GTEx expression in 33 tissues 

may have only been identified by chance. Furthermore, the most significantly enriched 

pathways for the highest prioritised genes were known lipid metabolism pathways 

(e.g., cholesterol metabolism and PPAR signalling – Figure 4.5, Appendix D Table 

10), also leading to fewer novel discoveries. However, further analysis of the genes 

inside these pathways may hold new insights. For example, the identification of CD36, 

which interacted with the top five enriched pathways and is also druggable (Figure 

5.10), also interacts with the angiogenesis inhibitor and cancer drug ABT-510190 and 

it has known roles in atherosclerosis and lipid metabolism191, suggesting it may be a 

worthwhile target for further investigation in known lipid pathways. 

 

When comparing the XGB to other methods, there were positive correlations for all 

gene predictions overall (Table 5.3, Figure 5.11), validating the re-application of this 

ML framework. For example, the OpenTargets overall association scores had the 
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highest positive correlations for any training gene group across blood lipid traits at 

0.31 correlation for the gold standard genes (Table 5.3), however, this can only be 

compared with Mantis-ml which had a 0.24 correlation for the gold standard genes. In 

comparison to the prioritisation by Kanoni et al. (2021), the genes prioritised with high 

to low confidence also showed that genes with higher XGB prioritisation were more 

often assigned higher confidence by Kanoni et al. (2021). However, this was only with 

a slight difference in XGB scores (Table 5.4), emphasizing XGB’s tendency to score 

genes ~0.7 and the effect of the underlying class imbalance influencing the model. 

Furthermore, XGB scored some genes that were labelled as having medium-low 

confidence with lower prioritisation scores than those with a low confidence assigned 

by Kanoni et al. (2021). This could indicate that XGB is not finding a great difference 

between the gene-characteristics of those confidence labels as clearly as in the other 

categories. For example, there is a clear difference between high and medium-high 

XGB scores where the minimum score for the high category only reaches 0.59, whilst 

the median and maximum prioritisations shift accordingly to their categorisation. 

Future work could combine both the medium-low and low-confidence groups into one 

category, using the evidence provided by both groups (e.g., DEPICT or TWAS that 

was used to assign medium-low confidence combined with the eQTL data used to 

assign low confidence) to have a multi-layered assessment of low confidence genes. 

 

Investigating the genes focused on by Ramdas et al. (2021) (RRBP1 and CREBRF) 

showed XGB scored RRBP1 at 0.73 (while Kanoni et al. (2021) gave the gene a high 

confidence label), and XGB scored CREBRF at 0.76 while Kanoni et al. (2021) assigns 

the gene low confidence. CREBRF received its low confidence from eQTL data, 
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implying there may be a bias that is skewing prioritisation183. Overall, these 

differences between these methods and their output prioritisations emphasize the 

importance of comparing the prioritisation of any individual gene of interest to be sure 

their biological evidence is in strong enough agreement to warrant their follow-up 

experimentation.   

 

The re-application of this ML framework also highlighted limitations with the 

method’s general use. For example, the curation of training genes derived not from 

the GWAS itself prevented the use of GWAS summary statistics, such as effect size, 

to be used as a feature. Furthermore, the least likely gene curation was limited by a 

minimal number of genes having large p-values (caused in part by requiring this to be 

the case for five blood lipid traits). This challenge was compensated for with the 

removal of their further PPI curation, which potentially weakens the strength of these 

genes being truly least likely to affect blood lipid traits. In addition, the collected 

annotations from 20 databases, the benchmarking of fourteen models, and the size of 

the training data being more than double that of the BP GWAS, made the framework 

more computationally expensive – making the framework less accessible. The data 

size and time to run also led to regression scoring intervals not being tested as it was 

in chapter 4, with the gene scores being set to 1.0, 0.75, and 0.1 with no further scoring 

tests. This scoring interval was chosen due to its successful performance in chapter 4; 

however, further comparative tests are still needed to confirm the ML framework is 

optimised to this blood lipid dataset. Additionally, the gold standard and silver 

standard training genes provided gene curations for efficient re-application of the ML 

framework, however they were not curated with ML in mind, with the silver set 
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providing a large class imbalance in a ML context - suggesting future work would 

need to refine this gene group to optimise the ML performance. 

 

Overall, this re-application of the ML framework developed in this thesis highlights 

the potential of the methodology to act as a disease-agnostic framework that develops 

automated disease-specificity as part of its pipeline (by specified training gene 

curation and collection of phenotypic features using relevant search terms in tools such 

as Exomiser) to successfully prioritise most likely causal genes. The re-application to 

blood lipid traits also indicates novel genes with potential roles in lipid metabolism, 

that are further verified by the supporting prioritisation evidence gathered in previous 

studies183, 192. However, the limitations of this re-application (quality of least likely 

gene curation, class imbalance, computational efficiency, etc.) add to the challenges 

already faced by ML applied to gene prioritisation and emphasize that re-application 

of this ML framework needs to be applied with care. 

 

 

 

 

 

 

 

 

 


