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Abstract: Soft computing models based on fuzzy or probabilistic approaches provide decision system 
makers with the necessary capabilities to deal with imprecise and incomplete information. Hybrid 
systems based on different soft computing approaches with complementary qualities and principles 
have also become popular. On the one hand, fuzzy logic makes its decisions on the basis of the 
degree of membership but gives no information on the frequency of an event; on the other hand, 
the probability informs us of the frequency of the event but gives no information on the degree of 
membership to a set. In this work, we propose a new measure that implements both fuzzy and 
probabilistic notions (i.e., the degree of membership and the frequency) while exploiting the ability 
of the convolution operator to combine functions on continuous intervals. This measure evaluates 
both the degree of membership and the frequency of objects/events in the design of decision support 
systems. We show, using concrete examples, the drawbacks of fuzzy logic and probability-based 
approaches taken separately, and we then show how a fuzzy probabilistic convolution measure 
allows the correction of these drawbacks. Based on this measure, we introduce a new clustering 
method named Fuzzy-Probabilistic-Convolution-C-Means (FP-Conv-CM). Fuzzy C-Means (FCM), 
Probabilistic K-Means (PKM), and FP-Conv-CM were tested on multiple datasets and compared 
on the basis of two performance measures based on the Silhouette metric and the Dunn’s Index. 
FP-Conv-CM was shown to improve on both metrics. In addition, FCM, PKM, and FP-Conv-CM 
were used for multiple image compression tasks and were compared based on three performance 
measures: Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and Structural SImilarity 
Index (SSIM). The proposed FP-Conv-CM method shows improvements in all these three measures 
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1. Introduction 

Thanks to their ability to simulate human reasoning, fuzzy and probabilistic models 
allow the construction of automatic decision makers capable of handling very complex 
phenomena using limited knowledge, in particular for clustering, which is an unsupervised 
learning task consisting of grouping a collection of elements into subgroups so that the 
elements in the same group are more similar (according to a certain measure) compared 
with the objects in other groups. Clustering plays a critical role in data mining and as a 
standard method for statistical data analysis. It is widely employed in various tasks in 
machine learning, pattern recognition, image analysis, information retrieval, bioinformatics, 
data compression, and computer graphics. In this work, we introduce a new clustering 
method named Convolution-Fuzzy-Probabilistic-C-Means (FP-Conv-CM) that implements 
a new sub-measure, and which is a hybrid of two soft computing approaches: fuzzy logic 
and probabilistic methods. 
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The fact that the term “cluster” is not precisely defned is one reason behind the 
existence of numerous clustering methods. One thing they all have in common is the 
grouping of data objects. Nevertheless, many researchers have developed and employed 
various cluster models, and, again, several methods may be provided for each of these 
cluster models. Typical cluster models include connectivity models [1], centroid models [2], 
distribution models, density-based clustering [3], subspace models [4,5], graph-based 
models [6], and neural clustering models [7]. 

Clustering methods can be roughly distinguished into hard clustering or soft clus-
tering methods. There are more specifc distinctions that can be discussed, including 
(a) hierarchical clustering [8] (a child cluster’s objects are likewise a part of the parent 
cluster); the hierarchy can be built either by dividing or merging recursively [9,10], (b) strict 
partitioning clustering with and without outliers (objects might belong to none, which is 
referred as outliers); the partition-based clustering technique divides the data points of a 
dataset into different partitions [11–13], (c) overlapping clustering techniques, where an 
object may belong to one or more clusters; partitioning algorithms that overlap include 
the commonly used Fuzzy K-means and its variations [14,15], (d) subspace clustering 
(i.e. while an overlapping clustering, within an individually defned subspace, clusters are 
not expected to overlap) [16,17]. Fuzzy clustering is one of the most established clustering 
methods that partition the dataset into overlapping clusters, i.e., each object belongs to 
several clusters with different degrees of membership [18]. The notion of membership 
function embodies the concept of fuzzy sets and fuzzy logic. The effectiveness of soft 
clustering has been confrmed when dealing effectively with the discrimination of datasets 
in n-dimensional spaces and is more useful for unlabeled data and datasets with outliers. 

Dunn presented the widely used Fuzzy C-mean algorithm (FCM) [18], and over the 
years, Bezdek [19] has suggested an improved version of FCM; this algorithm being the 
soft centroid-based model that allows one piece of data to belong to two or more clusters. 
Due to the poor performance of FCM against noise and intensity inhomogeneity, many 
variants of FCM have been developed. These FCM variations are covered in [20]. FCM fails 
to discriminate between data points and noise or outliers, thus centroids could be stuck 
in the outliers instead of in the centers. To overcome this drawback, ref. [21] proposed a 
possibilistic C-means algorithm, where PCM is a distribution-based model which assumes 
that the observations of the learning set are the realizations of a random variable whose 
density function is a mixture of normal distributions [22] where the membership is the 
degree of belonging that illustrates how the datum is compatible with the class typicality. 
This makes it possible to improve performance when dealing with noise and outliers. 
Despite its capability, the PCM is sensitive to initializations and choices of parameters, it 
can generate coincident clusters, and also suffers from the degenerescence problem, i.e., 
when some group is empty, the standard deviation tends toward 0 [23]. To correct that, 
Pal et al. [24] combined FCM and PCM while considering the need for both relative and 
absolute typicalities in clustering. Another weakness of the possibilistic C-means is the 
negligence of membership values even with the observation of the typicality values. Further 
variants of the PCM method have been enhanced by changing the objective function to 
address some of the PCM’s shortcomings [25–27]. 

Furthermore, there are many attempts to beneft from the combination of FCM and the 
possibilistic approach to ameliorate the results, also recognizing the requirement for apply-
ing membership and typicality values simultaneously [24,28,29]. Once more, Pal et al. [30] 
presented a new impressive model named Possibilistic Fuzzy C-means (PFCM), which 
simultaneously created, for each cluster, a membership and typicity values with the stan-
dard prototypes or cluster centers. This algorithm has resolved the primary overlap and 
coincidence cluster issues that plagued PCM, in addition to removing noise sensitivity 
issues in FCM. Unfortunately, all these algorithms did not give satisfactory results, thus it 
was better to use a new approach [31] that enhanced the PFCM model to precisely detect the 
cluster centers. The authors introduced the Modifed Possibilistic Fuzzy C-Means (MPFCM) 
with norm functions, including the covariance norm, thus making it superior and fexible 
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at correcting the most complicated problems that other variants fnd challenging—mainly 
noise issues and outlier points. 

Several other clustering methods have been created in order to prove the possibility 
that a data point might belong to multiple sub-clusters at once, and some of these algorithms 
were based on neutrosophic logic. In [32], a Neutrosophic C-means algorithm (NCM) was 
presented to derive such an approach by introducing a new objective function handling 
two different classes of rejection—the ambiguity rejection and the distance rejection—to 
correct the FCM method’s weakness in identifying noise and outlier data points. NCM 
simultaneously calculates the degrees of belonging to the determinate and indeterminate 
clusters for each of the data points. By using a new iterative process, Guo and Sengur [33] 
updated the membership degrees to the ambiguity and outlier class of data points, and as a 
result, the membership functions are more immune to noise. The study [34] suggested a new 
Kernel NCM clustering algorithm (KNCM) to improve the idea of the NCM approach for 
nonlinear-shaped data clustering by combining the kernel function with the neutrosophic 
logic. In addition, they produced a novel cost function to solve for noise and outliers using 
a robust parameter estimation, which led to generation of a new membership function and 
prototype update equations. Along the same lines, [35] proposed a new kernel-based fuzzy 
clustering method to deal with the issue of arbitrary cluster shapes. A novel utilization 
of the kernel method was proposed to extract more expressive features implicitly and 
may be used to reduce the struggle during fuzzy clustering of high dimensional data 
by discovering good new representations from the original data. The kernel approach 
in [36] has emerged as an interesting and quite viable alternative to fuzzy clustering. In 
addition, [37] proposed multiple kernel fuzzy clustering (MKFC), which expands the fuzzy 
c-means algorithm with the multiple kernel-learning setting. MKFC has more excellent 
resistance to useless features and kernels by employing multiple kernels and an automated 
adjustment of the kernel weights. A multiple kernel fuzzy c-means (MKFCM) approach 
was also presented by [38], who developed a novel algorithm that uses a linear composite 
of multiple kernels and automatically determines the updating of the linear coeffcients of 
the combined kernel. 

Fuzzy clustering plays an important role in the feld of data mining. Since the mem-
bership function offers a powerful tool for the identifcation of changing class structures, 
ref. [39] has suggested a technique for dynamic data mining that focuses on fuzzy c-means. 
This approach appears to afford a convenient method for the detection of changing class 
structures. Unfortunately, it suffers from several weaknesses, and [40] proposed some 
adjustments that led to the creation of the modifed dynamic fuzzy c-means (MDFCM) 
algorithm. This allows for more fexibility in membership function estimation and averts 
the use of extremely complicated equations [41]. In a recent paper, we developed a cluster-
ing model based on a recurrent neural network, an optimization model that treats various 
samples equally, and the Euler-Cauchy technique with a fxed time step [42]. However, 
outlier samples make it impossible to identify the true groups and cause a very long 
and incorrect convergence trajectory. We investigated, in [43], a constrained optimization 
method that de-assigns memberships from centers to reduce the impact of outlier samples. 
To beneft from the capacity of dynamic systems to memorize prior groupings and the 
understanding of the features of the data by neural networks, we have introduced, in our 
previous work [44], an original clustering method that implements fuzzy logic and a recur-
rent neural network, namely the Recurrent Neural Network Fuzzy C-means. Other recent 
versions of Fuzzy C-means were introduced. In [45], authors proposed a gradient descent 
algorithm based on possibilistic fuzzy c-means for clustering noisy data. In [46], authors 
suggested the Optimization of a Fuzzy C-Means Clustering Algorithm with a Combination 
of Minkowski and Chebyshev Distance Using Principal Component Analysis. Wang et al. 
introduced an improved index for clustering validation based on the Silhouette index 
and the Calinski–Harabasz index [47]. A hybrid fuzzy c-means clustering algorithm was 
suggested in [48] and was essentially focused on big data problems. The Deep Possibilistic 
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C-means Clustering Algorithm was recently introduced by Gu Y et al. and was used on 
medical datasets [49]. 

In this work, we propose a new sub-measure that implements both notions (the degree 
of membership and the frequency of “pattern p belongs to A with degree of membership 
(A,p)”, event denoted with an E, while exploiting the ability of the convolution operator 
to combine functions on continuous intervals. This measure evaluates both the degree of 
membership and the frequency of E in the design of decisional systems. We show, using 
concrete examples, the disadvantages of fuzzy logic and probability-based approaches 
taken separately, and then we show how a convolution probabilistic measure allows the 
correction of these disadvantages. Based on this measure, we introduce a new clustering 
method named Fuzzy-Probabilistic-Convolution-C-Means (FP-Conv-CM). FCM, PKM, and 
FP-Conv-CM were comparatively tested on several datasets to analyze the clustering task 
and on several images to analyze the compression task. FCM, PKM, and FP-Conv-CM 
were compared based on several performance measures: Silhouette and Dunn’s indexes, 
mean square error, structural similarity (SSIM), and peak signal-to-noise ratio (PSNR). 
Considering the results obtained using FCM and PKM, FP-Conv-CM was able to improve 
the Silhouette and Dunn’s Indexes. In addition, FP-Conv-CM improved MSE, PSNR, and 
SSIM values. 

The rest of the paper is organized as follows: In Section 2, we present the methodology 
adopted in this work to achieve the stated goals. In Section 3, we discuss the disadvantages 
of fuzzy and Probabilistic K-means using concrete data. In Section 4, the proposed fuzzy 
probability measure is described and used for clustering tasks. In Section 5, we present 
experimental results, and Section 6 concludes the paper. 

2. Methodology Overview 

Let B = {z1, . . . , zN} ⊂ Rn represent the space of unlabeled observations. The 
clustering methods seek to reduce the information contained in B: 

• By summing it up as a set W = {w1, . . . , wk} ⊂ Rn, where k � N; these vectors will 
be called referents (centers) throughout the rest of the article; 

• By defining an assignment function, χ, which is an application of B in the set of indices 
{1, . . . , k}, this function makes it possible to realize a partition P = {G1, . . . , Gc, . . . , Gk}
of B in k subsets, Gc = {z ∈ B/χ (z) = c}. 

It should be noted that the clustering problem is NP diffcult. Indeed, if k (the number 
of groups) and d (the dimension), are fxed and n is the number of items to be clustered, � � 

2nk+1then the problem can be solved exactly in time [50]. 
Defnitions 

• Data= {z1, . . . , zN} ⊂ Rn is the dataset under study; 
• Centers= {w1, . . . , wk} ⊂ Rn is the set of the centers to be determined; 
• χ is the allocation function of data to the groups represented by the centers w1, . . . , wk;� � � 
• Gj = z ∈ Data/χ(z) = arg wj , ∀j = 1, . . . , k are the groups determined based on χ; 

m 1• µj (z) = 2/m−1 is the membership function of group Gj where m is a real 
kz−wjk ∑k

c=1 kz−wck 
number strictly greater than 1;� �0 

exp − 2
1 (x−wj) covj 

−1(x−wj)• pj(x) = q is the probability of x being in group Gj, where covj
(2π)ndet(covj) 

is the covariance of the component j. 

The quantity pj(x) measures the frequency that x is taken from Gj; whereas µj(x) 
measures the degree of belonging of x to Gj. Our idea is to defne a new borelian measure 
that measures the degree of belonging of x to Gj with frequency pj(x). 

Methods 
In this work, we introduce a new measure that measures the degree of belonging of x 

to Gj with frequency pj(x). This measure is called fuzzy probability convolution measure 
and implements the following membership-density functions: 
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For a continuous case: R 
m� � µj (τ)pj(z − τ)dτ 

ϕm
j (z) = µj ∗ pj (z) = 

Rn 

For a discrete case: � � + 

i=1 

∞

∑ 

Based on the proposed fuzzy probability convolution measure, we introduce a new 
clustering method that we named Fuzzy Probabilistic Convolution C-Means (FP-Conv-
CM). This method estimates the vectors wc, the common standard deviation σ, and the 
membership coeffcients. Based on FP-Conv, the model implementing these parameters 
must approximate the true density that generated the data {z1, . . . , zN}. In this regard, our 
method involves maximizing the fuzzy probability of the observations: R

N mµ 

ϕm
j (z) = m 

j (τi)pj(z − τi)µj ∗ pj (z) = µ 

(τ)pχ(zi)
(zi − τ)dτmV(w1, . . . , wk, σ, µ , χ) = ∏ χ(zi) 

Rn 
i=1 

where V represents the likelihood measuring the capacity of the model to reproduce the 
data {z1, . . . , zN}, µm is the matrix of the membership coeffcients (which represents the 
degree of membership of each data zi to each group c), and χ(zi) is the group that won the 
sample zi according to FP-Conv. 

Metrics 
One of the biggest challenges facing researchers is how to evaluate the clustering. The 

homogeneity of the created classes/clusters and the separation between them are calculated 
in order to assess the effciency of the clustering method. These qualities may be evaluated 
using a variety of indices: 

• Silhouette index: 
• Let N be the number of patterns. The Silhouette index [43] fnds the optimal clustering 

effect using the difference between the average distance within the cluster and the 
minimum distance between the clusters, i.e., the silhouette coeffcient is given as 
follows: � � 

1 b(i)−a(i)• S(i) = N ∑
N 
i=1 max {a(i),b(i)}

• a(i) represents the average distance from sample i to other samples in the cluster; 
• b(i) represents the minimum distance from sample i to the other clusters. 
• The silhouette coeffcient ranges from −1 to 1, where −1 denotes that the data point 

is not assigned to the relevant cluster, 0 denotes that the clusters are overlapping, 
and 1 denotes that the cluster is dense and well-separated. This metric is one of 
the most popular measurements in clustering. It can distinguish between objects 
that were placed wisely within their cluster and those that are in the outlier zone 
between clusters. 

• Dunn index: The Dunn index [40,44] is defned as 
dmin• DI = dmax 

(i) (j)If ci and cj are different clusters then dmin = min{ min kx − x k2} is the mini-k k0 i 6=j ∀xk∈ci ,∀xk0 ∈cj 

(r) (r)mal distance between samples in different clusters and dmax = max {maxkx − x k2} isk k0 r=1,...,c k 6=k0 
the largest within-cluster distance. Note that large inter-cluster distances (better separation) 
and smaller cluster sizes (more compact clusters) lead to higher DI values. A higher DI 
value implies better clustering [40]. It assumes that better clustering means that clusters are 
compact and well-separated from other clusters. 

The performance measures used to evaluate different image compressions are: 
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(a) Mean Squared Error (MSE), which calculates the error between the initial image and 
the compressed image. It is in fact the distance between two matrices that represent 
the images to be compared. 

(b) Peak Signal-to-Noise Ratio (PSNR), which implements the following equation: 

PSNR = 10log10(peakval/MSE) 

where peakval is taken from the range of the image datatype. 
(c) Structural SIMilarity (SSIM) index, which is calculated on various windows of an im-

age. The measure between two windows x and y of common size a × a is: 
(2xy+a1)(2cov(x,y)+a2)SSIM(x, y) = 

(x2+y2+a1)(var(x)2+var(y)2+a2) 
Where mean(x) = x, var(x) is the variance of x, and cov(x, y) is the covariance of x 

and y; a1 and a2 are two constants estimated from the image [51]. 
Experimental validation 
FCM, PKM, and FP-Conv-CM were tested on multiple datasets and compared on 

the basis of two performance measures, i.e., the Silhouette metric and Dunn’s Index (see 
Section 5.2). FP-Conv-CM was able to improve the Silhouette value by 1000 and Dunn’s 
Index by 0.024. 

FCM, PKM, and FP-Conv-CM were used for multiple image compression tasks and 
were compared based on three performance measures: mean squared error (MSE), peak 
signal-to-noise ratio (PSNR), and structural similarity index (SSIM) (see Section 5.3). FP-
Conv-CM improved MSE by 3000, PSNR by 11, and SSIM by 0.32. 

3. Drawbacks of Fuzzy and Probabilistic Approaches 
3.1. K-Means 

The K-means method, which is the most well-known vector quantization method, 
determines the set of reference vectors W and the assignment function χ, by minimizing 
the cost function: 

J(W, χ) = ∑ kzi − wχ (zi)
k2 

zi∈B 

The time complexity of K-means is O(N x k x n x i) [52], where i is the number of 
iterations needed until convergence. The k-means method suffers from several drawbacks 
due to it being a hard clustering method. To overcome these issues, there exist many 
extensions, including FCM and PKM [43]. 

3.2. Probabilistic K-Means 

To obtain the probabilistic version of k-means, it is assumed that the observations of 
the learning set B are the realizations of a random variable whose density function is a 
mixture of k normal distributions [44,53]: 

k 
p(z) = ∑ αc fc(z) 

c=1 

where ∑k
c=1 αc = 1; and fc is the normal density function. 

In addition to this formalism, the shift to the probabilistic interpretation of the K-means 
algorithm requires us to introduce additional assumptions: 

• The prior probabilities αc are all equal to 1/k; 
• The k normal functions fc have identical variance–covariance matrices equal to σ2 I, 

where I represents the unit matrix and σ is the standard deviation considered constant 
for all these normal distributions. 

• In that case, the density function has the following expression:� � 
2

1 kz−wck• fc(z) = n exp − 2σ2 
(2π) 2 σn 
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• The k-means probabilistic version involves estimating the vectors wc and the typical 
standard deviation σ trying to realize the sample as much as possible. This method, 
known as the maximum likelihood method, involves maximizing the probability 
p (z1, . . . , zN) of these observations. 

• Maximizing the classifying likelihood amounts to minimizing: 
1• V(W, σ, χ) = 2σ2 J(W, χ) + N × n × log(σ) + CONST 

• Probabilistic k-means has a running time of O(N × k × n × ITER) [52], where N is the 
number of n-dimensional vectors, k is the number of clusters, and ITER is the number 
of iterations required to reach convergence; CONST is a constant that depends only on 
the data. 

3.3. Fuzzy C-Means (FCM) 

The fuzzy mean square clustering algorithm known as Fuzzy C-means (FCM) allows 
one sample of data to belong to each cluster with different degrees of membership. This 
method is frequently used in pattern recognition [42]. The objective function of the FCM 
method is minimizing the following error: 

N k 
m 2Jm = ∑∑ u xi − wj , 1 ≤ m < ∞ij 

i=1 j=1 

where the real value m determines the fuzziness of the generated clusters (m > 1), N is the 
dataset size, k is the number of clusters, um

ij is the degree of membership of sample xi to 
the cluster j, wj is the n-dimensional center of the cluster j, and k.k represents any norm 
denoting the similarity between each measured data and the center. 

An iterative optimization of the objective function presented above is used to perform 
a fuzzy partitioning, with the update of membership um

ij and the cluster centers wj by: 

∑N um
1 i=1 ij .ximu = ; cj = ij � � 2 

m−1 ∑N um 
kxi−wjk i=1 ij 

∑k 
c=1 kxi−wck n o 

m,(iter+1) m,(iter)This iteration will stop when max u − u < ε, where ε is a termi-ij ij ij 
nation criterion between 0 and 1, whereas iter are the iteration steps. This procedure 
converges to a local minimum or a saddle point of Jm. 

3.4. Fuzzy Reasoning and Probabilistic Reasoning Are Complementary 

Let E be a set from Rn . The probability, PE(x), measures the probability that x is taken 
from E, whereas µE(x) measures the degree of belonging of x to E. 

Probabilistic reasoning corrects the weakness in fuzzy reasoning: 
Consider a dataset whose elements are distributed according to two normal distribu-

tions, N1(c1 = −0.75, σ1 = 0.25) and N2(c2 = 0.25, σ2 = 0.75), presented in Figure 1. 
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𝜇1(𝑥) =
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|𝑥+0.75|2

1
|𝑥+0.75|2

+
1

|𝑥−0.25|2

 and  𝜇2(𝑥) =

1

|𝑥−0.25|2

1

|𝑥+0.75|2
+

1

|𝑥−0.25|2

  

In fact, we have |s + 0.75|2 = 0.2401  and |s − 0.25|2 = 0.2601, then μ1(s) =
1

|s+0.75|2

1

|s+0.75|2
+

1

|s−0.25|2

= 0.52  and μ2(s) =

1

|s−0.25|2

1

|s+0.75|2
+

1

|s−0.25|2

= 0.48,  thus, the fuzzy model predicts 

that the sample 𝑠 = −0.26 is from class 1 with center c1 = −0.75, which is false. 

(b) The probabilistic model based on the densities 𝑝1 and 𝑝2, presented in Figure 1, pre-

dicts 𝑠 as an element of C2 

𝑝1(𝑥) =
1

0.25√2𝜋
𝑒𝑥𝑝 (−

|𝑥+0.75|2

2×0.0625
) and 𝑝2(𝑥) =

1

0.75√2𝜋
𝑒𝑥𝑝 (−

|𝑥−0.25|2

2×0.5625
)  

In fact, we have p1(s) =
1

0.25√2π
exp (−

|s+0.75|2

2×0.0625
) =

1

0.25√2π
exp (−

0.492

2×0.0625
) ≈

0.2338 and  p2(s) =
1

0.75√2π
exp (−

|s−0.25|2

2×0.5625
) ≈

1

0.75√2π
exp (−

0.512

1.12
) ≈ 0.4221. 

Thus, the probability model predicts that s= −0.26 is from class 2 with center c2 =

0.25, which is true. 

Fuzzy reasoning corrects the weakness in probabilistic reasoning: 

Consider a dataset whose elements are distributed according to two normal distribu-

tions, 𝑁1(c1 = 0, σ1 = √5) and 𝑁2(c2 = 1, σ2 = 1). These two distributions form two clus-

ters (or classes), namely C1 and C2. In this subsection, we will use probabilistic and fuzzy 

models to recognize the classes of some critical data. When we generated the data, we 

noticed that some samples are close to the mean of the two densities and do not have a 

very high frequency. As we will see later, this perturbs the decision of the models. 

Example 2. We consider the element 𝑠 = −0.2, close to the center 0, of the class (or cluster) C1. 

(a) The fuzzy model based on the membership functions μ1 and μ2 given below pre-

dicts s as an element of C1. 

Figure 1. Fuzzy membership functions and probability densities of two clusters associated with N1 

and N2 red color corresponds to the frst group and the blue one corresponds to the second color. 
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These two distributions form two clusters (or classes), namely C1 and C2. In this 
subsection, we will use probabilistic and fuzzy models to recognize the classes of some 
critical data. When we generated the data, we noticed that some samples have a very high 
frequency and are not close enough to the centers of the two densities. As we will see later, 
depending on the case study, this type of data misleads both models. 

Example 1. We consider the element s = −0.26, of high frequency, from class (or cluster) C2. 

(a) The fuzzy model based on the membership functions µ1 and µ2, presented in Figure 1, 
predicts s as an element of C1. 

1 1 
2 2|x+0.75| |x−0.25|

µ1(x) = and µ2(x) = 1 1 1 1 
2 + 2 2 + 2|x+0.75| |x−0.25| |x+0.75| |x−0.25| 

In fact, we have |s + 0.75|2 = 0.2401 and |s − 0.25|2 = 0.2601, then 
1 1 

|s+0.75|2 |s−0.25|2 
µ1(s) = 1 1 = 0.52 and µ2(s) = 1 1 = 0.48, thus, the fuzzy model 

|s+0.75|2 + 
|s−0.25|2 |s+0.75|2 + 

|s−0.25|2 

predicts that the sample s = −0.26 is from class 1 with center c1 = −0.75, which is false. 

(b) The probabilistic model based on the densities p1 and p2, presented in Figure 1, 
predicts s as an element of C2 

2 21 |x + 0.75| 1 |x − 0.25|
p1(x) = √ exp(− ) and p2(x) = √ exp(− )

0.25 2π 2 × 0.0625 0.75 2π 2 × 0.5625 � � 
2 � � 

1 |s+0.75| 1 0.492
In fact, we have p1(s) = √ exp − = √ exp − ≈ 0.23382×0.0625 2×0.06250.25 2π 0.25 2π� � 

2 � � 
1 |s−0.25| 1 − 0.512

and p2(s) = √ exp − ≈ √ exp ≈ 0.4221.2×0.5625 1.120.75 2π 0.75 2π 

Thus, the probability model predicts that s= −0.26 is from class 2 with center c2 = 0.25, 
which is true. 

Fuzzy reasoning corrects the weakness in probabilistic reasoning: 
Consider a dataset whose elements are distributed according to two normal distri-� �√ 

butions, N1 c1 = 0, σ1 = 5 and N2(c2 = 1, σ2 = 1). These two distributions form two 
clusters (or classes), namely C1 and C2. In this subsection, we will use probabilistic and 
fuzzy models to recognize the classes of some critical data. When we generated the data, 
we noticed that some samples are close to the mean of the two densities and do not have a 
very high frequency. As we will see later, this perturbs the decision of the models. 

Example 2. We consider the element s = −0.2, close to the center 0, of the class (or cluster) C1. 

(a) The fuzzy model based on the membership functions µ1 and µ2 given below predicts 
s as an element of C1. 

11 2 
x2 |x−1|

µ1(x) = and µ2(x) = 1 1 1 1 
x2 + 2 x2 + 2|x−1| |x−1| 

1 
|s−1|2

1 

In fact, we have µ1(s) = s2 = 0.9730 and µ2(s) = = 0.0270, thus, the 1 1 1 1 
s2 + 

|s−1|2 s2 + 
|s−1|2 

fuzzy logic predicts that the samples = −0.2 is from class 1 with center c1 = 0, which is true. 

(b) The probabilistic model based on the membership functions µ1 and µ2 given below 
predicts s as an element of C2. 

https://x+0.75||x�0.25||x+0.75||x�0.25
https://x+0.75||x�0.25
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� �� � 2 
In fact, we have p1(s) = √ 1 exp − 10 

s2 ≈ 0.1777 and p2(s) = √1 exp −|s− 
2
1|

10π 2π 

≈ 0.1942. 
Thus, the probability approach predicts that s = −0.2 is from class 2 of center c2 = 1, 

which is false. 
Drawbacks of fuzzy and probabilistic approaches on real data: image compression 

case study: 
To show the limits of fuzzy and probabilistic approaches on real data, we have used 

these methods to compress images and we have conducted a deep analysis of the ob-
tained results. For this, we have used the image of the great scientist Max Planck (see 
Figure 2a). The histogram of this image is given in Figure 2b, while Figure 2c highlights an 
ambiguous pixel. 
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Figure 2. (a) Max Planck. (b) Histogram of the Max Planck image, and (c) pixel mid-distance of the 
two fuzzy centers. 

The image obtained after decompression is shown in Figure 3a (after compression 
using 2-GMM). The histograms of group 1 (center = 58.95, std = 15.98) and group 2 
(center = 58.95, std = 15.98), obtained using 2-GMM, are given in Figure 3b,c, respectively. 
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Figure 3. (a) Decompression of the image of Max Planck compressed using 2-GMM. (b) The histogram 
of group 1 pixels obtained using 2-GMM (center = 58.95, std = 15.98), and (c) the histogram of group 
2 pixels obtained using 2-GMM (center = 155.61, std = 50.04). 

The image obtained after decompression is shown in Figure 4a (following compression 
using 2-FCM). The histograms of group 1 (center 1 = 63.75) and group 2 (center 2 = 186.53), 
obtained using 2-FCM, are given in Figure 4b,c, respectively. 

In the frst phase of this example, we focus on the pixels with a gray level 125, which 
represent 29.05% of the image; for example, the pixel located at position [30 264], which is 
called p. For pedagogical reasons, we have highlighted this pixel on the different histograms 
and the different images of Max Planck—original and those obtained by decompression. 

This kind of pixel causes ambiguities for 2-FCM, but 2-GMM assigns them correctly 
thanks to amplifcation of the small quantities (thanks to the averages and standard devia-
tions) by the exponential function of each Gaussian component. 
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Figure 4. (a) Decompression of the image of Max Planck compressed using 2-FCM. (b) Histogram of 
group 1 pixels obtained using 2-FCM (center 1 = 63.75), and (c) histogram of group 2 pixels obtained 
using 2-FCM (center 2 = 186.53). 

Indeed, the degrees of membership of p to each of these groups, formed by 2-FCM, 
are given by µ1(p) = 0.5022 et µ2(p) = 0.4978; thus µ1(p) ≈ µ2(p). The probabilities of p 
belonging to each of the two groups formed using 2-GMM are given by P1(p) = 0.0024 and 
P2(p) = 0.9976; hence, the clarity of the probabilistic decision with respect to the suitable 
group of the pixel p. 

In the second phase of this example, we focus on the pixels with a gray level of 92, 
which represent 45.8% of the image; for example, the pixel located at position [198 279], 
which is called q. This kind of pixel causes ambiguities for 2-GMM, but 2-FCM assigns them 
correctly thanks to the integration of all centers in the formulas of all 
membership functions. 

Indeed, the probabilities of q belonging to each of the two groups are P1(q) = 0.5126 et 
P2(q) = 0.4873; thus P1(q) ≈ P2(q). The degree of membership of q in each of these groups 
formed by 2-FCM are given by µ1(q) = 0.9179 and µ2(q) = 0.0820; hence the clarity of the 
fuzzy decision with respect to the suitable group of pixel q. 

In the next section, in order to overcome these shortcomings, we will introduce a 
hybrid sub-measure that implements both fuzzy and probabilistic concepts. 

4. Proposed Approach 
4.1. Fuzzy Probability Convolution Measure 

Our idea is to defne a new hybrid measure that implements the fuzzy and the proba-
bility reasonings at the same time and corrects the shortcoming of the classical reasoning. 
Thus, this new measure computes the frequency of taking x from E and the degree of 
belonging of x to E at the same time; we call this measure fuzzy probability convolution. 

Defnition 1. (Convolution-Fuzzy-probability): The Fuzzy Probability Convolution (FP-Conv) 
measure is defned based on the convolution of the membership function µE and on the density 
(probability) pE as given by: 

For a continuous case: 

∞

∞− 

ϕE(z) = (µE ∗ pE)(z) = µE(τ)pE(z − τ)dτ 

For a discrete case: 

+y 

ϕE(z) = (µE ∗ pE)(z) = µE(τi)pE(z − τi)dτ 
∞

∑ 
+ 

i=1 

The fuzzy probability convolution corrects the incorrect decisions of the fuzzy logic. 
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Consider the following membership functions: 

1 1 
2 2|x+0.75| |x−0.25|

µ1(x) = and µ2(x) = 1 1 1 1 
2 + 2 2 + 2|x+0.75| |x−0.25| |x+0.75| |x−0.25| 

and the following normal density functions: ! ! 
2 21 |x + 0.75| 1 |x − 0.25|

p1(x) = √ exp − and p2(x) = √ exp − . 
0.25 2π 2 × 0.0625 0.75 2π 2 × 0.5625 

Proposition 1. Based on the decision model implementing the following FP-Conv densities: Z +∞ 
ϕ1(z) = (µ1 ∗ p1)(z) = µ1(τ)p1(z − τ)dτ 

−∞ R +∞and ϕ2(z) = (µ2 ∗ p2)(z) = −∞ µ2(τ)p2(z − τ)dτ, the sample s = −0.26 is predicted as 
the element of class 2, which is true. R +∞Proof. We have ϕ1(s) = (µ1 ∗ p1)(s) = −∞ µ1(x)p1(s − x)dt ≈ 0.055585, andR +∞
ϕ2(s) = (µ2 ∗ p2)(s) = −∞ µ2(x)p2(s − x)dt ≈ 0.393632; thus, ϕ1(s) < ϕ2(s). 

Thus, s is considered as an element of the class with center c2 = 0.25, which is true. 

Note: It should be noted that p1(s) ≈ 1.8054 p1(s) and ϕ1(s) ≈ 7.0816 ϕ2(s), which means 
that the decision is clearer. � 

The convolution fuzzy probability corrects the incorrect decisions of the probabil-
ity reasoning. 

1 

x2 |x−1|2
1 

Consider the membership functions µ1(x) = and µ2(x) = , and the 1 1 1 1 
x2 + 

|x−1|2 x2 + 
|x−1|2 

normal densities functions p1(x) = √ 1 exp(− 10 
x2 
) and p2(x) = √1 exp(−|x−1|2 

).210π 2π 

Proposition 2. Based on the fuzzy density measures ϕ1(z) = (µ1 ∗ p1)(z) = R R+∞ +∞ 
−∞ µ1(τ)p1(z − τ)dτ and ϕ2(z) = (µ2 ∗ p2)(z) = −∞ µ2(τ)p2(z − τ)dτ , the sample 

s = −0.2 is predicted as an element of class 1, which is true. R +∞Proof. We have ϕ1(s) = (µ1 ∗ p1)(s) = −∞ µ1(t)p1(s − t)dt ≈ 1.14554 andR +∞
ϕ2(s) = (µ2 ∗ p2)(s) = −∞ µ2(x)p2(s − x)dt ≈ 0.246882; thus ϕ1(s) > ϕ2(s). 

Thus, s = −0.2 is predicted as an element of the class with center c1 = 0, which is true. 

Note: It should be noted that µ1(s) ≈ 36.0370µ1(s) and ϕ1(s) ≈ 4.64ϕ2(s). � 

4.2. Fuzzy Probabilistic Convolution C-Means 

The quantity Pj(x) measures the frequency that x is taken from Gj; whereas, µj(x) 
measures the degree of belonging of x to Gj. Our idea is to defne a new borelian measure 
that measures the degree of belonging of x to Gj with frequency Pj(x). This new measure 
calculates the frequency of taking x from Gj and the degree of belonging of x to Gj at the 
same time. 

Based on the concepts introduced in Section 2, the fuzzy probability convolution 
clustering method implements the following membership density functions: 

https://x+0.75||x�0.25||x+0.75||x�0.25
https://x+0.75||x�0.25
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Continuous case: R 
m� � µj (τ)pj(z − τ)dτ 

ϕm
j (z) = µj ∗ pj (z) = 

Rn 

Discrete case: � � +∞

∑ϕm
j (z) = m 

j (τi)pj(z − τi)µj ∗ pj (z) = µ 
i=1 

The following example shows, geometrically, how the new membership density 
function makes the decision increasingly clearer and easier. 

Example 3. Let us consider that Data = {z1 = −0.5, z2 = 0.4, z3 = 0.6}, Centers = 
{w1 = 0, w2 = 0.5}, 

The samples allocated to each group: G1 = {z1 = −0.5} and G2 = {z2 = 0.4, z3 = 0.6}, 
We set m = 2 ; then, 

2 1 (x−0.5)2
2 1 x2 

µ1(x) = 
x2 = 2 and µ2(x) = = 2 (see Figure 2)

1+ (x−0.5) +x2 
1+ (x−0.5)2 (x−0.5) +x2 

(x−0.5)2 x2 � �� � 2 
− (x−0.5)and set σ = 0.2 then, p1(x) = √1 exp − x2 

and p2(x) = √1 exp (see0.32 0.320.4 2π 0.4 2π 

Figure 2). � �R 2 2
1 (τ−0.5) − (z−τ)Therefore, ϕ2

1 (z) = √ exp dτ and
0.4 2π (τ−0.5)2+τ2 0.32� �R 2 

τ2 − (z−τ−0.5)
ϕ2

2 (z) = √1 
2 exp dτ.

0.4 2π (τ−0.5) +τ2 0.32 

2 2Figure 5 represents µ1, µ2, p1, p2, ϕ2
1, and ϕ2

2. The curves of the frst four functions 
clearly underline the source of the ambiguity in the probabilistic and fuzzy models: the 
curves representing the two groups are very close to each other and the data located on the 
edges have almost the same probabilities of belonging to different groups. The introduced 
measure created a very safe separation zone and made a very large difference between the 
degrees of membership of the data at the edge to the different groups. This will enable the 
FCM-Conv clustering method to make decisions very comfortably. 
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0.4√2π
exp (−

x2

0.32
) and p2(x) =

1

0.4√2π
exp (−

(x−0.5)2

0.32
) (see Figure 2). 

Therefore, φ1
2 (z) =

1

0.4√2π
 ∫

(τ−0.5)2

(τ−0.5)2+τ2 exp (−(z−τ)2

0.32
)dτ and  

φ2
2 (z) =

1

0.4√2π
∫

τ2

(τ−0.5)2+τ2 exp (−(z−τ−0.5)2

0.32
)dτ. 
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4.3. Fuzzy Probability Convolution for the Clustering Task 

Following the same principle of probabilistic models presented in Section 2, the 
proposed clustering method, named Fuzzy Probabilistic Convolution C-Means (FP-Conv-
CM), involves estimating the vectors wc, the common standard deviation σ, and the 
membership coeffcients, trying to make the realization of the sample of as much as possible 
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in the sense of FP-Conv measure. In this sense, our method involves maximizing the fuzzy 
probability of the observations: 

mV(w1, . . . , wk, σ, µ , χ) = µpm(z1, . . . , zN/χ)� � 
m m m= µp ⊗ µp ⊗ . . . ⊗ µp (z1, . . . , zN)χ(z1) χ(z2) χ(zN) 

Ndef 
ϕm= ∏ (zi)χ(zi)i=1R 

mN µ (τ)p (zi − τ)dτ
χ(zi) χ(zi)= ∏ Rn

i=1 

mThe parameters w1, . . . , wk, σ, µ , and χ must be chosen such that the likelihood V is � � N 
mmaximum, meaning that the log-likelihood L(w1, . . . , wk, σ, µ , χ) = ln V = ∑ ϕχ(zi)(zi) 

i=1 
is maximum. 

To maximize L, we use the partial gradient descent. We present the sample zi to the 
fuzzy probability system, and then we set gi = argmaxϕc(zi) (the group containing that 

c=1,...,k 
sample i) . 

At the time t, we propose that w1
t , . . . , wt

k, σt(tandard deviation), and 
χt(allocation function) are known. In addition, thanks to the FP-Conv-CM, we propose 
that ϕgi 

(zi) � ϕc(zi); ∀c 6= gi, then we update wgi 
via the gradient descent method 

represented by the following equation: 

t+1 twgi 
= wgi 

+ strwgi 
ϕgi 

(zi)/wgi =wt 
gi 

� �� � 
Theorem 1. We have rwgi 

ϕgi (zi)/wgi =wt
gi 
= θt

i ∗ pgi ,t (zi) + µm
gi ,t ∗ ρ

i
t (zi) such that θt

i and 

ρi
t are the gradients of µm

gi ,t and pgi ,t , respectively, and st is the step of the algorithm following the 
current direction at time t. 

2/(m−1)Proof. We set Ai,t = ∑ 1/||τ − wt || c 
c 6=gi 

mThen, we calculate the gradient of the memberships µgi,t 
and p and we obtain:gi,t � � 
k(3−m)/(m−1)Ai,t τ − wg

t 
i 
kτ − wg

t 
i rwgi 

µ mgi 
(τ)/wgi =wg

t 
i 
= 2/(m − 1) � �2 = θi

t(τ)
2/(m−1)1 + Ai,tkτ − wt

gi 
k 

� �� � t 2kzi−τ−w k
and, rwgi

p (τ)/ =wt = √n 1 zi − τ − wt exp − gi = ρi
t(zi − τ). Fi-gi wgi gi 2πσn+2 gi 2σ2 � t � � � t 

mnally, rwgi 
ϕgi 

(zi)/wgi =wg
t 

i 
= θt

i ∗ pgi,t 
(zi) + µgi,t 

∗ ρi
t (zi). � � 

t 2kz−w k1 gi m 1Where pgi,t
(z) = √n exp − 

2σ2 and µgi,t
(z) = 

t 2/m−1 . �
2πσn

t t kz−w kgi∑c tkz−wck 
To update σt, we use the gradient descent method represented by the following 

equation: 
∂ϕgi (zi)

σt+1 = σt + at /σ=σt∂σ 

where is the step of the Algorithm 1 following the current direction at time t. � �
∂ϕgi (zi) ∂pgi ,tTheorem 2. We have /σ=σt = µm (zi).∂σ gi ,t ∗ ∂σ 
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R ∂p∂ϕgi (zi) gi,t
(zi−τ)mProof. In fact, we have = µ dτ∂σ /σ=σt gi,t

(τ) ∂σ /σ=σt 

and 

∂p σn−1 kz − wt 2 ! 
kz − wt 2 ! k kgi,t gi σt git(z) = −√ 2 + √ 

n × exp −
∂σ n 

σ2n 2πσn σ4 2σ2
2π t t t t 

then ! !t 2 t 2∂pgi,t 1 1 kz − w k kz − w kgi gi(z) = √ 
n −√ 

n + exp −
∂σ 2πσt

n+1 2π σt
2 2σt

2 

Then we substitute z with zi − τ. 
In the following section, we give the version of the proposed system that implements 

the full-gradient of the loss function: 

Algorithm 1. Fuzzy-Probabilistic-Convolution-C-Means. 

Requires: Data ={z1, . . . , zN}, k (number of groups), s (W time step), a (σ time step), m 
(memberships parameter), b (mini-batch), ITER (maximum number of iterations). 
Ensure: centers matrix, memberships matrix of z1, . . . , zN to the groups. 

Initialization: t = 0, W0, σ0 are randomly chosen; 
For all t = 1, . . . , ITER Do 

For all j = 1, . . . , k Do 
For all d = 1, . . . , N Do 

BNN ← b − Nearst Neighbors o f zi 
t,mϕm

j (zi) = ∑ (1/b)µ (τ)pt
j(zi − τ)j

τ∈BNN 
t+1w = wt

j + srwj ϕj(zi)/ =wtj wj j� �
∂ϕj (zi )σt+1 = max σt + a ∂σ /σ=σt , 0 

End For 
End For 

End For 
END 

In this algorithm, the full convolution was approximated by discrete values, which 
implements a mini-batch of size b: the b-nearest samples of the current sample are used to 
estimate the continuous convolution. 

In the experimentation section, we use the b nearest neighbors of each sample. It 
is possible to use genetic algorithm to estimate Ω (V)(support of ϕgi

), Ω such that:� � 
∀i ∈ {1, . . . , N}, ϕgi 

(z) = ∗ p (z)µgi gi R R 
m mµ (τ)p (z − τ)dτ µ (τ)p (z − τ)dτgi gi gi gi= ≈

Rn Ω 

Given a support Ω, it is assumed that there exists an expression for the mathe-
mmatical expectation of the function τ → µ (τ)p (z − τ) of the random variable X, of gi gi 

density fX = 1/|Ω| of support Ω, resulting from the transfer theorem, based on whichR 
m µgi 
(τ)p (z − τ)fX(τ)dτ 

ϕgi 
(z) ≈ gi . This can be extended to discrete probabilities by sum-

Ω 
ming with a discrete Dirac-like measure. We use Monte Carlo simulation while producing 
a sample (x1,x2,...,xE) of the random variable X on the support Ω, then we calculate an 
estimation of ϕgi 

(z) based on this sample [54]. Based on the law of large numbers, the 
empirical mean is a very good estimator. Since the probability densities and membership 
functions are designed so that they cover, as much as possible, the different data in the set 
{z1, . . . , zN}, then the supports of these functions are centered around these data. Thus, it 
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is natural to choose the Monte Carlo samples from these data. In our case, the parameter b 
is calculated using the formula N/k, where k is the number of clusters, because each pair 

m(µ , p ) is supported by the data gained by the group gi.gi gi 

5. Experimental Results 
5.1. Datasets 

To evaluate the performance of FP-Conv-CM, we used six datasets from the UCI [55] 
repository. Table 1 describes the features of the selected datasets. 

Table 1. Description of the experimental datasets. 

Dataset Features Samples 

Iris 4 150 
Pima 8 768 
Foods 19 177 

Abalone 8 326 
MAGIC. Gamma. Telescope 3 306 

Cloud 4 625 

5.2. Clustering Results 

Table 2 gives the values of Silhouette and Dunn’s indexes obtained by applying FCM, 
GMM, and FP-Conv-CM to iris, foods, abalone, pima, MAGIC Gamma Telescope, and 
cloud datasets for a clustering task. Figures 6–23 give the silhouettes obtained by applying 
FCM, GMM, and FP-Conv-CM to these datasets. The forms of these silhouettes show that 
the groups produced by FCM and FP-Conv-CM are more compact than those produced by 
GMM. In fact, columns two, four, and six of Table 2 show that FCM and FP-Conv-CM have 
the largest silhouette values, with those of FP-Conv-CM being slightly higher. However, 
FP-Conv-CM clearly improves the silhouette of the ones obtained by GMM. 

Table 2. Dunn’s index and Silhouette of FCM, GMM, and FP-Conv-CM on different datasets. 

Data Set FCM GMM FP-Conv-CM 

Silhouette Dunn’s Index Silhouette Dunn’s Index Silhouette Dunn’s Index 

Iris 120.883 0.0468 117.402 0.041 117.872 0.065 

Foods 131.175 0.012 −113.774 0.002 131.175 0.012 

Abalone 6.07 × 103 0.0025 6.078 × 103 0.0038 6.054 × 103 0.0042 

Pima 284.783 0.0120 50.691 0.0111 278.28 0.0142 

MAGIC.Gamma.Telescope 4.05 × 103 6.46 × 10-4 3.52 × 103 5.59 × 10-4 3.60 × 103 0.0011 

Cloud 1.3 × 103 0.0022 366.8076 0.0027 1.3 × 103 0.0052 

Considering the six datasets, FCM, GMM, and FP-Conv-CM produce clusters with 
Dunn’s indexes inferior to 0.065 because of the natural overlapping between different 
classes of these datasets, which minimizes dmin (the minimal distance between samples 
in different clusters). In addition, and combining silhouette criterion with Dunn’s index, 
dmax(the largest within − cluster distance) is very large, especially for FCM and GMM, be-
cause some samples are not similar but are assigned to the same groups (see the silhouettes 
of the groups produced by FCM and GMM using different datasets). However, FP-Conv-
CM produces clusters with high Dunn’s values compared with FCM and GMM. This 
amelioration is achieved thanks to the combination of fuzzy and probabilistic reasonings. 
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To improve the performance of FP-Conv-CM, we used the attribute selection method 
named Correlation features Subset Evaluation (CSE) [56]. Table 3 gives Dunn’s index, 
Silhouette, and CPU time of FP-Conv-CM for different datasets with full and reduced 
features using the CSE method. Analysis of the six datasets showed that CSE permits the 
reduction of almost 77% of the attributes in an average CPU time of 3.99 seconds. This 
resulted in a 24% improvement of the average Silhouette, a 32% improvement of the Dunn’s 
index, and a 10.7% improvement in CPU time. 

5.3. Image Compression 

We evaluated the performance of FP-Conv-CM on an image compression task using 
several images (see Figures 24–26). To avoid cluttering the document with several fgures, 
we give here the results obtained for three images only. 
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Table 3. Dunn’s index, Silhouette, and CPU time of FP-Conv-CM for different datasets with full and reduced features using the SCE method. 

Attributes Selection Evaluates the Worth of a Subset of Attributes FP-Conv-CM Full Features FP-Conv-CM Reduced Features 

Data Set Selected Attributes Silhouette Dunn’s Index Cpu Time(s) Silhouette Dunn’s Index Cpu Time(s) 

Iris Petal length, petal width 117.87 0.065 0.321 123.995 0.0936 0.453 

Foods VA, VC, VE, VB6, V12, 
Iron, Proteins, Carbohydrates, Lipids (Tf) 131.18 0.012 0.386 120.1 33.4 × 10−3 0.482 

Abalone Shell weight, Diameter, Height, Length, Whole 
weight, Viscera weight 6.05 × 103 4.2 × 10−3 9.433 1.493 × 103 2.4 × 10−3 6.205 

Pima Plas, mass, pedi, age 278.28 14.2 × 10−3 0.540 208.77 16.3 × 10−3 2.291 

MAGIC fLength 
Gamma fWidth 3.60 × 103 1.1 × 10−3 40.031 1.215 × 104 1.0 × 10−3 48.401 

Telescope fAlpha 

Cloud North Control Area, South Control Area 1.3 × 103 5.2 × 10−3 1.628 1.0 × 103 5.0 × 10−3 0.697 

Mean 4.3 1,913.56 0.017 8.72 2,516.13 0.025 9.76 
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5.4. Compression Results 

Figures 27–35 give the images obtained after decompression of the compression 
realized using the algorithms based on GMM, FCM, and FP-Conv-CM. Table 4 gives the 
values of the performance measures MSE, PSNR, and SSIM of different compressions 
realized with the algorithms that implement GMM, FCM, and FP-Conv-CM. 
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Analysis of MSE and PSNR shows that our method permits small improvements in the 
compression. Analysis of SSIM shows that our method provides an important improvement 
in compression quality. 
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Table 4. MSE, PEAKSNR, and SSIM values associated with the images compressed by FCM, GMM, 
and FP-Conv-CM. 

Method MSE PEAKSR SSIM 

GMM 
FCM 

FP-Conv-CM 

Cameraman 
1.163 

597.6039 
597.4229 

17.4748 
20.3667 
20.3680 

0.6507 
0.7325 
0.7308 

GMM 
FCM 

FP-Conv-CM 

Khwarizmi 
3.0 × 10+3 

1.2 × 10+3 

1.2 × 10+3 

13.3192 
17.2057 
17.1000 

0.2574 
0.6609 
0.6846 

GMM 
FCM 

FP-Conv-CM 

Archimedes 
5.262 × 10+3 

455.66 
456.13 

10.92 
21.54 
22.00 

0.46 
0.88 
0.90 

6. Conclusions and Future Perspectives 

Fuzzy logic makes decisions on the basis of the degree of membership without giving 
any information about the frequency of events, whereas probability informs us about the 
frequency of events but gives no information about the degree of membership to a set or 
class. This paper proposed a convolution fuzzy probabilistic measure that measures the 
membership degree and the frequency at the same time. Using concrete examples, we 
proved that the new measure corrects the shortcoming of both the probability measure 
and the fuzzy logic-based measure. Based on this measure, this paper introduced a new 
clustering method, named Fuzzy-Probabilistic-Convolution C-Means (FP-Conv-CM). FCM, 
PKM, and FP-Conv-CM were tested on multiple datasets and compared on the basis of 
two performance measures: the Silhouette metric and Dunn’s Index. FP-Conv-CM was 
able to improve the Silhouette value by 1000 and Dunn’s Index by 0.024. In addition, FCM, 
PKM, and FP-Conv-CM were used for multiple image compressions and were compared 
based on three performance measures: mean squared error (MSE), peak signal-to-noise 
ratio (PSNR), and structural similarity index (SSIM). FP-Conv-CM improved MSE by 3000, 
PSNR by 11, and SSIM by 0.32. 

Given the performance of FP-Conv-CM in food grouping, in future we will use it 
to personalize diets for people with diabetes [57,58]. Also, given the performance of FP-
Conv-CM in grouping diabetics, we will use it in the automatic grouping of a population 
of diabetics to determine the different components of the control models proposed in [59]. 
Recently, we used GMM and FCM for localization in stochastic environments to improve 
the results obtained in [60], and we will use FP-Conv-CM to summarize the information 
from LiDAR sensor, which will overcome the localization limitations caused by both GMM 
and FCM methods. 

Unfortunately, FP-Conv-CM inherits some limitations of classical fuzzy logic, which 
does not take into account the degree of non-membership to different classes. Moreover, 
we encountered some diffculties in the selection of an optimal support, and a heuristic 
method is needed to make a good choice. In future, we will use evolutionary algorithms to 
choose the patterns that best cover the support of the membership functions and the Gaus-
sians implemented by FC-Conv-CM. In addition, we will introduce the Fuzzy Intuitionist 
Convolution C-means version to take advantage of the ability of the intuitionist logic to 
quantify the degree of non-appartenance of patterns to different classes. 
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