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Abstract: Gait analysis plays an important role in the fields of healthcare and sports sciences. Conven-
tional gait analysis relies on costly equipment such as optical motion capture cameras and wearable
sensors, some of which require trained assessors for data collection and processing. With the recent
developments in computer vision and deep neural networks, using monocular RGB cameras for 3D
human pose estimation has shown tremendous promise as a cost-effective and efficient solution for
clinical gait analysis. In this paper, a markerless human pose technique is developed using motion
captured by a consumer monocular camera (800× 600 pixels and 30 FPS) for clinical gait analysis. The
experimental results have shown that the proposed post-processing algorithm significantly improved
the original human pose detection model (BlazePose)’s prediction performance compared to the
gold-standard gait signals by 10.7% using the MoVi dataset. In addition, the predicted T2 score has
an excellent correlation with ground truth (r = 0.99 and y = 0.94x + 0.01 regression line), which
supports that our approach can be a potential alternative to the conventional marker-based solution
to assist the clinical gait assessment.

Keywords: computer vision; deep learning; markerless; gait analysis; Kalman filter; monocular
camera

1. Introduction

Gait impairments are common in many medical conditions [1,2], which have the poten-
tial to modify clinical symptoms, alter the energy cost of movement, and negatively affect
the quality of life [3,4]. Clinical gait analysis plays an important role in the quantification
of these impairments, as such information may be used for clinical decision making [5,6]
and the design of new therapies.

Traditionally, the most common, accurate and reliable measurement systems used
for clinical gait analysis are optoelectronic motion capture systems [7]. However, these
systems cannot be easily used in real-world environments because they are expensive,
not easily portable, and rely on trained personnel for assessment. In recent years, inertial
measurement units (IMUs) became an alternative solution for clinical gait analysis [8].
However, IMUs may not be an ideal alternative to optoelectronic systems, as they require
time for sensor placement and they are sensitive to environmental conditions, and the
sensors in the IMU may gradually deviate from their initial calibrated values [9].

For clinical gait analysis to be translated ubiquitously in the clinics and fields, there is
a need for methods that are cost effective, require limited time for equipment set-up and
processing and do not rely on specialist personnel for assessment.
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Markerless motion capture uses standard video to record movement without markers,
often leveraging deep learning-based software to identify body segment positions and
orientations (pose). Currently, there are free two-dimensional (2D) motion analysis soft-
ware tools, such as Kinovea [10], which can estimate 2D human kinematics using videos
captured by a single camera. However, these systems rely partially on human annotation of
anatomical landmarks. Other solutions adopt multi-cameras [11] or depth cameras [12] to
analyse kinematics on reconstructed 3D human postures, but restrict subjects to collecting
gait data in specific experimental settings and a large laboratory space. Recent progress in
the field of computer vision and deep learning provide powerful human pose detection
models to reconstruct 3D human posture by estimating the joint locations in 2D videos [13],
making it possible to create a holistic markerless gait analysis system with a monocular
camera. In addition, Liang’s study [14] indicates that this technique allows gait analy-
sis to be performed without specific experimental demands, which is particularly useful
for mobility-impaired patients. Therefore, this paper will introduce a cost-effective and
markerless gait assessment system using a human pose detection model.

In our previous work [15], we developed a markerless, non-invasive rehabilitation
assessment system using a consumer monocular camera together with a human pose
detection model, BlazePose [16], to assess the patient’s gait in an indoor environment
that only requires a limited number of gait cycles (i.e., 2–3 strides for a video sample).
Although there are other models such as OpenPose [17], D3KE [18] and 3DPoseNet [14]
providing better accuracy in human pose estimation tasks, Refs. [18,19] suggest that the
BlazePose model has a faster runtime performance and lightweight nature, which allows for
the integration of additional smoothing algorithms and gait-oriented evaluation algorithms
on mobile devices. The processed results can then be used to assist healthcare workers
with the creation of a personalised rehabilitation plan for patients with gait impairments.
As illustrated in Figure 1, the system processes walking video by detecting the human pose,
receiving gait signals, filtering gait signals, extracting discrete gait features and computing
the Hotelling distance (i.e., T2 score) in succession. In this paper, we improve the filter
strategy to obtain a better-quality gait signal. In addition, the system performance was
validated by comparing filtered gait signals, discrete gait parameters, T2 score prediction,
and normal gait sample model principal components with ground truth provided by a
marker-based motion capture camera system.
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Figure 1. Monocular camera marker-less gait analysis system; PCA (Principal Components Analysis),
KF (Kalman Filter), FDF (Frequency Domain Filter).

This paper aims to further validate the optimised system’s performance in terms of the
predicted gait signal, predicted discrete gait parameters, predicted T2 score, and predicted
normal gait sample models by employing a public dataset. Regarding the experiments’
results, the markerless solution does not provide the same level of performance metrics
compared to the traditional marker-based method; however, the predicted T2 score has
an excellent correlation with the ground truth. Therefore, this new approach can be used
as a cost-effective alternative solution to the conventional marker-based solution, aiding
professionals by providing an initial clinical report. In addition, the markerless solution
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is built on BlazePose and a signal 2D camera instead of using multi-camera and motion
capture markers, which makes it possible to deploy this assessment system on mobile
devices in the future.

The main contributions of this paper can be summarised as follows: (1) The filter
strategy in the post-processing stage has been optimised to improve the joint angle signal
prediction accuracy by 10.7% when compared with the raw joint angle signal predicted
from BlazePose. (2) A public dataset is used to validate the performance of the system from
various perspectives, which can be used to provide a comparative benchmark for other
similar work. (3) We further investigate the possibility of developing a low-cost clinical
gait analysis system based on BlazePose by evaluating and analysing its pros and cons.

This paper is organised as follows: the system details are introduced in Section 2.
Section 3 presents the corresponding evaluation metrics, dataset, and experiment results
for system validation. In Section 4, the conclusions are drawn.

2. Methodology

The assessment system first converts video input into the gait signal and decodes the
gait parameters to obtain the visualised report. In this section, the technical details are
briefly introduced to cover the assessment system’s three primary functions:

1. Generating gait signals by computing joint angles.
2. Processing gait signals to complement the missing signals and removing any noise

from the signals.
3. Creating a feature model by extracting the discrete gait parameters from gait signals.

2.1. Generate Gait Signals

In this study, the angles of the knee and hip are treated as the main gait signals. They
may be interpreted by the joint angle and the discrete time domain signal, respectively. We
focus on the analysis of sagittal plane joint angles because it provides more insightful infor-
mation in the clinical gait analysis context [11]. As a result, a camera view perpendicular to
the walking direction is preferred. The discrete-time domain signal suggests that the gait
signal is stacked by the joint angles from each frame in chronological order.

For the first function, the assessment system requires the user to input video data and
predicts human poses to generate the gait signals. The BlazePose human pose detecting
model returns the three-dimension joint coordinates, as well as the corresponding visibility
level (i.e., a percentage score for the confidence of joints’ prediction in each image). Those
joint coordinates can be converted into vectors, and the desired joint angle can be obtained
by applying cosine law to the vectors.

Figure 2 illustrates the definitions of the hip and knee angles in this study, where the
angle between knee-to-hip and knee-to-ankle vectors is defined as the knee angle.

(a) Hip angle (b) Knee angle

Figure 2. Joint angle definition diagram [10,20].

However, the hip angle is defined as slightly different from the knee angle. Based on
the Cosine law, θ = arccos ~a·~b

|~a||~b|
, it yields a smaller angle (θ ≤ 180◦). While simply using
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hip-to-shoulder and hip-to-knee vectors to calculate the hip angle, it will gradually increase
to 180◦ and abruptly decrease from 180◦ when the shoulder, hip, and knee are almost in
the same line, which affects the subsequent filtering process. So, instead of using hip-to-
shoulder and hip-to-knee vectors, the virtual vector lying parallel to the moving direction
is applied to construct the hip angle. In principle, the virtual vector can be calculated by
rotating the left shoulder to the right shoulder vector by 90◦ via the vertical axis.

2.2. Post-Process Gait Signals

Gait signals generated by a simple angle calculation suffer from data loss and noise
signals due to many elements, including low video resolution, the overlapping nature of
low limbs, errors in the human pose detection model, as well as other unknown factors in
the practical environment; for example, insensitivity of the human posture model to certain
clothing or postures caused by the training sample selection preferences. We define such
gait signals as raw or original joint angle signals. To further improve the signal quality,
a post-process with the KF and FDF was employed.

The KF algorithm provides an efficient recursive method to estimate the state of a
process [21]. In addition, Sam and Jill’s work [21] suggests that KF can be adopted to
smooth gait signal. To apply KF in gait signal filtering, the state-transition matrix A,
the state estimation matrix S, the measurement matrix H, and the state transition equation
are represented as follows.

A =

1 ∆t ∆t2

2
0 1 ∆t
0 0 1

 S =

θ
v
a

 H =
[
1 0 0

]
(1)

Ŝt|t−1 = AŜt−1|t−1 + Pnoiset (2)

θ̂t|t = HŜt|t + Mnoiset (3)

where the state estimation matrix S in Equation (1) contains joint angle θ, angular veloc-
ity v and angular acceleration a. The Pnoise and Mnoise refer to processing noise and
measurement noise obeying Gaussian distribution Pnoise ∼ (0, Q) and Mnoise ∼ (0, R),
respectively. Specifically, Q is the process noise covariance matrix and R is the measure-
ment noise covariance matrix. The posterior joint angle estimate θ̂t|t is obtained using
Equations (2) and (3).

The FDF uses Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Trans-
form, supported by a suitable filter strategy, to select principal frequency components to
recover the filtered signal. KF and FDF were both used in earlier work [15] to predict miss-
ing data and denoise the original gait signals. Studies have demonstrated that KF and FDF
can help reduce assessment system failures caused by the above problems. In this paper, we
further optimise the strategy and provide further details on this in the upcoming sections.

The first optimisation we used was to address the KF failure when joint angles are
missing on non-linear change periods. The KF-based approach uses the classical linear
kinematic equations to model the variation in joint angle, which is established on the
assumption that the joint angle signal varies approximately linearly over a short time.
Most of the time, this algorithm is reliable; however, from the perspective of the entire
gait signals, the joint angle signal during walking is non-linear but could be seen as the
combination of multiple cosine signals. Additionally, the experiments illustrating the KF
algorithm still struggle with prediction when the data are missing. This is due to the low
level of visibility (≤40%).

In this paper, we improve the missing measurements’ replacement strategy to trace
the non-linear angle changes in low-visibility conditions. The details of the strategy are
illustrated in Figure 3, where the θ̂t|t−1 and θ̂t|t represent the prior and posterior joint
angle estimate, respectively. Similarly, Pt|t−1 and Pθt|t are the prior and posterior state
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estimate covariance, respectively. In the prior version KF, the prior state estimate θ̂t|t−1
obeying the classical linear kinematic model was used to replace the current missing
measurement Zt, which resulted in the predicted joint angle gradually deviating from the
true value, especially for the successive measurements lost during the non-linear change
interval. A possible alternative solution is to use the posterior joint angle estimate θ̂t−1|t−1
to substitute the current missing measurement Zt, which prevents KF being excessively
reliant on the predicted results.
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Figure 3. Missing measurements replacement strategy [15,22].

Figure 4 shows a comparison of the new version KF2 with the prior version, and how
it reduces the distortion of predicted gait signals in low-visibility environments. The prior
version KF1 failed to trace the non-linear joint angle signals when the visibility level
dropped below the threshold (≤40%). However, the new version KF corrects the prediction
by inputting the posterior joint angle estimate θt−1 as the current missing measurement Zt.
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Figure 4. Earlier version KF (KF1) V.S KF with optimisation (KF2).

The second optimisation we designed aimed to improve the KF performance in terms
of prediction accuracy. In this paper, a set of videos with the targets’ sagittal plane is
applied to evaluate the assessment system. When a monocular camera is used to capture
sagittal plane movements, the far-side joints suffer from severe obstruction, which causes



Bioengineering 2023, 10, 653 6 of 16

the joint angle signal and the near-side joint angle signal to exhibit different process noise
Pnoise and observation noise Mnoise. Therefore, instead of using shared process noise and
observation noise in the earlier work, two sets of noise covariance matrices are found for
joint signals on each side of the sagittal plane, respectively.

After the KF estimates the missing gait signals, the FDF using the Least Root Mean
Square Error strategy (LRMSE) [15] will be used to calculate the principal frequency
components and then recover them to the time domain gait signal. Additionally, previous
research [15] suggested using the pose segmentation mask to reduce the background noise
level. The KF and FDF algorithm complement and denoise original gait signals and return
a processed gait signal. This step is called “post-process gait signals”.

2.3. Gait Parameters Analysis

Even though we are able to obtain the gait signals from markerless video inputs,
the original signals with hidden features are still abstract and unreadable, making them
difficult for non-specialists to analyse. In this paper, we propose a gait signal decoding
function, which processes the data to produce discrete gait metrics, including joint flexion
and striding speed. These discrete gait parameters are separately stored in different
datasets in terms of the targets’ age and gender, which can later be used to create models
for analysis, called “feature models” [15]. This function enables the assessment system to
evaluate patients’ disease condition with a T2 score for aiding healthcare workers, even non-
specialists, to learn about patients’ recovery progress and make suitable clinical decisions.

To design this function, PCA was utilised to generate feature models to hold sample
features. Suppose a dataset is a (n, d1) matrix that contains n samples, each with d1 features,
including their gait parameters and physiological indicators (e.g., age, mass, and height).
The PCA algorithm will identify a series of principal components (PCs) representing n
samples’ information through n vectors, with d2 dimensional (d2 ≤ d1), which is known
as the feature model, while explaining 90% of the samples’ variance. Once the feature
models were generated, the assessment system can report the Hotelling distance (T2 score)
to indicate the difference in gait between the patient and the normal group samples; the
higher the T2 score, the more irregular the patient’s gait. The filtered gait signal, discrete gait
parameters, and predicted T2 score construct the system’s gait analysis report, validated,
respectively, in the next section.

3. Experiment Results

A series of experiments were designed to verify the assessment system’s performance.
The experiments focused on the following three points: (1) they evaluated the improve-
ments in performance for the optimised assessment system, (2) they assessed the agreement
between the conventional method and the markerless method for the discrete gait parame-
ters, and (3) they evaluated the predicted feature model and the correlation of the T2 scores
to the gold-standard.

Four topics will be discussed sequentially in the following section. Firstly, Section 3.1
introduces metrics used in this study for evaluating the system performance. Secondly,
Section 3.2 introduces the details of the dataset. Thirdly, Section 3.3 shows the settings
of the hyper-parameters in the assessment system. Finally, the experiments’ findings are
reported in Section 3.4, to validate the assessment performance.

3.1. Evaluation Metrics

To objectively assess the system’s performance, a range of metrics was introduced to
validate the markerless assessment system performance from three perspectives: (1) the
accuracy of filtered gait signal, (2) the agreement between predicted and gold-standard
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discrete gait parameters, and (3) the correlation of T2 score between assessment system
prediction and gold-standard.

PE =
1
S

S

∑
s=1

1
J

J

∑
j=1

√
1
F ∑F

t=1(qs,j(t)− qgt,s,j(t))2

max(qgt,s,j)−min(qgt,s,j)
(4)

DTW(Gi, Pj) = Cost(Gi, Pj) + min


DTW(Gi−1, Pj)

DTW(Gi−1, Pj−1)

DTW(Gi, Pj−1)

(5)

There are two accuracy performance metrics used to describe the markerless gait
signals: the percentage error (PE) [23] and Dynamic Time Warping (DTW) distance [24]. F.
De Groote suggests using the ratio of cumulative Root Mean Square Error for all points
against the corresponding joint’s flexion, PE (Equation (4)), to evaluate the similarity
of the two signals, where S is the number of samples. The number of joint angles is
represented by the parameter J. The number of frames for the corresponding sample is
represented by the parameter F. The gait signal for the sample s of joint j is represented by
qs,j. The DTW distance is commonly used to compare the similarity of speech signals with
varied lengths. However, Yu and Xiong [25] suggested using the DTW distance to assess
physical rehabilitation, which encouraged us to apply it to assess the system’s performance.
The DTW distance, according to Equation (5), uses a dynamic programming method to find
the optimal warping path, which has the lowest cumulative cost of matching each point
in two signals [25]. Suppose we observe signal G and the predicted signal P, both with a
length of m, and DTW(Gi, Pj) denotes the distance of the best warping path between G
and P from (1, 1) to (i, j), where 1 ≤ i ≤ m, 1 ≤ j ≤ m. The Cost(Gi, Pj) treats Euclidean
distance as the cost of matching point Gi and Pj. In this paper, the DTW distance was
normalised using signal length (2m) as the final result.

In addition to assessing the accuracy of the gait signals, the Bland–Altman plot analy-
sis [26,27] was introduced to evaluate the agreement of the discrete gait parameters between
markerless and marker-based measurement methods. The linear regression-based method,
Person correlation coefficient (r), and cosine similarity were employed, respectively, to as-
sess the correlation between gold standards and predicted results, such as striding speeds,
T2 scores, and the feature model’s principal components obtained by PCA.

3.2. Datasets

In an earlier work [15], a small dataset containing nine samples was employed to
briefly evaluate the performance of the markerless system and demonstrate the system’s
basic functionality. To further validate the vision-based markerless assessment system,
we pre-processed (i.e., extracted a walking interval from original videos and calculated
the corresponding gold-standard) 78 samples provided by MoVi [20] to compose a robust
dataset with more diverse samples. Table 1 illustrates the details of those samples.

Movi publishes a series of samples with 30 FPS and 800 × 600 pixels video and corre-
sponding joint locations, acquired by a stationary computer vision camera binding with
Qualisys Track Manager (QTM) software and Visual3D software. In the pre-processing
stage, the joint locations will be converted into gold-standard gait signals. Overall, 78 sam-
ples were selected from sequence F_PG1 (total 87 samples in F_PG1), including 50 female
and 28 male samples, which excludes the samples with an excessively short walking period
(i.e., less than 40 frames) and the samples with obvious errors in the gold-standard gait
signal. These samples were then clipped in accordance with the interval. To obtain the
sagittal plane walking periods, the intervals began with the targets’ entry into the walking
state (i.e., taking the first step) and ended with their last step before entering the standing
state. These periods form the datasets for testing the markerless assessment system.
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Table 1. Dataset’s basic information.

Subject Gender Age Cut Interval Subject Gender Age Cut Interval

3 male 26 (900, 950) 48 female 18 (4700, 4760)
4 male 26 (1335, 1390) 49 female 23 (1700, 1810)
5 male 23 (836, 890) 50 female 18 (1900, 1990)
8 female 22 (2020, 2100) 51 female 18 (2360, 2420)

10 female 24 (680, 770) 53 female 23 (2550, 2650)
11 male 27 (4194, 4277) 54 female 18 (990, 1060)
12 female 26 (3465, 3535) 55 female 20 (4370, 4420)
13 male 26 (2365, 2420) 56 female 19 (3500, 3560)
15 male 21 (3460, 3530) 57 female 17 (640, 720)
16 female 26 (210, 280) 58 female 18 (3680, 3760)
17 female 26 (2590, 2660) 59 female 18 (3920, 3990)
18 male 25 (1132, 1212) 60 male 21 (2930, 3020)
19 male 18 (3250, 3320) 61 female 18 (1850, 1925)
20 male 29 (690, 760) 62 female 17 (3710, 3770)
22 male 28 (1218, 1284) 64 female 18 (3600, 3680)
23 male 25 (2095, 2140) 65 female 19 (3940, 4020)
24 female 20 (1130, 1220) 66 female 18 (2020, 2100)
25 female 21 (2920, 2970) 67 female 18 (4410, 4490)
26 male 24 (3690, 3780) 68 female 20 (2870, 2930)
27 male 23 (3465, 3552) 69 female 19 (1310, 1390)
28 male 25 (2605, 2675) 70 female 17 (820, 890)
30 female 19 (4310, 4380) 71 male 18 (360, 420)
31 male 28 (3305, 3375) 72 female 20 (3760, 3830)
32 female 20 (3740, 3805) 73 female 18 (500, 580)
33 male 21 (290, 350) 74 female 19 (2020, 2100)
34 female 21 (680, 740) 75 male 19 (1720, 1780)
35 male 29 (4508, 4588) 76 female 19 (3340, 3440)
36 male 29 (860, 920) 77 female 19 (1650, 1730)
37 male 21 (4610, 4690) 78 female 18 (730, 790)
38 female 32 (250, 350) 79 female 19 (3780, 3840)
39 female 21 (410, 475) 80 female 19 (2560, 2620)
40 female 21 (3866, 3950) 81 female 18 (3990, 4060)
41 male 28 (1860, 1910) 82 female 17 (2420, 2520)
42 male 21 (2020, 2080) 84 female 20 (3130, 3190)
43 male 21 (2460, 2540) 85 female 19 (2880, 2970)
44 female 20 (2710, 2770) 86 female 18 (2180, 2250)
45 female 18 (480, 550) 87 male 18 (1830, 1890)
46 male 21 (2960, 3040) 88 female 19 (3390, 3460)
47 male 18 (5200, 5255) 89 female 21 (3580, 3650)

3.3. Hyper-Parameters Setting

There is a range of hyper-parameters that can directly affect the performance of
the markerless assessment system, including segmentation mask (SM), min detection
confidence (MDC), and min tracing confidence (MTC), which are provided by BlazePose as
the initialisation parameters. The SM enables Blazepose to reduce the background noise
level in the video to aid human pose detection. MDC and MTC, according to previous
research [15], seemed to have less effect on human pose prediction results. Therefore, SM is
set to active (SM = True) and (MDC = 30% MTC = 50%) to follow the configuration from the
previous work. In addition to the above initialisation parameters, the visibility threshold
(VT) is another important parameter that should be carefully selected. Earlier studies have
shown that VT = 40% is a suitable option for the post-processing [15]. When BlazePose
predicts the joints in the frame with a visibility level lower than VT, it means the system
assumes that the targets are lost and the corresponding joint angles will be predicted by the
KF algorithm.

Additionally, the FDF needs to designate cut for dropping a portion of the KF predicted
gait signal at the beginning, since the KF Iteration requires time to converge. It is necessary
to specify the filter strategy and how many frequency components (N) are used to recover
the time domain gait signal. According to the previous studies [15], cut = 10% of the
prefix will be removed from signals, and Least Root Mean Square Error (LRMSE) strategy
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is adopted to select N = 5 principal frequency components that can recover a time-domain
signal with the lowest Root Mean Square (RMS) error for denoising the gait signals.

Q = α

1 · · · 0
...

. . .
...

0 · · · 1

R = β

1 · · · 0
...

. . .
...

0 · · · 1

 (6)

P0 =

100 · · · 0
...

. . .
...

0 · · · 100

 (7)

In addition to preserving the configurations of the previous hyper-parameters in [15],
dedicated coefficients α and β are both required to calculate the Pnoise and Mnoise matrices
for the KF to predict distal and proximal joints, respectively, where the processing noise
obeys the Gaussian distribution Pnoise ∼ (0, Q) and the measurement noise obeys the
Gaussian distribution Mnoise ∼ (0, R). The process noise covariance matrix Q, the mea-
surement noise covariance matrix R, and the error estimate covariance matrix P at t = 0, P0
are set as per Equations (6) and (7).

Table 2 illustrates the sum of the average PE and normalised DTW distance from
KF-predicted knee and hip angle signals for the two observed distances within 13 different
α and β combinations. Ideally, the combinations with the lowest percentage error and the
shortest DTW distance are preferred; however, it is rare to have both. The results indicated
that independent noise covariance matrix allows the KF to cope better with mixed-noise
gait signals, and the trade-off coefficients combination (α f ar = 1× 10−2, β f ar = 1× 10−3)
and (αnear = 1× 10, βnear = 1) has a low PE and a short DTW distance.

Table 2. The performance of KF using different α and β combinations.

α β
Far-Side (Knee & Hip) Near-Side (Knee & Hip)

DTW PE DTW PE

0.001 0.001 9.88 80.92% 5.39 45.37%
10 10 7.75 61.64% 5.30 44.89%
10 1 7.72 58.85% 5.36 42.86%
10 0.1 7.77 58.49% 5.38 42.57%
1 1 7.75 62.18% 5.31 44.99%
1 0.1 7.70 58.89% 5.36 42.88%
1 0.01 7.76 58.49% 5.38 42.57%

0.1 0.1 7.64 62.55% 5.34 45.18%
0.1 0.01 7.65 58.85% 5.37 42.91%
0.1 0.001 7.76 58.48% 5.38 42.57%
0.01 0.01 7.52 62.46% 5.37 45.32%
0.01 0.001 7.62 58.72% 5.37 42.94%
0.01 0.0001 7.75 58.46% 5.38 42.57%

0.001 0.001 7.50 62.16% 5.39 45.37%
0.001 0.0001 7.60 58.62% 5.38 42.95%

To summarise, the hyper-parameters of the markerless assessment system are set as
follows: MDC = 50%, MTC = 30%, VT = 40%, SM = TRUE, cut = 10%, α f ar = 1× 10−2,
β f ar = 1× 10−3, αnear = 10, βnear = 1, N = 5 and the filter strategy is LRMSE.

3.4. System Performance Evaluation

In this section, the performance of the system is validated from three different perspec-
tives: (1) the predicted gait signals’ accuracy compared to the gold-standard gait signal,
(2) the agreement between the motion capture markers method and the markerless method
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for the discrete gait parameters, and (3) the correlation between the gold-standard and
assessment system prediction for striding speeds and feature model (T2 scores).

Table 3 shows the PE and DTW distance of the original gait signals, the signals
processed by the prior version KF (KF1 + FDF), and the signals processed by the KF
with two optimisations mentioned in this paper (KF2 + FDF). Additionally, rather than
classifying gait signals according to the physiological position of the right and left limbs,
Table 3 evaluates gait signals in terms of the distance of the lower limbs (far-side/near-side)
to reflect the system performance under low-visibility conditions. To avoid overstating
errors in the original signals, the missing data ‘None’ are substituted by the mean value of
the original signals or the most recent valid value, when computing PE or DTW, respectively.

Table 3. Gait signals’ accuracy comparison for KF1, KF2, and Original signal.

Method
Far-Side Near-Side

AverageKnee Hip Knee Hip
DTW PE DTW PE DTW PE DTW PE DTW PE

KF1 + FDF 5.08 36.11% 4.85 45.00% 2.91 18.27% 2.48 27.15% 3.83 31.63%
KF2 + FDF 4.17 25.81% 3.46 32.88% 2.94 17.33% 2.43 25.57% 3.25 25.40%

Original signal 4.59 25.93% 4.05 37.71% 2.95 17.90% 2.98 27.77% 3.64 27.32%

Comparing KF2 + FDF with the original signals, the DTW distances are significantly
reduced for far knee, far hip and near hip angle signals while maintaining similar or
even lower PE, indicating that the updated KF (KF2) can effectively improve the similarity
of the predicted signals to the ground truth without introducing an additional DC com-
ponent offset of the signal or global offset. More specifically, compared to the original
signals, the average DTW distance of KF2 + FDF decreases 10.7% ((3.64− 3.25)/3.64);
however, the average PE remains at the same levels (25.57% V.S. 27.77%). In addition,
Figure 4 indicates that the new version KF2 has better robustness when occasional tran-
sient missing data occurs, compared with KF1. Specifically, the KF2 improves subject
85’s left hip signal and subject 41’s left knee signal by 68.7% and 37.5% at DTW distance
(i.e., (DTW(GoldStandard, KF2)−DTW(GoldStandard, KF1))/DTW(GoldStandard, KF2)),
respectively.

Figure 5 illustrates four joint flexion Bland–Altman plots. It is more interesting to
discuss distal/proximal than left/right joint flexion angles because the targets’ discrete
gait parameters obtained from the markerless assessment system are sensitive to the
visibility level. The Kolmogorov–Smirnov test proves that the differences obey the normal
distribution (p-value > 0.05). The blue horizontal line indicates the mean difference between
the traditional method and the markerless method. Suppose the mean difference is (d̄)
and the standard deviation of the differences is (sd), 95% of differences will be located in
the region between the red dashed line (d̄− 1.96sd to d̄ + 1.96sd), while the blue and red
shading area suggests the potential values (95% confidence interval) of the real mean and
real 95% boundaries of the overall sample estimated from a finite sample. The gap between
the blue horizontal line and the red dashed line represents the limit of agreement (LoA).

The near-side flexion exhibits higher variation in the mean difference (knee mean = 12.9%,
hip mean = 39.3%) compared with far-side flexion (knee mean = 8.0%, hip mean = 34.5%).
However, not unexpectedly, the far-side flexion (hip LoA = 37.7%, knee LoA = 35.2%) suffers
more uncertainty difference in individual samples than near-side flexion (hip LoA = 34.2%,
knee LoA = 22.3%). This supports that the obscured far-side limb results in a larger devia-
tion in the markerless prediction. Additionally, the predicted joint flexions have 8.0% to
39.3% mean difference compared with ground truth, and none of the blue shadow areas con-
tain y = 0, which indicates the markerless method based on BlazePose exhibits statistically
significant differences from the traditional method using a motion capture marker.
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Figure 5. Bland–Altman plots for four joints’ flexion. (a) p-value = 0.40; (b) p-value = 0.84;
(c) p-value = 0.90; (d) p-value = 0.93.

The striding speed (i.e., the number of strides per second) and T2 score reject the null
hypothesis (p-value < 0.05). In this case, the linear-regression-based method and Person
correlation coefficient (r) are introduced to evaluate the system performance. To fully
utilise the limited data, the cross-validation strategy is employed, in which each sample is
individually selected as the test subject to compute the T2 score and the remaining samples
are used to create the feature model.

The striding speeds plot with r = 0.79 and y = 0.91x+ 0.05 regression line is illustrated
in Figure 6a. Although the correlation coefficient suggests that markerless prediction does
not appear to be a desirable gold-standard alternative, 92% of samples are located on the
ideal regression line y = x. This phenomenon may derive from the prediction method:
we treat the PC’s frequency in the near-side hip angle signal as the striding speed, which
means the predicted results are sensitive to the gait signals’ shape. However, 92% accuracy
is satisfactory for markerless predicted striding speed.
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Figure 6. Striding speed (a) and T2 score (b)’s correlation.

Figure 6b illustrates that the two methods’ T2 scores have an r = 0.99 and y = 0.94x + 0.01
regression line. This indicates that the usage of age, weight, height, predicted joint flexions,
and predicted striding speed seems to be a good substitute for discrete gait parameters
measured by the traditional method to build a feature model. However, the T2 scores
are clustered in the (0–0.4) region, which makes the differences between the two methods
apparent. In order to clearly assess the similarity of the feature models obtained using the
two methods, cosine similarities for the first four PCs in the gold-standard feature model
and predicted feature model are used and listed in Table 4.

Table 4. PCs comparison for predicted feature model and gold-standard feature model.

Gender PC
Explained Variance Cosine SimilarityPredictions Gold-Standard

Female

0 26.45% 30.11% 0.89
1 18.64% 17.61% 0.78
2 13.86% 16.07% 0.83
3 12.13% 11.08% 0.71

Male

0 25.61% 38.12% 0.65
1 21.55% 21.01% 0.72
2 17.13% 13.42% 0.15
3 12.20% 10.61% 0.13

The T2 scores in Figure 6b are computed by the female or male feature models,
respectively, in terms of the target’s gender. Therefore, Table 4 lists two feature models’
PCs. The ‘Explained variance‘ in Table 4 denotes the weight of the corresponding PC in
their feature model, and the cosine similarity denotes the similarity of PCi between the
predicted and gold-standard feature model. As shown in Table 4, the predicted female
feature model has relatively good similarity to the ground truth, while the predicted male
feature model has an unacceptable similarity. A possible reason is that the male sample is
insufficient in size (28 male samples V.S 50 female samples). Although the Bland–Altman
plots indicate that the predicted joint flexions have a moderate LoA and a statistically
significant difference from the gold-standard, Table 4 suggests the PCA can use discrete
gait parameters reported by the markerless assessment system to generate feature models
that are comparable to the ground truth, if there are sufficient samples.
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4. Discussion and Conclusions

This paper introduced a markerless solution assisted by the BlazePose human pose
detection model and a monocular camera for clinical gait analysis. In this study, we
continue our previous research by implementing two optimisations for the gait signal
processing stage and utilising a robust dataset, with more diverse samples provided by
MoVi to validate the performance of markerless gait analysis system for processing video
samples from indoor contexts with limited gait cycles.

According to the results of the experiment, the predicted gait signal accuracy is depen-
dent on the performance of the human pose detection model. Although the post-processing
part can filter some signal noises, the post-processing part will fail if the unexpected shape
distortions occur in the original signal. In particular, we found that post-processing could
not recover a reliable filtered ankle signal, as there was significant distortion in the original
ankle signal shape. One possible reason for the original ankle signal distortion is that
BlazePose’s estimation of foot location is more susceptible to obstruction than the knee
or hip. To prevent incorrect ankle discrete gait parameters from disturbing the T2 scores
prediction, we excluded ankle-related gait signals from the system analysis.

To address the joint obstruction, we tried to feed BlazePose with a coronal plane
rather than a sagittal plane video to compute the joint angle signal. However, comparisons
in Figure 7 show that the joint angle signals obtained from the coronal plane tend to be
distorted, which shows that it remains a challenge for the general human pose estimation
model, BlazePose, to provide satisfactory 3D posture for medical rehabilitation application
from a 2D coronal plane video. Therefore, sagittal plane videos are recommended inputs
for our markerless gait analysis system. However, the innovation trends in computer vision
and machine learning techniques are expected to provide better models for human pose
estimation, which can cope with depth estimation in 2D video.
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Figure 7. Comparison of gait signals (Subject 18) in the coronal plane, sagittal plane and ground truth.

The experiment results also suggest the previous gait processing solution [15] has
defects that caused the processed gait signal to suffer the worst PE and DTW distance.
However, KF with two optimisations can significantly improve the 10.7% similarity of the
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predicted signals to the ground truth, without generating additional global offset compared
with BlazePose’s raw prediction.

In addition, the Bland–Altman plots revealed that four joint flexion angles have 8.0% to
39.3% disagreement for prediction using the markerless method to the gold-standard using
the traditional solution, while the 22.3% to 37.7% LoA will be an obstacle to calibrating
the markerless assessment system’s results. However, the predicted female feature model
shows a relatively good similarity to the gold-standard female feature model and the two
methods’ T2 scores have a r = 0.99 and y = 0.94x + 0.01 regression line, which means that
a markerless method can be a potential alternative to traditional solutions.

On the other hand, several limitations must be pointed out. For example, the current
samples’ T2 score clustered in the small interval makes it challenging for the Pearson
correlation coefficient and the linear regression-based method to identify the deviation
between the gold-standard and the predicted results. Another limitation is the absence of a
comparison with related works, because the majority of validation work on gait analysis
measurements employed independent, closed-source datasets [11,28,29], making it hard
to obtain objective and fair comparisons from other related studies. This motivated us
to utilise MoVi (public dataset) to validate the markerless system, which enables our
work to provide a valuable assessment for subsequent proposed measurements in the gait
analysis field.

To conclude, the markerless assessment system for indoor environments, which relies
on BlazePose and a monocular camera, do not provide the same level of performance
metrics compared to the marker-based methods, which is an obstacle to a fully independent
clinical analysis task. However, from another perspective, the human pose detection
model and a monocular RGB camera allow the assessment system to be freed from bulky
and expensive professional data collection equipment and enable the system to complete
preliminary clinical gait analysis on affordable personal devices, such as personal computers
and smartphones. Moreover, the experiments support that the markerless method can be a
potential alternative to traditional solutions, assisting with healthcare in clinical diagnosis
by analysing the patient’s gait and returning the visualised reports, which supports us
in developing an on-device application and analysing its computational consumption in
future. To achieve a fully independent clinical analysis task, other strategies—for instance,
recording two round walking videos with a different sagittal plane and combining them
into a target’s gait signals—can be attempted in the future to achieve further improvements
in accuracy.
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