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Abstract—Multi-robot system for manufacturing is an Industry
Internet of Things (IIoT) paradigm with significant operational
cost savings and productivity improvement, where Unmanned
Aerial Vehicles (UAVs) are employed to control and imple-
ment collaborative productions without human intervention.
This mission-critical system relies on 3-Dimension (3-D) scene
recognition to improve operation accuracy in the production line
and autonomous piloting. However, implementing 3-D point cloud
learning, such as Pointnet, is challenging due to limited sensing
and computing resources equipped with UAVs. Therefore, we
propose a Digital Twin (DT) empowered Knowledge Distillation
(KD) method to generate several lightweight learning models and
select the optimal model to deploy on UAVs. With a digital replica
of the UAVs preserved at the edge server, the DT system controls
the model sharing network topology and learning model structure
to improve recognition accuracy further. Moreover, we employ
network calculus to formulate and solve the model sharing
configuration problem toward minimal resource consumption, as
well as convergence. Simulation experiments are conducted over
a popular point cloud dataset to evaluate the proposed scheme.
Experiment results show that the proposed model sharing scheme
outperforms the individual model in terms of computing resource
consumption and recognition accuracy.

Index Terms—Digital Twin, Distributed Model Sharing,
Knowledge Distillation, Network Calculus, Multi-Robot System.

I. INTRODUCTION

THE advances in wireless communication, and machine
learning technologies have boosted the research and de-

velopment of the Industrial Internet of Things (IIoT). A multi-
robot system is a typical IIoT paradigm, in which Unmanned
Aerial Vehicles (UAVs) are employed to implement auto-
production collaboratively without human intervention. It can
significantly save operation costs and improve productivity
[1]. Therefore, multi-robot systems have broad applications in
vertical industrial fields, such as manufacturing, warehousing,
and mining. However, like many other mission-critical IIoT
applications, even minor control and operation errors in the
multi-robot production lines or open-pit mining could cause
substantial economic losses and safety problems [2], [3].
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A comprehensive perception of operating environments is
essential for safe and efficient multi-robot systems.

Research on environment perception for autonomous UAVs
has shifted from using visual cameras to Lidar sensors [4]. The
drawbacks of optical cameras are lack of depth information
and sensitivity to illumination, while Lidar sensors can provide
the accurate depth information and do not depend on lighting.
Many deep learning methods are proposed to percept objects
from the point cloud data produced by Lidar [5]. However,
existing point cloud learning, such as Pointnet [6], ignore
the benefits of collaborative learning from multiple agents.
Diverse applications yield distinct point cloud learnings for
UAV operation. These distinct learning models can produce
diversity gain by sharing knowledge with each other. For
instance, training a point cloud recognition model to identify
cargo shapes in warehousing can help the scene recognition
for other UAVs in autonomous piloting. Therefore, the deep
learning model sharing among UAVs can alleviate the exten-
sive computing overheads and promote training convergence
for an individual UAV.

Learning model sharing between UAVs relies on wireless
communication. Unfortunately, these cloud point learning with
in-depth model sizes are inappropriate for onboard training
and wireless transmission. To alleviate the computing and
communication overheads of onboard processing and model
sharing, we exploit knowledge distillation (KD) to compress
the trained deep model to an appropriate lightweight model
for onboard processing and model sharing. The KD method
can significantly shrink the model size with little performance
loss by compression. KD has been shown to be very effective
in improving the performance of a lightweight model by
transferring the “dark knowledge” of a trained learning model,
which contains the information of non-target labels [7]. By
contrast, the other compression methods, like network pruning
quantization, and binarization, do not have this non-label
learning ability [8]. However, a side effect of the KD-based
method is that the compression process is computationally
expensive. Not friendly to embedded chips.

Consequently, to avoid computing overheads on embedded
chips and performance deterioration by lightweight model
sharing, we proposed a UAV model sharing scheme with
the aid of the Digital Twin (DT) technology. DT assets
deployed in edge servers acquire the status of each UAV and
perform a clone network. On the one hand, UAVs can offload
the KD process to the DT side for computing efficiency.
On the other hand, a DT system can inform the optimal
topology configuration to the UAV side for model sharing
convergence. This is because the model sharing with different
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Fig. 1: DT empowered Model Sharing Framework in Multi-robot Systems.

UAVs may not guarantee that all UAVs finally reach the same
learnable parameters. It ascribes to losing the convergence of
model sharing. In this situation, UAVs cannot fully obtain the
collaboration benefits [9]. Therefore, an appropriate topology
and resource assignment extrapolated by the DT assets will
confirm the model sharing convergence.

In the DT-empowered model sharing scheme, the KD-based
model training is offloaded to the DT domain. DT asset takes
advantage of the high computing capacity of edge servers
to run different KD operations simultaneously. After the KD
procedure, the DT system selects an appropriate lightweight
model and topological features for the UAV swarm. This
selection takes account of resource cost and convergence of
model sharing. When UAVs receive the optimal lightweight
model from DT, they will retrain it for local adaptation. In
contrast, UAVs have to report their running and connection
status to the DT assets for clone network refinement. Overall,
the proposed DT-based model sharing scheme improves the
scene recognition efficiency of the multi-robot system with
proper communication and computing overheads.

The main contributions are summarized as threefold:

• We propose a DT-based model sharing scheme, where the
DT system comprises device DT and edge DT. The device
DT is an abstract representation of the physical UAV.
The edge DT undertakes a clone network to optimize
the learning model structures and the sharing network
topology of the UAV swarm. Therefore, UAVs decouple
the model distillation and network optimization from
onboard chips by leveraging the computing resource and
global information of edge servers. It reduces operation
hazards and computing consumption of UAV swarms in
the manufacturing context. Additionally, the DT-based
scheme further improves model sharing performance by
eliminating the effect of transmission errors from physical
channels. Simulations demonstrate the advancement of
the DT technology on a KD model sharing scheme. It

produces reliable scene recognition, entitling UAVs to
operate more accurately and safely.

• We design three lightweight models of Pointnet to cater
to the diverse requirements of UAVs in multi-robot
systems. Different from the traditional KD method that
only generates one lightweight model and consumes
computing resources on local devices, the proposed DT-
based scheme enables tunable configurations in terms of
the learnable parameters, model structures, and topology
features. By exploiting the computing resource of edge
servers, we propose an algorithm to determine the optimal
lightweight model and network topology to improve the
recognition performance. Simulations indicate that the
optimal configuration does not adopt the deepest learn-
ing model for model sharing. This scheme can provide
a reference to address appropriate learning models on
resource-limited UAVs.

• We leverage the network calculus theory to cope with the
end-to-end delay requirement for consensus convergence.
It reveals the interaction mechanism of the maximum
node degree and the bandwidth of UAV-to-UAV commu-
nication as attaining a distributed consensus. Based on the
network calculus analysis and recognition requirements,
we propose a consensus scheme that assigns communica-
tion and computing resources. Simulation results exhibit
that UAV network resources and topological features de-
termine the model sharing convergence and performance.

The remainder of this paper is organized as follows. Sec-
tion II reviews the related works. Section III designs the
DT empowered distributed model sharing scheme. Section
IV provides the optimization of distributed model sharing.
Section V presents the simulation results and the performance
discussion. Finally, we draw the conclusion in Section VI.

II. RELATED WORK

Deep learning for point cloud recognition has gained in-
creasing attention due to the demands of refining opera-
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tions and autonomous pilots for multi-robot systems. How-
ever, UAVs face challenges in deploying the deep learning
framework. We overview three main technologies to improve
onboard learning of resource-limited devices.

To unleash the vast potential of multi-robot collaboration in
IIoTs, we investigate the deployment and application of digital
twins for IIoT systems. As a disruptive technology, a DT asset
creates a digital replica of physical entities and systems in
the digital system, enabling real-time simulation, prediction,
control, and optimization of the physical system with high
fidelity, safety, and cost-efficiency [10]. It has been applied
successfully to many industry fields, such as manufacturing,
transportation, and telecommunication systems [11], [12]. Un-
der the DT paradigm, multi-robot prototypes and intensive
computing tasks can implement in the DT system. Therefore
potential computing overheads on vehicles and multi-robot are
avoided [13]. To our knowledge, DT technologies have yet to
be applied to UAV swarms for lightweight model sharing.

Distributed multi-agent learning has been investigated in
many works and applied in transportation systems [14] and
smart grid [15]. In this system, agents share information with
their connected neighbors. However, it is difficult to maintain
the agreement of all agents, especially in a large-scale network
[16]. A consensus algorithm is an interaction rule that spec-
ifies the information exchange to reach an agreement. Such
information might be related to the performance and kinetics
of individual agents, which widely applies to unmanned aerial
vehicle coordination control [17]. Many works have revealed
that the communication delay and topology influence the con-
sensus agreement of multiagent systems [9]. From the resource
assignment perspective, this paper first applies the network
calculus to obtain the required communication resource to
ensure the model sharing agreement among distributed UAVs.

Regrading the model compression, there are several widely
used methods, including the knowledge distillation, net-
work pruning [18], quantization [19], and binarization [20].
KD technology effectively improves the performance of a
lightweight model by transferring the knowledge of non-target
labels from the teacher model. By contrast, the other com-
pression methods do not have this non-label learning ability.
Knowledge distillation was first proposed by Hinton [7], as a
teacher–student paradigm widely used for model compression.
Bhardwaj et al. [21] used the KD method on the Pointnet
learning and presented a student architecture analogous to the
Pointnet. Chen et al. [22] proposed a Wasserstein contrastive
learning approach. It leverages primal and dual forms of
Wasserstein distance to match the distributions of features
between the teacher and the student model. However, most of
the previous KD studies focus on transferring the knowledge
of a teacher model to a single-student model. In this paper,
we generate three student models by the KD process from one
teacher model. It can be adapted to various devices in multi-
robot systems, customizing the model size and recognition
accuracy.

Most previous studies ignore the resource consumption for
the distributed consensus agreement and knowledge distilla-
tion. This paper is motivated to develop a framework that
integrates low computing overhead and efficient model sharing
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Fig. 2: DT construction and synchronization.

with the aid of DT. The DT system yields a lightweight model
sharing scheme with adequate performance in point cloud
recognition for resource-limited UAVs.

III. SYSTEM MODEL

In this section, we present the framework of the DT-
empowered model sharing and the KD-based model compres-
sion for UAV swarms.

A. DT empowered Model Sharing

UAVs with limited embedded sensors and chips may only
partially exploit the potential of the deep learning models that
requires extensive data and computing resources. Therefore, a
DT-based scheme is proposed to yield a lightweight learning
model for onboard training and efficient model parameter
propagation. A UAV obtains a lightweight learning model
from the DT side, and then shares the trained model with
neighbors for better recognition outcomes. This DT-based
model sharing avoids the hazards caused by direct changing
the physical running network. DT assets can perform the
control operations and optimization of the corresponding UAV
swarm with the real-time synchronization of the physical
systems. In the DT-empowered model sharing framework, the
shared model performance, size, and network topology are
taken into account.

Fig. 1 demonstrates the proposed architecture, which con-
sists of a physical system and synchronized digital twins. The
physical system has three major components, i.e., multiple
UAVs, small cells for UAV communications and DT synchro-
nization, and an edge server. The UAVs gather 3-D point cloud
data from onboard Lidars and then employ learning models
for product recognition and autonomous pilot. Small cells
are scattered over the work region, operated for monitor and
control among the UAVs and the DT assets. The edge server
can run major computing jobs such as teacher model training,
lightweight model distillation, and digital twin creation for
UAV swarm.

With the aid of digital twins, control and operation eval-
uation can be performed on the DT side. We configure the
DT model according to the reference [23]. Digital twins can
be divided into device DT DT dev and edge DT DT edge. The
DT dev is tailored to mimic the physical UAV as a summarized
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model. DT edge is designed to collect DT dev of the swarm and
supply predictions and optimization to the physical system
by virtual imitation and confirmation. In our case, the device
DT is supposed to outline the UAV status, and the edge DT
implies specific optimization on the mapped device DTs. This
proposed DT system can facilitate DT synchronization with
few communication overheads.

The assignment of device DT is to monitor and summarize
the changes in UAV kinetic status, network connection status,
and recognition performance. Thus the onboard device DT of
UAV i is represented as,

DT dev (t, i) = [gi(t), fi(t),∆gi(t)] , (1)

in which gi(t) = [gkini (t), gneti (t), g
mod(j)
i (t)] signifies the

status of the UAV kinetic, network connection, and recognition
performance of the learning model j, respectively. Moreover,
fi(t) = [fkini (t), fneti (t), fmodi (t)], where fkini (t) indicates
the available kinetic behaviors of UAV i at time t, such
as position and acceleration. fneti (t) expresses the means of
network modification at time t. And fmodi (t) represents the
viable learning models that can be applied in UAV i at time
t. In addition, ∆gi(t) = gi(t) − ĝi(t) is running deviation
where ĝi(t) is the prediction status at time t received from the
corresponding edge DT.

For the edge DT, it is a UAV swarm replicas produced by
collecting several device DTs, as defined following,

DT edge (t,Ω) =
[
GΩ(t), FΩ(t), ĜΩ(t+ 1)

]
, (2)

where DT edge (t,Ω) is the edge DT corresponding to the
UAV device DT DT dev(t, i), i ∈ Ω. The set of gi(t) in the
UAM swarm Ω is denoted as GΩ(t) = [gi(t), i ∈ Ω]. Further,
FΩ(t) = [fi(t), i ∈ Ω] represents the set of fi(t) in the group
Ω. Moreover, ĜΩ(t+1) is the status prediction of g(t) in time
slot t+ 1, which is the DT feedback to the physical system Ω
for instructing future activities.

Fig. 2 elaborates the proposed DT assets for the model
sharing. DT devi is deployed on the UAV i. On the one side,
the UAV i uploads its DT devi status to the edge server at
intervals through wireless. On the other side, the edge server
maintains and manipulates the gathered DT dev in the edge vir-
tual renderings DT edge (t,Ω). Based on the high-performance
chips of edge servers, the edge DT will extrapolate the optimal
lightweight model, connection topology, and sharing frequency
to instruct the physical UAV bbehaviors.

The edge DT imitates the UAV movement and experiments
with manifold learning models and network configurations. It
addresses the following tasks: i) design and select an optimal
lightweight model for UAVs based on KD technology; ii)
find an appropriate topology to ensure the convergence of
model sharing based on the average consensus scheme and
network calculus theory; iii) fine-tune the configuration of
the model sharing to minimize communication and computing
resource consumption with meeting the recognition require-
ment. Wherein Generative Adversarial Network can generate
the virtual training data for DT imitation in edge servers [24].
Through the virtual imitation and estimation, edge DT will

feed back the UAV status prediction ĜΩ(t+1) of the following
running slot t+ 1 to the UAV swarm.

In contrast, the device DT deployed on the UAV has
three primary functions: i) summarizing the local status of
the UAV; ii) maintaining device DT and synchronizing with
edge DTs; iii) onboard model training and sharing with other
UAVs. Initially, a UAV uploads its DT dev settings to the
corresponding edge server. Subsequently, the UAV only needs
to update its running deviation ∆gi(t) to the edge server for
the DT synchronization.

The device-edge DT pairs interact through bi-directional
wireless communication. In Fig. 1, small cells collect and
report the device DT information to the edge server. Con-
versely, small cells transmit the optimal topology, lightweight
learning model, and sharing frequency to UAVs. Thus, specific
bandwidth resources must be reserved to sustain device DT
and edge DT synchronization.

When the communication cycle exceeds the maximum
allowable synchronized delay tDT , the edge DT and physical
UAV (device DT) will lose synchronization. In this scenario,
the running deviation ∆g = null is sent from the device
DT to the edge DT. Consequently, edge DT continues to
promote virtual simulation without input information from
physical devices. Meanwhile, the physical UAV cannot acquire
feedback from the edge DT in the counterpart. It results in
the onboard device DT only deducing the future behavior by
its current status without the aid of the swarm information
from edge DT. However, this deduction is non-optimal due to
the lack of global swarm information and virtual deduction.
Once the synchronization is re-established, the device DT
will transfer the current primary status gi(t) as the running
deviation ∆gi(t) = gi(t) to the edge DT. After the swarm
imitation and virtual trials by the edge DT, a status prediction
ĝi(t + 1) ∈ ĜΩ(t + 1) at t + 1 is given according to the
upload running deviation ∆gi(t). The prediction of the edge
DT will instruct the UAV behavior, which rebuilds the closed-
loop control between the DT system and physical entities.

B. Three KD Student Models

As mentioned previously, the edge DT requires providing
a suitable lightweight learning model ĝmod(j)

i (t) ∈ Ĝ to the
UAVs for model sharing. This paper regards Pointnet learning
as a teacher to produce various lightweight student models
by KD compression. Typically, the learning model to be
compressed is named the teacher model, and the counterpart is
called the student model. Pointnet is classic deep learning for
3-D point cloud recognition. Its architecture [6] is shown at
the top of Fig. 3. However, the Pointnet with 14.2M learnable
parameters is tough to train or transmit onboard in resource-
limited UAVs. Thus, this paper utilizes the KD technology
deployed on edge servers to compress deep learning into a
lightweight fashion. This lightweight model can implement
point cloud recognition on UAVs directly.

Unlike the existing KD method [21] that has only one stu-
dent model, we propose several student models distilled from
one identical Pointnet. Specifically, the number of learnable
parameters of the three student models drops sequentially. It
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Fig. 3: Demonstration of three KD student models for point cloud learning.

implies that student models can adapt to diverse scenarios.
According to the order of model sizes, the three student
models are named College Student Network (CSN), Middle
Student Network (MSN), and Primary Student Network (PSN),
respectively. They are illustrated in Fig. 3. Mentioned that all
three student-teacher KD compressions are performed by the
edge DT in that the KD process consumes lots of unaffordable
computing resources with UAVs.

To inherit the knowledge of the teacher model, the model
structure of student models should be consistent with the
teacher model. Pointnet, i.e., the teacher model, comprises four
parts: the input transform, the feature transform, the shared
multi-layer perception (mlp), and the final softmax output.
The PSN model removes the input component and feature
transform. Further, it reshapes two shared mlp layers. One
shared mlp layer has 3 × 1024 dimensions, and another de-
generates into a traditional multi-layer perception with 512×K
dimensions. MSN is roughly similar to the PSN, but the size of
the shared mlp layers in MSN has 3×256×512×1024, which
is larger than the PSN. CSN is different from PSN or MSN,
which adds one more shared mlp block, as shown in Fig 3. The
number of learnable parameters of PSN is 2.13M , only 15%
of the teacher model. It bears nearly 7 times compression. The
parameter number of MSN is 5.27M , about 37% compression
of the teacher model. And the parameter number of CSN is
6.24M , around 44% proportions of the teacher model.

The edge DT constructs the teacher-student learning models
and takes advantage of the virtual data to perform the KD
compression in a discrete time-slotted manner. Suppose that
the teacher and student models both generate K categories
scores for each of the n point clouds. The loss function of
the KD is a cross-entropy between the predicted probability

vector Z = [z1, z2, . . . , zK ] and the truth one-hot label
y = [y1, y2, . . . , yK ] encoded by one-hot representation. The
input sample is formalized as p ∼ Pdata(x), expressing the
input data distribution. Let Z∗SN represents the logits output
of student model (ZPSN/ZMSN/ZCSN ), and ZT indicates
the logits of the teacher model. We first get the logits ZT by
training the teacher model, then distill the knowledge from
the trained teacher model to supervise the student training.
Moreover, Hinton et al. [7] proposed a typical distillation
objective to align the student logits Z∗SN with the teacher
logits ZT :

minZ

n∑
i=1

(1− α)L (σ(Z∗SN (xi)),yi)

+ατ2L (σ(ZT (xi), τ), σ(Z∗SN (xi), τ)),

(3)

where τ signifies the distillation temperature. α is a weight
parameter. x is the input point cloud data, and y is the truth
one-hot label. Denote by L the cross-entropy to measure the
gap between the teacher and student logits, defined as

L (z, y) = −
∑
yj∈Zi

yj log zi −
∑
yj /∈Zi

yj log (1− zi) . (4)

Wherein, σ represents the softmax layer of a deep learning
network that transforms the logits Z to the probability outputs,
noted as,

σ(zi) =
exp(zi)∑
j exp(zj)

. (5)

In addition, denote by σ(z, τ) the temperature augmented
softmax layer, given as,

σ(zi, τ) =
exp(zi/τ)∑
j exp(zj/τ)

. (6)
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Fig. 4: Performance comparison of the teacher model with three
student models.

Based on these definitions, we weightily integrate the two
cross-entropy losses as Eq. (3), indicating the loss for student
model training.

Fig. 4 depicts the recognition accuracy of the three students
and teacher models in point cloud recognition. The number of
learnable parameters of each model (i.e., the model size) is
marked in the legend. The recognition accuracy of the teacher
model is the upper bound of the three students since the teacher
has the deepest architecture with high fitting capability. After
15 training episodes, all student recognition accuracies are less
than 10% compared to the teacher model.

At the beginning of Fig. 4, CSN has the worst accuracy
in the student networks. After 45 training episodes, it out-
performs the other student models. Because CSN has a large
model size, it needs more data and training time to digest the
input data and teacher knowledge. On the contrary, PSN and
MSN can learn faster due to the simplified model structures,
but the long-term training accuracy is not as good as CSN.
In addition, MSN is similar to PSN in this experiment. The
performance of the student models without model sharing can
serve as the baseline for further evaluation.

C. Distributed Model Sharing

To further improve the potential performance of multiple
student models, the knowledge learned by each student model
should be shared and integrated. This section proposes a low-
complexity model sharing scheme to improve the recognition
performance of student models and expand learning flexibility.
However, the parameters of the shared model between dis-
tributed UAVs may not converge to stable values. The phe-
nomenon of the non-identical learnable parameters between
the shared models is called disagreement. The disagreement
manifests insufficient share in that student models can only
partially draw the knowledge of all neighbors, leading to non-
fully exploiting the diversity gain of model sharing. Thus, the
critical problem is to achieve a consensus agreement on model
sharing between distributed UAVs. The consensus agreement
means that the learnable parameters of the shared models
generated by different UAVs are identical.

Algorithm 1: KD based Distributed Model Sharing

1 Initialize Teacher net; PSN; MSN; CSN;
2 Train teacher model with minimizing Eq. (4) in DT;
3 for l : 1 to M do
4 Train PSN/MSN/CSN using Eq. (3) in DT;
5 Obtain the optimal student model and network

topology through Alg. 2;
6 Transmit the optimal student model and topology

configuration to UAVs;
7 for Traverse data batch in parallel do
8 Activate ith UAV q times model sharing with

neighbors Ni;
9 for j : 1 to q do

10 if UAV i receives all Ni neighbors updated
model h(t) then

11 Update m parameters (model)
according to Eq. (10);

Consider the learning model parameters hi of UAV i with
topology G = (V,E), where each UAV can communicate with
its neighbors Ni = {j ∈ V |{i, j} ∈ E} on G = (V,E).
V = {1, 2, . . .m} is the set of UAVs. Denote by E ∈ {V, V }
the set of communication links. In this scenario, Olfati-Saber et
al. [17] has proposed the following linear dynamic method to
address a distributed consensus with the UAV-to-UAV (V2V)
communication delay ε,

ḣ = −Lh(t− ε), (7)

where t is the time variable. L = L(G) is the Laplacian matrix
of graph G that is defined as L = D(G) − A(G). D(G) is
a diagonal degree matrix of G with the i-th diagonal element
di = |Ni|, and the non-diagonal elements of D(G) are zero.
A(G) is an adjacency matrix with 0 − 1 elements. Thus, the
element of L is

lij =

{
−1, j ∈ Ni
|Ni| , j = i

. (8)

With the initial learning parameter hi(0) = ai of model i, the
parameters of all models asymptotically converges to the value
ā = 1

|Ni|
∑
i ai. However, this property is available while the

UAVs are fully connected. Denote by ε the maximum delay in
all V2V communication. A necessary and sufficient condition
for convergence of Eq. (7) is [17]:

ε <
π

2λm
, (9)

where λ1 ≤ λ2 ≤ · · ·λm represent the eigenvalues of L. λm
is the largest eigenvalue of L that can indicate the convergence
rate of consensus in a network. According to the consensus
scheme in [17], the model parameter integrator of UAV i is
designed in the following:

hi(k + 1, t) = hi(k, t)+

ρ
∑
j∈Ni

ηij (hj(k, t− ε)− hi(k, t− ε)) , (10)
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where hi is the learnable parameters of the UAV onboard
model. Denote by ηij the communication link between UAV
i and j. As i and j disconnect, ηij equals to 0. ρ ∈ (0, 1) is
a weight depicting the influence of neighbors.

We elaborate on the workflow of the KD-based Distributed
Model Sharing (KD-DMS) scheme in Alg. 1, where M is the
maximum episode of the KD process. q is the sharing times in
one training episode determined by the available bandwidth,
DT communication overheads, and recognition accuracy of
applications. We train the teacher and student models in DT
assets, then transmit the optimal student model and network
topology to corresponding UAVs. The model integrator of
UAV i follows Eq. (10) in each model sharing cycle.

IV. MODEL OPTIMIZATION BY DIGITAL TWIN

Based on the KD-DMS scheme, connected UAVs can agree
upon identical parameters of the shared learning models.
However, the precondition for model sharing convergence is
that the V2V communication delay is less than the consen-
sus delay requirement. However, the V2V delay is specified
by the communication and computing resources. Therefore,
we propose an optimization scheme to guarantee consensus
convergence while minimizing resource costs in the model
sharing operation. This optimization scheme is conducted on
the edge DT. Further, we leverage network calculus analysis
in DT assets to determine the appropriate topological feature,
sharing frequency, and communication/computing resources
for efficient UAV model propagations.

A. Distributed Model Sharing Optimization

To guarantee the convergence of model sharing (i.e., the
learnable parameters of all shared models are identical), the
V2V communication delay ε should not exceed π

2λm
based on

Eq. (9). Furthermore, according to Gersgorin theorem [17], the
maximum eigenvalue of the Laplacian matrix must meet λm ≤
2dmax(G), where dmax(G) is the maximum node degree of
topology G. Specifically, substituting λm = 2dmax(G) into
Eq. (9), we can get a sufficient condition for model sharing
convergence,

ε ≤ π

4dmax(G)
. (11)

It implies that a consensus-guaranteed topology with a spe-
cific topological feature dmax(G) has the corresponding delay
requirement ε.

Denote by δ(k) the size of the k-th student model. k ∈
{1, 2, 3} expresses the PSN, MSN, and CSN, respectively.
Besides, the onboard computing cost of k-th student model
training is ϕ(k). Let ω(k, q) denote the recognition accuracy of
the k-th student model with sharing frequency q. Moreover, the
bandwidth consumption of the k-th student model with sharing

frequency q is indicated as C(k, q). Thus the optimization
model is formalized as,

P1: min
{k,q,dmax(G)}

C(k, q) + ϕ(k)

s.t. C1: D(k, q) ≤ π

4dmax(G)

C2: ϕ(k) ≤ F
C3: ω(k, q) ≥ Θ

C4: k ∈ {1, 2, 3}, q and dmax(G) ∈ N+

(12)

The optimization goal is to minimize bandwidth consump-
tion C(k, q) and computing/training cost ϕ(k) while meet-
ing the consensus agreement and resource constraints. The
first constraint C1 is the communication delay constraint
for consensus agreement of model sharing. In C2, F is the
available onboard computing resource of UAVs. C3 provides
the recognition requirement Θ of the UAV application. The
value range of k, q, and dmax(G) are set into C4, where N+

is the set of positive integer.
The optimization variables of P1 involve the student model

k, sharing frequency q, and topological feature, i.e., the
maximum node degree dmax(G). Note that dmax(G) only
affects the convergence of the model sharing agreement and
has no consequence on the final recognition accuracy.

B. Network Calculus Analysis

The subsection reveals the relation between a delay upper
bound D(k, q) of C1 and resource consumption of commu-
nication and computing. This estimation is performed in the
edge DT. First, we sort out the resource consumption caused
by DT synchronization. The DT synchronization comprises the
running deviation ∆g upload from UAVs to edge servers; and
the status prediction ĜΩ(t + 1) download from edge servers
to UAVs. We only consider the upload and DT processing in
the DT synchronization [23] to simplify the system analysis.

Wherein the upload delay can be written as ∆g
CDT , in

which CDT is the reserved bandwidth for DT synchronization.
Moreover, the DT synchronization delay is determined by the
edge server processing capacity υDT edge and the value of
running deviation ∆g. It can be written as χ∆g

υ
DTedge

, where χ is
a metric to measure the DT computing complexity. Assuming
the maximum arrowed DT synchronization delay is tDT , it
must meet tDT ≥ ∆g

CDT + χ∆g
υ
DTedge

. Therefore, we can obtain
the reserved bandwidth for DT synchronization as,

CDT =
∆gυDT edge

tDTυDT edge − χ∆g
. (13)

Hereafter, according to the network calculus, we acquire
a function with the reserved bandwidth CDT , the student
model k, sharing frequency q, and the maximum node degree
dmax(G), in the model sharing convergence condition.

In network calculus theory, an arrival process A(s, t) =
A(t)−A(s) defines a cumulative number of the input network
traffic of a UAV in the time interval (0, t] [25]. There are
|Ni| neighbors of UAV i. δ(k) represents the volume of the
shared k-th student model parameters. And the transmitted rate
E is used to maintain the basic connection with neighbors.
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Due to the (ε, σ)-upper constraint, we have A(t) − A(s) ≤
E(t − s) + qδ(k) t−st [26]. Thus, the arrival curve of UAV i
for sharing the model to neighbors is

Ak,q(t) = Et+ qδ(k). (14)

Moreover, the channel service curve S for model sharing can
be written as

S(s, t) = (C − CDT ) · (t− s), (15)

where C is the total bandwidth consumption. C − CDT

indicates the available bandwidth for model sharing that has
removed the DT bandwidth consumption. We assume that all
neighbors Ni of UAV i contain the same arrival curve. The
number of neighbors participating in the model sharing is |Ni|.
Upon the Leftover Service theorem [26], the channel service
curve for an individual UAV is

S′(t) = (C − CDT ) · t− (|Ni| − 1) [E · t+ qδ(k)]. (16)

Based on the upper bound delay analy-
sis [26], the end-to-end maximum delay is
min

{
ω ≥ 0 : maxε∈[0,t]{Ak,q(ε, t)− S′(ε, t+ ω)} ≤ 0

}
.

Via several algebraic operations, we get the upper bound of
the V2V communication delay as,

D(k, q) =
|Ni|qδ(k)

C − (|Ni| − 1) E − CDT
. (17)

Therefore, the upper bound delay D(k, q) can be regarded
as the delay requirement ε for model sharing convergence as
shown in Eq. (11). And substituting D(k, q) = ε ≤ π

4dmax(G)
into Eq. (17), the requirement of bandwidth for model sharing
convergence holds that

C(k, q) ≥ 4dmax(G)

π
|Ni|qδ(k) + (|Ni| − 1) E + CDT . (18)

Hence to minimize the bandwidth consumption, C(k, q)
should accept the equality in Eq. (18). Therefore, we can revise
the optimization problem P1 as,

P2: min
{k,q,dmax(G)}

4dmax(G)

π
|Ni|qδ(k) + (|Ni| − 1) E + ϕ(k)

s.t. C2, C3, C4.
(19)

Since CDT is irrelated to {k, q, dmax(G)}, it can be considered
as a constant in the optimization. The exact value of CDT does
not impact the final optimal loss. Thus, we remove CDT in the
objective of P2. Moreover, the transmitted data volume δ(k)
and computing cost ϕ(k) are monotonically increasing with k.
It means that minimizing k, q and dmax(G) with constraints
can achieve the goal of P2.

However, the learning model’s recognition accuracy ω(k, q)
is a non-analytical and non-differentiable function of k and q.
When the search space of k-q pairs is small, ω(k, q) can be
enumerated by the edge DT and acquired through the look-
up table method. Tab. I depicts the recognition accuracy ω
with different (k, q). The experiment configuration refers to the
settings of the Simulation section. The recognition accuracy
of PSN does not increase with the sharing frequency q, in

Algorithm 2: DT based Optimal Configuration Search

1 Initialize k0 = 1; k1 is the max number of k with
ϕ(k1) ≤ F ; q0 = 1; q1 is the max number of q;
dmax(G) = 2

2 while ω(k0, q0) ≤ Θ do
3 while k0 6= k1 do
4 Set km = bk1−k02 c+ k0;
5 if ω(km, q1) > ω(k0, q1) and

ω(km, q1) > ω(k0, q1) then
6 k0 = bkm−k02 c; k1 = bk1−km2 c;
7 else if ω(k1, q1) ≥ ω(km, q1) ≥ ω(k0, q1) then
8 k0 = km; km = bk1−km2 c;
9 else if ω(k0, q1) ≥ ω(km, q1) ≥ ω(k1, q1) then

10 k1 = km; km = bkm−k02 c;

11 while q0 ≤ q1 do
12 if ω(k0, q0) ≥ Θ then
13 return (k0, q0, dmax(G))

14 q0 = q0 + 1;

15 dmax(G) = dmax(G) + 1;

16 return (k0, q0, dmax(G))

TABLE I: recognition accuracy with different q-k pairs.

ω(k, q) PSN k = 1 MSN k = 2 CSN k = 3
Frequency q = 1 0.780 0.821 0.769
Frequency q = 2 0.734 0.804 0.787
Frequency q = 3 0.817 0.923 0.872
Frequency q = 4 0.890 0.935 0.902
Frequency q = 5 0.739 0.930 0.895

that PSN has a simple model structure without the learning
capability to extract data features. UAVs with PSN thereby
share an inaccurate model, which sparks model contamination
and deteriorates the sharing performance. To be rough, the
recognition accuracy of MSN and CSN rises with q. Their
recognition accuracies outperform that of PSN. Meanwhile,
the performance of CSN is worse than that of MSN since
CSN may suffer overfitting. When the accuracy requirement
is Θ = 0.9, only (k = 2, q = 3, 4, 5) and (k = 3, q = 4)
qualify. Moreover, the minimum bandwidth and computing
cost is obtained at (k = 2, q = 3).

Through the algebraic transform of Eq. (18), the model
sharing frequency q is constrained by,

q ≤ [C − (|Ni| − 1)E − CDT ]π

4dmax(G)|Ni|δ(k)
. (20)

In our simulation configuration, the maximum node degree
dmax(G) = 3 and the number of neighbors |Ni| = 6.
According to the above Eq. (20), we can derive the optimal
q = 3.

Referring to Tab. I, we find that ω(k, q) increases first and
then decreases with k. The reason is that ω(k, q) raises with
k till the k-th student model encounters overfitting. Therefore,
a binary search approach is proposed to explore the optimal
k to maximize ω(k, q). When the space of k-q pairs becomes
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large, we can leverage q, k, and dmax(G) properties to quickly
solve P2. Since the optimal q is usually small due to the limited
bandwidth, we investigate the value of q from q = 1 in Tab. I.
In addition, dmax(G) is at least 2 in a fully connected topology
with over 3 nodes. Further, our analysis reveals that a smaller
dmax(G) has less bandwidth cost, as indicated in Eq.(18).
In summary, we propose a search scheme for model sharing
configuration, as shown in Alg. 2. The time complexity of the
proposed approach is O(n log (n)) in that the optimal sharing
frequency q is less than 5 in most cases.

Alg. 2 is implemented on the edge server for searching
the optimal model sharing configuration. The edge DT can
manipulate the maximum node degree of the clone network
to optimize P2 without practical network alteration and de-
ployment costs. Eventually, the edge DT provides the most
suitable student model, communication topology, and sharing
frequency in the next time slot to steer the physical model
sharing arrangement.

V. PERFORMANCE EVALUATION

To evaluate and compare the proposed DT-empowered KD-
DMS algorithm applied to model sharing, we investigate the
different student models, topologies, and sharing frequencies
on a popular point cloud dataset, i.e., ShapeNet. This dataset
consists of 16681 samples belonging to 16 common categories
[27], [28]. 2500 point clouds with coordinates are uniformly
sampled as input for each UAV. To facilitate learning diversity,
we divide the dataset into four equal parts, and each UAV
randomly takes three of the four parts as its database. The
training dataset for each UAV is independently sampled from
its database, with a sampling probability of 0.5, to imitate
the distinction of UAV data collections. Furthermore, the test
set is based on the original split test set in ShapeNet. Our
proposed KD-DMS algorithm is run on a computer with
NVIDIA GeForce RTX 2060 GPU and coded with PyTorch.
The Adam optimizer with a 0.001 learning rate is set to model
training. The batch size is 32, and the total training episode is
60. Some important simulation parameters are listed in Tab. II.

TABLE II: Simulation parameters

learning rate 0.001 sharing frequency 5
batch size 32 sampling probability 0.5

Number of category 16 data volume of each UAV 2500
KD Temp τ 20 KD weight α 0.5

Fig. 5 is a box plot of the time consumption versus different
models, in which the y-axis represents the training time.
The teacher model, Pointnet, has the maximum training time.
The time consumption of PSN is only 66% of Pointnet.
Moreover, MSN and CSN are 81% and 91% of Poinetnet in
the time consumption, respectively. Thus, all three KD models
substituting the Pointnet can accelerate the onboard training
process of UAVs.

Fig. 6 illustrates the corresponding communication topology
for model sharing. We present the recognition accuracy of
three KD models with model sharing compared to the Pointnet
without model sharing in Fig. 7. As illustrated in Fig. 7,
the proposed KD-DMS with q = 5 in MSN and CSN
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Fig. 5: Time consumption of different models per episode.

Onboard 
Pointnet Model

Edge Server

Physical 
network

Shared Student 
Learning Model

Communication link

Fig. 6: Model Sharing Topology with the maximum node degree
dmax(G) = 3, where the onboard Pointnet of flying cars generates
a lightweight student model by the knowledge distillation, then the
flying cars transmit the student model with neighbours according to
the topology.

outperforms the Pointnet without model sharing in terms of
recognition accuracy after ten episodes. Through the model
sharing in Eq. (10), student models can integrate trained
learning parameters of neighbors on different datasets. The
model sharing on distinct datasets provides diversity training
gain. Moreover, the recognition of KD-DMS with MSN model
completely surpasses that of KD-DMS with CSN model. The
possible reason is that CSN involves more learning parameters
than MSN, which is more likely to incur an inconsistent/error
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Fig. 7: Performance of KD-DMS with different learning models.
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Fig. 8: Performance of MSN with different q.

transmission problem.
Fig. 8 illustrates the performance of the MSN with various

sharing frequencies q. We can observe that the proposed MSN
sharing with q ≥ 3 outperforms the original Pointnet model
in recognition accuracy. It shows that the proposed KD-DMS
can effectively grip the knowledge of other trained models
through frequent sharing. When q is greater than 3, the final
convergence accuracy of different q is the same. A larger q
can provide faster convergence. However, referring to Eq. (20),
large q also consumes considerable communication bandwidth
C. Thus, the sharing frequency q must be carefully configured,
simultaneously considering communication bandwidth, topol-
ogy features, and application performance requirements.

Fig. 9 depicts the recognition accuracies of different models,
UAVs, and sharing frequencies. The node degrees of node 5
and node 3 are 3 and 2, respectively, as shown in Fig. 6.
Fig. 9.(a) provides the PSN performance of node 5 and node
3. The performance of node 5 outperforms that of node 3
since node 5 has a larger node degree. Because UAVs with
additional neighbors can obtain more well-trained models,
significantly improving recognition accuracy. However, the
recognition accuracy does not increase with q. The reason is
that PSN needs more learning model complexity to extract
features from point cloud data, which prevents performance
improvement via model sharing. Besides, the interchange of
multiple low-performance models may result in performance
degradation.

The model sharing scheme with MSN is better than with
PSN in point cloud recognition in Fig. 9. It implies that MSN
can more effectively capture the attributes of the local point
cloud than PSN. The recognition accuracy climbs as sharing
frequency q increases. However, the recognition performance
does not grow gradually with q but improves by leaps. At the
end of the curves, there are two stable regions with q ≥ 3 and
q < 3. If q is less than 3, insufficient model sharing makes
UAVs hard to get the benefits of model sharing. Moreover,
UAVs can fully grip the knowledge of neighbors as q ≥ 3.
Regardless, the recognition accuracy does not raise with q
when q > 3. Therefore, the node degree only affects the model
sharing performance when q < 3. In the offered graph, over

three times model sharing, the accuracy of node 5 and node
3 in Fig. 6 can converge to the same value.

We can also observe that the model sharing scheme with
the CSN model has two stable accuracies with q ≥ 3 and
q < 3. However, the CSN performance is not as good as that
of MSN since CSN is prone to overfitting due to its deep model
structure. Overall, the high sharing frequency and large node
degree can efficiently enhance the learning ability on different
datasets.

To evaluate the impact of communication topology on
model sharing, Fig. 10 explores the MSN model sharing with
different maximum node degrees, where the sharing frequency
is 5. The final stable accuracies of the three topologies are
roughly similar. Further, the topology with large dmax(G) can
converge fast to stable accuracy. As a result, by scaling up
the maximum node degree dmax(G) of the communication
topology, the model sharing obtains a faster convergence rate,
which can conduct delay-sensitive applications. However, the
large dmax(G) will consume more communication bandwidth
according to Eq. (18). Thus, it requires a tradeoff setup
between convergence rate and bandwidth consumption.

We present the recognition accuracy of model sharing with
and without DT in Fig. 11 to evaluate the performance gain
with DT. The sharing topology tracks Fig. 6. While the model
sharing without DT exchanges the shared model, it may cause
packet loss due to the wireless transmission. For simplification,
this simulation assumes the packet loss rate of node 3 is
30%, and node 5 is 50% since the node with a large degree
has more severe bandwidth competition. However, there is
no transmission error in the DT asset causing the digital
communication imitation. Fig. 11 reveals that DT-based model
sharing has better recognition performance than model sharing
without DT. It is because the packet loss leads to inconsistent
or error model sharing. In addition, the packet loss rate of node
3 is less than that of node 5. However, node 3 only integrates
two neighbor models. Compared with node 5, the packet loss
of any neighbor in node 3 has a more unbearable impact on
its performance. It results in a significant fluctuation of the
curve of node 3.

Fig. 12 depicts the relationship between the lower bound
of bandwidth consumption C, the number of UAVs N , and
the sharing frequency q, where q and N only take integer
values. The frequency q is proportional to bandwidth C but
inversely to N . As the number of UAVs N scales up, the
available bandwidth C will decrease according to Eq. (18).
The large N also yields a small q according to Eq. (20). q
thereby is a relatively small number and unlikely to exceed 3
when N > 5 in most cases. Combining with Fig. 9, we can
predetermine the appropriate lightweight model, UAV sharing
frequency, and bandwidth resource provisioning in a practical
model sharing scenario.
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(a) PSN.
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(b) MSN.
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(c) CSN.

Fig. 9: Performances of different nodes (UAVs) with sharing frequency q in various student models.
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Fig. 10: (a) depicts the recognition accuracy of MSN with different
topologies. (b)-(d) are the practical topologies of dmax(G) = 3,
dmax(G) = 4, and dmax(G) = 5, respectively.
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Fig. 11: Performance of DT-based model sharing versus model
sharing without DT.

Fig. 12: Relation between bandwidth, number of UAVs, and sharing
frequency.

VI. CONCLUSION

This paper proposed a DT-empowered distributed model
sharing scheme for 3-D point cloud recognition. It can be
applied to resource-limited UAVs for perceiving production
environments. With the support of the device-edge DT system,
the UAVs can be surveyed with timely status by the device
DT; and optimized with reliable swarm imitation by the edge
DT. Specifically, the edge DT first generates three lightweight
models simultaneously through the KD compression on the
edge server. Based on the KD lightweight model, a model
sharing scheme is proposed to ensure that the shared models of
UAVs converge to the same model. The model sharing scheme
leverages the network calculus to acquire the suitable shared
model, network topology, and resource assignment for multiple
UAV collaborations. Moreover, this network calculus analysis
in the edge DT relies on the summarized information provided
by the device DTs. Experiment results demonstrated that the
proposed model sharing scheme is feasible and outperformed
the Pointnet without model sharing, in terms of recognition
accuracy. This work provisions the possibility of utilizing the
collaboration of multiple resource-limited devices to improve
embedded learning performance. It shows great potential for
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large-scale swarm intelligence in IIoT scenarios.
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