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Abstract— Sensing and localising pressure resulting from
physical interaction between a robot and its environment is
a key requirement in the deployment of soft robots in real-
life scenarios. In order to adapt the robot’s behaviour in real-
time, we argue that sensors must have a high sampling rate.
In this paper, we present a novel tactile sensing strategy for
soft sensors, based on an imaging technique known as optical
tomography. Instead of transmitting light through the soft
sensor in a sequential way (as commonly done in tomography
systems), we demonstrate that concurrently illuminating the
sensor with multiple light sources and reading out the sensor
response has several advantages. Firstly, it drastically increases
the sampling rate of the sensor when compared to standard to-
mography approaches, making it more suitable to sense sudden
and short-lived contacts. Secondly, by concurrently switching on
the light sources, we increase performance in terms of pressure
localisation and pressure estimation achieved through Machine
Learning techniques. We carry out experiments demonstrating
that our approach allows for a robust pressure estimation and
contact point localisation with an accuracy up to 91.1% (vs
70.3%) at a higher sampling rate.

I. INTRODUCTION

Interest in soft robotics from the scientific community
has dramatically increased over the last decade [1]. This
is especially true for use-cases in which the lack of
compliance of traditional robots creates issues, such as
in human-robot interaction scenarios [2]. Indeed inherent
compliance is the fundamental characteristic of soft robots
that renders them ideal candidates for use in close proximity
to humans - a consequence of the minimal risk they pose
of inflicting damage on their immediate environment [3], [4].

A key attribute of soft robots is their infinite degree
of freedom. This however creates challenges in terms of
accurately modelling their kinematics or accurately con-
trolling their soft bodies [5]. For this reason, making soft
robots capable of proprioception (i.e. having a sense of its
movement and position) and exteroception (i.e. having a
sense of external stimuli) would provide them with crucial
information about their own state [6] as well as the way
in which they interact with the environment [7]. However,
proprioception and exteroception in soft robots cannot be
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Fig. 1: Soft sensor skin based on optical tomography using
optical fibres as a mean to emit and receive light. The skin
can easily be applied on any surface and only contains
soft and deformable components, without any embedded
electronics.

achieved using traditional rigid sensors because their lack of
compliance would compromise the advantageous degrees of
freedom offered by the robots’ soft bodies. For this reason,
a wide range of soft sensors have been proposed in the
literature [8], that can be integrated into soft robots [9]. These
sensors make use of a variety of sensing modalities, such as
resistive [7], capacitive [10], magnetic [11] or optical [12]
modalities.

In this work, we investigate a novel tactile sensing strat-
egy for optical tomography inspired soft skin sensors and
show the skin’s ability to localise and estimate the pressure
applied to it using Machine Learning (ML) techniques. We
show that using multiple sources of light to illuminate the
skin concurrently not only increases the sampling rate but
also improves the performance of pressure estimation and
localisation.

II. RELATED WORKS

As previously mentioned, exteroceptive soft sensors must
be compliant, so that they do not compromise the deformable
structure and movement of soft robots. One of the most direct
applications of exteroception is to estimate where and how
much pressure is applied to the body of a soft robot, as it can



provide valuable information about its collision state with
the environment [13]. Previously employed methodologies
based on micro-fluidic [14], resistive [7], Electric Impedance
Tomography (EIT) [?], magnetic [11] or capacitive [15]
sensing modalities have been integrated into soft artificial
skins [16]. These skins are generally composed of arrays
of sensors exploiting either one [10] or several sensing
modalities [17]. Although such works demonstrate promis-
ing results, producing these sensors can be expensive and
time consuming. In addition, these sensing technologies are
susceptible to environmental noise. By way of example, the
input and output values of magnetic and capacitance-based
sensors are highly dependent on whether they are located
in ambient magnetic fields, possibly generated by a nearby
computer or robot.
Soft optical force and tactile sensors have become more
popular for a host of reasons, including low cost, isolation
from electromagnetic noise and due to advancements in data-
driven approaches, such as image processing and Machine
Learning. For instance, GelSight [18], TacLINK [19] and
F-Touch [20] sensors have demonstrated a striking break-
through in light based force sensing and high resolution
feature estimation. These sensors work on the reflection of
light from an elastomer having different patterns; as the
camera underneath the elastomer detects the changes, it can
estimate force, direction and geometry of the object placed
on top of it. However, the position of the camera with respect
to these patterns greatly impacts the sensing performance,
restricting their use in exteroceptive sensing in deformable
soft robots.
More recently, Amoateng et al. have proposed an optical
tomography-based soft skin capable of estimating the locali-
sation and amount of force applied by external contacts [21].
The fabrication process of this skin-shaped sensor is simpler
than that of camera-based sensor systems as it consists of
an optically transparent PDMS layer surrounded by infrared
(IR) emitters and receivers on a flexible circuit. However,
the proposed design suffers from two main shortcomings.
Firstly, the optically transparent layer is not well isolated
from ambient light, meaning that any changes in the lighting
conditions will greatly impact both the input and output of
this sensor. Secondly, their 24 IR emitters are switched on
and off sequentially (i.e. each IR receivers will record 24
values; one for each emitter), resulting in a low sampling
rate of the sensor.
To overcome these limitations, we propose a novel strategy to
acquire data from optical tomography based soft skin sensors
that allows us to obtain real-time pressure estimation and
localisation. We demonstrate the advantages of our approach
on a light-isolated soft skin sensor that uses 48 optical fibres
(24 of which emit light and the remaining 24 of which
receive light) instead of IR receivers/emitters to remove any
rigid or electronic components from the sensing area (see
Figure 1). A set of experiments presented in section IV show
that the proposed data collection methodology increases the
sensing capabilities of optical tomography based soft sensors.

Fig. 2: Light as seen by the camera through the transparent
silicone. a) shows the light intensity at the end of receiver
fibre with and without indentation. The reduction in light
intensity is proportional to the indentation. b) shows two
transparent silicone layers perpendicular to each other. X
shows the intensity of light from optical fibres when there
is not indentation. 1 shows the intensity when indenter 1 is
used. 2 shows the intensity of both the fibres when indenter
2 is used.

III. OPTICAL SENSORISED SKIN

A. Principle

Optical tomography is a technique that is extensively
used in non-invasive medical imagery [22]. By analysing
light transmitted and scattered through an object, such as
soft tissue in a medical diagnostic scenario, this technique
allows us to estimate a range of object properties such as
its geometry and structure. With soft transparent materials,
optical tomography can be applied to estimate the pressure
that caused the deformation of the material.

Figure 2a shows the change in light intensity observed by
an optical fibre when a transparent silicone layer is mechani-
cally indented. When multiple light sources intersect, the data
captured by the receivers contains crucial information about
where the force has been applied. This is illustrated with
two pairs of optical fibres in Figure 2b, where the intensity
of light received by the two receivers changes depending on
the location of the indentation. In fact, when a local force
is applied (e.g. by an indenter) at the intersection of two
light rays, the intensity captured by both the receivers will
decrease. On the other hand, if a local force is applied at a
location covered by only one pair of optical fibres, the other
receiver will not detect any change in the captured light.
Based on this principle, we have designed a circular skin
with 24 emitter and 24 receiver optical fibres alternately
distributed around the circumference of a soft transparent
silicone skin (see Figure 4). Further details about the design
of the skin are discussed in the next subsection.

B. Design

The design of the skin used in this work is similar to
the one proposed in [21]; 24 emitters and 24 receivers are
encapsulated in a soft transparent layer that can be applied
onto any surface. However, instead of using 2mm thick



Fig. 3: The experimental setup. Figure shows the optical skin
on a 3D printed tray holding the optical fibres. The tray is
fixed on a 3D printed hollow cylinder that acts as camera
housing and PCB holder for the LEDs.

PDMS for the optical layer, we opt for a more compliant
1.2mm thick Solaris Smooth-On layer (Shore Hardness 15A).
We propose to use 1mm-diameter optical fibres (Mitsubishi
ESKA FF-SH 2001-J) to transmit and receive red light (with
a wavelength of 633nm). The use of optical fibres enables
us to remove any electronics from the sensing element,
making it more suitable for the remote deployment of soft
robots (see Figure 1). To isolate the transparent Solaris layer
from ambient light, a soft 0.2mm thick black EcoFlex layer
(shore 00 hardness of 30) is added on top of it. This layer
also protects the Solaris layer from damage during physical
interaction with the environment.
The total diameter of our skin is 80mm, with optical fibres
embedded 7.5mm into the transparent layer, leaving an
effective sensing area of 65mm in diameter. We discretize
this area into 60 sectors by brushing aluminium powder on
top of the protective black EcoFlex layer. Each sector has an
area of 56.25mm2 (7.5mm× 7.5mm) allowing us to test the
spatial resolution of our skin down to 7.5mm increments.

In this experiment, the optical skin was put in a 3D printed
dish with the skin and the twenty-four emitter and receiver
pairs of optical fibres firmly held in place. This supporting
dish was then placed on top of a hollow cylinder that also
supports the 24 LEDs, acting as source of light. We designed
a circular Printed Circuit Board (PCB) to mount the LEDs.
To minimise light loss due to scattering and refraction, we
used higher wavelengths of the visible spectrum; i.e. we used
LEDs (LS E63B-BBCB-1-1) emitting light at a wavelength
of 633nm. 3D-printed opaque casings were used to cover
the LEDs and hold the emitting fibres in front of the LEDs
(see Figure 3). The tips of the optical fibres were sanded
and polished to minimise light losses during transmission
from the LEDs to the Solaris layer. Figure 4 shows the
illuminated skin without the top protective black EcoFlex
layer. As highlighted in this figure, each emitter fibre emits

light in a conical form and illuminates three to four receiver
fibres on the opposite side of the skin.
All the LEDs are connected to a Raspberry Pi 3B+, which
allows us to individually control each LED. This way, with
the same connections, we are able to carry out sequential and
concurrent LED switching, to compare these two types of
tomography methods. Each receiver optical fibre is also cut
to size, sanded and polished to minimise losses and one end
is embedded into the transparent layer. The other end of each
receiver optical fibre is isolated from ambient light and fixed
in front of the camera, set in a 3D printed casing housed
inside the hollow cylinder. Rather than using individual
photo-sensors, we preferred a commercially available RGB
camera to estimate the light intensity of each optical fibre as
it is both cheaper and more compact. The camera we chose
is a Logitech C310 webcam which captures images with a
resolution of 1280x720 pixels at a rate of 30 frames per
second. The focus of the camera was manually adjusted to
ensure that the output of each optical fibre produces a well-
focused image. It is important to note that using a more
high-end camera would allow the sensor to capture data up
to 120Hz.

C. Sensor reading

In [21], the authors propose sequentially transmitting light
through a PDMS layer, i.e. the 24 emitters are sequentially
switched on and off. The signal sent by each emitter lasts 2.5
ms and results in 24 values read by the integrated photode-
tectors. Therefore, a full reading of the skin is represented
by 576 values collected over at least 60 ms, corresponding
to a final sampling rate of at most 15Hz. This approach has
been shown to be efficient in estimating and locating pressure
on a soft optical-based sensorised skin. Figure 5b shows a
subset of two images captured by our camera, following the
same strategy. As previously mentioned, for a single emitter
being switched on, light data is only sensed by three to four
receivers.

We explore another data-collection approach that dramat-
ically increases the sampling rate. It involves concurrently
switching on all the LEDs and continuously capturing the
output image, requiring only one reading for all the emitters,
thereby increasing the sampling rate by 24 (i.e. number of
emitters). As illustrated in Figure 5a, this produces images
with 24 circular dots, corresponding to the 24 optical fibres
acting as receivers. Since the tips of all these optical fibres
were spaced out from each others when fixed in front of the
RGB camera, no overlapping light can be observed. Note
that depending on the pressure being applied to the skin, the
number and the intensity of the pixels corresponding to each
receiver changes.

IV. EXPERIMENTS

In this section, we compare the ability of our skin to
estimate the location of an indenter pressing on the sensor
skin as well as the amount of pressure being applied by a
single contact. We acquire the sensor data concurrently and,
for comparison, sequentially. Both estimation methods are



Fig. 4: Distribution of receiver and emitter optical fibres. The
figure shows that light sent by an emitter will be captured
by several receivers. The neighbouring receivers will be less
illuminated than the optical fibre diametrically opposed to
the emitter.

(a)

(b)

Fig. 5: Example of images collected during one reading of
the sensor for both data collection strategy. (a) shows images
captured when the skin is at rest (left) and pressed (right)
for all LEDs concurrently switched on. (b) illustrates 2 of
the 24 images collected during a reading when each emitter
LED is switched on sequentially.

performed using Machine Learning models available in the
scikit-learn library [23].

A. Data collection

The same protocol was used to collect data for both
concurrent and sequential switching of the LEDs. A 5mm
diameter flat ended indenter is mounted on an Universal

Testing Machine (Instron 5967) to sequentially apply a set
of 18 forces per node. The force applied by the Universal
Testing machine is set to increase from 0.2 to 3N in incre-
ments of 0.2, but also to include 0.5, 1.5 and 2.5N. For each
condition (i.e. for each node and for each force), 30 readings
are collected. In order for our model to be able to recognize
when the skin is at rest (i.e. no force being applied), we also
collect 30×60 = 1800 samples with no indention applied to
the skin, for both concurrent as well as sequential methods.

B. Data processing

As illustrated in Figure 5, manually determined bounding
boxes were used to estimate the light intensity sensed by all
receiver fibres from each image captured by the camera. The
24 bounding boxes share the same size of 16×16 pixels. Each
captured image follows the same processing steps. Firstly,
the image is converted to grey-scale. Secondly, the mean
value of each optical fibre bounding box is computed. By
concatenating these 24 values, we obtain a feature vector
describing the sensor image.
For the concurrent lighting approach, each reading is thus
compressed into a vector containing 24 values representing
the light intensity of each optical fibre. It is important to
note that the 16 × 16 area accounts for the variation of
number of illuminated pixels that can appear when the skin is
pressed, making sure we retain all the light data captured by
the camera. For the second lighting approach (sequential),
vectors extracted from each image part of the reading are
concatenated, leading to a feature vector containing 24×24 =
576 values. Regardless of the lighting condition, each feature
vector is assigned with two labels; the index of the node on
which the indenter is applied as well as the corresponding
pressure.

C. Pressure localisation

By having artificially discretized the surface of our sensor
into 60 nodes, we effectively reformulate the problem of
localising the deformation of the skin into a classification
problem. Inspired by the promising results reported in [21],
we evaluate classical ML techniques to predict the index of
the node being deformed by the indenter. As we want our
classifier to be able to detect the localisation of the indenta-
tion regardless of the amount of pressure applied, we make
use of the data collected for all the nodes, and for each of the
18 pressures considered during data collection. This leads to
a total of 30×18 = 540 samples per node. In order to keep a
balanced dataset, we also randomly extract the same number
(540) of samples obtained when no pressure is applied to the
skin, labeled as ‘0‘. A third dataset is considered for training
(keeping the same proportion of samples from each node and
each pressure), totalling 10×18×61 = 10980 samples while
the remaining data is used to evaluate the generalisation of
the model. A total of 3 classifiers (Random Forest [24],
AdaBoost [25], SVM [26]) are trained to distinguish between
the 61 classes (60 nodes + no pressure applied). We base our
comparison on the accuracy and F1-score metrics, widely
used in the literature to compare non-binary classification



tasks. While the accuracy corresponds to the proportion
of correct predictions, the F1-score conveys the balance
between the precision and the recall, i.e. the balance between
sensitivity and specificity.

D. Pressure estimation

We formulate the task of estimating the pressure P applied
to the soft skin as a regression problem. Since pressure
localisation is achieved over the sensing area, we want this
model to be able to estimate the pressure being applied
anywhere on the sensor (i.e. on any node). The number of
samples corresponding to each of the 18 pressures applied
during data collection is hence 30×60 = 1800. We design the
training set to contain 10 samples of each node for the P ∈
{0, 20.37, 30.56, 50.93, 71.30, 91.67, 112.04, 132.42, 152.79}
kPa, leading to a total of 10×60×9 = 5400 feature vectors.
The remaining samples for these particular pressures are
used as validation set. Since we also want to evaluate our
regression model on pressures never seen during training,
we create a test set made of all the data corresponding
to the other pressures. For this task, a set of 3 regressors
(AdaBoost, Random Forest and SVM) are considered. Here,
we base our comparison on the Root Mean Squared Error
(RMSE) between the ground truth and the predicted values
over a given data set. The lower the RMSE, the more
accurate the estimation of the pressure being applied.

V. RESULTS

A. Pressure localisation

For each data collection strategy, the accuracy and F1-
score of the three classifiers used to predict the index of
the node on which pressure as been applied are reported
in Table I. Note that the reported results correspond to
the performance of the classifiers when tested with all the
pressures considered in this experiment.

TABLE I: Accuracy and F1-score comparison for node
localisation between sequential and concurrent switching of
LEDs for 3 classifiers

AdaBoost Random Forest SVM
Acc. F1 Acc. F1 Acc. F1

Sequential 0.542 0.555 0.703 0.697 0.699 0.706
Concurrent 0.656 0.669 0.903 0.898 0.911 0.907

Interestingly, the reported metrics are consistently higher,
regardless of the classifier, when data is collected via our
approach, when LEDs are switched concurrently. Overall, the
best classifier is the SVM that achieves an accuracy of 91.1%
and a F1-score of 90.7% when run on the data collected
concurrently. For this classifier, we can observe that using
concurrent switching of all the LEDs leads to an increase
of more than 20 points in both accuracy and F1-score. A
further analysis of the performance (not detailed here due to
space constraint) show that most of the mis-classifications
correspond to the SVM predicting a node in the direct
neighbourhood of the ground truth. By virtue of the design of
the virtual grid, the maximum localisation error is hence in
the order of 7.5mm. The best classification model considered

in this work runs in 29 ms, which means that for each
image collected by the sensor, the model is capable to predict
the localisation of the force applied without introducing any
delay (value obtained on i5-4200U CPU @ 1.60GHz 2.30
GHz with 16GB RAM).

B. Pressure estimation

For each data collection approach and for each regressor
the final RMSE obtained on the validation and test sets is
reported in Table II.

TABLE II: Validation and test RMSE comparison for pres-
sure estimation between sequential and concurrent switching
of LEDs for 3 regressors

AdaBoost Random Forest SVM
Valid Test Valid Test Valid Test

Sequential 35.2 35.7 24.1 30.9 37 36.4
Concurrent 32.4 32.6 14.5 17.2 26.6 27.7

As with pressure localisation, the estimation of the pres-
sure deforming the skin is consistently better for data col-
lected concurrently, regardless of the ML method. For this
task, it seems that Random Forest is the most suitable
regressor, as it estimates the applied pressure with the lowest
error, even for pressure values not considered during training.
For concurrent switching of the LEDs, the RMSE values of
the three regressors for different pressures are reported in
Figure 6. The best regressor (i.e. Random Forest) demon-
strates a similar performance as the one reported in [21]
for P ∈ [50.93, 152.79] kPa. However, the regressor is not
capable of accurately estimating pressures within the range
]0, 50.93[ kPa, as it reports a larger RMSE (e.g 17.84 for
25.46 kPa). In practice, our optical skin is therefore capable
of recognizing that a pressure below 50.93 kPa is applied and
can estimate with a good degree of accuracy the value of any
pressure above or equal to 50.93 kPa. The best regression
model considered in this work runs in 24 ms, which means
that for each image collected by the sensor, the model is
capable to estimate the amount of force being applied without
introducing any delay.

VI. CONCLUSIONS

In contrast to standard tomography where lights are
switched on sequentially, we propose in this paper a novel
approach in which all light sources are switched on concur-
rently. The results of our experiments show that this approach
not only dramatically increases the sample rate (by at least
24-fold), but also improves both pressure localisation and
pressure estimation performance. We report an accuracy of
91.1% when trying to localise where the skin is indented,
even for small indentation pressures, with a maximum er-
ror of 7.5 mm. For pressure localisation performance, the
concurrent approach outperforms the sequential one by more
than 20 points. We also demonstrate that our approach allows
for a robust estimation of applied pressures of 50.93 kPa or
above. Since the sensor only consists of soft and deformable
materials, we intend to deploy this sensing technology in
soft robots to improve their exteroceptive capabilities. In the



Fig. 6: Generalisation error (RMSE) of each regressor for different values of applied pressure with concurrent switching of
the LEDs. These values are obtained on samples belonging to the validation and test set (i.e. not used for training).

future, we plan to further increase the pressure estimation
and localisation performance by employing Deep Learning
techniques - specifically Convolutional Neural Networks as
they are principally designed to work with images. In order
to extend the predictions of the Machine Learning model
to further use-cases, we also plan to collect a novel dataset
consisting of multiple and simultaneous contacts of the skin.
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