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• A combined deep-learning and global optimization algorithms have been used, to tune
the distribution of the disorderliness to achieve damage-tolerant designs.
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Abstract

Natural cellular materials, such as marine mussels, honeycombs, woods, trabecular bones,
plant parenchyma, sponges and protoreaster nodosus, may benefit from the disorderliness
within their internal microstructures to achieve damage tolerant behaviors. Inspired by
this, we have created quasi-disordered truss metamaterials (QTMs) via introducing spatial
coordinate perturbations or strut thickness variations to the perfect, periodic truss lattices.
Numerical studies have suggested that the QTMs can exhibit either ductile, damage tolerant
behaviors or sudden, catastrophic failure mode, depending on the distribution of the intro-
duced disorderliness. A data-driven approach has been developed, combining deep-learning
and global optimization algorithms, to tune the distribution of the disorderliness to achieve
the damage tolerant QTM designs. A case study on the QTMs created from a periodic
Face Centered Cubic (FCC) lattice has demonstrated that the optimized QTMs can achieve
up to 100% increase in ductility at the expense of less than 5% stiffness and 8-15% tensile
strength. Our results suggest a novel design pathway for architected materials to improve
damage tolerance.
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1. Introduction1

Natural cellular materials, such as marine mussels, honeycombs, woods, trabecular bones,2

plant parenchyma, sponges and protoreaster nodosus, have inspired the development of me-3

chanical metamaterials with desired or extreme mechanical properties (Figs. 1a-d) [1–8].4

These include various truss-like micro-lattices, i.e., truss mechanical metamaterials, at a5

scale ranging from nanometres to millimetres, manufactured using various additive man-6

ufacturing techniques [9–11]. Truss metamaterials have provided unique opportunities to7

create lightweight structural components of high performance, such as lightweight sandwich8

structures [12, 13]. In addition, truss metamaterials are highly tailorable and can be de-9

signed to meet various multifunctional requirements, such as simultaneous load bearing,10

active cooling, and noise reduction [14, 15].11
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Up till now, the majority of the relevant research has focused on the truss mechanical12

metamaterials of highly ordered structures, i.e., the bulk metamaterial is formed by repeating13

a representative volume element (RVE) in the two-dimensional (2D) or the three-dimensional14

(3D) space [16, 17]. However, while nature-provided cellular materials resemble truss lattice15

structures of ordered, periodic arrangement, they are not perfectly periodic, and disorder-16

liness has been observed in a wide range of natural cellular materials. Egmond, et al. [18]17

have suggested that natural cellular materials can incorporate disorderliness in combination18

with other mechanisms such as gradients. The gradients within natural cellular material can19

be seen as a gradual variation of the mechanical properties with dimensions, normally in20

accordance with a changing functional requirement. In this study, disorderliness is defined21

as a random variation of geometry affecting mechanical properties of the natural cellular22

materials. Egmond, et al. [18] have measured the disorderliness of the biological materials23

from trabecular bone to plant stems and fungi, using a disorder parameter ‘g with ‘g = 124

representing the ordered system and ‘g = 0.1 the highly disordered system. They have iden-25

tified the ranges of disorderliness within different types of biological materials, e.g. woods26

and fungi from ‘g = 0.6 to 0.8; trabecular bone and dentin from ‘g = 0.55 to 0.65; and corals27

and bee honeycomb from ‘g = 0.9 to 0.97 (see Fig. 1e).28

The role of disorderliness in mechanical performance for natural cellular materials has29

not been fully understood yet. Existing research has suggested that introducing disorderli-30

ness to periodic cellular materials can cause a reduction in stiffness, strength, ductility, and31

fracture toughness [21–23]. However, Egmond, et al. [18] have recently found that the disor-32

derliness at the range of ‘g = 0.6 to 0.8 within 2D Voronoi tessellation can cause an increase33

in toughness, through crack deflection, without loss of tensile strength in comparison with34

2D regular hexagonal honeycombs. Based on this, they have hypothesized that structural35

disorder in natural cellular materials is a toughening mechanism and there may be a certain36

optimal degree of disorderliness in biogenic cellular materials in order to achieve damage37

tolerant behaviors. Here, we hypothesize that not only the level of disorderliness but also the38

distribution of disorderliness within natural cellular materials may play an important role in39

achieving damage tolerance. As we have shown in Figs. 1f-i, truss metamaterials with identi-40

cal disorderliness can fail with either sudden, catastrophic brittle mode or progressive ductile41

mode during uniaxial tension tests, owing to the different distribution of disorderliness.42

Structural materials of high performance are expected to have suitable ductility to (i)43

fail in a progressive manner that can give prior warning to failure events and (ii) have good44

load bearing capacity with the presence of flaws. It has been reported that highly ordered,45

periodic truss metamaterials often exhibit a sudden, catastrophic failure mode - when loaded46

beyond the yield point, localized bands of high strain emerge, causing catastrophic collapse47

[24–26]. To date, there are very limited studies on the design methodology to achieve dam-48

age tolerance for mechanical metamaterials. Owing to the highly nonlinear nature of the49

problems, the conventional finite element (FE) based design optimization methods are not50

efficient or even impractical for this purpose. Hence, mechanism-based design approaches51

have been attempted. Pham et al. [27, 28] have used the hardening mechanisms found in52

crystalline materials to develop damage-tolerant designs, primarily under compression. They53

have found that the disorderliness introduced to periodic truss metamaterials, by mimicking54

the microscale structure of crystalline materials such as grain boundaries, precipitates, and55

phases, can lead to the designs of progressive failure mode.56
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Figure 1: Natural cellular disordered metamaterials: (a) marine mussels on three different micro scales
showing disorderliness of the struts [19], (b) deep-sea sponge, Euplectella aspergillum [3], consisting of
square-grid-like architecture overlaid with a double set of diagonal bracing, (c) cortical and cancellous bone
with trabeculae bone microstructure with porosity of 75% to 95% with naturally formed disorderliness [6, 20],
(d) skeleton of protoreaster nodosus with its superficial soft tissue removed and SEM image of an ossicle’s
fracture surface affected by dislocation [8]; (e) disorderliness levels measured for all surveyed natural cellular
materials (adapted from [18]); the effects of disorderliness on normalized strength versus ductility and strain
energy density: (f & g) showing a wide range of ductility for spatial coordinate perturbation and strut
thickness variation, respectively, (h & i) showing a wide range of strain energy density for spatial coordinate
perturbation and strut thickness variation, respectively (j) creation of FCC QTMs via spatial coordinate
perturbations and strut thickness variations.

Motivated by the hypotheses on the role of disorderliness in natural cellular materials, we57

here present a discovery framework for damage tolerant lattices via tuning the distribution58

of disorderliness to achieve damage tolerance. Our approach has focused on quasi-disordered59

truss metamaterials (QTMs), which were formed by introducing small disorderliness to (par-60

ent) periodic truss metamaterials. As reported by Wang and Sigmund [29], QTMs can be61

tailored to achieve the extreme maximum isotropic elastic property. Our results on the62

QTMs created from a periodic Face Centered Cubic (FCC) lattice have demonstrated that63

the optimized QTMs can achieve up to 100% increase in ductility at the expense of less than64

5% stiffness and 8-15% tensile strength.65
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Figure 2: Overview of the methodology showing steps involved in designing QTMs, starting from step 1)
data generation of spatial coordinate perturbation and strut thickness variation, step 2) ANN training with
customised loss function to accurately map complex input and output variable, and step 3) optimization and
validation of the designs.

2. Methodology66

2.1. Creating the design space for quasi-disordered lattices67

Our approach to create QTMs of desired progressive failure modes was to introduce68

controlled (optimized) disorderliness to perfect periodic lattices of high performance. The69

periodic lattices with mechanical behavior close to the Hashin-Shtrikman (H-S) theoretical70

limit [16, 30, 31], such as Face Centred Cubic (FCC), triangular, and Kagome lattices [23],71

were chosen to act as the parent periodic lattices. Built upon data-driven approaches, the72

distribution and level of the disorderliness were tuned through optimization procedures to73

ensure that the desired progressive failure modes could be achieved with maintaining or74

without much loss of the good mechanical properties inherited from the parent periodic lat-75

tices. The geometries of the QTMs in the design space were numerically created through76

two distinct approaches, i.e., (1) random perturbation of the spatial coordinates of the nodes77

of a parent periodic lattice; and (2) random strut thickness variation of a parent periodic78

structure. Consider a two- dimensional (2D) parent periodic lattice with (xi, yi) represent-79

ing the spatial coordinates of the ith node and tj the thickness of jth strut. To create a80

QTM through random perturbation of the spatial coordinates of the nodes, the perturbation81
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(∆xi,∆yi) was defined as [26]:82

∆xi = x̄i − xi = βαr

∆yi = ȳi − yi = βαr
(1)

Alternatively, to create a QTM through random strut thickness variation, the thickness83

of jth strut was defined as:84

t̄j = (1 + γβ)tj (2)

In Eqs. 1 and 2, β (−1 ≤ β ≤ +1) denotes a random variable following a uniform85

distribution probability distribution; r is the minimum distance between two nodes within86

the parent periodic lattice; α and γ are the degrees of irregularity for the spatial perturbation87

and strut thickness variation, respectively. In this paper, small values are chosen for α = 0.288

and γ = 0.1, which leads to QTMs with ∆xi or∆yi ∈ [−0.2r,+0.2r] for spatial coordinate89

perturbation and t̄j ∈ [−0.1tj,+0.1tj] for strut thickness variation. The method introduced90

in the paper can be extended to triangular/kagome parent geometries (see Appendix A,91

Fig. A.2 ).92

2.2. A deep learning framework to map design space to output space93

The input and output databases were generated to feed into deep learning neural network94

for training purposes. The input database included the geometric information of the QTM95

samples. Let h denote the number of QTM samples included in the input database, and96

each QTM has p nodes and q struts. As shown in Fig. 2, for the mth QTM sample,97

m = 1, 2, . . . , h, the geometric information included in the input database consisted of (1)98

the perturbation of the spatial coordinates of the nodes, (∆xm,∆ym), or (2) strut thickness99

variation, t̄m, with100

∆xm =
[
∆x1, ...,∆xp

]m T
, ∆ym =

[
∆y1, ...,∆yp

]m T
(3)

and
t̄m =

[
t̄1, ..., t̄q

]m T
(4)

The output database includes the information on the structural responses of the QTM101

samples obtained by finite element (FE) simulations (details of FE modelling have been102

given in Appendix B). As the current research focuses on the structural response under103

uniaxial tension, the normalized macroscopic stress data σm = [σ1, σ2, ..., σn]
m T

collected104

at a sequence of n predefined, equally spaced normalized macroscopic uniaxial strains, εm =105

[ε1, ε2, ..., εn]
m T

, were stored in the output database for the mth QTM sample. Here, the106

macroscopic tensile stresses are defined as the ratio of the applied tensile force by the cross-107

section area over which the force is applied (Appendix B, Eq. B.2); and the macroscopic108

tensile strain is defined as the elongation over the original length of the model (Appendix109

B, Eq. B.2).110

A feed-forward deep-learning ANN was trained, using the input and output databases,111

to map the functional relationship between the input and output databases, as shown in Fig.112

2, i.e.,113
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σ =
[
σ1, σ2, ..., σn

]T
= f1(∆x,∆y), or

σ =
[
σ1, σ2, ..., σn

]T
= f2(t̄)

(5)

Neural network architecture refers to assembling neurons into layers: Each neuron uses a114

mathematical transformation of weights and biases to generate an output layer. For example,115

the mathematical form of a feed-forward propagation neural network of l layers can be written116

as:117

a1 = g
(
θ[1]ψ + b1

)
a2 = g

(
θ[2]a1 + b2

)
. . .

aii = g
(
θ[ii]aii−1 + bii

)
...

al−1 = g
(
θ[l−1]al−2 + bl−1

)
σ = θ[l]al−1 + bl

(6)

where θ[ii] is a weight matrix in the iith layer, ii = 1, 2, ..., l; b[ii] the bias vector in the iith118

layer; a[ii] the output vector in the iith layer; g the activation function; ψ is the input vector119

of the ANN, i.e.,120

ψ =
[(
∆x1,∆y1

)
, ..., (∆xp,∆yp)

]T
, or

ψ = t̄ =
[
t̄1, ..., t̄q

] (7)

The learning (training) procedure tunes the ANN components to minimise the cost func-121

tion J(θ[ii], bii), which is related to the loss function L(σm
pred,σ

m
true), by the following Equation122

[32]:123

J(θ[ii], bii) =
1

h

h∑
m=1

L(σm
pred,σ

m
true) (8)

where the loss function measures the accuracy of the trained ANN by evaluating the difference124

between the predicted stresses, σm
pred = [σ1, σ2, ..., σn]

m T
pred and the real stresses, σm

true =125

[σ1, σ2, ..., σn]
m T
true .126

To improve the learning efficiency of the ANN model, the normalized macroscopic stress127

data σm = [σ1, σ2, ..., σn]
m T

for a QTM sample can be divided into three groups, which128

correspond to the three zones in the stress-strain relation for the QTM sample under uniaxial129

tension, respectively, as shown in Fig. 2. It is noted that the structure experiences (1) elastic130

deformation in Zone I, (2) plastic deformation caused by the failure of a limited number of131

struts in Zone II, and (3) final catastrophic failure in Zone III. Numerical experiments on132

quasi-disordered FCC lattices have suggested that the stress data in the three groups (Zones)133

have significantly different variances across the QTM samples (see Appendix C.2 Fig. C.2).134

Based on this finding, a novel quantile regression loss function has been employed in this135

work, which is given as:136
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Lcustom(σ
k
pred,σ

k
true) =

1

3n

3∑
i=1

 n∑
k=1

σk
true<σk

pred

(λi − 1)
(
σk
pred − σk

true

)2
+

n∑
k=1

σk
true≥σk

pred

λi

(
σk
pred − σk

true

)2


(9)

where λi, i = 1, ..., 3, are the chosen quantiles for the three groups of the stress data and have137

values between 0 and 1. The quantile loss function is an extension of the Mean Square Error138

(MSE) that has the quantile λi = 0.5. The larger the value λi, the more under-predictions139

are penalized than over-predictions. Our numerical experiments have suggested that it can140

help to improve deep-learning efficiency (see Appendix C.5) and reduce the amount of data141

required for the deep-learning process by using distinct λi values at different Zones.142

2.3. Non-gradient-based design optimization143

Design optimization procedures can be employed to tune the distribution of disorderli-144

ness within the parent periodic lattices to achieve desired progressive failure modes. The145

mathematical model for design optimization can be described as follows:146

147

Objective function (maximize):

T (∆x,∆y) Or T (t̄) (10)

Constraints:
∆xmin ≤ ∆xi ≤ ∆xmax;

∆ymin ≤ ∆yi ≤ ∆ymax, i ∈ [1, p]

or

tmin ≤ t̄j ≤ tmax, j ∈ [1, q]

and

⟨σut⟩ ≥ σmin

⟨E0⟩ ≥ E0min

(11)

where ⟨σut⟩ and ⟨E0⟩ denote the maximum normalized macroscopic tensile stress and the148

macroscopic Young’s modulus of the lattice obtained by the uniaxial tensile tests, respec-149

tively; ∆xmin, ∆ymin, tmin, σmin and E0min are the lower bounds of design variables; and150

∆xmax, ∆ymax and tmax the upper bounds. In Eq. 10, the objective function T is a measure-151

ment related to the deformation capacity of the QTMs, such as ductility and strain energy152

density obtained under uniaxial tensile load. Here and throughout the rest of the paper,153

the ductility is defined as the macroscopic tensile strain at failure, which corresponds to154

the post-peak macroscopic stress equivalent to 25% of the peak macroscopic tensile stress;155

and the strain energy density was calculated as the area under the macroscopic stress-strain156

curve.157
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Figure 3: Designs of metamaterials based on spatial coordinate perturbations (a) the dimensions and bound-
ary conditions of the FE model; (b) the normalized macroscopic stress-strain relation of a parent periodic
FCC lattice; (c, d and e) the normalized stress-strain curves of three optimized QTMs (-N1, -N2 and -N3,
using ductility objective function) obtained by the FE simulations and ANN predictions; (f) the detailed
distributions of displacements in the lattices along with the continuum plots of microscopic strain [26] at
selected macroscopic strains of a QTM (-N1), showing shear band branching; the corresponding results of
the three QTMs (-N4, -N5 and -N6) obtained using strain energy density objective function are shown in
(g, h, i and j). The inserts of (d, e, h and i) show the distribution of the displacement at failure, which is
caused by the formulation of the shear band branching with different patterns.

3. Results and Discussions158

We demonstrate the success of the proposed method through the discovery of the high-159

performance 2D QTMs of the progressive failure modes. The QTMs were created based on160

a parent periodic FCC lattice (Appendix A). It was assumed that the lattice was made161

of the aluminium alloy Al-1050A, and with relative density, ρ̄ = 0.2. This relative density162

value was chosen for our investigation while taking the manufacturability of the minimum163

strut thickness into consideration [25]. The parent periodic FCC lattice consisted of 12- and164

16-unit cells periodically arranged along the x and y directions, respectively, with dimensions165

of 120 mm in x direction and 160 mm in y directions, see Fig. 3a. This geometry was chosen166

to ensure that the mechanical properties, i.e., macroscopic stiffness and peak strength were167

not sensitive to the size of the test samples (Appendix D). The FE simulations have sug-168
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gested that the parent lattice exhibits a sudden, catastrophic structural failure mode under169

uniaxial tension along the direction, as shown in Fig. 3b for the corresponding normalized170

macroscopic stress-strain relation. As shown in the insert of Fig. 3b for the distribution171

of the displacement at failure, the failure event was mainly caused by the formulation of a172

single shear band across the sample. For the macroscopic stress-strain relation shown in Fig.173

3b and the rest of the paper, the stress values have been normalized by the peak stress, and174

the strain values by the maximum strain of the parent FCC periodic lattice.175

3.1. The ANN models176

The first ANN model was created based on the scenario in which disorderliness was177

introduced into the FCC periodic lattice via the perturbation of the spatial coordinates of178

the nodes. The geometries of 5000 QTM samples were generated with irregularity, α = 0.2,179

at constant relative density, ρ̄ = 0.2. The input database containing perturbation of the180

spatial coordinates of the nodes, ψ = [(∆x1,∆y1) , ..., (∆xp,∆yp)]
T
, and the output database181

containing the normalized macroscopic stress data, σ = [σ1, σ2, ..., σn]
T
, were created to182

train the ANN model. The ANN model consisted of 7 hidden layers with 4096, 2048, 1024,183

1024, 1024, 512, and 512 neurons, respectively, in sequence from input to output layers.184

The numerical experiments have suggested that the structure of the ANN has achieved185

high efficiency in deep learning. The tuning of ANN model hyperparameters was obtained186

by performing Bayesian Optimization (Appendix C.4), based on the loss function with187

(λ1 = 0.5, λ2 = 0.45 and λ3 = 0.1), respectively. The second ANN model was created based188

on the scenario in which the disorderliness was introduced into the parent FCC periodic189

lattice via strut thickness variation. The ANNmodel was trained based on the input database190

containing struct thicknesses, ψ = t̄ = [t̄1, ..., t̄q], and the output database resulted from the191

FE simulations for 5000 QTM samples, with irregularity γ = 0.1 and at constant relative192

density, ρ̄ = 0.2. The ANN parameters are the same as in the previous case, except that193

the chosen quantiles were λ1 = 0.5, λ2 = 0.5 and λ3 = 0.3, respectively. We trained the194

two ANN models for 1000 iterations with an early stopping function when no improvements195

were made for ten iterations consecutively (the evaluations on the full dataset are presented196

in Appendix C.5).197

3.2. The design optimization198

The optimization problem described in Eqs. 10 and 11 can be solved using non-gradient199

based optimization algorithms, such as the Genetic Algorithms [33, 34], the Particle Swarm200

Optimization [35], and the Simulated Annealing (SA) Optimization [36], with the structural201

responses calculated by finite element (FE) simulations.202

The objective functions were optimized with the constraints of allowable nodal pertur-203

bation, α = 0.2, allowable struct thickness variation γ = 0.1, minimum normalized strength,204

σmin = 0.9, and minimum normalized stiffness, E0 = 0.95, using the simulated annealing205

(SA) optimization algorithm (MATLAB [37]). However, owing to the highly nonlinear na-206

ture of the problem, we found that it was impractical to use the FE based optimization207

procedures to solve the optimization problem. A numerical experiment suggested that it208

took up to 7 minutes to calculate the structural response of a single sample under a uniaxial209

tensile test. In this work, we used the simulated annealing (SA) optimization algorithm to210

achieve the optimized designs with the upper limit of 10000 iterations. As shown in Table211
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1, under the environment of the PC with Intel(R) Core(TM) i5-5200U CPU @ 2.20GHz, 4212

core processors with 16GB RAM, it took approximately 0.015 minutes to complete a single213

calculation by a trained ANN model, compared to 7-15 minutes by a single FE calculation214

(up to 48 days for the optimization process). Hence, ANN based optimization process is far215

more efficient than the conventional FE based optimization process.216

Table 1: Quantitative comparison of the FEA versus the ANN based optimization method time

number of samples
FEA based optimization

(min)
ANN based optimization

(min)
1 ∼7-15 0.015
5000(FE - actual) ∼54100 ∼54100 (ANN database)
10000(extrapolated) ∼108200 (∼75 days) 150

The strength constraint can ensure that the resulted QTMs preserve more than 90% of217

the strength and 95% of the stiffness from the parent periodical FCC lattice. The relative218

density of optimized QTMs have been found to be maintained at a constant value ρ̄ = 0.2.219

The optimization results are presented below for the QTMs having improved ductility owing220

to the progressive failure process.221

3.3. The Optimized results222

Based on the first ANN model, we optimized the distribution of the perturbation of223

the spatial coordinates of the nodes for the maximized ductility design and the maximized224

strain energy density design, respectively, as shown in Fig. 3 for the optimized designs. The225

optimized distributions of the nodal perturbation were used to create the corresponding FE226

models for validation and interpretation purposes. Compared to the periodic FCC lattice227

(Fig. 3b), which failed in a sudden, catastrophic manner, the optimized designs exhibited228

progressive failure modes. The optimized design based on the maximized ductility design229

model exhibits a 73% increase in ductility (Fig. 3c); and the optimized design based on230

the maximized strain energy density model exhibits a 56% increase in strain energy density231

(Fig. 3g), both with less than 5% reduction in stiffness and up to 15% reduction in strength.232

The ANN predictions have good agreement with the FE simulation results. FE simulations233

suggested that the progressive failure modes in the optimized designs were mainly achieved234

by shear band branching that causes load-path shift to undamaged struts, as shown in Fig. 3f235

(QTM-N1) and Fig. 3j (QTM-N4) for ductility and strain energy density objective functions,236

respectively. However, it has been found that the optimized designs were not unique: the237

solution is sensitive to the initial distribution of the perturbation. This indicates that the238

method can generate different designs with similar local optima. To illustrate this, based239

on three different initial distributions that were randomly picked from the input dataset, we240

obtained the optimized distributions of the perturbation for the maximized ductility designs241

(Figs. 3c, d and e for QTMs-N1, -N2 and -N3) and the maximized strain energy density242

designs (Figs. 3g, h and i for QTMs-N4, -N5 and -N6), respectively. Albeit slight differences243

in mechanical behaviors, these optimized designs all show progressive failure modes with244

a significant increase in ductility or strain energy density compared to the periodic FCC245

lattice. The inserted distribution of the displacement at failure, as shown in Figs. 3d, e, f246
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and Figs. 3h, i, j, have suggested that the progressive failure modes were mainly caused by247

shear band branching in different patterns.248

In this section, we optimized the variation of strut thickness within the parent periodic249

FCC lattices using the ductility objective function, as shown in Fig. 4 for the three optimized250

designs. As in the previous case, we obtained the optimum designs that exhibited progressive251

failure modes compared to the periodic FCC lattice (Fig. 3a). The optimized designs exhibit252

more than 80% increase in ductility with the expense of less than 5% stiffness and less than253

11% strength (Figs. 4a, b and c); and again the progressive failure modes in the optimized254

designs were mainly achieved by the shear band branching with different patterns, as shown255

in Fig. 4b, c and d of QTMs -S1, -S2 and -S3. Similarly, we have obtained three optimized256

QTM designs using the strain energy density objective function, as shown in Fig. 4. The257

optimized designs exhibit more than 60% increase in strain energy density with the expense258

of less than 5% stiffness and less than 9% strength (Figs. 4e, f and g). Our results show259

that the QTMs resulting from the strut thickness variation are more prone to brittle failure260

compared to those resulting from the spatial nodal perturbation. It can be noted that,261

for both models, i.e., the spatial coordinate perturbation and strut thickness variation, the262

number of variables in the input vector for the ANN models and optimization are different.263

However, our numerical experiments suggest that the difference in computation time is not264

noticeable.265

Figure 4: Designs of metamaterials based on strut thickness variation using ductility objective function, (a,
b and c) the normalized stress-strain curves of three optimized QTMs (-S1, -S2 and -S3) obtained by the FE
simulations and ANN predictions; (d) the distribution of microscopic strain at selected macroscopic strains of
a QTM (-S1), showing that shear band branching causes progressive failure mode; the corresponding results
of the three QTMs (-S4, -55 and -S6) obtained using strain energy density objective function is shown in
(e, f, g and h). The inserts of (b, c, f and g) show the distribution of the displacement at failure, which is
caused by the formulation of the shear band branching with different patterns.
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Figure 5: Failure mechanisms of two QTM designs: (a) an optimized QTM-N3 (b) a randomly selected low
ductile QTM with brittle fracture

3.4. Failure mechanism266

To understand how initial disorderliness can affect shear band branching that leads to267

enhancement of ductility, we have studied the failure mechanisms of two QTM designs: i)268

an optimized QTM with improved ductility (Fig. 5a), and ii) a QTM with low ductility269

brittle failure mode (Fig. 5b). The failure paths have been traced for both designs, which270

were caused by the breaking of struts owing to damage, as shown in the detailed geome-271

tries of the QTMs with contour showing the magnitude of the damage variable D. Here,272

the damage variable D varies from 0 to 1, with D = 1 representing complete failure at273

the integration point of the element. The resultant initial spatial coordinate perturbation,274

i.e.,
√

(∆xi)2 + (∆yi)2, is employed to quantify the overall disorderliness at ith node. The275

continuum plots of the resultant coordinate perturbations suggest that the optimized QTM276

(Fig. 5a) has a higher level distribution of disorderliness than the brittle QTM (Fig. 5b).277

For both QTMs, the failure paths were initiated at the locations with a low level of disor-278

derliness. For the optimized QTM (Fig. 5a), the breaking of struts was initiated at Point A279

and followed the path with minimum disorderliness, i.e., Points B and C for the formulation280

of a shear band; near Point C when the shear band encountered highly distorted area, shear281

band branching occurred and multiple shear bands started to formulate. In contrast, for the282

brittle QTM (Fig. 5b), the shear band branching did not occur owing to the absence of a283

highly distorted area on the failure path.284
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4. Experimental Study285

Figure 6: Tensile tests of the parent periodic FCC lattice, the QTM with progressive failure mode (QTM-
1), and the QTM with sudden failure mode (QTM-2). (a) 3D printed QTM-1 using polymer1 sample and
experimental setup, (b) the normalized stress-strain curves of QTM-1 showing 60% increase in ductility using
polymer1, (c), (d) and (e) snapshots of polymer1 samples at different global strains during the test of parent
periodic FCC, QTM-2, and QTM-1, respectively. The DIC images show the progression of microscopic strain
εyy and shear band branching (f) the normalized stress-strain curves of QTM-1 showing 33% increase in
ductility using polymer2, (g), (h) and (i) are snapshots at different global strains for polymer2. (the fourth
snapshots of parent periodic FCC lattice, QTM-1 and QTM-2 were taken after the final fracture occurred)

To validate the methodology described above, test specimens were manufactured, using286

the PolyJet manufacturing technique via an Objet260 Connex 3D printer, for the uniaxial287

tension test based on three selected FCC lattice designs, i.e., the parent periodic FCC lattice,288

the QTM with progressive failure mode (QTM-1), and the QTM with sudden failure mode289

(QTM-2). The optimized design shown in Fig. 3j was used as the geometry of the QTM-1;290

and the geometry of the QTM-2 was selected from the data used for deep learning, which291

exhibited sudden catastrophic failure mode according to the FE simulations. As discussed292

for the failure mechanism, the shear band branching was mainly caused by the distribution293

of initial disorderliness. To question if the enhancement in damage tolerance depends on294

13



the parent material of the lattices, we chose polymers as the parent material instead of Alu-295

minum alloy (Al1050A), which was used in the design optimization as described previously.296

Two types of polymers (i.e., polymer1 and polymer2 ) were used as the parent materials,297

which were created by combining commercialized acrylic (Objet Vero-Clear FullCure810)298

and rubber-like material (Objet Tango-Gray FullCure950). Polymer1 has a mixture of 75%299

acrylic and 25% rubber-like material, and polymer2 has a mixture of 50% acrylic and 50%300

rubber-like material. Both polymers show elastic-plastic stress-strain response, with poly-301

mer2 being much more ductile than polymer1 (see Appendix E). The tensile tests were302

conducted at room temperature using a 0.1% strain rate using an INSTRON testing system,303

as shown in Fig. 6a for a photograph of the experimental setup. Each specimen contained304

12 × 16 cells, and the geometry of the specimen had size 120 × 160 mm (with a height of305

25mm clamping at both top and bottom sides) with 1 mm out-of-plane thickness, and each306

strut had 0.4 mm thickness (the detailed geometry of the experimental sample is presented307

in Appendix E). Digital image correlation (DIC) was employed to capture the full-field308

strain evolution of the samples during the full fracture process. A CCD camera (Thorlabs309

DCC1545M) with an imaging lens (100mm focal length) was configured at a spatial reso-310

lution of 5 pixels/mm and a frame rate of 20 fps. In the DIC algorism, the subset image311

was 128 × 128 pixels, and the step size was 64 pixels to maintain a high level of speckle312

correlation [38, 39].313

The normalized macroscopic stress-strain curves for the specimens made of polymer1314

and polymer2 are shown in Figs. 6b and f, respectively. For both parent materials, the315

periodic FCC lattice failed in a sudden, catastrophic manner. Compared to the periodic FCC316

lattice, the QTM-1 achieved a 60% increase in ductility for polymer1 and a 33% increase for317

polymer2, respectively, without significantly decreasing the mechanical stiffness (≤ 3%) and318

the strength (≤ 13%). On the other hand, for both parent materials, the QTM-2 exhibited319

sudden, catastrophic failure mode with ductility either slightly higher (polymer1 ) or much320

lower (polymer2 ) than that of the periodic FCC lattice. The three Zones shown in Figs. 6b321

and f, indicate that the increase in ductility mainly affected by the Zone III for polymer1 or322

both Zone II and Zone III for polymer2.323

To further examine the failure mechanisms, a series of video snapshots at four selected324

tensile strains, numbered as “1”, “2”, “3” and “4” shown in Figs. 6b and f, were presented in325

Fig. 6c-e (polymer1 ) and Figs. 6g-i (polymer2 ), respectively. For both parent polymers, both326

the periodic FCC structure and QTM-2 fail instantaneously owing to a single shear band327

formation across the sample at the tensile strain “3”. Interestingly, the shear band deflection328

in Fig. 6c did not lead to progressive failure mode owing to the brittle parent material329

(polymer1 ). On the other hand, the QTM-1 design develops damage-tolerant behaviors via330

progressive failure modes owing to shear band branching (Fig. 6e, polymer1 ) or excessive331

tortuosity in the development of the shear band (Fig. 6i, polymer2 ).332

5. Conclusions333

The structures of the natural cellular materials exhibit a certain level of disorderliness.334

Prior to this work, it was well established that the disorderliness within cellular materials335

can cause a reduction in stiffness, strength, ductility, and fracture toughness. This has been336

demonstrated by a range of theoretical and experimental studies by Romijn et al. [21], Chen337
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et al. [22], Tankasala et al. [23], and Xu et al. [40]. However, in this paper, we have338

shown that the level and the distribution of disorderliness can either increase or decrease339

ductility of the truss lattice metamaterials by a great margin (see Figs. 1f and g), affecting340

both stiffness and strength. With this continuation, we have developed a physical-based341

data-driven framework, which tunes the disorderliness to achieve the QTMs with improved342

ductility. The higher ductility was achieved through changing the failure mechanisms from343

single shear band formulation to shear band branching or excessive shear tortuosity, which led344

to desired progressive failure modes. We have shown that, the solutions from the optimization345

calculation are not unique, which suggests that there are more than one optimum distribution346

of the disorderliness, however, they have all utilized progressive failure modes to improve the347

ductility. With this data-driven methodology, we can achieve the designs with ductility348

increased up to 100% without losing much of their stiffness (< 5%) and strength (8 ∼349

15%). Our numerical study has benefited from well-designed ANN deep-learning models,350

built upon a custom-built loss function (Appendix C.5, Fig. C.3), which can be trained351

with a relatively small dataset. Additionally, we have used two different types of polymers as352

the parent material in the experimental study, which have demonstrated that the enhanced353

damage tolerant behaviors of the optimized metamaterials are material independent.354

The design of damage-tolerant mechanical metamaterials [27] has significant importance355

in engineering applications. However, no deterministic approaches were developed prior to356

this work due to the indefinite solutions available. We believe this is just a beginning of357

an exciting field in the novel topological designs of mechanical metamaterials with tailored358

properties. Although the examples shown in the result section is based on FCC lattices,359

it is essential to note that the mechanical behaviors of other types of truss lattice such as360

Kagame, Diamond and Triangular, may differ from the FCC based lattices. It is likely that361

the difference in deformation mechanisms, i.e., bending dominated or stretching dominated,362

and redundancies of lattice structures [41] may lead to different damage tolerant behaviors363

with the presence of disorderliness. Future work will be conducted to reveal the underlying364

mechanisms via comparing different type of lattice structures. This study opens a new365

research area in seeking damage tolerance metamaterials, and the proposed method is general366

and applicable to other truss lattice topologies at any scale. The approach proposed in this367

paper can undoubtedly serve as a unique tool for designing novel mechanical metamaterials368

well beyond elastic limits.369
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Appendix A. Creation of face centre cubic quasi-disordered lattices520

Figure A.1: Creation of FCC QTMs via (A) spatial coordinate perturbation (B) strut thickness variation.

In this section, we provide details to create FCC QTM designs. QTMs can be created via521

spatial coordinate perturbation of nodes, modelled by introducing geometrical perturbation522

to the nodes of a perfect FCC periodic lattice. Let (xi, yi) represent the spatial coordinates of523

the ith node within a perfect FCC periodic lattice. The new position of the node (∆xi,∆yi)524

after perturbation can be written as (Fig. A.1A):525

∆xi = x̄i − xi = βαr

∆yi = ȳi − yi = βαr
(A.1)

where β (−1 ≤ β ≤ +1) denotes a random variable following a uniform probability distri-526

bution, α the degree of irregularity related to spatial coordinate perturbation, and r the527

minimum distance between two nodes within the parent periodic FCC lattice, which can be528

calculated as:529

r =

√
u2 + v2

4
(A.2)

where u and v are the lengths of the unit cell in the x and y directions of the parent periodic530

FCC lattice, respectively (Fig. A.1B). Instead, QTMs can be created via variation of strut531

thickness, t̄, which, for the jth strut member, can be described as (Fig. A.1B):532

t̄j = (1 + γβ)tj (A.3)

where γ the degree of irregularity related to strut thickness variation. The possible 2D design533

spaces for QTMs are illustrated in Fig. A.2.534

Appendix B. Finite element modelling and damage model535

Here, we present the details for FE modelling on the FCC lattices made of aluminium536

alloy Al-1050A. The lattice struts were represented as a 2-node Timoshenko-beam element537

(B21 in ABAQUS notation) with rigid connections. Each strut was modelled numerically as538
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Figure A.2: The QTM design space for two-dimensional topologies

a uniform rectangular cross-sectioned solid bar of in-plane thickness, t, and unit out-of-plane539

width. For the parent periodic FCC lattice with identical lengths of the unit cell in the x and540

y directions, i.e., u = v, the relative density ρ̄ of the perfect FCC lattice can be calculated541

as:542

ρ̄ = 2
(
1 +

√
2
)(

t

v

)
(B.1)

The relative density value was kept at ρ̄ = 0.2 for all QTM topologies in our investigation.543

Simulation results suggested that converged results could be achieved with each strut meshed544

with ten beam elements of equal length. To simulate the uniaxial tensile experiment, the545

specimen was subject to a constant vertical displacement boundary condition on the top546

and a fixed boundary condition on the bottom, see Fig. B.1. The macroscopic stress Σ, and547

macroscopic tensile strain E were calculated as:548

Σ =
ReactionForce

W
,

E =
∆L

L

(B.2)

where W and L are the width and height of the QTMs, respectively; ∆L is the elongation549
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Figure B.1: The FE model of a typical metamaterial specimen

in the y-direction.550

The Ramberg-Osgood model was used to represent the true stress-strain relationship of551

the parent material, i.e., Aluminium alloy Al-1050A, given by:552

ε̄ =
σ̄

Ē
+ κ

(
σ̄

σ̄y

)η

(B.3)

where Ē = 70GPa and σ̄y = 134MPa are Young’s modulus and yield stress of the Aluminium553

alloy, respectively; κ is the yield offset and η is the hardening exponent [25].554

Failure initiation starts when the maximum axial strain reaches 0.03 in the element based555

on the tensile test result shown in Fig. B.2 A [25]. The strut necking behavior is replicated by556

the reduction of the yield stress after failure initiates, which is characterised by the damage557

variable D:558

σ̄ = (1 −D) σ̄y (B.4)

where D varies from 0 to 1, and is a function of the plastic strain, fitted to match the data559

of Fig. B.2A. The corresponding element is deleted from the mesh, when all the material560

points within the element failed (D = 1). Numerical validation was conducted against the561

experimental data based on a 2D triangular lattice reported by Huaiyuan et al. Fig. B.2 [25].562

The FE prediction reported in this study shows a good agreement against the experimental563

data as shown in Fig. B.2 B. Additionally, Figs. B.2 C and D, show the comparison of564

failure loci of 2D triangular lattices given by Huaiyuan et al. [25] and numerical model used565
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Figure B.2: (A) Engineering stress-strain curve of the aluminum alloy (Al1050A [25]) used for FE simulations,
(B) Stress-strain response comparison and numerical validation against the experimental data based on a
2D triangular lattice reported by Huaiyuan et al. [25] (C and D) Single shear band fracture of 2D triangular
lattice by experimental [25], and FE result of the current work, respectively.

in current study, respectively. This suggests that the FE simulation used in this study can566

achieve high fidelity.567

Appendix C. Artificial neural network568

In recent studies, various ANN models are now being used. Among the suggested ANN569

types are multilayer perceptron feed-forward neural networks (FFNN), convolutional neural570

networks (CNN), and recurrent neural networks (RNN). Each ANN model generally relates571

to a specific type of issue. FFNN, for example, is widely utilized in many fields and is well-572

known as “universal approximators” [42–44]. Compared to CNN and RNN, FFNN has a573

simpler architecture (only layers and neurons in hidden layers are vulnerable to modification)574

and is thus easier to evaluate in its diversity. The current study has employed tabular data575

to relate the input dataset (spatial coordinate perturbations and strut thickness variations)576

to the relevant output dataset (normalized macroscopic stress-strain response). As a result,577
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an FFNN with a backpropagation algorithm was adopted in this work, as shown in Fig.578

C.1A and B.579

Figure C.1: An illustration of feed-forward neural network with backpropagation used in this work (A)
spatial coordinate perturbation (B) strut thickness variation.

Appendix C.1. Activation function and scaling580

The rectified linear activation function (ReLU) was used in this study. ReLU has been581

widely used in feed-forward neural networks as an activation function [45]. In this work, the582

input was scaled between [-1, 1] for the spatial coordinate perturbation dataset and [0, 1] for583

the strut thickness variation dataset. The ReLU activation function was found to perform584

better with this scaling technique. To scale the ith input data, the following mathematical585

transformation was applied to it:586

Ψ
(i)
norm. [-1 1] = 2

Ψ(i) −minΨ(i)

maxΨ(i) −minΨ(i)
− 1, Ψ

(i)
norm. [0 1] =

Ψ(i) −minΨ(i)

maxΨ(i) −minΨ(i)
, (C.1)

where minΨ(i) is the minimum and maxΨ(i) is the maximum value of the ith component of587

the input vector Ψ in the dataset.588

Appendix C.2. Evaluation of ANN589

The cost function, J(θ[ii], bii), and loss function, L(σm
pred,σ

m
true), are used to assess the590

“goodness” of the trained network. The loss function evaluates the model performance591

based on the real stresses, σtrue = [σ1, σ2, ..., σn]
T
true, and the predicted stresses, σpred =592

[σ1, σ2, ..., σn]
T
pred. During training, an optimisation algorithm minimises the value of the loss593

function by updating the weights and biases values in the “right” direction [46]. The cost594

function is dependent on the loss function in the following way:595

J(θ[ii], bii) =
1

h

h∑
m=1

L(σm
pred,σ

m
true) (C.2)

where h is the number of samples in an evaluated dataset. The most commonly used loss596

function is the mean squared error (MSE) for regression analysis problems [47]. The equation597

is expressed as:598
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LMSE(σ
m
pred,σ

m
true) =

1

n

n∑
k=1

(σk
pred − σk

true)
2

(C.3)

The “logcosh” loss function for neural networks was developed to combine the advantage599

of the absolute error loss function of not overweighting outliers with the advantage of the600

mean square error of continuous derivative near the mean, which makes the last phase of601

learning easier, which can be expressed as:602

Llog cosh(σ
m
pred,σ

m
true) =

1

n

n∑
k=1

log(cosh(σk
pred − σk

true)) (C.4)

As shown in Fig. C.2, numerical experiments on quasi-disordered FCC lattices have sug-603

gested that the stress data in the three groups (Zones) have significantly different variances604

across the QTM samples. Hence, we have proposed a custom-built loss function based on605

the “quantile regression loss function” to accurately predict stress-strain responses. The loss606

function used is given as:607

Lcustom(σ
k
pred,σ

k
true) =

1

3n

3∑
i=1

 n∑
k=1

σk
true<σk

pred

(λi − 1)
(
σk
pred − σk

true

)2
+

n∑
k=1

σk
true≥σk

pred

λi

(
σk
pred − σk

true

)2


(C.5)

where λi, i = 1, ..., 3, are the chosen quantiles for the three groups of the stress data and608

have values between 0 and 1. The quantile loss function is an extension of the Mean Square609

Error (MSE) that has the quantile λi = 0.5.610

Figure C.2: Three zones in the stress-strain relation for the QTM samples under uniaxial tension.
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Appendix C.3. ANN Optimisation algorithm611

Adaptive Moment Estimation (Adam) [48] is a widely used gradient descent-based back-612

propagation optimisation algorithm. In our study, this algorithm was used to train ANN613

models. For each parameter, the algorithm computes adaptive learning rates. It keeps an614

exponentially decaying average of previously squared gradients υt, like Nesterov’s accelerated615

gradient method [49], MaxProp [50], and others. However, it differs in the way it updates616

an exponentially decaying average of past gradients:617

ζt = ω1ζt−1 + (1− ω1) gt,

υt = ω2υt−1 + (1− ω2) g
2
t ,

(C.6)

where gt the gradient; ζt and υt are approximations of the gradient’s first moment (the mean)618

and second moment (the non-centred variance) at tth step. To compensate for moments that619

are biased towards zero, bias-corrected first and second moment estimates are computed:620

ζ̂t =
ζt

1− ωt
1

υ̂t =
υt

1− ωt
2

(C.7)

Eventually, parameters are updated according to:621

θt+1 = θt −
χ√
υ̂t + ϵ

ζ̂t (C.8)

Where ω1, ω2, χ, and ϵ are the algorithm hyperparameters and are subject to tuning.622

Appendix C.4. ANN architecture - hyperparameters623

In this section, we have given the hyperparameters used to train our ANN model. Each624

ANN model received a total of 1000 training iterations. The initial learning rate, χ, is625

0.0009. It decreases by the factor 0.2427 when no training progress is made for 18 consecutive626

training epochs. The other optimizer hyperparameters were used as their default settings in627

MATLAB: ω1 = 0.9, ω2 = 0.999, and ϵ = 10−8 Early stopping was used for deep learning to628

stop training if the change in learning metrics did not exceed over ten consecutive training629

iterations. A batch size of 16 was used to train the networks. The hyperparameters to tune630

the neural networks are obtained using Bayesian optimization from MATLAB (‘bayesopt’)631

[37].632

Appendix C.5. ANN architecture analysis633

To demonstrate an example of the improvements in the ANN architecture using our cus-634

tom built loss function. The ANN model was analyzed based on hyperparameters mentioned635

above for the three loss functions mentioned in Eqs. C.3 to C.5. The geometries of 5000 QTM636

samples were used with irregularity, α = 0.2, at constant relative density ρ̄ = 0.2. We used637

an ANN architecture consisting of 7 hidden layers with 4096, 2048, 1024, 1024, 1024, 512, and638

512 neurons, in sequence from input to output layers in our architecture. Further increase in639

hidden layers did not show any improvement in the efficiency of deep learning process. The640

dataset was split into three sub-datasets 75% for training, 15% for validations and 15% for641
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Figure C.3: The effects of loss functions on deep learning rate, which shows that the costom built loss
function has the best performance.

tests. The evaluation of the three loss functions mentioned in Eqs. C.3 to C.5 are presented642

in the Fig. C.3 based on the training and validation datasets. It can be observed that, our643

custom-built loss function (λ1 = 0.5, λ1 = 0.45 and λ3 = 0.1) has minimum loses compared644

to the other two loss functions (Eqs. C.3 and C.4).645

Fig. C.4 compares the FEA with the ANN predictions of the stress-strain curves of646

the FCC QTMs generated via nodal perturbations (α = 0.2). In the Fig. C.4, the first,647

second, and third row plots compare training, validation, and test datasets, respectively. The648

stress-strain curves are randomly selected from the respective datasets. Similarly, Fig. C.5649

compares the FEA with the ANN predictions for FCC QTMs generated via strut thickness650

variations (γ = 0.1). In both cases good agreement has been achieved.651

Appendix D. Size effects of FCC QTMs652

The size effects on the macroscopic stiffness, the macroscopic peak strength and ductility653

of the FCC QTMs were investigated using FE simulations. The details of the FE simulations654

are described in Appendix B. The QTMs were created based on the perfect FCC lattice655

with square unit cells (i.e., u = v). The width to height ratio, W/L, of the QTM samples656

were kept at 0.75; and the unit cell size, v, and the thickness, t, were taken as 10 mm and 0.4657

mm, respectively. The size effects were evaluated by increasing the number of unit cells from658

2 to 18 in x direction. We have conducted FE simulations for 100 QTMs at relative densities659

of ρ̄ = 0.2 with nodal perturbation irregularity α = 0.2 for each sample size. Fig. D.1A660

shows the size effect via the functional relationship of the structural macroscopic stiffness661

against the number of unit cells in x direction. The macroscopic stiffness is not sensitive662

to the number of unit cells when number of cells were more than 12. As shown in Figs.663

D.1B and C, the peak strength and ductility converged at the lattice size of 12 unit cells in664

x-direction (i.e., 16 unit cells in y direction). Thus, we opted for the QTMs of 12× 16 unit665

cells for this methodology development, provided in the main text. The similar study has666

been conducted on strut thickness variability, the simulation results follow the same trend667

as shown in Fig. D.1.668
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Figure C.4: The comparison of the FEA results with the ANN predictions for FCC QTMs generated via
spatial coordinate perturbations.

Appendix E. Stress-strain curves of polymers669

Fig. E.1A shows the engineering stress-strain curves of polymer1 and polymer2 used670

in the experimental study. The optimized QTM design for the Experimental Study in the671

main text is manufactured using these two materials. A miniature specimen tensile tests672

were performed to get engineering stress-strain curves. The geometrical dimensions of the673

miniature sample are shown in Fig. E.1B. The detailed geometry used for tensile tests of674

the three selected FCC lattice designs, i.e., the parent periodic FCC lattice, the QTM with675

progressive failure mode (QTM-1), and the QTM with sudden failure mode (QTM-2) are676

given in Figs. E.2A, B and C, respectively.677
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Figure C.5: The comparison of the FEA results with the ANN predictions for FCC QTMs generated via
strut thickness variations.
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Figure D.1: The size effects on (A) the structural macroscopic stiffness, (B) the structural peak strength
and (C) ductility of the FCC QTMs generated via spatial coordinate perturbations.
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Figure E.1: (A) engineering stress-strain curves of the polymer1 amd polymer2; (B) miniature specimen
dimensions.

Figure E.2: Geometry details of (A) the parent periodic FCC lattice (B) the QTM with progressive failure
mode (QTM-1) and (C) the QTM with sudden failure mode (QTM-2) used for uniaxial tensile test (all
dimensions are in mm)
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