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A B S T R A C T   

Despite presenting a practical approach for the characterization of the environmental risk of 
potentially toxic elements (PTEs) derived from steel production facilities, the analysis of the 
spatial distribution of bioavailable PTEs concentrations in the soil is frequently overlooked in the 
management of polluted sites. In this study, the diethylenetriaminepentaacetic acid (DTPA)- 
extractable forms of PTEs were investigated in soils surrounding the largest Serbian steel pro-
duction plant. The correlation and geostatistical analysis indicated their pronounced variability 
suggesting the anthropogenic origin of most investigated elements, apparently from the steel 
production facility. The detailed visualization of variables and observations derived by self- 
organizing maps (SOMs) revealed the homologies in PTEs’ distribution patterns, implying the 
common origin of some elements. These observations were confirmed by principal component 
analysis (PCA) and positive matrix factorization (PMF). The аpplied approach supports a 
comprehensive assessment of contaminated sites’ ecological and health risks and provides a basis 
for soil remediation.   

1. Introduction 

Iron and steel production is one of the essential mineral processing industries with a significant contribution to global economic 
development [1]. However, the activities associated with this industry pose considerable environmental risks. The acidic gaseous 
pollutants, incomplete combustion pollutants, particulate matter, and potentially toxic elements (PTEs) are generated from exhaust 
gas during iron and steel production [2]. In addition, the soils surrounding steelmaking facilities can be contaminated by major ore 
metals, metals contained in ore minerals as minor inclusions, and toxic waste [3–6]. Metal processing and mining contribute to almost 
half of the total release of contaminants by the European industrial sector, with PTEs being the primary pollutants in European soils 
and groundwater [7]. Therefore, the balance between the economic input of the steelmaking industry and its environmental impact 
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should determine its contribution to sustainable development. 
The PTEs are chemical elements of great environmental concern due to their persistence in both abiotic and biotic compartments, 

and a series of adverse effects on human health and the environment triggered at certain concentration levels. In the steel production 
process, the integrated coal-fired boiler and smelting furnace, where PTEs in fuels and ores are usually converted into metal oxides or 
chlorides [8], are the most important pollution sources. The diffusion distance of PTE emissions from steel industrial facilities depends 
on particle size distribution, dominant wind direction, stack height, and proportion of mercury and arsenic in the gaseous phase [9]. In 
addition, the iron and steelmaking processes produce waste products, such as slag being generally considered one of the main sources 
of contamination by PTEs in soil, water, and sediments near the slag deposition sites [10,11] and off-gas that is subjected to gas 
treatment [12]. However, the gas cleaning systems work under limited efficiencies, releasing some volatile trace metals to the 
environment through atmospheric processes, particle emissions, and subsequent deposition on the soil surface. In soils, these elements 
are found in different fractions, in mobile or immobilized forms, i.e., as exchangeable, carbonate-bound, Fe and Mn oxide-bound, 
organic-bound, and residual forms [13,14]. Soil properties, such as acidity, redox potential, and dissolved organic matter, influence 
metal dynamics in soils [15]. The speciation of PTEs in soil plays a key role in their distribution, persistence in the environment, and 
bioavailability. Since there is no official definition of the term PTE, it should be noted that toxicity depends on several factors, 
including the type of element, its chemical form and dose, and the specifics of the exposed organism. While metals with no biological 
role are toxic even in very low concentrations, some (e.g., Fe, Mn, Zn, Cu, Co, Mo) are essential for living organisms, particularly for 
chemical and biological activities [16]. Still, after exceeding a specific threshold limit, they can also cause either short-term or 
long-term toxic impacts [17]. 

The current approach to evaluating potential environmental and human health risks based on the total concentrations of PTEs in 
soil was found to be inadequate and insufficient [18–21]. However, based on bioavailability, it is possible to predict the transport, fate, 
and potential environmental impact of PTEs [22]. Therefore, in this study, the impact of the steel production facility was assessed by 
analysis of bioavailable PTE concentrations in soils of the surrounding area. The specific objectives of the study were (i) to determine 
the spatial distribution of DTPA-extractable PTEs in the topsoil surrounding the steel production plant, (ii) to investigate their mutual 
relationships and relationships with basic soil characteristics and geographical factors, and (ii) to identify the sources’ contribution of 
soil PTEs by principal component analysis (PCA), self-organizing maps (SOM), and positive matrix factorization (PMF). The study 
outcomes will contribute to developing appropriate measures to mitigate pollution by PTEs by including their bioavailable concen-
trations in the risk assessment protocols. 

2. Materials and methods 

2.1. Study area and sample collection 

The industrial zone of the integrated steel plant, producing steel, hot-rolled, and cold-rolled products, is located in central Serbia, 
about 7 km southeast of the town Smederevo and about 50 km of Belgrade, the Serbian capital. Geologically, the terrains of the 
Smederevo area belong to Vardar Zone and Serbian-Macedonian Mass. The study area is presented with white quartz sand, sandy clays 
with intercalations, and clay sands with diverse fauna and coal occurrences. In the wider Smederevo area, the sandy-gravel series is 
located between Pontian deposits and Pleistocene sediments. The Quaternary formations in the facies of Pleistocene are widely 

Fig. 1. Simplified maps showing the position of the study area within Serbia and the location of sampling sites.  
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distributed in most parts of the area. The Holocene formations are presented by fluvial and slope sequences [23]. 
The climate is moderate continental, characterized by hot summers with high precipitation in June and November and cold, dry 

winters. According to the Köppen classification, the climate type is Cfwax [24]. From 1949 to 2021 the mean annual values of 
temperature, precipitation, and humidity were 11.5 ◦C, 649 mm, and 72%, respectively [25]. The main soil types of the study area are 
Eutric Cambisols (brown soils), Vertisols (clay-rich soils with shrink-swell properties), Colluvic Regosols (soils formed on slope de-
posits), Phaeozems (humid steppe soils), and Fluvisols (soils formed from river deposits) [26]. 

Soil samples were collected in October 2019 from 38 sampling sites (0–10 cm depth) applying the ‘systematic random sampling’ 
procedure [27] in the steel production facility’s surroundings potentially affected by industrial activities (Fig. 1), with the majority of 
sampling sites in the most densely populated area. The geographic coordinates of the sampling sites were obtained via the Global 
Positioning System (Table S1). The samples were taken in open/unoccupied land away from roads and power cables to avoid 
contamination. 

About 1.5 kg of each sample was collected using clean disposable gloves, a stainless steel spade, and a plastic scoop. To avoid cross- 
contamination, the equipment was first brushed to eliminate residues from the previous sample and then flushed with soil from the 
new sampling site. To ensure the representativeness of the specimen at each site, three subsamples were collected at distances of about 
10 m between each other. 

2.2. Soil physicochemical analyses 

Before physicochemical analyses, soil samples were dried at room temperature, ground, and passed through a 2 mm stainless steel 
sieve. Each sample was then homogenized and ground in a mortar. 

The traditional sieve-pipette method was used for particle size analysis [28]. 
Soil organic matter (OM) content was determined by the loss-on-ignition (LOI) method, which involves the destruction of soil OM 

by heating [29]. First, the portions of 10 g of soil samples (oven-dried at 105 ◦C till constant weight) were precisely measured in 
ceramic crucibles of known weight and heated in the electrical furnace at 400 ◦C for 17 h. The temperatures below 440 ◦C are favorable 
to prevent the decomposition of inorganic carbonates if present in the soil. After cooling in a desiccator, the crucibles were weighed 
again, and the SOM (%) was calculated. 

The pH of soil samples was measured in water at a 1:1 soil-to-water ratio (w/v) according to the US EPA 9045D method [30]. The 
10 g portion of each soil sample and 10 mL of deionized (DI) water were stirred continuously in a beaker on the magnetic stir plate for 
5 min and then left to settle down the suspended particles (1 h). The pH was measured by immersing the pH electrode just below the 
suspension and allowing the pH reading to stabilize. The InoLab WTW pH meter, equipped with the WTW SenTix® 81 glass electrode, 
was used and calibrated with buffer solutions (pH 4, pH 7, and pH 10). Calibration was verified after every ten samples analyzed. 

The bioavailable concentrations of Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn were determined following the soil extraction with DTPA [31, 
32]. The extracting solution was prepared from 0.005 mol L− 1 DTPA, 0.1 mol L− 1 triethanolamine (TEA), and 0.01 mol L− 1 CaCl2, 
adjusting the final pH of the solution to 7.3 with 6 mol L− 1 HCl. Each soil sample (10 g) was extracted with 20 mL of the buffered DTPA 
solution during 2 h of shaking on a rotary shaker (15 rpm) at room temperature (25 ± 1 ◦C). Subsequently, the liquid phase was 
separated from the solid by membrane filtration (PTFE syringe filters, pore size 0.45 μm), and the metal concentrations in the extracts 
were measured within 24 h by Inductively Coupled Plasma Optical Emission Spectroscopy, ICP-OES (PerkinElmer Avio 200). The 
multi-element calibration standards were used to prepare the matrix-matched standards with concentrations in the range 0.01–1.0 mg 
L− 1 of Cd; 0.01–5 mg L− 1 of Co, and Ni; 0.1–10.0 mg L− 1 of Cu, Zn, and Pb; 0.5–50.0 mg L− 1 of Mn; 1.0–100.0 mg L− 1 of Fe. Linear 
calibrations were obtained for all tested elements, with calibration coefficients >0.999. The quality of the metal concentrations an-
alyses was assured by including duplicate extractions of soil samples, three replicate measurements of blank and sample solution, and 
calibration checks after every ten samples analysis. Concentrations of elements measured in the extracts are presented in mg kg− 1 of 
the soil on a dry matter basis. 

2.3. Geostatistical analysis 

Geostatistics was employed to gain insight into the overall spatial pattern of analyzed variables over the study area. Geostatistics is 
based on the theory of a regionalized variable [33], which shows spatial autocorrelation where observations close to each other are 
more alike than those far apart. As an interpolation method, kriging predicts values in areas where data are unavailable based on the 
spatial patterns of the existing data by the semivariogram model. A semivariogram indicates the spatial autocorrelation and variation 
of the soil samples, which are defined as half of the averaged squared difference between the paired data values separated by a distance 
interval as in Eq. (1) [33]: 

γ(h)=
1

2N(h)

∑N(h)

i=1
{Z(Xi) − Z(Xi + h)} (1)  

where γ(h) represents the semivariogram value, N(h) denotes the number of pairs of sample points, and Z (Xi) and Z(Xi + h) are the 
numerical values measured at locations Xi and (Xi + h), respectively, and is the numerical value at a distance h from Xi. Four types of 
semivariogram models (circular, spherical, exponential, and Gaussian) were tested. Cross-validation was used to compare the 
measured and predicted values for each variable. 
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2.4. SOM 

The SOM is an unsupervised learning artificial neural network model which classifies the input pattern set by finding the optimal 
reference vector set. The first step in SOM classification is an ordered dimensionality-reducing mapping of input variables while 
preserving the original topology of the input data [34]. The neurons located near each other in the SOM had similar associated input 
samples. During the iterative learning procedure, the SOMs were trained for all possible combinations from 2 to 20 neuron nodes for 
the X and Y axes. The quality of these alternative topologies was evaluated using the quantization error (QE), which evaluates the 
resolution of the map, and the topographic error (TE), which indicates the accuracy of the topology preservation of the map [35,36]. 
The learning rate (α) varied linearly from 0.05 to 0.01, and the neighborhood function was Gaussian. Finally, the input sample data 
were presented to each SOM 500 times, and the selected distance measure was the Euclidean distance. Once the optimal dimensions of 
the SOM were determined based on the QE and TE, Ward’s linkage method was applied to the SOM to cluster the unit neurons and, 
consequently, the soil samples. The relevant patterns are graphically displayed using component planes. The hierarchical classification 
was used to reduce the number of classes to a small number of superclasses. This double classification enables an analysis of the data set 
at two levels, at first enabling precise characterization of the data and at the second level where general features emerge. 

2.5. Correlation analysis, PCA, and PMF 

The Pearson correlation matrix was used to determine the type of correlations among analyzed variables. 
A PCA pattern recognition method was used to reduce the dimensionality of input data and transform interdependent variables into 

independent principal components (PCs) as shown in Eq. (2): 

PCk = a1kX1j + a2kX2j + a3kX3j + … + ankXnj (2)  

whilst the sum of the coefficients aik, called loadings, is set to unity [37]. The loading of a single variable indicates how much that 
variable participates in defining the PC (the squares of the loadings indicate their percentage in the PC). This is done in such a way as to 
minimize the loss of information carried by variables. The PCs comprise loadings normalized eigenvectors between +1 and − 1, 
considered as the subspace coordinates of data and scores, which are the sample values projected on the subspace using the eigen-
vectors. The technique has three effects: it orthogonalizes the components of the input vectors (so that they are uncorrelated with each 
other), it orders the resulting orthogonal components (principal components) so that those with the largest variation come first, and it 
eliminates those components which contribute least to the variation in the data set. 

The source apportionment was performed using the PMF model. Briefly, the PMF model is based on the decomposition of matrix X 
(m × n) of measured data into a factor contribution matrix G (n × p) and factor profile matrix F (p × m) with a residual error matrix E, 
where n is a number of samples, m is the pollutant component, and p is the number of pollution sources. The PMF solves the chemical 
mass balance between source profiles and variables measured values as in Eq. (3): 

xij =
∑p

k=1
gikfkj + eij (3)  

where xij is the jth measured value of the variable in the ith sample, gik is the mass of the kth source to the ith sample, fkj is the jth species 
profile in source k, and eij is the matrix of the residual associated with the jth species measured value in the ith sample. The profile and 
contribution of each source are derived by minimizing the object function Q as shown in Eq. (4) [38]: 

Q=
∑n

i=1

∑m

j=1
.

[
xij −

∑p
k=1gikfkj

uij

]2

(4)  

where Q is the sum of the squares of the difference between the original dataset and the PMF output; uij represents the measurement 
uncertainty. 

2.6. Statistical analysis 

Basic descriptive statistics of variables, correlation analysis, and PCA were performed using SPSS 10.0 software. The variables were 
geostatistically mapped using the Surfer program from Golden software. The training and visualization of the SOM were performed 
using the functionalities implemented within the R Package Kohonen. The distribution of wind direction frequencies in the study area 
in 2019 was presented using the R Package Openair. The softver EPA PMF 5.0 was used for PMF. 

3. Results 

3.1. Descriptive statistics, spatial distribution, and correlation analysis of basic soil characteristics and DTPA-extractable PTEs in the steel 
production facility’s surroundings 

Descriptive statistics of basic soil characteristics is summarized in Table 1 (the complete characterization of soil samples is given in 
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Tables S2 and S3). The OM content ranged from 0.69% to 4.44%. Soil pH ranged from medium acidity (5.94) to medium alkalinity 
(8.04). Based on USDA’s (1998) classification [39], the soils were classified as silt loam (36.8%), silty clay loam (30.0%), loam 
(23.7%), and clay loam (10.5%). 

The descriptive statistics summary of soil bioavailable PTE concentrations in the steel production facility’s surroundings is pre-
sented in Table 2. The mean bioavailable PTE concentrations followed the order: Mn > Fe > Cu > Zn > Ni > Pb > Co > Cd. The 
skewness values higher than 1 for all analyzed elements show that these elements positively skew towards lower concentrations. 
Kurtosis values of all elements above 0 indicate that the distribution of elements is steeper than normal. 

An ordinary kriging interpretation was used to map the spatial distribution of the PTEs in the soil of the study area and identify 
pollution hotspots. The spatial variations of the PTE concentrations in the soils from the steel production facility area are shown in 
Fig. 2. The various colors indicate the DTPA-extractable PTE concentrations. The red color stands for high concentration, whereas the 
green color stands for low concentration. As evident from the geospatial maps (Fig. 2), the element concentrations in the investigated 
area exhibited significant metal-specific and site-specific variability, suggesting a strong influence of anthropogenic sources on the 
metal concentrations in the area [40]. The Cd, Pb, and Zn distributions (Fig. 2, a, g, and h) have similar geographical patterns, with 
hotspots in the eastern and northeastern parts of the investigated area. Cobalt and Mn (Fig. 2, b, and e) show the highest concentrations 
in the western part of the area. Nickel (Fig. 2, f) was primarily distributed in the eastern part of the investigated area. Iron (Fig. 2, d) 
was widely distributed in the area, with hotspots in its east and southwest parts. 

As soil properties such as soil texture, OM content, and pH may impact the distribution and bioavailability of PTEs in soil [21,41, 
42], their relationship with PTEs is analyzed in this study. The correlation matrix (Table 3) was used to estimate the strength of the 
relationships among analyte pairs in the soil samples. It revealed a significant positive correlation between Cd, Pb, and Zn. Cobalt and 
Mn showed a positive mutual correlation, while Fe was significantly positively correlated with Mn and Ni. Cobalt showed a significant 
positive correlation with silt, and Ni was positively correlated with sand and negatively correlated with silt. 

3.2. Classification by SOM 

The visualization and classification were obtained by the SOM of six rows and six columns with a hexagonal topology. A bubble 
neighborhood function was trained on 11 variables (PTEs and basic soil properties) and 38 observations (soil samples). The SOM 
simultaneously minimized the quantization and topographic errors to 0.95 and 0.05, respectively. After multiple rounds of iterative 
training, the weight matrix of each soil PTE is obtained. 

The SOM results are presented in Fig. 3, which shows the unified distance matrix (U-matrix, Fig. 3, a), followed by component 
planes, one for each variable (Fig. 3, b-l). The U-matrix represents the Euclidean distance between the weight vectors of neighboring 
neurons on the map in the color scale. In component planes, the weight vector values of each neuron are represented by different 
colors, with yellow and blue representing high and low parameter values, respectively. The neuron color similarity represents sig-
nificant correlation between parameters. Cobalt, Fe, Mn, and Ni have a similar color pattern (Fig. 3, f, h, i, and j), i.e., high-value 
distribution in the left part of the map. Cadmium, Pb, and Zn (Fig. 3, e, k, and l) have a high-value distribution in the middle 
upper part of the grid, indicating the positive associations between these elements. According to the U-matrix (Fig. 3, a), the sampling 
points with basic soil characteristics and PTEs concentrations are divided into four superclasses. The contents of elements among 
superclasses are further analyzed as shown in Fig. 4. 

3.3. Source identification by PCA 

The PCA was applied to further identify the source of analyzed PTEs in the soils of the study area. The multivariate data set consists 
of 11 variables (3 independent soil basic characteristics and 8 PTEs) measured over 38 soil samples (observations), yielding a 38 × 11 
(rows by columns) primary data matrix. Since the variables’ different ranges and units and their deviation from a normal distribution, 
the data was log-transformed before the analysis. The number of significant PCs was selected based on the Kaiser criterion [43], 
retaining PCs with eigenvalues that exceed one. The scree plot test consists of plotting the eigenvalues against the number of the 
extracted components and finding the points where the smooth decrease of eigenvalues appears to level off to the right of the plot, 
eliminating components that contribute to factorial scree only. The scree plot for the given data set (Fig. S1) showed that three 

Table 1 
Descriptive statistics of basic soil characteristics.  

Parameter Sand (%) Clay (%) Silt (%) OM (%) pH 

Mean 20.8 24.0 55.3 2.00 7.40 
Standard deviation 13.6 4.58 13.2 0.77 0.51 
Variance 184.7 20.94 173.2 0.60 0.26 
Coefficient of variation (%) 65.4 19.1 23.8 38.7 6.94 
Minimum 4.1 14 26.2 0.69 5.94 
Maximum 48.3 32.5 74.6 4.44 8.04 
Median 18.7 23.3 58.0 1.96 7.52 
Range 44.2 18.5 48.4 3.75 2.1 
Skewness 0.44 − 0.11 − 0.50 0.79 − 1.17 
Kurtosis − 1.04 − 0.85 − 0.81 1.43 1.16  
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components accounting for most of the total variance complied with the Kaiser criterion. To gain a better insight into the data’s hidden 
regularities and ensure that the resulting factors were uncorrelated, the PCA extracted correlation matrix was subjected to varimax 
(variance maximizing) orthogonal rotation. The significant factors obtained after varimax rotation and loadings indicating how each 
analyte is related to these factors are presented in Table 4. Factor 1, explaining 32.0% of the total variance, showed high factor loadings 
of OM, pH, Co, Fe, and Mn. Factor 2 (24.0% of the total variance) showed high factor loadings of Cd, Ni, Pb, and Zn. Factor 3 (18.9% of 
the total variance) showed high factor loadings of clay and Cu. 

3.4. Source apportionment by PMF model 

For further analysis of the type of source apportionment and the contribution rate of PTEs in soil samples around the steel pro-
duction facility, the PMF model was applied. The PMF model was constructed using basic soil characteristics and PTEs concentrations. 

Table 2 
Descriptive statistics of soil bioavailable PTE concentrations (mg kg− 1) in the steel production facility’s surroundings.  

Parameter Cd Co Cu Fe Mn Ni Pb Zn 

Mean 0.07 0.12 3.75 28.9 37.2 2.88 2.85 3.25 
Standard deviation 0.060 0.086 4.606 23.68 18.034 2.975 2.823 2.603 
Variance 0.004 0.007 21.22 560.8 325.24 8.853 7.968 6.775 
Coefficient of variation (%) 85.7 71.7 122 81.9 48.5 103 99 80 
Minimum 0.01 0.01 0.60 8.29 14.19 0.47 0.81 0.62 
Maximum 0.39 0.47 28.4 97.7 89.1 15.2 17.7 14.0 
Median 0.06 0.10 2.31 19.5 33.0 1.83 2.13 2.48 
Range 0.38 0.47 27.8 89.4 74.9 14.7 16.9 13.4 
Skewness 3.98 2.08 4.47 1.68 1.32 2.60 4.27 2.39 
Kurtosis 20.5 7.04 23.2 2.25 1.81 7.69 21.5 7.28  

Fig. 2. Maps of bioavailable PTE concentrations of a) Cd, b) Co, c) Cu, d) Fe, e) Mn, f) Ni, g) Pb, and h) Zn in the steel production facility’s 
surroundings obtained by ordinary kriging. 
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The factor number of 2–6 in the base PMF model was consecutively selected until the Q value was at a minimum. The number of runs 
was set to 20, and the start seed number was chosen randomly. The smallest and most stable Q value was obtained when the number of 
source factors was set to 4. Thus, most of the values in the residual matrix varied within ±5. The correlation coefficients between the 
measured and estimated concentrations ranged from 0.68 to 0.99, indicating that the PMF model apportioned analyzed PTEs with a 
reasonable number of factors to explain the raw data fully. 

The PMF factor fingerprints showed that all basic soil characteristics and PTEs (Fig. 5), except pH, Cd, Co, and Ni, were influenced 
by three factors. Factor 1 contributed to Cd (100%), Cu, Pb, and Zn. Factor 2 mainly contributed to pH (100%), clay, and OM. Factor 3 
contributed to Co with 100% and to less extent to Mn and OM. Factor 4 was the dominant contributor of Ni (100%), Cu, and Fe. 

Table 3 
The correlation matrix for DTPA-extractable PTEs and soil physicochemical characteristics.   

Sand Clay Silt OM pH Cd Co Cu Fe Mn Ni Pb 

Clay − 0.261            
Silt − 0.942a − 0.078           
OM − 0.276 0.042 0.270          
pH 0.168 − 0.358b − 0.049 − 0.504a         

Cd − 0.077 0.204 0.008 0.296 − 0.145        
Co − 0.428a 0.016 0.437a 0.621a − 0.688a 0.127       
Cu − 0.227 0.346b 0.114 0.136 − 0.117 0.067 0.082      
Fe 0.087 0.303 − 0.195 0.393b − 0.814a 0.282 0.385b 0.076     
Mn − 0.448a 0.231 0.382b 0.525a − 0.870a 0.201 0.868a 0.208 0.599a    

Ni 0.440a 0.232 − 0.535a 0.239 − 0.456a 0.179 0.099 0.050 0.723a 0.213   
Pb 0.212 0.192 − 0.285 0.178 − 0.004 0.893a − 0.096 − 0.002 0.206 − 0.024 0.261  
Zn 0.209 0.129 − 0.261 0.083 − 0.004 0.765a − 0.072 − 0.035 0.210 − 0.019 0.161 0.703a  

a Correlation is significant at the 0.01 level. 
b Correlation is significant at the 0.05 level. 

Fig. 3. SOM visualization of basic soil characteristics and bioavailable PTEs in soils of the steel production facility’s surroundings: a) U-matrix and 
component planes for b) clay, c) OM, d) pH, e) Cd, f) Co, g) Cu, h) Fe, i) Mn, j) Ni, k) Pb, and l) Zn. 
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4. Discussion 

The DTPA extraction method is applicable for assessing micronutrients (Fe, Mn, Zn, and Cu) availability to plants in neutral and 
alkaline soils [31]. The buffered DTPA extraction solution forms strong heavy metal-DTPA complexes isolating their water-soluble, 
exchangeable amounts and specifically adsorbed forms that are available to plants [44]. Furthermore, the 0.005 M DTPA solution 
was recommended as an extractant for determining the geochemical reactivity of PTEs in contaminated soils [45]. It is also a reliable 
method for determining deficiencies in micronutrients in soil which influence crop growth and reduce their quality and potential yield. 
In this respect, Barrett et al. (2017) provided general recommendations for DTPA-extracted concentrations of micronutrients needed 
by plants and, accordingly, the soil micronutrients’ status classification as very low, low, medium, high, and very high [46]. Based on 
that classification, the mean bioavailable concentrations (Table 2) levels of Cu, Fe, and Mn in soils analyzed in this study are very high, 
and those of Zn are high. The distribution of micronutrients levels (Fig. 6) highlights a small number of samples with low levels of Zn 
(7.8%) and Fe (13.1%) in contrast to a high proportion of soils with high and very high levels of Fe (18.4% and 42.1%) and particularly 
Mn (42.1 and 57.9%) and Cu (47.4% and 44.7%). 

The CV values of all analyzed PTEs reflect their high variability in the soils of the investigated area and suggest that the investigated 
area could be significantly affected by anthropogenic activities [47–49]. The concentrations of Co, Cu, and Zn obtained in this study 
are consistent with those for topsoils surrounding a steel industrial area in Iran, reported to be up to 2.4, 9.2, and 10 mg kg− 1, 
respectively [50]. The DTPA-extractable concentrations of Cd, Cu, Pb, and Zn in analyzed soils are still lower than those in soils of the 

Fig. 4. Minimum, mean, and maximum values of DTPA extractable PTE concentrations of a) Cd, b) Co, c) Cu, d) Fe, e) Mn, f) Ni, g) Pb, and h) Zn in 
SOM superclasses. 

Table 4 
Varimax rotated factor loadings and communalities of soil physicochemical characteristics and DTPA-extractable 
PTE concentrations in soils in the steel production facility’s surroundings  

Variable Factor 1 Factor 2 Factor 3 

Clay -0.024 -0.001 0.842 
OM 0.776 0.314 -0.055 
pH -0.762 0.003 -0.497 
Cd 0.402 0.768 0.149 
Co 0.915 0.009 -0.037 
Cu 0.138 0.230 0.668 
Fe 0.559 0.373 0.555 
Mn 0.908 0.088 0.276 
Ni 0.431 0.498 0.497 
Pb 0.006 0.881 0.103 
Zn 0.016 0.851 0.109 
Variance 3.52 2.64 2.08 
% Var 32.0 24.0 18.9 

The highest absolute value of loadings for each variable is shown in bold 
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area in the North China Plain receiving the effluents from smelter plants on a long-term basis, reported to be up to 1.58, 210, 12.3, and 
372, respectively [51]. Even when production activities are deceased, the bioavailable concentrations of PTEs in soils surrounding 
steelmaking facilities could remain high. Thus, bioavailable concentrations of Cd and Pb above values considered safe by international 
standards have been found in soils contaminated by slag from an abandoned steel plant in Havana, Cuba [6]. 

The maps derived by ordinary kriging indicate the PTE spatial distribution in the investigated area. To further explain the PTEs’ 
spatial patterns in soils surrounding the steel production facility, the influence of prevailing winds on their distribution was investi-
gated. The wind is the dominant meteorological parameter for the air distribution of pollutants emitted from industrial chimneys. The 
distribution of wind direction frequencies (the annual average for 2019) calculated from data obtained from the Smederevska Palanka 
meteorological station (44◦22′ N, 20◦57′ E) is shown in Fig. 7. The direction distribution in the wind rose indicated the prevalence of 
winds from the second (E-S) and fourth (W–N) quadrants. Thus, the predominant winds are WNW and ESE, blowing from the 
northwest and southeast. The distribution of Fe and Ni could result from prevailing winds, as the highest concentration is in the eastern 
part of the investigated area. A similar situation occurred with Cd, Pb, and Zn. The results obtained in this study are in accordance with 
the findings of Odabasi et al. (2010) [52], who reported the highest concentrations of PTEs in the soil around iron-steel plants at points 
where prevailing winds transport industry emissions. Zhou et al. (2019) reported the highest concentrations of Pb and Zn in soils in the 
prevailing downwind direction from the iron and steel plant in North China Plain [53]. The spatial distribution analysis of the PTEs in 
urban soils from an industrial district in Northeast China revealed their pollution by Cu, Pb, and Zn with contamination hotspots in the 
steel industrial district [54]. 

The correlation analysis results were consistent with the spatial distribution characteristics of the analyzed elements. The elements 
showing similar spatial patterns in the investigated area, such as Cd, Pb, and Zn (Fig. 2, a, g, and h), were highly correlated (Table 3). 
Iron and Mn, highly correlated according to Table 3, show similar spatial distribution (Fig. 2d and e). The similar distribution patterns 
of Co and Mn (Fig. 2, b and e) are also confirmed by correlation analysis. It is well-recognized that many physical and chemical 
properties of soils affect metal mobilization/immobilization processes, among which grain size is one of the most significant factors 
[55–57]. Previous studies indicated that metals of natural origin were more closely associated with soil properties, such as soil texture 

Fig. 5. PMF factor fingerprints of bioavailable metal concentrations and basic physicochemical characteristics of soils.  

Fig. 6. Percentage distribution of the essential micronutrients’ levels in soil samples (n = 38) according to [46].  
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[58,59]. Cadmium, Fe, Pb, and Zn did not correlate with soil texture, indicating their anthropogenic origin. DTPA-extractable content 
of Co, Fe, Mn, and Ni displayed a significant negative correlation with soil pH (Table 3), even though the studied soils are fairly 
balanced in terms of this parameter (Table 1). Simultaneously, bioavailable Co, Fe, and Mn forms were significantly and positively 
correlated with soil OM. In weakly acidic to alkaline soil conditions (pH 6–8), PTEs mobility is increased in soils with higher OM 
content due to the formation of soluble complexes [60]. 

The SOM analysis of PTEs’ distribution characteristics among superclasses (Fig. 4) shows that superclass 1, comprising ten soil 
samples from the northern and western parts of the investigated area (Fig. 3, a), has the highest mean concentrations of Co, Cu, and Mn 
among classes. According to Barrett’s classification [46], the concentrations of Cu and Mn in this superclass are very high. Superclass 2, 
which contains ten samples collected in the closest vicinity of the plant, shows very high mean concentrations of Mn and high con-
centrations of Cu and Fe. Superclass 3 contains ten samples, mainly from the northeast area, with high Cu and Mn concentrations. 
Superclass 4 comprises eight samples from the northeast of the investigated area with the highest mean concentrations of Cd, Ni, Pb, 
and Zn among the classes, confirming the common source of these elements. The detailed visualization of variables and observations 
derived by SOMs revealed the homology in Cd, Pb, and Zn distribution, thus confirming their common origin. The advantage of SOM 
over other multivariate methods in revealing the correlation and classification of different variables and observations, especially for 
high-dimensional and complex data sets, is proven in previous studies [36]. This method can provide more reliable results in complex 
and linear problems due to their robustness to noise data and extreme values in complex high-dimensional datasets. The SOM uses 
unsupervised learning, hence does not require previous information on the dataset, which is also an advantage of this method 
compared to other clustering methods. 

The multivariate methods, PCA and PMF, indicated the sources of PTEs in soils of the investigated area. The PCA-extracted factor 1 
showed high loadings of OM, pH, Co, Fe, and Mn (Table 4). Factor 2 comprises the high loadings of Cd, Ni, Pb, and Zn, pointed out their 
common origin probably from the steel production process. Factor 3, which shows high factor loadings of clay and Cu, could be 
characterized as geogenic. According to the grouping obtained by PMF (Fig. 5), factors 1 and 4 could be recognized as mainly 
anthropogenic factors, and factors 2 and 3 as natural/geogenic and mixed. Compared to PCA, PMF generates a more reliable repre-
sentation of elements in source profiles by including a quantitative contribution of each element. Unlike PCA, which relies on the 
variables’ correlations, raw data in PMF make it more sensitive to the more minor changes in the data. Conversely, the PMF method has 
the advantage of positivity constraints, providing the number of sources and source uncertainties over PCA [61]. The single-method 
source analysis could derive the imprecise evaluation of contamination sources, leading to the disputation of the reliability of model 
results. Therefore, it is advantageous to apply multiple receptor models to achieve reliable source identification and apportionment 
[62,63]. All multivariate analysis methods identified the common origin of Cd, Zn, and Pb, likely from a steel production plant. This 

Fig. 7. The distribution of wind direction frequencies in the study area (annual average for 2019).  
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finding follows similar research worldwide which identified these elements as reliable indicators for source apportionment in steel 
production areas [3,51,54,64]. Iron coal storage and unprotected transportation may contribute to soil pollution surrounding steel 
production facilities [65]. Vehicle emissions and abrasion of road asphalt because of vehicular movement could also contribute to Pb 
[66,67] and Cd [68] pollution. The increased pseudototal concentrations of trace elements of Mn, Ni, and Fe have been reported for 
soils surrounding steelmaking facilities in Australia [1], with higher concentrations reported for soils near blast furnace integrated 
operations compared to those near electric arc once. Although within the acceptable limits of local regulations, the pseudototal 
concentrations of Fe, Cu, and Ni in some soils surrounding the Australian steelmaking facilities exceeded the threshold values for 
acceptable soil quality, according to US EPA [69] and Canadian soil quality [70] guidelines. Font et al. (2022) identified stainless-steel 
processes as one of the main contributors to Ni concentrations in an industrial area in the United Kingdom [71]. Although most 
literature suggests that Fe is of geogenic origin, steel production facilities were also identified as contributors to Fe concentrations 
mainly due to the blast furnaces’ operation [72,73]. An extensive study on topsoil quality assessment near a closed steel smelter at the 
Capital Iron and Steel Factory, Beijing in China, confirmed that higher concentrations of Cu in soils surrounding the steelmaking site 
are mainly associated with steel smelting activities [4]. 

Data on bioavailable PTEs’ concentrations and distribution around the steelmaking facility provide a base for future soil monitoring 
activities enabling the detection of increasing pollution risk due to the ineffectiveness of applied protective measures, the change in 
production processes, and other factors. The spatial distribution of the PTEs obtained by geostatistics and correlation analysis and 
source apportionment derived by two multivariate analysis methods yielded consistent results. However, including the samples in the 
plant’s immediate vicinity will enable the assessment of factors contributing to the area’s pollution other than stack emissions, such as 
ore stocking, ore and slag transportation ways and routes, and deposition of slag material. Furthermore, the extensive sampling 
campaign, which will include the other pollution sources in the Smederevo industrial area, would improve the assessment results, 
enabling the delineation of different industrial sources contributing to overall environmental pollution. The differences in toxicity, 
bioavailability, migration mechanisms, and persistence among different forms of PTEs should be included in assessing PTEs’ impacts 
on human health and the environment. Such a comprehensive approach will be helpful for assessing the environmental risk of 
contaminated sites and as a basis for soil remediation. 
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