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Abstract—Alzheimer’s disease (AD) is a neurodegenerative disorder known to affect functional connectivity (FC)
across many brain regions. Linear FC measures have been applied to study the differences in AD by splitting neu-
rophysiological signals, such as electroencephalography (EEG) recordings, into discrete frequency bands and
analysing them in isolation from each other. We address this limitation by quantifying cross-frequency FC in addi-
tion to the traditional within-band approach. Cross-bispectrum, a higher-order spectral analysis approach, is used
to measure the nonlinear FC and is compared with the cross-spectrum, which only measures the linear FC within
bands. This work reports the reconstruction of a cross-frequency FC network where each frequency band is trea-
ted as a layer in a multilayer network with both inter- and intra-layer edges. Cross-bispectrum detects cross-
frequency differences, mainly increased FC in AD cases in d-h coupling. Overall, increased strength of low-
frequency coupling and decreased level of high-frequency coupling is observed in AD cases in comparison to
healthy controls (HC). We demonstrate that a graph-theoretic analysis of cross-frequency brain networks is cru-
cial to obtain a more detailed insight into their structure and function. Vulnerability analysis reveals that the inte-
gration and segregation properties of networks are enabled by different frequency couplings in AD networks
compared to HCs. Finally, we use the reconstructed networks for classification. The extra cross-frequency cou-
pling information can improve the classification performance significantly, suggesting an important role of cross-
frequency FC. The results highlight the importance of studying nonlinearity and including cross-frequency FC in
characterising AD. � 2023 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Alzheimer’s disease (AD), the most common form of

dementia, causes early degradation of neural circuits

leading to cell death and synaptic loss (Santos Picanco

et al., 2018). Studies have shown that AD affects dis-

tributed brain networks and alters functional connectivity

(FC), which can lead to disconnection syndrome and dis-

rupts information processing across multiple scales

(Delbeuck et al., 2003; Jeong, 2004; König et al., 2005;

Pievani et al., 2011).
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Electroencephalography (EEG) is a common method

to study AD. Currently, EEG is not commonly used for

diagnosing AD, but many studies demonstrate high

potential in developing EEG-based biomarkers and

diagnostic tools. The main EEG characteristics

associated with AD are the slowing of signals, and

altered synchronisation (Jeong, 2004; König et al.,

2005; Dauwels et al., 2010; Ghorbanian et al., 2015;

Vyšata et al., 2015). Slowing of EEG in AD was observed

as increased power in d and h frequency bands and

decreased power in a and b frequency bands (Jeong,

2004; Ghorbanian et al., 2015). Similarly, AD shows

increased synchronisation within low-frequency bands

(<12 Hz), decreased synchronisation in high-frequency

bands, and is associated with the altered FC, especially

the long-distance cortical connections (Babiloni et al.,

2016). However, these characteristics are typically mea-

sured at a single channel or between channel pairs. In

contrast, network-based methods analyse multiple chan-

nels and reveal additional characteristics of AD, namely,
/licenses/by/4.0/).
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reduced integration of information (Kabbara et al., 2018;

Dai et al., 2019), and loss of small-worldness (Supekar

et al., 2008). However, these characteristics are often

analysed only within specific frequency bands.

This study aims to extend the FC beyond within-

frequency coupling (WFC), taking the cross-frequency

coupling (CFC) (Jirsa and Müller, 2013a) into account.

WFC networks of AD were analysed previously by using

coherence (linear) (Adler et al., 2003) and wavelet coher-

ence (nonlinear) (Jeong et al., 2016). Only one CFC mea-

sure, i.e. phase synchronisation index (PSI), had been

used for the graph analysis of CFC networks in AD (Cai

et al., 2018). This work extended the findings of reduced

integration and loss of small-worldness to CFC multilayer

networks. However, it does not consider the roles of differ-

ent frequency components in the networks. The

multilayer-network framework had been used previously

for brain network analysis. Loss of inter-frequency hubs

in AD was reported using MEG multiplex networks

(Guillon et al., 2017; Yu et al., 2017), where the inter-

layer edges are inserted with fixed weight only between

the same nodes across layers. Alterations in multilayer

network hubs have been reported in multimodal networks

in AD (Guillon et al., 2019), and fMRI frequency-band net-

works in schizophrenia (De Domenico et al., 2016). Multi-

layer networks integrating WFC and CFC have been used

to analyse MEG data from healthy (Tewarie et al., 2016),

and schizophrenic subjects (Brookes et al., 2016).

Tewarie et al. (Tewarie et al., 2016) show that

frequency-band network layers interact via CFC, share

a certain amount of structure and operate at the edge of

independence and interdependence. However, these

studies analyse the layer relationships mainly as the cor-

relation of their adjacency matrices or as differences in

global average coupling strength.

Bispectrum is a higher-order spectral analysis and

quantifies quadratic coupling between two frequency

components and their algebraic sum (He and Yang,

2021). It has been shown to detect amplitude-amplitude

and phase-amplitude CFC in addition to the phase-

phase coupling (Jirsa and Müller, 2013b; Kovach et al.,

2018). The bispectral coupling also indicates an increase

in non-Gaussianity (Wang et al., 2015). Features derived

from bispectrum were proposed as biomarkers of epilepsy

(Bou Assi et al., 2018; Mahmoodian et al., 2019), Parkin-

son’s disease (Yuvaraj et al., 2018), autism (Pham et al.,

2020) and AD (Wang et al., 2015; Wang et al., 2017;

Maturana-Candelas et al., 2020). Most of these studies

compute (cross-) bispectra of only a few channels or pairs

of channels. Although a few studies used bispectrum to

compute global networks from multiple channels (Chella

et al., 2014), these analyses do not use graph theory.

Instead, each node is analysed in isolation (Wang et al.,

2017) or single-channel bispectra are averaged across

nodes to derive certain global properties (Maturana-

Candelas et al., 2020). In contrast, this study computes

cross-bispectra between all pairs of EEG channels to esti-

mate the widely distributed FC brain networks and per-

form graph-theoretical analysis.

In this work, the cross-bispectrum (CBS) estimates

of FC are computed. We aim to investigate the
contribution of nonlinear WFC and CFC in

differentiating between Alzheimer’s disease (AD) and

healthy controls (HC) in comparison to the equivalent

linear WFC measured with cross-spectrum (CS)

(Fig. 1). We report a multilayer network-based

analysis to elucidate the roles of the traditional EEG

frequency bands and their CFC in the sensor-level

EEG networks of HC and AD. Moreover, we use the

reconstructed brain networks to classify AD using a

support vector machine classifier.
2. DATA

EEG recordings were collected from 20 AD patients and

20 healthy control participants (HC) younger than

70 years. A detailed description of the experimental

design and confirmation of the diagnosis is provided in

(Blackburn et al., 2018). All AD participants were recruited

in the Sheffield Teaching Hospital memory clinic. AD par-

ticipants were diagnosed between 1 month and 2 years

before data collection, and all of them were in the mild

to moderate stage of the disease at the time of recording

with the average Mini Mental State Examination score of

20.1 (sd = 4). Age and gender-matched HC participants

with normal neuropsychological tests and structural MRI

scans were recruited.

EEG was acquired using an XLTEK 128-channel

headbox, Ag/AgCL electrodes with a sampling

frequency of 2 kHz using a modified 10–10

overlapping a 10–20 international electrode placement

system with a referential montage with a linked

earlobe reference. The recordings lasted 30 min,

during which the participants were instructed to rest

and not to think about anything specific. Within each

recording, there were two-minute-long epochs during

which the participants had their eyes closed

(alternating with equal duration eyes-open epochs, not

used in this work).

All the recordings were reviewed by an experienced

neurophysiologist on the XLTEK review station with

time-locked video recordings (Optima Medical LTD) to

isolate artefact-free segments. For each participant,

three 12-s-long artefact-free epochs were isolated.

Finally, the following 23 bipolar channels were created:

F8–F4, F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ,

T4–C4, T3–C3, C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–

P3, T4–T6, T3–T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–

O2, P3–O1 and O1–O2 (Blackburn et al., 2018).
2.1. EEG pre-processing

EEG signals were confirmed to be artifact-free. Thus,

no additional artifact removal was undertaken. The

signals were band-pass filtered to be between 0.1 and

100 Hz using a zero-phase 5th order Butterworth

filter; 50 Hz relating to the power line noise was

removed using a zero-phase 4th order Butterworth

stop-band filter, and the data were down sampled to

250 Hz using an order 8 Chebyshev type I filter.

Finally, the signals were normalised (to zero mean

and unit standard deviation).



Fig. 1. A conceptual schematic of implementing the proposed cross-bispectrum (CBS) multilayer

network analysis. (A) Each EEG signal is cleaned and scaled. (B) For each pair of EEG electrodes, a

cross-bispectrum is estimated. The frequency bands coupling edge weights are given by the average

value within the respective CBS window, e.g. d-d (red). Note that CBS estimates are directed, e.g. d-c
– c-d (both in grey). Thus from each CBS, 25 edges are inferred. (C) Using the edge weights inferred

from CBS, a multilayer network is constructed with layers representing the frequency bands of EEG.

Such a network has both intra-layer and inter-layer edges, representing within-frequency and cross-

frequency coupling, respectively. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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3. EXPERIMENTAL PROCEDURES

3.1. Cross-spectrum and cross-bispectrum

The spectrum SX of a signal X is calculated via smoothed

periodogram. Fast Fourier Transform (FFT) is used to

estimate the periodogram with Daniell smoothers. The

periodogram is computed over 256 frequency bins

(0.98 Hz bandwidth). CS at frequency f is then

computed as: CSXYðfÞ ¼ SXðfÞ � SYðfÞ. An absolute value

of CS is calculated. A direct FFT-based method is used

to estimate the absolute value of CBS:

CBSXYðf1; f2Þ ¼ jhXTðf1Þ � YTðf2Þ � Y�
Tðf1; f2Þij; ð1Þ

where h�i denotes averaging, XTðfÞ is an FFT of signal X

over an interval T and Y�
T is the complex conjugate. 256-

point FFT is used. CBS is computed over 1-s-long

windows with 50% overlap over the whole frequency

range (0.5–100 Hz). The window size and overlap were

chosen empirically to balance the spectral and temporal

resolutions. The estimated CBS is then smoothed in the

frequency domain using the Rao-Gabr window (size 5).

CS and CBS were computed for all pairs of EEG

channels. Five frequency bands b are considered: d
ð0:5� 5HzÞ; h ð5� 8HzÞ;a ð8� 16HzÞ; b ð16� 32HzÞ
and c ð32� 100HzÞ.

The connectivity between channels X and Y and

frequency bands bX and bY is computed as:

FCCS
XYðbÞ ¼ hCSXYðf 2 bÞi; ð2Þ

FCCBS
XY ðbX;bYÞ ¼ hCBSXYðf1 2 bX; f2 2 bYÞi; ð3Þ

for CS and CBS, respectively, where h:i denotes

averaging. This resulted in five WFC (CS and CBS) and

20 CFC (CBS only) measures per channel pair. It is of

note that the CBS is directed.

In order to ensure the reliability of the estimated

connectivity, surrogate thresholding was used (Theiler

et al., 1992). For each pair of channels, 200 surrogate sig-

nals were generated using the FFT surrogate, which

scrambles the phase of the signal, and their CS and

CBS are computed. The 95% confidence interval of surro-
gate values is computed and used

as a threshold. Coupling values

below the threshold are set to zero.

We chose this approach to ensure

the reliability of estimated brain net-

works. In contrast, Wang et al.

(Wang et al., 2017) used no such

thresholding when analysing bico-

herence coupling. Alternative

approaches exist in the literature.

Chella et al. (Chella et al., 2014)

take advantage of the asymmetric

property of CBS to ensure robust-

ness against mixing artefacts.

We obtain a set of connectivity

matrices for each EEG recording,

i.e. N� N matrices (N ¼ 23). For

CS and CBS, there are five and

25 connectivity matrices,

respectively. A global (averaged

per subject) connectivity is
computed for each 23� 23 matrix and compared

between groups using a two-sample t-test if normally

distributed and a Mann–Whitney test otherwise.

3.2. Network measures

To identify the important channels in the network, we

compute a coupling-specific node strength (Barrat et al.,

2004) for each channel i and different types of frequency

couplings c,

NSði; cÞ ¼
X

j2Pði;cÞ
wij; ð4Þ

where Pði; cÞ are the nodes connected to channel i via

edge type c and wij is the edge weight, i.e. CS or CBS

connectivity given by ijth entry of the N� N connectivity

matrix. This measure is computed for both CS and CBS,

resulting in 5 (5 frequency bands) and 25 (5� 5

frequency bands) values per channel, respectively.

In order to analyse the importance of the different

frequency couplings within the global brain network, we

represent them as a multilayer network. In this network,

nodes are located within layers representing the

different frequency bands. WFC represents the edges

between nodes within a single layer, i.e. intra-layer, and

CFC represents the edges between nodes located in

different layers, i.e. inter-layer. In this paper, the CS

networks are not analysed as multilayer networks since

such networks would have no inter-layer edges and thus

would not be comparable directly with the CBS

networks. The following measures are computed only

for CBS networks. We obtain networks with 23 nodes

that are replicated over 5 layers (L 2 ½d; h;a; b; c�),
resulting effectively in 115 nodes. There are 5 types of

intra-layer edges, such as d-d, and 20 types of inter-

layer edges, such as d-h or h-d.
We measure the importance of each type of frequency

coupling within the multilayer network by measuring the

contribution of each edge to enable the efficient passing

of information through the network. For this purpose, we

define coupling betweenness centrality (CBW) based on
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an adjusted version of edge betweenness (Girvan and

Newman, 2002):

CBWðcÞ ¼ 1

E

XE

i¼1

BWðeÞ; ð5Þ

where E is the total number of edges of coupling type c

and BWðeÞ is edge betweenness centrality given by:

BWðeÞ ¼
X

i–j

gijðeÞ
gij

; ð6Þ

where gij is the number of shortest paths between nodes i

and j, and gijðeÞ is the number of those paths that go

through edge e. The shortest path is defined as a path

with the least sum of 1=wij. CBW quantifies the

contribution of each coupling type to the information

integration (Sun et al., 2019), i.e. the amount of informa-

tion flow through edges. Note that the CBW of a weighted

and unweighted version of the same network results in dif-

ferent value of CBW. Therefore, we analyse both weighted

and unweighted CBW.

CBW assumes that the essential processes within the

network occur along the shortest paths. However, there

might be alternative paths with only minor length

differences, which CBW ignores. In case of a disruption

of the network structure, these alternative paths might

enable the recovery of function with negligible

differences. We quantify this as the vulnerability of the

network to the removal of one type of frequency

coupling. The vulnerability is measured in two ways: the

loss of ability to integrate information (Latora and

Marchiori, 2005) and the loss of segregation.

The integration property of network G, i.e. the ability of

a network to communicate information globally, is

approximated with global efficiency (EG) given by:

EGðGÞ ¼ 1

NðN� 1Þ
X

i–j2G

1

dðijÞ ; ð7Þ

where N is the number of nodes in network G and dðijÞ is
the shortest path length between nodes i and j. EG is

related to CBW. CBW measures the information flow on

the more detailed edge level while EG takes the node-

level perspective.

The segregation property of network G, i.e. the

presence of densely connected clusters and sparse

connections between them, is approximated with a local

efficiency given by:

ELðGÞ ¼ 1

N

X

i2G
EGðGiÞ; ð8Þ

where Gi is the neighbourhood of node i, i.e. subgraph of

nodes directly connected to i, without node i itself.

In order to measure the vulnerability of the network

and its dependence on different types of frequency

coupling, EG and EL are computed for the full network.

The two measures are then re-computed for a perturbed

network where one type of frequency coupling (i.e. a set

of edges) is removed. The change in EG and EL give

the global and local vulnerability measures

VGðGcÞ ¼ 1� EGðGcÞ=EGðGÞð Þ and

VL ¼ 1� ELðGcÞ=ELðGÞð Þ, where G is the full network
and Gc is the perturbed network with the edges of

coupling type c removed.

3.3. Network thresholding and statistical analysis

In order to filter out the unimportant edges that might

result from a spurious coupling, the weighted multilayer

networks are thresholded through relative quantile-

based thresholding. Given a quantile Q, all edges with a

weight lower than Q are removed from the network.

There are considerable differences between the weights

of each frequency coupling type (e.g. mean of

c-b ¼ 1:627 compared to mean of a-a ¼ 8:975); thus, a
separate threshold Q is used. As a result, the networks

retain Q% of the strongest edges. To ensure that the

observed differences between the networks are not due

to the choice of threshold Q, all of the network

measures are computed over 20 threshold values

(Q 2 ½0; 0:95� in increments of 0:05), and only significant

differences observed over at least ten thresholds are

declared significant. The reported plots and numerical

results are generated from such threshold levels of Q
that the between-group difference is maximised (i.e.

largest effect size). However, the effect of choice of this

threshold should be minimal as significant differences

were observed over multiple thresholds. All p-values are

corrected using the Benjamini–Hochberg false discovery

rate method (Benjamini and Hochberg, 1995).

Additionally, to improve the reliability, we perform

epoch-wise test–retest experiments. For each

participant included in this study, there are three

epochs. Thus, we repeat the full analysis reported in

this paper for each epoch separately. Consequently,

only significant differences observed consistently across

all three epochs are denoted as significant. An analysis

of statistical power given our sample size was

performed to identify the threshold effect size where

80% is reached (Appendix A).

Furthermore, we convert the CBS network from

directed to undirected by taking the mean weight for

each pair of directed edges, thus collapsing them into a

single edge. Such an approach is the most conservative

since the potential effect of outliers is minimised

compared to the alternative of taking the maximum

weight.

Node strength is log-transformed to reduce skewness.

For node strength, we do not threshold the networks as

this can lead to isolated nodes with no edges. We test

whether node strengths are normally distributed for

each coupling and channel separately with a Shapiro

test. Node strengths that pass the test are then

compared with a two-sample t-test, and those that do

not pass the test are compared with a Mann–Whitney U

test.

The multilayer graph measures such as CBW, VG and

VL aim to analyse the roles of frequency coupling types in

terms of the network’s properties. However, it is unclear

whether such multilayer networks should be weighted or

unweighted. Thus, we examine the patterns in both

weighted and unweighted multilayer graphs. The

weighted networks can be converted into unweighted

networks by setting the weights of all edges to 1.



Fig. 2. The difference between average connectivity matrices (AD� HC) measured with cross-

spectrum in epoch 2. For visualisation purposes, the values were min–max normalised. Digits in black

denote a p-value (FDR corrected) testing for the difference in global coupling (p < 0:05 in bold, in

italics otherwise).

Fig. 3. The difference between average connectivity matrices (AD� HC) measured with cross-

bispectrum in epoch 2 with input frequency on the vertical facets and output frequency on the

horizontal. For visualisation purposes, the values were min–max normalised. Digits in black denote a

p-value (FDR corrected) testing for the difference in global coupling (p < 0:05 in bold, in italics

otherwise).
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Additionally, the selected graph metrics, except for node

strength, assume edge weights represent the distance

between weights. Since functional connectivity is a

measure of similarity, we convert the edge weights to

distance as follows,

~wij ¼ maxðWÞ þminðWÞ � wij ð9Þ

,where ~wij is the transformed edge weight connecting

nodes i and j;W is the edge weight distribution of the

graph and maxð�Þ and minð�Þ.
We test whether CBW;VG and VL of both weighted

and unweighted networks are normally distributed using

the Shapiro–Wilk test for each coupling type separately.

A two-sample t-test is used for normally distributed

variables and Mann–Whitney U for non-normally

distributed variables to compare between groups.
Furthermore, both weighted and

unweighted CBW and VG are log-

transformed to reduce skewness.
3.4. Network classification

Finally, we train classifiers using

the network metrics to evaluate

the predictive power of these

biomarkers of AD. Three

classifiers are trained using the

CS, CBS, and combined features,

respectively. In other words, the

CS classifier is trained using node

strength, the CBS classifier uses

the node strength and multilayer

network metrics, and the

combined classifier uses all of the

previous. Additionally, these

features are collected across all

filtered networks.

As this leads to a large feature

space, we introduce an effect-

size-based forward feature

selection. The features are

ordered by the absolute value of

effect size (Cohen’s d (Cohen,

2013)) and sequentially added to

the feature vector, which is then

used to train the classifier. The first

100 features are evaluated in this

manner. Note that comparing the

CS and CBS classifiers is likely

unfair as the CS utilises consider-

ably smaller and less complex fea-

tures, as the node strength is a

relatively simple network measure.

Instead, the CS classifier should

be viewed as a naive baseline.

Support vector machine

classifier with radial basis kernel is

used as the classifier. Moreover,

features are scaled to zero mean

and unit standard deviation. 10-

fold cross-validation repeated 100

times is used to train and evaluate

the classifier.
Finally, we use the feature sets of CS and CBS

classifiers that achieved the best performance and train

a combined classifier. We hypothesise that the

information captured by CS and CBS networks is at

least partially unique. Thus a classifier trained on the

combined feature sets should outperform the classifiers

trained on individual networks, as it can leverage the

information from both functional connectivity measures.
4. RESULTS AND DISCUSSION

We denote a statistical test as significant only if it is

consistently detected across at least ten network

thresholds and in all three epochs. Therefore, for

simplicity, only results from epoch two are reported in



Fig. 4. Node strength (min–max normalised) measured with CS of HC (blue) and AD (orange): mean with 95% confidence intervals. Significant

differences observed in at least ten thresholded networks and across all epochs are encoded by asterisks. The number of asterisks corresponds to

the p-value (FDR corrected), i.e. p � 0:0001 ‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01 ‘‘**”, and p 6 0:05 ‘‘*”. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Node strength (min–max normalised) measured with CBS of HC (blue) and AD (orange): mean with 95% confidence intervals. The input

frequency is on the vertical facets, and the output frequency is on the horizontal. Significant differences observed in at least ten thresholded

networks and across all epochs are encoded by asterisks. The number of asterisks corresponds to the p-value (FDR corrected), i.e. p � 0:0001
‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01 ‘‘**”, and p 6 0:05 ‘‘*”. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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the following sections, except for the classification results,

where data from all epochs are utilised. Epoch two was

selected randomly, which does not affect the reported

results as all results were required to be observed

across all three epochs. Moreover, for visualisation

purposes, we select the network threshold, where the

strongest difference is observed for each comparison

separately.

The results and visualisations from epochs 1 and 3

are included in Appendix B and Appendix D,

respectively. The numerical results from epoch 2 are

included in Appendix C.
4.1. Connectivity matrices and average connectivity

Differences in averaged connectivity matrices (Fig. 2 and

3) indicate that both methods seem to detect variations in

the topology of FC networks. The results of statistical

tests are reported in Appendix C (Tables C.13 and

C.14). By using CS, significant differences in the

average connectivity are found in d and h bands, where

AD cases have increased connectivity. Additionally, CS

reveals a decrease in b connectivity of AD cases.

Using CBS, differences can be observed in multiple

frequency bands and their couplings. Increased global



Fig. 6. Importance of each type of frequency coupling of HC (blue) and AD (orange) measured by

edge betweenness. Significant differences observed in at least ten thresholded networks and across

all epochs are encoded by asterisks. The number of asterisks corresponds to the p-value (FDR

corrected), i.e. p � 0:0001 ‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01 ‘‘**”, and p 6 0:05 ‘‘*”. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 7. Importance of each type of frequency coupling of HC (blue) and AD (orange) measured by

weighted edge betweenness. Significant differences observed in at least ten thresholded networks

and across all epochs are encoded by asterisks. The number of asterisks corresponds to the p-value

(FDR corrected), i.e. p � 0:0001 ‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01 ‘‘**”, and p 6 0:05 ‘‘*”. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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connectivity is observed in AD cases in h WFC and

h-d; d-h and d-a CFC. In contrast, decreased global

connectivity in AD cases is found in b WFC and alpha–

beta, a-c; b-a; b-c; c-a and c-b CFC. Overall, AD cases

show increased connectivity in low-frequency

components and their CFC interactions and decreased

connectivity in high-frequency components.

These findings are consistent with the literature

reporting increased activity in d and h in AD (Jeong,

2004; König et al., 2005). An increase in d WFC and

low-frequency CFC in AD was also reported using bico-
herence (Wang et al., 2017). Simi-

larly, Maturana et al. (Maturana-

Candelas et al., 2020) report

increased bispectral power in AD

in d and h and a decrease in a; b1

and b2. They also report lower bis-

pectral entropy in d and h suggest-

ing fewer frequency components

interact with these frequency

bands. In contrast, Cai et al. (Cai

et al., 2018) report the opposite dif-

ferences in the same WFC and

CFC using PSI, i.e. decrease in d
and h.

Moreover, the visible structure

distortion within multiple frequency

bands detected by both CS and

CBS suggests connections to the

disconnection syndrome and

disturbed information processing

in AD.

4.2. Coupling-wise node
strength

In order to statistically test the

differences in connectivity

measured by both CS and CBS

and to localise the brain regions

which show the most pronounced

differences between AD and HC,

node strength is measured for

each channel and coupling type

separately. We show the results in

Figs. 2 and 3 for CS and CBS,

respectively. The details of these

statistical tests are reported in

Appendix C (Tables C.15 and

C.16).

The differences in WFC

detected by CS and CBS (Fig. 4

and diagonal elements in Fig. 5)

are generally similar. Both

methods show increased h node

strength in AD cases across most

channels. Both CS and CBS show

decreased b coupling. However,

each detects these changes in

different regions, i.e. CS across all

channels except for occipital, while

CBS only in central channels.

Interestingly, CBS fails to capture
the increased node strength in d in AD cases that can

be seen in CS. These differences showcase the

importance of assessing both linear and nonlinear

coupling in understanding the variations in AD brain

networks.

Multiple differences in the CFC (off-diagonal elements

in Fig. 5) are detected, highlighting the need to analyse

the interactions of frequency components in both

healthy and AD brain networks. AD cases show a global

increase in d-h and h-d, and in frontal and temporal



Fig. 8. Global vulnerability of HC (blue) and AD (orange). Significant differences observed in at least

ten thresholded networks and across all epochs are encoded by asterisks. The number of asterisks

corresponds to the p-value (FDR corrected), i.e. p � 0:0001 ‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01 ‘‘**”, and

p 6 0:05 ‘‘*”. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

Fig. 9. Weighted global vulnerability of HC (blue) and AD (orange). Significant differences observed

in at least ten thresholded networks and across all epochs are encoded by asterisks. The number of

asterisks corresponds to the p-value (corrected), i.e. < 0:001 ‘‘****”, 0:001 ‘‘***”, 0:01 ‘‘**”, and 0:05
‘‘*”. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of this article.)
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areas in d-a. This is in contrast to the findings in Wang

et al. (Wang et al., 2017), where an increase of d-h only

in frontal channels is reported. They also report an

increase in midline parietal-occipital h-c that we do not

detect. Furthermore, we observe a frontal, occipital and

temporal decrease in a-b and b-a, frontocentral and fron-

totemporal decrease in a-c and b-c, and in frontal, fronto-

central and occipital channels in c-a in AD cases.

Cai et al. (Cai et al., 2018) report comparable differ-

ences using PSI, but in contrast to our results, they show

mainly decreased node strength in AD cases. This might

be because CBS is influenced by the amplitude, while PSI
is a pure phase coupling measure.

Fraga et al. (Fraga et al., 2013)

report an increase of the d-h and

d-b amplitude-amplitude CFC in

AD cases which is similar to our

results. This suggests that CBS

indeed measures some mixture of

CFC types (Jirsa and Müller,

2013b) since our results are par-

tially in line both with phase-phase

and amplitude-amplitude CFC

studies.

4.3. Multilayer network analysis

In order to elucidate the roles of the

frequency bands and their

coupling, both WFC and CFC, we

analyse the CBS networks as

multilayer networks with five layers

representing the traditional

frequency bands of EEG.

Moreover, both the weighted and

unweighted versions of these

networks are analysed.

First, weighted and unweighted

CBW are used to assess the

importance of each type of

coupling for both local and global

communications in the network.

Results of statistical tests

comparing the unweighted CBW

are reported in the appendix

(Table C.17) and visualised in

Fig. 6. Results of statistical tests

comparing the weighted CBW are

reported in the appendix

(Table C.20) and visualised in

Fig. 7.

The unweighted CBW shows

only a decrease in AD cases in

the d-b CFC (Fig. 6. In contrast,

the weighted CBW shows multiple

decreases in AD cases,

specifically in a-a and b-b WFC

and d-a;a-d;a-b;a-c; b-a and b-c
CFC. As these decreases involve

high-frequency components, we

speculate that this finding is likely

linked to the characteristic slowing
down of signals in AD, i.e. a decrease of high-frequency

power (Jeong, 2004; Ghorbanian et al., 2015). On the

other hand, we observe an increase of weighted CBW

of h-h WFC and h-d and c-h CFC in AD cases. Interest-

ingly, previously a decrease in c-h phase-amplitude cou-

pling was reported to signify progression from mild

cognitive impairment to AD (Musaeus et al., 2020). How-

ever, our results indicate an opposite pattern.

Then, weighted and unweighted VG are used to

assess the vulnerability of information integration of the

network to the removal of a specific coupling type.

Numerical results of comparing unweighted VG are



Fig. 10. Local vulnerability of HC (blue) and AD (orange). Significant differences observed in at least

ten thresholded networks and across all epochs are encoded by asterisks. The number of asterisks

corresponds to the p-value (FDR corrected), i.e. p � 0:0001 ‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01 ‘‘**”, and

p 6 0:05 ‘‘*”. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

Fig. 11. Weighted local vulnerability of HC (blue) and AD (orange). Significant differences observed

in at least ten thresholded networks and across all epochs are encoded by asterisks. The number of

asterisks corresponds to the p-value (FDR corrected), i.e. p � 0:0001 ‘‘****”, p 6 0:001 ‘‘***”, p 6 0:01
‘‘**”, and p 6 0:05 ‘‘*”. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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reported in the Appendix (Table C.18) and visualised in

Fig. 8. Numerical results of comparing weighted VG are

reported and visualised in Appendix (Table C.21) and

visualised in Fig. 9.

The AD brain networks seem more vulnerable to

removing multiple types of couplings. Weighted VG fails

to detect any reliable differences. We speculate this

might be caused by edge weight differences across

different coupling types, thus biasing the results. VG is

likely more sensitive towards such an issue, as it is a

global measure in contrast to the other measures, which

consider predominantly local relationships. A significant
increase in unweighted VG in AD

cases is observed in d-d WFC and

d-h and c-b CFC. Interestingly, the

removal of WFC generally causes

a larger increase in vulnerability

compared to CFC (except for a-a,
suggesting that while CFC plays a

crucial role in the brain networks,

WFC seems dominant in the brain

networks.

Finally, weighted and

unweighted VL are used to assess

the vulnerability of segregation of

the network to the removal of a

particular coupling type. Results of

statistical tests comparing

unweighted VL are reported in

Appendix (Table C.19) and

visualised in Fig. 10. Results of

statistical tests comparing

weighted VL are reported in

Appendix (Table C.22) and

visualised in Fig. 11.

c-c is the most robustly linked to

segregation measured with

unweighted VL, which fits well with

the evidence of high-frequency

oscillations being related to local

processing (Buzsáki et al., 2013).

Moreover, this coupling is signifi-

cantly more vulnerable in weighted

networks of HC cases, which is

likely related to the decreased c
activity in AD (Jeong, 2004). Likely

for similar reasons, the removal of

a-a WFC and b-a CFC causes a

significant increase of weighted VL

in HC, suggesting the segregation

function enabled by these high-

frequency components is likely dis-

rupted in AD. On the other hand,

b-d and c-d CFC removal cause a

significant increase of weighted VL

in AD cases. This suggests that in

AD cases, the high-frequency

CFC takes over the role of enabling

network segregation as the high-

frequency WFC is attenuated.

4.4. Classification results
SVM classifiers were trained using network features

extracted from CS and CBS separately to measure the

predictive power of CS and CBS-based networks and

evaluate the multilayer network features (Fig. 12). A

detailed performance summary of the best models is

reported in Table 1.

All CBS-based models outperform the CS-based

models, suggesting that information related to nonlinear

and CFC coupling might be crucial for the modelling and

classification of AD. However, such a conclusion might

be biased as the CS-based models are trained using a



Fig. 12. Average accuracy (points) with standard deviation (ribbons) of the classifiers trained with

graph-theory features using a 10-fold stratified cross-validation repeated 100 times. Specifically, the

features considered are node strength for cross-spectrum (orange) and node strength, CBW, VG and

VL cross-bispectrum (blue) networks. The features are sequentially added to the classifier based on

their effect size. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

Table 1. Performance of the best models trained using network

features identified via forward feature selection. The feature sets

contain 2, 48 and 50 features for the spectrum, bispectrum and

combined models, respectively.

Model Accuracy Sensitivity Specificity

Spectrum 79.71 %

(SD = 1.94)

86.42 %

(SD = 2.95)

74.62 %

(SD = 4.48)

Bispectrum 83.32 %

(SD = 1.83)

86.62 %

(SD = 2.95)

80.71 %

(SD = 3.9)

Combined 81.39 %

(SD = 2.09)

85.97 %

(SD = 2.45)

78.91 %

(SD = 3.28)
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smaller set of features, i.e. node strengths. Thus, the

comparison is likely unfair and should be interpreted

conservatively.

The best CS-based model reaches its highest

accuracy of 79.71% (SD = 1.94) using only two

features. These features are the node strengths of

channels F4-C4 and C3-P3 in the h frequency band

WFC. In contrast, the CBS-based models require

considerably more features to achieve the highest

accuracy of 83.32% (SD = 1.83) with 48 features

(Table 2). Interestingly, the majority of these features

are CFC. Furthermore, the weighted CBW seems to

provide the most information to the classifier from the

multilayer network measures introduced in this study, as

it is included multiple times in the final feature set. Node

strengths from all areas are utilised, but the central-

parietal channels are selected repeatedly across

multiple frequency couplings. It is worth noting that

including the same features across different network

thresholds appears to improve the performance, despite
likely strong correlations between

such features. If only a single

network threshold was selected

(i.e. based on the largest effect

size), the accuracy drops by 2%-

3%. Interestingly, both CS- and

CBS-based models utilise the F4-

C4 channel from the h WFC,

suggesting some shared

information between these two

functional connectivity methods.

Finally, we trained a combined

model with the sets of best features

concatenated from the CS- and

CBS-based models, i.e. using 50

features. However, the accuracy of

such a model is only 81.39%

(SD = 2.09), which is lower than

the CBS-based model suggesting

that the addition of CS-based

features introduces redundant

information into the model.
5. CONCLUSIONS AND
FUTURE WORK

We have demonstrated that CBS

and CS detect similar differences

between AD and HC networks, but
CBS has an advantage over CS by including cross-

frequency and nonlinear interactions. We report several

significant differences in CFC both globally and on a

node level, suggesting that including CFC in a graph-

theoretic analysis of brain networks is crucial to obtain a

more detailed insight into their structure and function.

Furthermore, we show that multilayer network analysis

provides a simple yet powerful framework for

representing and analysing the role of CFC in brain

networks. Using this framework, we present a novel

approach to elucidate the roles of different frequency

components of EEG signals. Moreover, we show that

both CFC and WFC CBS-based networks can be used

to classify AD with high accuracy.

CFC has been suggested to be related to modulatory

activity, i.e. slow band modulating the activity of fast

oscillations. However, it remains unclear why low-

frequency CFC would be increased in AD and requires

further in-depth study.

Next, although (cross-) bispectrum was shown to be a

powerful tool to detect various types of WFC and CFC,

such as phase-phase or phase-amplitude, CBS seems

to capture an unknown mixture of these types of

couplings. Therefore, a combination of bispectrum with

other types of CFC methods might be a plausible

direction for future research.

Furthermore, by relying on traditional frequency bands

to define the layers of the networks, our framework might

miss some CFC occurring on finer scales, e.g. interaction

within one band. However, considering the CFC within

only a few bands allows us to construct multilayer

networks with a relatively small number of layers. Thus,



Table 2. Features included in the best cross-bispectrum-based

classifier. For multilayer network metrics, the network thresholds are

in parentheses. This is not necessary for the node strengths as these

are obtained from the unthresholded networks.

coupling Node strength Multilayer network metric

a-b C4P4, CZPZ,

P3O1, T5O1

b-a C4P4, P3O1 weighted CBW (0.7)

d-a F4C4 weighted CBW (0.4, 0.45, 0.5,

0.55, 0.6)

d-h C3P3, C4P4,

CZPZ, FZCZ,

O1O2

VG (0.55)

c-a F4FZ weighted CBW (0.4, 0.45, 0.5,

0.55, 0.6, 0.65, 0.7, 0.75, 0.8,

0.85)

h-d CZPZ, FZCZ,

P4PZ

h-h F4C4

d-d VG (0.65)

a-d weighted CBW (0, 0.05, 0.1,

0.15, 0.2, 0.25)

a-c weighted CBW (0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8)
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we argue that relying on the five bands is necessary to

introduce the CFC into network analysis without

increasing the complexity significantly.

The presented multilayer network analysis focused

only on how dependent or vulnerable the networks are on

different types of frequency coupling to enable integration

and segregation properties. Although these two

properties are hypothesised to be crucial in brain

networks, their analysis might be insufficient to elucidate

the function of the frequency couplings. Thus, we suggest

to focus on other graph-theoretic measures beyond

integration and segregation in future work. Although

these two properties are hypothesised to be crucial in

brain networks, their analysis is not sufficient to elucidate

the functions the frequency couplings might enable

across various spatio-temporal scales in normal brains

and how these functions disappear or change in AD.

A limitation of our study is the relatively small sample

size. This leads to some of the observed significant

differences being underpowered. Thus, the small

differences we report in this study should be interpreted

more conservatively. However, despite this limitation,

we identify a set of reliable biomarkers as evidenced by

the classification results. In future research, it might also

be important and interesting to explore more complex

graph-based features that would capture the differences

between AD and HC in a lower-dimensional space more

efficiently.
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