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A B S T R A C T   

In an increasingly digital world, there are fast-paced developments in fields such as Artificial Intelligence, Ma
chine Learning, Data Mining, Digital Twins, Cyber-Physical Systems and the Internet of Things. This paper re
views and discusses how these new emerging areas relate to the traditional domain of building performance 
simulation. It explores the boundaries between building simulation and these other fields in order to identify 
conceptual differences and similarities, strengths and limitations of each of these areas. The paper critiques 
common notions about these new domains and how they relate to building simulation, reviewing how the field of 
building performance may evolve and benefit from the new developments.   

1. Introduction 

Building performance simulation is the domain that replicates and 
predicts aspects of building performance, using a computer-based, 
mathematical model and applying fundamental physical principles 
and engineering techniques. Building performance simulation is a 
buoyant field, enjoying significant research, development, and an 
increased uptake in practice. However, building simulation does not 
exist in a vacuum. There are other digital developments in the wider 
building sector that are also gaining traction and interest, such as the 
emergence and progress of work on Digital Twins, Cyber-Physical Sys
tems, Artificial Intelligence and Machine Learning, the Internet of 
Things, and Data Mining. These other fields partly overlap and partly 
compete with traditional views of building performance simulation. 

Changes in the information technology and digital world are 
increasingly fast-paced. As a taster of generic developments, a quick dive 
in the technology briefs of leading IT consulting companies like 
Accenture and Gartner shows the rapid emergence of a wide range of 
interrelated digital concepts and themes like digital twinning, AI engi
neering, autonomous systems and others [1,2]. These IT topics typically 
permeate the building science domain with a delay. For instance, the 
term Digital Twin was coined in 2003 by Grieves [3], but it only 
appeared in the building performance literature around 2017 [4]. 
Similarly, the general concept of Cyber-Physical Systems emerged in 
2006 [5] but the transition to the building performance domain took 
until 2015 [6]. 

The trends in numbers of peer-reviewed scientific publications 

within the general subject area of ‘building’ or building (performance) 
simulation, artificial intelligence, machine learning, digital twins, cyber- 
physical systems, internet of things and data mining are depicted in 
Fig. 1. The data in this figure was collected by searching for the corre
sponding keywords in the Primo (ExLibris) library search engine, which 
also accesses Web of Science and Scopus. A filter was applied to only 
show academic journal articles. Findings were then grouped in bins of 5 
years, starting in 1965 and ending with 2020; the bin of 2020–2025 was 
excluded as this is still incomplete. Building (performance) simulation 
thus far is the dominant sub-domain, however artificial intelligence and 
machine learning also show a very similar trend. Papers on the internet 
of things and data mining have a later start but are seeing a steep in
crease. Digital twins only recently have started to emerge as a serious 
area of interest. 

So, how do these emergent domains relate to the existing field of 
building performance simulation? How much of these new development 
is hyperbole and mainly new terminology for existing building simula
tion concepts? Are the new domains competitors, or are these new areas 
of work that allow building performance simulation to expand its sphere 
of influence? What are common notions and potential misconceptions 
about these fields in the building simulation area? When deciding on a 
career in building science, applying for research funding, or contem
plating novel research, should one continue along the strong roots of 
building simulation or opt for one of the new ‘hot topics’? 

The key roles of scientific research are description, explanation/ 
understanding, and prediction. As such it is important to understand and 
delineate these domains, and identify the underlying concepts and their 
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properties, differences and similarities, strengths and limitations [7]. 
This article explores how building performance simulation relates to 
Artificial Intelligence, Machine Learning, Digital Twins, Cyber-Physical 
Systems, the Internet of Things and Data Mining. These terms were 
selected as the main ICT themes that appear in publications on building 
performance in academic journals such as the Journal of Building Per
formance Simulation, Automation in Construction and Advanced Engineer
ing Informatics, as well as industry publications such as the ASHRAE 
Journal and CIBSE Journal. Note that there are further terms such as 
blockchain, deep learning, surrogate models, big data, explainable 
artificial intelligence and others that could feature in a wider explora
tion, however these are beyond the scope of this manuscript. 

To achieve this aim, it has the following objectives: 

1. review the generally accepted notions /definitions of the core con
cepts of Artificial Intelligence, Machine Learning, Digital Twins, 
Cyber-Physical Systems and Data Mining;  

2. map out common notions about differences, similarities, strengths 
and limitations of each of these domains;  

3. explore what work takes place on the interface of these new areas 
and building performance simulation, and what the main themes are; 

4. critique what widespread notions and views about these new do
mains are held within the building performance simulation 
community;  

5. review how the field of building performance simulation should 
position and develop itself vis-à-vis the new domains. 

The approach followed in this study is dual: in part it follows a 
structured review, in other parts it is a position and discussion paper. 
The latter is the consequence of the start from inside the domain of 
building performance simulation, looking across to the novel digital 
domains. 

The systematic literature review follows the roadmap and stages 
depicted in Fig. 2. To set the focus for review, a generic search in the 
literature was done in order to capture notions and definition of key 
concepts, and enable an initial conceptual comparison. This was fol
lowed by the main study, which took place between February and June 
2022. The systematic literature review used the following keywords for 
scope: ‘building (performance) simulation AND artificial intelligence’ 
plus ‘building (performance) simulation AND machine learning’; 
‘building (performance) simulation AND digital twin(s)’, ‘building 
(performance) simulation AND cyber-physical system’; ‘building (per
formance) simulation AND internet of things’, and ‘building 

(performance) simulation AND data mining’. Note that these are more 
specific and limited searches than were used to find generic trends in 
Fig. 1. Only studies written and published in academic journals were 
included. A small number of books and reports that appeared as seminal 
texts in papers was added through backward searches. All material used 
is written in English. No date limitations were imposed on the search, as 
the emerging fields are mostly self-selective. The initial search was 
carried out using Primo (ExLibris), a common front-end discovery ser
vice that gives access to all resources available in most UK academic 
catalogues, including the British Library. Further dedicated searches 
were conducted using Scopus and Web of Science. For most search 
terms, an exhaustive search was carried out. For two searches the 
number of available documents was so large that it was decided to 
screen returns until saturation; in these cases the search was halted 
when in review of further literature only yielded the same topics and 
issues coming up. This concerns the search for papers using the search 
terms that (1) combine ‘building (performance) simulation AND artifi
cial intelligence’ plus ‘building (performance) simulation AND machine 
learning’ and (2) combine ‘building (performance) simulation AND data 
mining’. Retrieved articles were assessed for eligibility through 
screening of titles, abstract and methodology sections. Eligible publi
cations were subjected to thematic analysis, whilst data was extracted 
on how the work relates to building simulation and the emerging field. 
Notions and views were also captured. The results represent perceptions 
as described in the literature that spans both building performance 
simulation and the adjacent domains. Results have been grouped in 
similar headings were possible; note that these groupings emerged from 
the thematic analysis and were not pre-defined search categories. 

The remainder of this paper is structured as follows. Section 2 pro
vides a very brief summary of the field of building performance simu
lation, as basis for the comparison with the other areas. Section 3 
introduces the general notions and definitions of digital developments in 
the specific areas of Artificial Intelligence / Machine Learning, Digital 
Twins, Cyber-Physical Systems and Data Mining. Section 4 then maps 
out the differences and overlaps between these definitions and notions 
with building simulation, and then presents (perceived) strengths and 
limitations of each of the domains that appear in literature. Section 5 
presents work that takes place on the interface between building simu
lation and the novel digital domains, grouped in the main themes that 
emerge on this interface. Section 6 concludes the paper by summarizing 
findings, critiquing some of the notions and views that were found, and 
recommending how the field of building performance should position 
itself towards the new domains. 

Fig. 1. Trends in number of scientific peer-reviewed publications on topics within the building domain.  
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2. Backgrounds, roots and state-of-the-art of building 
performance simulation 

The essence of building performance simulation is the use of computer 
programs to imitate building reality. Building simulation involves the 
replication of building behaviour using a computer-based, mathematical 
model and the application of fundamental physical principles and en
gineering models. Modelling and simulation are part of the wider 
domain of scientific computing [8]. There are many different simulation 
models; for instance one may classify them as linear or nonlinear, static 
or dynamic, discrete or continuous, deterministic or stochastic. They 
may also represent different physical processes, such as heat and mass 
transfer, lighting, or acoustics. Seminal overviews of the essentials of 
building performance simulation are provided in the books by 
Beausoleil-Morrison [9] which explores the fundamental principles, 
Clarke [10] or Hensen and Lamberts [11] which cover fundamentals, 
application to design, operational optimization, system and urban 
simulation, and de Wilde [12] which emphasizes the underlying concept 
of building performance and its quantification. There are also many 
papers that review developments in the field, such as the overview by 
Wang and Zhai [13]. 

Building simulation has evolved over several decades; see for 
instance the paper by Oh and Haberl [14] that traces back the origin of a 
number of whole-building energy simulation tools in the US to their 
foundations in the 1970 s. At the beginning of the new millennium, 
Augenbroe [15] described trends in building simulation, observing the 
maturation of the field over the three decennia spanning 1970–2000. He 
distinguished two key aspects as driving the maturation process: 
increased levels of quality assurance in building simulation, and 
increased integration of tools and expertise in the building process. 
Spitler [16] echoes these findings, but also points out some of the 
remaining challenges that prevent building simulation from fully real
izing its promise: a need to more easily capture complex geometries and 
systems, to better integrate simulation with data-driven systems, to 
develop new models that better deal with large ranges of time scales and 
further types of physics, to create novel methods that allow optimization 
under uncertainty and risk, and to make further advances in verification 

and validation efforts. Similar issues are raised as focus points for the 
development of building performance simulation in the vision paper by 
Clarke [17]. Recently, significant research efforts in building simulation 
are directed to the ‘performance gap’: a mismatch between predicted 
and measured performance [18]. In essence this performance gap issue 
concerns the fundamental issues of verification, validation and cali
bration in scientific computing in the building domain, and asks how 
good the existing models are. 

3. General background to the new digital developments 

Whilst this paper talks about new digital developments, most of these 
subjects are already established and introduced in dedicated books; see 
for instance Zhang et al on Artificial Intelligence [19], Murphy on Ma
chine Learning [20], Viola and Chen on Digital Twins [21], Alur on 
Cyber-Physical systems [22], Gyasi-Agyei on the Internet of Things [23] 
and Zaki and Meira on Data Mining [24]. The following paragraphs give 
a general introduction. 

Artificial Intelligence (AI) is the concept where machines demon
strate intelligence. It is a broad study area that is concerned with systems 
that are able to perceive their environment and that can take actions 
towards achieving some objective. The Royal Society [25] defines AI is 
“an umbrella term for the science of making machines smart” and in general 
as efforts that create “systems that think like humans, act like humans, think 
rationally, or act rationally”. Amongst others, it includes the areas of 
knowledge representation, planning, natural language processing, 
reasoning, and the planning and control of objects and systems. Artificial 
Intelligent methods are often grouped into symbolic AI and subsymbolic 
AI. Symbolic AI methods are based on high-level problem representa
tions, logic and search approaches which are human-readable. Sub- 
symbolic AI methods are approaches that learn directly from data; 
subsymbolic AI equates to Machine Learning. The application of artifi
cial intelligence to buildings typically takes place in the fields of intel
ligent or smart buildings. Whilst there is a long-standing debate on what 
consist an intelligent/smart building [26] the emphasis is on creating 
buildings that respond to human and organizational needs rather than 
‘buildings that think like humans’. Efforts often take place at different 

Fig. 2. Roadmap for systematic review.  
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scale levels, notably “smart district” and “smart city”. 
Machine Learning (ML) is the discipline that is concerned with 

computer algorithms that improve through the use of data and experi
ence. Machine Learning is a subfield of Artificial Intelligence. The Royal 
Society [25] defines ML as “a set of rules that allows systems to learn 
directly from examples, data and experience”. Machine Learning algo
rithms can be used for prediction and classification. Machine Learning 
techniques are typically classed as supervised, unsupervised or rein
forcement learning [27]. Supervised learning uses training data to create 
a mathematical model that fits input and output data; this model can 
then predict output for input parameters that sit within the training 
range. It is typically used for regression (predicting/obtaining numeric 
values), data classification (sorting data into categories), and optimi
zation and control [28]. Supervised learning typically employs training 
data, which is defined as “data that can be used to train machine learning 
systems, having already been labelled or categorised into one or more groups” 
[25]. Once the model has been created, other data stemming from the 
same source can be used to test and validate the model. Supervised 
machine learning is sometimes named ‘predictive’. Sometimes different 
supervised machine learning algorithms can be combined; this is named 
ensemble learning [29]. Unsupervised learning searches for unknown 
patterns in a data set to predict outputs. It is typically used for clustering 
(identifying similarities amongst sets) or dimensional reduction 
(reducing the number of variables) [28]. Unsupervised learning is 
sometimes named ‘descriptive’. 

Reinforcement learning is an approach that employs algorithms or 
“agents” to navigate sequential decision making in an environment with 
limited feedback. This approach is especially suitable for defining pol
icies and behaviours [30]. Reinforcement learning is sometimes seen as 
a method that belongs to semi-supervised techniques, which also can be 
used for optimization and control and generative models [28]. The main 
types of machine learning models used in artificial intelligence are linear 
regression models, linear classification models, neural networks, kernel 
methods, sparse kernel machines, graphical models, and mixture models 
and expectation–maximization algorithms [21]. The list of specific al
gorithms and approaches that supports Machine Learning is long and 
keeps growing; see Table 1 for a sample of some terms often seen in the 
building performance literature. A good overview of the main ap
proaches of ML, discussed in the context of predicting daylighting in 
buildings, is provided by Ayoub [31]. Sun et al [32] provide another 
worthwhile overview in the context of structural analysis. Deng et al. 
[33] and Seyedzadeh et al. [34] discuss the application of some of these 
approaches to building energy prediction. Fathi et al. [35] review 
application at the urban energy prediction scale. In the realm of build
ings, machine learning may feature wherever algorithms are used, such 
as in engineering design calculations or building control systems. 

Whilst ML and subsymbolic AI are sometimes seen as new areas, the 
origins of these approaches have a long history that links back to sta
tistical analysis. These ‘data driven’ approaches like (linear) regression 
have been around in building performance studies for a long time, as can 
be seen in Fig. 1. However recent advances in computing power allow to 
push the boundaries on possibilities, and have created a surge of interest 
in the approach. Reinforcement learning, as a method to guide 
sequential decision making in an environment with limited feedback, is 
highly relevant for the control of building systems. 

A Digital Twin (DT) is generally defined as a real-time digital 
counterpart of a physical system or process. There are various defini
tions that expands on this core. For instance, the Centre for Digital Built 
Britain [36] defines Digital Twins as “realistic digital representations of 
physical assets, for a example a digital representation of an aeroplane that 
can be used to monitor and predict performance, feeding out insights and 
interventions. These insights lead to better interventions and unlock real- 
world value from assets through financial savings, improved performance 
and services, and better outcomes for society”. Other authors and groups 
emphasize the link of a DT with real-world data, the need to represent 
the physical system across its lifecycle, and the enabling of analytical 

processes. On the surface, a Digital Twin is a software representation of 
some physical entity and thus might be considered to be the same as any 
building performance simulation or machine learning model. A Digital 
Twin may also be perceived as something very similar to a Building 
Information Model (BIM). However, in the engineering domain the 
concept of Digital Twins has already seen significant development and 
gained deeper meanings. The notion of a Digital Twin was first sug
gested in 2003 in the context of manufacturing and product lifecycle 
management [3] and was defined as a concept that combines a physical 
product, a virtual model or that product, and connections between the 
physical and virtual parts. As with any novel concept there are still 
different definitions and interpretations of Digital Twins [37,38]. Yet a 
common notion is that there should be an information flow from the 
physical part to the digital replica. This requires that the digital part of 
the twin is regularly updated so that it represents the actual state of the 
physical part. Another common notion is that a Digital Twin must make 
a contribution to the operation and management of the physical coun
terpart, for instance through predictions that impact control, mainte
nance and replacement of components. Ganguli and Adhikari [39] 
summarize this as a Digital Twin requiring four key aspects: modelling 
and simulation, data fusion, interaction and collaboration, and service. 
The manufacturing view of Digital Twins suggests differentiation along 
the project life cycle. A Digital Twin Prototype (DTP) is used during the 
design phase. Once a product is actually made, each single product 
instance is coupled to a Digital Twin Instance (DTI). Ultimately, 
different DTIs can be combined into a Digital Twin Aggregate (DTA) 

Table 1 
List of common Machine Learning algorithms and approaches, adapted/ 
expanded after [28].  

Supervised ML - classificationSupport Vector Machine  
(SVM) 
Decision Tree (DT)Random Forest  
(RF)Neural Network  
(NN)Artificial Neural Network  
(ANN)Adaptive Neuro Fuzzy Inference System  
(ANFIS)Gradient Boosting  
(GB)  

Supervised ML - regression 
Linear RegressionMultiple Linear Regression  
(MLR)Polynomial Regression  
(PR)Gaussian Process  
(GP)AutoRegressive and Moving Average  
(ARMA)AutoRegressive Integrated Moving Average  
(ARIMA 
Multivariate Adaptive Regression Splines (MARS)Least Absolute Shrinkage and 
Selection Operator regression  
(LASSO)  

Supervised ML – optimization and control 
Linear Control 
Genetic AlgorithmDeep Model Predictive Control  
(DMPC)  

Semi-supervised ML - reinforcement learning 
Q-learning 
Markov Decision Processes 
Deep Reinforcement Learning  

Semi-supervised ML - generative modelsGenerative Adversarial Network  
(GAN)  

Unsupervised ML – clustering 
K-meansK-Nearest Neighbours  
(KNN) 
Spectral Clustering  

Unsupervised ML - dimensionality reductionPrincipal Component Analysis  
(PCA)Self Organizing Map  
(SOM)   
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which captures the overall product behaviour and which can be used for 
learning and product improvement [38]. Whilst Digital Twins are 
generally seen as a promising new technology, they have also attracted 
some critique in terms of opaque objectives towards optimization and 
efficiency [40]. A solid review of Digital Twins in general is the paper by 
Tao et al. [41]; for a good discussion of Digital Twins in the built envi
ronment see Brilakis et al. [37] and Delgado and Oyedele [42]. The latter 
also discuss the differences between the concepts of Digital Twins and 
BIM in further detail. Applications to buildings have just started to 
emerge over the past years; often these relate to building control and 
operation. 

A Cyber-Physical System (CPS) is a system that combines physical 
and cyber or software components. The National Science Foundation 
defines Cyber-Physical systems as “engineered systems that are built from, 
and depend upon, the seamless integration of computation and physical 
components” and goes on to list control, data analytics, machine learning 
including real-time learning for control, system autonomy, system 
design, Internet of Things (IoT), mixed initiatives including human-in- 
the-loop, networking, real-time systems, system safety and security, 
and verification as key contributors to CPS [43]. Cyber-Physical Systems 
thus integrate two systems: a computational or ‘cyber’ system and 
physical system. However, unlike Digital Twins, the computational 
system does not need to represent the physical one. Instead, here the 
computational system can be considered the ‘smart’, ‘intelligent’ or 
control system that operates and steers the physical system. An example 
would be a robotic arm, or indeed a building with a digital building 
management system. A seminal work on Cyber-Physical Systems in the 
built environment is the book by Anumba and Roofigari-Esfahan [6]. 
Given their definition, Cyber-Physical Systems in the built environment 
have a significant overlap with the existent body of knowledge on 
building control and operation systems. However, the term still offers a 
new viewpoint to re-evaluate technological efforts in the field. 

The Internet of Things (IoT) has been defined as the concept of 
connecting any device to the internet and to other connected devices, 
thus creating a network of connected devices and people. This network 
then collects and shares data about the status of all these devices, the 
way they are used, and the environment in which they sit [44]. In 
buildings, the concept is widely used for wireless data collection and 
sensing devices. The idea of the Internet of Things relates to the 
connection of any type of object to other objects using the internet, 
building on the ubiquitous sensors, software and distributed computing 
opportunities. In a common example it may allow the fridge to 
communicate with a supplier to ensure stocks remain at required levels; 
in buildings it may allow the window to communicate with the heating 
system to notify that it is in an ‘open’ position and hence preventing 
wasting energy. Jia et al. [45] discuss the application of the Internet of 
Things to (smart) buildings. Tang et al. [46] explore the integration of 
the IoT with BIM. 

Data Mining (DM) is the extraction and discovery of patterns in 
large data sets, using machine learning, statistics and database tech
nology. As such, the concept of Data Mining employs Machine Learning 
methods. IBM defines data mining as “the process of uncovering patterns 
and other valuable information from large data sets”, and considers it a 
synonym for knowledge discovery in data (KDD). IBM divides the 
techniques that underpin data mining into two classes: one that de
scribes the data itself, and one that predicts outcomes on the basis of 
machine learning [47]. Data Mining typically involves the analysis of 
large data sets (which may be Big Data or not) using traditional statis
tical, mathematical and computer science approaches, often using ma
chine learning. In the context of building performance, data mining is 
mostly applied to energy efficiency; see for instance Pena et al. [48], Fan 
et al. [49] or Zhao et al. [50]. Efforts in machine learning, big data an
alytics and sensing through the Internet of Things often overlap and 
combine; see for instance the paper by Qolomany et al. [51] for a dis
cussion on how these combine in the work towards smart buildings. 
Another term associated with data mining is big data. Big data is 

defined as data that is characterized by a large variety, increased volume 
and velocity of arrival, thus yielding larger and more complex data sets. 
Big data sets may be too large or complex for traditional data analysis 
approaches in terms of volume, variety and velocity [52]. 

4. Conceptual overlaps, differences, strengths and limitations 

The definitions and discussions in the previous section can now be 
compared and contrasted with the notion of building performance 
simulation. The following observations are made on conceptual differ
ences and overlaps:  

• Artificial Intelligence is a generic concept that may be applied to 
“smart” and “intelligent” systems, buildings and cities. Whilst 
building performance simulation may be used in achieving the smart 
and intelligent aspect, there is no conceptual overlap leading to 
misunderstandings. 

• Cyber-Physical Systems combine and integrate computational sys
tems with physical systems. The computational side may involve 
building performance simulation. However, this always will be part 
of the larger CPS, which must also include physical parts. Concep
tually, this allows to delineate where simulation fits within the CPS.  

• The Internet of Things is a network of connected devices and people. 
Whilst the IoT may be of high interest in gathering data from a 
physical building and its content, there is no conceptual overlap with 
building performance simulation.  

• Conceptual overlaps does exist between four domains that all involve 
models: building performance simulation, machine learning, digital 
twins and building information modelling. To differentiate between 
these four categories, the following shows the main emphasis in each 
category: 
o Building performance simulation models are scientific computa

tional models, based on physics and engineering principles. Where 
physical processes are sufficiently understood and can be fully 
described, building simulation models can be considered ‘white 
box models’ or ‘first principle models’. However it must be noted 
that building simulation also employs approximations and 
empirical correlations.  

o A term often used in computing and engineering is ‘black box 
model’. This refers to a model that established a relation of inputs 
and outputs of a system, without having knowledge of underlying 
mechanisms or working. The concept of a black box model over
laps with sub-symbolic AI and supervised ML.  

o Digital Twin models are a real-time digital counterpart of an 
existing physical system (building or building system). 

o Building information models are a comprehensive digital repre
sentation of a building, and typically capture information about 
3D geometry of the building and systems, spaces and zones, and 
the project structure/schedule. 

All four types of models represent buildings or building systems, and 
have some sort of data or information flow that connects them to these 
buildings. However, the content and direction of these data flows differs. 
For BIM, the content is typically building attributes and the flow is only 
one-way towards the model. For building performance simulation, data 
is needed to convey building attributes but may also involve perfor
mance data that is used for validation and calibration of the model; 
performance prediction might be sent back to building to support things 
like control and building management. For machine learning models the 
input data flow changes to training data, where attributes are no longer 
included. Again there is flow back to the building to support control and 
management. A tight two-way interflow is required for digital twins, as 
this concept requires a model that reflects the current state of the 
building and data flowing back to the actual building to provide a ser
vice. See Fig. 3. 
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• Regarding the differences between BPS models and ML models, it 
must be noted that many classical building simulation tools, even 
when they explicitly describe the physics of heat and mass transfer, 
may still have black box components included – for instance many 
tools include fan or pump performance curves that are in fact based 
on empirical measurement and regression analysis. Another phe
nomenon on the overlap between BPS and ML is the use of data 
generated by BPS for training of (supervised) ML models, which then 
become meta- or surrogate models that emulate the simulation 
models. Such meta-models have been around for a while already and 
have been demonstrated to replicate simulation results well within 
their training domain, as for instance in the work by Eisenhower et al. 
[53] or de Wilde et al. [54]. By their very nature a surrogate model 
that has been trained on simulation data only approximates the re
sults from the underlying BPS output on which it is trained; it will 
never be a better predictor than the BPS model itself. However, a 
significant advantage of surrogate models is that they allow real-time 
interaction, which is highly advantageous for building control and 
design applications [55,56].  

• Whilst concepts such as Machine Learning, Digital Twins, Cyber- 
Physical Systems and the Internet of Things enjoy a high uptake in 
both industry and academia, they are partly new ‘buzzwords’ that 
overlap with existing concepts and terminology. This is particularly 
true in the area of building control and management systems, which 
for a long time have been based on observing states of the physical 
building, processing data through some form of model, and following 
up with control actions. The notions of Digital Twins and Cyber- 
Physical System thus appear to in part new terms for existing ap
proaches such as feed forward controllers and embedded systems. 
Similarly, supervised Machine Learning models overlap with the 
existing term of ‘black box models’. 

In terms of strengths and limitations, literature yields a range of 
observations and beliefs. Note that the sample studied pertains to work 
that spans both building performance simulation and the adjacent do
mains so all observations and beliefs belong to papers on the interface of 

these areas. Perceived strengths and limitations of Building Performance 
Simulation are presented in Table 2a and Table 2b; those for Machine 
Learning are listed in Table 3a and Table 3b, for Digitals Twins in 
Table 4a and Table 4b, and for the Internet of Things Table 5a and 
Table 5b. No literature was found showing perceived strengths or lim
itations of Cyber Physical Systems, whereas any discussion on Data 
Mining reflected the same issues that are already discussed for machine 
learning. The perceived strengths and limitations reported in Tables 2 to 
5 reflect the comments and views emerging from in literature, grouped 
in themes as arising from the search. The findings, which emerge from 
literature, have been loosely grouped in main themes; however these 
were not pre-conceived units of assessment. The terms used to name 
these themes have been taken from the literature that was suveryed. 

The content of Tables 2 to 5 can be summarized as follows:  

• Perceived strengths of building performance simulation include the 
ability to deliver precise results, prediction of performance where 
there is no historical data, excellent comparison of design alterna
tives, the ability to propagate uncertainties in models, the capacity to 
gain deep understanding and insights, and the ability to work from 
information that is readily available. Perceived limitations of 

Fig. 3. Conceptual overlaps and differences between building performance simulation (bps)models, machine learning (ML) models, Digital Twins and building 
information models (BIM), in relation to physical buildings and systems. 

Table 2a 
Perceived strengths of building performance simulation in the building simu
lation literature.  

BPS strengths References 

precise results Chakrabarty et al [57];Geyer and Singravel  
[58]; Westermann et al [59] 

predicts performance where there is 
no historical data 

Deb and Schlueter [60]; Foucquier et al [61]; 
de Wilde et al [54] 

comparison of design alternatives Papadopoulos et al [62]; Singh et al [63]; 
Ward et al [64]; 

propagation of uncertainties Singh et al [63] 
good for gaining understanding, 

insight 
Li and Yao [65]; Sanyal et al [66]; Yezioro et 
al [67] 

based on information that is readily 
available 

Chakrabarty et al [57]  
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building performance simulation are first and foremost a high 
computational costs, which is linked to high information needs, long 
computation times, and the use of a large number of model param
eters. Further limitations are complexity and high expertise re
quirements, the challenge of the performance gap between predicted 
and measured performance, the expense of calibration, some issues 
with limited cover of inter-building dynamics and the district/urban 
scale, the need for many assumptions and simplifications, challenges 
where models are non-linear and numerically stiff, a reliance on 
simple control, unsuitability to model fast controllers, being less 
suitable for existing buildings, issues with use by architects, and 

issues in terms of handling moisture and latent heat in thermal 
predictions.  

• Perceived strengths of Machine Learning are the fast computation 
times, which enable rapid feedback and support for optimization, the 
ability to be used for anomaly detection, accuracy and realism, the 

Table 2b 
Perceived limitations of building performance simulation in the building simu
lation literature.  

BPS limitations References 

computational cost: high information 
needs, long computing times, large 
numbers of parameters 

Brownlee and Wright [68]; Deb and 
Schlueter [60]; Edwards et al [69]; Ekici 
et al [70]; Foucquier et al [61]; Geyer and 
Singravel [58]; Kim et al [71]; Mazuroski 
et al [72]; Nourkojouri et al [73]; 
Papadopoulos et al [62]; Sanyal et al [66]; 
Sha et al [74]; Sha et al [55]; Sharif and 
Hammad [75]; Singh et al [63]; Tang et al 
[76]; Thrampodoulis et al [77]; 
Westermann et al [59] 

complexity, expertise required Chakraborty and Elzarka [29]; 
Nutkiewicz et al [78]; Sha et al [74]; 
Sharif and Hammad [75]; Thrampodoulis 
et al [77] 

performance gap predicted/measured Carstens et al [79]; Causone et al [80]; 
Deb and Schlueter [60]; Deng and Chen  
[81]; Edwards et al [69]; Mo et al [82]; 
Papadopoulos et al [62]; Singh et al [63]; 
Vollmer et al [83]; Ward et al [64] 

calibration being expensive Carstens et al [79]; Kim et al [71] 
limited attention to inter-building 

dynamics and district/urban scale 
Nutkiewicz et al [78]; Sanchez et al [84] 

requires many assumptions and 
simplifications 

Martinez-Comesaña et al [85]; Mazuroski 
et al [72]; Vollmer et al [83] 

non-linearity and numerical stiffness 
can be challenging 

Chakrabarty et al [57] 

often based on simplistic control Le et al [86] 
not suitable for fast controller response Dey et al [87] 
less suitable for existing buildings Chakraborty and Elzarka [29] 
not suitable for architects Nourkojouri et al [73] 
impact of moisture and latent heat on 

thermal predictions sometimes 
problematic 

Foucquier et al [61]  

Table 3a 
Perceived strengths of machine learning in the building simulation literature.  

ML strengths References 

fast computation times, rapid feedback, 
suitable for optimization processes 

Chakraborty and Elzarka [29]; Deb and 
Schlueter, [60]; Ekici et al [70]; 
Foucquier et al [61]; Geyer and Singravel 
[58]; Papadopoulos et al [62]; Sha et al  
[74]; Singh et al [63]; Westermann et al  
[59] 

good for anomaly detection de Wilde et al [54] 
accuracy and realism Ekici et al [70]; Fu and Miller [88]; 

Papadopoulos et al [62]; Vollmer et al  
[83] 

aggregation at city scale Roth et al [89] 
growing data set for training available Liguori et al [90] 
good for benchmarking Veiga et al [91] 
suitability for architects Singh et al [92] 
no statements found on: 

comparison of design alternatives 
propagation of uncertainties 
understandability and insights 

not applicable   

Table 3b 
Perceived limitations of machine learning in the building simulation literature.  

ML limitations References 

limited to range of training data; 
scalability and generalization issues 

Deng and Chen [81]; Geyer and 
Singravel [58]; Westermann et al [59] 

ability to identify anomaly source de Wilde et al [54] 
additional performance gap Singh et al [63] 
ignores uncertainties in measured data Carstens et al [79] 
often overlooks occupant behaviour Fu and Miller [88] 
lack of building retrofit data Thrampodoulis et al [77] 
data sets often incomplete or with errors Chakrabarty et al [57]; Liguori et al [90] 
large training data sets required Foucquier et al [61] 
no statements found on: 

computational cost 
complexity, expertise required 
representation of advanced control 
suitability for architects 

not applicable  

Table 4a 
Perceived strengths of digital twins in the building simulation literature.  

DT strengths References 

allows virtual testing De Gaetani et al [93] 
may represent a set of BPS 

models  
Bass et al [94]; Brennenstuhl et al [95]; Buckley et al  
[96]; Marchione and Ruperto [97] 

enables predictive 
maintenance 

Hosamo et al [98] 

suitability for architects Kalantari et al [99] 
no statements found on: 

comparison of design 
alternatives 
propagation of 
uncertainties 
understandability and 
insights 

not applicable  

Table 4b 
Perceived limitations of digital twins in the building simulation literature.  

DT limitations References 

emerging technology, ‘imperfect’ Cai et al [100] 
no statements found on: 

computational cost 
complexity, expertise required 
performance gap issues 
calibration needs 
representation of advanced control 
suitability for architects 

not applicable  

Table 5a 
Perceived strengths of the internet of things in the building simulation literature.  

IoT strengths References 

may use data from mobile systems Wu et al [101] 
input for smart systems Aste et al [102]; Tagliabue et 

al [103] 
more efficient and reliable than traditional 

monitoring systems 
Gilani and O’Brien [104] 

no statements found on: 
precision of results 
comparison of design alternatives 
propagation of uncertainties 
understandability and insights 

not applicable  
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capacity to aggregate building performance on a city scale, the 
ability to capitalize on a growing set of training data, and support for 
benchmarking. Perceived limitations of Machine Learning are the 
limitation to the range of the training data, and the related scalability 
and generalization issues, some weakness in identifying the source of 
anomalies, the creation of an additional performance gap where 
surrogate models are used, the ignorance of uncertainties in training 
data, a tendency to overlook occupant behaviour, a general lack to 
retrofit training data, and dependency on training sets that need to be 
large but which also often are incomplete or contain errors. 

• Perceived strengths of Digital Twins are, beyond a general attrac
tiveness of the concept to the building industry, the ability to 
incorporate digital testing, the representation of a set of simulation 
models, and prospect of predictive maintenance, and some ability to 
support architectural design. Perceived limitations of Digital Twins 
are that this is an ‘imperfect’, emerging technology.  

• Perceived strengths of the Internet of Things, in the context of 
building performance studies, are the ability to use data from mobile 
systems, the link to smart systems, and especially the higher effi
ciency and reliability when compared to traditional monitoring 
systems. Perceived limitations of the Internet of Things are a need to 
link with BIM data, the mapping to occupant behaviour, and security 
and privacy issues. 

It must be stressed that these strengths and limitations stem from 
literature, and are perceived strengths and limitations only. They reflect 
views of authors that have been found in literature, and not by the 
author of this article. These strengths and limitations may be subjective, 
and subject to criticism. Terms such as precise, good, expensive, and 
suitable have an inherent value judgement. Some of the perceived 
strengths and limitations run into clear issues. Table 2a lists as a strength 
of building performance simulation that it is typically “based informa
tion that is readily available”; however many modellers will disagree 
with this view and will have experienced long and deep searches for 
specific info. Other views even go against common understanding. For 
instance, Table 2b lists the views that building performance simulation 
is “less suitable for existing buildings” and “not suitable for architects”. 
Again, these views are not uncontested. See for instance the work of 
Kramer et al. [108] who apply thermal and moisture simulation to a 
museum that resides in a building from the 17th century; or Attia et al. 
[109] and Alsaadani and Bleil de Souza [110] who present a much more 
nuanced view on the use of simulation by architects. Similar critiques 
may apply to other views listed in these tables. The emergence of 
contestable notions show the dangers inherent in discursive comparison 
of building performance simulation to the new domains and the need for 
these to be corrected by empirical work. Note that a certain notion may 
be voiced by a number of authors, but that this not necessarily shows 
that this notion is correct. Even so, the results represented in Tables 2 to 
5 show the notions about building simulation and the emerging digital 
domains. 

Literature shows some tensions and competition between different 

concepts, with some authors such as Geyer and Singravel [58] and 
Kathirgamanathan et al [111] voicing the belief that Machine Learning 
models will replace traditional physics-based BPS models. Others take a 
different view; for instance Roth et al. [89] are of the opinion that “su
pervised machine learning models (…) are not a silver bullet for energy 
prediction, despite the recent rapid advancements in these tools. These models 
are often difficult to interpret and provide little physical explanatory power”. 
The choice between ML and BPS models may less straightforward than 
sometimes claimed; an interesting observation is made by Arroyo et al. 
[112] in the context of building management and control, where they 
note that often “authors use either one approach or another based on their 
expertise and justify their choice by highlighting the strengths of their 
approach and stressing the weaknesses of the other”. Deb and Schlueter [60] 
make the point that there is an opportunity to integrate black box, grey 
box and white box models in a common frame that exploits the benefits 
of each approach. 

Another observation is that some of the views and notions fail to take 
into account developments outside the building performance sphere. For 
instance, Frank et al [113] discuss computational speed of Machine 
Learning in the wider computational science and engineering realm, 
cautioning that ‘in spite of recent success, ML is still at its infancy.’ Gia
comini et al [114] give further depth to the concepts of computational 
credibility, high-fidelity and reduced computational costs in the wider 
context of numerical methods for computational engineering. Gómez- 
Carmona et al [115] have done deeper work on the computational cost of 
machine learning within the context of the Internet of Things. Classic 
works like Oberkampf and Roy [8] also deal with matters such as the 
philosophy of accuracy and validation. However, even if the notions and 
views reported here may be subject to critique, these views still repre
sent important notions in literature and help to understand how the 
relation between building performance simulation and the emerging 
digital domains is perceived. Such notions show the dangers inherent in 
discursive comparison of building performance simulation to emerging 
domains; they ought to be corrected by further empirical work. 

5. Work at the interface of the emerging domains and building 
performance simulation 

With the emergence of the new digital areas of work, it is interesting 
to observe what work takes place on the interface of these new areas and 
building performance simulation. For each of the different areas, main 
themes have been drawn from literature. Table 6 lists the main themes 
that are explored on the interface between building simulation and 
Machine learning; Table 7 the main themes on the interface with Digital 
Twins, Table 8 with Cyber-Physical Systems, Table 9 with the Internet of 
Things, and Table 10 with Data Mining. 

In general, there are 22 themes. Two of these show up across the 
different areas: urban/district modelling, and control systems. Urban 
and district models clearly represent a higher complexity than individ
ual buildings and hence benefit from meta-models, new data collection 
methods, and novel ways of constructing models. However, it is noted 
that collecting data remains challenging, and that often traditional 
simulation is needed to fill in missing information; see for instance Veiga 
et al. [91]. Work on building control systems looks at the building (sub) 
system and is driven by the need to operate buildings efficiently. The 
traditional approaches here are rule-based control (RBC) and model 
predictive control (MPC), with Machine Learning opening up a new 
route of data-driven control (DDC); see for instance Kathirgamanathan 
et al [111]. This theme is closely related to data sensing and therefore 
has logical links to work on the Internet of Things, Data Mining and 
Machine Learning, whereas by nature a digital controller and physical 
system form a Cyber-Physical System. Within this theme, Arroyo et al. 
[112] observe that “the control and machine learning communities keep 
evolving independently with a radically different notation natively adopted to 
formulate the same problem” in reference to MPC and DDC approaches. 
Surrogate models are often suggested as a solution, however these seem 

Table 5b 
Perceived limitations of the internet of things in the building simulation 
literature.  

IoT limitations References 

requires link with BIM data Tagliabue et al [103] 
requires link with occupant behaviour Delinchant et al [105] 
security and privacy issues Noye et al [106]; Wang et al [107] 
no statements found on: 

computational cost 
complexity, expertise required 
performance gap issues 
representation of advanced control 
suitability for architects 
applicability to existing buildings 

not applicable  
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to also have their limitations; for instance Kontes et al. [144] state that 
“from our experience with real-building control experiments, the assumption 
that the original simulation model (and thus also the surrogate model derived 

from it) can actually predict all states of the real building, under all different 
combinations of weather conditions and occupant actions, usually does not 
hold in practice. Instead, what is required is a continuous calibration process, 
for example as defined in the digital twin paradigm”. In the literature on the 
interface between building simulation and Digital Twin, it has been 
noted that many papers just drop the term ‘Digital Twin’ without dis
cussing the concept in detail, or engaging with the notion of Digital 
Twins as discussed in section 3. Often the term only appears only once or 
twice; such papers have been excluded from the search for research 
themes. 

6. Discussion and conclusions 

This article explores how the traditional domain of building perfor
mance simulation relates to the emerging digital areas of Artificial In
telligence / Machine Learning, Digital Twins, Cyber-Physical Systems, 
the Internet of Things and Data Mining. A study of definitions and 
concepts shows that some of these novel fields are clearly distinct from 
simulation and operate on quite different concepts: Artificial Intelli
gence can be linked to smart and intelligent buildings but leaves open 
how the smartness or intelligence is achieved. Cyber-Physical Systems 
can be distinguished by the obvious interaction between digital and 
physical counterparts, and the Internet of Things is a about connecting 
devices and people and enabling data collection. There is however 
conceptual overlap and risk of confusion where the novel trends involve 
digital models. This concerns building performance simulation models, 
Machine Learning models, Digital Twins and to some extent Building 
Information Models. Important conceptual differences manifest them
selves in the data flow and how tight such models are connected to a 
physical building or building system. The conceptual difference between 
building simulation model and (supervised) Machine Learning model 
aligns with the more traditional view of white box versus black box 
models, with hybrid (grey box) models occupying a middle ground. 

The literature that straddles the domain of building (performance) 
simulation and emerging areas of Machine Learning, Digital Twins, and 
Internet of Things gives a wide range of views on the benefits and 

Table 6 
Research themes on the interface of Building Performance Simulation and Ma
chine Learning.  

Theme Related articles 

meta and surrogate models Brownlee and Wright [68]; Edwards et al [69]; Ekici et 
al [70]; Geyer and Singaravel [58]; Lin et al [116]; 
Mazuroski et al [72]; Sharif and Hammad [75]; Singh 
et al [63]; Thrampoulidis et al [77]; Veiga et al [91]; 
Verma et al [117]; Westermann et al [59] 

urban and district models Ang et al [118]; Li and Yao [65]; Nutkiewicz et al [78]; 
Roth et al [89]; Sánchez and Marijuan [84]; Vázquez- 
Canteli et al [119] 

occupant behaviour Amayri et al [120]; Arslan et al [121]; Causone et al  
[80]; Dai et al [122]; Deng and Chen [81]; Elkhoukhi 
et al [123]; Fu and Miller [88]; Huchuk et al [124]; Mo 
et al [82]; Ryu and Moon [125]; Silva et al [126]; 
Ward et al [64]; Yi [127] 

MPC and other building 
control systems 

Aftab et al [128]; Arroyo et al [112]; Drgoňa et al  
[129]; Le et al [86]; Noye et al [106]; Sha et al [55]; 
Taheri and Razban [130]; Vollmer et al [83] 

model validation and 
calibration 

Carstens et al [79]; Chakrabarty et al [57]; Grieu et al  
[131]; Kim et al [71]; Martinez-Comesaña et al [85]; 
Sanyal et al [66]; Yezioro et al [67] 

data quality Liguori et al [90] 
retrofit Deb and Schlueter [60]; Sharif and Hammad [75]; 

Thrampoulidis et al [77] 
comfort models Wu et al [132]; Zhang et al [133] 
fault detection and 

diagnosis 
Dey et al [87]; de Wilde et al [54] 

ensemble models Chakraborty and Elzarka [29]; Papadopoulos et al  
[62] 

weather and climate data Hosseini et al [134]; Kalyanam and Hoffmann [135] 
daylight Ayoub [136]; Lee et al [137]; Nourkojouri et al [73] 
seismic performance Tang et al [76]  

Table 7 
Research themes on the interface of Building Performance Simulation and Dig
ital Twins.  

Theme Related articles 

urban and district models Bass et al [94]; Buckley et al [96]; Chaturvedi and 
Kolbe [138]; Garrison and New [139]; Marchione 
and Ruperto [97]; Sibilla and Abanda [140]; 
Simonsson et al [141] 

interoperability De Gaetani et al [93]; Porsani et al [142]; Zhao et al  
[143] 

MPC and other building 
control systems 

Brennenstuhl et al [95]; Kontes et al [144]; 
Narayanan et al [145] 

model validation and 
calibration 

Chakrabarty et al [57]; Chong et al [146] 

facility management Cai et al [100]; Hosamo et al [98]; Jafari et al [147]; 
Jafari et al [148]; Garrison and New [139] 

retrofit and renovation Duch-Zebrowska and Zielonko-Jung [149]; Massafra 
et al [150] 

smart and intelligent 
buildings 

Pavon et al [151] 

design and optimization Lydon et al [152]; Togashi et al [153] 
education and training Johra et al [154]  

Table 8 
Research themes on the interface of Building Performance Simulation and 
Cyber-Physical Systems.  

Theme Related articles 

MPC and other building 
control systems 

Böke et al [155]; Li et al [156]; Karbasi and Farhadi  
[157]; Schmidt et al [158]; Ye et al [159] 

monitoring Bonci et al [160] 
policy and decision-making Meuer et al [161]  

Table 9 
Research themes on the interface of Building Performance Simulation and the 
Internet of Things.  

Theme Related articles 

occupant behaviour Brambilla et al [162]; Gilani and O’Brien [104]; 
Mataloto et al [163]; Wu et al [101] 

MPC and other building 
control systems 

Aste et al [102]; Kathirgamanathan et al [111]; Lee and 
Yeo [164]; Tagliabue et al [103] 

urban and district models Chagnon-Lessard et al [165]; Wang et al [107] 
policy and decision- 

making 
Delinchant et al [105]  

Table 10 
Research themes on the interface of Building Performance Simulation and Data 
Mining.  

Theme Related articles 

urban and district models Capozzoli et al [166] 
occupant behaviour Amasyali and El-Gohary [167]; Amasyali and El- 

Gohary [168]; Chen and Soh [169]; Darakdjian et al  
[170]; Krishnan et al [171]; Ouf et al [172]; Sun et al  
[173] 

MPC and other building 
control systems 

May-Ostendorp et al [174]; Sun et al [173] 

model validation and 
calibration 

Hiyama [175]; Rouchier [176] 

retrofit Simpson et al [177] 
categorization and 

clustering 
Abdelrahman et al [178]; Bhatia et al [179]; 
Capozzoli et al [166]; Gunay et al [180]; Morbitzer et 
al [181]; Yang et al [182]; Zhan et al [183]  
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challenges for these various concepts, as detailed in Tables 2 to 5: 
There is significant research activity on the interfaces between 

building performance simulation and the novel digital domains, across a 
range of themes; see Tables 6 to 10 for details. Two areas that gain 
attention across the spectrum are urban/district models, and building 
management and control systems. 

The literature about perceived benefits and limitations of building 
performance simulation and Machine Learning appears to have some 
bias towards the advantages of the latter. More limitations are listed for 
building simulation, however this may also reflect the maturity of the 
concept. There are some authors who claim that Machine Learning will 
replace building simulation. However, some critical comments are in 
order:  

• Benefits and limitations voiced in the literature are often beliefs. 
There is a sparsity of hard empirical tests that quantify the perfor
mance of one type of model against the other. The use case for any 
empirical tests is crucial, and needs to include aspects of uncertainty 
such as inherent in design. Further research is needed in order to 
move beyond subjective positions. 

• Fast computation times and rapid feedback are often cited as ad
vantages of Machine Learning approaches over building perfor
mance simulation. Whilst this may be true for strict running time of 
the algorithms involved, the situation becomes much more complex 
and unclear when the modelling effort is included. There are few, if 
any, accounts that include the preparatory work needed before one is 
able to run a simulation or applicable machine learning algorithm. 
No views or information has been found on the efforts and time 
needed to deploy Digital Twins, Cyber-Physical Systems, Internet of 
Things or Data Mining. 

• The engineering and physics knowledge and routines used in tradi
tional building performance simulation models remains highly 
valuable and should not be neglected. First-principle models remain 
the tool of choice to predict the future performance of buildings that 
are still at the design stage, since at that point there is no data yet to 
train ML algorithms. Also, first-principle models retain a high 
instructional value for educational and upskilling purposes.  

• Efforts in the area of system control and management are starting to 
explore hybrid solutions, where the benefits of particular algorithms 
are combined. This may be a path forwards for building performance 
prediction in general. Whilst the data-driven Machine Learning 
models have a high promise, their weakness is the identification of 
their application range which needs to correlate to their training 
domain. It may be that these models could play a stronger role if 
applied to typical building components such as boilers, chillers and 
AHUs. Such component models might then be integrated with 
traditional BPS models in the same way that components are com
bined in for instance the Modelica language, and indeed have been 
integrated in other tools such as TRNSYS, EnergyPlus and ESP-r in 
the past. 

Whilst the literature review shows the many views, overlaps and 
intersection between building performance simulation and the emergent 
domains, a general attempt to order them according to applicability is as 
follows:  

• Building performance simulation is an appropriate approach to 
predict future building performance, especially at a design stage of a 
building, or where use conditions are changing. It also is appropriate 
in an educational setting, where it can be used to operationalize 
physical and engineering knowledge.  

• Supervised Machine Learning is an appropriate technique where 
data is available to train a mathematical black box model. This is 
especially true for existing buildings, and is highly useful for fault 
detection. The speed of Machine Learning algorithms also have 
distinct advantages in contexts where real-time interaction is 

required, such as in design support or building control systems. 
Reinforcement learning is an important approach for the control of 
buildings.  

• Digital Twins become useful where a model (digital counterpart) can 
be used to manage a real building (physical counterpart), for 
instance for optimal control or predictive maintenance.  

• The Internet of Things is an approach that supports data collection 
and monitoring, and can support Machine Learning, Digital Twins as 
well as traditional building simulation model calibration. 

Whilst the new emergent digital domains enjoy significant traction 
and help to energize efforts in the building research field, in part they 
offer new terminology for existing technology. Machine Learning has 
long been around as ‘black box’ approaches, with the main difference 
between the past and present being the increased availability of training 
data. Buildings and building systems with any form of digital control are 
by nature Cyber-Physical Systems; here the new term mainly provides a 
fresh world view rather than a fundamental shift. Other terms such as 
Digital Twins indeed offer new concepts to link building simulation with 
actual buildings and other digital technology. However it is important 
that the definition of concepts like Digital Twins is properly understood; 
if the building simulation community simply considers any simulation 
model to be a digital twin then the intended technological progress will 
be missed. With a good conceptual understanding and differentiation in 
place, the new digital domains provide new impetus for the building 
research community, which is to be welcomed. 
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