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We develop a new methodology for the deterministic forecasting of directional ocean surface waves, based on nonlinear
frequency corrections. These frequency corrections can be pre-computed based on measured energy density spectra, and
therefore come at no additional computational cost compared to linear theory. The nonlinear forecasting methodology
is tested on highly-nonlinear, synthetically generated seas with a variety of values of average steepness and directional
spreading, and shown to consistently outperform a linear forecast.

I. INTRODUCTION

With recent developments in remote sensing of the sea-
surface1, coupled with increases in computing power and the
growing global role of the maritime economy, deterministic
wave forecasting has seen a surge of interest in recent years.
Deterministic forecasting models have historically lagged be-
hind the well-developed stochastic forecasting models, which
are in daily operational use by national agencies and a large
community of stakeholders. However, over the last decade in-
terest has grown in these close-to-real-time predictions which
provide wave-by-wave information.

Such predictions are key to maximising power capture from
wave energy converters (WECs). While the size and geome-
try of a particular WEC design is fixed and based on long-
term characteristics of the deployment site2,3, it is possible
to adapt the damping characteristics to control device motions
and thus increase energy capture4,5. A key to an effective con-
trol strategy is knowing in advance which waves the device
will encounter6, and so relies on wave-by-wave forecasting.

Likewise, offshore operations – from offloading to the
servicing of marine infrastructure – must often be under-
taken close to operational limits. In such cases prior knowl-
edge of wave-induced ship and device motions are beneficial
for ensuring safety and prevention of environmental disas-
ters, again calling for accurate monitoring and wave-by-wave
forecasting7. Implemented in automated navigation of mar-
itime vessels, such forecasting can also facilitate fuel effi-
ciency and hence reduction of operational costs and associated
environmental impacts. Numerous methodologies for wave
forecasting applied to ship motions have been reported in re-
cent years8–11.

The first step in constructing a deterministic (phase-
resolved) forecast is to obtain a snapshot of the sea state
at a given time. In practice this is usually obtained by re-
mote sensing12,13. For a given snapshot of the free surface,
Fourier transform techniques are commonly used to prepare
the forecast. In the simplest implementation of such a fore-

cast, each Fourier mode ki corresponds to a linear wave mode.
Inserting the linear dispersion relation, it is thus possible to
“propagate” the sea forward, mode-by-mode, in space and
time. Such linear forecasts, first investigated in the 1970s14,
are robust, and can be expected to perform well in calmer
seas10,15. However for sea-states characterized by higher
steepness the initially weak effects of nonlinearity grow in
importance. These include energy exchange between modes,
an amplitude-dependent dispersion (affecting the propagation
speed of the modes) and changes to the wave shape (the ap-
pearance of bound modes), which all significantly affect pre-
dictions.

It is possible to improve forecast fidelity using numeri-
cal methods. For example, the high order spectral (HOS)
method16 or specific model equations like the nonlinear
Schrödinger equation17 can be used to propagate the measured
wave field forward in space and time, at the expense of per-
forming numerical computations. Because typical forecasts
have a temporal range of several minutes at best, it is impera-
tive that these can be produced in a timely manner. Moreover,
the wave forecasting (or prediction) step is, in practice, only
one constituent of a purpose-built system. Forecasting speed
is therefore essential.

Here we show how incorporating an algebraic nonlinear
frequency correction – analogous to Stokes’ correction for a
plane wave – dramatically improves deterministic forecasts
when compared with linear theory alone. This means em-
ploying the wave energy spectrum to calculate the disper-
sion relation of all wave components algebraically, using pre-
computed interaction coefficients. This novel approach car-
ries no computational cost compared to linear theory during
the forecasting step, and yet compares favourably with direc-
tional, nonlinear HOS simulations of synthetic sea-states for
moderately long times, depending on the extent of nonlinear-
ity of the sea-state. In Section II we discuss the theoretical
background of the new method, and provide details of its im-
plementation in Section III. We compare linear and nonlinear
forecast results obtained using a variety of synthetically gen-
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erated, highly nonlinear seas in Section IV. A discussion of
our results and conclusions are found in Section V. Supple-
mentary data tables are available in Appendix A.

II. THEORETICAL BACKGROUND

A. The 2D discrete Fourier transform

The new deterministic forecasting framework is based on
Fourier transforms of the sea surface. To this end we review
some fundamentals of the 2D discrete Fourier transform, and
introduce some notation. For an m× n matrix X , which we
think of as our input data, i.e. a rectangular region of the ocean
surface, the discrete Fourier transform is an m×n matrix Y

Yp+1,q+1 =
m−1

∑
j=0

n−1

∑
k=0

e−2πi jp/me−2πikq/nX j+1,k+1 (1)

with inverse transform

Xp+1,q+1 =
1

mn

m−1

∑
j=0

n−1

∑
k=0

e2πi jp/me2πikq/nYj+1,k+1 (2)

where 0 ≤ p ≤ m− 1 and 0 ≤ q ≤ n− 1. If X comes from a
discretisation of an area Lx ×Ly of the sea surface into m× n

samples we can write compactly

x j = jLx/m and yk = kLy/n,

and so 2πi jp/m = 2πipx j/Lx and 2πikq/n = 2πiqyk/Ly. The
definitions

µp = 2π p/Lx, νq = 2πq/Ly

allow for the reformulations

Yp+1,q+1 =
m−1

∑
j=0

n−1

∑
k=0

e−ix jµpe−iykνq X j+1,k+1 (3)

and

Xp+1,q+1 =
1

mn

m−1

∑
j=0

n−1

∑
k=0

eixpµ j eiyqνkYj+1,k+1. (4)

Using trigonometric interpolation polynomials we can intro-
duce continuous variables

X(x,y) =
1

mn

m/2−1

∑
j=−m/2

n/2−1

∑
k=−n/2

ei(xµ j+yνk)Yj+1,k+1. (5)

where we recognize the wavevector k = (µ j,νk) and position
x = (x,y) in the term exp(ix ·k).

B. Linear forecasts and the predictable region

For a wavenumber vector k= (µ,ν) with k = ‖k‖ the linear
dispersion relation in deep water reads

ω2 = gk. (6)

The energy of a wave with wavenumber k propagates at
the group velocity cg. Writing k = (k cos(θ),k sin(θ)) we
can divide the group velocity into components (cg,x,cg,y) =
(cg cos(θ),cg sin(θ)) = (dω/dµ,dω/dν).

This information is sufficient to determine how each
Fourier mode in the sea surface (5) propagates, and so to pro-
duce a linear wave forecast with time t. Writing ω(k) for
the frequency of the corresponding mode, we obtain from the
Fourier transform a surface that evolves in space and time:

η̃L(x, t) =
1

mn

m/2−1

∑
j=−m/2

n/2−1

∑
k=−n/2

ei(xµ j+yνk−ω(µ j ,νk)t)Yj+1,k+1.

(7)
The dispersive nature of the waves dictates the region over

which prediction is possible – its size depends on the initially
measured area, and the lengths and directions of the waves
present18,19. Assuming the magnitudes of the wavenumber
vectors k ∈ [k0,kN ] (where k0 and kN are the longest and short-
est waves resolved in the record, respectively; see Section III
below on the role of these cut-offs) and the propagation angles
θ ∈ [−θ0,θ0] for θ0 < π/2, we can show how the predictable
region evolves with time (see Figures 1 & 2).

Fundamentally, the energy of a mode k = (µ,ν) at (x0,y0)
travels in time t to a location (x1,y1) with

x1 = x0 + cgt cos(θ),

y1 = y0 + cgt sin(θ).

Here θ = arctan(ν/µ). Therefore, if the initially mea-
sured area is rectangular with Cartesian coordinates A =
(xa,ya), B = (xb,yb),C = (xc,yc) and D = (xd ,yd), at a later
time t = t0 the vertices of the predictable region will be

A′ = (xa + cg,0t0,ya + cg,0 sin(θ0)t0), (8a)

B′ = (xb + cg,0t0,yb − cg,0 sin(θ0)t0), (8b)

C′ = (xc + cg,N cos(θ0)t0,yc − cg,0 sin(θ0)t0), (8c)

D′ = (xd + cg,N cos(θ0)t0,yd + cg,0 sin(θ0)t0). (8d)

The principal direction of wave propagation is along the x-
axis, and the line A′B′ in Figure 1 shows how far the fastest
modes have travelled from AB in time t0, while C′D′ shows
how far the slowest have travelled from CD in the same time.

By the same token, we need to capture obliquely propagat-
ing waves in the positive and negative y-directions, as shown
in Figure 2. The value of sin(θ) is largest/smallest for θ =
θ0/−θ0, since we are restricted to θ0 < π/2. This means the
predictable region is bounded by rays t ∼ ±y/(cg,0 sin(θ0)),
as shown in Figure 2.

The maximum temporal extent of the prediction can then
be given by

t∞ = min
{

t(x)∞ , t(y)∞

}

. (9)

where

t(x)∞ =
Lx

cg,0 − cg,N cos(θ0)
, t(y)∞ =

Ly

2cg,0 sin(θ0)
.

Here Lx and Ly are the measured distances in the x and y di-
rections, respectively. A visualisation of such a predictable
region in terms of (x,y, t) is given in Figure 1 (right panel).
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FIG. 1. Schematic of the evolution of the predictable region in (x,y)-space (left panel) from time t = 0 (solid rectangle) to time t = t0 > 0
(dashed rectangle). The principal direction of wave propagation is the x−direction, and directional spread is limited to θ ∈ [−θ0,θ0], for
θ0 < π/2. The evolution in (x,y, t) is shown indicatively in the right panel.
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FIG. 2. Sections through the 3D predictable region highlighting the
fastest and slowest wave rays advancing in the x-direction. (Left
panel) Predictable wedge in the (x, t)-domain, bounded by rays
t ∼ x/(cg,N cosθ0) and t ∼ x/cg,0. (Right panel) Predictable wedge
in the (y, t)-domain, bounded by rays t ∼±y/(cg,0 sinθ0).

C. Nonlinear forecasts

The linear theory presented above is easy to understand and
implement. While waves which are not too steep can be mod-
elled with sufficient accuracy using the linear theory, it has
been recognised since early work by G. G. Stokes that physi-
cal water waves have a dispersion relation which depends on
their amplitude – in general, steeper waves travel faster. More-
over, not only does the amplitude of a wave itself influence
its dispersion relation, but waves in the sea have a mutual
influence on one another as elucidated in work of Longuet-
Higgins and Phillips20 for two wave trains. This mutual, non-
linear dispersion correction to third order in wave steepness,
has subsequently been derived in the framework of the Za-
kharov equation21, where the corrected frequency is written

Ωs = ωs +∑
r

esrTsrsr|Br|
2. (10)

Here esr = 1 for s = r and esr = 2 for s 6= r, and |Br| denotes
the modulus of the complex amplitude B(kr, t = 0) of the Za-
kharov equation (see 22, Eq. (14.2.13)), which is related to the
Fourier transform of the free-surface elevation and the poten-
tial at the free surface. The crucial ingredients in this compact
formulation are the interaction kernels Ti jkl = T (ki,k j,kk,kl).
The full expressions for these are algebraically cumbersome,
but in deep water their symmetric form (when indices i = k

and j = l, or i = l and j = k) can be simplified to23

T (ki,k j,ki,k j) =−
1

16π2(|ki||k j|)1/2

[

3(|ki||k j|)
2

+(ki ·k j)(ki ·k j −4(|ki|+ |k j|)(|ki||k j|)
1/2)

+
2(ωi −ω j)

2(ki ·k j + |ki||k j|)
2

g|ki −k j|− (ωi −ω j)2

+
2(ωi +ω j)

2(ki ·k j −|ki||k j|)
2

g|ki +k j|− (ωi +ω j)2

]

.
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The complex amplitudes |Br| are directly related to the mea-
sured Fourier amplitudes via

|Br|=
2π

mn

√

2g

ωr

|Yr|, (11)

and enter into the nonlinear corrected frequencies (10). This
leads naturally to a change in the group velocities, and gener-
ally to a small growth in the predictable region24. We note that
these frequency corrections are exact to third order, in contrast
to the average nonlinear dispersion correction implemented by
Desmars et al25. They recover the classical results for one and
two modes20,26, as detailed in Stuhlmeier & Stiassnie21.

III. IMPLEMENTATION OF LINEAR AND NONLINEAR
FORECASTS

The starting point for an implementation of the forecast-
ing methodology described above is a measurement of the
sea-surface over an area Lx ×Ly. The measurement resolution
m×n should be such that the waves of interest (for example,
those waves close to the spectral peak) can be resolved ac-
curately. In practical applications the resolution may be dic-
tated by the measurement technology used, and it may prove
necessary to assimilate data from multiple measurements or
devices (e.g. if arrays of buoys are used27) in order to recon-
struct the free-surface elevation with the necessary or desired
resolution. Since our methodology aims to improve the pre-
diction step, we will assume that a suitable record is available.
Spectral information about the discretised record can then be
efficiently extracted using the Fast Fourier Transform (FFT).

The Fourier transformed signal is used to determine the pre-
dictable domain. It is also necessary to choose cut-offs k0
and kN (note that these are distinct from the smallest/largest
wavenumbers which can be resolved based on the discreti-
sation) for the longest and shortest waves of interest – other
modes being discarded from the forecast. If k0 is chosen too
small and kN too large, the effective prediction time (9) may
be too short for the desired application. Very small k0, for ex-
ample, will lead to a large group velocity cg,0, and a decrease
in the slopes of the rays along which mode-k0 energy propa-
gates in Figure 1. This yields a shrinking of the predictable
regions (indicated in red and blue in the top and bottom panel,
respectively), and a smaller value of t∞. On the other hand, if
the cut-offs are too generous then appreciable energy will be
lost, extending the prediction time at the expense of forecast
accuracy.

Various practical possibilities exist in the choice of such
cut-offs (see e.g. the discussion in Desmars et al25 (Sec. 3.3)).
While it is possible to use, for example, fixed multiples of
the peak wavenumber kp, an adaptive method that takes the
spectral shape into account is preferable. One method, which
we employ below, is to use a cut-off which eliminates modes
whose energy is less than a fixed percentage of the spectral
peak energy.

Finding robust wavenumber cut-offs is made more difficult
when the spectrum employed comes from a single measure-
ment, and thus has the “grassy” shape typically seen when

FIG. 3. Averaged variance density spectrum (blue, dashed curve) and
raw variance density spectrum (black, solid curve) computed from a
single amplitude per frequency (further realisations of raw variance
density spectra are plotted in light grey). Yellow dashed vertical lines
show cut-off values k0 and kN which represent 1% of the spectral
peak energy of the averaged variance density spectrum.

there is only a single amplitude per wavenumber (i.e. the grey
and black curves in Figure 3). It is thus advantageous to com-
pute a variance density spectrum (or energy density spectrum)
from multiple realisations (or, via windowing, from a single
realisation, see Holthuijsen28 (App. C)), shown as the blue,
dashed line in Figure 3. This smoothed spectrum makes the
identification of suitable cut-off values simpler and stabler.
While the energy spectrum also changes, such changes oc-
cur on a much slower time-scale, which may range from 30
minutes during storms to several hours during more quiescent
periods29–31. In contrast, the practical range of each deter-
ministic forecast under typical oceanic conditions is only 1-2
minutes. The established wavenumber cut-offs can therefore
be re-used for multiple predictions.

In order to implement the nonlinear frequency corrections
(10), two further computations are necessary: the most costly
of these is the evaluation of the m2 × n2 interaction kernels
Tsrsr for the m× n modes. However, since these kernels de-
pend only on the chosen discretisation, but not on any fea-
tures of the sea-surface, they can be easily pre-computed and
stored.

The second ingredient in the nonlinear forecast consists of
the complex amplitudes |Br|

2. These are simply re-scaled
Fourier amplitudes, and could be obtained directly from the
measurement at time t = 0, i.e. the instantaneous amplitude
spectrum, with a shape akin to the grey/black curves in Fig-
ure 3. A more stable value for these complex amplitudes can
be obtained by extracting them from the averaged variance
density spectrum, i.e. the blue, dashed curve in Figure 3. We
denote this

S(µ,ν)≈
1

∆µ∆ν
E

{

1
2

a
2
}

, (12)

where E on the right denotes the expected value, ∆µ, ∆ν de-
note the discretisation in wavenumber space, and a is the vec-
tor of Fourier amplitudes. The relation between (11) and the
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amplitude ar corresponding to the r-wave vector is given by

|Br|
2 =

4gπ2

ωr

a2
r

2
.

Hence, the average value of |Br|
2 is

E{|Br|
2}=

4gπ2

ωr

E

{

a2
r

2

}

=
4gπ2

ωr

S(µ,ν)∆µ∆ν ,

where the wave vector k= (µ,ν) and S is the energy spectrum
as a function of wave vector.

Using the averaged variance density spectrum (or energy
spectrum) eliminates the many fluctuations inherent in the in-
stantaneous amplitude spectrum, see Figure 3. Once sufficient
data has been gathered to generated a well-resolved energy
spectrum, this provides a stable input for calculating the cor-
rected dispersion relation (10), and producing forecasts. This
approach also avoids unnecessary recalculation of the nonlin-
ear corrected frequencies.

IV. COMPARISON WITH HOS SIMULATIONS

A. Generation of synthetic seas via HOS

In order to test the above forecasting methodology we will
generate synthetic, directional wave fields by means of the
higher-order spectral method, using the open source HOS–
Ocean code32. These wave-fields are initialised by a di-
rectional JONSWAP spectrum (here written in terms of fre-
quency ω and direction θ )

S (ω,θ) = F (ω) ·G(θ) (13)

where F (ω) is the JONSWAP spectrum specified by the peak
period Tp = 2π/ωp, the significant wave height Hs and shape
factor γ .

F (ω) = αJH2
s ω4

pω−5 exp

[

−
5
4

(

ω

ωp

)−4
]

γ
exp

[

−
(ω−ωp)

2

2σ2ω2
p

]

,

(14)
with σ ∈ (0.07 for ω < ωp;0.09 for ω ≥ ωp) and αJ chosen
to obtain the desired significant wave height. G(θ) in turn is
the directional spreading function defined as

G(θ) =

{

1
β

cos2
(

2πθ
4β

)

for |θ |< β ,

0 otherwise.
(15)

where θ is the angular (polar) distribution with θ ∈ (−π,π)
and β the directionality (see Socquet-Juglard et al33 (Eq. 4 &
Figure 1)).

In all cases considered we generate waves with peak pe-
riod Tp = 10 s, i.e. λp ≈ 157.1 m. To compare linear and
nonlinear forecasts, we employ a range of significant wave-
heights Hs = 3 m, 5 m, 7 m, and 9 m. These correspond to
values of characteristic steepness Hs/λp of 1.9%, 3.2%, 4.5%
and 5.7%, respectively. We further capture the effect of direc-
tional spreading by simulating seas with β = 0.14, 0.36 and
0.78 (see Figure 4). Our JONSWAP shape-factor γ is set equal
to 3.3 in all cases considered.

-1.5 -1 -0.5 0 0.5 1 1.5
0

2

4

8

0.14

0.36

0.78

θ

6

G
(θ
)

β

FIG. 4. Shape of the directional spreading function (15) for β =
0.14, 0.36 and 0.78.

B. Comparison of HOS and linear/nonlinear forecasts with
identical resolution

A significant advantage of synthetically generated data is
the ability to precisely differentiate various effects, includ-
ing the incorporation of correct dispersion characteristics, the
presence of nonlinear energy exchange, and the effects of dis-
cretisation. In order to eliminate the latter entirely, in this sec-
tion we describe linear/nonlinear forecasting based on the ex-
act modes used in the HOS simulation.

The HOS domain of size Lx = Ly = 2600 m is initialised
with 128 × 128 modes, and HOS-Ocean with nonlinearity
M = 5 is used to generate ten realisations of each JONSWAP
spectrum as detailed in Section IV A, i.e. 120 realisations in
total, each with a simulation time of 250 s. (Note that the first
100 s are used for the relaxation scheme of the HOS,32,34,35

with relaxation parameter n = 4.)
For each realisation the 2D Fourier transform of the domain

with 128× 128 Fourier modes is taken to initialise the fore-
cast. This “perfect” resolution means that the initial Fourier
spectrum for the linear/nonlinear forecast coincides exactly
with that used by the HOS. This also implies that the pre-
dictable region does not shrink, since all Fourier modes are
accounted for. The mismatch between forecast and the HOS
“sea” is therefore attributable entirely to the effects of nonlin-
earity on wave propagation.

We shall measure quality of fit using two metrics: the linear
correlation between sea and forecast ρ , and the normalised
mean square error (NMSE)

E (ti) =
‖η(x,y, ti)− η̃(x,y, ti)‖

2

‖η(x,y, ti)‖
2 . (16)

Here η(x,y, ti) is the measured surface elevation, and η̃(x,y, ti)
the predicted surface elevation at time ti = 0, 30, 60, 90, or
120 s. In practice both η and η̃ are matrices, and ‖·‖ denotes
the Frobenius norm, generalising the Euclidean norm. Lin-
ear correlation measures simply whether the two signals rise
and fall synchronously – whether we correctly forecast when
crests and troughs occur – and takes on values between 0 and 1
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FIG. 5. Plots of the averaged linear correlation (top) and NMSE
(bottom) as a function of time for significant wave heights Hs = 3, 5,
7 and 9 m. Only β = 0.14 is shown. Dashed lines denote the linear
forecast vs. HOS sea. Solid lines denote the nonlinear forecast vs.
HOS sea.

(perfect correlation). NMSE is an aggregate measure of qual-
ity that also takes the amplitude into account, and ranges be-
tween 0 (perfect fit) to 2 if the signals have the same energy
(variance). Both measures vary from realisation to realisation,
and the results we show are averages (denoted by a bar) over
10 realisations for both linear correlation ρ and NMSE E .

For this whole-domain forecast the averaged correlation
and NMSE are shown in Figure 5 (results for β = 0.14 only
are plotted; numerical values for β = 0.14, 0.36 and 0.78 are
available in the appendix, Tables II–III). In all cases the
dashed lines depict the linear forecast, while the solid lines
depict the nonlinearly corrected forecast. As expected, for the
lowest sea-states with Hs = 3 m there is barely a discernible
difference between the two forecasts. However, for sea-states
of higher steepness values (particularly Hs = 7 m and 9 m,
which correspond to characteristic steepness of Hs/λp = 4.5%
and 5.7%, respectively) the differences between linear and
nonlinear forecasts beyond 30 s are marked. These results
serve as a benchmark for what can be achieved over a shrink-
ing domain with imperfect knowledge, which is treated below.

C. Comparison of HOS and linear/nonlinear forecasts within
the predictable region

In this section we shall discuss the more realistic case of
forecasting within an ocean basin: we select a 2000 m × 2000
m square of the HOS domain, which should be envisioned as a
surface measured at t = 0 s via remote sensing (see Figure 6).
When it comes to practical implementation we do not know
which Fourier modes are present in nature. This circumstance
inevitably leads to uncertainties and the neglect of some part
of the wave energy, as detailed in section II B.

For the calculation of the predictable region, as well as the
amplitudes which enter into the nonlinear frequency correc-

tions, we employ the averaged energy spectrum, as described
above. In practice this would mean collecting multiple am-
plitude spectra from snapshots and averaging these, or using
windowing to extract a smooth, averaged energy spectrum (cf.
the blue, dashed line in Figure 3) from a large, single snap-
shot. Because the underlying spectrum for our synthetic data
is known, we shall simply employ the directional JONSWAP
spectrum which initialises the HOS. We discretise into a grid
of 160 × 160 points, which is sufficient to resolve waves of
interest around the spectral peak. This discretisation differs
from the grid size used in the HOS simulations (note that our
prediction region is a subdomain of the larger HOS simula-
tion).

While this spectral resolution with ∆k ≈ 0.003 is suitable
for the waves found in our sea, we must truncate the energy
further to establish a useful predictable region. To this end,
we search for all modes with less than 1% of the energy den-
sity of the spectral peak, and the smallest and largest such
modes are chosen as k0 and kN , respectively (see Section II B).
These cut-offs in turn specify cg,0 and cg,N , and the direc-
tional spreading θ is extracted from the arctan(ν/µ) (recall µ
and ν are the x− and y−components of the wavenumber, re-
spectively). The maximum of θ with non-negligible energy is
taken as the maximal directional spreading value θ0. Together
these provide all the necessary information to determine the
predictable region, which is shown in black in Figure 6 at
times t = 0, 30, 60 and 90 s. The chosen cut-offs can be easily
implemented, particularly when the averaged energy density
spectrum is employed (see Figure 3), and lead to a reduction
by approximately 5% in the total spectral energy, as detailed
in Table I. This is similar to cut-offs implemented by Desmars
et al25 or Huchet et al36.

A comparison of linear and nonlinear forecasts within the
predictable region (calculated on the basis of the linear group
velocities) is shown in the left panel and right panel of Fig-
ure 7, respectively. As above, dashed lines denote the lin-
ear forecasts, while solid lines denote the nonlinear corrected
forecasts. The left panels of Figure 7 show the averaged lin-
ear correlation for all three values of directional spreading β .
As anticipated from the results in section IV B the nonlinear
forecast outperforms the linear forecast also over the shrink-
ing predictable region. Numerical values for these cases are
given in Tables IV & V. Owing to the discretisation and atten-
dant cut-off, the average correlation ρ at t = 0 is not unity, nor
is the average NMSE E identically zero (cf. figure 5). This
is partly the effect of the ca. 5% of total energy which is ne-
glected when truncating at k0 and kN . It can also be observed
that the increasing directional spreading leads to better perfor-
mance of the nonlinear forecast; this may be attributed to the
effect of directionality on the nonlinear correction (10)21.

We note that, when the predictable region and dispersion
correction (10) are computed using the ‘grassy’ Fourier ampli-
tudes at t = 0 s directly (cf. black and grey curves in Figure 3),
rather than calculating these from the power spectrum (blue,
dashed curve in Figure 3), the average correlation ρ between
nonlinear forecast and HOS sea is slightly lower, as shown in
Figure 8. This figure compares the averaged correlation ρ̄ be-
tween sea and nonlinear forecast when the nonlinear forecast
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FIG. 6. Shrinking and advance of the predictable region in time (black dashed line), with respect to an initial region η (x,y, t = 0).

β [rad] θ0 [rad] k0 [1/m] kN [1/m] cg,0 [m/s] cg,N [m/s] spectral energy

0.14 0.1419 0.0213 0.1541 10.7206 3.9890 95.99%
0.36 0.3218 0.0213 0.1543 10.7206 3.9871 95.42%
0.78 0.7230 0.0212 0.1548 10.7540 3.9807 94.95%

TABLE I. Wavenumber cut-offs and associated parameters for the three directional spreading coefficients β = 0.14, 0.36 and 0.78. Further
detail about the calculation of these parameters is given in Section IV C.

FIG. 7. Left panel: linear correlation ρ coefficients for the linear
and nonlinear forecasts as a function of time, each averaged over 10
realisations. Right panel: normalized mean squared error E for the
linear and nonlinear forecasts as a function of time, each averaged
over 10 realisations.

is computed using either “instantaneous spectrum" or “aver-
aged spectrum," as described in Section III. This discrepancy
is due to the difficulty of defining stable cut-off values k0 and
kN with fluctuating instantaneous spectra. To a lesser degree it
is attributable to the stability of the complex amplitudes (11)
which enter into the nonlinear frequency correction (10) when
these are obtained from an averaged spectrum.

V. DISCUSSION & CONCLUSIONS

While basic ideas of deterministic forecasting have a long
history14, the computational effort associated with the produc-
tion of forecasts in near real-time has constituted a major bar-
rier to their practical application. Over the last two decades
there has been a great deal of effort, particularly dedicated to
accounting for nonlinear effects typical of real sea states, be-
ginning with works of Morris et al.37 and Zhang et al.38, the
latter introducing a model that included nonlinear effects up
to second order in wave steepness.

With a view to practical applications, our approach has been
to extract the most critical feature of nonlinearity – the disper-
sion correction – from the initial conditions, and so to create
a simple but robust improved forecast. We employ the FFT
to extract modal amplitudes and phases at t = 0 s. This ini-
tial data would furnish the material for a linear forecast; it
can also be used to calculate the modal frequencies according
to the third-order amplitude-dependent dispersion relation. In
contrast with previous work24,39, we show that the amplitude
dependence need not be computed from the Fourier modes
known at time t = 0 s, but should instead be extracted from
the (averaged) energy spectrum. This is generally much more
stable than the amplitude spectrum, and leads to a more robust
prediction: it allows for a clearer identification of the energet-
ically important components of the sea which determine the
predictable region, and likewise avoids the need to recalcu-
late the corrected frequencies for every prediction. These can
instead be stored and updated only as needed.

In order to test the new forecasting methodology we have
used the 5th order HOS32 to generate synthetic sea-surfaces,
ranging from short crested to long crested, and from low
(Hs/λp = 1.9%) to high (Hs/λp = 5.7%) steepness. Both lin-
ear and nonlinear dispersion have been tested (on 10 realisa-
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FIG. 8. Comparison of average correlation ρ̄ from nonlinear forecasts performed using a single-time amplitude spectrum (solid lines, “instan-
taneous spectrum”) vs. forecasts using an averaged spectrum (dashed lines, “averaged spectrum”) to calculate cut-offs k0, kN and nonlinear
frequency corrections Ωr.

tions of each sea state), and the fidelity of the nonlinear fore-
cast is shown to be consistently superior when measured using
normalised mean square error as well as linear correlation. As
the time-scale of nonlinear evolution is slow (of order T/ε2,
for T a typical period and ε a typical wave steepness), the dif-
ference in the forecasts is more pronounced at longer times
(t = 90, 120 s) and for steeper waves (Hs = 7, 9 m). Interest-
ingly, we also find that the quality of the nonlinear forecast
improves with increasing directional spreading, holding other
values constant. It should be emphasised that all aspects of the
nonlinear forecast are precomputed based on data available at
t = 0 s. Consequently the computational effort involved in the
linear and nonlinear forecast is identical. For this simple rea-
son we recommend the use of nonlinear dispersion corrections
whenever phase-resolved predictions are needed.

In our treatment of the deterministic wave forecasting prob-
lem the starting point has been a perfectly accurate, synthetic
snapshot of the sea surface. In practical applications such
snapshots must be obtained instrumentally, and will contain
errors as well as gaps whose characteristics depend on the
instrumentation40,41. For example, X-band radar12 exhibits in-
evitable wave shadowing effects42,43. Moreover antenna rota-
tion means that measurements are typically not instantaneous,
introducing additional complications44. While other technolo-
gies, such as stereo-imaging45 or polarimetric imaging46 may
be able to provide virtually error-free reconstructions of the
surface elevation, their range is typically limited and surface
elevations are currently not available in real time using such
techniques. One possibility is to employ data assimilation to
reconstruct the free surface prior to making a prediction, as
suggested by Desmars et al47, Qi et al48 or Naaijen et al49

who use sequences of images. Wang & Pan50 have presented a
framework which integrates data assimilation using ensemble
Kalman filtering and HOS simulations for deterministic fore-
casting. Our work also assumes that no currents are present,
which is an idealisation. Surface current data is obtainable
from radar data51–54, and approximating this with a depth-
averaged current can allow for this to be incorporated as a
Doppler shift55 in the dispersion relation. A holistic approach
to data assimilation and forecasting, including simultaneous
estimation of a (depth uniform but possibly unsteady) current,
has recently been proposed by Wang et al56.

Fourier transform techniques are by far the most commonly
used method in processing the sea-surface elevation data.
However, these too may introduce errors, particularly relat-
ing to end effects, as discussed by Hlophe et al57,58. Other
possibilities have also been explored, such as convolution of
the measured waves with the sea’s finite impulse response
filter59. When treating mixed space-time data, approaches
which avoid Fourier transform methods have been proposed
and tested by Al-Ani et al10,44. While it may be possible to
adapt our nonlinear dispersion correction to work with such
methods, we have presented it here in terms of Fourier trans-
forms for ease of applicability. In contrast to some current
streams of deterministic forecasting research which favour nu-
merical methods, e.g. employing the HOS to propagate a pre-
diction forward in time, we have presented a lightweight ap-
proach easily substituted in place of the linear dispersion rela-
tion. We believe this can be profitably incorporated into other
forecasting frameworks, where possible together with data as-
similation, and ultimately feed into more accurate predictions
of ship or device motions in steep sea-states.
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Hs = 3 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9984 0.9985 0.9985 0.9986 0.9987 0.9988
60 0.9942 0.9955 0.9947 0.9958 0.995 0.9966
90 0.9877 0.9914 0.9886 0.9921 0.9893 0.9937
120 0.9786 0.9862 0.9805 0.9873 0.9816 0.9901

Hs = 5 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9920 0.9917 0.9110 0.9918 0.9920 0.9930
60 0.9660 0.9721 0.9637 0.9725 0.9667 0.9777
90 0.9245 0.9444 0.9199 0.9460 0.9272 0.9578
120 0.8683 0.9100 0.8626 0.9146 0.8755 0.9347

Hs = 7 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9698 0.9711 0.9713 0.9721 0.9734 0.9765
60 0.8779 0.9057 0.8798 0.9108 0.8892 0.9266
90 0.7430 0.8302 0.7490 0.8426 0.7657 0.8708
120 0.5862 0.7639 0.5989 0.7857 0.6157 0.8233

Hs = 9 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9252 0.9260 0.9295 0.9301 0.9321 0.9395
60 0.7142 0.7844 0.7298 0.8089 0.7408 0.8360
90 0.4624 0.6756 0.4821 0.7248 0.4959 0.7625
120 0.2319 0.6108 0.2401 0.6800 0.2539 0.7277

TABLE II. Correlations between linear/nonlinear forecasts and HOS
seas at various values of Hs and directional spreading angle β .

Appendix A: Tables

1. Whole-domain forecasts

2. Shrinking domain forecasts
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Hs = 3 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9867 0.9870 0.9890 0.9895 0.9913 0.9918
60 0.9813 0.9835 0.9846 0.9874 0.9879 0.9907
90 0.9746 0.9812 0.9784 0.9855 0.9826 0.9896
120 0.9647 0.9780 0.9692 0.9824 0.9746 0.9874

Hs = 5 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9815 0.9840 0.9813 0.9854 0.9855 0.9897
60 0.9577 0.9723 0.9564 0.9759 0.9627 0.9833
90 0.9205 0.9585 0.9161 0.9634 0.9250 0.9763
120 0.8815 0.9472 0.8640 0.9490 0.8727 0.9677

Hs = 7 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9640 0.9755 0.9647 0.9790 0.9682 0.9829
60 0.8822 0.9407 0.8787 0.9497 0.8923 0.9628
90 0.7561 0.8910 0.7457 0.9109 0.7668 0.9349
120 0.6145 0.8390 0.5933 0.8724 0.6364 0.9086

Hs = 9 m

β = 0.14 β = 0.36 β = 0.78
t [s] Lin Nonlin Lin Nonlin Lin Nonlin
30 0.9239 0.9560 0.9301 0.9617 0.9299 0.9680
60 0.7502 0.8762 0.7521 0.8977 0.7400 0.9124
90 0.5535 0.8011 0.5279 0.8290 0.5057 0.8542
120 0.3485 0.7451 0.3112 0.7695 0.2710 0.8031

TABLE IV. Correlations between linear/nonlinear forecasts and HOS
seas at various values of Hs and directional spreading angle β , for
predictions of shrinking regions.
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