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1 Introduction

In recent years, a correspondence known as the double copy has generated a great deal of
interest. Inspired by previous work in string theory [1], its original incarnation stipulates
that scattering amplitudes in gauge theory can be straightforwardly turned into gravity
amplitudes [2–4]. To do so, one must substitute the appropriate coupling constants, as
well as replace colour charge information with additional kinematic factors. This works
for a wide variety of gauge and gravity theories, both with and without supersymmetry.
Furthermore, one may also start with gauge amplitudes and go the other way, replacing
kinematic with colour information. This is called the zeroth copy, and generates amplitudes
in a scalar theory with two distinct types of colour charge, which has become known as
biadjoint scalar theory. Whilst not a physical theory by itself, its dynamics is at least
partially inherited by gauge and gravity theories. Furthermore, this ladder of theories
includes a wide variety of examples (e.g. both with and without supersymmetry), and
is itself part of a wider web of theories known to exhibit such correspondences: see e.g.
refs. [5–8] for recent reviews. In the past few years, it has become increasingly recognised
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that the double copy applies beyond fixed-order scattering amplitudes, in particular to all-
order perturbative information [9–12], exact classical solutions [13–36] (see also refs. [37, 38]
for related work in a different context, and [39] for a recent overview of how this is related),
perturbative classical solutions [40–59], and potential non-perturbative aspects [59–71].

The double copy offers new calculational tools for General Relativity and related the-
ories, and indeed has already been used to generate new results needed for gravitational
wave experiments [72, 73]. However, it also offers new conceptual insights not only about
gravity, but also the very foundations of field theory itself. It is then important to find
explanations of where the double copy comes from, particularly in those cases in which
exact statements can be made. In four spacetime dimensions, a well-known exact classical
double copy is the Weyl double copy of ref. [22]. Written using the spinorial formalism of
field theory (see e.g. refs. [74–76] for reviews), it relates spacetime fields in biadjoint, gauge
and gravity theories directly in position space.1 This is at odds with the original double
copy for scattering amplitudes [2–4], which is naturally formulated in momentum space.
Nevertheless, it is argued to be exact for certain gravity solutions, namely those vacuum
solutions which are of type D in the well-known Petrov classification. Exact type N cases
are also known [25], as well as other Petrov types at linearised level only [26, 28].

In order to explain the above results, refs. [26, 28] found a derivation of the Weyl
double copy using twistor theory [78–80], a decades-old set of mathematical ideas linking
field theory, complex analysis and algebraic geometry (see e.g. refs. [75, 81, 82] for ped-
agogical reviews). In a nutshell, twistor theory maps points in spacetime non-locally to
an abstract twistor space, such that certain quantities in the former show up as mathe-
matically convenient data in the latter. In particular, an integral formula known as the
Penrose transform [83] relates certain “functions” in twistor space to spacetime solutions
of the massless free field equations, where a given spin of the spacetime field translates to a
given homogeneity of the twistor function under rescalings of its argument. By multiplying
together functions of different homogeneity in an appropriate manner, refs. [26, 28] showed
that one could derive the Weyl double copy in position space. Furthermore, the twistor
approach provided a geometric interpretation of certain aspects of the Weyl double copy
that had previously been obscure, such as the inverse zeroth copy that takes one from
biadjoint scalar to gauge theory. Applications of the twistor approach include generalising
the Weyl double copy away from type D or N solutions (albeit at linearised level only), and
also showing that physical properties such as multipoles can be straightforwardly mapped
between different theories [29].

Despite the above successes, the twistor double copy is not without its conceptual prob-
lems. Chief among these is the fact that the quantities entering the Penrose transform are
not, strictly speaking, functions. Rather, they may be redefined by equivalence transfor-
mations, which do not change the result of the Penrose transform integral. Mathematically
speaking, such quantities are representatives of cohomology classes, as identified in ref. [84].
This then poses a puzzle, in that the non-linear product of twistor functions needed to ob-

1More specifically, it relates the Abelian versions of these theories. For explorations where both Abelian
and non-Abelian solutions map to the same gravitational object see [9, 77].
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tain the Weyl double copy in position space is clearly inconsistent with the ability to first
perform equivalence transformations. It thus seems that special representatives of each co-
homology class must be chosen in each theory in order to make the double copy manifest,
and it is not obvious a priori how to achieve this. A number of papers have subsequently
addressed this point. First was ref. [85], which considered radiative spacetimes, and showed
that data at past or future or null infinity could be used to pick out special cohomology rep-
resentatives in twistor space. These were defined in terms of so-called Dolbeault cohomology
groups, as distinct from the C̆ech cohomology groups that enter the original formulation of
the Penrose transform. Reference [30] also considered the Dolbeault language, and argued
that one can use known methods in Euclidean signature [86] to pick out special twistor
representatives for each spacetime field, so that a product structure is manifest in twistor
space. It is not clear how the procedures of refs. [30, 85] are related, if at all.

More recently, ref. [87] considered the relationship between scattering amplitudes,
twistor space, and classical solutions. It is known that certain classical solutions can
be obtained as inverse Fourier transforms of momentum-space amplitudes. Reference [87]
craftily split this inverse Fourier transform into two steps, where the first maps the ampli-
tudes into quantities in twistor space. The second step then corresponds to the Penrose
transform from twistor to position space, and it is therefore the case that scattering ampli-
tudes themselves can be used to pick out cohomology representatives for certain classical
fields in twistor space. As has been made clear elsewhere [88], the representatives picked
out by the relevant amplitudes in gauge, gravity or scalar theory are precisely those entering
the original twistor double copy of refs. [26, 28]. Not only does this fix the cohomological
ambiguities in the twistorial approach, it also establishes a very strong link between the
double copies in momentum, twistor and position space.

Equally important as explaining the origin of known double copies is to continue to
generalise this correspondence to novel theories or situations. In this spirit, refs. [89, 90]
recently proposed a new exact classical double copy for topologically massive gauge theory
and gravity, called the Cotton double copy. Like the Weyl double copy in four dimensions,
it uses the spinorial formalism of field theory, and expresses a precise relationship between
scalar, gauge and gravity fields in position space. Indeed, this relationship is analogous
to its four-dimensional counterpart, although appears to hold for a more restricted class
of solutions than in the Weyl case. That is, both refs. [89, 90] only found Cotton double
copy examples in position space of Petrov type N, rather than the more general type
D, and this fact demands a further explanation. It is also natural to ask whether there
is a twistorial justification for the Cotton double copy, that mirrors its four-dimensional
counterpart. Constructing such an argument should itself settle the issue of how general
the Cotton double copy is, and this paper will show that this is indeed possible. We
will use the language of minitwistors in three spacetime dimensions, and the presence
of a topological mass means that we will have to consider an alternative to the usual
Penrose transform. Just such a transform has been provided before in the mathematical
literature [91]. It is formulated by considering the most general possible cohomology classes
in minitwistor space. This involves introducing an extra parameter in twistor space relative
to the conventional four-dimensional case, whose presence corresponds to the presence of
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the topological mass in spacetime. Armed with this minitwistor transform, we will show
explicitly that appropriately combining particular minitwistor representatives allows us to
derive the position-space Cotton double copy.

Our minitwistor derivation of the Cotton double copy will suffer from similar concep-
tual issues to its four-dimensional counterpart. Namely, the form of the double copy in
minitwistor space involves products of “functions”, which should properly be interpreted
as representatives of cohomology classes, with an appropriate procedure for picking them.
However, the ideas of ref. [87] will once again come to the rescue: we will show that they
can be generalised to the three-dimensional case, such that the minitwistor double copy
follows as a consequence of the known double copy for scattering amplitudes in topologi-
cally massive theories. We will explicitly consider amplitudes corresponding to point-like
sources emitting gauge bosons, which correspond to type D classical solutions.2 These
will allow us to independently validate the form of the massive Penrose transform, where
particular cohomology representatives are necessarily picked out. Interestingly, we will
find that a simple twistor-space double copy occurs even in the type D case. However,
a simple position-space double copy is restricted to type N only, as a direct consequence
of the form of the massive Penrose transform. Our results provide a firm foundation for
the Cotton double copy, whilst also providing an interesting counterpoint for the four-
dimensional twistor double copy. This in turn suggests the use of twistor methods more
widely in the study of (non-)exact classical double copies, including in higher dimensions
where applicable.

The structure of our paper is as follows. In section 2, we review relevant properties
of topologically massive theories in three dimensions, including the Cotton double copy.
We also introduce the concept of minitwistors, and their associated Penrose transform,
following ref. [91]. In section 3, we provide a twistorial derivation of the Cotton double
copy, emphasising the similarities and differences with the four-dimensional twistor double
copy of refs. [26, 28]. In section 4, we show how the ideas of ref. [87] can be adapted to
three dimensions, and use anyon solutions to illustrate our general arguments. Finally, we
discuss our results and conclude in section 5.

2 Review of necessary concepts

In this section, we review salient material for the rest of the paper, both in order to set up
our notation and conventions, and also to make the presentation relatively self-contained.
We begin by introducing the spinorial formalism for field theories.

2.1 Spinors in (2+1) dimensions

Our first encounter with relativistic field theories in four spacetime dimensions typically
involves the use of 4-vectors and tensors. As is well-known, however, it is possible to
recast all relevant field equations into an alternative language, namely that of 2-component

2Strictly speaking we only consider linearized solutions, not exact solutions which are usually described
within the Petrov classification.
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spinors [92, 93] (see e.g. refs. [74–76] for pedagogical reviews). Similar ideas occur in (2+1)
dimensions [94–96], which we now briefly review.

We will be concerned with (dual) spinors λA (λA), whose indices A ∈ {0, 1} may be
raised and lowered using the two-dimensional Levi-Civita symbol:

λB = εBAλ
A, λB = εBAλA, εAB =

(
0 −1
1 0

)
= −εAB. (2.1)

Note that, in contrast to the well-known four-dimensional case, only one type of spinor
index A occurs. This is because the Lorentz group in (2+1) dimensions is covered by a
single SL(2,C) group. In four dimensions, on the other hand, the Lorentz group is covered
by two distinct SL(2,C) groups, leading to the presence of spinors λA and conjugate spinors
πA′ , where the prime is used to differentiate which SL(2,C) group acts on which index.

We can convert (2+1)-dimensional tensors into spinors (and vice versa) using the
Infeld-van der Waerden symbols, whose explicit form depends upon the chosen basis in
spinor space. It is in fact possible to choose them to be real, so that we will adopt the
SL(2,R) representation

σµAB =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)}
. (2.2)

A given tensor index is thus converted into a pair of spinor indices, and one may also verify
the following useful identities:

ηµν = 1
2σ

µ
ABσ

νAB, σµABσµGD = −(εAGεBD + εADεBG). (2.3)

As an example, a single 4-vector with real components has the spinorial translation

pAB = pµσ
µ
AB =

(
p0 + p2 p1
p1 p0 − p2

)
, det(pµσµAB) = −pµpµ, (2.4)

where the matrix thus obtained is referred to as a bispinor. As may be verified by direct
computation, one can always decompose a bispinor in (2+1) dimensions into the outer
product of two complex spinors

pAB = λ(Aλ̄B), (2.5)

where the latter are given by

λA = 1√
p2 − p0

(
p2 − p0
p1 − im

)
, λ̄A = 1√

p2 − p0

(
p2 − p0
p1 + im

)
. (2.6)

In the scattering amplitudes literature, it is common to introduce a Dirac notation for
(dual) spinors:

|λ〉 ≡ λA, 〈λ| ≡ λA. (2.7)

Then we can define spinor helicity variables in the usual way as

〈λiλj〉 ≡ εABλiBλ
j
A, (2.8)

where we note in particular the identities

〈λ̄λ〉 = 2im, 〈λ|γµ|λ̄〉 = −2pµ. (2.9)
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2.2 Topologically massive theories and their double copy

Having reviewed the language of two-spinors in (2+1) dimensions, let us now introduce
the theories that we will encounter throughout the paper. First up is topologically massive
Yang-Mills theory, which is described by the action

STMYM =
∫
d3x

(
− 1

4F
aµνFaµν + εµνρ

m

12
(
6Aaµ∂νAρa + g

√
2fabcAaµAbνAcρ

))
, (2.10)

implying the equation of motion

DµF
µν + m

2 ε
νργFργ = 0 . (2.11)

Physically, this describes a gauge boson with mass m and a single helicity h = m
|m| . The

mass term in the action is only possible in three spacetime dimensions, due to the presence
of the three-dimensional Levi-Civita tensor. Furthermore, unlike conventional mass terms
in arbitrary spacetime dimension, one may show that the mass term introduced here is
manifestly gauge-invariant. The mass is topological in the sense that it is independent of
the local metric.

We will also be concerned with topologically massive gravity, whose action is

STMG = 1
κ2

∫
d3x
√
−g

(
−R− 1

2mεµνρ
(

Γαµσ∂νΓσαρ + 2
3ΓαµσΓσνβΓβρα

))
, (2.12)

and leads to the equation of motion

Gµν + 1
m
Cµν = 0 , (2.13)

where Cµν is a symmetric tensor known as the Cotton tensor :

Cµν = εµρσD
ρ
(
Rσν −

1
4δ

σ
νR

)
. (2.14)

We can think of this as a (2 + 1)-dimensional analogue of the Weyl tensor in four (or
higher) dimensions, where the latter is what the Riemann curvature reduces to in the case
of vacuum solutions of the Einstein equations. Like the Weyl tensor, the Cotton tensor
vanishes for conformally flat spacetimes. As for the Yang-Mills case discussed above, the
second term in the action of eq. (2.12) is impossible to write down in four spacetime
dimensions. It is a correction to the pure Einstein-Hilbert action, and generates a mass for
the graviton that is invariant under diffeomorphisms.

As discussed in the introduction, it is by now very well-known that Yang-Mills theory
and gravity (plus their generalisations) are related by the double copy, which applies to
both scattering amplitudes and classical solutions. It was recently also conjectured that
the topologically massive gauge and gravity theories considered here are related by a sim-
ilar double copy [97], evidence for which has been presented in a number of non-trivial
scenarios [98–103]. Important for this paper is the Cotton double copy [89, 90],3 which di-
rectly relates classical solutions of the above equations of motion, expressed in the spinorial

3Note that the Cotton tensor has appeared in a different off-shell double copy construction in [104].
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formalism. As reviewed in refs. [89, 90], the spinorial translation of the free field equation
for Abelian topologically massive gauge theory is

∂GAΦGB = mΦAB, (2.15)

where ∂AB is the spinorial translation of the partial derivative operator ∂µ, and we have
defined4

ΦAB = 1
2σ

µ
ABεµνρF

νρ. (2.16)

Similarly, the free-field equations of topologically massive gravity take the form

∂EACEBGD = mCABGD, (2.17)

where
CABGD = Cµνσ

µ
ABσ

ν
GD. (2.18)

It is instructive to contrast these equations with their natural counterparts in four-dimen-
sional gauge and gravity theory, namely the massless free field equation

∂A1A′ΦA1A2...A2n = 0. (2.19)

Here ΦA1...A2n is a multi-index symmetric spinor corresponding to a single polarisation state
of the field.5 and the derivative operator is now the appropriate four-dimensional spinorial
translation of the partial derivative operator in spacetime. We have written eq. (2.19) for a
general spin-n, from which we may note that there are 2n spinor indices for a spin-n field.
Apart from the slight difference in derivatives, we see that eqs. (2.15), (2.17) differ from
eq. (2.19) due to the presence of the mass term on the right-hand side.

Solutions of eq. (2.19) of different spin can be related to each other by the Weyl double
copy [22], which has been shown to work for certain algebraically special spacetimes.

ΦABCD =
Φ(ABΦCD)

Φ . (2.20)

Here Φ is a field satisfying the massless Klein-Gordon equation in spacetime, and to clarify
where this applies, we may note that a consequence of the limited range of spinor indices is
that an arbitrary multi-index symmetric spinor can be decomposed in terms of single-index
principal spinors, such that we have

ΦABCD = α(AβBγCδD). (2.21)

So-called Petrov type D solutions are those for which there are two distinct principal spinors,
each of double multiplicity. Type N solutions have a single principal spinor of multiplicity
four. These are the two cases of algebraically special solutions for which the Weyl double
copy is known to be exact.

4In order to verify eq. (2.15), one must also use the relation εαβ
(
∂γβϕγα − ∂

γ
αϕγβ

)
= 0, which follows

from the well-known Bianchi identity for the field strength tensor.
5The other polarisation state obeys a similar equation to eq. (2.19), but with (un)primed indices inter-

changed.
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Motivated by the Weyl double copy, refs. [89, 90] considered whether a similar relation
can be written for topologically massive Yang-Mills and gravity theories. Indeed it can,
provided one replaces the Weyl tensor with the Cotton tensor, and instead considers Φ to
be a solution of the massive Klein-Gordon equation:

CABGD =
Φ(ABΦGD)

Φ . (2.22)

This is the Cotton double copy formula alluded to above, and is known to apply at least
for type N solutions. In order to see whether it is in fact more general than this (as is the
Weyl double copy), it is fruitful to seek a more underlying explanation of where the Cotton
double copy comes from. In the case of the Weyl double copy, refs. [26, 28] provided
a derivation of the position-space formula using the techniques of twistor theory. This
suggests that similar techniques could prove useful in deriving the Cotton double copy.
Before we can do this, however, we must first familiarise ourselves with twistor techniques
in (2+1) dimensions. This is the subject of the following section.

2.3 Minitwistor theory

In this section, we give a brief introduction to the subject of twistors in three-dimensional
space. Pedagogical reviews of four-dimensional twistor theory can be found in e.g.
refs. [75, 81, 82]. The subject of three-dimensional twistor theory is less well-known, and
thus our aim is to collect a number of useful results from the literature in one place [91, 105].
The relevant concepts are similar to the case of the four-dimensional twistor double copy
defined in refs. [26, 28]: given flat spacetime, one may construct an abstract twistor space,
such that points in spacetime are mapped non-locally to the latter and vice versa. Solutions
of the massless free field equation of eq. (2.19) can be obtained as a certain contour integral
in twistor space, which is known as the Penrose transform. In order to apply these same
ideas to (2+1) dimensions, we must first define the relevant twistor space, and then arrive
at the necessary Penrose transform, which must somehow take into account the presence
of the mass in topological gauge theory or gravity. Let us take each of these topics in turn.

2.3.1 Minitwistor geometry

Let us first consider complexified Minkowski spaceM = C3, with line element

ds2 = −dt2 + dx2 + dy2, t, x, y ∈ C. (2.23)

Using the Infeld-van-der-Waerden symbols of eq. (2.2), a point x ∈ M has a spinorial
translation as a symmetric 2× 2 matrix:

xAB =
(
−t− y −x
−x −t+ y

)
. (2.24)

We may then define minitwistor space MT as the two-dimensional set of null planes inM.
Any such plane is defined by a null three-dimensional normal vector nµ, such that

nµx
µ = u, n2 = 0, u ∈ C. (2.25)

– 8 –
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Nullity of nµ, and the fact that it is defined only up to arbitrary scalings, implies that its
spinorial translation factorises as follows:

nAB ≡ nµσµAB = λAλB, (2.26)

where λA is itself only defined up to an overall complex scale:

nµ → α2nµ ⇒ λA → αλA, α ∈ C. (2.27)

The first condition in eq. (2.25) then implies

u = xABλAλB , (2.28)

such that a given point in minitwistor space (representing a particular null plane) is de-
scribed by coordinates

Zα = (u, λA) , (2.29)

satisfying the incidence relation of eq. (2.28). Equations (2.25), (2.27) then imply that the
coordinates appearing in eq. (2.29) are defined only up to the scalings

(u, λA) ∼
(
r2u, rλA

)
, (2.30)

for r ∈ C∗.6 A spinor λA has two complex components, which reduces to one if an overall
complex scale is removed. Thus, λA defines a point on the Riemann sphere CP1. In general,
we need two coordinate patches to cover the sphere, which we may choose as

U0 : λA = (1, z) (2.31)
U1 : λA = (w, 1). (2.32)

Given that λA is defined only up to rescalings, we may identify z = w−1 on the overlap
U0 ∩U1. The single complex coordinate u is defined at each point on the Riemann sphere,
and thus we may think of MT as a fibre bundle, with CP1 as the base space. Formally
speaking, it is the holomorphic tangent bundle TCP1 of the Riemann sphere. In particular,
a given point in minitwistor space assigns a holomorphic tangent vector to each point on
the Riemann sphere associated with λA. To see this, note that a general holomorphic
vector field on CP1 may be written as

f(z)∂z =
( ∞∑
n=0

anz
n

)
∂z = −

( ∞∑
n=0

anw
2−n

)
∂w, (2.33)

where we have used ∂z = −w2∂w in the second equality. Holomorphicity in both coordinate
choices (in particular the absence of poles) then implies an = 0 for n > 2, such that a general
holomorphic vector field on U0 ∩ U1 may be written as

(a0 + a1z + a2z
2)∂z. (2.34)

6Here and in what follows, C∗ denotes the set of non-zero complex numbers.
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X

u

p

q

Figure 1. Points p and q in spacetime can be visualised as curves in minitwistor space, where the
coordinate u is defined at each point on the Riemann spheres Xp and Xq corresponding to p and q.
Curves associated with different spacetime points can intersect in at least two places.

The incidence relation of eq. (2.28) can be expanded in U0 using eq. (2.24) as

u = (−t+ y)z2 − 2xz − (y + t), (2.35)

From eq. (2.34), this defines a holomorphic vector field

u(z)∂z (2.36)

on CP1, as required.7 As described above and as is hopefully clear from eq. (2.35), a fixed
spacetime point x and picks out a specific vector at each point on the Riemann sphere
associated with λ. Thus, the coordinate u defines a section

u : CP1 → TCP1 (2.37)

of the holomorphic tangent bundle of the Riemann sphere. Thus, a point in spacetime
corresponds to a section of the holomorphic tangent bundle of a Riemann sphere X. As
explained in ref. [105], we may visualise this in twistor space as shown in figure 1. The
horizontal axis shows the Riemann sphere X represented as a complex line. The vertical
axis then denotes the value of u at each point on X, such that we may visualise this
as a curve.

So far we have worked in complexified Minkowski space. If we wish to use real coor-
dinates in Lorentzian signature, then the matrix given in eq. (2.24) will be real; that is,
we choose to impose the reality condition (u, λA) ∼ (ū, λ̄A). Now, the incidence relation of
eq. (2.28) defines a real null-plane or a timelike line, depending on whether u and λ0/λ1
are (non-)real.

2.3.2 Dimensional reduction

In what follows, we will have to obtain the relevant Penrose transform that converts data in
minitwistor space into solutions of the topological gauge and gravity equations in spacetime.
In doing so, we will find it useful to rely on some alternative ways of thinking about
MT. The first of these relies on the more well-known concept of twistor space for four-
dimensional complexified Minkowski spacetimeM4 = C4. As remarked already above, we

7To fully identify MT with the holomorphic tangent bundle of CP1, one must show that all possible
holomorphic vector fields can be obtained from the incidence relation. We will not formally prove this here.
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must consider two types of spinor in four spacetime dimensions, given that the Lorentz
group is covered by two distinct SL(2,C) groups, which we may refer to as SL(2,C)L and
SL(2,C)R. These act on (conjugate) spinors, which carry (un-)primed indices respectively.
To convert a given tensor or 4-vector into the spinorial language, we can again contract
with the relevant Infeld-van-der-Waerden symbols, for which a suitable choice is

σµAA′ =
{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 −i
i 0

)}
. (2.38)

Comparing with eq. (2.2), we see that the Infeld-van-der-Waerden symbols carry a spinor
index associated with each of the groups SL(2,C)L,R, and we have also appended the
“missing” Pauli matrix to be the third component σ3

AA′ , where now µ ∈ {0, 1, 2, 3}. With
these conventions, one has

xAA′ =
(
−t+ y x− iz
x+ iz −t− y

)
, xAA

′ =
(
−t− y −x− iz
−x+ iz y − t

)
. (2.39)

The twistor space corresponding to four-dimensional Minkowski spacetime can also be iden-
tified with the space of certain null 2-planes. It turns out that these can be parameterised
by twistor coordinates8

Zα = (µA′ , λA), (2.40)

subject to the incidence relation
µA
′ = xAA

′
λA. (2.41)

Twistors satisfying this relation are defined only up to an overall rescaling

Zα ∼ rZα, ⇒ (µA′ , λA) ∼ (rµA′ , rλA), (2.42)

and are said to live in projective twistor space PT. We may now obtain minitwistor space of
C3 by dimensionally reducing four-dimensional twistor space. After dimensional reduction,
one may choose to work with real coordinates in a specific signature by picking a reality
condition as in the previous section. To see how this works note that, in our above examples,
we can isolate the three-dimensional coordinates from xAA

′ by introducing a constant vector
with spinorial translation

TBA′ =
(

0 1
−1 0

)
, (2.43)

and forming the combination

xAA′TB
A′ = xAA′ε

A′C′TBC′ = xAB +
(

0 −iz
iz 0

)
, (2.44)

as follows from explicit computation. Then we may write

xAB = x(A
A′T

B)A′ , (2.45)
8For want of a better notation, we will use (non-)calligraphic symbols to refer to (three-) four-dimensional

twistors respectively.
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whose geometric interpretation is that we are ignoring translations along the direction of
Tµ in spacetime. Furthermore, SL(2,C) covariance of eq. (2.45) means that we can pick
any direction in spacetime in order to perform the dimensional reduction. Removing the
symmetrising brackets in eq. (2.45) will generate an antisymmetric contribution on the
left-hand side, which for a two-dimensional matrix must be proportional to the Levi-Civita
symbol. Thus, on general grounds we may write [106–108]

xAA′T
BA′ = xAB + bεAB , (2.46)

where taking the determinant of both sides can be used to infer the relation

b = i
√
x2

4d − x2
3d. (2.47)

Using eq. (2.45), we can recover the minitwistor incidence relation in eq. (2.28) from the
4d incidence relation of eq. (2.41). To do so, one may define

u ≡ µA′TAA
′
λA . (2.48)

This can be shown to be invariant under the equivalent of translations along the vector field
Tµ in twistor space [108]. Also, the four-dimensional twistor scaling property of eq. (2.42)
implies u→ r2u, as required in eq. (2.30). Combining eqs. (2.41), (2.46), (2.48), we find

u = (xABλA + bλB)λB, (2.49)

where the second term in the brackets corresponds to the effect of a translation in the
Tµ direction. This vanishes after contracting with the spinor λB outside the brackets,
but suggests that the most general equivalence relation in the three-dimensional twistor
coordinates is

(xABλAλB, λA) ∼ (r2(xABλA + bλB)λB, rλA). (2.50)

Indeed, this motivates another way to define coordinates on minitwistor space, as

ZA = (µA, λA) , µA = xABλB , (2.51)

which arise more naturally from the dimensional reduction point of view. In this case, the
coordinates are defined up to the following equivalence:

(µA, λA) ∼ (r(µA + bλA), rλA) . (2.52)

In discussing the Penrose transform we need for topological gauge and gravity theory,
it is useful to discuss yet another, and rather more formal, way to describe minitwistor
space. Recall that MT consists of the set of null two-planes in C3. Reference [91] considers
Euclidean signature for the latter, and points out that the complex Euclidean group of
transformations that define the space (rotations plus translations) is covered by the group
ESL(2,C). If we then quotient this group by the group of isometries of null planes, we will
obtain the group that acts on minitwistor space. The elements of the former group can be
written as

ESL(2,C) = {(A,B)|A ∈ SL(2,C), B ∈ {2×2 complex trace-free matrices}},
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subject to the composition law

(A,B) ◦ (A′, B′) = (AA′, AB′A−1 +B). (2.53)

We thus see that A is an SL(2,C) transformation associated with rotations, and B is
associated with translations. The relevant closed subgroup that we must quotient out is
given by [91]

Q =
{(

R =
(
r t

0 r−1

)
, S =

(
b a

0 −b

))
; a, b, r, t ∈ C, r 6= 0

}
, (2.54)

and to show that this is correct, we can simply apply the equivalence relation g ∼ gq

(with g ∈ ESL(2,C), q ∈ Q), and show that this corresponds to the equivalence relation of
eq. (2.52) when acting on minitwistor coordinates. One may then parametrise

g = (AAB = (λA χB) , X = xAB) , (2.55)

where χB is an arbitrary spinor. From eq. (2.53), Q then acts on g as

gq = (AR , X +ASA−1) . (2.56)

Expanding appropriately and using eq. (2.54), one obtains the correspondence [91]

g → gq : λA → rλA , xABλA → r(xABλA + bλA) . (2.57)

We can then interpret λA and µB = xABλA as coordinates on minitwistor space, sub-
ject to equivalence relations which indeed match those found by dimensional reduction in
eq. (2.52).

2.3.3 The Penrose transform for massless free fields

Having introduced minitwistor space in various ways, our next task is to find the appropri-
ate Penrose transform that expresses spacetime fields as contour integrals in minitwistor
space. To this end, let us first recall the Penrose transform in four-dimensional twistor
theory [83]. Solutions of the four-dimensional massless free field equation of eq. (2.19) can
be expressed via the following contour integral:

φA1A2...A2n = 1
2πi

∮
Γ
〈λdλ〉λA1λA2 . . . λA2nρx[f(Zα)], 〈λdλ〉 = λEdλ

E . (2.58)

Here the contour Γ lies on the Riemann sphere X associated with a given spacetime point
x, and λA is the spinor that forms half of the twistor components of eq. (2.40). There is
then a holomorphic function f(Zα) of twistor coordinates, where the symbol ρx denotes
restriction to the Riemann sphere X, such that all twistors obey the incidence relation of
eq. (2.41). The contour Γ must be such that it separates any poles of f(Zα), and for there
to be a non-zero answer, there must be at least two poles, one on either side of Γ. We
may take the latter to correspond to the equator of the Riemann sphere without loss of
generality.
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As is well-known [84], the “functions” f(Zα) are not unique, but can be subjected to
equivalence transformations that do not affect the result of the contour integral:

f(Zα) ∼ f(Zα) + fN (Zα) + fS(Zα), (2.59)

where fN (Zα) (fS(Zα)) has poles only in the northern (southern) hemisphere of X respec-
tively. Substituting eq. (2.59) into eq. (2.58), we may evaluate the additional contributions
by simply closing the contour in the opposite side to where the poles are, giving rise to a
zero result, as required. In more formal mathematical terms, we say that the quantities
f(Zα) are representatives of (C̆ech) cohomology classes, and a fuller exposition of this in
the present context can be found in ref. [30]. There is, however, a further restriction on
f(Zα), arising from the fact that twistors obeying the incidence relation constitute points
in projective twistor space PT, and thus are only defined up to the rescalings of eq. (2.42).
If the integrand and measure in eq. (2.58) are to be invariant under Zα → rZα, then it
must be the case that f(Z) is a homogeneous function of degree (−2n − 2), for a spin-n
spacetime field:

f(rZα) = r−2n−2f(Zα). (2.60)

Denoting holomorphic functions on minitwistor space of homogeneity N byO(N), we would
then say in formal language that the Penrose transform is an isomorphism between space-
time fields of spin n, and elements of the C̆ech cohomology group9 H1(PT,O(−2n− 2)).

It is straightforward to write down a Penrose transform for solutions of the three-
dimensional massless free field equation. The latter is given by

∂A1BφA1···A2n(x) = 0 , (2.61)

and the Penrose transform itself by [105]

φA1...A2n = 1
2πi

∮
Γ
〈λdλ〉λA1 . . . λA2nρx[f(Zα)]. (2.62)

This is directly analogous to eq. (2.58), where Γ is again a contour on the Riemann sphere X
associated with the spacetime point x, and f(Zα) a holomorphic function of the minitwistor
coordinates of eq. (2.29).

Above, we have presented the Penrose transforms for massless free fields in the lan-
guage of C̆ech cohomology, in which they take the form of contour integrals in (mini-)twistor
space. An alternative approach exists, in which twistor integrands are interpreted using
differential forms, and the freedom to redefine twistor integrands is interpreted using Dol-
beault cohomology (see e.g. ref. [30] for a recent detailed comparison of the two approaches).
We will remain with the C̆ech approach in what follows, which will turn out to be more
convenient for our purposes. However, an obvious deficiency of eq. (2.62) is that it only
works for massless free fields, and thus is inapplicable to topologically massive gauge and

9Strictly speaking, the Penrose transform of eq. (2.58) relates to sheaf cohomology groups, where O(N)
then denotes the sheaf of holomorphic functions of homogeneity N . However, C̆ech cohomology provides a
suitable approximation to sheaf cohomology for all practical purposes here. See e.g. ref. [81] for a pedagogical
discussion of this point.
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gravity theory. That it is possible to generalise the three-dimensional Penrose transform
to incorporate (topological) mass is possible on very general grounds, which we review in
the following section.

2.3.4 The Penrose transform for massive free fields

A three-dimensional Penrose transform for massive fields has been presented in the twistor
literature by Tsai [91], whose starting point is to consider the above construction of
minitwistor space MT as the quotient space G/H, where G=ESL(2,C) is the universal
cover of the complex Euclidean group that generates all points in C3 and H = Q is the
group of isometries of null planes. To construct a Penrose transform, we must consider
defining functions on MT. Functions at a point form a vector space V under addition, and
we must therefore consider a mathematical structure consisting of a copy of V associated
with all points in G/H, such that one has a type of fibre bundle. In fact, this structure is
known as a homogeneous vector bundle, where the word “homogeneous” refers to the fact
that the base space is itself a quotient space. There is a canonical way to construct homo-
geneous vector bundles (see e.g. ref. [109]), as follows. We can first think of constructing
a conventional vector bundle on G by placing a copy of V (the “fibre”) above each point
of G, and then letting a representation ρ(g) of each element g ∈ G act on vectors v ∈ V .
Then, given g ∈ G and v ∈ V , we may identify points in this vector bundle by asserting
the equivalence

(g, v) ∼ (gh, ρ(h−1)v), h ∈ H. (2.63)

The first component of this relation tells us that gh is to be identified with g, which is
simply the action of quotienting out G by the closed subgroup H. The second component
then implements the fact that the vectors in the fibres above g and gh must be identified.10

Returning to the specific case of G=ESL(2,C) and H = Q, we will be considering
scalar functions, which must then be acted on by one-dimensional representations of Q.
From eqs. (2.53), (2.54), one finds

(R1, S1) ◦ (R2, S2) =
((

r1r2 ∗
0 (r1r2)−1

)
,

(
b1 + b2 ∗

0 −b1 − b2

))
, (2.64)

and thus one sees that the r parameters are multiplicative, whereas the b parameters are
additive. Physically, this is related to the fact that the former are associated with rotations,
and the latter with translations. A one-dimensional representation that embodies these
properties can be easily written down as

ρ((R,S)) = r−NeMb, N ∈ Z, M ∈ C. (2.65)

Indeed, this represents an infinite family of one-dimensional representations, one for each
combination (N,M), and our reason for restricting N to be an integer will be clarified

10To see why h−1 rather than h occurs in the second relation in eq. (2.63), one may demand that the
effect of acting on both components with a group element h1h2 ∈ H is the same as acting first with h2,
then with h1. The group H acts towards the left on elements of G, but towards the right on elements of
V , such that the inverse ensures that the ordering of successive transformations acting on V is correct.
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below. We have seen that, acting on minitwistor coordinates (µA, λA), transformations
h ∈ Q act according to eq. (2.52). Thus, functions acted on by the representation of
eq. (2.65) must satisfy

f̌M (r(µA + bλA), rλA) = rNe−Mbf̌M (µA, λA) . (2.66)

To make sense of this condition, we can consider the case M = 0, for which there will no
b parameter in eq. (2.65). Then eq. (2.66) reduces to

f̌0(rµA, rλA) = rN f̌0(µA, λA), (2.67)

which is merely the requirement that the function f0 be homogeneous with degree N .
Such functions enter the massless Penrose transforms in three and four dimensions, where
N = −2n−2 is related to the spin n of the spacetime field. For non-zero M , the parameter
b in eq. (2.66) corresponds to the additional freedom to redefine minitwistor coordinates,
as in eq. (2.52). Given this more general class of functions, we can construct a generalised
Penrose transform. First, by setting r = 1 in eq. (2.66), differentiating this equation with
respect to b, and evaluating it at b = 0 we get that f̌M must obey:

λA
∂f̌M (Z)
∂µA

= −Mf̌M (Z), (2.68)

A solution of this equation can be written as:

f̌M (Z) = e
−M 〈aµ〉〈aλ〉 ǧ(λA, 〈µλ〉). (2.69)

where aA is an arbitrary spinor. To be compatible with (2.66) ǧ must be homogeneous of
degree N , which we will choose as above to be N = −2n− 2 (it is for this reason that we
have chosen N ∈ Z in eq. (2.65)). We may then consider the contour integral

φA1...A2n = 1
2πi

∮
Γ
〈λdλ〉λA1 . . . λA2nρx[f̌M (Zα)], (2.70)

which consists of simply replacing the “function” in the massless three-dimensional Penrose
transform of eq. (2.62) with one of the more general types of function defined above. Acting
on both sides with a derivative operator, we find

∇BA1φBA2...A2n(x) = − 1
2πi

∮
C
〈λdλ〉2λBλA2 . . . λA2nλ

(Bρx

[
∂f̌m(Z)
∂µA1)

]

= M

2πi

∮
C
〈λdλ〉λA1λA2 . . . λA2nρx[f̌M (Z)]

= MφA1...A2n(x) , (2.71)

where in the first line we have used

∇BA1f = (σµ)BA1
σDCµ λC

∂f

∂µD
, (2.72)
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together with eq. (2.3). This tells us two things: (i) φA1...A2n constructed in this manner
satisfies the massive free field equation of topologically massive gauge theory and gravity
(eqs. (2.15), (2.17)); (ii) the parameter M , which arose above in classifying the most
general type of functions that can be defined on minitwistor space, can be identified with
the topological mass m. We will thus make this identification in what follows.

Note that a more general solution to eq. (2.66) can be constructed as a sum over
different arbitrary spinors aA and homogeneous functions gi:

f̌m(Z) =
∑
a,i

e
−m 〈aµ〉〈aλ〉 ǧi(λα, 〈µλ〉) . (2.73)

That this satisfies the general massive free field equation can be verified by explicit calcu-
lation, but anyway follows from linearity of the field equation.

As in the massless case, the twistor functions f̌m(Z) entering the Penrose transform
of eq. (2.70) are not actually functions but defined only up to equivalence transformations,
in this case of the form

f̌m(Z) ∼ f̌m(Z) + e
−m 〈aNµ〉〈aNλ〉 ǧ′N (λα, 〈µλ〉) + e

−m 〈aSµ〉〈aSλ〉 ǧ′S(λα, 〈µλ〉) , (2.74)

where ǧ′N,S has poles only in the northern and southern hemispheres of X respectively, and
〈aN(S)λ〉 6= 0 in the southern (northern) hemisphere. In formal mathematical language,
we would say that the quantity f̌M (Zα) is a representative of a cohomology class, which is
itself a member of the C̆ech cohomology group H1(MT,O(N,M)), where O(N,M) denotes
the functions acted on by eq. (2.65). Note that our above arguments merely show that a
cohomology class in mini-twistor space gives a solution of the field equations in spacetime.
However, ref. [91] proves (see Proposition 2.10) that all possible solutions can be obtained
in this way, so that the relationship between fields and cohomology classes is formally an
isomorphism.

In this section, we have reviewed a particular generalised Penrose transform on
minitwistor space, whose “functions” correspond to cohomology classes labelled by two
parameters (N,M). The first of these represents the homogeneity of the cohomology rep-
resentative, and the second turns out to correspond to the mass in the field equations of
topologically massive gauge theory and gravity in three spacetime dimensions. The latter
are special cases of eq. (2.71), but we will also need the spinless case, for which one may
verify that the spacetime field φ satisfies the massive Klein-Gordon equation

(∂2 +m2)φ = 0. (2.75)

In four spacetime dimensions, the Penrose transform may be used to show that the position-
space double copy for massless free fields can be derived from a certain procedure in
twistor space [26, 28]. Now that we have identified the appropriate Penrose transform
for minitwistor space, we can perform a similar analysis for topologically massive gauge
and gravity theory in three spacetime dimensions.
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3 A minitwistor derivation of the Cotton double copy

We have seen that the generalised Penrose transform of eq. (2.70) identifies solutions of
the massive field equation of eq. (2.71) with holomorphic twistor “functions” (cohomology
class representatives) having the form of eq. (2.69). The homogeneity of a spin-n field
was found above to be N = −2n − 2, and thus a scalar, gauge and gravity field will be
associated with twistor representatives of homogeneity −2, −4 and −6 respectively. Let
us introduce a scalar representative f̌−2(Zα), and a pair of gauge theory representatives
f̌

(i)
−4(Zα) (i ∈ {1, 2}):

f̌−2(Zα) = e
−m 〈aµ〉〈aλ〉 ǧ−2(u, λA), f̌−4(Zα) = e

−m 〈aµ〉〈aλ〉 ǧ−4(u, λA) , (3.1)

where ǧN is an homogeneous “function” of degree N . It follows that one may construct a
gravitational twistor representative by forming the product

f̌−6(Zα) =
f̌

(1)
−4 (Zα)f̌ (2)

−4 (Zα)
f̌(Zα)

= e
−m 〈aµ〉〈aλ〉 ǧ−6(u, λA), (3.2)

with

ǧ−6(u, λA) =
ǧ

(1)
−4(u, λA)ǧ(2)

−4(u, λA)
ǧ−2(u, λA) . (3.3)

In the four-dimensional case of refs. [26, 28], it was argued that choosing certain represen-
tatives allows to derive the Weyl double copy in position space. We may do something very
similar here, in order to obtain the Cotton double copy. To see how this works, we may
first recall that for twistor representatives with at most two poles on the Riemann sphere
X, a p−fold pole gives rise to a (2n − p + 1)−fold principal spinor of the corresponding
spacetime field, at the point x (see e.g. ref. [75], and ref. [28] for a more recent discussion
of this point). We may then consider the representatives

f̌−2−2n(Zα) = e
−m 〈aµ〉〈aλ〉

G(u, λA)
(χ(u, λA))p . (3.4)

Here G(u, λA) and χ(u, λA) are homogeneous and holomorphic minitwistor functions, such
that χ(u, λA) has q ≤ 2n simple zeros, corresponding to poles in f̌−2−2n(Zα) enclosed by
the contour C. Furthermore, G(u, λA) is regular at the p-fold pole given by the zero of
χ(u, λA). For Type N solutions in which the field has only one 2n-fold principal spinor,
χ(u, λA) has a simple zero and p = 1. For Type D solutions which have 2 different n-fold
principal spinors, χ(u, λA) has two simple zeros and p = n+ 1. In refs. [89, 90], the Cotton
double copy was explicitly argued to hold in position space for type N solutions only.
Thus, we will shortly show how the type N Cotton double copy can indeed be obtained
from representatives of the form of eq. (3.4).

Before moving on, however, some comments are in order regarding the product of
twistor functions in eq. (3.2). As has been made clear repeatedly above, these are rep-
resentatives of cohomology classes, and thus — in a given theory — can be subjected to
equivalence transformations of the form of eq. (2.59). However, the non-linear product that
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is needed to generate gravitational solutions in the twistor space double copy of eq. (3.2)
(likewise in the four-dimensional case of refs. [26, 28]) is clearly incompatible with the
ability to first perform equivalence transformations. This is not actually a problem if all
one wants to do is to derive the Cotton double copy in position space: one merely regards
the product as only being true for certain representatives in twistor space, such that any
representatives which yield the correct double copy structure in position space (if it ex-
ists) will do. Nevertheless, it is desirable to have some motivation a priori for picking out
certain representatives, where this would ideally relate to the physics of the double copy.
Reference [85] was the first to consider this point, using the language of Dolbeault rather
than C̆ech cohomology. The authors considered certain radiative solutions, and showed
that data at null infinity could be used to uniquely fix twistor representatives in the vari-
ous theories entering the double copy. Reference [30] took a different approach, by looking
at spacetime fields in Euclidean signature, and using existing the ideas of ref. [86] to argue
that upon choosing special cohomology representatives in twistor space (corresponding to
harmonic differential forms), a product structure in twistor space is naturally obtained.
Unfortunately, neither of these procedures is obviously related to the other, nor to the
original BCJ double copy for scattering amplitudes. Reference [87], however, provided a
much better motivation for the formula of eq. (3.2), at least in principle, by showing that
special twistor representatives can be defined by a certain integral transform acting on
momentum-space amplitudes. Indeed, ref. [88] showed that these representatives are pre-
cisely those entering the twistor double copy of refs. [26, 28]. Thus, the twistor double copy
can indeed be viewed as arising from the BCJ double copy for three-point scattering am-
plitudes. Similar arguments can be used in the present context of solutions of topologically
massive gauge theory and gravity, and we return to this in section 4.

3.1 Cotton double copy for type N

Let us now see how the type N Cotton double copy arises from twistor space. In line
with our comments above, a type N solution should be generated by eq. (3.2), provided
the gravity twistor representative has a simple pole in twistor space. We may thus choose
representatives

f̌−2(Zα) = e
−m 〈aµ〉〈aλ〉

G0(u, λA)
χ1(u, λA)ξ1(u, λA) , f̌

(1,2)
−4 (Zα) = e

−m 〈aµ〉〈aλ〉
G0(u, λA)

χ1(u, λA)(ξ1(u, λA))3 ,

(3.5)
where χ1(u, λA) and ξ1(u, λA) are homogeneous of degree 1 and have simple zeros and
G0(u, λA) is homogeneous of degree 0 and has no poles, such that one finds

f̌−6(Zα) = e
−m 〈aµ〉〈aλ〉

G0(u, λA)
χ1(u, λA)(ξ1(u, λA))5 . (3.6)

Upon substituting this into the Penrose transform of eq. (2.70), we may carry out the
latter by choosing the patch U0 in eq. (2.32), so that λA = (1, z). We will assume without
loss of generality that only the simple pole, which arises from ξ1, of each cohomology
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representative lies in U0. On general grounds, we may further define

ρx

[〈aµ〉
〈aλ〉

]
= q(x; z), ρx [G0(u, λA)] = G(x; z),

ρx [χ1(u, λA)] = (z − z0)
N1(x) , ρx [ξ1(u, λA)] = (z − z1)

N2(x) , (3.7)

where z0 is the position of the simple zero in χ1(u, λA), in terms of the parameter z, and
the position dependence of each quantity arises upon imposing the incidence relation in
eq. (2.28). Equation (2.70) then becomes

φAB...D(x) = 1
2πi

∫
Γ

dz(1, z)A(1, z)B · · · (1, z)DG(x; z)e−m q(x;z)

× N1(x)
z − z0

(
N2(x)
z − z1

)2n+1

= (1, z0)A(1, z0)B · · · (1, z0)DN1(x)G(x; z0)
(
N2(x)
z0 − z1

)2n+1
e−m q(x;z0) , (3.8)

where we have carried out the contour integral in the second line by assuming that q(x, z)
is non-singular at z = z0. The fields of eq. (3.8) clearly satisfy the Cotton double copy of
eq. (2.22), when taking CABGD = φABGD and ΦAB = φAB. Thus, the Cotton double copy
indeed emerges from a product in twistor space, as claimed.

To give an explicit example of the above construction, let us examine pp-wave solutions,
for which the following representatives in twistor space can be constructed for a spin-n field:

f̌−2−2n = e
−m 〈aµ〉〈aλ〉

1
〈oλ〉

( 1
〈sλ〉

)2n+1
g

(
u

(sAλA)2

)
. (3.9)

Here we have introduced the constant spinors aA = (1, 0), oA = (0, 1), and sA = (1, c),
where c ε C. Comparing to eq. (3.7) we have

ρx [G0(u, λA)] = ρx

[
g

(
u

(sAλA)2

)]
= g

(
(−t+ y)z2 − 2xz − y − t

(1 + cz)2

)
ρx [χ1(u, λA)] = ρx [〈oλ〉] = z, ρx [ξ1(u, λA)] = ρx [〈sλ〉] = 1 + cz . (3.10)

where the pole z0 = 0 is in U0 and z1 = −1/c is in U1. Carrying out the relevant Penrose
transforms as in eq. (3.8), one finds

CABCD = φ(y+, x) αAαBαCαD , fAB = φ(y+, x) αAαB , φ(y+, x) = g(y+)e−mx ,
(3.11)

with y± = t ± y and αA = (1, 0) the principal spinor of the plane wave solutions. These
are indeed the pp-wave solutions for topologically massive gravity, topologically massive
electrodynamics, and a massive scalar field [110].
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3.2 Beyond type N solutions

Having reproduced the Cotton double copy for type N solutions of refs. [89, 90], it is natural
to ask whether or not the arguments can be extended to type D solutions. The latter indeed
double copy in the four-dimensional Weyl double copy, whose twistorial incarnation has
been presented in refs. [26, 28]. The twistor description allows us to address this directly,
and in fact shows that type D solutions do not obey a simple position space double copy
in general. To see this, we may write the explicit formula

f̌−2n−2(Zα) = e
−m 〈aµ〉〈aλ〉

G0(u, λA)
(χ1(u, λA)ξ1(u, λA))n+1 , (3.12)

where as before, χ1(u, λA) and ξ1(u, λA) are homogeneous of degree 1 and have simple
zeros, and G0(u, λA) is homogeneous of degree 0. We can further define

ρx

[
G0(u, λA)

(χ1(u, λA)ξ1(u, λA))n+1

]
= N(x)

(z − z0)n+1(z − z1)n+1 , (3.13)

where we have again imposed the incidence relation on the coordinate patch U0 and we
assume that only the pole at z0 is in U0. Upon substituting this into the Penrose transform,
one finds

φAB...D(x) = 1
2πi

∫
Γ

dz(1, z)A(1, z)B · · · (1, z)DG(x; z)e−m q(x;z)

×
(

N(x)
(z − z0)n+1(z − z1)n+1

)
. (3.14)

For type D solutions, poles of second order or higher will be present in the integrand which,
upon taking residues, will generate terms involving derivatives of the combination

G(x; z)e−mq(x;z). (3.15)

While we have shown this explicitly for type D solutions, this behaviour will hold for
all non-type N solutions. Thus, rather than a single term in position space, one will
obtain a sum of terms, such that a simple product of spacetime fields is not obtained in
general. One way of simplifying matters is to only consider twistor representatives such
that the function G(x; z) is constant. Indeed, all of the type D representatives considered
in the four-dimensional twistor double copy of refs. [26, 28] were of this form. However,
this will not suffice in the present context, due to the exponential factor e−mq(x;z), whose
presence is an unavoidable consequence of considering topologically massive gauge and /
or gravity theory. We therefore conclude that, unlike the case of the Weyl double copy in
four spacetime dimensions, the exact position-space Cotton double copy will be restricted
purely to type N solutions.11 This is in stark contrast to the case of the Weyl double copy
in four spacetime dimensions, where some of the simplest relevant solutions — consisting
of simple point-like objects at the origin — are of type D. We have thus explained why

11Note that we have assumed that the factor in the exponential has no poles in U0. Below we will see
that for linearized solutions that can be constructed from three-point amplitudes, this is not the case. In
such cases, we will again find that the position space Cotton double copy does not hold.
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refs. [89, 90] only succeeded in finding Cotton double copies for type N solutions. Our
results are also interesting in that they show that, even for non-type N solutions, there
can still be a simple product-like double copy structure in twistor space. The lack of a
double copy in position space is a consequence of the generalised Penrose transform, and
thus ultimately due to the presence of the topological mass. It is instructive to illustrate
the general discussion of this section with a concrete example. This is the subject of the
following section.

4 From scattering amplitudes to cohomology representatives

In the previous section, we have seen that Cotton double copy follows naturally from
minitwistor space, analogous to how the Weyl double copy in four spacetime dimensions
can be derived using twistor methods [26, 28]. Until recently, quite how the Weyl (position-
space) and twistor double copies related to the BCJ double copy for scattering amplitudes
remained mysterious. This was first settled in refs. [111, 112], which showed that the
Weyl and BCJ double copy for scattering amplitudes are equivalent, where they over-
lap, by using the so-called KMOC formalism [113] that expresses classical solutions as
inverse on-shell Fourier transforms of scattering amplitudes. Reference [88] investigated
this further, by using methods developed in ref. [87] to show that one may split the in-
verse Fourier transform from momentum to position space into two stages. The first takes
momentum-space scattering amplitudes into twistor space, thereby picking out a particular
cohomology representative. The second comprises the Penrose transform from twistor to
position space, and ref. [88] thus makes clear that the amplitude, twistor and Weyl double
copies are precisely equivalent where they overlap. A canonical example is that of a point
mass or charge in gravity / gauge theory respectively, corresponding to the well-known
Schwarzschild and Coulomb solutions. Similar solutions exist in topologically massive the-
ories, namely gravitational and gauge theory anyons, whose double copy properties have
been explored in refs. [98]. Such solutions are not type N, such that we do not expect them
to possess a simple position-space double copy, according to the arguments of the previous
section. However, we do expect to see a simple product-like twistor-space double copy,
where the relevant cohomology representatives are picked out by scattering amplitudes in
momentum space. It is interesting to confirm this by seeing what actually happens if we
take the relevant scattering amplitudes, and generalise the arguments of refs. [87, 88] to
three-dimensional topologically massive gauge theories and gravity.

Let us begin by developing the necessary ideas from the KMOC formalism of ref. [113],
which must be adapted to the present context (see also refs. [90, 111, 112] for relevant
ingredients). We will first focus on a scalar field, which we can mode expand in the usual
way as

φ(x) =
∫
dΦ(q)

[
a(q)e−iq·x + a†(q)eiq·x

]
, (4.1)

where

dΦ(q) = d3q

(2π)3 δ̂(q
2 +m2)Θ(q0) (4.2)
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is the three-dimensional on-shell measure and δ̂(x) ≡ 2πδ(x). We are interested in the field
generated by a static particle of mass M , which we take to be described by an initial state

|ψ〉 =
∫

dΦ(p)ψ(p) |p〉 , (4.3)

where ψ(p) is a wavefunction in momentum space, corresponding to a wavepacket sharply
peaked around the classical momentum pµ = Muµ, with uµ the 4-velocity. Evolving this
state into the far future using the S-matrix, the classical field is given by the expecta-
tion value

ϕ(x) = 〈ψ|S†φ(x)S|ψ〉 , (4.4)

which in turn yields

ϕ(x) =
∫

dΦ(q)
[
〈ψ|S†a(q)S|ψ〉 e−iq·x + h.c.

]
(4.5)

Next, we can adopt the conventional expansion of the S-matrix:

S = 1 + iT, (4.6)

and note that
〈ψ|a|ψ〉 = 0, (4.7)

given that there are no φ excitations in the initial state. We thus get

ϕ(x) = 2 Re i
∫

dΦ(q)dΦ(p)dΦ(p′)ψ(p)∗ψ(p′)
[
〈p′|a(q)T |p〉 e−iq·x

]
= 2 Re i

∫
dΦ(q)dΦ(p)δ̂(2p · q + q2)ψ(p)∗ψ(p+ q)

[
A(3)(q)e−iq·x

]
,

(4.8)

where in the second line we have introduced the three-point amplitude for the emission of
the φ field by the source:

〈p′|a(q)T |p〉 = A(3)(q)δ̂(p+ p′ − q). (4.9)

To understand this equation, note that the a(q) operator acts as a creation operator on the
left, creating a quantum of the φ field. The expectation value of the T-matrix is then, by
definition, the three-point amplitude multiplied by a momentum-conserving delta function.
As shown in ref. [113], by carefully accounting for factors of ~ (absent in natural units), one
can neglect the shift by q in the wavefunction, and also the q2 term in the delta function.
One may then integrate out the momentum p by assuming that the wavefunction |ψ(p)|2

is appropriately normalised to find

ϕ(x) = 1
M

Re i
∫

dΦ(q)δ̂(u · q)
[
A(3)(q)e−iq·x

]
. (4.10)

In words: the classical field is obtained as an on-shell inverse Fourier transform of the
three-point amplitude. Following refs. [87, 88], we can split this transform into two stages
as follows. First, we introduce spinor variables by appealing to eq. (2.5):

qAB = ω(λAλ̄B + λBλ̄A). (4.11)
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Here ω has units of energy, so that the spinors (λA, λ̄B) are dimensionless, and defined only
up to the little group scalings

λA → ξλA, λ̄B →
1
ξ
λ̄B. (4.12)

Transforming to the new variables, we find that

d3q = 2ω2dω| 〈λλ̄〉 | 〈λdλ〉 〈λ̄dλ̄〉 . (4.13)

Furthermore, the three-point amplitude for a scalar field emitted by a scalar source is simply
given by a coupling constant, which we set to unity in what follows. Equation (4.10) then
becomes

ϕ(x) = Re i

2πM

∫
dω 〈λdλ〉 〈λ̄dλ̄〉 |ω| |〈λλ̄〉| δ(〈λ|u|λ̄〉) δ

(
ω2 〈λλ̄〉2 +m2

)
e−iω〈λ|x|λ̄〉, (4.14)

where we have chosen to work in the rest frame where uµ = (1, 0, 0) and thus q0 = 0, and
we have used the fact that Θ(q0) = Θ(0) = 1/2. The first delta function then implies that

|λ̄〉 ∝ u |λ〉 , (4.15)

which we may write as an equality by relying upon the little group rescaling of eq. (4.12)
(see also ref. [88] for a discussion of this point). Performing the λ̄ integral then yields

φ = Re i

2πM

∫
dω 〈λdλ〉 |ω| |〈λ|u|λ〉| δ(ω2〈λ|u|λ〉2 +m2)e−iω〈λ|xu|λ〉. (4.16)

To make further progress, we note that in our original metric signature (−,+,+) form ∈ R,
it is impossible to simultaneously solve the dual kinematic conditions

u · q = 0, q2 +m2 = 0. (4.17)

To get around this problem, we may instead analytically continue to (+,+,−) signature,
by setting

(q0, q2) = i(q̃0, q̃2), (t, y) = i(t̃, ỹ). (4.18)

From eq. (2.5) applied to qµ with q̃0 = 0, we may rescale according to eq. (4.12) to write

λA = (1, z), z = q1 − im
iq̃2

. (4.19)

The analytically continued kinematic constraint

q̃2
1 − q̃2

2 +m2 = 0 (4.20)

then implies |z| = 1, and we also have

〈λ|u|λ〉 → i〈λ|u|λ〉, 〈λ|xu|λ〉 → i〈λ|xu|λ〉, (4.21)

so that eq. (4.16) becomes

φ = Re i

4πMm

∫
dω 〈λdλ〉 |ω|

[
δ

(
ω − m

〈λ|u|λ〉

)
+ δ

(
ω + m

〈λ|u|λ〉

)]
eω〈λ|xu|λ〉), (4.22)
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where we have used the standard identity

δ(x2 − α2) = 1
2|α|

[
δ(x− α) + δ(x+ α)

]
. (4.23)

It turns out that both delta function contributions are the same, such that we may take
only the first with a factor of two. We then arrive at

ϕ(x) = Re i

M

∫
Γ

〈λdλ〉
2π

e
m
〈λ|xu|λ〉
〈λ|u|λ〉

〈λ|u|λ〉
, (4.24)

where Γ is the appropriate integration contour. Recognising 〈λ|x = 〈µ|, eq. (4.24) has
precisely the form of the Penrose transform integrand of eq. (2.69), where in this case
|a〉 = u|λ〉, and a specific function of λA occurs, due to having transformed a particular
momentum-space amplitude into (mini-)twistor space. This is a highly useful validation
that eq. (2.69) is the correct Penrose transform integrand for topologically massive theories.
But it also forms the basis for calculating similar results for gauge and gravity anyon
solutions, and examining their double copy properties.

Explicit calculation of the various spinor products in eq. (4.24) yields

φ(x) = Re i

M

∫
Γ

dz

2π
e
−m−2iỹz+x(1−z2)

1+z2

1 + z2 , (4.25)

such that transforming to the variable z = eiα gives

φ(x) = − 1
4πM Re

∫ π/2

−π/2

dα

cosα exp
(
im

ỹ − x sinα
cosα

)
, (4.26)

We can use the rotational symmetry of the scalar solution to set ỹ = 0 and x = r, such
that eq. (4.26) becomes

φ = − 1
4πM Re

∫ π/2

−π/2
dα
e−imr tanα

cosα = − 1
2πMK0(mr), (4.27)

where we have used a known integral representation for the modified Bessel function of the
second kind.12 Finally we may analytically continue back to the metric signature (−,+,+),
which does not change the form of the result, but ensures that r =

√
x2 + y2.

4.1 Topologically massive gauge theory

In the previous section, we have seen that a classical scalar field can be obtained as an
inverse on-shell Fourier transform of a three-point amplitude, such that splitting this trans-
form into two stages allows us to recognise the Penrose transform from twistor to position
space. Similar arguments apply to topologically massive gauge theory and gravity, and
thus allow us to examine how to Cotton double copy does or does not work for pointlike

12Strictly speaking, the argument of the K0 function should be |mr|, but m and r are both positive in our
case. This justifies the remark made above that the contributions from both delta functions in eq. (4.22)
give the same result.
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solutions. In the gauge theory, we are concerned with the relevant curvature spinor, derived
from the dual field strength in the case of topologically massive electromagnetism. This
is in turn related to the three-point amplitude for emission of a photon by a source [90],
which we again take to be a scalar particle of mass M .

We can mode expand the dual field strength on-shell in the usual way13

F̃µ(x) = 1
2ε

µνρFνρ = −im
∫

dΦ(q)
[
a(q)εµ(q)e−iq·x + a†(q)ε∗µ(q)eiq·x

]
. (4.28)

Then, analogously to the scalar case of eq. (4.4), the curvature spinor is related to the
expectation value of the field strength evolved into the far future by the S-matrix

ϕAB(x) = 〈ψ|S†F̃µ(x)σµABS|ψ〉 , (4.29)

where |ψ〉 is the initial one-particle state defined in eq. (4.3), and where we now assume this
particle is charged such that it may emit photons. The electromagnetic curvature spinor
is then given by

ϕAB(x) = −im
∫

dΦ(q)
[
〈ψ|S†a(q)S|ψ〉 εAB(q)e−iq·x + h.c.

]
, (4.30)

such that upon following similar steps to those leading to eq. (4.10), we arrive at

ϕAB(x) = −m
M

Re
∫

dΦ(q)δ̂(u · q)
[
A(3)

gauge(q)εAB(q)e−iq·x
]
, (4.31)

where Agauge is the appropriate three-point amplitude for the emission of a (topologically
massive) gauge boson from a scalar. As in the scalar case, we may transform to spinor
coordinates according to eq. (4.11). A suitable choice for the polarization vector is

εµ = ω
〈λ|γµ|λ〉

2m =⇒ εAB = ω

m
λAλB, (4.32)

Furthermore, the amplitude A(3)
gauge can be fixed by dimensional analysis and little group

scaling [97]:
A(3) = 2eM(u · ε(q)). (4.33)

Repeating similar arguments to those leading to eq. (4.24), we ultimately find

ϕAB(x) = −emRe i
∫

Γ

〈λdλ〉
2π λAλB

e
m
〈µ|u|λ〉
〈λ|u|λ〉

〈λ|u|λ〉2
. (4.34)

This looks almost identical to the scalar case of eq. (4.10), but such that the integrand now
contains additional powers of spinor variables, as is appropriate for a spin-1 field. Again, we
have obtained a specific example of the massive Penrose transform integrand of eq. (2.69).

13We note however that there is no sum over helicities here, since topologically massive theories propagate
only a single helicity.
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Equation (4.34) will be useful for examining double copy properties of anyon solutions,
but let us first carry out the Penrose transform to position space. To do this, we may choose
the parametrisation λA = (1, z), and define the master integral

Ip,q(x, y) = Re i
∫

Γ

dz

2π
zp e

−m[−2yz+x(1−z2)]
1+z2

(1 + z2)q+1 . (4.35)

In terms of this integral, the scalar field of eq. (4.25) can be written as

φ = 1
M
I0,0, (4.36)

after analytically continuing back to the mostly plus metric signature, from which we find

I0,0 = AK0(mr), A = − 1
π
. (4.37)

Similarly, the field strength spinor of eq. (4.34) has the form

ϕ00(x) = −emI0,1, ϕ01 = ϕ10 = −emI1,1, ϕ11 = −emI2,1. (4.38)

Given the result of eq. (4.37), we may carry out the integrals on the right-hand side of
eq. (4.38) without performing any further explicit integrals. To see how, note that we can
differentiate eq. (4.35) to obtain the recurrence relations

∂xIp,q = −m[Ip,q+1 − Ip+2,q+1], ∂yIp,q = 2mIp+1,q+1. (4.39)

A further recurrence relation can be obtained by substituting

1 = 1 + z2

1 + z2 (4.40)

into the integrand of eq. (4.35), yielding

Ip+2,q+1 = Ip,q − Ip,q+1. (4.41)

We thus find that all integrals entering the field strength spinor of eq. (4.38) can be ex-
pressed in terms of derivatives of eq. (4.37), leading to the explicit results

I0,1 = A

2

[
K0(mr) + x

r
K1(mr)

]
;

I1,1 = −Ay2r K1(mr);

I2,1 = A

2

[
K0(mr)− x

r
K1(mr)

]
. (4.42)

We thus find

ϕ00 = em

2π

[
K0(mr) + x

r
K1(mr)

]
;

ϕ01 = −em2π
yK1(mr)

r

ϕ11 = em

2π

[
K0(mr)− x

r
K1(mr)

]
. (4.43)
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4.2 Topologically massive gravity

A similar analysis to the previous section may be carried out for topologically massive
gravity, where we may consider a scalar particle emitting (massive) gravitons. The classical
result for the Cotton spinor of eq. (2.18) is then given by

CABCD(x) = 〈ψ|S†CABCDS|ψ〉, (4.44)

such that the analogue of eq. (4.31) is, following [90]

CABCD(x) =− κ m

2M Re i
∫
dω| 〈λλ̄〉 | 〈λdλ〉 〈λ̄dλ̄〉2π δ(〈λ|u|λ̄〉)δ(ω2 〈λλ̄〉2 +m2)|ω|3

×
[
Agrav.(q)λAλBλCλDe−iq·x

]
. (4.45)

In eq. (4.45), Agrav. is the three-point amplitude for emission of a graviton by a scalar.
To find this, we may quote a general result for a spin-s field coupled to two scalars:

A(3)
+s = gsM

s(2u · ε(q))s, (4.46)

where gs is some coupling. By similar arguments to the gauge theory case, this simply
evaluates to a constant, such that the analogue of eq. (4.34) turns out to be

CABCD(x) = −κ
2m3M

2 Re i
∫

Γ

〈λdλ〉
2π λAλBλCλD

e
m

µ|u|λ〉
〈λ|u|λ〉

〈λ|u|λ〉3
. (4.47)

In terms of the basis of integrals defined in eq. (4.35), we then have

CABCD = −κ
2m3M

2 In1(ABCD),2, (4.48)

where n1(ABCD) is the number of 1 indices (rather than 0 indices) in the string ABCD.
By use of the above recurrence relations we find

C0000 = κ2m3M

8π

[(
2− y2

r2

)
K0(mr) +

(
2x
r

+ (r2 − 2y2)
mr3

)
K1(mr)

]
;

C1000 = κ2m3M

8π

[
−xy
r2 K0(mr) +

(
−y
r
− 2xy
mr3

)
K1(mr)

]
;

C1100 = κ2m3M

8π

[
y2

r2K0(mr) +
(
− 1
mr

+ 2y2

mr3

)
K1(mr)

]
;

C1110 = κ2m3M

8π

[
xy

r2 K0(mr) +
(
−y
r

+ 2xy
mr3

)
K1(mr)

]
;

C1111 = κ2m3M

8π

[
(2r2 − y2)

r2 K0(mr) +
(
−2x
r

+ 1
mr
− 2y2

mr3

)
K1(mr)

]
. (4.49)

We have checked explicitly that the results of eqs. (4.43), (4.49) agree with the known
anyon solutions in topologically massive gauge and gravity theory [114], once these are
translated into the spinorial language, and up to an overall normalisation constant (which
we have defined differently in our choice of constant amplitudes above).
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4.3 Double copy properties of anyon solutions

In the previous sections, we have seen that the solution for spin-n field for a pointlike
source, in a (topologically) massive theory, takes the general form

ψAB...D(x) = Kn

∫
Γ

〈λdλ〉
2π λAλB . . . λD

e
m

µ|u|λ〉
〈λ|u|λ〉

〈λ|u|λ〉n+1 , (4.50)

whereKn is a normalisation constant. Each solution is a special case of the massive Penrose
transform of eq. (3.14), and we thus see that there is a multiplicative double-copy structure
in twistor space. That is, upon picking out a cohomology representative fn(λA, u) for each
spin-n field (scalar, gauge and gravity) by transforming amplitudes into twistor space, these
representatives are related by a simple multiplicative rule

f2(λA, u) = f1(λA, u)f1(λA, u)
f0(λA, u) . (4.51)

The same result is obtained in four spacetime dimensions [88]. However, unlike in that case,
the simple multiplicative nature of the double copy in twistor space does not correspond to
a simple structure in position space, as comparison of eqs. (4.43), (4.49) makes clear. This
thus provides an explicit illustration of the general discussion in section 3.2, namely that
the presence of the exponential factor in the massive Penrose transform disrupts the simple
nature of the position-space double copy. Given that fields generated by a pointlike source
are perhaps the simplest static solutions one can imagine, this bolsters the conclusions of
ref. [88], that exact position space double copies are rather special and restricted in nature,
and that the double copy prefers to live in momentum space. Another interesting feature of
the three-dimensional solutions considered here is that, in contrast to their four-dimensional
counterparts, the twistor space representatives have essential singularities, rather than
poles. Again this is due to the presence of the exponential factor, and guarantees that one
is able to reconstruct the relevant transcendental functions entering the spacetime field (i.e.
modified Bessel functions) upon taking residues in the Penrose transform integral.

5 Conclusion

In this paper, we have examined the Cotton double copy recently presented in refs. [89, 90],
that relates solutions of topologically massive gauge and gravity theories. It is a three
dimensional (massive) counterpart of the Weyl double copy for certain exact solutions in
four spacetime dimensions [22]. However, whereas the latter is known to apply to arbitrary
Petrov type D vacuum solutions, the former is apparently restricted solely to the type
N case. In order to clarify this issue, we have here used twistor methods, which have
previously been useful in examining the origin (and special nature) of the Weyl double
copy [26, 28, 29, 88].

In three spacetime dimensions, the relevant twistor space is called minitwistor space,
and we have reviewed known results from the twistor literature [91] that provide a massive
generalisation of the well-known Penrose transform relating classical fields in spacetime
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with cohomology classes in twistor space. Armed with this Penrose transform, one may
show that although it is possible to construct gravitational cohomology representatives by
combining representatives from (massive) scalar and gauge theories, this leads to a simple
position-space double copy only in the case of type N solutions. We thus confirm the
results of refs. [89, 90], and further clarify our results by considering arguably the simplest
possible static solutions, corresponding to a pointlike source. The relevant classical fields
can be expressed as on-shell inverse Fourier transforms of three-point amplitudes, following
the methods of ref. [113]. By splitting this transform into two stages, we first transform
amplitudes into minitwistor space, revealing that the remaining to spacetime takes precisely
the form of the massive Penrose transform mentioned above. Although we find a simple
multiplicative double copy in twistor space, this fails to translate to a simple relationship
in spacetime, thus validating our more general analysis.

The emerging picture from this and similar recent studies [88] is that exact position-
space double copies are rare. However, knowing that they exist — and what their limita-
tions are — is undoubtedly useful. Methods for elucidating the landscape of exact double
copies are a necessary part of this ongoing effort, and we hope that the twistor methods
developed in this paper may prove of further use in this regard.

Acknowledgments

We are grateful to Tim Adamo and Graham Brown for useful discussions. This work has
been supported by the U.K. Science and Technology Facilities Council (STFC) Consoli-
dated Grant ST/P000754/1 “String theory, gauge theory and duality”.

MCG is supported by the European Union’s Horizon 2020 Research Council
grant 724659 MassiveCosmo ERC–2016–COG and the STFC grants ST/P000762/1 and
ST/T000791/1. JR is supported by the National Science and Technology Council of Tai-
wan grant NSTC 111-2811-M-002-125. NM is supported by STFC grant ST/P0000630/1
and the Royal Society of Edinburgh Saltire Early Career Fellowship. WTE is supported
by the Czech Science Foundation GACR, project 20-16531Y.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed
and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

[2] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes,
Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

[3] Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double
Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

– 30 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(86)90362-7
https://inspirehep.net/literature/217982
https://doi.org/10.1103/PhysRevD.78.085011
https://arxiv.org/abs/0805.3993
https://inspirehep.net/literature/786640
https://doi.org/10.1103/PhysRevLett.105.061602
https://arxiv.org/abs/1004.0476
https://inspirehep.net/literature/850908


J
H
E
P
0
3
(
2
0
2
3
)
1
7
7

[4] Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge
Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

[5] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The Duality Between
Color and Kinematics and its Applications, arXiv:1909.01358 [INSPIRE].

[6] L. Borsten, Gravity as the square of gauge theory: a review, Riv. Nuovo Cim. 43 (2020) 97
[INSPIRE].

[7] T. Adamo et al., Snowmass White Paper: the Double Copy and its Applications, in 2022
Snowmass Summer Study, Seattle, U.S.A. (2022) [arXiv:2204.06547] [INSPIRE].

[8] Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson and R. Roiban, The SAGEX review on
scattering amplitudes Chapter 2: An invitation to color-kinematics duality and the double
copy, J. Phys. A 55 (2022) 443003 [arXiv:2203.13013] [INSPIRE].

[9] S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02
(2013) 127 [arXiv:1210.1110] [INSPIRE].

[10] A. Sabio Vera, E. Serna Campillo and M.A. Vazquez-Mozo, Color-Kinematics Duality and
the Regge Limit of Inelastic Amplitudes, JHEP 04 (2013) 086 [arXiv:1212.5103] [INSPIRE].

[11] H. Johansson, A. Sabio Vera, E. Serna Campillo and M.A. Vázquez-Mozo,
Color-Kinematics Duality in Multi-Regge Kinematics and Dimensional Reduction, JHEP
10 (2013) 215 [arXiv:1307.3106] [INSPIRE].

[12] R. Saotome and R. Akhoury, Relationship Between Gravity and Gauge Scattering in the
High Energy Limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

[13] R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12
(2014) 056 [arXiv:1410.0239] [INSPIRE].

[14] A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for
Taub–NUT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].

[15] A.K. Ridgway and M.B. Wise, Static Spherically Symmetric Kerr-Schild Metrics and
Implications for the Classical Double Copy, Phys. Rev. D 94 (2016) 044023
[arXiv:1512.02243] [INSPIRE].

[16] N. Bahjat-Abbas, A. Luna and C.D. White, The Kerr-Schild double copy in curved
spacetime, JHEP 12 (2017) 004 [arXiv:1710.01953] [INSPIRE].

[17] M. Carrillo-González, R. Penco and M. Trodden, The classical double copy in maximally
symmetric spacetimes, JHEP 04 (2018) 028 [arXiv:1711.01296] [INSPIRE].

[18] M. Carrillo González, B. Melcher, K. Ratliff, S. Watson and C.D. White, The classical
double copy in three spacetime dimensions, JHEP 07 (2019) 167 [arXiv:1904.11001]
[INSPIRE].

[19] I. Bah, R. Dempsey and P. Weck, Kerr-Schild Double Copy and Complex Worldlines, JHEP
02 (2020) 180 [arXiv:1910.04197] [INSPIRE].

[20] G. Alkac, M.K. Gumus and M.A. Olpak, Kerr-Schild double copy of the Coulomb solution
in three dimensions, Phys. Rev. D 104 (2021) 044034 [arXiv:2105.11550] [INSPIRE].

[21] G. Alkac, M.K. Gumus and M.A. Olpak, Generalized black holes in 3D Kerr-Schild double
copy, Phys. Rev. D 106 (2022) 026013 [arXiv:2205.08503] [INSPIRE].

[22] A. Luna, R. Monteiro, I. Nicholson and D. O’Connell, Type D Spacetimes and the Weyl
Double Copy, Class. Quant. Grav. 36 (2019) 065003 [arXiv:1810.08183] [INSPIRE].

– 31 –

https://doi.org/10.1103/PhysRevD.82.065003
https://arxiv.org/abs/1004.0693
https://inspirehep.net/literature/851036
https://arxiv.org/abs/1909.01358
https://inspirehep.net/literature/1752575
https://doi.org/10.1007/s40766-020-00003-6
https://inspirehep.net/literature/1787989
https://arxiv.org/abs/2204.06547
https://inspirehep.net/literature/2066524
https://doi.org/10.1088/1751-8121/ac93cf
https://arxiv.org/abs/2203.13013
https://inspirehep.net/literature/2058010
https://doi.org/10.1007/JHEP02(2013)127
https://doi.org/10.1007/JHEP02(2013)127
https://arxiv.org/abs/1210.1110
https://inspirehep.net/literature/1189198
https://doi.org/10.1007/JHEP04(2013)086
https://arxiv.org/abs/1212.5103
https://inspirehep.net/literature/1208356
https://doi.org/10.1007/JHEP10(2013)215
https://doi.org/10.1007/JHEP10(2013)215
https://arxiv.org/abs/1307.3106
https://inspirehep.net/literature/1242293
https://doi.org/10.1007/JHEP01(2013)123
https://arxiv.org/abs/1210.8111
https://inspirehep.net/literature/1194172
https://doi.org/10.1007/JHEP12(2014)056
https://doi.org/10.1007/JHEP12(2014)056
https://arxiv.org/abs/1410.0239
https://inspirehep.net/literature/1319632
https://doi.org/10.1016/j.physletb.2015.09.021
https://arxiv.org/abs/1507.01869
https://inspirehep.net/literature/1381759
https://doi.org/10.1103/PhysRevD.94.044023
https://arxiv.org/abs/1512.02243
https://inspirehep.net/literature/1408723
https://doi.org/10.1007/JHEP12(2017)004
https://arxiv.org/abs/1710.01953
https://inspirehep.net/literature/1628798
https://doi.org/10.1007/JHEP04(2018)028
https://arxiv.org/abs/1711.01296
https://inspirehep.net/literature/1634578
https://doi.org/10.1007/JHEP07(2019)167
https://arxiv.org/abs/1904.11001
https://inspirehep.net/literature/1731245
https://doi.org/10.1007/JHEP02(2020)180
https://doi.org/10.1007/JHEP02(2020)180
https://arxiv.org/abs/1910.04197
https://inspirehep.net/literature/1758462
https://doi.org/10.1103/PhysRevD.104.044034
https://arxiv.org/abs/2105.11550
https://inspirehep.net/literature/1864977
https://doi.org/10.1103/PhysRevD.106.026013
https://arxiv.org/abs/2205.08503
https://inspirehep.net/literature/2083237
https://doi.org/10.1088/1361-6382/ab03e6
https://arxiv.org/abs/1810.08183
https://inspirehep.net/literature/1699252


J
H
E
P
0
3
(
2
0
2
3
)
1
7
7

[23] S. Sabharwal and J.W. Dalhuisen, Anti-Self-Dual Spacetimes, Gravitational Instantons and
Knotted Zeros of the Weyl Tensor, JHEP 07 (2019) 004 [arXiv:1904.06030] [INSPIRE].

[24] R. Alawadhi, D.S. Berman and B. Spence, Weyl doubling, JHEP 09 (2020) 127
[arXiv:2007.03264] [INSPIRE].

[25] H. Godazgar, M. Godazgar, R. Monteiro, D. Peinador Veiga and C.N. Pope, Weyl Double
Copy for Gravitational Waves, Phys. Rev. Lett. 126 (2021) 101103 [arXiv:2010.02925]
[INSPIRE].

[26] C.D. White, Twistorial Foundation for the Classical Double Copy, Phys. Rev. Lett. 126
(2021) 061602 [arXiv:2012.02479] [INSPIRE].

[27] E. Chacón, H. García-Compeán, A. Luna, R. Monteiro and C.D. White, New heavenly
double copies, JHEP 03 (2021) 247 [arXiv:2008.09603] [INSPIRE].

[28] E. Chacón, S. Nagy and C.D. White, The Weyl double copy from twistor space, JHEP 05
(2021) 2239 [arXiv:2103.16441] [INSPIRE].

[29] E. Chacón, A. Luna and C.D. White, Double copy of the multipole expansion, Phys. Rev. D
106 (2022) 086020 [arXiv:2108.07702] [INSPIRE].

[30] E. Chacón, S. Nagy and C.D. White, Alternative formulations of the twistor double copy,
JHEP 03 (2022) 180 [arXiv:2112.06764] [INSPIRE].

[31] R. Dempsey and P. Weck, Compactifying the Kerr-Schild Double Copy, arXiv:2211.14327
[INSPIRE].

[32] D.A. Easson, T. Manton and A. Svesko, Einstein-Maxwell theory and the Weyl double copy,
Phys. Rev. D 107 (2023) 044063 [arXiv:2210.16339] [INSPIRE].

[33] S. Chawla and C. Keeler, Aligned Fields Double Copy to Kerr-NUT-(A)dS,
arXiv:2209.09275 [INSPIRE].

[34] S. Han, The Weyl double copy in vacuum spacetimes with a cosmological constant, JHEP 09
(2022) 238 [arXiv:2205.08654] [INSPIRE].

[35] K. Armstrong-Williams, C.D. White and S. Wikeley, Non-perturbative aspects of the
self-dual double copy, JHEP 08 (2022) 160 [arXiv:2205.02136] [INSPIRE].

[36] S. Han, Weyl double copy and massless free-fields in curved spacetimes, Class. Quant. Grav.
39 (2022) 225009 [arXiv:2204.01907] [INSPIRE].

[37] V.E. Didenko, A.S. Matveev and M.A. Vasiliev, Unfolded Description of AdS(4) Kerr Black
Hole, Phys. Lett. B 665 (2008) 284 [arXiv:0801.2213] [INSPIRE].

[38] V.E. Didenko and M.A. Vasiliev, Static BPS black hole in 4d higher-spin gauge theory,
Phys. Lett. B 682 (2009) 305 [arXiv:0906.3898] [Erratum ibid. 722 (2013) 389] [INSPIRE].

[39] V.E. Didenko and N.K. Dosmanbetov, Classical Double Copy and Higher-Spin Fields, Phys.
Rev. Lett. 130 (2023) 071603 [arXiv:2210.04704] [INSPIRE].

[40] G. Elor, K. Farnsworth, M.L. Graesser and G. Herczeg, The Newman-Penrose Map and the
Classical Double Copy, JHEP 12 (2020) 121 [arXiv:2006.08630] [INSPIRE].

[41] K. Farnsworth, M.L. Graesser and G. Herczeg, Twistor space origins of the
Newman-Penrose map, SciPost Phys. 13 (2022) 099 [arXiv:2104.09525] [INSPIRE].

[42] A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes and S. Nagy, Yang-Mills origin of
gravitational symmetries, Phys. Rev. Lett. 113 (2014) 231606 [arXiv:1408.4434] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP07(2019)004
https://arxiv.org/abs/1904.06030
https://inspirehep.net/literature/1729537
https://doi.org/10.1007/JHEP09(2020)127
https://arxiv.org/abs/2007.03264
https://inspirehep.net/literature/1805513
https://doi.org/10.1103/PhysRevLett.126.101103
https://arxiv.org/abs/2010.02925
https://inspirehep.net/literature/1821769
https://doi.org/10.1103/PhysRevLett.126.061602
https://doi.org/10.1103/PhysRevLett.126.061602
https://arxiv.org/abs/2012.02479
https://inspirehep.net/literature/1835082
https://doi.org/10.1007/JHEP03(2021)247
https://arxiv.org/abs/2008.09603
https://inspirehep.net/literature/1812805
https://doi.org/10.1007/JHEP05(2021)239
https://doi.org/10.1007/JHEP05(2021)239
https://arxiv.org/abs/2103.16441
https://inspirehep.net/literature/1854531
https://doi.org/10.1103/PhysRevD.106.086020
https://doi.org/10.1103/PhysRevD.106.086020
https://arxiv.org/abs/2108.07702
https://inspirehep.net/literature/1906430
https://doi.org/10.1007/JHEP03(2022)180
https://arxiv.org/abs/2112.06764
https://inspirehep.net/literature/1989099
https://arxiv.org/abs/2211.14327
https://inspirehep.net/literature/2601320
https://doi.org/10.1103/PhysRevD.107.044063
https://arxiv.org/abs/2210.16339
https://inspirehep.net/literature/2173391
https://arxiv.org/abs/2209.09275
https://inspirehep.net/literature/2154244
https://doi.org/10.1007/JHEP09(2022)238
https://doi.org/10.1007/JHEP09(2022)238
https://arxiv.org/abs/2205.08654
https://inspirehep.net/literature/2083927
https://doi.org/10.1007/JHEP08(2022)160
https://arxiv.org/abs/2205.02136
https://inspirehep.net/literature/2077186
https://doi.org/10.1088/1361-6382/ac96c2
https://doi.org/10.1088/1361-6382/ac96c2
https://arxiv.org/abs/2204.01907
https://inspirehep.net/literature/2063388
https://doi.org/10.1016/j.physletb.2008.05.067
https://arxiv.org/abs/0801.2213
https://inspirehep.net/literature/777455
https://doi.org/10.1016/j.physletb.2009.11.023
https://arxiv.org/abs/0906.3898
https://inspirehep.net/literature/823749
https://doi.org/10.1103/PhysRevLett.130.071603
https://doi.org/10.1103/PhysRevLett.130.071603
https://arxiv.org/abs/2210.04704
https://inspirehep.net/literature/2163325
https://doi.org/10.1007/JHEP12(2020)121
https://arxiv.org/abs/2006.08630
https://inspirehep.net/literature/1801440
https://doi.org/10.21468/SciPostPhys.13.4.099
https://arxiv.org/abs/2104.09525
https://inspirehep.net/literature/1859307
https://doi.org/10.1103/PhysRevLett.113.231606
https://arxiv.org/abs/1408.4434
https://inspirehep.net/literature/1311482


J
H
E
P
0
3
(
2
0
2
3
)
1
7
7

[43] G. Lopes Cardoso, G. Inverso, S. Nagy and S. Nampuri, Comments on the double copy
construction for gravitational theories, PoS CORFU2017 (2018) 177 [arXiv:1803.07670]
[INSPIRE].

[44] A. Anastasiou, L. Borsten, M.J. Duff, S. Nagy and M. Zoccali, Gravity as Gauge Theory
Squared: A Ghost Story, Phys. Rev. Lett. 121 (2018) 211601 [arXiv:1807.02486] [INSPIRE].

[45] A. Luna, S. Nagy and C. White, The convolutional double copy: a case study with a point,
JHEP 09 (2020) 062 [arXiv:2004.11254] [INSPIRE].

[46] L. Borsten and S. Nagy, The pure BRST Einstein-Hilbert Lagrangian from the double-copy
to cubic order, JHEP 07 (2020) 093 [arXiv:2004.14945] [INSPIRE].

[47] L. Borsten, B. Jurčo, H. Kim, T. Macrelli, C. Saemann and M. Wolf,
Becchi-Rouet-Stora-Tyutin-Lagrangian Double Copy of Yang-Mills Theory, Phys. Rev. Lett.
126 (2021) 191601 [arXiv:2007.13803] [INSPIRE].

[48] W.D. Goldberger, S.G. Prabhu and J.O. Thompson, Classical gluon and graviton radiation
from the bi-adjoint scalar double copy, Phys. Rev. D 96 (2017) 065009 [arXiv:1705.09263]
[INSPIRE].

[49] W.D. Goldberger and A.K. Ridgway, Bound states and the classical double copy, Phys. Rev.
D 97 (2018) 085019 [arXiv:1711.09493] [INSPIRE].

[50] W.D. Goldberger, J. Li and S.G. Prabhu, Spinning particles, axion radiation, and the
classical double copy, Phys. Rev. D 97 (2018) 105018 [arXiv:1712.09250] [INSPIRE].

[51] W.D. Goldberger and J. Li, Strings, extended objects, and the classical double copy, JHEP
02 (2020) 092 [arXiv:1912.01650] [INSPIRE].

[52] W.D. Goldberger and A.K. Ridgway, Radiation and the classical double copy for color
charges, Phys. Rev. D 95 (2017) 125010 [arXiv:1611.03493] [INSPIRE].

[53] S.G. Prabhu, The classical double copy in curved spacetimes: Perturbative Yang-Mills from
the bi-adjoint scalar, arXiv:2011.06588 [INSPIRE].

[54] A. Luna et al., Perturbative spacetimes from Yang-Mills theory, JHEP 04 (2017) 069
[arXiv:1611.07508] [INSPIRE].

[55] A. Luna, I. Nicholson, D. O’Connell and C.D. White, Inelastic Black Hole Scattering from
Charged Scalar Amplitudes, JHEP 03 (2018) 044 [arXiv:1711.03901] [INSPIRE].

[56] C. Cheung and C.-H. Shen, Symmetry for Flavor-Kinematics Duality from an Action, Phys.
Rev. Lett. 118 (2017) 121601 [arXiv:1612.00868] [INSPIRE].

[57] C. Cheung and J. Mangan, Covariant color-kinematics duality, JHEP 11 (2021) 069
[arXiv:2108.02276] [INSPIRE].

[58] C. Cheung, A. Helset and J. Parra-Martinez, Geometry-kinematics duality, Phys. Rev. D
106 (2022) 045016 [arXiv:2202.06972] [INSPIRE].

[59] C. Cheung, J. Mangan, J. Parra-Martinez and N. Shah, Non-perturbative Double Copy in
Flatland, Phys. Rev. Lett. 129 (2022) 221602 [arXiv:2204.07130] [INSPIRE].

[60] R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP
07 (2011) 007 [arXiv:1105.2565] [INSPIRE].

[61] L. Borsten, H. Kim, B. Jurčo, T. Macrelli, C. Saemann and M. Wolf, Double Copy from
Homotopy Algebras, Fortsch. Phys. 69 (2021) 2100075 [arXiv:2102.11390] [INSPIRE].

– 33 –

https://doi.org/10.22323/1.318.0177
https://arxiv.org/abs/1803.07670
https://inspirehep.net/literature/1663475
https://doi.org/10.1103/PhysRevLett.121.211601
https://arxiv.org/abs/1807.02486
https://inspirehep.net/literature/1681266
https://doi.org/10.1007/JHEP09(2020)062
https://arxiv.org/abs/2004.11254
https://inspirehep.net/literature/1792424
https://doi.org/10.1007/JHEP07(2020)093
https://arxiv.org/abs/2004.14945
https://inspirehep.net/literature/1793619
https://doi.org/10.1103/PhysRevLett.126.191601
https://doi.org/10.1103/PhysRevLett.126.191601
https://arxiv.org/abs/2007.13803
https://inspirehep.net/literature/1809091
https://doi.org/10.1103/PhysRevD.96.065009
https://arxiv.org/abs/1705.09263
https://inspirehep.net/literature/1601289
https://doi.org/10.1103/PhysRevD.97.085019
https://doi.org/10.1103/PhysRevD.97.085019
https://arxiv.org/abs/1711.09493
https://inspirehep.net/literature/1638978
https://doi.org/10.1103/PhysRevD.97.105018
https://arxiv.org/abs/1712.09250
https://inspirehep.net/literature/1644892
https://doi.org/10.1007/JHEP02(2020)092
https://doi.org/10.1007/JHEP02(2020)092
https://arxiv.org/abs/1912.01650
https://inspirehep.net/literature/1768419
https://doi.org/10.1103/PhysRevD.95.125010
https://arxiv.org/abs/1611.03493
https://inspirehep.net/literature/1497494
https://arxiv.org/abs/2011.06588
https://inspirehep.net/literature/1829808
https://doi.org/10.1007/JHEP04(2017)069
https://arxiv.org/abs/1611.07508
https://inspirehep.net/literature/1499705
https://doi.org/10.1007/JHEP03(2018)044
https://arxiv.org/abs/1711.03901
https://inspirehep.net/literature/1635523
https://doi.org/10.1103/PhysRevLett.118.121601
https://doi.org/10.1103/PhysRevLett.118.121601
https://arxiv.org/abs/1612.00868
https://inspirehep.net/literature/1501698
https://doi.org/10.1007/JHEP11(2021)069
https://arxiv.org/abs/2108.02276
https://inspirehep.net/literature/1899954
https://doi.org/10.1103/PhysRevD.106.045016
https://doi.org/10.1103/PhysRevD.106.045016
https://arxiv.org/abs/2202.06972
https://inspirehep.net/literature/2032779
https://doi.org/10.1103/PhysRevLett.129.221602
https://arxiv.org/abs/2204.07130
https://inspirehep.net/literature/2068610
https://doi.org/10.1007/JHEP07(2011)007
https://doi.org/10.1007/JHEP07(2011)007
https://arxiv.org/abs/1105.2565
https://inspirehep.net/literature/899638
https://doi.org/10.1002/prop.202100075
https://arxiv.org/abs/2102.11390
https://inspirehep.net/literature/1848045


J
H
E
P
0
3
(
2
0
2
3
)
1
7
7

[62] R. Alawadhi, D.S. Berman, B. Spence and D. Peinador Veiga, S-duality and the double
copy, JHEP 03 (2020) 059 [arXiv:1911.06797] [INSPIRE].

[63] A. Banerjee, E.O. Colgáin, J.A. Rosabal and H. Yavartanoo, Ehlers as EM duality in the
double copy, Phys. Rev. D 102 (2020) 126017 [arXiv:1912.02597] [INSPIRE].

[64] Y.-T. Huang, U. Kol and D. O’Connell, Double copy of electric-magnetic duality, Phys. Rev.
D 102 (2020) 046005 [arXiv:1911.06318] [INSPIRE].

[65] D.S. Berman, E. Chacón, A. Luna and C.D. White, The self-dual classical double copy, and
the Eguchi-Hanson instanton, JHEP 01 (2019) 107 [arXiv:1809.04063] [INSPIRE].

[66] L. Alfonsi, C.D. White and S. Wikeley, Topology and Wilson lines: global aspects of the
double copy, JHEP 07 (2020) 091 [arXiv:2004.07181] [INSPIRE].

[67] R. Alawadhi, D.S. Berman, C.D. White and S. Wikeley, The single copy of the gravitational
holonomy, JHEP 10 (2021) 229 [arXiv:2107.01114] [INSPIRE].

[68] C.D. White, Exact solutions for the biadjoint scalar field, Phys. Lett. B 763 (2016) 365
[arXiv:1606.04724] [INSPIRE].

[69] P.-J. De Smet and C.D. White, Extended solutions for the biadjoint scalar field, Phys. Lett.
B 775 (2017) 163 [arXiv:1708.01103] [INSPIRE].

[70] N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Biadjoint wires, Phys. Lett. B 788
(2019) 274 [arXiv:1810.08118] [INSPIRE].

[71] L. Borsten, B. Jurco, H. Kim, T. Macrelli, C. Saemann and M. Wolf, Kinematic Lie
Algebras From Twistor Spaces, arXiv:2211.13261 [INSPIRE].

[72] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Scattering Amplitudes
and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,
Phys. Rev. Lett. 122 (2019) 201603 [arXiv:1901.04424] [INSPIRE].

[73] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon and M. Zeng, Black Hole Binary
Dynamics from the Double Copy and Effective Theory, JHEP 10 (2019) 206
[arXiv:1908.01493] [INSPIRE].

[74] R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge Monographs on
Mathematical Physics, Cambridge University Press (2011),
https://doi.org/10.1017/CBO9780511564048 [INSPIRE].

[75] R. Penrose and W. Rindler, Spinors and space-time. Vol. 2: Spinor and twistor methods in
space-time geometry, Cambridge Monographs on Mathematical Physics, Cambridge
University Press (1988), https://doi.org/10.1017/CBO9780511524486 [INSPIRE].

[76] J.M. Stewart, Advanced general relativity, Cambridge Monographs on Mathematical Physics,
Cambridge University Press (1994), https://doi.org/10.1017/CBO9780511608179 [INSPIRE].

[77] N. Bahjat-Abbas, R. Stark-Muchão and C.D. White, Monopoles, shockwaves and the
classical double copy, JHEP 04 (2020) 102 [arXiv:2001.09918] [INSPIRE].

[78] R. Penrose, Twistor algebra, J. Math. Phys. 8 (1967) 345 [INSPIRE].

[79] R. Penrose, Twistor quantization and curved space-time, Int. J. Theor. Phys. 1 (1968) 61
[INSPIRE].

[80] R. Penrose and M.A.H. MacCallum, Twistor theory: An Approach to the quantization of
fields and space-time, Phys. Rept. 6 (1972) 241 [INSPIRE].

– 34 –

https://doi.org/10.1007/JHEP03(2020)059
https://arxiv.org/abs/1911.06797
https://inspirehep.net/literature/1765561
https://doi.org/10.1103/PhysRevD.102.126017
https://arxiv.org/abs/1912.02597
https://inspirehep.net/literature/1768671
https://doi.org/10.1103/PhysRevD.102.046005
https://doi.org/10.1103/PhysRevD.102.046005
https://arxiv.org/abs/1911.06318
https://inspirehep.net/literature/1765088
https://doi.org/10.1007/JHEP01(2019)107
https://arxiv.org/abs/1809.04063
https://inspirehep.net/literature/1693554
https://doi.org/10.1007/JHEP07(2020)091
https://arxiv.org/abs/2004.07181
https://inspirehep.net/literature/1791294
https://doi.org/10.1007/JHEP10(2021)229
https://arxiv.org/abs/2107.01114
https://inspirehep.net/literature/1875643
https://doi.org/10.1016/j.physletb.2016.10.052
https://arxiv.org/abs/1606.04724
https://inspirehep.net/literature/1469461
https://doi.org/10.1016/j.physletb.2017.11.007
https://doi.org/10.1016/j.physletb.2017.11.007
https://arxiv.org/abs/1708.01103
https://inspirehep.net/literature/1614344
https://doi.org/10.1016/j.physletb.2018.11.026
https://doi.org/10.1016/j.physletb.2018.11.026
https://arxiv.org/abs/1810.08118
https://inspirehep.net/literature/1699244
https://arxiv.org/abs/2211.13261
https://inspirehep.net/literature/2593342
https://doi.org/10.1103/PhysRevLett.122.201603
https://arxiv.org/abs/1901.04424
https://inspirehep.net/literature/1713583
https://doi.org/10.1007/JHEP10(2019)206
https://arxiv.org/abs/1908.01493
https://inspirehep.net/literature/1747944
https://doi.org/10.1017/CBO9780511564048
https://inspirehep.net/literature/216889
https://doi.org/10.1017/CBO9780511524486
https://inspirehep.net/literature/238378
https://doi.org/10.1017/CBO9780511608179
https://inspirehep.net/literature/312823
https://doi.org/10.1007/JHEP04(2020)102
https://arxiv.org/abs/2001.09918
https://inspirehep.net/literature/1777465
https://doi.org/10.1063/1.1705200
https://inspirehep.net/literature/51186
https://doi.org/10.1007/BF00668831
https://inspirehep.net/literature/53991
https://doi.org/10.1016/0370-1573(73)90008-2
https://inspirehep.net/literature/74340


J
H
E
P
0
3
(
2
0
2
3
)
1
7
7

[81] S.A. Huggett and K.P. Tod, An introduction to twistor theory, Cambridge University Press
(1986) [INSPIRE].

[82] T. Adamo, Lectures on twistor theory, PoS Modave2017 (2018) 003 [arXiv:1712.02196]
[INSPIRE].

[83] R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969) 38
[INSPIRE].

[84] M.G. Eastwood, R. Penrose and R.O. Wells, Cohomology and Massless Fields, Commun.
Math. Phys. 78 (1981) 305 [INSPIRE].

[85] T. Adamo and U. Kol, Classical double copy at null infinity, Class. Quant. Grav. 39 (2022)
105007 [arXiv:2109.07832] [INSPIRE].

[86] N.M.J. Woodhouse, Real methods in twistor theory, Class. Quant. Grav. 2 (1985) 257
[INSPIRE].

[87] A. Guevara, Reconstructing Classical Spacetimes from the S-Matrix in Twistor Space,
arXiv:2112.05111 [INSPIRE].

[88] A. Luna, N. Moynihan and C.D. White, Why is the Weyl double copy local in position
space?, JHEP 12 (2022) 046 [arXiv:2208.08548] [INSPIRE].

[89] M. Carrillo González, A. Momeni and J. Rumbutis, Cotton double copy for gravitational
waves, Phys. Rev. D 106 (2022) 025006 [arXiv:2202.10476] [INSPIRE].

[90] W.T. Emond and N. Moynihan, Scattering Amplitudes and The Cotton Double Copy,
arXiv:2202.10499 [INSPIRE].

[91] C.-c. Tsai, The Penrose transform for Einstein-Weyl and related spaces, Ph.D. Thesis,
University of Edinburgh, Edinburgh U.K. (1996).

[92] L. Witten, Invariants of General Relativity and the Classification of Spaces, Phys. Rev. 113
(1959) 357 [INSPIRE].

[93] R. Penrose, A Spinor approach to general relativity, Annals Phys. 10 (1960) 171 [INSPIRE].

[94] R. Milson and L. Wylleman, Three-dimensional spacetimes of maximal order, Class. Quant.
Grav. 30 (2013) 095004 [arXiv:1210.6920] [INSPIRE].

[95] G. Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications, Progress in
Mathematical Physics, Birkhäuser, Boston, U.S.A. (2003).

[96] G.F.T. del Castillo and L.F. Goómez-Ceballos, Algebraic classification of the curvature of
three-dimensional manifolds with indefinite metric, Journal of Mathematical Physics 44
(2003) 4374.

[97] N. Moynihan, Scattering Amplitudes and the Double Copy in Topologically Massive
Theories, JHEP 12 (2020) 163 [arXiv:2006.15957] [INSPIRE].

[98] D.J. Burger, W.T. Emond and N. Moynihan, Anyons and the double copy, JHEP 01 (2022)
017 [arXiv:2103.10416] [INSPIRE].

[99] M.C. González, A. Momeni and J. Rumbutis, Massive double copy in three spacetime
dimensions, JHEP 08 (2021) 116 [arXiv:2107.00611] [INSPIRE].

[100] N. Moynihan, Massive Covariant Colour-Kinematics in 3D, arXiv:2110.02209 [INSPIRE].

[101] W.T. Emond, N. Moynihan and L. Wei, Quantization conditions and the double copy,
JHEP 09 (2022) 108 [arXiv:2109.11531] [INSPIRE].

– 35 –

https://inspirehep.net/literature/232788
https://doi.org/10.22323/1.323.0003
https://arxiv.org/abs/1712.02196
https://inspirehep.net/literature/1641309
https://doi.org/10.1063/1.1664756
https://inspirehep.net/literature/58495
https://doi.org/10.1007/BF01942327
https://doi.org/10.1007/BF01942327
https://inspirehep.net/literature/166716
https://doi.org/10.1088/1361-6382/ac635e
https://doi.org/10.1088/1361-6382/ac635e
https://arxiv.org/abs/2109.07832
https://inspirehep.net/literature/1922768
https://doi.org/10.1088/0264-9381/2/3/006
https://inspirehep.net/literature/219007
https://arxiv.org/abs/2112.05111
https://inspirehep.net/literature/1986782
https://doi.org/10.1007/JHEP12(2022)046
https://arxiv.org/abs/2208.08548
https://inspirehep.net/literature/2138857
https://doi.org/10.1103/PhysRevD.106.025006
https://arxiv.org/abs/2202.10476
https://inspirehep.net/literature/2036324
https://arxiv.org/abs/2202.10499
https://inspirehep.net/literature/2036463
https://doi.org/10.1103/PhysRev.113.357
https://doi.org/10.1103/PhysRev.113.357
https://inspirehep.net/literature/46205
https://doi.org/10.1016/0003-4916(60)90021-X
https://inspirehep.net/literature/44609
https://doi.org/10.1088/0264-9381/30/9/095004
https://doi.org/10.1088/0264-9381/30/9/095004
https://arxiv.org/abs/1210.6920
https://inspirehep.net/literature/1193333
https://doi.org/10.1063/1.1592611
https://doi.org/10.1063/1.1592611
https://doi.org/10.1007/JHEP12(2020)163
https://arxiv.org/abs/2006.15957
https://inspirehep.net/literature/1803641
https://doi.org/10.1007/JHEP01(2022)017
https://doi.org/10.1007/JHEP01(2022)017
https://arxiv.org/abs/2103.10416
https://inspirehep.net/literature/1852330
https://doi.org/10.1007/JHEP08(2021)116
https://arxiv.org/abs/2107.00611
https://inspirehep.net/literature/1874257
https://arxiv.org/abs/2110.02209
https://inspirehep.net/literature/1938840
https://doi.org/10.1007/JHEP09(2022)108
https://arxiv.org/abs/2109.11531
https://inspirehep.net/literature/1926360


J
H
E
P
0
3
(
2
0
2
3
)
1
7
7

[102] Y.-F. Hang, H.-J. He and C. Shen, Structure of Chern-Simons scattering amplitudes from
topological equivalence theorem and double-copy, JHEP 01 (2022) 153 [arXiv:2110.05399]
[INSPIRE].

[103] M.C. González, A. Momeni and J. Rumbutis, Massive double copy in the high-energy limit,
JHEP 04 (2022) 094 [arXiv:2112.08401] [INSPIRE].

[104] M. Ben-Shahar and H. Johansson, Off-shell color-kinematics duality for Chern-Simons,
JHEP 08 (2022) 035 [arXiv:2112.11452] [INSPIRE].

[105] R.S. Ward, Twistors in 2+1 dimensions, J. Math. Phys. 30 (1989) 2246 [INSPIRE].

[106] N.J. Hitchin, Monopoles and geodesics, Commun. Math. Phys. 83 (1982) 579 [INSPIRE].

[107] P. Jones and K. Tod, Minitwistor spaces and Einstein-Weyl spaces, Class. Quant. Grav. 2
(1985) 565 [INSPIRE].

[108] T. Adamo, D. Skinner and J. Williams, Minitwistors and 3d Yang-Mills-Higgs theory, J.
Math. Phys. 59 (2018) 122301 [arXiv:1712.09604] [INSPIRE].

[109] R.S. Ward and R.O. Wells, Twistor geometry and field theory, Cambridge Monographs on
Mathematical Physics, Cambridge University Press (1991),
https://doi.org/10.1017/CBO9780511524493 [INSPIRE].

[110] D.D.K. Chow, C.N. Pope and E. Sezgin, Classification of solutions in topologically massive
gravity, Class. Quant. Grav. 27 (2010) 105001 [arXiv:0906.3559] [INSPIRE].

[111] R. Monteiro, D. O’Connell, D. Peinador Veiga and M. Sergola, Classical solutions and their
double copy in split signature, JHEP 05 (2021) 268 [arXiv:2012.11190] [INSPIRE].

[112] R. Monteiro, S. Nagy, D. O’Connell, D. Peinador Veiga and M. Sergola, NS-NS spacetimes
from amplitudes, JHEP 06 (2022) 021 [arXiv:2112.08336] [INSPIRE].

[113] D.A. Kosower, B. Maybee and D. O’Connell, Amplitudes, Observables, and Classical
Scattering, JHEP 02 (2019) 137 [arXiv:1811.10950] [INSPIRE].

[114] S. Deser, Gravitational anyons, Phys. Rev. Lett. 64 (1990) 611 [INSPIRE].

– 36 –

https://doi.org/10.1007/JHEP01(2022)153
https://arxiv.org/abs/2110.05399
https://inspirehep.net/literature/1941519
https://doi.org/10.1007/JHEP04(2022)094
https://arxiv.org/abs/2112.08401
https://inspirehep.net/literature/1992004
https://doi.org/10.1007/JHEP08(2022)035
https://arxiv.org/abs/2112.11452
https://inspirehep.net/literature/1995079
https://doi.org/10.1063/1.528550
https://inspirehep.net/literature/1387407
https://doi.org/10.1007/BF01208717
https://inspirehep.net/literature/179909
https://doi.org/10.1088/0264-9381/2/4/021
https://doi.org/10.1088/0264-9381/2/4/021
https://inspirehep.net/literature/1386777
https://doi.org/10.1063/1.5030417
https://doi.org/10.1063/1.5030417
https://arxiv.org/abs/1712.09604
https://inspirehep.net/literature/1645298
https://doi.org/10.1017/CBO9780511524493
https://inspirehep.net/literature/299780
https://doi.org/10.1088/0264-9381/27/10/105001
https://arxiv.org/abs/0906.3559
https://inspirehep.net/literature/823605
https://doi.org/10.1007/JHEP05(2021)268
https://arxiv.org/abs/2012.11190
https://inspirehep.net/literature/1837655
https://doi.org/10.1007/JHEP06(2022)021
https://arxiv.org/abs/2112.08336
https://inspirehep.net/literature/1991205
https://doi.org/10.1007/JHEP02(2019)137
https://arxiv.org/abs/1811.10950
https://inspirehep.net/literature/1705424
https://doi.org/10.1103/PhysRevLett.64.611
https://inspirehep.net/literature/26416

	Introduction
	Review of necessary concepts
	Spinors in (2+1) dimensions
	Topologically massive theories and their double copy
	Minitwistor theory
	Minitwistor geometry
	Dimensional reduction
	The Penrose transform for massless free fields
	The Penrose transform for massive free fields


	A minitwistor derivation of the Cotton double copy
	Cotton double copy for type N
	Beyond type N solutions

	From scattering amplitudes to cohomology representatives
	Topologically massive gauge theory
	Topologically massive gravity
	Double copy properties of anyon solutions

	Conclusion

