
Reconciling High Accuracy, Cost-Efficiency, and Low Latency
of Inference Serving Systems

Mehran Salmani
∗
, Saeid Ghafouri

§
, Alireza Sanaee

§
, Kamran Razavi

†
,

Max Mühlhäuser
†
, Joseph Doyle

§
, Pooyan Jamshidi

‡
, Mohsen Sharifi

∗

Iran University of Science and Technology
∗
, Queen Mary University of London

§
,

Technical University of Darmstadt
†
, University of South Carolina

‡

ABSTRACT
The use of machine learning (ML) inference for various appli-

cations is growing drastically. ML inference services engage

with users directly, requiring fast and accurate responses.

Moreover, these services face dynamic workloads of requests,

imposing changes in their computing resources. Failing to

right-size computing resources results in either latency ser-

vice level objectives (SLOs) violations or wasted computing

resources. Adapting to dynamic workloads considering all

the pillars of accuracy, latency, and resource cost is challeng-

ing. In response to these challenges, we propose an adapta-

tion mechanism, InfAdapter, that proactively selects a set of

ML model variants with their resource allocations to meet la-

tency SLOwhile maximizing an objective function composed

of accuracy and cost. InfAdapter decreases SLO violation and

costs up to 65% and 33%, respectively, compared to a popular

industry autoscaler (Kubernetes Vertical Pod Autoscaler).

1 INTRODUCTION
The computing demand for machine learning (ML) has ex-

ponentially increased over the past decade [11]. For exam-

ple, different ML applications, including computer vision,

machine translation, chatbots, medical, and recommender

systems, are running in data centers [13, 27, 30, 32], com-

prising more than 90% of computing resources allocated to

ML [10, 13, 24]. ML inference services are user-facing, which

mandates high responsiveness [17, 35]. Moreover, high accu-

racy is of great importance for these services [19, 25]. Con-

sequently, inference systems need to deliver highly accurate

predictions with fewer computing resources (cost-efficient)

while meeting latency constraints under workload varia-

tions [17, 18, 35].

The dynamic nature of inference serving workloads re-

quires different resource allocations for ML services [17, 35].

Failing to do so results in over or under-resource provision-

ing. Under-provisioning leads to service level objective (SLO)

violations (e.g., 99𝑡ℎ percentile of latency distribution, P99-

latency)[17, 34]. Conversely, over-provisioning wastes com-

puting resources [28, 34]. To address these problems caused

by dynamic workloads, Auto-scaling [2, 9, 16, 17, 28, 34]

Table 1: InfAdapter is superior compared to the state-
of-the-art solutions. (∗) Cocktail uses model ensem-
bling leading to cost inefficiencies in particular scenar-
ios (see Section 6).

Feature

M
S
[
3
6
]

I
N
F
a
a
S
[
2
8
]

C
o
c
k
t
a
i
l
[
1
9
]

V
P
A
[
9
]

I
n
f
A
d
a
p
t
e
r

Cost Optimization ✕ ✓ ✓∗ ✓ ✓

Accuracy Maximization ✓ ✕ ✓ ✕ ✓

Predictive Decision-Making ✓ ✕ ✓ ✓ ✓

Container as a Service (CaaS) ✕ ✕ ✕ ✓ ✓

Latency SLO-aware ✓ ✓ ✓ ✕ ✓

resizes the resources of the service, and Model-switching

[25, 36] switches between ML model variants that differ in

their inference latency and accuracy (higher accuracy, higher

latency); The former tries to be cost-efficient, and the latter

tries to be more accurate, while both guarantee latency SLOs.

Auto-scaling and model-switching as the state-of-the-

art adaptation mechanisms fail to consider the accuracy and

cost-efficiency simultaneously. Auto-scaling may sacrifice

accuracy if it works with a low-accuracy model variant, or

incur high resource costs if used for a high-accuracy model

variant. Conversely, model-switching can be a subject of

under-provisioning in cases where even the least accurate

model variant is unable to respond to the workload; It also

fails to be cost-efficient when the capacity of the most accu-

rate model variant is more than the workload on the service.

The ability to jointly resize and switch ML model variants

provides new opportunities. For instance, our experiments

demonstrate that a Resnet50 model variant on 8 CPU cores

allocation can sustain almost the same load that a Resnet152

variant does with 20 CPU cores; Moreover, a Resnet18 with

8 CPU cores can process the same load as a Resnet50 with

20 cores, while meeting P99-latency (750ms). Using a set

of model variants instead of a single variant provides more

granular accuracy/cost trade-offs.

1



18 50 152
Resnet model variant

0
100
200
300
400

Th
ro

ug
hp

ut
 (R

PS
)

70

72

74

76

78

Ac
cu

ra
cy

 (%
)

CPU = 8
CPU = 14
CPU = 20
Accuracy

Figure 1: Throughput of three Resnet variants under 8,
14, and 20 CPU cores.We ensured the latency of all con-
figurations is lower than 750 ms at the 99𝑡ℎ percentile
at the saturation load.

Inference systems should be adaptive in response to dy-

namic workloads and be able to consider all the contrasting
objectives, including responsiveness (latency), accuracy, and

cost-efficiency (allocated CPU cores), when dedicating re-

sources to services and models. Moreover, reconciling these

three measures is challenging as achieving one causes a vio-

lation or sacrifice of the other, and finding a trade-off among

these three is daunting.

In response to these challenges, we design InfAdapter and

empirically show that it can address the limitations of ex-

isting solutions. It predicts the service workload to mitigate

provisioning overhead and, by using the predicted load, se-

lects a set of ML model variants and their sizes (CPU cores)

as the service backends to meet latency SLO and to maxi-

mize an objective function composed of average accuracy,

resource cost, and loading cost (Section 3). To process the

incoming requests, we implemented a dispatcher that load

balances user requests to the backend variants according to

their capacity(Section 4). Our experiments demonstrate that

InfAdapter reduces average accuracy loss for latency SLO

of 750 ms at 99
𝑡ℎ

percentile up to 4% given the same load

compared to existing solutions (Section 5).

We have prototyped InfAdapter
1
in a Kubernetes cluster

and used TensorFlow Serving [26] model server to serve

our ML models. We experimentally evaluate InfAdapter us-

ing a real workload trace, Twitter-trace [12] (Section 5) and

compare it against existing solutions (e.g., vertical Pod auto-

scaler (VPA) [9], and Model-Switching [36]). Our experi-

ments illustrate that InfAdapter reduces SLO violations by

up to 65% compared to existing solutions. We further open-

sourced our implementation for community engagement and

reproducibility of our experiments. Table 1 summarizes dif-

ferences between InfAdapter and other existing approaches.

2 MOTIVATION
Due to interaction with online users, inference services are

latency-sensitive [17, 34], and since they contain heavy com-

putations, they are resource-intensive [10]. Accuracy is also

1
https://github.com/reconfigurable-ml-pipeline/InfAdapter

8 14 20
Budget (CPU cores)

0.0
0.5
1.0
1.5
2.0
2.5

Ac
cu

ra
cy

 lo
ss

 (%
) MS

InfAdapter

Figure 2: Comparison of InfAdapter (the ability to use
a set of alternative models in the back-end) and Model-
Switching+ on accuracy loss (accuracy of the most ac-
curate model, Resnet152, subtracted by the accuracy
of each bar). Each bar sustains the SLO of 750ms at
P99-latency for a 75RPS load.

a pillar dimension of these services [25]. Faced with dynamic

workload [17, 35], it is essential to consider the ternary trade-

off space between latency, accuracy, and the resource cost

in an adaptive way to address latency requirements while

gaining higher accuracy cost-efficiently.

The importance of having accurate predictions while be-

ing cost-efficient, on one hand, hinders us from selecting a

computationally light model variant with a low accuracy; On

the other hand, selecting the most accurate model requires a

very high resource cost to fulfill latency SLOs, which may

even be unavailable. We conducted experiments with Resnet

model variants under different CPU core assignments and

captured their sustained throughput (number of requests

they could handle given 750ms P99-latency SLO). Figure 1

shows our experiment’s result for Resnet18, Resnet50, and

Resnet152 variants used for image classification under 8,

14, and 20 CPU core assignments. In the figure, a Resent18

with 8 CPU cores, and a Resnet50 with 20 CPU cores, can

almost sustain the same throughput under the latency SLO;

A similar argument is applicable to Resnet50 with 8 cores

and Resnet152 with 20 cores. Due to the fact that latency-

accuracy trade-off space changes based on the workload, it

is a non-trivial task to pick the right model variant with the

right resource allocation.

Observation 1. ML model variants provide the op-

portunity to reduce resource costs while adapting to

the dynamic workload.

Using the traces collected from the previous experiment,

we used two approaches to select backendmodel variant(s) to

sustain a 75RPS load under a 750ms P99-latency SLO, using

different CPU budgets (8, 14, and 20 CPU cores). Approach

1 is to opportunistically select a set of model variants and

their sizes (InfAdapter). Approach 2 is to select a model

variant and its size (MS). We compared the two approaches’

accuracy loss (i.e., the accuracy we obtained subtracted from

2



the accuracy of our most accurate variant, Resnet152). In

Figure 2, we observe that InfAdapter is able to gain higher

average accuracy (lower accuracy loss) for the requests by

having more options to select from, i.e., selecting a set of

models rather than a single model.

Observation 2. Using a set of model variants at the

same time can provide better average accuracy com-

pared to having one active variant.

Given dynamic workloads, we propose an adaptive mech-

anism for ML inference services to achieve latency SLO-

aware, highly accurate, and cost-efficient inference systems.

InfAdapter selects a subset of model variants to meet latency

SLOs and maximizes an objective function of accuracy and

cost. InfAdapter reconciles three important yet contradictory

objectives (accuracy, cost, and latency).

3 PROBLEM FORMULATION
We formally describe the accuracy-cost problem using ML

model variants while guaranteeing the latency SLO.

We denote𝑀 as the set of model variants for a specific task,

with the latency SLO, 𝐿, the given accuracy of model𝑚 ∈ 𝑀 ,

𝑎𝑐𝑐𝑚 , and the model readiness time (loading the model into

memory and the model initialization), 𝑟𝑡𝑚 . We profile our

set of model variants under different CPU assignments to

capture the number of requests they can process with respect

to latency SLO 𝐿. Furthermore, by using the profiled data,

we train a linear regression model to estimate the processing

latency and throughput of model variant𝑚 ∈ 𝑀 under any

CPU cores 𝑛𝑚 ≤ 𝐵, 𝑝𝑚 (𝑛𝑚), 𝑡ℎ𝑚 (𝑛𝑚), where 𝐵 is the total

CPU budget and the total resource cost as 𝑅𝐶 =
∑

𝑚∈𝑀 𝑛𝑚 .

To maintain system stability during a dynamic workload,

the aggregated throughput of all available models for a given

task must stay within an expected request rate _. Mathe-

matically, this can be expressed as

∑
𝑚∈𝑀,𝑛≤𝐵 𝑡ℎ𝑚 (𝑛𝑚) ≥ _.

Moreover, we define the weighted average accuracy, based

on the quota of the workload on variant 𝑚, _𝑚 , as 𝐴𝐴 =∑
𝑚∈𝑀

_𝑚
_

· 𝑎𝑐𝑐𝑚 . Furthermore, we define the model loading

cost as 𝐿𝐶 = max{𝑡𝑐 (𝑚) ∗ 𝑟𝑡𝑚, 𝑚 ∈ 𝑀} where the transition
cost, 𝑡𝑐 (𝑚), is equal to 1 if the model variant𝑚 needs to be

loaded, and 0 otherwise. Table 2 summarizes the notations

we use in the paper.

We define a multi-objective optimization problem to de-

cide which subset of model variants to use such that under a

given workload, the end-to-end latency is guaranteed. The

goal is to maximize the weighted average accuracy 𝐴𝐴 and

to minimize the total resource 𝑅𝐶 and loading 𝐿𝐶 costs. The

problem can be formulated with the following integer linear

programming (ILP):

Table 2: Notations

Symbol Description

𝑀 Set of all model variants for a given task

𝐿 Latency SLO

𝑚 An ML model variant from set𝑀

𝑎𝑐𝑐𝑚 Accuracy of variant𝑚

𝑟𝑡𝑚 Readiness time of variant𝑚

𝑡𝑐𝑚 Transition cost of variant𝑚

𝑛𝑚 Number of CPU cores for variant𝑚

𝑝𝑚 (𝑛𝑚 ) Processing latency of variant𝑚 with 𝑛𝑚 CPU cores

𝑡ℎ𝑚 (𝑛𝑚 ) Throughput of variant𝑚 with 𝑛𝑚 CPU cores

𝐴𝐴 Average Accuracy

𝑅𝐶 Resource cost

𝐿𝐶 Loading cost

𝐵 CPU budget

_ Workload on the system

_𝑚 Workload quota on variant𝑚

max 𝛼 · 𝐴𝐴 − (𝛽 · 𝑅𝐶 + 𝛾 · 𝐿𝐶)

subject to _ ≤
∑︁
𝑚∈𝑀

𝑡ℎ𝑚 (𝑛𝑚),

_𝑚 ≤ 𝑡ℎ𝑚 (𝑛𝑚)
𝑝𝑚 (𝑛𝑚) ≤ 𝐿,∀𝑚 ∈ 𝑀,

𝑅𝐶 ≤ 𝐵,

𝑛𝑚 ∈ W,∀𝑚 ∈ 𝑀.

(1)

In the objective function, we introduce 𝛼, 𝛽,𝛾 to normalize

the resource and loading costs and give importance to the

objectives based on user preference. The first two constraints

ensure the system’s stability, e.g., there are enough resources

to support the incoming workload. The third constraint sat-

isfies the latency SLO, while the last two constraints bound

the CPU core per model to be non-negative and within the

available resources in the system. We use the Gurobi opti-

mizer [20] to solve the ILP in the above equation.

4 SYSTEM DESIGN
An overview of the InfAdapter architecture is demonstrated

in Figure 3. The system consists of three major components

(monitoring, adapter, and dispatcher).Monitoring keeps mon-

itoring statistics about the distribution of request arrivals.

Adapter is responsible for first predicting the next time-

interval workload based on the workload history gathered

from the monitoring component and then finding a set of

model variants, their CPU cores, and their workload quota

by solving the ILP in Equation 1. Dispatcher controls dis-
tributing the requests to the set of multi variants based on

the models’ workload quota provided by the Adapter com-

ponent.

Monitoring. The monitoring demon is in charge of fetch-

ing the arrival rate from the dispatcher. Precisely, we get the

3



Load Generator

Dispatcher

API Server Adapter

Q
uery m

etrics

Configure new sizes
for model variants 

Update Quotas

Quotam

variant1

variantn

Qouta 1

Quotan

Pull metrics

Apply
Configuration

Monitoring

Figure 3: InfAdapter structure; Variants can be sched-
uled (by the Kubernetes scheduler) in any of the nodes.

number of requests per second and pass it to the forecaster

to predict the arrival workload for the next time interval.

Adapter. The Adapter consists of two sub-components,

a time-series forecaster and a solver. We use LSTM [21] for

time-series forecasting. Our LSTM model takes as input the

load per second of the past 10 minutes, collected from the

monitoring component, and predicts the maximum load for

the next minute; We use the Twitter-trace dataset to train

the LSTM model. Figure 5, top plot, shows the prediction

accuracy of LSTM on a sample from the Twitter trace. The

solver aims to solve the ILP in Equation 1 (every 30 seconds)

to achieve the highest possible accuracy while respecting

the latency SLO and available resources using the predicted

workload and the current state of CPU allocation. Finally,

the Adapter passes the set of models and their CPU cores to

the cluster for enforcing the system configuration and the

model’s quota variables to the dispatcher for load balancing

the incoming workload.

Dispatcher. The Dispatcher component load balances the

incoming workload among the models in the cluster based

on the received models’ quota variable, _𝑚 , from the solver

in the adapter component.

5 EVALUATION
We prototype InfAdapter in a Kubernetes cluster of two ho-

mogeneous physicalmachines from the ChameleonCloud [23]

equipped with 48 CPU cores of type Intel(R) Xeon(R) Gold

6126 CPU@ 2.60GHz and 192 GiB of RAM. TensorFlow Serv-

ing is used to serve the model variants in separate Docker

containers.

Batching and parallelism parameters. Batching and par-

allelism parameters are practical configuration knobs of ML

inference services. Batching refers to aggregating multiple

requests into one request, which is widely adapted for GPU

inference systems [15, 22, 31, 33]. However, as shown in Fig-

ure 4, inference on CPU does not substantially benefit from

0 20 40 60 80
0.0
0.2
0.4
0.6
0.8
1.0

Av
er

ag
e 

la
te

nc
y 

(s
)

Batch = 1

0 20 40 60 80

Batch = 8

inter: 1 | intra: 1
inter: 8 | intra: 1

inter: 1 | intra: 8
inter: 8 | intra: 8

Throughput (RPS)

Figure 4: Throughput-Average latency for batch sizes
of 1 (batching disabled) and 8with different parallelism
configurations on Resnet50 with 8 CPU cores alloca-
tions. The starred configuration is the chosen configu-
ration through our experiments.

0 200 400 600 800 1000 1200
0

50
100
150
200
250

W
or

kl
oa

d 
(R

PS
) real

prediction

0 200 400 600 800 1000 1200
0.0
0.5
1.0
1.5
2.0
2.5

P9
9-

La
te

nc
y 

(s
)

0 200 400 600 800 1000 1200
0
2
4
6
8

10

Ac
cu

ra
cy

 lo
ss

 (%
)

0 200 400 600 800 1000 1200
Time (s)

0
5

10
15
20

Co
st

 (C
PU

 c
or

es
)

InfAdapter MS+ VPA-18 VPA-152

Figure 5: Comparison of InfAdapter with VPA used
along with Resnet18, Resnet50 and Resnet152 on accu-
racy loss, cost and P99-latency, during the experiment,
𝛽 = 0.05.

batching in terms of increasing the throughput, but increas-

ing batch size leads to higher latency. Intra-op parallelism

4



defines the parallelism degree within an operation (such

as matrix multiplication), and inter-op parallelism defines

the parallelism across independent operations of inference

requests [3–5].

We measured the effect of batching and CPU intra/inter

operation parallelism on Resnet50 with 8 CPU cores in terms

of throughput and latency. Experimental results are shown in

Figure 4, which captures throughput-average latency relation

under different batching and parallelism configurations. We

choose (starred plot) to disable batching (set to 1), set inter-op

parallelism to the number of CPU cores, and disable intra-op

parallelism (set to 1) in InfAdapter across all the experiments

to get the best throughput with a latency within the 750ms

SLO. Further, we observed the same trend for all other model

variants and CPU allocations.

InfAdapter handles bursty and non-bursty workloads.
First, we experiment with bursty workloads to understand

the performance of InfAdapter. We compared InfAdapter

against an extended version of Kubernetes builtin Vertical

Pod Autoscaler (VPA) [9], and an enhanced version of Model-

Switching [36] (MS+). As the performance of the built-in

VPA was very poor in the empirical evaluations, we made

the following changes to it for a fair comparison against our

approach. Initially, at each recommendation timestep, the

builtin VPA removes the old container and then creates a

new container with predicted resource allocations; This re-

sults in a service downtime during the recreation episode; To

prevent this, we first create the container with the VPA rec-

ommended resources, and after it is up and running, remove

the previous version. Secondly, We dropped the considera-

tion of resource lower bound in VPA to scale up faster in

response to the dynamic workload. For more information

on the VPA algorithm, refer to [29]. Also, in MS+, since

Model-Switching performs on a fixed resource budget, we

add predictive allocation. At each time step, a model variant

and its resource allocation are selected based on the same

objective function we use for InfAdapter in Equation 1.

We evaluated the results on a 20-minute sample of Twitter-

trace (Figure 5 top) that contains a steady load (0-600s), a load

spike (600s-800s), a gradual decrease in the load (800s-100s)

and a sample of going back to the initial load (1000s-1200s). It

is evident that under the steady load, almost all the compared

methods are able to stay under the 750 ms SLO. Once there

is a load spike at 600s, almost all the compared methods

suffer from SLO violations with a non-negligible margin (E.g.,

we observed a 10-minute violation for Resnet152). However,

InfAdapter and MS+ temporarily trade-off a little accuracy in

favor of being responsive to the load spike with a very short

SLO violation time. BetweenMS+ and InfAdapter, InfAdapter

is able to achieve the same SLO attainment with less accuracy

loss during the load burst.

0.0

2.5

5.0

7.5

Ac
cu

ra
cy

 lo
ss

 (%
)

0

5

10

15

20

Co
st

 (C
PU

 c
or

es
)

=0.2 =0.05 =0.0125
0

20

40

60

SL
O 

vi
ol

at
io

n 
(%

)

InfAdapter
MS+

VPA-18
VPA-50

VPA-152

Figure 6: Comparison of InfAdapter with VPA used
along with Resnet18, Resnet50 and Resnet152 on ac-
curacy loss, cost and 99th percentile latency, for the
whole experiment, under different 𝛽 values.

InfAdapter aims to provide a flexible framework between

accuracy and cost objectives. Under 𝛽 = 0.05, we observed

that InfAdapter is able to keep a balance between the cost and

accuracy objectives and also comply with latency SLO. The

same trend can be identified from the cumulative result of the

entire experiment in Figure 6. The InfAdapter is always able

to keep a better balance between the two cost and accuracy

objectives compared to MS+. Also, VPA variants mostly took

an extreme in maximizing only one objective. E.g., VPA-18 is

the most cost-effective, but it comes at the expense of being

very inefficient in accuracy.

Similarly, we used a non-bursty workload (Figure 7). We

observed that InfAdapter has less accuracy loss compared

to all other methods (except VPA+ with ResNet152, which

has zero accuracy loss at the expense of high cost and SLO

violations). Although in most cases InfAdapter has better

SLO compliance, the difference between MS+ and InfAdapter

in terms of cost and accuracy is small. We found that the

difference was higher for a synthesized workload. In future

work, we aim to test this with multiple workloads to examine

InfAdapter’s performance with different workloads.

6 RELATEDWORK
Configuration of machine learning inference systems has

gained considerable attraction in recent years. Clipper [15]

5



0 200 400 600 800 1000 1200
0

50
100
150
200
250

W
or

kl
oa

d 
(R

PS
) real

prediction

0 200 400 600 800 1000 1200
0.0
0.5
1.0
1.5
2.0
2.5

P9
9-

La
te

nc
y 

(s
)

0 200 400 600 800 1000 1200
0
2
4
6
8

10

Ac
cu

ra
cy

 lo
ss

 (%
)

0 200 400 600 800 1000 1200
Time (s)

0
5

10
15
20

Co
st

 (C
PU

 c
or

es
)

InfAdapter MS+ VPA-18 VPA-152

Figure 7: Comparison of InfAdapter with VPA used
along with Resnet18, Resnet50 and Resnet152 on accu-
racy loss, cost and P99-latency, during the experiment
with a non-bursty workload, 𝛽 = 0.05.

is one of the early inference serving systems that introduced

a general-purpose inference server with functionalities like

caching, batching, and adaptive model selection.

MArk [34] employs request batching, predictive scaling,

and serverless functions and proposes autoscaling policies

that also take the hardware heterogeneity and service type

diversity (FaaS, CaaS, IaaS) of inference serving data-centers

into consideration.

INFaaS [28] provides an abstraction layer that decouples

the model serving task from the used model for serving. Per

each inference request, it searches through all the available

sets of models for that specific inference task. Based on the

request requirement, it finds the suitable model variant and

dynamically offloads and unloads models as the user require-

ments change.

Model switching [36] is the first work that proposes switch-

ing between lightweight and heavier models as a workload

adaptation mechanism. In order to be responsive to work-

load surges, it switches to a smaller but less accurate model.

Unlike InfAdapter, their model is not cost-aware and can

only work under a fixed resource budget.

Cocktail [19] is the most similar work to InfAdapter. It

proposes an approach based on ensemble learning to reduce

the cost while meeting the previous works’ latency and ac-

curacy efficiency. Cocktail uses ensembling as its accuracy

maximization technique, which is costly as all the requests

should be sent to all the ML models. Most of the time, a

large number of model sets should be used to get to the

accuracy of the largest model. Cocktail uses transient vir-

tual machines to improve cost efficiency. Nevertheless, using

unstable transient instances can cause interruptions in the

inference service. Deploying InfAdapter on CaaS platforms

like Google Autopilot does not suffer from similar problems.

Due to fundamental structural differences and different prob-

lem formulations, we could not compare InfAdapter with

Cocktail.

7 FUTUREWORKS
Hardware Heterogeneity. While in this work, we focused

on homogeneous CPU inferencing, the performance of In-

fAdapter under general purposed (GPUs) and ASIC ML hard-

ware can be evaluated. With packing requests into batches,

GPUs can process higher workloads without a considerable

increase in latency.

Scalability withML.Our proposed solution works by brute-
forcing through all possible configurations and picking the

one that maximizes the objective function. Such an approach

could suffer from scalability in case of growth in configura-

tion space (more model variants and bigger resource budgets

in our case). Utilizing ML-based solutions can decrease the

amount of sampling in the search space, resulting in faster

decision-making.

Multi Model Serving. In the case of using accelerators like

GPUs, it is hard to share them among several containers, as

there is no built-in mechanism for GPU sharing in container

orchestration platforms like Kubernetes [1]. Themulti-model

deployment pattern, adapted in most production ML model

servers [6–8, 14, 26], can mitigate the issues. Considering

these emerging ML serving paradigms for improving adap-

tation mechanisms is a potential future work.

8 CONCLUSION
In this work, we presented InfAdapter, an adaptation mecha-

nism for ML inference services. It selects a set of ML model

variants and their resource allocations to achieve a trade-off

between accuracy and cost while preserving latency SLO

guarantee. Experiments on real-world traces showed that

InfAdapter adapts better to dynamic workloads compared

to the existing solutions by utilizing scaling and ML model

variants selection.

6



REFERENCES
[1] 2022. GPU Virtualization in K8s: Challenges and State

of the Art. (Nov 2022). https://www.arrikto.com/blog/

gpu-virtualization-in-k8s-challenges-and-state-of-the-art/

[2] 2022. Horizontal Pod autoscaling. (Jun 2022). https://kubernetes.io/

docs/tasks/run-application/horizontal-pod-autoscale/

[3] 2022. Inter-op parallelism threads. (2022). https://www.tensorflow.

org/api_docs/python/tf/config/threading/set_inter_op_parallelism_

threads

[4] 2022. Intra-op parallelism threads. (2022). https://www.tensorflow.

org/api_docs/python/tf/config/threading/set_intra_op_parallelism_

threads

[5] 2022. TorchServe parallelism threads. (2022). https://pytorch.org/docs/

stable/notes/cpu_threading_torchscript_inference.html

[6] 2023. Kserve. https://github.com/kserve/kserve. (2023).

[7] 2023. Seldon. https://github.com/SeldonIO/seldon-core. (2023).

[8] 2023. Triton inference server. https://github.com/

triton-inference-server/server. (2023).

[9] 2023. Vertical Pod autoscaling. https://github.com/kubernetes/

autoscaler/tree/master/vertical-pod-autoscaler. (2023).

[10] Sherif Akoush, Andrei Paleyes, Arnaud Van Looveren, and Clive Cox.

2022. Desiderata for next generation of ML model serving. arXiv
preprint arXiv:2210.14665 (2022).

[11] Dario Amodei and Danny Hernandez. 2019. AI and compute. https:

//openai.com/blog/ai-and-compute/. (Nov 2019).

[12] archiveteam. 2021. Archiveteam-twitter-stream-2021-08. https://

archive.org/details/archiveteam-twitter-stream-2021-08. (2021).

[13] Jeff Bar. 2019. Amazon EC2 ML inference. https://tinyurl.com/

5n8yb5ub. (Dec 2019).

[14] PyTorch Serve Contributors. 2020. Torch serve. https://pytorch.org/

serve/. (2020).

[15] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,

Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: a low-latency online

prediction serving system. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17). 613–627.

[16] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, andMichael A

Kozuch. 2012. Autoscale: dynamic, robust capacity management for

multi-tier data centers. ACM Transactions on Computer Systems (TOCS)
30, 4 (2012), 1–26.

[17] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and

Björn B Brandenburg. 2017. Swayam: distributed autoscaling to meet

SLAs of machine learning inference services with resource efficiency.

In Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference.
109–120.

[18] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-

mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like

clockwork: performance predictability from the bottom up. arXiv
preprint arXiv:2006.02464 (2020).

[19] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-

nakaran, Bikash Sharma, Mahmut Taylan Kandemir, and Chita R Das.

2022. Cocktail: a multidimensional optimization for model serving in

cloud. In USENIX NSDI. 1041–1057.
[20] Gurobi Optimization, LLC. 2023. Gurobi optimizer reference manual.

(2023). https://www.gurobi.com

[21] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term

memory. Neural computation 9, 8 (1997), 1735–1780.

[22] Yitao Hu, Rajrup Ghosh, and Ramesh Govindan. 2021. Scrooge: a

cost-effective deep learning inference system. In Proceedings of the
ACM Symposium on Cloud Computing. 624–638.

[23] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth,

Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody

Hammock, Joe Mambretti, Alexander Barnes, François Halbach, Alex

Rocha, and Joe Stubbs. 2020. Lessons Learned from the Chameleon

Testbed. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC ’20). USENIX Association.

[24] George Leopold. 2019. AWS to offer Nvidia’s T4 GPUs

for AI inferencing. https://www.hpcwire.com/2019/03/19/

aws-upgrades-its-gpu-backed-ai-inference-platform/. (Mar 2019).

[25] Vinod Nigade, Pablo Bauszat, Henri Bal, and Lin Wang. 2022. Jellyfish:

timely inference serving for dynamic edge networks. In 2022 IEEE
Real-Time Systems Symposium (RTSS). IEEE, 277–290.

[26] Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li

Lao, Fangwei Li, Vinu Rajashekhar, Sukriti Ramesh, and Jordan Soyke.

2017. Tensorflow-Serving: flexible, high-performance ML serving.

arXiv preprint arXiv:1712.06139 (2017).
[27] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind

Kalaiah, Daya Khudia, James Law, Parth Malani, Andrey Malevich,

Satish Nadathur, et al. 2018. Deep learning inference in Facebook data

centers: characterization, performance optimizations and hardware

implications. arXiv preprint arXiv:1811.09886 (2018).
[28] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos

Kozyrakis. 2021. {INFaaS}: automated model-less inference serv-

ing. In 2021 USENIX Annual Technical Conference (USENIX ATC 21).
397–411.

[29] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych,

Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack,

Piotr Witusowski, Steven Hand, et al. 2020. Autopilot: workload au-

toscaling at Google. In Proceedings of the Fifteenth European Conference
on Computer Systems. 1–16.

[30] Devvi Sarwinda, Radifa Hilya Paradisa, Alhadi Bustamam, and Pinkie

Anggia. 2021. Deep learning in image classification using residual

network (ResNet) variants for detection of colorectal cancer. Procedia
Computer Science 179 (2021), 423–431.

[31] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,

Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.

Nexus: a GPU cluster engine for accelerating DNN-based video analy-

sis. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 322–337.

[32] Leonid Velikovich, Ian Williams, Justin Scheiner, Petar S Aleksic, Pe-

dro J Moreno, and Michael Riley. 2018. Semantic lattice processing

in contextual automatic speech recognition for Google assistant. In

Interspeech. 2222–2226.
[33] Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao

Sun, Jian He, and Liping Zhang. 2021. Morphling: fast, near-optimal

auto-configuration for cloud-native model serving. In Proceedings of
the ACM Symposium on Cloud Computing. 639–653.

[34] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:

exploiting cloud services for cost-effective, SLO-aware machine learn-

ing inference serving. In 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19). 1049–1062.

[35] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Phili-

pose, Paramvir Bahl, and Michael J Freedman. 2017. Live video analyt-

ics at scale with approximation and {delay-tolerance}. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17). 377–392.

[36] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth

Garg. 2020. Model-switching: dealing with fluctuating workloads in

machine-learning-as-a-service systems. In 12th {USENIX} Workshop
on Hot Topics in Cloud Computing (HotCloud 20).

7

https://www.arrikto.com/blog/gpu-virtualization-in-k8s-challenges-and-state-of-the-art/
https://www.arrikto.com/blog/gpu-virtualization-in-k8s-challenges-and-state-of-the-art/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_inter_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_inter_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_inter_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads
https://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://pytorch.org/docs/stable/notes/cpu_threading_torchscript_inference.html
https://github.com/kserve/kserve
https://github.com/SeldonIO/seldon-core
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://github.com/kubernetes/autoscaler/tree/master/vertical-pod-autoscaler
https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://archive.org/details/archiveteam-twitter-stream-2021-08
https://archive.org/details/archiveteam-twitter-stream-2021-08
https://tinyurl.com/5n8yb5ub
https://tinyurl.com/5n8yb5ub
https://pytorch.org/serve/
https://pytorch.org/serve/
https://www.gurobi.com
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/
https://www.hpcwire.com/2019/03/19/aws-upgrades-its-gpu-backed-ai-inference-platform/

	Abstract
	1 Introduction
	2 Motivation
	3 Problem Formulation
	4 System Design
	5 Evaluation
	6 Related Work
	7 Future Works
	8 Conclusion
	References

