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Abstract

In engineering, the virtual behaviour of structures under operational and extreme conditions

are investigated using mathematical or physics-based models. To obtain numerical responses

that best reflect the structure under investigation, the physical input parameters describing

the geometric, material, and damping properties of these models need to be identified or

inferred.

However, the presence of uncertainty poses significant challenges in parameter identifica-

tion. Often, these uncertainties would stem from the following: 1) the aleatory uncertainty

due the variations in the response measurements of nominal identical structures under same

loading conditions due to manufacturing and material variability, thus, leading to the param-

eter not having a single “true” parameter value representation; 2) the epistemic uncertainty

associated with the “fuzziness” to the knowledge of the parameter(s) as a result of the exper-

imental data/measurements being usually affected by “noise”; and 3) the model uncertainty

due to the modelling errors associated with the failure of the model in capturing the physics

of the problem. This presents the need to not only perform an inference on the parameter(s),

but also quantify the uncertainty associated with the estimates. An approach towards this

would be Bayesian model updating, which serves as the context of the dissertation.

The dissertation provides details to the efficient and robust approaches towards proba-

bilistic parameter identification and model updating via the aforementioned approach. To

realize this, an extensive literature review on Bayesian inference and the existing sampling

tools is provided. This is done to identify the key research gaps, as well as limitations to the

current sampling algorithms. From there, the Transitional Ensemble Markov Chain Monte

Carlo sampler is proposed to which its strengths include its robustness in sampling from

skewed distributions, quicker computational time, and the removal of any need for tuning

by the users. To demonstrate this, the algorithm has been implemented on both numerical

and real-world examples. The latter involves a structural health monitoring problem and

the recent NASA-Langley Uncertainty Quantification challenge. Following which, the anal-
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ysis is extended towards inferring time-varying parameter(s) via on-line Bayesian inference.

This motivated the development of the Sequential Ensemble Monte Carlo sampler to which

its strengths include its robustness in identifying the most probable Markov kernel under

uncertainty. Such strengths are demonstrated through the experimental example involving

a single-storey structure subjected to a time-varying Coulomb friction. Finally, the disser-

tation presents an approach to merge Artificial Intelligence tools with Bayesian statistics

towards the probabilistic prediction of material properties for Nuclear power plant struc-

tures. Such development seeks to enable the Artificial Intelligence models to provide a more

robust probabilistic prediction on the material properties under very limited data and model

uncertainty.

For the interest of the relevant practitioners, the algorithms to the proposed methods

presented in the dissertation are made accessible on OpenCOSSAN, an open-source software

for uncertainty quantification, as well as GitHub.
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i . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xxi



3.9 Schematic diagram of the simple spring-mass system. . . . . . . . . . . . . . 45

3.10 scatterplot of the 15 simulated “noisy” data of Force against the respective

values of Displacements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 The updated linear model via the linearisation method as illustrated by the

red line with the “noisy” data represented by the blue circles. . . . . . . . . 48

3.12 The resulting sample trace plot (a) and the histogram (b) obtained using the

MCMC sampler with sample size N = 1050 with Nburn−in = 0. The red line

in the sample trace plot denotes the true sample mean value. . . . . . . . . 50

3.13 The resulting sample trace plot (a) and the histogram (b) after discarding the

first Nburn−in = 50 samples. The red line in the sample trace plot denotes the

true sample mean value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.14 The resulting sample trace plot (a) and the histogram (b) obtained using the

TMCMC sampler with sample size N = 1000. The red line in the sample

trace plot denotes the true sample mean value. . . . . . . . . . . . . . . . . . 51

3.15 The resulting sample trace plot (a) and the histogram (b) obtained using the

SMC-MH sampler in sampling from the posterior via a sequential approach

with sample size N = 1000. The red line in the sample trace plot denotes the

true sample mean value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.16 The resulting sample trace plot (a) and the histogram (b) obtained using the

SMC-MH sampler in sampling directly from the posterior with sample size

N = 1000. The red line in the sample trace plot denotes the true sample

mean value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.17 Results of the model updating for the respective samplers. The red lines

denote the 3-σSE bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.18 Scatterplot of the 15 different measured values of λnoisy1 and λnoisy2 . . . . . . . 55

3.19 The resulting scatterplot matrix (a) and 2D scatterplot (b) obtained using

the MCMC sampler with sample size N = 1060 and Nburn−in = 0. . . . . . . 56

3.20 The resulting scatterplot matrix (a) and 2D scatterplot (b) after discarding

the first Nburn−in = 60 samples. . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.21 The resulting 2D scatterplot matrix (a) and scatterplot (b) obtained using

the TMCMC sampler with sample size N = 1000. . . . . . . . . . . . . . . 58

3.22 The resulting 2D scatterplot matrix (a) and scatterplot (b) obtained using

the SMC-MH sampler with sample size N = 1000. . . . . . . . . . . . . . . 58

xxii



3.23 Updated scatterplot profiles obtained from: (a) MCMC, (b) TMCMC, and

(c) SMC-MH sampling methods. . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.24 Scatterplot matrix of the 18 inputs obtained using the MCMC sampler with

N = 1500 samples and Nburn−in = 500. The data presented here are nor-

malised to take values between 0 and 1. . . . . . . . . . . . . . . . . . . . . 64

3.25 Scatterplot matrix of the 18 inputs obtained using the TMCMC sampler with

N = 1000 samples. The data presented here are normalised to take values

between 0 and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.26 Scatterplot matrix of the 18 inputs obtained using the SMC-MH sampler with

N = 1000 samples. The data presented here are normalised to take values

between 0 and 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.27 The scatterplot matrix illustrating the updated model output profile obtained

using the MCMC sampling technique. The blue scatterplots represent the

frequency output from the updated model while the red scatterplots represent

the experimental frequency measurements. . . . . . . . . . . . . . . . . . . . 68

3.28 The scatterplot matrix illustrating the updated model output profile obtained

using the TMCMC sampling technique. The blue scatterplots represent the

frequency output from the updated model while the red scatterplots represent

the experimental frequency measurements. . . . . . . . . . . . . . . . . . . . 69

3.29 The scatterplot matrix illustrating the updated model output profile obtained

using the SMC-MH sampling technique. The blue scatterplots represent the

frequency output from the updated model while the red scatterplots represent

the experimental frequency measurements. . . . . . . . . . . . . . . . . . . . 70

4.1 Schematic diagram of the stretch-move that is used to update the sample of

the 3rd chain in red. Here, the candidate sample for the 3rd chain is represented

in blue while the randomly chosen complementary sample in this case is that

from the 4th chain. Image adapted from [5]. . . . . . . . . . . . . . . . . . . 83

4.2 Contour plots illustrating the skewed P j defined by Eq. (4.13) (left) and the

scaled, isotropic P j in the affine-transformed space defined by Eq. (4.15) (right). 85

4.3 ECDFs of θ1 and θ2 obtained directly from P j(θ) and those re-scaled from

P ′j(Θ) when using MH and AIES. . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Schematic diagram of the 2DoF Coupled oscillator system based on the set-up

in [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xxiii



4.5 Scatterplot of the 15 different “measured” values ω1 and ω2. . . . . . . . . . 91

4.6 The statistics of βj and the acceptance rates across all iterations j. The target

acceptance rate is 0.283. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Scatterplot matrix illustrating the resulting posterior of the epistemic param-

eters obtained by the TMCMC sampler (left) and the TEMCMC sampler

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.8 Scatterplot matrix illustrating the model updating results attained by the

TMCMC and TEMCMC samplers. . . . . . . . . . . . . . . . . . . . . . . . 95

4.9 Contour plot illustration of the 4-peaked posterior based on the Himmelblau’s

function [7]. The numbers on the colour chart represent the height of the

posterior computed from Eq. (4.24). . . . . . . . . . . . . . . . . . . . . . . 96

4.10 The statistics of βj and the acceptance rates across all iterations j. The target

acceptance rate is 0.335. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.11 Scatterplots obtained from P j for j = 0 to j = 5 via the TMCMC sampler. 99

4.12 Scatterplots obtained from P j for j = 0 to j = 5 via the TEMCMC sampler. 99

4.13 Resulting scatterplots of the samples from the final posterior P (θ|D,M) ob-

tained via TMCMC (left) and TEMCMC (right) samplers along with the

analytical contour plot profile as a comparison. . . . . . . . . . . . . . . . . 100

5.1 Schematic diagram of the aluminium frame with moveable masses m1 and m2

[1, 4, 8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Simulated data obtained for the calibration of the ANN. . . . . . . . . . . . 106

5.3 Regression plots of the calibrated ANN. . . . . . . . . . . . . . . . . . . . . 107

5.4 P-boxes for pm1 for the respective experiments constructed from the ECDFs

of P1(θ|D,M) (red), P2(θ|D,M) (green), and P3(θ|D,M) (blue). The black

dotted vertical line denotes the true value. . . . . . . . . . . . . . . . . . . . 109

5.5 P-boxes for pm2 for the respective experiments constructed from the ECDFs

of P1(θ|D,M) (red), P2(θ|D,M) (green), and P3(θ|D,M) (blue). The black

dotted vertical line denotes the true value. . . . . . . . . . . . . . . . . . . . 110

6.1 Graphical illustration of the time history data D1. . . . . . . . . . . . . . . 117

6.2 Illustration of the frequency spectra obtained from D1 via FFT. . . . . . . . 121

6.3 Illustration of the resulting distribution functions to the respective shape pa-

rameters of π1
a (i.e. the joint Beta distribution) obtained via Kernel density

estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xxiv



6.4 P-box for a1 to a5 obtained from the respective UMs. . . . . . . . . . . . . 125

6.5 Histograms for e1 to e4 obtained from P (θ|D,M) given π1
a (in blue) and π5

a

(in green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.6 Output band from ŷ according to UM1
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Chapter 1

Introduction

Abstract

The chapter provides the context of the dissertation by first providing a background descrip-

tion on the concept of model updating and its importance within the engineering discipline.

This includes an overview of the 2 distinct approaches to model updating: 1) the deter-

ministic; and 2) the probabilistic approaches to which an evaluation to the pros and cons

to each approach are provided. Following this, the research challenges are highlighted and

the research objectives to be achieved in the dissertation are identified. Finally, the chapter

concludes with a detailed explanation to the structure of the dissertation and its content

organisation.
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1.1 Background

In engineering design problems, mathematical models are used to investigate the virtual

behaviour of structures under operational and extreme conditions. Generally, such models

describe the assumed relationship between the input and output variables of such structures

being studied. In order to obtain numerical responses representative of the structure under

investigation, the physical input parameters describing the geometric, material and damping

properties of these models need to be updated [10]. This is known as model updating and one

such conventional example would be the structural Finite Element model updating [11, 12].

Under such approach, the input parameters of the physical model are updated or opti-

mised through the process of minimising the difference between the experimental and mod-

elling results with respect to a suitable response metric which is sensitive to the variation

of such input parameters [13]. For example, the parameter(s) of a mathematical model de-

scribing the material properties of a plate can be updated in order to minimise the difference

between the theoretical and experimental natural frequencies of the plate. Ideally, one seeks

to achieve the case where the input model parameters are well optimised such that this

discrepancy between the model output and experimental observations is close to 0.

Model updating in engineering has been implemented for numerous key reasons including

[13]: 1) design verification and validation of structures; 2) to provide improved model pre-

dictions on the structural response quantities such as its frequency response functions; and

3) to identify the unknown system characteristics such as the extent of the localised struc-

tural damage in structural health monitoring. In regards to the third point, one way this is

achieved would be through the monitoring of the structure’s stiffness parameter(s). This is

under the assumption that the localised structural damage leads to a local reduction in the

stiffness. Hence, this highlights a benefit of the model updating approach, in that it allows

for a non-destructive means to monitor thoroughly and accurately the health condition of

the structure being studied [13].

However, the technique of model updating faces 3 main challenges: 1) it assumes that

the mathematical model employed is able to capture the physics of the problem in full

and is unaffected by modelling errors; 2) it does not readily take into account that the

experimental data are usually affected by “noise” [14, 15, 16, 17]; and 3) it does not consider

that response measurements of nominal identical structures under same loading conditions

might vary because of manufacturing and material variability, which should be included in

the model by considering input parameter variability [18, 19, 20, 21, 22] and not a single
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“true” parameter value representation [23].

The aforementioned challenges introduce elements of uncertainty which should also be

accounted for in the model updating procedure. Such uncertainties can be classified into 2

distinct types [24, 25]: 1) Aleatory (i.e. Type A uncertainty); and 2) Epistemic (i.e. Type B

uncertainty). The aleatory uncertainty refers to the statistical uncertainty of a given variable

as a result of its inherent variability and randomness [26]. Such uncertainty is irreducible

and are usually described or quantified with a probability distribution [27, 18]. On the

other hand, the epistemic uncertainty refers to the lack of knowledge over the unobserved

parameter(s) or variable(s). However, unlike the aleatory uncertainty, epistemic uncertainties

are reducible with increased information or data through model updating [28]. An epistemic

uncertainty over a parameter is generally represented by a fixed value within a bounded set

whose intervals reflect the level of knowledge on the parameter [26]. The lower the level of

knowledge, the larger the interval of this bounded set.

Broadly speaking, the approaches towards model updating under uncertainty can be

grouped into 2 categories: 1) deterministic; and 2) probabilistic approach.

1.1.1 Deterministic approach

In the deterministic approach, the model updating procedure does not account for any form

of uncertainty that is associated with the inferred parameter(s). Through this method, the

calibration of the inferred parameter(s) of a single model is performed based on one set of

test data [3]. This yields a single set of crisp values on the inferred parameter(s), giving

rise to a single model prediction with maximum fidelity given the single set of data [29].

Examples of such approach towards model updating include: 1) the Linear least-squares

minimization [30]; and 2) Sensitivity-based model updating [3].

A general advantage to the deterministic approaches is that they are relatively systematic

in its implementation after decades of development [31]. However, its disadvantages include:

1) the issue of high computational costs when performing global optimisations on the inferred

parameter(s); 2) it does not account for the uncertainty which can be attributed to the test

data or the model for example; and 3) it only provides one single solution to the updated

model predictions and the inferred parameter(s) and neglects other possible solutions with

equal importance [31, 32].

The last point is worth significant attention given that this makes the deterministic

approach insufficiently robust in the context of uncertainty quantification which requires the
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consideration of probabilistic predictions of the model and the probabilistic estimates of the

inferred parameter(s). Hence, in such case, one can turn to and implement the probabilistic

approach towards model updating.

1.1.2 Probabilistic approach

In the probabilistic approach, the model updating procedure considers not just solely the

presence of epistemic uncertainty, but also the aleatory uncertainty. Such condition is re-

ferred to as “hybrid uncertainties” [33]. In such case, imprecise probability models are re-

quired to model the inferred parameter(s) whereby its associated uncertainty can be aleatory

but the uncertainty over its distribution hyper-parameters (i.e. the mean and variance pa-

rameters) can be epistemic. Examples of such imprecise probability models include: 1) the

Probability-box (P-box) [34]; 2) Evidence theory [35]; and 3) Fuzzy-probability model [36].

Unlike the deterministic approach, the probabilistic approach does not provide point-

estimate(s) to the inferred parameter(s), but rather in the form of intervals or probability

distributions. As such, this yields a set of probabilistic model predictions which are able to

illustrate the uncertainty associated with the given observations [33].

Among the probabilistic approaches, one of the most well-established probabilistic ap-

proaches is the Bayesian model updating framework [37, 38]. This framework shall serve as

the context of discussion and the basis of the research works presented in the dissertation.

Through the Bayesian model updating approach, the physical parameters of the model to

be updated are represented by probability distributions, and Bayesian inference is employed

to evaluate the posterior probability density function given some measured data. In the

structural health monitoring community, such form of statistical model updating is often

referred to as system identification [39, 40, 41, 42, 43, 44, 45]. For the real case applica-

tions, probabilistic model updating relies on the availability of efficient sampling techniques.

This is due to the relative complexity of the distribution from which samples are generated.

Detailed discussions to this will be covered in Chapter 2 of the dissertation.

1.2 Research motivations

The Bayesian model updating approach mostly requires the implementation of Monte Carlo

methods in order to address probabilistic model updating problems, quantify the uncertainty

of the inferred parameter(s), and identify the most probable model under uncertainty and
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lack of data [46]. There are 2 key reasons for this: 1) the mathematical form of the target

distribution (i.e. the posterior distribution) cannot be expressed in a closed-form in general;

and 2) the posterior distribution is mostly not normalised. These factors present challenges

in computing analytically the statistics of the estimates, such as their means and variances.

To overcome such issues, numerical approaches are required to estimate these statistics in

the form of Monte Carlo techniques to which examples include: 1) Multiple-try Metropolis

Algorithm [47]; 2) Metropolis Adjusted Langevin Algorithm [48]; and 3) Hamiltonian Monte

Carlo [49].

In the dissertation, the discussions will focus mainly on the following 3 Monte Carlo

techniques: 1) Markov Chain Monte Carlo [50]; 2) Transitional Markov Chain Monte Carlo

[51]; and 3) Sequential Monte Carlo [52] samplers. Details on their respective algorithm will

be reviewed in Chapter 3 of the dissertation.

1.2.1 Research challenges

Over the years, there have been numerous research which look towards developing state-of-

the-art Monte Carlo sampling approaches which are more robust and efficient in generating

samples whose distribution is most representative of the corresponding posterior distribution

for Bayesian inference. These recent developments are discussed in Chapters 3, 4, and 7 of the

dissertation. While these developments have demonstrated improved sampling performance

and provided improved inference results based on their respective literature, they still face

the following challenges:

1) The ineffectiveness in sampling from highly-skewed (i.e. complex-shaped) distributions

which can have a direct impact on how well the samples represent the distribution of the

posterior and the resulting estimates of the inferred parameter(s);

2) The lack of robustness in moderating acceptance rates within optimal bounds which can

affect the performance of the sampler(s) in exploring the sample space of the posterior;

3) The requirement of manual tuning, which can be a tedious process when dealing with

problems where there is no information apriori to justify a choice of value(s) for the

tuning parameter resulting in many rounds of such tuning procedure in a “trial-and-

error” fashion;

4) The high computational costs incurred and reduced sampling efficiency when dealing with
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complex problems involving the need to infer/estimate a high number of parameters (e.g.

≥ 18) [53];

5) The need to improve the robustness of the inference and model updating procedure by

accounting for the model uncertainty; and

6) The difficulty in performing probabilistic model updating and prediction given sparse

data and limited information over the system of interest.

1.2.2 Research objectives

The overall research aim is to develop robust and efficient sampling approaches towards

parameter identification and model updating. This is achieved through a series of thorough

research works presented in the dissertation which seek to address the challenges highlighted

in Section 1.2.1. Hence, the research objectives to be accomplished in the dissertation are

as follows:

1) To provide a detailed comparison and evaluation between the 3 aforementioned Monte

Carlo techniques in their respective sampling performances;

2) To improve the performance of the sampler(s) in sampling from highly-skewed and complex-

shaped distributions through the merging of Affine-transformation methods with current

algorithm(s). This seeks to address the first research challenge;

3) To develop a sampling algorithm that removes the need by the users to define the tuning

parameter of the sampler(s) prior to sampling (i.e. tune-free). This seeks to address the

second and third research challenge;

4) To reduce the computational costs and sampling time of the algorithm(s) by reducing the

number of hyper-parameters that need to be computed. This seeks to address the third

and fourth research challenge;

5) To perform the robust Bayesian identification of key parameters under uncertainty over

the likelihood functions. This seeks to address the fifth research challenge;

6) To propose a method to quantify the aleatory and epistemic uncertainties of a set of

parameters of a black-box model under model uncertainty. This seeks to address the fifth

research challenge;
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7) To propose a general approach towards determining the most probable Markov kernel

under model uncertainty. This seeks to address the fifth research challenge; and

8) To propose an approach towards merging deterministic model predictions with Bayesian

statistics to provide probabilistic predictions of key quantities under sparse data and

model uncertainty. This seeks to address the fifth and sixth research challenge.

1.3 Dissertation structure

The dissertation consists of 10 chapters to which an overview is presented in Table 1.1. These

chapters have been classified into 3 distinct categories: 1) Literature review; 2) Theoretical

development; and 3) Application. In addition, the research objective(s) which is/are to be

achieved is also indicated in Table 1.1 along with the corresponding chapter to provide a

clear reference. Furthermore, a flow-chart outlining the links between the chapters of the

dissertation is presented in Figure 1.1. The dissertation is structured as follows:

Chapter 2 provides a detailed overview of Bayesian model updating and a literature

review of its recent applications in engineering. Chapter 3 presents an overview of the afore-

mentioned Monte Carlo approaches along with a literature review of their respective recent

applications. In addition, a detailed evaluation and comparison between their sampling

performances is provided through numerical and experimental case studies. This seeks to

address the first research objective.

Chapter 4 presents the novel Transitional Ensemble Markov Chain Monte Carlo sam-

pling algorithm and investigates in detail the short-comings of the traditional Transitional

Markov Chain Monte Carlo sampler. From which, approaches towards addressing these

short-comings are discussed and numerical studies are presented to verify the results of the

proposed sampler with the traditional Transitional Markov Chain Monte Carlo sampler.

This seeks to address the second, third, and fourth research objectives.

Chapter 5 presents the first application of the Transitional Ensemble Markov Chain

Monte Carlo sampler in an off-line structural Bayesian identification problem using experi-

mental data. It would incorporate the implementation of the Robust Bayes approach to deal

with the uncertainty over the choice of likelihood functions from which a metric is introduced

to determine the likelihood with the most and least influence on the posterior results. This

seeks to address the fifth research objective.

Chapter 6 presents the second application of the Transitional Ensemble Markov Chain
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Monte Carlo sampler to identify uncertain parameters of a dynamic black-box system under

uncertainty. This problem is based on the recent NASA-Langley Uncertainty Quantification

Challenge 2019 [26] and the focus of the chapter is on the approach towards calibrating

a black-box model consisting of both aleatory and epistemic parameters and subsequently

reducing its uncertainty. This seeks to address the sixth research objective.

Chapter 7 presents the novel Sequential Ensemble Monte Carlo sampling algorithm and

investigates in detail the short-comings of the traditional Sequential Monte Carlo sampler

for Sequential Bayesian inference. From which, approaches towards addressing these short-

comings are discussed and a numerical study is presented to provide an understanding behind

the existence of inherent bounds on the acceptance rates of the sampler and how it can be

controlled effectively. This seeks to address the second and third research objectives.

Chapter 8 presents an application of the Sequential Ensemble Monte Carlo sampler in

an on-line structural health monitoring problem using experimental data. It seeks to not

only validate the proposed sampler in identifying the time-varying model parameter under

realistic settings, but also evaluate its robustness in identifying the most probable Markov

kernel under model uncertainty. This seeks to address the seventh research objective.

Chapter 9 presents a novel framework aimed at merging Artificial Intelligence tools with

Bayesian statistics to produce robust probabilistic estimates of Nuclear material properties

under sparse data. To highlight its practicality, experimental data from past campaigns

are used to verify and validate the proposed approach. This work serves as a feasibility

study submitted towards the recent Game Changers Challenge hosted by the Advanced

Nuclear Skills and Innovation Campus in 2022 [54]. This seeks to address the eighth research

objective.

Finally, Chapter 10 provides recommendations for the future research works before con-

cluding the dissertation by summarising what has been presented and achieved here.
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Chapter Title Type Objective(s)
1 Introduction − −
2 Overview of Bayesian Model Updating Literature

review
−

3 Review of the Monte Carlo Techniques Literature
review

1

4 Transitional Ensemble Markov Chain
Monte Carlo: A Robust and Efficient sam-
pler for Off-line Bayesian Model Updating

Theoretical
development

2, 3, 4

5 Robust Off-line Bayesian Identification
under Model Uncertainty

Application 5

6 Distribution-free Analysis of a Dynamical
Black-box system under Uncertainty

Application 6

7 Sequential Ensemble Monte Carlo: A Ro-
bust and Efficient sampler for On-line
Bayesian Model Updating

Theoretical
development

2, 3

8 On-line Identification of Time-varying
Model parameters for Structural Health
Monitoring

Application 7

9 Probabilistic Prediction of Nuclear Mate-
rial Properties with Artificial Intelligence
under Uncertainty

Application 8

10 Conclusion − −

Table 1.1: Content organisation of the dissertation.
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Figure 1.1: Flow-chart illustrating the dissertation structure as well as the links between the
chapters.
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Chapter 2

Overview of Bayesian Model

Updating

Abstract

The chapter provides an overview on the concept of Bayesian inference and model updating

which forms the basis of the research works presented in the dissertation. It includes a

detailed introduction to the mathematical formalism as well as a literature review of the

state-of-the-art developments in this field.
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2.1 Probabilistic model updating

Let us consider the problem involving a physical system whose virtual behaviour is modelled

by the function M(x,θ) whereby x represents the vector of fixed or unchangeable model

parameters, and θ represents the vector of controllable variables where those values can be

changed by the analyst. In general, this function can be linear or non-linear, and it can be

used for describing both static or dynamic problems [55].

There exists many mathematical models expressing the relationship between the quantity

of interest to be assessed D (e.g. the frequency response function of the system) and the

model prediction M(x,θ) [56]. A simple and special case of such is the additive error model

[57]:

D =M(x,θ) + ϵ (2.1)

whereby ϵ represents the error caused by measurement errors and/or model parameter uncer-

tainties. The uncertainty in the model parameters θ can be accounted for using a probability

density function. By doing so, one can construct a stochastic model (or a class of models

[37]) to obtain a probabilistic prediction on the possible values of the system output D, and

therefore its statistics, given the vector of uncertain model parameters θ. These are the so-

called forward problems which can be solved by means of analytical approaches [58, 59, 60]

or, in general, by Monte Carlo simulation approaches [61, 62, 63]. In the latter approach, the

statistics of D are obtained by first generating n realisations of θi (for i = 1, ..., n) parameters

from a known joint probability distribution π(θ). Then, for each realization of θi the model

is evaluated to obtain the corresponding realization of Di (i.e. Di =M(x,θi)). By repeating

this process for all n samples, a sample distribution of D is eventually obtained [64, 65].

There are 3 advantages to using the Monte Carlo approach: 1) the Monte Carlo technique

is applicable to any problem including non-smooth or non-linear cases (see e.g. [66, 67]); 2)

the convergence rate associated with Monte Carlo simulation is independent of the number

of random variables making it favourable for solving high-dimensional problem; and 3) the

computation performed by the Monte Carlo technique is easily parallelised [67]. Hence, the

forward problem implementation is quite simple once the joint distribution of the uncertain

variables is defined. However, the real challenge is the identification of the most appropriate

joint distribution π(θ) that is able to predict some available measurements D. This is called

the inverse problem [13]. There are 2 main statistical approaches to identify the parameters

of a statistical model given a set of observations: 1) the frequentist approach; and 2) the
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Bayesian model updating approach. The Maximum likelihood estimator is one of the most

often used estimator in the frequentist literature [68, 69, 70, 71] which involves finding the

parameter value(s) that maximize(s) the likelihood of observing the D given the parameters

θ). The Bayesian model updating approach, on the other hand, casts this inverse problem

as a Bayesian inference problem [37, 38, 72] which will be explained in the Section 2.2.

Since the focus of the dissertation is to make inferences on θ, the representation of the

model output M(x,θ) can be simplified as M(θ).

2.2 Bayesian inference

A key advantage of adopting Bayesian inference in model updating lies in its ability to

combine prior information of a quantity of interest with the observed data to yield a stochastic

characterisation of the quantity to be inferred. This yields the posterior distribution of the

parameter(s) of interest θ for a given choice of model M(θ) [37, 38, 73]:

P (θ|D,M) =
P (D|θ,M) · P (θ|M)

P (D|M)
(2.2)

whereby

• D represents the vector of the measurements (or observations),

• P (θ|M) represents the prior distribution,

• P (D|θ,M) represents the likelihood function of the parameters,

• P (D|M) represents the evidence,

• P (θ|D,M) represents the posterior distribution, usually the target distribution from

which sampling is done.

2.2.1 Prior distribution

The prior distribution, P (θ|M), is a reflection of one’s a priori knowledge or initial hypothesis

about the model’s parameter(s) to be inferred before any measurements are obtained. It

comes in various forms such as expert opinions, lab-scale experiment testing, and previous

uncertainty quantification of the parameter(s) of interest [74]. In theory, any type of prior

distribution can be used depending on the amount of information available [72].
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If what is known about the parameter(s) is/are its upper and lower bounds, then a Uni-

form distribution could be used as the prior distribution based on the principle of Maximum

Entropy [75, 76]. Though this may seem like the most general option, one needs to take note

on the selection of the bounds such that the true value(s) of the parameter(s) is/are enclosed

within those bounds. An approach would be to choose a significantly large bounds such that

the true value(s) is/are included with a high degree of certainty. It is also noteworthy that by

adopting the Uniform distribution as the prior, the posterior would simply be proportional

to the likelihood function. Some recent research works which adopted the Uniform prior in

its Bayesian model updating set-up include: estimating model parameters used to model a

bolted structure [77]; structural parameters of a composite structure [78]; crack parameters

of a beam structure [79]; stiffness and mass parameters of a DLR-AIRMOD structure [80];

and stiffness parameters of a cantilever beam [81].

On the other hand, if the mean and relative error of the parameter(s) is/are known,

then an informative Normal distribution may be used as the prior distribution. Some recent

research works which adopted the Normal distribution prior in its Bayesian model updating

set-up include: estimating the stiffness parameters within a shear model of a two storey

structure [82]; joint-stiffness parameters of the stochastic model for a joint contact surface

[83]; the logarithmic ground truth system parameters of a three degrees-of-freedom system

[84]; the cosmological parameters used in a supernovae analysis [85]; and state parameters

of the dynamical model used for real-time defect detection of high-speed train wheels [86].

For any Nd-dimensional problem, assuming independence between the parameters of

interest, θ, the prior distribution can be expressed as follows:

P (θ|M) = P (θ1, ...,θNd |M) =

Nd∏
d=1

P (θd|M) (2.3)

whereby θd is the dth dimension (or component) of the vector of input parameters θ.

2.2.2 Likelihood function

The likelihood function, P (D|θ,M), reflects the degree of error between the obtained mea-

surements, D, and the output obtained from the mathematical modelM(θ) used to describe

the physical system. For the case studies presented in the next chapter, it will be assumed

that only one model can be used to describe the observed D. In general, there could be

multiple models used to represent D and one can associate probabilities to these models to
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decide the most probable model (i.e. model selection - see [51, 87, 88, 13]). It needs to be

pointed out that the model output M(θ) considered in the chapter is purely deterministic.

For this reason, the likelihood function has to reflect such error between D and M(θ) for

each set of possible θ values and is derived from an assumed error (i.e. noise) model. As

such, the likelihood function is a function of θ and not of D. Assuming that the measure-

ments Di (for i = 1, ..., n) are independently, identically distributed, the likelihood function

takes on the following mathematical form:

P (D|θ,M) =
n∏

i=1

P (Di|θ,M) (2.4)

Due to the assumption that the error ϵ between the observation and the model follows a

zero mean Normal distribution with zero mean and a fixed variance, the common choice of

likelihood function would be the Normal distribution [89, 90, 91, 92, 93, 94, 95, 96, 97, 98,

99, 100]:

P (D|θ,M) =

(
n∏

i=1

1

σ ·
√
2 · π

)
· exp

[
−

n∑
i=1

(Di −M(θ))2

2 · σ2

]
(2.5)

As seen in Eq. (2.1), the expression (Di − M(θ)) simply yields error ϵi between the ith

measurement and the model output while σ2 is a hyper-parameter that can be interpreted as

the variance of ϵi. For cases whereby correlations are present between the measurements Di,

this information would be captured in the non-zero off-diagonal elements in the covariance

matrix Σ of the Normal likelihood function and the corresponding likelihood function can

be written as:

P (D|θ,M) =
1√

|Σ| · (2 · π)n
· exp

[
−1

2
· (D −M(θ))T ·Σ−1 · (D −M(θ))

]
(2.6)

There are 3 possible ways to decide on the value of σ: 1) through estimation via the

mean squared error of (Di−M(θ)); 2) by setting σ as an inferred parameter in the Bayesian

inference procedure. Such approach is used when there is insufficient knowledge on the

measurement error and has been adopted in [101, 3, 102, 103]; and 3) to set σ as a fixed

parameter based on prior calculations or knowledge. The strategy commonly adopted is to

set σ to correspond to the standard deviation of ϵ, especially if the latter follows a prescribed

distribution. For instance, a common choice for ϵ is a zero-mean Normal distribution with

standard deviation σϵ, then σ = σϵ. This strategy will be used in the case studies, presented

in the next chapter, to justify the choice of σ for the likelihood function.
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It is worth noting that different forms of likelihood functions have been adopted in litera-

ture (see e.g. [1, 104, 105, 106, 95, 107, 108]) to capture the degree of agreement between D

andM(θ), as summarised in Table 2.1. This choice is related to the assumptions made on the

underlying unknown data-generating distribution. For illustration purposes, the likelihood

functions listed in Table 2.1 are compared in Figure 2.1 for the case of a mono-dimensional

θ. Note that the plot for the lognormal likelihood function is not included in the Figure 2.1

as it is defined in the logarithmic space. Its shape profile, however, follows that of a Normal

distribution.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1
Normal distribution Likelihood function

Inverse error Likelihood function

Inverse squared error Likelihood function

Exponential distribution Likelihood function

Truncated Normal distribution Likelihood function

Figure 2.1: Comparison between the different likelihood functions for the case of a mono-
dimensional θ. For all the plots, σ is set as 1.

It is important to notice that it is more convenient to use the logarithmic of the likelihood

function, called log-likelihood defined as:

log(D|θ,M)) =
n∑

i=1

log(P (Di|θ,M)) (2.7)

This avoids numerical problems (e.g. arithmetic underflow) with the calculation of the

likelihood function. In fact, the calculation of the likelihood requires to compute the product

of the likelihood function for each measurementDi as shown in Eq. (2.4). Another advantage

of using the log-likelihood is that the addition operation is much faster to compute than the

product operation.
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Type Likelihood function, P (Di|θ,M) Reference(s)
Normal Dis-
tribution

1

σ ·
√
2 · π

· exp
[
−(Di −M(θ))2

2 · σ2

]
[89, 90, 91,
92, 93, 94, 95,
96, 97, 98, 99,
100]

Lognormal
Distribution

1

σ ·Di ·
√
2 · π

· exp

[
−(log(Di)− log(M(θ)))2

2 · σ2

]
[105, 106, 95,
107, 108]

Inverse Error

1− exp

[
−

√
1

(Di −M(θ))2

]
[1]

Inverse
Squared Er-
ror

1− exp

[
− 1

(Di −M(θ))2

]
[1]

Exponential
Distribution

1

2 · σ2
· exp

[
−(Di −M(θ))2

2 · σ2

]
[104]

Truncated
Normal Dis-
tribution √

2√
π · σ

· exp
[
−(Di −M(θ))2

2 · σ2

]
, for |Di −M(θ)| ≥ 0

[104]

Table 2.1: Examples of typical likelihood functions used for model updating.

The chapter assumes instances whereby the full likelihood function is known. However,

in general, situations can arise whereby the model used is so complex that it becomes com-

putationally expensive to adopt the full likelihood function [109]. In addition, there are

instances whereby the model output itself can be stochastic. This will be discussed in Chap-

ter 6 of the dissertation. Under such circumstances, one approach would be to simply adopt
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the use of Kernel densities to estimate the likelihood function using information from the

PDF of the stochastic model output. This method, however, would require a sufficiently

large number of model outputs to provide a good estimate of the PDF [109]. Alternatively,

one could also turn to the use of approximate likelihood functions and adopt the technique

of Approximate Bayesian Computation (ABC) [110, 111]. These approximate likelihood

functions capture the discrepancy between the D and the model outputs using stochastic

distance metrics such as: Euclidian [112]; Mahalanobis [113]; and Bhattacharyya distances

[114]. The implementation of such approximate likelihood functions is also presented in

Chapter 6 of the dissertation. For more details on ABC and the various stochastic distance

metrics, the readers may refer to the respective references.

2.2.3 Evidence term

The evidence term, P (D|M), serves as the normalising constant of the Bayesian formula

to ensure that the posterior (see Eq. (2.2)) integrates to 1. In Bayesian inference, the

probability of the observation P (D|M) is fixed and independent of θ. It is therefore a

numerical constant. Since the interest is in understanding the relationship between the

parameters θ and the observations D, the evidence can be neglected. As such, the resulting

proportionality relation for the posterior distribution up to a normalising constant is obtained

[102]:

P (θ|D,M) ∝ P (D|θ,M) · P (θ|M) (2.8)

Based on Eq. (2.8), the form of the posterior distribution is only known implicitly.

2.2.4 Posterior distribution

The posterior distribution, P (θ|D,M), represents the updated distribution of the model

parameters, θ, after obtaining some measurements. This reflects the updated knowledge of

the model parameters θ based on the new information obtained from the observations D.

There exists analytical solutions for the resulting posterior when the posterior and prior

are of the same distribution family. These are known as conjugate distributions [115, 116,

117, 118, 119], and the prior is defined as conjugated for the likelihood function. Typical

examples are binomial likelihood and a beta prior for discrete cases and normal likelihood and

prior for the continuous cases. However, generally the posterior and prior are non-conjugate
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distributions. Often, the posterior distribution might not necessarily conform with a well-

known parameterized distribution function and, for example, it might be multi-modal. In

these situations it would be computationally expensive even if the interest is limited to the

analytical evaluation of the mean and variance of the posterior distribution.

The generally applicable numerical technique for estimating distributions is the Monte

Carlo method [120]. In particular, Monte Carlo methods can be used to efficiently evaluate

the statistics of θ, rather than the full posterior distribution. Suppose one is able to generate

samples from P (θ|D,M), it is possible to estimate the moments of the posterior distribution

as follows [121]:

E[θ] ≈ 1

N
·

N∑
i=1

θi (2.9)

E[θ2] ≈ 1

N
·

N∑
i=1

θi
2 (2.10)

and the variance estimate of the posterior Var[θ] is then computed using:

Var[θ] = E[θ2]− (E[θ])2 (2.11)

whereby E[θ] and E[θ2] are obtained from Eq. (2.9) and Eq. (2.10) respectively. Marginals

and quantiles of the distribution can also be computed using the same realisations.

As seen in Eq. (2.8), the posterior is only known implicitly up to a normalisation constant.

To sample from the posterior in this case, the Markov Chain Monte Carlo (MCMC) [50] and

the Sequential Monte Carlo (SMC) [52] samplers are the 2 most implemented approaches,

and that the Transitional Markov Chain Monte Carlo (TMCMC) [51] sampler is a particular

variant of the SMC sampler. Details on the respective sampling techniques will be discussed

in Chapter 3.

The above-mentioned techniques can be used to construct a Markov chain on the model

parameters space θ whose steady state distribution is the posterior distribution of interest

P (θ|D,M) [122]. MCMC does not require the evaluation of the evidence, and Eq. (2.8) can

be used directly. MCMC only requires evaluation of the joint distribution of Eq. (2.8) up

to a proportionality factor and point-wise for any generated sampled of θ. Therefore, these

sampling algorithms return samples θi (for i = 1, . . . , N) where each sample can be assumed

to be drawn from P (θ|D,M).
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2.3 Applications of Bayesian model updating

The technique of Bayesian model updating has been adopted in many applications, for

instance: to quantify the discrete element methods prediction of the behavior of granular

materials [123]; to update the probabilistic model related to the boundary condition and

to estimate torsional stiffness parameter of a cantilever beam under uncertainty through

vibrational analysis [81]; in structural health monitoring by identifying the position and

severity of a crack in a suspension arm of a car [1]; to update the material dependent

constants of the Paris-Erdogan Law used to predict crack growth rate in a carbon-steel

Nuclear piping [124]; to perform on-line estimation of parameters of building energy models

based on information from in-situ sensor [125]; and to estimate the most probable leakage

scenarios for the purpose of leakage detection in water distribution networks [126].

Details on the Bayesian model updating set-up in these references are summarised in

Table 2.2. More recently, the technique of Bayesian model updating has also been developed

to include elements of structural reliability, giving rise to Bayesian Updating with Structural

Reliability (BUS) methods [127]. This, however, will not be discussed given that it involves

the use of structural reliability methods which is beyond the scope of the dissertation.

Application Prior Likelihood(s) Sampling technique
Estimate torsional stiffness parameter
for a cantilever beam [81]

Uniform Normal MCMC

Identify the material dependent con-
stants of the Paris-Erdogan Law for
crack growth rate prediction [124]

Normal Normal MCMC

Quantify the discrete element methods
prediction of granular materials’ be-
haviour [123]

Uniform Normal TMCMC

Leakage detection in water distribution
networks [126]

Uniform Normal TMCMC

On-line monitoring (crack detection) in
a suspension arm of a car [1]

Uniform Normal,
Inverse Er-
ror, Inverse
Squared Er-
ror

TMCMC

On-line parameter estimation of build-
ing energy models [125]

Normal Normal SMC

Table 2.2: Summary of Bayesian Model Updating set-up and sampling technique employed.
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Chapter 3

Review of the Monte Carlo

Techniques

Abstract

The chapter provides a review of the advanced Monte Carlo sampling methods in the context

of Bayesian model updating within engineering applications: 1) Markov Chain Monte Carlo;

2) Transitional Markov Chain Monte Carlo; and 3) Sequential Monte Carlo samplers. This

includes details on the respective algorithms, a literature review of their recent implementa-

tions within the engineering field, and an evaluation on the advantages and disadvantages of

the respective sampling techniques. To provide a comparison in the sampling performance

between each of these sampling techniques, the chapter presents 3 case studies of increasing

complexity. The first case study presents the parameter identification for a spring-mass sys-

tem under a static load. The second case study presents a 2-dimensional bi-modal posterior

distribution and the aim is to observe the performance of each of these sampling techniques

in sampling from such distribution. Finally, the last case study presents the stochastic iden-

tification of the model parameters of a complex and non-linear numerical model based on

experimental data. For each of the case studies, the numerical implementations and para-

metric settings of the respective samplers are provided.
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3.1 Markov Chain Monte Carlo

3.1.1 Conceptual introduction

The MCMC sampler is a sampling technique introduced by Metropolis [128] which encom-

passes 2 main aspects: Monte Carlo simulations and Markov chains. The concept of Markov

chains was devised by Andrey Markov in 1906 and it refers to a sequence of random samples

(or states) θi, for i = 1, 2, ..., N , whereby the value of θi+1 depends only on the previous

value θi [129]. This is also known as the Markov property [130]. A Markov chain initiates

from θ1 and from there, the transition between successive samples in the chain (i.e. from θi

to θi+1) would occur with probability T (θi → θi+1) known as the transition probability [131]

which is determined by a transition probability distribution function. Through this Markov

process, it is assumed that the distribution of the generated samples θi would converge to a

stationary distribution. However, the initial samples of the Markov chain are generally not

distributed according to the stationary distribution and thus, not representative of the sta-

tionary distribution. To address this, one can discard the initial Nburn−in number of samples.

This procedure is known as the burn-in and Nburn−in corresponds to the burn-in length of the

Markov chain [132]. In the context of Bayesian model updating, this stationary distribution

corresponds to P (θ|D,M).

There are many variants of MCMC techniques currently in existence and 2 of the most

commonly used variants are: 1) the Gibbs sampler [133, 134]; and 2) the Metropolis-Hastings

(MH) sampler [50]. A brief description to the Gibbs sampler is provided as follows: The

Gibbs sampler is a special instance of the MH sampler and is implemented to sample

from a Nd-dimensional multi-variate posterior P (θ|D,M). Instead of sampling directly

from P (θ|D,M), the sampling algorithm does so indirectly through the use of the con-

ditional probability distribution of a dth component of θ (i.e. θd) conditioned on the re-

maining Nd − 1 components of θ. The basic assumptions behind the Gibbs sampler are

that such conditional distributions for all θd are known and that they are relatively eas-

ier to sample from [135]. Let the conditional probability distribution for θd be denoted as

P (θd|{θ1, . . . ,θd−1,θd+1, . . . ,θNd},D,M). Through such approach, the sampling algorithm

is able to generate samples from P (θ|D,M) in a component-wise manner whereby at a given

sampling iteration, each θd is being sampled one at a time in a sequential manner through

its respective conditional distribution [135]. To provide an understanding of the sampling

procedure, the algorithmic description of the Gibbs sampler in sampling N samples from

a general Nd-dimensional posterior is presented in Algorithm 1. It needs to be noted that
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Algorithm 1 describes the systematic scan Gibbs sampler. In practice, the random scan

Gibbs sampler is more commonly implemented.

Algorithm 1 Gibbs sampling algorithm (Nd-dimensional case)

1: procedure (Generate samples from a general Nd-dimensional posterior.)
2: Draw initial sample set: θ1 = (θ11, ..., θ

d
1) ∼ P (θ|M) ▷ Initialise chain

3: for i = 1 : N − 1 do ▷ Generate Markov chain samples
4: for d = 1 : Nd do ▷ Sample the dth component
5: Draw sample: θdi+1 ∼ P (θd|{θ1i+1, . . . , θ

d−1
i+1 , θ

d+1
i , . . . , θNd

i },D,M)
6: end for
7: end for
8: end procedure

A problem with the Gibbs sampler, however, is in the selection of an appropriate condi-

tional probability distribution for each θd [136]. In general, this may not be trivial because

P (θ|D,M) may be functionally complex. Under such condition, it becomes difficult to de-

rive the conditional distribution for each component θd. This limits the implementation of

the sampling algorithm, making the Gibbs sampler less general. Hence, in this regard, the

MH sampler variant of MCMC will be discussed in detail and implemented to address the

problems presented in the chapter. One key strength of the MH algorithm which motivated

its implementation, is in its ability to sample from any probability distribution as long as the

function that is proportional to its actual normalised density (i.e. P (θ|D,M) in the form of

Eq. (2.8)) is known and that the values of that function can be computed [50].

Without the loss of generality, this section will first elaborate the steps of the MH al-

gorithm for sampling from a one-dimensional posterior before generalising to the case of

sampling from a multi-dimensional posterior. The MH sampler is a random-walk algorithm

that provides a selection criteria to which the samples are chosen during the sampling pro-

cedure. This is done through the use of a proposal distribution q(θ∗|θi) to generate the next

candidate sample θ∗ of the chain from a known and relatively simpler distribution from the

current sample θi. It should be noted that the choice of q(θ∗|θi) is such that its density

function is strictly positive across the entire sample space for which the P (θ|D,M) is de-

fined. A typical choice of q(θ∗|θi) is the Normal distribution [137], although it has also been

argued in [138] that the selection of an optimal q(θ∗|θi) is often made on an ad-hoc basis.

From there, the generated samples are accepted or rejected based on a given acceptance rule.

Figure 3.1 illustrates graphically the principle of the MH sampler: From the current sample

θi, a candidate sample of the Markov chain, θ∗, is sampled from the proposal distribution
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q(θ∗|θi). Next, the candidate sample θ∗ is accepted with probability α defined as:

α = min

[
1,
P (θ∗|D,M)

P (θi|D,M)
· q(θi|θ

∗)

q(θ∗|θi)

]
(3.1)

whereby P (θ∗|D,M) represents the posterior value evaluated at the candidate sample θ∗, and

P (θi|D,M) represents the posterior value evaluated at θi. q(θi|θ∗) represents the probability
of sampling θi given that the current sample is θ∗, and q(θ∗|θi) represents the probability of

sampling θ∗ given that the current sample is θi as determined by q(θ∗|θi). Substituting in

the posterior distribution in Eq. (3.1) with its definition from Eq. (2.2), one obtains:

α = min

[
1,
P (D|θ∗,M) · P (θ∗|M)/P (D|M)

P (D|θi,M) · P (θi|M)/P (D|M)
· q(θi|θ

∗)

q(θ∗|θi)

]
(3.2)

From Eq. (3.2), it can be seen that the normalisation constant P (D|M) is cancelled out.

This further justifies why there is no need to evaluate P (D|M) and that the computation

of Eq. (3.1) can be done using an un-normalised posterior (see Eq. (2.2)). This allows

the MH algorithm to perform sampling on such distributions. For the case whereby q(θ∗|θi)
is a symmetrical function (i.e. Normal distribution) that is centered about θi such that

q(θ∗|θi) = q(θi|θ∗), the acceptance probability α in Eq. (3.1) becomes:

α = min

[
1,
P (θ∗|D,M)

P (θi|D,M)

]
. (3.3)

What Eq. (3.3) implies is that the candidate sample θ∗ is always accepted if the samples

are moving towards the region of high probability density (i.e. P (θ∗|D,M)
P (θi|D,M)

> 1), otherwise it

is accepted with probability α. In practice, a random number r is sampled from a Uniform

distribution ranging between 0 and 1 (i.e. r ∼ U [0, 1)). If α ≥ r, the proposed sample θ∗ is

accepted (i.e. θi+1 = θ∗). Otherwise, θ∗ is rejected (i.e. θi+1 = θi).

The characteristics of Markov chains are, thus, ideal to generate samples from the un-

known posterior distribution. As a result of the use of Markov chains, it makes the MCMC

algorithm inherently serial in its computations. This however does not imply that the com-

putations cannot be parallelised. In fact, there have been developments made in recent

years to achieve this as seen in the works by Wilkinson (2005) [139] and Brockwell (2006)

[140], though efforts have proved to be non-trivial. Besides the MH algorithm, there are

algorithms to other variants of the MCMC methods. These include: 1) Slice sampling [141];

2) Hamiltonian Monte Carlo methods [49, 142]; 3) Metropolis-adjusted Langevin algorithm

[48, 143, 144, 142]; 4) Multiple-try Metropolis [145, 146]; 5) Reversible-jump MCMC [147];
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Figure 3.1: Metropolis-Hasting sampling - the proposal distribution q(θ∗|θi) (red dotted
curve); posterior P (θ|D,M) (black solid curve); current sample θi; and proposed sample θ∗.

and 6) Pseudo-marginal Metropolis-Hastings algorithm [148]. Details on each of these algo-

rithms can be found in their respective references.

In the case studies, the Normal distribution will be used as the proposal distribution

with mean defined by the value of the current sample θi and standard deviation σp that

serves as the tuning parameter of the MH algorithm. The choice of the tuning parameter

is an important consideration when implementing the algorithm as this will have an impact

on the efficiency of the MCMC sampling process. To illustrate the effects of the tuning

parameter on the sampling process, the MH sampler is implemented to generate N = 1000

samples from a posterior defined by the Normal distribution with mean value of 170 and a

standard deviation value of 5. For this example, 3 different values of σp for the proposal

distribution is used: 100.5; 23.5; and 1.5. The resulting trace plots of the generated samples

given the respective values of σp are presented in Figure 3.2. To measure the degree of serial

correlation between the samples which are drawn by the MH sampler, the autocorrelation

function plot is generated for each value of σp and presented in Figure 3.2 [149]. In generating

the autocorrelation function plots, the sample set is divided across 40 equal time lags from
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which the autocorrelation coefficient between each time lag is computed.
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Figure 3.2: The corresponding trace plots and autocorrelation plots obtained with N = 1000
samples using: 1) σp = 100.5 yielding an acceptance rate of 0.069; 2) σp = 23.5 yielding an
acceptance rate of 0.234; and 3) σp = 1.5 yielding an acceptance rate of 0.896.

From Figure 3.2, the following observations are made: In the case of σp = 1.5, it leads to

a relatively smaller jump-size between a sample and the next successive sample of the chain.

This gives rise to a relatively high acceptance rate of 0.896 given that next successive sample

of the chain is close to the current sample of the chain that the computed value of α (i.e. see

Eq. (3.1)) is close to 1. As a result, there is a low probability there are repetitions between

successive samples of the chain as indicated by the trace plot. However, such choice of σp also

gives rise to a high serial correlation between successive samples of the chain as indicated in

the corresponding autocorrelation function plot. From the autocorrelation function plot, it

can be seen that not only is the autocorrelation between the samples of the chain relatively

higher at any given time lag, but the autocorrelation coefficient decreases and converges

close to 0 at a slow rate, implying that more sample draws are required ensure the mixing

of the samples of the Markov chain.

On the other hand, in the case of σp = 100.5, it leads to a relatively larger jump-size

between a sample and the next successive sample of the chain. When this happens, it gives

rise to a relatively low acceptance rate of 0.069 (i.e. close to 0) given that in such case,

many of the proposed samples may end up lying outside the range of the posterior which
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leads the computed value of α being close to 0. This leads to a high rejection rate of the

proposed samples and a higher probability of repeated samples along the Markov chain as

indicated by the trace plot. While the corresponding autocorrelation function plot indicates

a relatively quicker rate of convergence of the autocorrelation coefficient of the samples to

0, this is still not favourable as such low acceptance rate reflects the poor exploration of the

sample space defined by the posterior which requires more samples to be drawn to ensure

that the distribution of the samples converges to the posterior.

Under specific condition, the optimal value of σp is the one which produces an accep-

tance rate around 0.234 [150]. Such acceptance rate is achieved in the case of σp = 23.5

in this illustrative example. From the trace plot, it can be observed that the samples of

the Markov chain have converged towards a stationary distribution. In addition, the cor-

responding autocorrelation function plot indicated that the the number of time lags taken

for the autocorrelation coefficient to reach 0 is the shortest. This is favourable given that it

indicates that less sample draws are required for the serial correlation between the samples of

the Markov chain to converge to (or close to) 0 and therefore, exhibiting a relatively higher

mixing rate [149].

To further justify the optimality of having an acceptance rate close to 0.234, the Monte

Carlo standard error σSE is used as the statistical performance metric and is computed from

the MH samples given each choice of the tuning parameter σp following [151]:

σSE =
σθ√
N

(3.4)

Here, σθ is the Monte Carlo standard deviation which is estimated using the overlapping

batch means estimator [151, 152]:

σθ ≈
Nbn

(N − bn)(N − bn + 1)
·
N−bn+1∑

y=1

(
θ̄y − E[θ]

)
(3.5)

where N is the sample size obtained from the posterior, nb is the batch size, θ̄y = 1
nb

·∑bn−1
g=0 θy+g is the batch mean of the given yth sample batch, and E[θ] is the sample mean

computed using Eq. (2.9). In this illustrative example, the batch size is set at nb = 100 and

the resulting values of σSE for each given choice of σp are presented in Table 3.1. From the

table, it can be seen that given a finite sample size of N = 1000, the Monte Carlo standard

error of the estimates is the lowest in the case of σp = 23.5 which corresponds an acceptance

rate of 0.234. Such result provides a motivation to use the acceptance rate value of 0.234 as a
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reference for the implementation of the MH sampler in the subsequent case studies presented

later in the chapter.

σp 100.5 23.5 1.5
Acceptance rate 0.069 0.234 0.896

σSE 0.643 0.273 1.727

Table 3.1: Numerical results of the Monte Carlo standard error σSE obtained for each given
choice of tuning parameter σp.

It needs to be noted, however, that the acceptance ratio is a trade-off between making

too many small accepted steps and making too many large proposals that get rejected [153].

In fact, for any value of acceptance rate between 0.15 to 0.50, the efficiency of the algorithm

is still at least 80 % [149]. Alternatively, to avoid the need to consider the acceptance rate,

one could turn to rejection-free and tune-free MCMC algorithms to which examples include:

1) Gibbs sampling [154]; 2) Slice sampling [141]; and 3) the Adaptive Metropolis algorithm

[155].

Another important aspect in the sampling procedure by the MH sampler is the need

to consider the burn-in length of the chain. This can be checked and inspected visually

through constructing a trace plot and identifying the sample number at which the plot

begins to converge [132]. As an illustration, the same set-up from the earlier example is used

to generate Figure 3.2. From the posterior, N = 1000 samples will be generated via MH

sampling with a burn-in length of 0. The starting value of the chain is randomly sampled

from a Uniform distribution with bounds between 0 and 400. This practice of randomly

selecting θ1 from the prior will be adopted in all the problems presented in this tutorial. The

resulting trace plot and histogram are provided in Figure 3.3. From the trace plot in Figure

3.3(a), it can be observed that the plot starts to converge after 15 samples are obtained

indicating that Nburn−in = 15. Figure 3.4 illustrates the resulting trace plot and histogram

profile after accounting for burn-in.

3.1.2 Algorithmic description

The MH algorithm to generate samples from a one-dimensional posterior is summarised as

follows:

1. Set i = 1; sample θi ∼ P (θ);
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Figure 3.3: Example of the resulting trace plot (a) and histogram (b) obtained from MH
sampling of N = 1000 samples with Nburn−in = 0.
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Figure 3.4: The resulting trace plot (a) and histogram (b) obtained from MH sampling of
N = 1000 samples with Nburn−in = 15.

2. Generate candidate sample θ∗ ∼ q(θ∗|θi);

3. Evaluate the posterior distribution at the proposed sample (i.e. P (θ∗|D,M));

4. Compute the acceptance ratio, α, from Eq. (3.3).

5. Sample r ∼ U(0, 1]. If α ≥ r, set θi+1=θ
∗. Otherwise, set θi+1=θi;

6. Set i = i + 1 and repeat steps (2) to (6) until termination criteria is met (i.e. total

sample size of chain obtained, or stability of the distribution is achieved).
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The MH sampler can be generalised to sample from a multi-dimensional posterior. There

are 2 ways in which this can be done: 1) block-wise; and 2) component-wise. In the block-

wise approach, the proposal distribution q(θ∗|θi) is a multi-variate function with the same

dimensionality as the posterior. Candidate samples are generated from across multiple di-

mensions at the same time [156, 157]. In essence, variables across all dimensions are updated

simultaneously rather than sequentially as per the case in component-wise approach. An ex-

ample of a sampling method which utilises the block-wise sampling approach would be the

Metropolis within Gibbs algorithm [158]. A key problem with this approach is that the

acceptance rate drops with the increasing dimensionality of the problem. This is because as

the dimension of the posterior increases, it becomes more difficult to determine a suitable

q(θ∗|θi) due to the increased complexity of the entire sample space, especially if the pos-

terior is highly-anisotropic across dimensions. In the component-wise approach, sampling

is performed independently for each dimension and variables are updated one dimension at

a time in a serial manner [159, 160, 161]. The proposal distribution can be uni-variate or

multi-variate, the latter taking the form q(θ∗|θi) =
∏Nd

d=1 q(θ
d∗|θdi ) whereby d denotes the di-

mension (or component) number while Nd denotes the total dimension of the θ. It should be

pointed out that the workings of the Gibbs sampler is analogous to the component-wise MH

sampling [154]. In the chapter, the component-wise approach is adopted to sample from a

multi-variate posterior while a multi-variate Normal distribution would be used as the choice

for q(θ∗|θi) with covariance matrix Σp. For such case, the covariance matrix Σp serves as

the tuning parameter of the sampler and takes the form of a diagonal square matrix whose

non-diagonal matrix elements are 0.

To provide a simple illustration, an explanation is first provided for the case of sampling

from a 2-dimensional posterior. For each iteration i, the updating procedure is such that

the first component θ1 is updated first whilst keeping the second component θ2 constant

before the same procedure is repeated for θ2 whilst keeping the already updated component

θ1 constant. In addition, for a given ith sample, a convention is used whereby θ1
i = (θ1i , θ

2
i )

denotes the first state vector in the current iteration whilst θ1∗ = (θ1∗, θ2i ) is the first pro-

posed state vector. Similarly, θ2
i = (θ1i+1, θ

2
i ) is the second state vector in the current it-

eration whilst θ2∗ = (θ1i+1, θ
2∗) is the second proposed state vector. Thus, extending this

convention to a general Nd-dimensional case, the notation θd
i (for d = 1, ..., Nd) is used to

represent the dth state vector of the samples in the current iteration i and θd∗ to repre-

sent the updated dth proposed state vector of the samples in the current iteration i. Here,

θd
i = (θ1i+1, ..., θ

d−1
i+1 , θ

d
i , θ

d+1
i , ..., θNd

i ) while θd∗ = (θ1i+1, ..., θ
d−1
i+1 , θ

d∗, θd+1
i , ..., θNd

i ). Using this
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generalised convention, the algorithmic description of the MH sampler in sampling from a

general Nd-dimensional posterior is presented in Algorithm 2.

Algorithm 2 Component-wise MH algorithm (Nd-dimensional case)

1: procedure (Generate samples from a general d-dimensional posterior.)
2: Draw initial sample set: θ1 = (θ11, ..., θ

d
1) ∼ P (θ|M) ▷ Initialise chain

3: for i = 1 : N − 1 do ▷ Generate Markov chain samples
4: for d = 1 : Nd do ▷ Update dth component
5: Draw candidate sample: θd∗ ∼ q(θd∗|θdi )
6: αd = min

[
1, P (θd∗|D,M)

P (θd
i |D,M)

]
7: Sample: rd ∼ U(0,1]
8: if αd ≥ rd then
9: θdi+1=θ

d∗

10: else
11: θdi+1=θ

d
i

12: end if
13: end for
14: end for
15: end procedure

3.1.3 Applications

Currently, the MH sampler has already been implemented in numerous applications to which

examples include: 1) predicting precipitation behaviours in Nickel-Titanium alloys [162]; 2)

analysing an electrochemical impedance spectra and estimating the conductivity of a Lithium

ion within a solid-state oxide electrolyte [163]; 3) identification of structural damage based

on time domain data [164]; 4) to sample classical thermal states from one-dimensional Bose-

Einstein quasi-condensates under the classical fields approximation [165]; 5) updating the

finite element model of a concrete structure [166]; 6) quantifying the uncertainty associated

with the joint model parameters of a stochastic generic joint model [83]; 7) performing

joint input-state-parameter estimation for wave loading [84]; 8) performing Bayesian system

identification of dynamical systems [167]; and 9) perform Bayesian model identification of

higher-order frequency response functions of structures [77].
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3.2 Transitional Markov Chain Monte Carlo

3.2.1 Conceptual introduction

The TMCMC sampler is based on the adaptive Metropolis-Hastings MCMC technique [168]

whereby samples are not obtained directly from a complex posterior distribution, but rather

from a series of relatively simpler “transitional” distributions. The key difference in the

sampling procedure between the MCMC and the TMCMC technique is that the MCMC

samples are obtained through one or few, successive (very) long Markov chains of length

N , whereas TMCMC samples are obtained through N independent Markov chains. This

method of obtaining samples is useful especially in cases when the shape of the posterior

distribution is complex such as having multiple sharp peaks. The transitional distributions

are defined as such [51]:

P j ∝ P (D|θ,M)βj · P (θ|M) (3.6)

Here, j denotes the transition step number taking values between 0 to jend, where jend

denotes the last iteration number. βj is the tempering parameter which takes values such

that β0 = 0 < β1 < ... < βjend−1 < βjend
= 1. This allows for the transitional distribution to

transit from the prior to the posterior distribution (i.e. P 0 = P (θ|M) to P jend = P (θ|D,M)).

As an illustrative example, the TMCMC sampler is implemented to sample from a one-

dimensional posterior defined by a Uniform distribution prior with bounds −4 to 4, and a

likelihood function in the form of a Normal distribution with mean 0 and standard deviation

0.105. Figure 3.5 depicts the resulting series of analytical plots which show the evolution of

a one-dimensional transitional distribution from the Uniform prior the final posterior.

j 0 1 2 3 4
βj 0 0.0084 0.0700 0.5459 1

Table 3.2: Numerical values of βj of the transitional distributions for the corresponding
iteration j shown in Figure 3.5.

To provide an understanding of the workings behind the TMCMC sampler, an explana-

tion to its procedure in sampling from a one-dimensional posterior will first be provided. In

practice, at transition step j = 0 (i.e. βj = 0), N samples are generated from the prior via

direct random sampling using the Monte Carlo method. For transition steps j ≥ 1 (i.e. while

βj < 1), the tempering parameter βj is computed. From there, the transitional distribution
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Figure 3.5: Evolution of the transition distribution from an initial Uniform prior distribution
to the final posterior distribution across the iterations j.

P j is defined using Eq. (3.6) and N samples are then obtained from P j using MH sampler

through the following procedure: First, a statistical weight function ŵj
i is determined to de-

scribe the statistical (or importance) weight associated with each sample θi (for i = 1, . . . , N)

in a given iteration j. This statistical weight function ŵj
i is mathematically defined in Eq.

(3.7) as:

ŵj
i =

P (D|θi,M)∆βj∑N
i=1 P (D|θi,M)∆βj

(3.7)

When this is done, Nc Markov chains are initialised, each having the individual current

samples θi as the seed sample. As such, Nc corresponds to the number of samples N . With

probability ŵj
k, the k

th Markov chain (for k = 1, . . . , N) is updated where a candidate sample

θ∗i is generated from a Normal proposal distribution q(θ∗i |θk) with mean θk and covariance

matrix Σj [51]. Note that k is a dummy index denoting the index of the Markov chain

selected via the weighted random sampling procedure and this is different from the index i

which denotes the sample index.

The covariance matrix also serves as the tuning parameter of the MH sampler and is

mathematically defined in Eq. (3.8):
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Σj = γ2
N∑
i=1

ŵj
i ·
[
{θi − θ̄j}T × {θi − θ̄j}

]
(3.8)

whereby

θ̄j =
N∑
i=1

θi · ŵ
j
i (3.9)

Here, θ̄j denotes the mean value of the sample set θi in the current iteration j, and γ is the

scaling parameter of Σj to which a recommended value is 0.2 [51]. From there, θ∗i is accepted

or rejected using Algorithm 2. In the case where θ∗i is accepted, θ∗i is set as the current and

terminal sample of the kth Markov chain. Otherwise, θk remains as the current and terminal

sample of the kth Markov chain. This procedure of updating the samples is repeated N times.

When done, the algorithm proceeds to recompute βj+1 and the the transitional distribution

P j+1 for iteration j = j + 1. This entire process is repeated until when βj = 1.

As seen in the description of the sampling procedure implemented by the TMCMC sam-

pler, an important aspect is the determination of βj and the transition step size ∆βj (i.e.

∆βj = βj − βj−1) at each transitional step j. It has to be such that the transition from

P (D|θ,M)βj−1 to P (D|θ,M)βj is smooth and gradual. The magnitude of ∆βj would have a

direct impact on the acceptance rates of candidate samples generated via the MH sampling

step. To demonstrate this, the same set-up used for Figure 3.5 is used. The value of ∆βj is

varied for which βj−1 is fixed at 0. From which, the value of βj is varied and the correspond-

ing value of acceptance rate will be obtained and shown in Figure 3.6. From Figure 3.6, it is

observed that the value of acceptance rate drops from 1 when βj = 0 to approximately 0.18

when βj = 1. This is due to the large difference in the shape function between the prior and

the posterior when βj is large. Therefore, the majority of the candidate samples generated

from the Uniform prior are rejected via the MH sampling procedure. On the other hand,

when βj = 0, the acceptance rate is 1 given that the samples are generated from the same

distribution, leading to a 100 % acceptance rate. This illustrates the need to determine an

optimal ∆βj.

To identify the optimal value of ∆βj, Ching and Chen (2007) suggested to maintain the

coefficient of variation (COV) of the value set P (D|θi,M)∆βj as close to 100 % as possible

[51]. For a one-dimensional case, the COV of P (D|θi,M)∆βj is defined as:

COV(βj) =
σ(P (D|θi,M)∆βj)

µ(P (D|θi,M)∆βj)
(3.10)
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Figure 3.6: Plot of acceptance rates against the tempering parameter βj based on the same
set-up used for Figure 3.5.

whereby σ(P (D|θi,M)∆βj) and µ(P (D|θi,M)∆βj) are the standard deviation and mean of

the value set P (D|θi,M)∆βj , for i = 1, ..., N . Here, COV(βj) is a function of βj for a given

known value of βj−1. For a multi-dimensional case, σ(P (D|θi,M)∆βj) and µ(P (D|θi,M)∆βj)

are the standard deviation and mean of the value set P (D|θi,M)∆βj respectively whereby

P (D|θi,M) is simply the likelihood evaluated at sample set θi = (θ1i , θ
2
i , ..., θ

Nd−1
i , θNd

i ). After

obtaining COV(βj), βj can then be determined analytically from βj−1 using the argument

of the minimum of the absolute difference between COV(βj) and 1 (i.e. 100 %) as shown in

Eq. (3.11) [51, 169]:

βj = argminβj
{|COV(βj)− 1|} (3.11)

Once βj is calculated, the transition distribution P j can then be determined using Eq. (3.6).

One notable advantage of using transitional distributions, with controlled transition step

size, is that it helps to address the issue of degeneracy. Degeneracy occurs when only a

few out of a total N samples have significant statistical weights associated with them. As

an illustration, the same set-up which was used to produce Figure 3.5 is used. In this

example, 2 values of transition step size from the Uniform prior are used: ∆βj = 8.35×10−3

(optimised step size); and ∆βj = 0.204 (larger step size). For each value of ∆βj, the
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distribution of the normalised weight across 1000 samples is obtained and presented in the

form of histograms which are presented in Figure 3.7. With ∆βj = 8.35 × 10−3, Figure

3.7(a) shows a general uniform distribution of normalised weight values whereby every value

has more or less the same number of samples having that associated weight. This is with

exception to smaller weight values (near 0) where there is significantly higher counts of

samples, approximately 198 out of 1000 (i.e. 19.8 % of samples), having such weight values.

The reason for this is due these samples now lying in the region of lower probability defined

by the transitional distribution. On the other hand, with ∆βj = 0.204, Figure 3.7(b) shows

that the majority of the samples have very small weight values (near 0). In fact, from the

histogram, approximately 828 out of 1000 samples (i.e. 82.8 % of samples) have such small

values of associated weights. This illustrates degeneracy.

(a) (b)

Figure 3.7: Normalised weight distribution when: (a) ∆βj = 8.35 × 10−3; and (b) ∆βj =
0.204. The transition step ∆βj is with respect to the Uniform prior in Figure 3.5.

Based on the description above, it can be seen that the TMCMC sampling technique is

able to generate N samples simultaneously per iteration, whereas the MCMC sampling tech-

nique could only compute one new proposal sample per iteration. In addition, the TMCMC

sampling technique ensures that the samples in the jth transition step are approximately

distributed as per P j, thereby making the need for burn-in unnecessary [51, 169].

3.2.2 Algorithmic description

The TMCMC sampler algorithm used to generate N samples from a one-dimensional pos-

terior is summarised as follows [51]:
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1. Set j = 0 and βj = 0. Sample θi ∼ P (θ|M), for i = 1, ...N ;

2. Set j = j + 1;

3. Compute βj using Eq. (3.11);

4. While βj < 1, compute P j using Eq. (3.6);

5. Compute ŵj
i using Eq. (3.7);

6. Generate N Markov chains each initiating from θi;

7. With probability ŵj
k, update the kth Markov chain by first generating a candidate

sample θ∗i ∼ q(θ∗i |θk);

8. Compute the acceptance probability α using Eq. (3.3) and accept θ∗i with probability

α (see Algorithm 2);

9. If accepted, set θ∗i as the current and terminal sample of the kth Markov chain. Oth-

erwise, set θk as the current and terminal sample of the kth Markov chain;

10. Repeat Steps (7) to (9) N times;

11. Repeat Steps (2) to (10) until βj = 1.

To sample from a multi-variate posterior, a component-wise approach is adopted in the

chapter for the TMCMC sampler [170]. Such approach is chosen due to the simplicity in its

implementation. The algorithmic description of the TMCMC sampler in sampling from a

general Nd-dimensional posterior is presented in Algorithm 3.

3.2.3 Applications

Currently, the TMCMC sampler has already been implemented in numerous applications

to which examples include: 1) characterising the statistical uncertainties of the spatial vari-

ability parameters which are based upon the Cone Penetration Test [171]; 2) studying the

multi-modality feature of the Bouc–Wen–Baber–Noori model of hysteresis [172]; 3) perform-

ing model updating and analyse the uncertainty associated with the creep behavior of soft

soil [173]; 4) performing reliability-based optimization in linear structure designs subjected

to random excitations [174]; 5) analysing the geometrical uncertainty of a metal frame [175];
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Algorithm 3 Component-wise TMCMC algorithm (Nd-dimensional case)

1: procedure (Generate N samples from a general Nd-dimensional posterior)
2: Set j = 0 and βj = 0 ▷ Initialise
3: for i = 1 : N do
4: Draw initial sample set: θi ∼ P (θ|M)
5: end for
6: while βj < 1 do ▷ Main sampling loop
7: Set j = j + 1
8: Compute ∆βj using Eq. (3.11)
9: Compute P j using Eq. (3.6)
10: for i = 1 : N do ▷ Updating step
11: Select the kth Markov chain ∼ ŵj

k

12: for d = 1 : Nd do ▷ Update dth component
13: Draw candidate sample: θd∗i ∼ q(θ∗i |θdk)
14: Accept/Reject θd∗i using Algorithm 2 with 1 iteration
15: end for
16: end for
17: end while
18: end procedure

6) providing a probabilistic hierarchical Bayesian framework for time-domain model updat-

ing [176]; 7) performing Bayesian inference for the identification of local structural properties

of layered composites [78]; 8) performing cracks identification on beams through Bayesian

approach [79]; 9) performing model parameter updating for piezoelectric energy harvesters

[95]; and 10) performing inverse uncertainty quantification with limited experimental data

[74].

3.3 Sequential Monte Carlo

3.3.1 Conceptual introduction

The Sequential Monte Carlo (SMC) sampler is a sampling approach that is based on the

SMC methods (or Particle filter) and developed to sample from a sequence of probability

distributions in an iterative (i.e. sequential) manner [52]. In the context of Bayesian model

updating, the SMC sampler becomes favourable for target tracking [52, 177, 178, 179, 180]

which makes it practical and efficient in the following 3 cases:

1) when a large data set is available and it may become computationally expensive to perform
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the Bayesian model updating procedure with the entire data set, thereby bringing the

need to divide the data set into smaller batches [181];

2) when data is being collected at different time intervals (i.e. on-line learning) and it

becomes inefficient to use sampling techniques such as the MCMC samplers which requires

a complete data set to be available in order to sample from the posterior [52, 182]; and

3) when the posterior is functionally complex (i.e. multi-modal or highly-skewed) and it

becomes difficult to sample from such posteriors directly [183].

The choice of probability distribution sequence is an important aspect for consideration when

implementing the SMC sampler to address each case.

Given n sequence of data sets such that D1:n = {D1, . . . ,Dn}, there are 2 types of

probability distribution sequence P j that can be used. The first type takes the following

form [181]:

P j ∝ P (θ|D1:j,M) · P (θ|M) (3.12)

whereby

P (θ|D1:j,M) =

j∏
s=1

P (θ|Ds,M) (3.13)

and j ≤ n is the sampling iteration number. This set-up would be applicable in addressing

cases (1) and (2) under the assumption that each sequence of data set is independent from

one another [82]. In addition, such method of constructing P j would be optimal when there

is a need to know the posterior distribution and the estimate of θ at any given iteration j.

In fact, the sequential Bayesian inference framework for the on-line inference on θ can be

described by Eq. (3.12) [181]. The second type takes the following form [52, 141, 184]:

P j = P (θ|D1:n,M)βj · P (θ|M)1−βj (3.14)

where β0 = 0 < β1 < ... < βjend−1 < βjend
= 1, and jend denotes the last iteration number.

Given that the posterior P (θ|D,M) is defined as per Eq. (2.8), the expression in Eq. (3.14)

can be simplified to the form as shown in Eq. (3.6). This set-up would be applicable in

addressing cases (1) and (3). In fact, such set-up is adopted by the TMCMC sampler as

presented in Section 3.2. Hence, the TMCMC sampler can be seen as a particular variant of

the general SMC samplers [169] despite the TMCMC sampler being developed independently
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from the SMC sampler and that the former is based on a MCMC technique [51]. For both

probability distribution sequences defined in Eq. (3.12) and Eq. (3.14), P 0 is simply the

prior P (θ|M).

Another key aspect in the SMC sampling procedure is the assignment and updating of

weights on the individual sample. This is done in an iterative manner through Importance

sampling [185, 186, 135]. In sampling from the first sequence of distribution at iteration

j = 1 (i.e. P 1), the un-normalised weight on each sample θi is computed following [52]:

w1
i =

P 1(θi)

P 0(θi)
(3.15)

For subsequent iterations j ≥ 2, the un-normalised weight on each sample θi is updated

recursively following [52]:

wj
i = wj−1

i · P j(θ∗
i )

P j−1(θi)
· qL(θi|θ∗

i )

qK(θ∗
i |θi)

(3.16)

where qK(θ
∗
i |θi) denotes the Forward Markov kernel, and qL(θi|θ∗

i ) denotes the Backward

Markov kernel.

The Forward Markov kernel qK(θ
∗
i |θi) serves to move the samples obtained from P j−1 and

update them according to the current distribution P j. This is done through the following

choice of move kernels which include [52]: 1) Independent proposals in the form of standard

distributions such as a Normal distribution; 2) Local random-walk moves; 3) MCMC moves;

and 4) Approximate Gibbs moves. For the dissertation, the MCMC move in the form of

the MH algorithm is chosen as the Forward Markov kernel. The Backward Markov kernel

qL(θi|θ∗
i ) serves to approximate the distribution of P j−1 based on the samples from P j.

Optimally, the choice of qL(θi|θ∗
i ) is one that minimises the variance of the sample estimates

on θ at any given iteration j and this is achieved when the kernel takes the form [52]:

qoptL (θi|θ∗
i ) =

P j−1(θi) · qK(θ∗
i |θi)

P j(θ∗
i )

(3.17)

However, it is generally difficult to implement qoptL (θi|θ∗
i ) in practice given that it requires the

marginal distributions of P j−1(θi) and P
j(θ∗

i ) to be known exactly and expressed in closed-

form. Such exact knowledge on the marginal distributions is never available in general [52].

For this reason, a sub-optimal implementation of qoptL (θi|θ∗
i ) is used in the dissertation. Given

that the MH move kernel is chosen as the choice of qK(θ
∗
i |θi) in the implementation of the
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SMC sampler in the dissertation, an approximated qL(θi|θ∗
i ) is used which takes the form

[52]:

qL(θi|θ∗
i ) =

P j(θi) · qK(θ∗
i |θi)

P j(θ∗
i )

(3.18)

Substituting Eq. (3.18) into Eq. (3.16), the un-normalised weight wj
i at iteration j ≥ 2 can

therefore be simplified as:

wj
i = wj−1

i · P j(θi)

P j−1(θi)
(3.19)

Note that the above settings describes a specific implementation of the SMC sampler which

will be used in the dissertation and is not the general implementation of the sampler. To

emphasise this, the SMC sampler will subsequently be referred to as the SMC with MH

kernel (SMC-MH) sampler.

In addressing the case studies presented in the chapter and the experimental example

presented in Chapter 8 of the dissertation, the probability distribution sequence defined

in Eq. (3.12) will be used in the implementation of the SMC-MH sampler to perform

sequential Bayesian inference on θ. To provide an understanding of the SMC-MH sampler,

an explanation to the procedure behind sampling from a one-dimensional posterior will

first be provided. At iteration j = 0, N samples are generated from the prior via direct

random sampling using the Monte Carlo method. At iteration j = 1, each sample θi (for

i = 1, . . . , N) is assigned a statistical (or importance) weight wj
i using Eq. (3.15). In the

case of P j defined in Eq. (3.12) being used as the distribution sequence, wj
i is simply the

likelihood function obtained accounting for the first sequence of data (i.e. P (D1|θi,M)).

From which the normalised importance weight ŵj
i is obtained using Eq. (3.20):

ŵj
i =

P (Dj|θi,M)∑N
i=1 P (D

j|θi,M)
(3.20)

After which, N samples of θi are resampled according to ŵj
i using the weighted resampling

approach (with replacement). An illustration to the weighted resampling procedure is pro-

vided in Figure 3.8. In doing so, samples with higher weights are being resampled more

often, eventually discarding samples with relatively “insignificant” weights. Such procedure,

however, only helps to artificially “conceal” impoverishment by ensuring that unique samples

with high associated weights are being duplicated to a higher extent which introduces high
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correlations between the samples, and does not contribute in the exploration of the sample

space [181]. In order to generate more unique samples and update those samples according

to the current distribution P j, Nc Markov chains are initialised from each of the resampled θi

thereby giving rise to N of such Markov chains. From there, the MH sampler is implemented

to generate 1 sample from each Markov chain [50]. The candidate samples are generated

from a Normal proposal distribution q(θ∗i |θi) with mean θ̄ and covariance matrix Σj which

are computed using Eq. (3.9) and Eq. (3.8) respectively. In computing Σj, the scaling

parameter γ is set as 1 as suggested in [181]. The candidate sample θ∗i for a given ith Markov

chain is then accepted or rejected using Algorithm 2. This procedure is repeated for all N

Markov chains. When this is done, the un-normalised weights of the individual resampled θi

are reset to wj
i = 1 given that the above procedure of updating the samples ensures that the

samples are distributed according to the moments of P j. From there, the algorithm proceeds

to iteration j = j + 1, re-computes the normalised weights ŵj
i using Eq. (3.20) (i.e. since

wj−1
i = 1), and the resampling and sample updating steps are undertaken. This sampling

procedure is repeated for each new data sequence Dj until the last data sequence is obtained

at iteration j = jend.

Figure 3.8: Illustration as to how the resampling procedure is done according to the statistical
weights of the samples in green. The red curve here represents the statistical weight function
ŵj

i .
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There are 2 notable similarities between the TMCMC and the general SMC sampling

techniques as highlighted in the previous paragraph of this section: 1) both the TMCMC

and SMC sampling algorithms are capable sampling from a sequence of distributions in a

sequential manner as highlighted in Section 3.3.1; and 2) both sampling techniques are able to

generate all N samples within each iteration. There are, however, 4 main differences between

the 2 techniques [51, 169, 52, 181]: 1) the TMCMC sampler is mainly implemented in an

off-line Bayesian inference set-up whereas the SMC sampler can be implemented in off-line

and/or on-line Bayesian inference set-ups (although the SMC sampler is optimised for the

latter); 2) the TMCMC sampler is mainly implemented to infer time-invariant parameter(s)

whereas the SMC sampler can be implemented to infer time-invariant and/or time-varying

parameter(s); 3) in updating the samples, the TMCMC sampling algorithm ensures that

samples with higher ŵj
i at any given iteration j are assembled into longer Markov chains than

those with lower ŵj
i [187], whereas the SMC sampling algorithm would initiate more Markov

chains from samples with higher ŵj
i leading to a higher concentration of Markov chains in

regions of the posterior with higher probabilities; and 4) due to the different sample updating

strategies as highlighted in the previous point, the SMC sampling algorithm is paralleliseable

[182, 188] whereas the TMCMC sampling algorithm is difficult to parallelise. It is, however,

still possible for the TMCMC sampling algorithm to be parallelised although such capability

is constrained by the diversity of the resampled sample set.

3.3.2 Algorithmic description

The SMC-MH sampler algorithm used to generate N samples from a one-dimensional pos-

terior is summarised as follows [181]:

1. At iteration j = 0, sample θi ∼ P (θ|M) for i = 1, ..., N ;

2. Set j = j + 1;

3. Calculate ŵj
i using Eq. (3.20);

4. Resample θi ∼ ŵj
i , for i = 1, . . . , N ;

5. Generate N Markov chains each initiating from the resampled θi;

6. For each ith chain, generate candidate sample θ∗i ∼ q(θ∗i |θi);
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7. Compute the acceptance probability α using Eq. (3.3) and accept θ∗i with probability

α (see Algorithm 2);

8. Reset the un-normalised weights wj
i = 1, for i = 1, . . . , N ;

9. Repeat Steps (2) to (8) until the last set of observations D is obtained at j = jend.

To sample from a multi-variate posterior, a component-wise approach is adopted in the

chapter for the SMC-MH sampler. Such approach is chosen due to the simplicity in its

implementation. The algorithmic description of the SMC-MH sampler in sampling from a

general Nd-dimensional posterior is presented in Algorithm 4.

Algorithm 4 Component-wise SMC-MH sampler algorithm (Nd-dimensional case)

1: procedure (Generate N samples from a general Nd-dimensional posterior)
2: Set j = 0 ▷ Initialise
3: for i = 1 : N do
4: Draw initial sample set: θi ∼ P (θ|M)
5: end for
6: while j < jend do ▷ Main sampling loop
7: Set j = j + 1
8: Compute ŵj

i using Eq. (3.20)
9: for i = 1 : N do ▷ Updating step
10: Resample: θj

i ∼ ŵj
i

11: for d = 1 : Nd do ▷ Update dth component
12: Draw candidate sample: θd∗i ∼ q(θ∗i |θdi )
13: Accept/Reject θd∗i using Algorithm 2 with 1 iteration
14: end for
15: end for
16: for i = 1 : N do ▷ Reset the weights
17: Set wj

i = 1
18: end for
19: end while
20: end procedure

3.3.3 Applications

Currently, the SMC sampler has already been implemented in numerous applications to

which examples include: 1) analysing and quantifying the uncertainty of the measured data

from probabilistic nonlinear state-space models of an engineering dynamical system [189]; 2)
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performing uncertainty reduction in prognostics [190]; 3) estimating parameters of dynam-

ical engineering systems from big data [82]; 4) performing Bayesian learning of state-space

models with highly informative observations [191]; 5) extracting bearing fault features via

Bayesian approach [192]; 6) simultaneous output and model parameter estimation for nonlin-

ear engineering systems under low measurement rate constraints [193]; 7) identifying stiffness

parameters of a building structure for damage detection using response frequency data [194];

8) real time residual lifetime prediction on a stiffened panel subject to fatigue crack growth

[195]; and 9) real time prognosis of crack growth evolution on a critical engineering compo-

nent [196].

3.4 Case study 1: Spring-mass system

Figure 3.9: Schematic diagram of the simple spring-mass system.

Figure 3.9 illustrates a spring-mass system consisting of a mass m attached to a spring

k, subject to a static force F . The initial position of the mass is x = 0 . When F is applied

to the mass, the mass will move to a new position x = d. It is well known that for this type

of problem F and d are related by Hooke’s Law so that:

F = −k × d (3.21)
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In this application, it is assumed that k has a fixed value of 263 N/m which is uncertain.

However the measurements of d are affected by measurement “noise” such that:

dmeasured = d+ ϵ1 (3.22)

In addition, the measurements of F are also affected by measurement “noise” such that:

Fmeasured = F + ϵ2 (3.23)

The parameters ϵ1 and ϵ2 are assumed to be independent random variables following a

Normal distribution with means 0.0 N and standard deviations 0.003 m and 1.0 N respec-

tively. Overall, the total effect of the “noise” on the data obtained for Fmeasured is contributed

by “noise” in the measurements of both quantities d and F as seen in Eq. (3.22) and (3.23)

as well as in reality. However, only the contribution of measurement “noise” from Fmeasured

will be considered. This is due to k being the inferred parameter of the model defined in Eq.

(3.21) which is used to predict the quantity F . For this problem, 15 independent realisations

of the Fmeasured - dmeasured pair are obtained. The Fmeasured - dmeasured data obtained are

presented in the form of a scatterplot shown in Figure 3.10 while its numerical values are

presented in a table as shown in Table 3.3.
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Figure 3.10: scatterplot of the 15 simulated “noisy” data of Force against the respective
values of Displacements.
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Measurement no. d Fmeasured Ideal measurement
[m] [N ] [N ]

1 0.0259 −6.13 −6.80
2 0.0276 −5.77 −7.26
3 0.0295 −6.71 −7.75
4 0.0367 −10.86 −9.65
5 0.0491 −12.63 −12.92
6 0.0528 −13.17 −13.89
7 0.0579 −13.82 −15.24
8 0.0680 −18.68 −17.89
9 0.0688 −18.32 −18.12
10 0.0743 −19.68 −19.55
11 0.0748 −18.26 −19.67
12 0.0774 −20.67 −20.36
13 0.0775 −18.74 −20.37
14 0.0779 −20.00 −20.49
15 0.0782 −19.85 −20.58

Table 3.3: Numerical values of the data illustrated in Figure 3.10.

3.4.1 Linear Least-squares Method

One direct way to solve for k analytically would be via the method of Linear Least-squares

minimization [30]. The equations to the Linear Least-squares method is as follows:

(xTx)k = xTF (3.24)

whereby x is the design matrix, which in this case would be the vector of the displacement

values d, xT is the transpose of the design matrix, and F is the vector of the measured values

of the force acting on the spring. As such, k can be solved by re-expressing Eq. (3.24) into

the following form:

k = (xTx)−1xTF (3.25)

Using the data values shown in Table 3.3 as well as the left matrix divide operation on MAT-

LAB, the Linear Least-squares solution to k is 255.87 N/m with a percentage discrepancy

of −2.71 % from its true value. The updated linear model is illustrated in Figure 3.11.
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Figure 3.11: The updated linear model via the linearisation method as illustrated by the red
line with the “noisy” data represented by the blue circles.

3.4.2 Bayesian model updating

For this problem, the a-priori knowledge of k is based on the initial hypothesis that k can

range between 200 N/m and 700 N/m. As such, the prior distribution of k, P (k|M) (i.e.

M is represented by Eq. (3.21)), can be modelled after a Uniform distribution whose lower-

bound and upper-bound values are 200 N/m and 700 N/m respectively. The likelihood

function is modelled using a Normal distribution with the standard deviation equal to that

of the noise, ϵ. Thus, the likelihood function is expressed as follows:

P (Fmeasured,1:15|k,M) ∝ exp

[
− 1

2 · σϵ2
15∑
n=1

(Fmeasured,n −M(k))2

]
(3.26)

where σϵ = 1.0 N/m. The justification behind the choice of the likelihood function and

its associated standard deviation is as presented in Chapter 2. The above set-up for the

prior and likelihood function yields an analytical solution to the resulting posterior which is

expressed as follows:

P (k|Fmeasured,1:15,M) ∝ exp

[
−(k − µk)

2

2 · σk2

]
(3.27)
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whereby

µk =

∑15
n=1 Fmeasured,n · dn∑15

n=1 dn
2

(3.28)

σk =
σϵ√∑15
n=1 dn

2
(3.29)

From Eq. (3.28) and Eq. (3.29), this yields µk = 255.87 N/m and σk = 4.19 N/m.

In this problem, the sampling performances of the MCMC, TMCMC, and the SMC-MH

samplers are compared on the basis of: 1) the time elapsed in sampling from the posterior;

and 2) their respective Monte Carlo standard error σSE on the estimation of k which is

computed from Eq. (3.4) using batch size nb = 100.

3.4.3 MCMC sampler results

Before the main sampling procedure is conducted, a calibration experiment is performed so

as to determine the value of the tuning parameter whereby the MCMC sampler is able to

achieve an acceptance rate close to the optimum value of 0.234. To do this, a fixed sample

size of N = 10000 is obtained from the posterior, with 0 burn-in, using 5 different values of

the tuning parameter: 0.10 N/m, 1.50 N/m, 22.50 N/m, 80.00 N/m, and 100.00 N/m. The

numerical results are summarized in Table 3.4. Based on the results, the optimum value of

tuning parameter is determined to be 22.50 N/m.

Tuning parameter Acceptance level Time Nburn−in

[N/m] [s]
0.10 0.906 1.80 Undetermined
1.50 0.844 1.78 1250
22.50 0.232 1.76 65
80.00 0.067 1.72 90
100.00 0.051 1.79 80

Table 3.4: Summary of results from varying the tuning parameter values while keeping the
sample size fixed at N = 10000.

The the main sampling procedure is then conducted with a sample size of N = 1050.

This value of sample size is chosen as it ensures sufficient convergence of the sample estimate

of k by the MCMC sampler. The chain is initiated at 544.33 N/m and sampling is first done

with 0 burn-in. The resulting trace plot and histogram of the sample values of k is shown

in Figure 3.12. Based on the trace plot in Figure 3.12, the burn-in length is determined to
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be approximately 50. Figure 3.13 illustrates the resulting trace plot and histogram of the

sample values of k after discarding the first 50 samples. The sampler took 0.31 seconds of

computation time and yielded an estimated mean value of 256.29 N/m for k with a standard

error σSE of 0.21 N/m.
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Figure 3.12: The resulting sample trace plot (a) and the histogram (b) obtained using the
MCMC sampler with sample size N = 1050 with Nburn−in = 0. The red line in the sample
trace plot denotes the true sample mean value.
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Figure 3.13: The resulting sample trace plot (a) and the histogram (b) after discarding the
first Nburn−in = 50 samples. The red line in the sample trace plot denotes the true sample
mean value.
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3.4.4 TMCMC sampler results

For the TMCMC sampler, a sample size of N = 1000 samples was generated from the

posterior to ensure sufficient convergence of the sample estimate of k. The sampler took

7.68 seconds of computation time over 4 iterations and yielded an estimated mean value of

256.17 N/m for k with a standard error σSE of 0.10 N/m. The resulting trace plot and

histogram are presented in Figure 3.14.
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Figure 3.14: The resulting sample trace plot (a) and the histogram (b) obtained using the
TMCMC sampler with sample size N = 1000. The red line in the sample trace plot denotes
the true sample mean value.

3.4.5 SMC-MH sampler results

For the SMC-MH sampler, a sample size of N = 1000 samples was generated from the

posterior to ensure sufficient convergence of the sample estimate of k. In sampling from

the final posterior, 2 approaches are employed: 1) by batching the measurement data into

15 distinct batches and sampling from the posterior in a sequential manner as described in

Section 3.3.1; and 2) by sampling directly from the final posterior.

For the first approach, the sampler took 200.36 seconds of computation time over 15

iterations and yielded an estimated mean value of 255.66 N/m for k with a standard error

σSE of 0.15 N/m. The resulting sample trace plot and histogram are presented in Figure

3.15.

For the second approach, the sampler took 2.41 seconds of computation time over 1

iteration and yielded an estimated mean value of 255.88 N/m for k with a standard error
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Figure 3.15: The resulting sample trace plot (a) and the histogram (b) obtained using the
SMC-MH sampler in sampling from the posterior via a sequential approach with sample size
N = 1000. The red line in the sample trace plot denotes the true sample mean value.

σSE of 0.13 N/m. The resulting sample trace plot and histogram are presented in Figure

3.16.
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Figure 3.16: The resulting sample trace plot (a) and the histogram (b) obtained using the
SMC-MH sampler in sampling directly from the posterior with sample size N = 1000. The
red line in the sample trace plot denotes the true sample mean value.
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Sampler N E[k] σSE Time Iterations
[N/m] [N/m] [s]

MCMC 1000 256.29 0.21 0.31 1050
TMCMC 1000 256.17 0.10 7.68 4

SMC-MH (batched) 1000 255.66 0.15 200.36 15
SMC-MH 1000 255.88 0.13 2.41 1

Table 3.5: Summary of the numerical results of the estimation of k by the respective samplers.
Reference solution: k = 263 N/m, and σSE = 0.13 N/m (i.e. see Eq.(3.4)).

3.4.6 Discussions

The overall results of the sampling estimates of k for each sampler are summarized in Ta-

ble 3.5 and the resulting Bayesian model update by each of the sampler are also presented

in Figure 3.17. Based on the results, it is observed that the TMCMC and the SMC-MH

sampling (i.e. the batched approach) algorithms implemented in the dissertation are signif-

icantly slower than that of the MCMC sampling algorithm implemented in the dissertation

given the same number of samples obtained from the posterior. This is due to the fact that

both the TMCMC and the SMC-MH sampling algorithms generate N samples from their

respective transitional distributions at each iteration which, in turn, increases the number

of model evaluations and the overall sampling time. In addition, it can be seen that there is

no significant difference in the statistics of the estimation of k (i.e. the mean and standard

error) by the SMC-MH sampler between either approaches as described in Section 3.4.5. As

such, for subsequent case studies presented in the chapter, the approach of sampling directly

from the final posterior (in 1 iteration) will be implemented for the SMC-MH sampler. Fur-

thermore, it can be seen from the results that the estimate of k obtained by the TMCMC

sampler has the lowest standard error while the MCMC sampler took the shortest time in

sampling from the posterior.

3.5 Case study 2: 2D Bi-modal posterior

In this case study, the performance of the MCMC, TMCMC, and SMC-MH sampling tech-

niques will be analysed in estimating the parameters of interest from a 2-dimensional, bi-

modal posterior distribution. This will be done for a 2 × 2 square matrix, H , which takes

on the following form:
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(a) MCMC model update.
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(b) TMCMC model update
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(c) SMC-MH model update

Figure 3.17: Results of the model updating for the respective samplers. The red lines denote
the 3-σSE bounds.

H =

[
θ1 + θ2 −θ2
−θ2 θ2

]

An example of a matrix taking on such form, in the context of engineering problems, would

be the Stiffness matrix used to describe the configuration of a tuned mass damper system

[197]. In this problem, θ1 and θ2 are the matrix elements which are assumed to have the

following fixed values: {θ1, θ2} = {0.5, 1.5}.
In a physical context, H represents a physical system whose eigenvalues, denoted as λ1

and λ2, represent the possible observations that can be made from a given system. Readers of

this article are assumed to be familiarized with the derivation of the eigenvalues. The actual

observations λnoisyi are, however, corrupted with their respective “noise”, ϵi, for i = 1, 2, such

that:

λnoisy1 =
(θ1 + 2θ2) +

√
θ1

2 + 4θ2
2

2
+ ϵ1 (3.30)

λnoisy2 =
(θ1 + 2θ2)−

√
θ1

2 + 4θ2
2

2
+ ϵ2 (3.31)

whereby the “noise” terms, ϵ1 and ϵ2, both follow a Normal distribution with means 0.0 and

standard deviations 1.0 and 0.5 respectively. For this problem, 15 independent “noisy” data

from each model is simulated and will be used to perform the analysis. The available data

are presented in the form of a scatterplot shown in Figure 3.18 while its numerical values

are presented in a table as shown in Table 3.6.
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Figure 3.18: Scatterplot of the 15 different measured values of λnoisy1 and λnoisy2 .

Measurement no. λnoisy1 λnoisy2 Measurement no. λnoisy1 λnoisy2

1 1.51 0.33 9 1.95 0.11
2 4.01 0.30 10 4.48 0.20
3 3.16 0.27 11 1.43 0.16
4 3.21 0.18 12 2.91 0.26
5 2.19 0.33 13 3.81 0.23
6 1.71 0.23 14 3.58 0.25
7 2.73 0.21 15 2.62 0.25
8 5.51 0.20 − − −

Table 3.6: Numerical values of the “noisy” data illustrated in Figure 3.18.

3.5.1 Bayesian model updating

For this problem, the a-priori knowledge of θ1 and θ2 is that they both can take values

between 0.01 and 4. As such, the prior distribution P (θ1, θ2|M) (i.e. M is represented by

the models for λ1 and λ2) can be modelled after a 2D Uniform distribution whose lower-

bound and upper-bound values are 0.01 and 4 respectively in both dimensions. The likelihood

function is modelled using a 2D Normal distribution whose covariance matrix has off-diagonal

element equal to 0 and diagonal elements corresponding to the standard deviation of each

of the “noise” terms, ϵ1 and ϵ2. Thus, the 2D likelihood function is expressed as follows:
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P (λ|θ,M) ∝ exp

−1

2

2∑
d=1

15∑
n=1

(
λnoisyd,n − λmodel

d

σd

)2
 (3.32)

whereby λ is the 15 by 2 vector of the “noisy” observations, θ = (θ1, θ2) is the vector of the

uncertain model parameters, and σi is the standard deviation of ϵd, for d = 1, 2.

3.5.2 MCMC sampler results

The main sampling procedure is performed with a sample size of N = 1060 to ensure

sufficient convergence of the sample estimate of θ1 and θ2 by the MCMC sampler. The

tuning parameter for the sampler is set at 0.04 · I, where I denotes the Identity matrix.

This yields an acceptance level of 0.237. The chain is initiated at {θ1, θ2} = {2.84, 2.33} and

sampling is first done with 0 burn-in. The resulting scatterplot matrix and 2D scatterplot

are presented in Figure 3.19. To ensure sufficient burn-in, the burn-in length is set to be

60 and the resulting scatterplot matrix and 2D scatterplot as shown in Figure 3.20 where it

can be observed that the samples converge about {θ1, θ2} = {0.51, 1.36}. The sampler took

0.41 seconds of computation time over 1060 iterations.
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Figure 3.19: The resulting scatterplot matrix (a) and 2D scatterplot (b) obtained using the
MCMC sampler with sample size N = 1060 and Nburn−in = 0.
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Figure 3.20: The resulting scatterplot matrix (a) and 2D scatterplot (b) after discarding the
first Nburn−in = 60 samples.

3.5.3 TMCMC sampler results

For the TMCMC sampler, a sample size ofN = 1000 samples was obtained from the posterior

distribution to ensure sufficient convergence of the sample estimate of θ1 and θ2. The sampler

took 18.38 seconds of computation time over 5 iterations and the resulting scatterplot matrix

and 2D scatterplot are presented in Figure 3.21. Based on Figure 3.21, the scatterplot

features 2 distinct convergence points centered about {θ1, θ2} = {0.51, 1.35} and {2.75,
0.27}.

3.5.4 SMC-MH sampler results

For the SMC-MH sampler, a sample size of N = 1000 samples was obtained from the

posterior distribution to ensure sufficient convergence of the sample estimate of θ1 and θ2.

The sampler took 6.30 seconds of computation time over 1 iterations and the resulting

scatterplot matrix and 2D scatterplot are presented in Figure 3.21. Based on Figure 3.22,

the scatterplot features 2 distinct convergence points centered about {θ1, θ2} = {0.53, 1.38}
and {2.73, 0.27}.

57



(a)

0 1 2 3 4

1

0

0.5

1

1.5

2

2
(b)

Figure 3.21: The resulting 2D scatterplot matrix (a) and scatterplot (b) obtained using the
TMCMC sampler with sample size N = 1000.
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Figure 3.22: The resulting 2D scatterplot matrix (a) and scatterplot (b) obtained using the
SMC-MH sampler with sample size N = 1000.
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3.5.5 Discussions

From the above results, it can be seen that the MCMC sampler is only able to identify 1 out

of the 2 peaks of the bi-modal posterior. This is attributed to the acceptance criteria of the

MH algorithm as described in Section 3.1 which results in the samples converging to only

one of the modes of a multi-modal posterior. As such, the MCMC sampler would not be a

suitable choice of sampler to sample for such posteriors. This shortcoming of the MCMC

sampler has also been reflected in [198] when discussing the implementation of the algorithm

on a posteriors with multiple peaks. However, should the MCMC sampler be allowed to

run infinitely (i.e. generate an infinite number of samples), the resulting distribution of the

samples obtained would eventually converge to that of the true posterior and would reflect

the peaks of the posterior distribution. The TMCMC and the SMC-MH samplers on the

other hand are able to identify all the peaks of the bi-modal posterior. For the TMCMC

sampler, this is attributed to the use of the transitional distributions which ensures that

the samples are evenly sampled across the sample space from the prior to the posterior as

described in Section 3.2. For the SMC-MH sampler, this is attributed to the Importance

sampling and resampling procedure which ensures that the samples close to the peaks of the

posterior are resampled with higher probability according to Eq. (3.20). This allows for the

updated samples to converge towards both peaks.

Based on the estimation results of θ1 and θ2 identified by the respective samplers, the

updated model using the MCMC, TMCMC, and SMC-MH samplers are presented in Figure

3.23.
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(a) MCMC model update.
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(b) TMCMC model update

1 2 3 4 5 6
noisy

1

0.1

0.15

0.2

0.25

0.3

0.35

n
o

is
y

2

Noisy eigenvalues

SMC-MH model update

True eigenvalue

(c) SMC-MH model update

Figure 3.23: Updated scatterplot profiles obtained from: (a) MCMC, (b) TMCMC, and (c)
SMC-MH sampling methods.
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3.6 Case study 3: DLR-AIRMOD test structure

In order to investigate the existing variability of the natural response frequency in the dy-

namic behaviour of nominally identical test structures, the Göttingen’s German Aerospace

Centre (DLR) constructed a replica of the GARTEUR SM-AG19 benchmark known as AIR-

craft MODel (AIRMOD) [199]. The DLR-AIRMOD is an aluminum structure consisting of

6 aluminium beams connected using 5 bolted joints. Geometrically, it has a wingspan of 2.0

m, a fuselage length of 1.5 m, and a height of 0.46 m. The structure itself weighs 44.0 kg. At

the forward tips of the winglets, 2 additional masses, each weighing 0.167 kg, are installed

so as to obtain better excitation of the wing torsions. To represent the free-free boundary

conditions, the entire DLR-AIRMOD structure is supported on soft bungee cords. Due to

copyright reasons, illustrative photos and schematic diagrams to the DLR-AIRMOD struc-

ture could not be provided in the dissertation. Instead, readers may refer to the following

references: [2, 200, 3]

The model updating procedure was done using a test data set of frequency response func-

tions. These measurements are obtained from an experiment which involves disassembling

and reassembling the structure 130 times to produce 260 different modal data sets from

single point excitation at 2 locations for variability. To prevent further variability in the

experimental data, the accelerometers remained installed on the structure to ensure their

positions remained unchanged during the disassembling and reassembling procedure. In that

experiment, 18 input parameters were identified and selected to represent the variability as-

sociated with the position of the glue, screws, and cable bundles in the DLR-AIRMOD

structure each time after it was reassembled. Details of the 18 input parameters and their

respective nominal values are summarised in Table 3.7.

From the experiment campaign, the frequency response functions are obtained. Through

the use of experimental modal analysis, 30 different vibration modes and its respective

frequencies were obtained of which 14 of them are identified as “active modes”. These active

modes will be used as measurement outputs for model updating. Their respective details and

test statistics are summarised in Table 3.8. In a previous work by Patell et. al (2017) [3], a

deterministic model updating via the sensitivity method [201, 202] was performed using the

information provided in Table 3.8 to update the 18 input uncertain model parameters listed

in Table 3.7. The resulting statistics of the 18 updated parameters are summarised in Table

3.9.

In this section, the Bayesian model updating approach is be adopted to update the 18
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θ Type Location Description Init. val. Unit
θ1 Stiffness Front Bungee Cord Support Stiffness 1.80× 103 N/m2

θ2 Stiffness Rear Bungee Cord Support Stiffness 7.50× 103 N/m2

θ3 Stiffness VTP/HTP Joint Sensor Cable - y dirn 1.30× 102 N/m
θ4 Stiffness Wing/Fuselage Joint Top Sensor Cable - y dirn 7.00× 101 N/m
θ5 Stiffness Wing/Fuselage Joint Bottom Sensor Cable - y dirn 7.00× 101 N/m
θ6 Stiffness VTP/HTP Joint Joint Stiffness - x, y dirns 1.00× 107 N/m
θ7 Stiffness VTP/HTP Joint Joint Stiffness - z dirn 1.00× 109 N/m
θ8 Mass VTP/HTP Joint Sensor Cables 2.00× 10−1 kg
θ9 Mass Wingtip Right Wing Screws and Glue 1.86× 10−1 kg
θ10 Mass Wingtip Left Wing Screws and Glue 1.86× 10−1 kg
θ11 Mass Wingtip Left/Right Sensor Cables on Wings 1.50× 10−2 kg
θ12 Mass Outer Wing Left/Right Sensor Cables on Wings 1.50× 10−2 kg
θ13 Mass Inner Wing Left/Right Sensor Cables on Wings 1.50× 10−2 kg
θ14 Stiffness Wing/Fuselage Joint Joint Stiffness - x dirn 2.00× 107 N/m
θ15 Stiffness Wing/Fuselage Joint Joint Stiffness - y dirn 2.00× 107 N/m
θ16 Stiffness Wing/Fuselage Joint Joint Stiffness - z dirn 7.00× 106 N/m
θ17 Stiffness VTP/Fuselage Joint Joint Stiffness - x dirn 5.00× 107 N/m
θ18 Stiffness VTP/Fuselage Joint Joint Stiffness - y dirn 1.00× 107 N/m

Table 3.7: List of the 18 input parameters and their respective details. Data obtained from
[2].

Output Mode name fmean fstd COV Sample size
[Hz] [Hz] [%]

f1 RBM Yaw 0.23 0.006 2.41 41
f2 RBM Roll 0.65 0.019 2.89 81
f3 RBM Pitch 0.83 0.017 1.99 83
f4 RBM Heave 2.17 0.024 1.11 86
f5 2nWingBending 5.50 0.004 0.07 86
f6 3nWingBending 14.91 0.017 0.05 86
f7 WingTorsionAnti 31.96 0.020 0.06 86
f8 WingTorsionSym 32.33 0.017 0.05 86
f9 4nWingBending 43.89 0.015 0.03 86
f10 1nWingForeAft 46.71 0.149 0.32 86
f11 2nWingForeAft 51.88 0.012 0.02 86
f12 VtpTorsion 65.93 0.274 0.42 86
f13 2nHtpBending 205.59 1.023 0.50 86
f14 HtpForeAft 219.07 1.663 0.76 86

Table 3.8: Test statistics of the 14 frequency outputs to be used to perform model updating.
Data obtained from [2].
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θ Mean Std COV Unit
[%]

θ1 1.82× 103 1.08× 102 5.94 N/m2

θ2 7.90× 103 2.40× 102 3.04 N/m2

θ3 1.87× 102 1.09× 101 5.85 N/m
θ4 4.47× 101 2.03× 100 4.55 N/m
θ5 4.24× 101 2.24× 100 5.29 N/m
θ6 2.53× 106 3.50× 105 13.83 N/m
θ7 7.80× 108 2.56× 108 32.82 N/m
θ8 1.86× 10−1 7.60× 10−3 4.08 kg
θ9 2.09× 10−1 4.65× 10−3 2.22 kg
θ10 1.90× 10−1 4.28× 10−3 2.26 kg
θ11 3.00× 10−2 1.26× 10−3 4.20 kg
θ12 9.83× 10−3 1.22× 10−3 12.37 kg
θ13 1.47× 10−2 1.65× 10−4 1.12 kg
θ14 4.07× 107 1.32× 106 3.24 N/m
θ15 9.48× 106 1.06× 106 11.18 N/m
θ16 2.93× 106 1.89× 105 6.44 N/m
θ17 8.75× 106 2.80× 106 32.00 N/m
θ18 5.97× 106 6.90× 105 11.56 N/m

Table 3.9: Updated statistics of the 18 input parameters obtained using the Sensitivity model
updating method. Results taken from [3].

input parameters which will be done using the MCMC, TMCMC and SMC-MH sampling

techniques. The purpose of this is to compare the sampling and model updating performances

of each of the samplers as well as to assess and highlight the robustness of each algorithm

in sampling from a relatively complex, higher-dimensional posterior. The model to be used

for the Bayesian updating procedure is a surrogate model in the form of an Artificial Neural

Network (ANN). It serves to provide a relatively computationally inexpensive approach

compared to the finite element modelling and is assumed to be an accurate representation of

the underlying model. An ANN model used to predict the 14 response frequencies of the test

structure was previously developed by Patelli et. al (2017) [80] and will be implemented in

the analysis here. The ANN model consists of 14 individual ANNs, each trained to predict a

specific frequency output of the corresponding active mode [80]. Each of these 14 individual

ANN comprises of 1 input layer consisting of 18 nodes, 2 hidden-layers consisting of 16 nodes

in the first and 6 nodes in the second respectively, and 1 output layer consisting of 1 node.

For each of these ANNs, a sigmoid activation function is used in the form of the hyperbolic

tangent function [80]. In this example, the simulation and computation was implemented
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using the OpenCossan software [203, 204].

3.6.1 Bayesian model updating

Contrary to the standard procedure of using prior identified from previous experience or

methods (see e.g. [3]), the Uniform prior is used here. Therefore, for each of the individual

input parameter, θd (for d = 1, ..., 18), P (θd|M), is modelled as a Uniform distribution whose

lower bound and upper bound is 5 % and 200 % of the input’s nominal values, respectively.

The input parameters are assumed to be independent of one another and thus, the overall

prior distribution, P (θ|M), can be expressed as follows:

P (θ|M) =
18∏
d=1

P (θd|M) (3.33)

The likelihood function is a 14-dimensional multivariate Normal distribution. Assuming

independence between the experimental outputs, it is mathematically expressed as follows

[3]:

P (f |θ,M) ∝ exp

[
−

14∑
d=1

(fd −Md)
2

2 · σ2
d

]
(3.34)

whereby fd is the experimental measurement of the dth frequency mode, Md is the dth ANN

model used to predict the frequency output of the dth active mode, and σd is the standard

deviation of the residual between the experimental result fd and the model M̂d. Here, σd

is not a fixed constant parameter unlike in the previous examples. Instead, this hyper-

parameter will be inferred directly from the residual between experimental data values and

the ANN model.

In this problem, the sampling performances of the MCMC, TMCMC, and SMC-MH

samplers are compared on the basis of: 1) their effectiveness in sampling from the relatively

high-dimensional posterior; and 2) their respective Monte Carlo standard error σSE on the

estimation of θ which is computed from Eq. (3.4) using batch size nb = 100.

3.6.2 MCMC sampler results

A nominal covariance matrix Σ is first constructed in the form of a diagonal matrix whose

diagonal elements correspond to the respective variance of the posterior for each of the 18

input parameters. This is done using the information from statistics of the updated input
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parameters obtained using the sensitivity method which is presented in Table 3.9. To ensure

that the acceptance rate of the sampler is within the acceptable range of 0.15 to 0.50, the

tuning parameter is set at 10−3 ·Σ. A sample size of N = 1500 is obtained from the posterior,

with a burn-in length of Nburn−in = 500, and the simulation was performed on 1 core with a

CPU memory of 10.5 Gigabytes. The computation involved a total of 1500 iterations over

83.81 seconds with an acceptance rate of 0.258. The resulting statistics of the updated input

parameters are summarised in Table 3.10, while the posterior distribution of the normalised

data for each input parameter is presented as a scatterplot matrix illustrated in Figure 3.24.

Figure 3.24: Scatterplot matrix of the 18 inputs obtained using the MCMC sampler with
N = 1500 samples and Nburn−in = 500. The data presented here are normalised to take
values between 0 and 1.

3.6.3 TMCMC sampler results

Using the TMCMC sampler, a sample size of N = 1000 samples was obtained from the

posterior. The simulation was performed using local parallelisation across 34 cores, each with

a CPU memory of 10.5 Gigabytes. The computation involved a total of 22 iterations over 5

hours 13 minutes. The resulting statistics of the updated input parameters are summarised in

Table 3.10, while the posterior of the normalised data for each input parameter are presented

in a scatterplot matrix as illustrated in Figure 3.25.
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Figure 3.25: Scatterplot matrix of the 18 inputs obtained using the TMCMC sampler with
N = 1000 samples. The data presented here are normalised to take values between 0 and 1.

3.6.4 SMC-MH sampler results

Using the SMC-MH sampler, a sample size of N = 1000 samples was obtained from the

posterior. The simulation was performed using local parallelisation across 15 cores, each

with a CPU memory of 10.5 Gigabytes. The computation involved a total of 1 iteration over

17 hours 53 minutes which is significantly longer than that of the TMCMC and the MCMC

sampling algorithms. This is attributed to the sub-optimal implementation of the SMC-

MH sampler in the dissertation. The resulting statistics of the updated input parameters

are summarised in Table 3.10, while the posterior of the normalised data for each input

parameter are presented in a scatterplot matrix as illustrated in Figure 3.26.

3.6.5 Discussions

Table 3.10 summarises the numerical results of the estimates obtained by the respective sam-

plers. As a form of evaluating the model updating performance between the 3 samplers, the

scatterplot profiles illustrating the distribution of the experimental samples will be compared

against those from the the updated ANN surrogate model as seen in Figures 3.27, 3.28, and

3.29.
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Figure 3.26: Scatterplot matrix of the 18 inputs obtained using the SMC-MH sampler with
N = 1000 samples. The data presented here are normalised to take values between 0 and 1.

To quantify the closeness and similarity level between the marginal distributions of the

experimental frequency samples and the sample output obtained from the updated model,

the 2-sample univariate Kolmogorov–Smirnov (KS) test [205, 206, 207] is used as the metric.

The 2-sample KS test tests the null hypothesis that 2 given samples come from the same

continuous distribution against the alternative hypothesis that they do not. The 2-sided

test is performed at 5 % significance level for each of the 14 frequency outputs. Table 3.11

presents the resulting p-values as well as the logical value of the test indicator where 0

indicates that there is insufficient evidence to reject the null hypothesis, and 1 indicates that

there is sufficient evidence to reject the null hypothesis at 5 % level of significance.

For the case of the MCMC sampler, Table 3.11 shows that the 2-sample KS test indicates

that there is no similarity between the marginal distributions of the experimental frequency

samples and the sample output from the updated model for all 14 active frequencies tested.

This is supported from Figure 3.27 where it can be seen that frequency scatterplots profile

from the updated model (in blue) obtained using MCMC sampling technique do not show

any similarity to that of the experimental frequencies (in red). Such observations indicate

that the MH sampling algorithm is unable to perform Bayesian model updating effectively

which demonstrates its limitation in sampling from a high-dimensional posterior distribu-
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MCMC TMCMC SMC-MH
θ Mean σSE Mean σSE Mean σSE

θ1 1.13× 103 3.46 1.89× 103 8.00 2.05× 103 20.17
θ2 8.98× 103 6.76 7.64× 103 21.26 7.78× 103 70.35
θ3 1.27× 102 3.33 1.85× 102 0.27 1.63× 102 2.32
θ4 5.70× 101 0.14 5.25× 101 0.79 7.25× 101 1.04
θ5 3.52× 101 0.14 3.59× 101 0.65 6.98× 101 0.99
θ6 1.20× 107 1.63× 104 1.47× 106 2.18× 104 9.85× 106 2.04× 105

θ7 1.32× 109 7.80× 106 1.03× 109 1.32× 107 1.00× 109 1.85× 107

θ8 2.49× 10−1 2.08× 10−4 1.92× 10−1 8.79× 10−4 2.14× 10−1 2.10× 10−3

θ9 4.07× 10−2 8.79× 10−5 1.99× 10−1 5.94× 10−4 2.39× 10−1 1.10× 10−3

θ10 2.48× 10−1 1.50× 10−4 1.95× 10−1 4.69× 10−4 2.40× 10−1 1.00× 10−3

θ11 1.13× 10−2 2.73× 10−4 2.82× 10−2 3.96× 10−5 1.90× 10−2 2.68× 10−4

θ12 1.21× 10−2 9.76× 10−5 1.03× 10−2 1.13× 10−4 1.95× 10−2 1.71× 10−4

θ13 2.81× 10−2 4.26× 10−6 1.17× 10−2 1.97× 10−4 1.62× 10−2 3.03× 10−4

θ14 1.89× 107 3.91× 104 3.61× 107 8.49× 104 2.18× 107 4.57× 105

θ15 2.72× 107 2.57× 104 1.04× 107 5.13× 104 1.89× 107 3.36× 105

θ16 6.99× 106 4.08× 103 2.36× 106 1.68× 104 4.75× 106 1.16× 105

θ17 1.00× 107 1.06× 105 3.49× 107 7.96× 105 5.12× 107 1.11× 106

θ18 4.24× 107 1.68× 108 5.01× 107 1.28× 106 4.92× 107 7.71× 105

Table 3.10: Updated statistics of the 18 input parameters obtained using the MCMC, TM-
CMC, and SMC-MH samplers.

tion, especially when the posterior is only concentrated within a small area of the entire

sample space. This comes despite the Monte Carlo standard error σSE of the estimation

of the 18 input parameters are less than 10 % of the corresponding mean estimate values

as seen in Table 3.10. In addition, the efficiency of the MCMC sampler depends on the

choice of the user-defined tuning parameter, making such sampler an unfavourable choice

for such problem. For this study, the tuning parameter was defined based on the results

obtained using Sensitivity model updating [3] (see Table 3.9) whereby the information on

the standard deviation of each of the 18 updated input parameters was used to construct the

nominal covariance matrix to begin with. Should such prior information be unavailable, the

tuning parameter may have to be determined via “Trial-and-Error” which will be extremely

inefficient and impractical for such high-dimensional problem. Furthermore, it needs to be

highlighted that the posterior samples in Figure 3.24 shows a high auto-correlation for the

case of θ11. This is attributed to the choice of the tuning parameter used in this study, to

which the justification of its use for this problem is explained earlier, may not be optimal.
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Figure 3.27: The scatterplot matrix illustrating the updated model output profile obtained
using the MCMC sampling technique. The blue scatterplots represent the frequency output
from the updated model while the red scatterplots represent the experimental frequency
measurements.

MCMC TMCMC SMC-MH
Output Mode name p-value Indicator p-value Indicator p-value Indicator
f1 RBM Yaw 6.73× 10−5 1 2.67× 10−1 0 1.24× 10−23 1
f2 RBM Roll 2.19× 10−67 1 1.10× 10−1 0 1.17× 10−18 1
f3 RBM Pitch 5.03× 10−69 1 1.52× 10−1 0 5.99× 10−14 1
f4 RBM Heave 8.13× 10−17 1 7.19× 10−4 1 6.72× 10−15 1
f5 2nWingBending 2.86× 10−71 1 1.97× 10−13 1 1.83× 10−54 1
f6 3nWingBending 2.86× 10−71 1 1.75× 10−1 0 1.18× 10−19 1
f7 WingTorsionAnti 2.86× 10−71 1 6.84× 10−2 0 3.92× 10−32 1
f8 WingTorsionSym 2.86× 10−71 1 6.50× 10−3 1 5.07× 10−18 1
f9 4nWingBending 2.86× 10−71 1 5.13× 10−1 0 1.43× 10−33 1
f10 1nWingForeAft 2.86× 10−71 1 5.24× 10−8 1 2.61× 10−15 1
f11 2nWingForeAft 2.86× 10−71 1 3.06× 10−58 1 1.92× 10−26 1
f12 VtpTorsion 2.86× 10−71 1 4.77× 10−4 1 1.69× 10−64 1
f13 2nHtpBending 2.86× 10−71 1 2.16× 10−4 1 5.43× 10−14 1
f14 HtpForeAft 2.86× 10−71 1 1.53× 10−5 1 5.80× 10−59 1

Table 3.11: P-values and test indicator from the 2-sample KS test performed on the frequency
samples from the updated model by the MCMC, TMCMC, and SMC-MH samplers along
with the frequency samples obtained from experiment.
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Figure 3.28: The scatterplot matrix illustrating the updated model output profile obtained
using the TMCMC sampling technique. The blue scatterplots represent the frequency output
from the updated model while the red scatterplots represent the experimental frequency
measurements.

For the case of the TMCMC sampler, the KS test indicates that there was insufficient

evidence at 5 % significance level to reject the null hypothesis for frequency outputs f1,

f2, f3, f6, f7, and f9. This implies that the test failed to identify significant degree of

differences between the marginal distributions of the experimental frequency samples and

the sample output from the updated model for the aforementioned 6 active frequencies. In

addition, it can be observed from Figure 3.28 that the frequency scatterplot profile for the

updated model mostly coincides with the frequency scatterplot profile for the experimental

frequencies. Coupled with the fact that the algorithm does not require the user to perform

any manual tuning of the tuning parameter(s) (i.e. the covariance matrix Σj), this makes

the TMCMC sampler a suitable choice of sampler for such a problem.

For the case of the SMC-MH sampler, Table 3.11 shows that the 2-sample KS test indi-

cates that there is no similarity between the marginal distributions of the frequency samples

and the sample output from the updated model for all 14 active frequencies tested. This is

observed from Figure 3.29 where it can be seen that while the frequency scatterplots from

the updated model generally encompass the frequency scatterplots from the experimental

data, there is no similarity in the scatterplot profiles between the 2 entities. In addition,
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Figure 3.29: The scatterplot matrix illustrating the updated model output profile obtained
using the SMC-MH sampling technique. The blue scatterplots represent the frequency output
from the updated model while the red scatterplots represent the experimental frequency
measurements.

it can also be observed from the figure that the scatterplot profile from the updated model

shows a larger spread compared to that of the experimental data. Such is attributed to the

estimates of the 18 updated input parameters having relatively higher σSE (and therefore

a higher value of sample standard deviation σθ according to Eq. (3.4)) values in general as

shown in Table 3.10 and that some of the marginal posterior distributions illustrate a small

degree of difference from the Uniform prior such as in the case for θ4, θ6, θ7 and θ13 in Figure

3.26. This is due to the ineffectiveness in the Importance sampling technique when applied

in high-dimensional cases [51, 208, 209], to which an extensive study has been conducted in

[210].

It has to be noted that the intention of this experiment was neither to obtain the optimum

updating results as such work was previously done and presented in the literature by Govers

et. al (2015) [2] nor to develop better surrogate model(s) for the Bayesian model updating

procedure. Rather, the purpose of this section is to evaluate the model updating performance

between the MCMC, TMCMC, and SMC-MH samplers for a relatively high-dimensional

system.
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3.7 Further discussions

The 3 sampling techniques reviewed in the chapter have been applied to 3 case studies with

different inherent challenges. In summary, the MH algorithm is relatively the easiest to

implement among the 3 sampling algorithms discussed and it is useful in sampling from

target distributions which are known up to a normalizing constant. However, its efficiency

is limited by the choice of the proposal distribution or tuning parameter. As discussed in

Section 3.1, should the width of the proposal distribution be too large, it may produce many

proposed samples which lie outside the domain of the target distribution thus increasing

the rejection rate of the samples. Should the width of the proposal distribution be too

small, the rejection-rate of the samples become low but this comes at the expense of the

need of many iterations before the Markov chain converges to the stationary distribution. In

addition, the MH algorithm is shown to be ineffective in sampling from multi-modal posterior

[51] due to its acceptance criteria of the proposed samples which results in the samples

converging to one of the peaks as seen from the case example presented in Section 3.5. Such

problem can be overcomed by allowing the MH sampler to obtain an infinite number of

samples which ensures that the sample distribution would converge to the true posterior and

identify all the peaks present. Furthermore, the algorithm is also shown to be ineffective

in sampling from a high-dimensional posterior whereby each dimension is independent from

one another and that the distribution itself is concentrated within a small subspace [51, 3]

of the entire sample space as shown in the case example presented in Section 3.6. These

short-comings, however, are addressed with recent developments of the algorithm such as:

1) the Adaptive Metropolis-Hastings (AMH) algorithm [168]; 2) the Adaptive Metropolis-

within-Gibbs (AMWG) algorithm [211, 212]; 3) the multi-level MCMC approach proposed

by Lam et. al (2015) [213] which seeks to improve the algorithm’s exploration of the sample

space by dividing the sampling process into multiple levels; and 4) the TMCMC algorithm

[51].

The TMCMC sampler algorithm is a particular variant of the SMC sampler and is based

on the MCMC technique. Its key strength lies in the ability of the algorithm to effectively

sample from multi-modal posteriors as seen in Section 3.5 as well as high-dimensional pos-

terior as seen in Section 3.6 which makes the TMCMC a robust sampler [51]. In addition,

the issue of burn-in is less of a concern given that the initial set of samples obtained in the

initialization stage of the algorithm comes directly from the prior which prevents the occur-

rences of obtaining samples from outside the posterior. One disadvantage however is that
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due to the relative complexity of the algorithm, the computation time evolved in executing

the entire sampling process becomes significantly longer as observed in all the case examples

whereby the time elapsed by the TMCMC sampler is consistently the highest among the 3

samplers. This is attributed to the higher number of model evaluations that is done by the

algorithm as a result of the need to generate samples from not just the posterior alone, but

also from the transitional distributions.

The SMC-MH sampler algorithm does not require the need to consider a burn-in period

due to the fact that the algorithm is fundamentally based on the Importance sampling

technique, and that the initialization procedure of the algorithm which obtains an initial

set of samples directly from the prior distribution ensures that the final samples obtained

are within the posterior. In addition, the SMC-MH sampler is also able to sample from a

multi-modal posterior shown in Section 3.5 where it managed to identify the 2 peaks of a

bi-modal posterior distribution. However, a significant drawback of the SMC-MH sampler

implemented in this study is its reduced efficiency and effectiveness in sampling from a high-

dimensional posterior [208, 209] as shown in Section 3.6. This can be attributed to the

following: 1) the inefficiency and inapplicability of the Importance sampling procedure to

samples in high dimensions to which an extensive study can be found in [210]; and 2) the

implementation of a sub-optimal Backward Markov kernel qL(θi|θ∗
i ) as highlighted in Section

3.3.1. To overcome these issues, one can turn to the following: 1) the advanced SMC sampling

strategies such as the through the use of an adaptive MCMC mutation kernel proposed in

[214], or the nested SMC sampling approach [215, 216]; and 2) the implementation of an

approximately optimal Backward Markov kernel introduced in [217].

It is also observed from the case examples that different sampling techniques yield dif-

ferent statistics on the estimates of the inferred parameter(s) (i.e. the mean and standard

error). This is due to each sampling method having its own assumption(s) in its respective

algorithms. For instance, the MH sampler assumes that by allowing a single Markov chain

to continue running for long periods of time, the chain would eventually converge to the

stationary distribution corresponding to the posterior distribution [128]. The TMCMC sam-

pler assumes that the samples would eventually converge to the final posterior distribution

by sampling from a series of intermediate transitional distributions [51]. This allows of the

TMCMC sampler to be able to sample from higher-dimensional posteriors with relatively

complicated shapes such as having multiple peaks as seen in Sections 3.5 and 3.6. Finally,

the SMC-MH sampler assumes the statistics of the posterior can be approximated through

the combination Importance sampling and Resampling procedure [177]. It not only ensures
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that the samples with insignificant weights are discarded, but also ensures that the sam-

ples converge towards regions of the sample space with higher probabilities as defined by

the posterior. Such approach, however, may fall short when dealing with high-dimensional

posteriors for which reasons are discussed in earlier in Section 3.6 [210, 53]. Thus, this indi-

cates that each of the sampling technique should be chosen depending on the validity of its

assumption relative to the problem that needs to be address as well as the computational

power that is available.

3.8 Chapter conclusion

Bayesian inference is a popular approach for model updating in engineering applications.

Bayesian model updating relies heavily on computational techniques to sample from a pos-

terior distribution. In the chapter, the concept behind the following 3 sampling techniques

are presented: Markov Chain Monte Carlo, Transition Markov Chain Monte Carlo, and Se-

quential Monte Carlo sampler. The presented algorithms have been implemented to solve

3 different engineering problems of increasing difficulty to assess their respective computa-

tional performances and robustness. From the case studies presented, it can be seen that

different sampling techniques yield different results of the posterior mean and variance due

to the different assumptions made in the sampling algorithm as explained in Section 3.7. In

addition, it can also be observed that the TMCMC algorithm is the most robust amongst

the three samplers given that it is consistently able to sample from posteriors ranging from a

simple one-dimensional case, to a more complex 18-dimensional case. The trade-off however

comes with its relatively long computation time due to its increased model evaluations as a

result of the need to generate samples for every transitional distribution.

While the case studies presented in the chapter are set in the context whereby mea-

surement data set are considered as a single piece of information made available to make

inferences on time-invariant uncertain model parameter(s), such conditions are specific and

may not necessarily be true at all times. In general, the recorded measurements or data

can come at different time-steps, especially when they are obtained from a system that is

evolving with time (see [1, 218, 82, 181, 219, 220]). These time-evolving data are related

to external factors evolving with time such as the measurement noise ϵ or environmental

loading conditions.

Moreover, the parameters to be inferred might be time-varying for example because

of degradation effects of the structural materials. In this case, these parameters would
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conform to a non-stationary posterior distributions which has not been addressed in the

chapter. Some approaches implemented to deal with such problems in engineering can be

found in references [221, 222, 223]. In addition to this, the recorded data themselves may

not necessarily be independently identically distributed, as it was assumed in this study.

Furthermore, to broaden the generality of problems that could be encountered, the model

relating the measured variables D and the uncertain model parameter(s) θ may not even be

known precisely (i.e. model uncertainty; see [224, 87, 88, 225]). These are currently active

research areas.

For the benefit of the readers, the presented algorithms (along with its implementations)

and the examples discussed in the chapter are freely available as part of the OpenCossan soft-

ware [203, 204] on GitHub: https://github.com/cossan-working-group/BayesianModelUpdating
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Chapter 4

Transitional Ensemble Markov Chain

Monte Carlo: A Robust and Efficient

sampler for Off-line Bayesian Model

Updating

Abstract

The chapter presents the Transitional Ensemble Markov Chain Monte Carlo sampler. The

proposed sampler utilises the Affine-invariant Ensemble sampler in place of the classical

Metropolis-Hastings sampler as the Markov Chain Monte Carlo move kernel. This allows

for the sampling of badly-scaled and highly-anisotropic distributions without requiring extra

computational costs. In addition, the weighted random sampling approach is adopted for

resampling which allows for more Markov chains to initiate from samples with higher weights,

leading to increased number of chains in sample regions of high probability. Furthermore,

an adaptive tuning algorithm is also proposed within the new sampler which allows for

automatic tuning of the step-size of the Affine-invariant Ensemble sampler. Hence, such

proposals not only ensure that the new sampler is “tune-free” for the users, but also improves

its robustness by ensuring that the acceptance rate of samples is well-controlled within

acceptable bounds. The proposed approach is found to be significantly faster compared to

standard Transitional Markov Chain Monte Carlo methods, especially on badly scaled and

highly skewed distributions which can be encountered when dealing with complex engineering
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problems. The proposed sampler will be implemented on 2 benchmark numerical examples

of varying complexities to demonstrate its strengths and advantages.
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4.1 Background

In Chapter 3, an introduction and review of the TMCMC sampling algorithm is presented

[46]. Recently, it has been applied in numerous engineering problems to which a list of

examples is provided in Section 3.2.3. The vast application of the TMCMC sampler over

the years highlights its popularity in engineering applications [13, 226]. This is attributed

to its capability in: 1) estimating large number of parameters at one time (e.g. 24 model

parameters [227]); 2) sample from complex-shaped distributions [51, 172]; and 3) its ability

to quantify the suitability of a model in describing the observed data under uncertainty

[228, 79, 173, 95, 229].

However, despite such strengths, the TMCMC algorithm still presents numerous short-

comings including: 1) having large number of auxiliary parameters to tune due to the choice

of proposal distribution [169]; 2) computationally expensive due to the need to re-compute

the auxiliary parameters at every iteration [46, 169]; and 3) does not provide a mechanism to

control the acceptance rates of the samples within the acceptable bounds of [0.15, 0.50] [150].

To address those short-comings, an improved TMCMC approach called the Transitional

Ensemble Markov Chain Monte Carlo (TEMCMC) sampler, is proposed.

The approach employs the Affine-invariant Ensemble sampler (AIES) proposed by Good-

man and Weare (2009) [5] in place of the Metropolis-Hastings (MH) sampler for the MCMC

step. By using a sampler that satisfies the affine-invariance property, the performance of

the method becomes independent from the complexity of the distribution [5]. The moti-

vations behind the proposed implementation are: 1) the AIES can sample efficiently from

highly-skewed distribution functions [5]; and 2) having a reduced the number of auxiliary

parameters to tune and the computational cost [5].

Another implemented change is in the sample updating strategy. Contrary to the ap-

proach that is implemented in the TMCMC sampler, as described in Chapter 3, samples with

higher statistical weights associated with it (i.e. see Eq. (3.7)) are more likely to be assigned

as the starting sample of the Markov chain, leading to more Markov chains initiating from

samples with higher weights than those with lower statistical weights. Such approach has

been implemented in the Cascading Adaptive Transitional Metropolis In Parallel (CATMIP)

algorithm [230], a variant of the TMCMC sampler. This allows for the Markov chains to be

propagated independently of each other, allowing for the computation to be done in parallel

at an ensemble level.

Furthermore, an adaptive tuning algorithm is also proposed to automatically tune the
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step-size parameter of the AIES for every iteration. Thus, the objectives of the proposed

TEMCMC sampler are to provide: 1) a sampler which is “tune-free” to the users; 2) a sampler

which can be easily parallelised [231]; 3) a computationally less-expensive sampler than the

existing TMCMC sampler; and 4) a robust method to effectively moderate acceptance rates

within the acceptable bounds across the iterations.

The performance and the results obtained from the proposed algorithm will be compared

and verified against the TMCMC. This will be done through the following numerical ex-

amples: 1) a 2DoF Coupled oscillator system where the objective is to infer 4 epistemic

parameters; and 2) a 4-peaked Himmelblau’s function where the objective is to observe the

performance of each sampler in sampling from a multi-peaked posterior. Such comparisons

will be done on the basis of the estimation of the inferred parameters, computational time

elapsed in generating the posterior samples, and acceptance rates across the iterations j by

the respective samplers.

4.2 Limitations of current approach

A significant advantage of the TMCMC sampler is in its ability to compute the evidence

term P (D|M) of the posterior distribution [51, 169]. The metric P (D|M) quantifies how

well a given model M describes the available observations D. The P (D|M) is estimated as

the product of the mean of the nominal weights wj
i = P (D|θi,M)∆βj at any given iteration

j:

P (D|M) ≈
m∏
j=1

1

N
·

N∑
i=1

wj
i (4.1)

One key problem in the TMCMC technique is that there is no fixed universal value for the

scaling parameter γ (see Eq. (3.8)) although it was stated in [51] that the “optimal” value

would be 0.2. This was highlighted in [169] where it was argued that this “optimal” value

is not applicable for all cases. In fact, different values for γ have been utilised in different

research such as 0.5 in [174] and 1.0 in [171]. Hence, [169] proposed a tuning algorithm to

adaptively adjust γ, starting from an initial value of γj=1 = 2.4√
Nd

[102, 232] where Nd is the

dimension of θ. Upon the conclusion of the MCMC step in updating the samples, the mean

acceptance rate for the current iteration αj is obtained. This mean acceptance rate is then

compared against the target acceptance rate αtr which is defined as [150]:

78



αtr =
0.21

Nd

+ 0.23 (4.2)

Once this is done, the scale parameter is then tuned and updated according to:

γj+1 = γj · exp
[
αj − αtr

j

]
(4.3)

Such approach should also help to moderate the overall acceptance rate of the samples

such that αj falls between 0.2 and 0.5 as much as possible [150]. However, to the best of

knowledge, investigations into the acceptance rates of the TMCMC sampler across itera-

tions have not been done previously. The TMCMC sampling procedure is summarised in

Algorithm 5.

Algorithm 5 TMCMC sampler algorithm

1: procedure (Generate N samples from P (θ|D,M))
2: Set j = 0 and βj = 0 ▷ Initialise iteration counters
3: Set γj+1 = 2.4√

Nd
▷ Initialise scale parameter

4: Draw initial N sample set: θi ∼ P (θ|M) ▷ Generate samples from the prior
5: while βj < 1 do ▷ Main sampling loop
6: Set j = j + 1
7: Compute ∆βj using Eq. (3.11)
8: Compute P j using Eq. (3.6)
9: for i = 1 : N do ▷ MCMC step
10: Select the kth Markov chain ∼ ŵj

k

11: Draw candidate sample: θ∗
i ∼ q(θ∗

i |θk)
12: Accept/Reject θ∗

i with probability αi using Eq. (3.3)
13: end for
14: Compute γj+1 using Eq. (4.3)
15: end while
16: Compute P (D|M) using Eq. (4.1)
17: end procedure

The current TMCMC sampler is also computationally inefficient since the mean θ̄j and

covariance matrix Σj need to be calculated at each iteration j (see Eq. (3.9) and (3.8)

respectively). This adds additional parameters that need to be adaptively tuned, on top

of βj and γj, as a result of the choice of proposal distribution q(θ∗|θk) used. Furthermore,

there is a loose assumption that it is optimal to set q(θ∗|θk) as a Normal distribution [50].

Strictly speaking, such choice only provides convenience in simplifying the sampling process

of θ∗ from P (θ|D,M) and the computation of the acceptance ratio α. Such convenience
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is attributed to the Normal distribution being symmetric about its mean [50, 233]. In fact,

there are specific cases whereby asymmetric proposal distributions are required. For instance,

if one is to estimate the posterior of a variance parameter, to ensure that the proposed

candidate samples θ∗ are never less than 0, the proposal distribution should be such that

it is skewed towards positive values (i.e. θ∗ > 0) such as the Log-normal distribution [234].

This would ensure that the overall acceptance rates α would not be too low (i.e. α < 0.15)

[149]. Optimally, the proposal distribution should follow that of the posterior [233] but such

approach is not feasible due to the lack of apriori knowledge over the analytical form of the

actual posterior itself. Thus, the choice of q(θ∗|θk) adds some degree of uncertainty.

4.3 Transitional Ensemble Markov Chain Monte Carlo

Numerous alternatives of the MCMC kernels within the TMCMC have been considered in

recent studies including: 1) Slice sampler (i.e. TMCMC-Slice) [235, 236]; 2) Metropolis-

Adjusted-Langevin (MAL) sampler (i.e. L-TMCMC) [237]; and 3) Differential evolution

MCMC kernel (i.e. DE-TMCMC) [238]. A summary is provided for each variant of the

TMCMC sampler listed above.

The TMCMC-Slice is able to produce estimates with significantly lower COV than that

of TMCMC. This is because the Slice sampler algorithm [141] draws samples more efficiently

than MH from P j such that candidate samples θ∗
i are now drawn closer to regions of higher

probability in P (θ|D,M). This leads to a higher convergence of θi and a smaller spread

about the sample space defined by P (θ|D,M) [235]. In addition, the use of the Slice sampler

algorithm removes the need for q(θ∗|θi) thereby removing the need to compute θ̄j and Σj

[141, 236]. A significant drawback of the TMCMC-Slice is its relatively long computational

time compared to the TMCMC due to the computation cost involved in tuning the auxiliary

variables and step-size of the Slice sampler [236].

The L-TMCMC demonstrated high parallel efficiency by adopting an adaptive kriging

metamodel, in place of the true model, to perform the model evaluations when computing

the likelihood function [237]. This reduces computation time, thereby making the algorithm

computationally less-expensive compared to the TMCMC [237]. In addition, due to the use

of the MAL move kernel, it allows for the L-TMCMC to sample more efficiently from multi-

modal P (θ|D,M) as well as a better identification of parameters, especially those which

were unidentifiable by TMCMC [237].

The DE-TMCMC demonstrated high parallel efficiency due to the use of the Differential
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evolution kernel, thereby making it computationally more efficient compared to the TMCMC

[238]. In addition, the sampler is able to produce estimates with higher degree of accuracy

due to its maximum a posteri estimates being closer to the true values of the inferred param-

eter(s) compared to the TMCMC [238]. However, the sampler still has significant number

of auxiliary parameters to tune for the differential evolution MCMC kernel. This could add

significant computational costs [238].

In this work, the AIES is implemented as the alternative MCMC kernel to the MH. The

reasons for this are the following: 1) to exploit the efficiency of the AIES in its ability to

sample from highly-skewed and anisotropic distributions; 2) the AIES can be parallelised;

and 3) no proposal distribution is required which, in turn, reduces the number of auxiliary

parameters to tune [5, 231]. This gives rise to the TEMCMC to which an additional feature

proposed is the adaptive tuning algorithm which automatically tunes its step-size parameter

and moderate the sampler’s acceptance rates.

4.3.1 Review of the Affine-invariant Ensemble Sampler

The AIES is a MCMC sampling technique recently developed which possesses the affine-

invariance property [5]. Currently, it has been applied across numerous research fields such

as Cosmology [231, 239, 240, 241, 242, 243], Physics [244, 245, 246], and Engineering [247,

248, 249, 250, 251]. To provide an understanding of the AIES sampler, this section will first

present the concept of affine-transformation, followed by a definition and description of an

ensemble before finally, explaining the sampler.

An affine-transformation operation ψ is an invertible linear mapping from a RNd to RNd

space [252]:

ψ(θ) : Θ = Â θ + b (4.4)

where Θ represents θ in the affine-transformed space, Â is the Nd-by-Nd non-singular trans-

formation matrix and b is the Nd-by-1 translation vector. This simple transformation trans-

forms a difficult sampling problem into a tractable one, in a similar way in which a deter-

ministic optimization problem is transformed to deal with a well-scaled function [5]. Let

P ′(Θ|D,M) represents a general class of densities describing the posterior distribution of Θ

where P ′ denotes the distribution function in the Θ-space. If the following condition holds

[5]:

P ′(Θ|D,M) = P ′(ψ(θ)|D,M) ∝ P (θ|D,M) (4.5)
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then, Θ-space and θ-space are said to be affine-invariant [253]. Therefore, the Affine-

invariant sampler can be constructed by using a proposal distribution q′ with the form

[5]:

q′(Θ∗|Θi) = q′(ψ(θ∗)|ψ(θi)) ∝ q(θ∗|θi) (4.6)

This proposal distribution is also invariant under affine-transformation. In essence, the

probability of generating a sample Θ∗ given Θi in the transformed Θ-space is equal to the

probability of generating a sample θ∗ given θi in the original θ-space [5].

Within the AIES, a collection of Nc Markov chains: θ⃗i = (θ1,i,θ2,i, . . . ,θNc−1,i,θNc,i) is

first generated. The proposal sample θ∗
k is then obtained using a move kernel that is invariant

towards an affine-transformation and that uses the current sample and that obtained from

a complementary chain. In practice, it is required that the number of chains Nc be at

least twice the dimension of θ (i.e. Nc ≥ 2 × Nd) [5]. Each chain generates 1 sample

from the prior giving the first ensemble θ⃗i for i = 1. Once this is done, the samples in

the ensemble are then updated one chain at a time. To update the kth chain (for k =

1, . . . , Nc), a sample from a complementary chain is randomly selected from the set θ⃗[k],i =

(θ1,i+1, . . . ,θk−1,i+1,θk+1,i, . . . ,θNc,i). Let this chosen sample from the set θ⃗[k],i be denoted

as θ[k]. Following which, the candidate sample for the kth chain θ∗
k is generated. This can

be expressed as [5, 231]:

θ∗
k = θ[k] + λ · (θk,i − θ[k]) (4.7)

whereby λ is real-valued scalar proposal stretch factor of the stretch-move affine-transformation

[5, 231]. λ can be represented as a random variable following a proposal distribution g(λ)

[5]. Analogous to the MH algorithm where a symmetric q(θ∗|θi) is used, g(λ) is chosen to

satisfy the symmetry condition such that [5]:

g

(
1

λ

)
= λ · g(λ) (4.8)

so that the stretch-move in Eq. (4.7) is symmetric [5]. For this reason, g(λ) is proposed in

[5] as:

g(λ) =


1

2·(
√
u− 1√

u
)
· 1√

λ
if λ ∈ [ 1

u
, u]

0 otherwise
(4.9)
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whereby u serves as the user-defined step-size of the AIES sampler which needs to be strictly

greater than 1. Once θ∗
k is sampled following Eq. (4.7), it is then accepted with probability

αk:

αk = min

[
1, λNd−1 · P (θ

∗
k|D,M)

P (θk,i|D,M)

]
(4.10)

Once the samples in allNc chains have been updated, set i = i+1 and the updating procedure

repeats itself until i = N . In summary, the entire sampling procedure by AIES is summarised

and illustrated in Algorithm 6. Interested readers will find further theoretical and numerical

investigations of ensemble samplers with affine-invariance properties in reference [5, 101].

Figure 4.1 illustrates the stretch-move in a 2D sample space θ = (θ1, θ2). In the figure,

the sample of the 3rd chain (in red) is being updated. The complementary sample for this

case is θ4,i. A straight line initiating from θ4,i is drawn to include θ3,i. This straight line is

the path along which the candidate sample θ∗
3 could possibly lie. By sampling λ from g(λ),

and using Eq. (4.7), θ∗
3 is defined and represented in blue.

Figure 4.1: Schematic diagram of the stretch-move that is used to update the sample of the
3rd chain in red. Here, the candidate sample for the 3rd chain is represented in blue while
the randomly chosen complementary sample in this case is that from the 4th chain. Image
adapted from [5].
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Algorithm 6 AIES sampler algorithm

1: procedure (Generate N samples from P (θ|D,M))

2: Define Nc chains: θ⃗1 = (θ1,1,θ2,1, ...,θNc−1,1,θNc,1)
3: for i = 1 : N − 1 do
4: for k = 1 : Nc do
5: Select randomly θ[k] from set θ⃗[k],i

6: Sample: λ ∼ g(λ)
7: Generate θ∗

k using Eq. (4.7)
8: Calculate acceptance probability αAIES using Eq. (4.10)
9: Sample: r ∼ U [0, 1]
10: if αk > r then
11: Set θk,i+1 = θ∗

k

12: else
13: Set θk,i+1 = θk,i

14: end if
15: end for
16: end for
17: end procedure

The affine-invariant property of the stretch-move is explained as such. Supposed 2 inde-

pendent sampling procedures are conducted by the AIES: one to sample θ from P (θ|D,M),

and the other to sample Θ from P ′(Θ|D,M). Given the same sequence of λi in both runs

for i ≥ 2, and that the starting samples Θ1 and θ1 are related according to Eq. (4.10),

the AIES is able to generate sample sequences such that the relationship between Θi and

θi is always upheld for all iterations i. The mathematical illustration of the affine-invariant

stretch-move is provided by Eq. (4.7). By performing an affine-transformation on both sides

of the equation, one obtains [5]:

Θ∗
k : ψ(θ

∗
k) = ψ(θ[k]) + λi · (ψ(θk,i)− ψ(θ[k])) (4.11)

Expanding and re-arranging the above equation, one will obtain the final expression [5]:

Θ[k] + λi · (Θk,i −Θ[k]) = Â
[
θ[k] + λi · (θk,i − θ[k])

]
+ b (4.12)

Eq. (4.12) implies 2 key things: 1) the generation of samples from the affine-transformed Θ-

space is no different from sampling from the original θ-space up to an affine-transformation

[5]; and 2) the probability of sampling Θ∗
k starting from Θk,i in the Θ-space is equal to

the probability of sampling θ∗
k starting from θk,i in the original θ-space. The second point
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satisfies the condition defined by Eq. (4.6) which endows the stretch-move its affine-invariant

property.

Hence, one key advantage of the AIES sampler over the MH sampler is its ability to sample

from a poorly-scaled and highly-anisotropic distributions just as effectively and efficiently

as it would from a well-scaled affine-transformed distribution [5, 254]. To illustrate this, a

numerical study is undertaken and presented as follows:

-5 0 5
-5

0

5

Poorly-scaled P
j

-5 0 5
-5

0

5

Scaled P
j

Figure 4.2: Contour plots illustrating the skewed P j defined by Eq. (4.13) (left) and the
scaled, isotropic P j in the affine-transformed space defined by Eq. (4.15) (right).

Consider a skewed “transition” distribution defined in a 2D sample space θ = (θ1, θ2) is

presented in Figure 4.2 with the following mathematical expression:

P j(θ) ∝
{
exp

[
−(3 · θ1 + θ2)2

0.08
− (θ1 − θ2)2

2

]}βj

(4.13)

where βj = 0.2. To simplify the distribution such that it becomes easier to generate samples

from, one could re-scale the problem via the following affine-transformation:[
Θ1

Θ2

]
=

[
15 ·

√
βj 5 ·

√
βj√

βj −
√
βj

][
θ1

θ2

]
(4.14)

This yields a relatively simpler isotropic distribution P ′j(Θ):

P ′j(Θ) ∝ exp

[
−(Θ1)2

2
− (Θ2)2

2

]
(4.15)
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From both P j(θ) and P ′j(Θ), 1000 samples are obtained across 4 chains (i.e. 250 samples

per chain) using AIES and MH samplers. The tuning-parameter settings for the respective

samplers are presented in Table 4.1 which ensures that the acceptance rates for both samples

are as close to 0.234 as possible [149]. Following which, the samples in the Θ-space obtained

by the respective samplers would be re-scaled to the θ-space via the inverse of Eq. (4.14).

This yields the results illustrated in Figure 4.3 where it can be seen that the ECDF obtained

directly from P j(θ) and that re-scaled from P ′j(Θ) are in very good agreement. This is

quantified by the area enclosed by both ECDFs where it can be seen from Table 4.2 that

this area is small (i.e. close to 0) compared to that for the case of the MH sampler. In

addition, it can also be observed from Figure 4.3 that the profile of the ECDF obtained

directly from P j(θ) by MH sampler (i.e. in purple) deviates significantly from that of the

analytical CDF of θ1 and θ2. In the case of the AIES, such deviation is less significant in

both dimensions. These results highlight not only the capability of the AIES in sampling

directly from a skewed distribution without the need to re-scale such distribution under

an affine-transformation, but also its affine-invariant property which allows it to sample

from such distribution as effectively as it would from a scaled isotropic distribution. These

characteristics are not exhibited by the MH sampler.

Tuning-parameter Case: P j(θ) Case: P ′j(Θ)
Step-size, u 8.0 8.0
(AIES)

Covariance matrix, Σ 0.5 · I 5 · I
(MH)

Table 4.1: Parameter settings implemented for the respective samplers in sampling from
P j(θ) and P ′j(Θ) respectively. I denotes the identity matrix.

AIES MH
θ1 0.049 0.265
θ2 0.089 0.813

Table 4.2: Results of the area enclosed by the ECDF obtained directly from P j(θ) and that
re-scaled from P ′j(Θ) for the respective samplers.
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Figure 4.3: ECDFs of θ1 and θ2 obtained directly from P j(θ) and those re-scaled from P ′j(Θ)
when using MH and AIES.

Another advantage that the AIES sampler has over the MH sampler is the reduced

number of parameters to tune adaptively given that the sample mean θ̄j and its covariance

matrix Σj need not be computed at every j. This leaves βj and u as the only parameters

to be adaptively tuned, thereby improving the computational efficiency for the TEMCMC

sampler.

As such, this motivates the implementation of the AIES algorithm in the proposed TEM-

CMC sampler given that the “transitional” distributions P j (see Eq. (3.6)) can be highly-

skewed and anisotropic in general and its sampling performance would be least affected by

the scaling of P j across the transition step j.

4.3.2 Sample updating strategy

In both the TMCMC and the proposed TEMCMC samplers, the samples θi are updated

according to P j for a given iteration j through their respective MCMC kernel. This allows

for samples obtained from previous iteration with lower statistical weights ŵj
i to be replaced

with those with higher values of ŵj
i in the current iteration j [51, 230].

However, the main difference in the sample updating strategy between the TMCMC

and the TEMCMC samplers is as follows: For the case of the TMCMC sampler, samples

with higher ŵj
i at any given iteration j are assembled into longer Markov chains than those
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with lower ŵj
i as described in Chapter 3. On the other hand, for the case of the TEMCMC

sampler, upon computing ŵj
i of the samples θi obtained from previous iteration, the initiating

sample of the Markov chain is obtained through weighted random sampling of θi according

to ŵj
i . This results in more Markov chains initiating from θi with higher ŵj

i , resulting in an

increased concentration of Markov chains in regions of P j with higher probabilities. As such,

the sample updating strategy adopted by the TEMCMC sampler works in similar fashion

to the Neighbourhood algorithm [187] which explores the sample space by concentrating the

random walk sampling in regions of the sample space of the target distribution with higher

probabilities [230].

Due to the sample updating strategy adopted by the TEMCMC algorithm, this allows

the Markov chains to be propagated independently of one another, allowing for the procedure

to be easily parallelised [230].

4.3.3 Adaptive-tuning algorithm

To adaptively tune the step-size parameter u, an algorithm is proposed based on the work

by [169]. The initial step-size value uj=1 is set at 2 given that this is the “optimal” value for

most problems [231, 239]. From this initial value, the nominal step-size unom is computed

after the MCMC step:

unom = uj · exp
[
αj − αtr

]
(4.16)

where αj is the acceptance rate for the current iteration and αtr is the target acceptance

rate (see Eq. (4.2)). The acceptance rate αj is treated as a random variable. Consequently,

the nominal step-size unom is also a random variable which can be randomized and adapted

through αj. Such adaptivity is not limited to the AIES, but is a generic property of MCMC

samplers [169, 255] subjected to the Diminishing Adaptation and Bounded Convergence

conditions defined in [256]. If unom > 1, then uj+1 = unom. Otherwise, the algorithm sets

uj+1 = 1.01 to ensure that the step-size would never fall below 1. This procedure is repeated

at the end of every iteration until the last transition step j = m.

In summary, the proposed TEMCMC sampler possesses 3 key benefits: 1) it is practi-

cally “tune-free” for the users; 2) it is computationally less expensive compared to TMCMC

sampling; and 3) its acceptance rate is moderated such that it falls within the acceptance

range between 0.15 and 0.50 [149] for the majority of the transition steps j. A pseudoal-

gorithm of the TEMCMC sampler is provided in Algorithm 7. To illustrate such benefits
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and strengths of the TEMCMC sampler, the proposed algorithm will be implemented in 2

numerical examples: 1) the 2DoF Coupled oscillator system; and 2) the 2D Multi-modal

posterior. Within these numerical examples, the sampling performance and estimation re-

sults obtained by the TEMCMC sampler will be compared against the TMCMC sampler due

to the latter being the state-of-the-art sampling algorithm at the time the proposed sampler

was conceptualised.

Algorithm 7 Proposed TEMCMC sampler algorithm

1: procedure (Generate N samples from P (θ|D,M))
2: Set j = 0 and βj = 0 ▷ Initialise
3: Draw N initial sample set: θi ∼ P (θ|M)
4: Set aj+1 = 2 ▷ Set initial value of step-size
5: while βj < 1 do ▷ Main sampling loop
6: Set j = j + 1
7: Compute ∆βj using Eq. (3.11)
8: Compute P j using Eq. (3.6)
9: Resample N samples: θi ∼ ŵj

i

10: Set θi = θi,1 in ensemble θ⃗1 ▷ Initiate ensemble

11: Update θ⃗1 with 1 iteration of AIES (see Algorithm 6) ▷ MCMC step

12: Set samples in ensemble θ⃗2 as samples of P j

13: Compute unom using Eq. (4.16) ▷ Tuning the step-size
14: if anom > 1 then
15: Set uj+1 = unom
16: else
17: Set uj+1 = 1.01
18: end if
19: end while
20: Compute P (D|M) using Eq. (4.1)
21: end procedure

4.4 Numerical example 1: 2DoF Coupled oscillator

system

The objective of this numerical example is to observe and compare the differences in the

performance of the TMCMC sampler and the proposed TEMCMC sampler in a 4-dimensional

Bayesian model updating set-up. This comparison will be done on the basis of: 1) the

computation time elapsed in sampling from the posterior; 2) the transition step size ∆βj
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Figure 4.4: Schematic diagram of the 2DoF Coupled oscillator system based on the set-up
in [6].

across sampling iterations j; 3) the acceptance rates across the transition steps j; and 4) the

Monte Carlo standard error σSE of the estimation of the epistemic parameters θ.

Figure 4.4 illustrates a simple 2 Degrees-of-Freedom (DoF) coupled oscillator set-up con-

sisting of 2 equal-sized blocks with equal mass m attached to primary springs with stiffness

k and an inter-mass secondary spring with stiffness k12. x1 and x2 denote the respective

instantaneous displacement of the blocks. In this problem, the mass of the blocks are

fixed at m = 0.5 kg. In addition, it is assumed that both k and k12 take on fixed val-

ues, {k, k12} = {0.6, 1.0} N/m, but these values are not known (i.e. epistemic uncertainty).

In order to infer k and k12, measurements are obtained in the form of the eigenfrequencies

D = (ω1, ω2) whereby ω1 and ω2 are the 2 eigenfrequencies associated with the in-phase

and out-of-phase mode shapes of the symmetric system respectively which can be easily

computed as follows [6]:

ω̂1 =

√
k

m
(4.17)

ω̂2 =

√
(k + 2 · k12)

m
(4.18)

The above equations constitute the model classM = {ω̂1, ω̂2} to be updated. The frequency

measurements of ω1 and ω2 are however corrupted with “noise” ϵ1 and ϵ2 respectively such

that:

ω1 = ω̂1 + ϵ1 (4.19)

ω2 = ω̂2 + ϵ2 (4.20)

whereby ϵ1 and ϵ2 are the “noise” terms following a Normal distribution with means 0 Hz
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and standard deviations σ1 and σ2 respectively. Here, σ1 and σ2 are fixed values set at 10

% of the nominal values of ω1 and ω2 respectively. This yields {σ1, σ2} = {0.110, 0.228} Hz.
For simplicity, it is assumed that the measurement “noise” ϵ1 and ϵ2 are not correlated and

that the “noise” between individual measurements of ω1 and ω2 are also independent. In

this problem, 15 independent realizations of ω1 and ω2 are obtained and these synthetic data

are presented in the form of a scatterplot shown in Figure 4.5 while the numerical values are

presented in Table 4.3.
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Figure 4.5: Scatterplot of the 15 different “measured” values ω1 and ω2.

Measurement no. ω1 ω2 Measurement no. ω1 ω2

[Hz] [Hz] [Hz] [Hz]
1 1.172 2.351 9 1.055 2.202
2 1.097 2.463 10 1.253 2.265
3 1.157 2.005 11 0.952 2.322
4 1.091 2.464 12 1.130 1.952
5 1.021 2.654 13 1.174 2.085
6 1.373 2.325 14 1.066 2.192
7 1.174 2.113 15 1.014 2.060
8 1.128 2.439 − − −

Table 4.3: Numerical values of ω1 and ω2 shown in Figure 4.5.
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4.4.1 Bayesian model updating

For this problem, the priors for k and k12 are set as Uniform priors taking values between 0.01

N/m and 4.0 N/m. In addition, despite σ1 and σ2 being predetermined values, in reality,

these 2 parameters are unknown and are also set as epistemic parameters to be inferred.

The priors for σ1 and σ2 are also set as Uniform priors taking values between 1.0 × 10−5

Hz and 1.0 Hz. Therefore, the total number of epistemic parameters to 4, thereby making

this a 4-dimensional Bayesian model updating problem: θ = (k, k12, σ1, σ2). It is assumed

that the epistemic parameters are independent from one another. The likelihood function

is modelled to follow a Normal distribution and assuming independence between individual

observations, it is expressed as follows:

P (D|θ,M) =
15∏
n=1

1

2 · π · σ1 · σ2
· exp

[
−(ω1,n − ω̂1)

2

2 · σ12
− (ω2,n − ω̂2)

2

2 · σ22

]
(4.21)

4.4.2 Results and discussions

From the posterior P (θ|D,M), N = 1000 samples are generated using the TMCMC sampler

and the proposed TEMCMC sampler and the sampling time elapsed is of 48.60 s and 6.52

s respectively. The reason behind the significantly large difference in the sampling time lies

in the different sample updating strategy (i.e. the MCMC step) adopted by the respective

sampling algorithm. In the case of the TMCMC sampler, the sample updating procedure

in the MCMC step is performed in a serial manner after each weighted resampling of ŵj
i

(i.e. see Algorithm 5). In the case of the TEMCMC sampler, on the other hand, the sample

updating procedure is done at an ensemble level and involves only 1 iteration of the AIES

procedure (i.e. see Algorithm 7). This allows for the computation time of the TEMCMC

sampler to be significantly reduced.

Sampler ∆β1 ∆β2 ∆β3 ∆β4 ∆β5 ∆β6 ∆β7 β8
TMCMC 0.011 0.040 0.073 0.100 0.139 0.185 0.241 0.212
TEMCMC 0.012 0.042 0.061 0.076 0.163 0.376 0.270 −

Table 4.4: Results of ∆βj computed for the respective samplers.

In sampling from P (θ|D,M), the TMCMC sampler required 8 iterations whereas the

TEMCMC sampler required only 7 iterations. Figure 4.6 shows the evolution of the statistics

of βj and of the acceptance rates across all iterations j for both TMCMC and TEMCMC

samplers. From the figure, it can be seen that the rate of increase of βj is generally higher
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Figure 4.6: The statistics of βj and the acceptance rates across all iterations j. The target
acceptance rate is 0.283.

in the case of the TEMCMC sampler than that for the TMCMC sampler. To support such

observation, the value of ∆βj between successive iterations is computed using the following

equation:

∆βj = βj − βj−1 (4.22)

The results of ∆βj for the corresponding samplers are presented in Table 4.4. From the

table, it can be seen that the value of ∆βj at any given j is generally higher for the case of

the TEMCMC sampler compared to the TMCMC sampler. Coupled with the fact that the

TEMCMC sampler required 1 less iteration compared to the TMCMC sampler in sampling

from P (θ|D,M), it indicates a significantly improved mixing performance by the TEMCMC

sampler. This highlights the effectiveness of the AIES move kernel compared to the MH move

kernel in the TMCMC sampler.

In addition, it can also be observed from Figure 4.6 that the acceptance rates for the

TMCMC sampler shows a higher degree of variation compared to that of the TEMCMC

sampler. In fact, only 3 out of 8 iterations yielded acceptance rate values within the optimal

limits in the case of the TMCMC sampler whereas 5 out of 7 iterations yielded acceptance

rate values within the optimal limits the case of the TEMCMC sampler. This highlights

the effectiveness of the proposed adaptive tuning algorithm in moderating the step-size u in
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the TEMCMC sampler such that for majority of the iterations, the acceptance rates of the

sampler is kept within the optimal range.

The resulting scatterplot matrix of the posterior samples is shown in Figure 4.7 and from

there, the statistics of the estimates of the epistemic parameters by the respective samplers

are obtained in the form of the sample mean estimates and the Monte Carlo standard error

σSE computed from Eq. (3.4) with batch size nb = 100. The results of the statistics of

the estimates for the corresponding inferred parameters are presented and summarised in

Table 4.5. From the table, it can be seen that the estimation statistics obtained by the

TEMCMC sampler is generally similar and is well-verified against that obtained by the

TMCMC sampler.

Figure 4.7: Scatterplot matrix illustrating the resulting posterior of the epistemic parameters
obtained by the TMCMC sampler (left) and the TEMCMC sampler (right).

Finally, the resulting scatterplot of the model output is compared against the scatterplot

of the data for ω1 and ω2. The results of the model updating for the case of the TMCMC

sampler and the TEMCMC sampler are illustrated in Figure 4.8. As seen from the figure, the

resulting model outputs from the posterior samples obtained encompass the true solution

of ω1 and ω2 for both the TMCMC and TEMCMC samplers. This highlights that the

TEMCMC sampler works just as effectively as the TMCMC sampler as a tool in Bayesian

model updating.
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θ Reference value TMCMC TEMCMC
E[θ] σSE E[θ] σSE

k 0.6 N/m 0.625 N/m 8.51× 10−4 N/m 0.640 N/m 1.10× 10−3 N/m
k12 1.0 N/m 0.962 N/m 2.00× 10−3 N/m 0.998 N/m 2.80× 10−3 N/m
σ1 0.110 Hz 0.114 Hz 8.59× 10−4 Hz 0.110 Hz 8.02× 10−4 Hz
σ2 0.228 Hz 0.236 Hz 1.60× 10−3 Hz 0.230 Hz 1.60× 10−3 Hz

Table 4.5: A summary of the statistics of the estimation of the epistemic parameters
θ = (k, k12, σ1, σ2) via the posterior samples obtained using the TMCMC and TEMCMC
samplers.
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Figure 4.8: Scatterplot matrix illustrating the model updating results attained by the TM-
CMC and TEMCMC samplers.

4.5 Numerical example 2: 2D Multi-modal posterior

The following set-up is based on the problem presented in [257] and the objective of this

numerical example is to observe and compare the differences in the performance of the

TMCMC sampler and the proposed TEMCMC sampler in generating samples from a multi-

modal posterior. This comparison will be done on the basis of the sample distribution in

relation to the analytical solution of the posterior, the computation time elapsed in sampling

from the posterior, and the acceptance rates across the transition steps j.
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Figure 4.9: Contour plot illustration of the 4-peaked posterior based on the Himmelblau’s
function [7]. The numbers on the colour chart represent the height of the posterior computed
from Eq. (4.24).

In this study, a 2-dimensional posterior with 4 peaks, defined by the dimensionless vari-

ables x1 and x2, is presented and illustrated in Figure 4.9. The analytical function of this

posterior is based upon the Himmelblau’s function which is a test-function used in math-

ematical optimisation problems to test the performance of optimisation algorithms. The

Himmelblau’s function H(x1, x2) is mathematically defined as [7]:

H(x1, x2) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 (4.23)

which yields 1 solution of local maximum at {x1, x2} = {−0.271,−0.923} and 4 distinct

solutions of local minima at {x1, x2} = {3.0, 2.0}, {−2.805, 3.131}, {−3.779,−3.283}, and
{3.584,−1.848}. From which, the posterior of interest is then defined as follows [257]:

P (θ|D,M) ∝ exp [−H(x1, x2)] (4.24)

which ensures that the local minimia of H(x1, x2) now becomes the region of high probability

giving rise to the 4 peaks.
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4.5.1 Bayesian model updating

For this problem, the epistemic parameters are x1 and x2, thereby making this a 2-dimensional

Bayesian model updating problem: θ = (x1, x2). The priors for x1 and x2 are set as Uniform

priors taking values between −5 and 5 and it is assumed that the epistemic parameters are

independent from one another. The likelihood function is modelled as the exponential func-

tion of −H(x1, x2) and thus takes on the same mathematical form as the posterior in Eq.

(4.24).

4.5.2 Results and discussions

From the posterior P (θ|D,M), N = 1000 samples are generated using the TMCMC sampler

and the proposed TEMCMC sampler and the sampling time elapsed is of 16.14 s and 4.96 s

respectively. The underlying reason behind the difference in the sampling time between the

2 algorithms is provided in Section 4.4.2.

Sampler ∆β1 ∆β2 ∆β3 ∆β4 ∆β5
TMCMC 0.015 0.041 0.140 0.464 0.340
TEMCMC 0.016 0.042 0.155 0.508 0.279

Table 4.6: Results of ∆βj computed for the respective samplers.

In sampling from P (θ|D,M), both samplers required 5 iterations. Figure 4.10 shows

the evolution of the statistics of βj and the acceptance rates across all iterations j for both

TMCMC and TEMCMC samplers. From the figure, it can be seen that while the evolution

of βj across all j are identical for both the TMCMC and TEMCMC samplers, the rate of

increase of βj is slightly greater for the case of the TEMCMC sampler than it is for the

TMCMC sampler. To support such observation, the value of ∆βj is computed (i.e. see Eq.

(4.22)) for which the results for the corresponding samplers are presented in Table 4.6. From

the table, it can be seen that the value of ∆βj at any given j is generally higher for the case

of the TEMCMC sampler compared to the TMCMC sampler. This indicates a better mixing

performance as a result of the implementation of the AIES as the MCMC move kernel of

the TEMCMC sampler compared to the MH in the case of the TMCMC sampler.

In addition, it can also be observed from Figure 4.10 that out of 5 iterations, only 2 lie

within the optimal limits of acceptance rate for the case of the TMCMC sampler and 3 for

the case of the TEMCMC sampler. For the case of the TEMCMC sampler, the acceptance

rate values appear to tend towards the target acceptance rate value with increasing j while
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this is not the case for the TMCMC sampler. This indicates the effectiveness of the adaptive

tuning algorithm for step-size u in the TEMCMC sampler in ensuring the majority of the

iterations have acceptance rates within the optimal limits and that the tuning is done with

reference to the target acceptance rate.
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Figure 4.10: The statistics of βj and the acceptance rates across all iterations j. The target
acceptance rate is 0.335.

For the purpose of illustration, the scatterplots obtained from the transition distributions

P j between j = 0 and j = 5 via the TMCMC and TEMCMC samplers are presented in

Figures 4.11 and 4.12 respectively. In both Figures 4.11 and 4.12, the scatterplots obtained

by TMCMC and TEMCMC samplers are compared against the contour plot profile of the

analytical solutions and it can be observed that in both figures, the scatterplot profiles match

closely to the corresponding contour plot profile. This validates the effectiveness of both

samplers in sampling from all P j. Figure 4.13 presents the scatterplot profile of the samples

of the final posterior P (θ|D,M) in comparison with the contour plot profile of the analytical

solution. While both samplers are able to sample effectively from the 4-peaked posterior,

upon closer inspection, it can be observed that there is significantly less exploration of the

sample space by the samples obtained via the TMCMC sampler compared to the TEMCMC

sampler. This is due to the TMCMC sampler having a very low rate of acceptance in the

latter iterations j = 4 and j = 5 where the acceptance rates are approximately 0.013 as seen

in Figure 4.10. This reduces the number of unique samples generated from the MCMC step
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of the TMCMC algorithm leading to many repeated samples and a poor exploration of the

sample space.

Figure 4.11: Scatterplots obtained from P j for j = 0 to j = 5 via the TMCMC sampler.

Figure 4.12: Scatterplots obtained from P j for j = 0 to j = 5 via the TEMCMC sampler.
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Figure 4.13: Resulting scatterplots of the samples from the final posterior P (θ|D,M) ob-
tained via TMCMC (left) and TEMCMC (right) samplers along with the analytical contour
plot profile as a comparison.

4.6 Chapter conclusion

An efficient and robust sampler named Transitional Ensemble Markov Chain Monte Carlo

has been proposed for Bayesian inference. The proposed sampler uses an Affine-invariant

Ensemble sampler in place of the traditional Metropolis-Hasting sampler and includes an

adaptive tuning algorithm making the approach “tune-free” for users. The proposed sampler

out-performs the current samplers available in sampling from highly-skewed, anisotropic

distributions [5, 254] such as the transition distributions by exploiting the advantages of the

Affine-invariant Ensemble sampler. The absence of a need by the user to define the proposal

distribution eradicates the model uncertainty in considering the choice of the distribution

model and the proposal distribution used by the Affine-invariant Ensemble sampler reduces

the number of parameters to tune adaptively. In addition, an efficient sample updating

strategy is implemented which allows samples to be updated in parallel at an ensemble level

via the Affine-invariant Ensemble sampler thereby reducing the computational cost of the

proposed sampler significantly.

To illustrate the efficiency and effectiveness of the proposed Transitional Ensemble Markov

Chain Monte Carlo sampler, two numerical examples have been presented showing the appli-

cability of the approach in Bayesian model updating as well as in the presence of a complex a
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multi-modal posterior. In all the examples investigated, the Transitional Ensemble Markov

Chain Monte Carlo sampler outperforms the traditional Transitional Markov Chain Monte

Carlo sampler by requiring a shorter time whilst ensuring that the acceptance rates are

well-moderated within optimal bounds. In addition to this, the transition step size by Tran-

sitional Ensemble Markov Chain Monte Carlo sampler is shown to be generally larger than

that by the traditional Transitional Markov Chain Monte Carlo sampler which indicates an

improved mixing performance by the Affine-invariant Ensemble sampler MCMC kernel.

In conclusion, the results from the examples presented in the chapter highlights the fol-

lowing key strengths of the proposed Transitional Ensemble Markov Chain Monte Carlo

sampler: 1) it allows for the sampling of badly-scaled and highly-anisotropic distributions

without requiring extra computational costs; 2) it is free from tuning by the user; and 3)

it is more robust than the Transitional Markov Chain Monte Carlo in controlling the ac-

ceptance rates automatically. One significant drawback of this sampler, however, is the

relative complexity in coding the Transitional Ensemble Markov Chain Monte Carlo algo-

rithm from scratch compared to the standard Transitional Markov Chain Monte Carlo. To

address this issue, access to the MATLAB code is provided on GitHub: https://github.

com/Adolphus8/Transitional_Ensemble_MCMC.git
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Chapter 5

Robust Off-line Bayesian

Identification under Model

Uncertainty

Abstract

The chapter illustrates the implementation of the Transitional Ensemble Markov Chain

Monte Carlo sampler, presented in Chapter 4, in an experimental example involving a 2DoF

Shear aluminium frame structure. For the work presented in the chapter, the positions of

the 2 moveable masses within the given structure, used to simulate the damage location, are

to be inferred under uncertainty over the likelihood functions. To account for such model

uncertainty in estimating the mass positions, the Robust Bayesian approach is implemented.

In doing so, the estimates would not only account for the uncertainty in the given data, but

also the uncertainty over the choice of likelihood function used to construct the resulting

posterior distribution of the mass positions. There are 2 objectives to this study: 1) to

validate the proposed sampler in the Bayesian identification of the mass position parameters

of the structure using actual experimental data obtained under realistic and challenging

settings; and 2) to highlight the applicability of the Transitional Ensemble Markov Chain

Monte Carlo sampler in the context of structural health monitoring.
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5.1 Background

Figure 5.1: Schematic diagram of the aluminium frame with moveable masses m1 and m2

[1, 4, 8].

The following example involves a 2DoF Shear aluminium frame structure which has been

presented in [1, 4, 8]. As per illustrated in Figure 5.1, the structure consists of 7 beams (3

horizontals, 2 long verticals, and 2 short verticals) and 2 movable masses m1 and m2 with

positions pm1 and pm2 respectively. Recently, the structure was presented as a case study

for structural health monitoring in the work by Dr. Roberto Rocchetta [1] whereby the mass

positions pm1 and pm2 are used to simulate the structural damage location.

The experimental data was obtained via hammer impact from which the response fre-

quencies of the structure are obtained and processed for a given combination of {pm1, pm2}.
The response frequencies consist of the 6 natural frequencies corresponding to:

• ω1 - the 1st mode;

• ω2 - the 1st out-of-plane bending mode;

• ω3 - the 1st torsional mode;
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• ω4 - the 2nd in-plane bending mode;

• ω5 - the 2nd order out-of-plane bending mode;

• ω6 - the 2nd torsional modes.

A total of 11 sets of experimental data of the response frequencies are obtained using 11

distinct combinations of {pm1, pm2} in a previous experimental campaign conducted by Dr.

Peng Liang [4]. These are summarised in Table 5.1.

Exp. no. {pm1, pm2} ω1 ω2 ω3 ω4 ω5 ω6

[cm] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]
1 {5, 5} 20.11 22.79 47.52 63.96 183.82 283.51
2 {5, 20} 18.72 20.46 46.97 72.24 214.84 296.32
3 {5, 35} 17.715 18.29 46.42 63.45 196.38 278.70
4 {20, 5} 19.40 22.39 46.32 61.78 173.49 259.76
5 {20, 20} 17.91 20.28 45.67 64.73 190.84 284.09
6 {20, 35} 16.71 18.21 45.18 56.53 177.97 264.44
7 {35, 5} 17.71 21.76 44.00 59.48 164.05 254.48
8 {35, 20} 16.91 19.82 43.15 60.06 175.75 279.10
9 {35, 35} 15.95 17.89 42.44 50.66 163.55 257.82
10 {11, 11} 19.58 21.73 47.00 67.54 196.21 285.95
11 {29, 29} 16.65 18.85 43.93 55.43 174.35 284.84

Table 5.1: A summary of the experimental data obtained from the hammer impact test. The
data is obtained from [4].

5.2 Surrogate model

For this problem, an Artificial Neural Network (ANN) is used as a surrogate model M in

place of the computationally-expensive Finite Element Model (FEM) of the structure to

perform Bayesian model updating and infer θ = (pm1, pm2).

An ANN consists of a number of processors, known as neurons, which are analogous to

the biological neuron in the brain. It defines a function g(θ) which consists of a non-linear

weighted sum of other functions h(θ), thus, taking the following form:

ω̂ = g(θ) =
∑
q

K (wq · hq(θ)) (5.1)
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where ω̂ = {ω̂1, . . . , ω̂6} is the vector of the model prediction of the 6 natural frequencies

by the ANN, wq is the weight to be updated in the training algorithm, and K(•) is the

activation function to which examples include the logistic or hyperbolic functions [258]. A

typical architecture of an ANN comprises of an input layer, one or more hidden layer(s), and

an output layer. Within each layer, there exists multiple nodes which are connected to the

nodes belonging to the next layer via weighted links.

When training the ANN, the inputs defined by hq(θ) for a given node are first weighted

and then summed. The latter procedure is done by the activation function K to generate the

output for the particular node. In most instances, the sigmoidal function is used as the choice

for K. A bias, which serves as a threshold for the argument of K, is generally introduced

within the hidden and output layers and is accounted for by the difference between the

predicted output by the ANN and the observed output data used to train the ANN. Further

details on ANNs can be found in [80, 259].

The ANN used in this study was previously constructed by Dr. Roberto Rocchetta

and was implemented in [1]. Its architecture comprises of 3 layers: 1 input-layer with 2

nodes, 1 hidden-layer with 10 nodes, and 1 output-layer with 6 nodes [1]. For the purpose

of calibrating the ANN, 103 simulated values of the response frequencies {ω1, . . . , ω6} are

obtained from 103 values of the mass positions {pm1, pm2} in a series of computations

involving a high-fidelity Finite element model of the aluminium frame structure which were

performed by Dr. Peng Liang [4]. The resulting 103 sets of simulated data are presented in

the form of scatterplots as shown in Figures 5.2a and 5.2b.

The calibration of the ANN was performed via the Feed-Forward Back-Propagation al-

gorithm [260] with a sigmoidal activation function. Of the 103 sets of training data, 70 %

was used to train the ANN, 15 % for validation, and 15 % for testing [1]. The calibration

procedure took 0.513 s and yielded a regression coefficient R of: 0.9999 for training; 0.9993

for testing; and 0.9994 for validation. As the regression coefficients are all close to 1, these

indicate that the existing ANN architecture is well calibrated. To illustrate this, the regres-

sion plots with respect to the training, testing, and validation data of the calibrated ANN

are provided in Figure 5.3.

5.3 Bayesian model updating

In [1], 3 likelihood functions are presented and used to perform Bayesian model updating.

Defining Mv being the model output for ωv, details on the 3 likelihood functions are sum-
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(a) Scatterplot of the 103 simulated values of {pm1, pm2}.

(b) Resulting scatterplot matrix of the response frequencies obtained from the FEM.

Figure 5.2: Simulated data obtained for the calibration of the ANN.

marised in Table 5.2. To address the uncertainty associated with the appropriate choice of

the likelihood function Lm (for m = 1, . . . , 3), an approach would be to perform a Bayesian

model selection to determine the most probable likelihood function given the observed data

[51]. However, there is also a need to introduce a degree of robustness in the estimates of
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Figure 5.3: Regression plots of the calibrated ANN.

pm1 and pm2 by accounting for the incertitude over the choice of likelihood functions (i.e.

the model uncertainty) rather than just the most probable likelihood function alone. Hence,

the Robust Bayes (RB) framework is implemented to infer pm1 and pm2 [261, 262]. Using

this framework, 3 distinct posteriors are derived by combining the prior with each of the

likelihood function. Let the mth posterior Pm(θ|D,M) be defined as the product of the
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prior and likelihood Lm. From there, a P-box [34, 36] can be constructed from the Empir-

ical Cumulative Distribution Function (ECDF) of the posteriors where the 95 % Credible

Interval (CI) for pm1 and pm2 are obtained. Such analysis is performed for all 11 sets of

experiments from the data presented in Table 5.1.

Symbol Type P (D|θ,M)
L1 Normal Distribution

6∏
v=1

1

σv ·
√
2π

·exp

[
−(ωv −Mv)

2

2 · σv2

]

L2 Inverse Squared Error

6∏
v=1

1− exp

[
− 1

(ωv −Mv)
2

]

L3 Inverse Error

6∏
v=1

1− exp

[
−
√

1

(ωv −Mv)
2

]

Table 5.2: The likelihood functions employed in [1] for the Bayesian inference of pm1 and
pm2.

The priors for pm1 and pm2 are set as Uniform priors taking values between 5.0 cm and

35.0 cm. In addition, the measurement “noise” σv corresponding to the natural frequency

ωv, for v = 1, . . . , 6, are also set as epistemic parameters to be inferred. The prior for each

σv is also set as a Uniform prior taking values between 0.001 Hz and 100.0 Hz. Given that

likelihood function L1 is a function of σv, and that the likelihood functions L2 and L3 are

independent of σv, this brings the total number of inferred parameters to 8 for the case of

L1 (i.e. θ = (pm1, pm2, σ1, . . . , σ6)) and 2 for the case of L2 and L3 (i.e. θ = (pm1, pm2)) .

For this problem, it will be assumed that the inferred parameters are independent from one

another.
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(a)

(b)

Figure 5.4: P-boxes for pm1 for the respective experiments constructed from the ECDFs of
P1(θ|D,M) (red), P2(θ|D,M) (green), and P3(θ|D,M) (blue). The black dotted vertical
line denotes the true value.
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(a)

(b)

Figure 5.5: P-boxes for pm2 for the respective experiments constructed from the ECDFs of
P1(θ|D,M) (red), P2(θ|D,M) (green), and P3(θ|D,M) (blue). The black dotted vertical
line denotes the true value.

5.3.1 Results and discussions

From each Pm(θ|D,M), N = 10000 samples are generated using the TEMCMC sampler

to ensure sufficient degree of accuracy when accounting for the tail quantile estimate. The

110



P-boxes obtained for each experiment are presented in Figure 5.4 for the case of pm1, and

Figure 5.5 for the case of pm2. The numerical results of the 95 % CI obtained from the

P-boxes for pm1 and pm2 for each experiment are summarised in Table 5.3. As shown in

Table 5.3, the 95 % CI obtained for pm1 generally encompasses the true value for most

experiments with the exception of experiments where the true values of pm1 are 5 cm and

35 cm. This is also observed for the case of the 95 % CI obtained for pm2. A possible reason

for such observation is as follows: Based on Figure 5.2a, it can be seen that most of the

input training samples used to train the ANN are situated in the interval [15, 25] cm for

both pm1 and pm2. Beyond this sample region defined by the aforementioned interval, the

samples are sparsely distributed. As such, in cases where the value(s) of either or both pm1

and pm2 fall(s) outside the interval of [15, 25] cm, the resulting ANN is unable to mimic the

general behaviour displayed by the FE model. This explanation can also be supported by

Figure 5.3 where it can be seen that the training, testing, and validation samples are all not

distributed evenly along the regression plot. In fact, for all the regression plots in Figure

5.3, the samples are clustered in distinct groups to which such observation is a result of most

of the training input samples existing within the interval [15, 25] cm for both pm1 and pm2.

Hence, this results in the poor prediction performance by the ANN in the case where the

true values of either or both pm1 and pm2 is/are 5 cm and 35 cm. Such behaviour by the

ANN has also been highlighted in [1].

Exp. no. True value pm1 95 % CI pm1 True value pm2 95 % CI pm2

[cm] [cm] [cm] [cm]
1 5 [9.26, 29.93] 5 [6.94, 34.37]
2 5 [5.08, 17.25] 20 [11.80, 29.71]
3 5 [9.87, 28.82] 35 [10.69, 31.95]
4 20 [11.06, 28.50] 5 [5.09, 29.49]
5 20 [13.22, 26.19] 20 [14.83, 28.70]
6 20 [19.14, 33.53] 35 [6.32, 35.00]
7 35 [13.90, 32.40] 5 [5.63, 33.56]
8 35 [18.92, 32.87] 20 [11.47, 32.15]
9 35 [24.26, 34.99] 35 [13.32, 34.99]
10 11 [6.39, 19.57] 11 [6.58, 27.86]
11 29 [21.01, 33.00] 29 [18.94, 33.47]

Table 5.3: Results of the 95 % CI obtained from the P-boxes for pm1 and pm2 for each
experiment.

The resulting sampling time elapsed, number of iterations, and range of acceptance rates

across iterations are summarised in Tables 5.4 to 5.6. As seen from the table, the accep-
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tance rate interval by the TEMCMC sampler generally encompasses the optimal range of

[0.15, 0.50] for all experiments and choice of combined likelihood functions. This highlights

the robustness of the proposed adaptive tuning algorithm in moderating the acceptance rates

of the sampler. In addition, it can also be seen that the number of iterations required by

the TEMCMC sampler to generate samples from P1(θ|D,M) is the highest while a similar

number of iterations was required for P2(θ|D,M) and P3(θ|D,M). A reason to account for

the significantly higher number of iterations involved in sampling from P1(θ|D,M) is due

to the relative rapid posterior contraction, as suggested by its ECDF plots in Figures 5.4

and 5.5 which exhibit a steeper gradient in general compared to those of P1(θ|D,M) and

P3(θ|D,M).

Exp. no. P1(θ|D,M)
Time Iterations Acceptance
[s]

1 3.83× 103 12 [0.316, 0.479]
2 4.13× 103 12 [0.353, 0.519]
3 3.27× 103 10 [0.332, 0.475]
4 3.91× 103 12 [0.335, 0.478]
5 4.17× 103 13 [0.329, 0.488]
6 3.78× 103 12 [0.336, 0.481]
7 3.10× 103 9 [0.354, 0.517]
8 4.03× 103 12 [0.312, 0.502]
9 3.65× 103 11 [0.338, 0.483]
10 4.00× 103 13 [0.305, 0.478]
11 3.87× 103 12 [0.318, 0.479]

Table 5.4: Summary of the sampling time elapsed, number of iterations, and range of accep-
tance rates across iterations by the TEMCMC sampler for P1(θ|D,M).

5.4 Chapter conclusion

The chapter has presented an experimental example involving a 2DoF Shear aluminium

frame structure with 2 moveable masses to simulate the damage locations within a given

structure. Through this example, the performance of the proposed Transitional Ensemble

Markov Chain Monte Carlo sampler is validated in identifying the mass positions within a

2DoF Shear aluminium frame structure given a set of response frequencies obtained via a

hammer impact test in a previous experimental campaign. In doing so, this simulates the
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Exp. no. P2(θ|D,M)
Time Iterations Acceptance
[s]

1 800.23 2 [0.444, 0.493]
2 8.48× 102 3 [0.434, 0.485]
3 1.26× 103 2 [0.447, 0.495]
4 8.53× 102 3 [0.434, 0.486]
5 1.23× 103 3 [0.440, 0.494]
6 1.27× 103 2 [0.437, 0.490]
7 8.36× 102 2 [0.444, 0.493]
8 8.76× 102 2 [0.446, 0.488]
9 1.54× 103 4 [0.409, 0.485]
10 1.25× 103 3 [0.416, 0.508]
11 1.22× 103 3 [0.461, 0.505]

Table 5.5: Summary of the sampling time elapsed, number of iterations, and range of accep-
tance rates across iterations by the TEMCMC sampler for P2(θ|D,M).

Exp. no. P3(θ|D,M)
Time Iterations Acceptance
[s]

1 1.28× 103 2 [0.448, 0.481]
2 1.65× 103 3 [0.424, 0.502]
3 1.29× 103 2 [0.434, 0.499]
4 1.64× 103 3 [0.412, 0.481]
5 1.68× 103 3 [0.433, 0.500]
6 1.26× 103 2 [0.457, 0.498]
7 8.68× 102 2 [0.441, 0.490]
8 1.31× 103 2 [0.455, 0.497]
9 1.92× 103 4 [0.417, 0.484]
10 1.28× 103 3 [0.423, 0.491]
11 1.26× 103 3 [0.441, 0.502]

Table 5.6: Summary of the sampling time elapsed, number of iterations, and range of accep-
tance rates across iterations by the TEMCMC sampler for P3(θ|D,M).

procedure of damage detection in structural health monitoring.

To identify the mass positions of the 2 moveable masses of the frame structure using

Bayesian inference, 3 different likelihood functions are considered. To loosen the assumption

on the form of the likelihood function, and account for the uncertainty over the choice

likelihood functions to be used, the Robust Bayes approach has been implemented. Through

such approach the Transitional Ensemble Markov Chain Monte Carlo sampler is able to
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generate posterior estimates whose 95 % Credible Intervals generally envelops the true mass

positions for most experiments.

In addition, a discussion is also provided regarding the sampling performance of the

Transitional Ensemble Markov Chain Monte Carlo sampler. There are 2 aspects which

are highlighted: 1) the acceptance rates of the sampler generally fall within the bounds of

[0.15, 0.50] (i.e. see Section 4.3.3 of the dissertation) which highlight the robustness of the

proposed adaptive tuning algorithm within the sampler in moderating such quantity; and 2)

the number of sampling iterations is the highest in sampling from the posterior constructed

using the Normal distribution likelihood function compared to using the Inverse Squared

Error and Inverse Error likelihood functions.

Through the results presented in the chapter, it highlights the applicability of the pro-

posed Transitional Ensemble Markov Chain Monte Carlo sampler in performing off-line struc-

tural health monitoring in the context of the experimental example that is used to simulate

a structure subjected to damage. This, however, is subjected to data samples used to train

the surrogate model (i.e. the ANN) used for the Bayesian model updating procedure, and its

subsequent training, testing and validation performances. A discussion to which is provided

in Section 5.3.1 of the chapter.

Finally, the MATLAB codes for the example presented in the chapter has been made

accessible on GitHub: https://github.com/Adolphus8/Transitional_Ensemble_MCMC.

git
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Chapter 6

Distribution-free Analysis of a

Dynamical Black-box system under

Uncertainty

Abstract

The chapter presents another real-world application of the Transitional Ensemble Markov

Chain Monte Carlo sampler, presented in Chapter 4, in a problem that is based on the 2019

edition of the NASA-Langley Uncertainty Quantification challenge. The challenge presented

in this problem involves the analysis on a set of critical systems while lacking available data.

This results in a large degree of uncertainty and the need for uncertainty quantification tools

so as to make risk-informed decisions. As such, in the chapter, a framework is proposed

that is aimed that achieving 2 objectives: 1) to calibrate an Uncertainty Model consisting of

both aleatory and epistemic parameters; and 2) to reduce the uncertainty of the calibrated

Uncertainty Model.
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6.1 Background

6.1.1 Research context

The design of critical safety systems is often associated with the availability of limited data.

Despite such challenge posed, the system needs to be designed in order to cope with the

unavoidable uncertainty. Such uncertainty can be classified as either aleatory or epistemic

uncertainty [24, 25] to which their respective definition are provided in Section 1.1 of the

dissertation. It needs to be noted that the aleatory and epistemic uncertainty can refer to

the same physical quantity and, therefore, such classification can become fuzzy. In fact, the

aleatory uncertainty can be seen as the remaining uncertainty after a campaign, aimed at

reducing the epistemic uncertainty, is performed.

The design of systems under uncertainty requires the availability of robust and efficient

tools for uncertainty characterisation and quantification. In order to check the availability of

discipline independent tools and applicability of such tools, NASA-Langley proposed a new

Uncertainty Quantification Challenge problem in 2019 [26] with the purpose of modelling the

dynamic behaviour of a system, analysing its operational reliability, and devising an improved

design configuration for the system under uncertainty. This Uncertainty Quantification

Challenge problem follows from the success of the previous edition in 2013 [263].

In this challenge, a “Black-box” computational model of a physical system is used to

evaluate and improve its reliability. Unlike the previous challenge [263], the Uncertainty

Model (UM) to the respective aleatory input parameters are completely unknown and they

are to be derived by the participants. In addition, the response of the system is time-

dependent providing a realistic setting under which different tasks will be addressed. A

description to the physical system of interest and the research problem is provided in Section

6.1.2.

6.1.2 Problem statement

The physical system of interest is characterised by a design point Θ with 9 real components

(i.e. Θ ∈ R9). The Black-box computational model of the physical system has a set of un-

certain model parameters comprising of elements a and e representing the vector of aleatory

and epistemic parameters respectively [26]. For this problem, a has 5 real components while

e has 4 real components. This set of uncertain model parameters is denoted by δ which is

represented by a UM.
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The aleatory space A is represented as a ∼ πa whereby πa is the joint density function.

The initial aleatory space is A0 = [0, 2]5. The epistemic space E is represented as e ∼ E.

The initial epistemic space is E0 = [0, 2]4. Hence, the UM for δ is fully characterized by:

⟨πa, E⟩.
The system consists of a set of interconnected subsystems for which δ is concentrated

in one of these subsystems. This subsystem is modelled by a Black-box model function

ŷ = yfun(a, e, t), where t ∈ [0, 5] s is the time parameter. The output of this subsystem

is represented as a discrete time history: yl(t) = [yl(0), yl(dt), . . . , yl(5000 · dt)], where l =
1, . . . , 100, and dt = 0.001 s. This yields a total of Nt = 5001 data of yl(t) per given l and the

entire time history data is denoted as D1 = {yl(t)}l=1,...,100. As an illustration, the graphical

plot of the time history data D1 is provided in Figure 6.1.

Figure 6.1: Graphical illustration of the time history data D1.

The tasks involved this challenge are summarised as follows [26]:

1) To create an UM for δ;

2) To decide a limited number of refinements (up to 4) on the epistemic parameters;

3) To perform a reliability analysis on a given design point Θ;

4) To identify a new Θ with improved reliability;

5) To improve the UM for δ and Θ given observations of the integrated system.
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Full details on the challenge can be found in [26].

In the interest of keeping in-line with the context of the dissertation defined in Chapter

1, only Tasks 1 and 2 of this challenge are presented in the chapter. Results and discussions

to the rest of the challenge tasks can be found in [264].

6.2 Task 1: Calibration of the Uncertainty model

The UM is calibrated via the Bayesian model updating technique using the available data

D1. This provides a probabilistic approach through which the joint distribution function

πa can be identified. However, the Bayesian model updating approaches are inapplicable in

reducing the epistemic uncertainty when such uncertainty is represented by intervals or any

other non-probabilistic form as per the case in this challenge. To overcome this limitation, a

computational trick would be to model the interval, representing the epistemic uncertainty,

following a distribution which is usually assumed to be Uniform for simplicity. This is so

as to be able to generate samples from such intervals and find the bounds to the uncertain

response signal. It needs to be noted that the form of the distribution does not affect

the results since only the bounds of the response is of interest and there is no probability

associated to the output. Such approach has been proposed and implemented in [265].

Therefore, the epistemic parameters eie , for ie = 1, . . . , 4, are assumed to be independent

between one another and their respective priors modelled by a Uniform distribution with

bounds defined by the epistemic space E0 (see Section 6.1.2).

Within the Bayesian model updating framework, the likelihood function P (D|θ,M) is

an important component since it reflects the degree of error between the set of observed data

D1 and the “Black-box” model ŷ. The latter is a function of the input model parameters

which are to be inferred (i.e. see Section 2.2.2). In the case of D1, the data set is multi-

dimensional which comprises of Nt × 100 entries. Assuming independence between each of

the observed data entry, P (D|θ,M) is defined as per in Eq. (2.4). However, such assumption

leads to the loss of information on the correlation of the data D1 between successive t. In

addition, the use of density estimators, such as the Kernel Density Estimation approach,

requires a large number of model evaluations to perform a sufficiently accurate estimation

on the distribution on the data. This can be a computationally expensive procedure. To

reduce the computational cost, the Approximate Bayesian Computation (ABC) approach

[110, 266] is implemented which involves the use of an approximate likelihood function [267].

Such approximate likelihood function employs the use of a stochastic distance metric d which
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quantifies the difference between the distribution of the observed data and the model output.

The principle behind such approach is that the approximate likelihood function would return

a high value when d is small and returns a low value when d is large, thereby penalising the

realizations of θ that lead to the latter. The choice of P (D|θ,M) used in this problem is

the approximate Gaussian function defined as [267]:

P (D|θ,M) ∝ exp

(
−d

2

ε2

)
(6.1)

where ε is the width factor of the approximate Gaussian function.

From the resulting posterior, advanced sampling techniques are employed to obtain sam-

ples (i.e. see Chapters 2 and 3). In this work, the TEMCMC sampler is chosen and imple-

mented for 3 key reasons: 1) the algorithm is able to sample from complex-shaped posteriors

via “transitional” distributions P j (i.e. see Eq. (3.6)); 2) it can sample from high-dimensional

posteriors (i.e. up to 24 dimensions) [227]; and 3) it computes the evidence P (D|M) which

makes the algorithm useful in model selection problems [51].

For this task, different strategies are adopted to represent the aleatory uncertainty and

metrics are used to compare between distributions. As a result, 2 approaches aimed at

reducing the uncertainty of the UM are developed: 1) a conservative (i.e. low-risk) approach;

and 2) a more aggressive (i.e. high-risk) approach. Details on the respective approaches will

be discussed in Sections 6.2.2 and 6.2.3 of the chapter.

6.2.1 Proposed approaches

To determine the UM for a, 5 possible distribution types for πa are identified and listed in

Table 6.1. It needs to be highlighted that the choice of the Staircase Density Function (SDF)

presents a distribution-free approach contrary to the other choice of distributions presented

in the table. A key strength of SDFs lies in its flexibility in describing a wide range of

density shapes, including highly-skewed and/or multi-modal distributions. This makes them

highly applicable in modelling the marginal distributions of the aleatory parameters whose

density shapes are unknown a priori. In this analysis it is assumed that: 1) the marginal

distribution of all the aleatory uncertainties belong to the same distribution class; 2) no

dependency exists between all aia (i.e. no correlation matrix used).

119



Aleatory
model

Distribution type Prior distribution parameters

π1
a Beta(αia , βia) αia (Shape parameter 1): U [0, 100]

βia (Shape parameter 2): U [0, 100]
π2
a Truncated Normal(µia ,σia) µia (Mean of aia): U [0, 2]

[TN(aia ;µia , σia)] σia (Standard deviation of aia): U [0.01, 2]
π3
a Truncated Lognormal µia (Mean of log(aia)): U [−10, 10]

[TLN(aia ;µia , σia)] σia (Standard deviation of log(aia)): U [0.01, 5]
π4
a Truncated Gamma αia (Shape parameter): U [0, 10]

[TG(aia ;αia , βia)] βia (Scale parameter): U [0, 10]
π5
a Staircase Density Function µia (Distribution mean of aia): U [0, 2]

[SDF (aia ;µia , (m2)ia , (m3)ia , (m4)ia)] (m2)ia (2nd central moment of aia): U [0, 1]
(m3)ia (3rd central moment of aia): U [− 4

3
√
3
, 4
3
√
3
]

(m4)ia (4th central moment of aia): U [0,
4
3
]

Table 6.1: Distribution type with the Uniform prior bounds of its corresponding parameters
for each aleatory model πa.

6.2.2 Distribution-based approach

For the case of π1
a to π4

a, the distribution parameters add an additional 10 inferred parameters,

while π5
a adds an additional 20 inferred parameters. Each of these parameters are assigned a

Uniform prior with bounds, stated in Table 6.1, chosen to ensure sufficient degrees of freedom

in the model calibration. It is also assumed that these parameters are independent from one

another. This brings the total number of inferred parameters to 24 for the case of the SDF,

and 14 for the rest of the distributions.

For the case of π1
a to π4

a, there is a need to reduce the size of the data to reduce the

computation cost in evaluating P (D|θ,M). To achieve this, the Fast Fourier Transformation

(FFT) procedure is performed on D1 for each l according to [227, 268, 269]:

yl(t) =
5000∑
q=0

C l
q · exp [−i · q · ω0 · t] (6.2)

where ω0 = 2·π
5001

, and C l
q is the numerical coefficient with real and imaginary components

denoted as Re(C l
q) and Im(C l

q) respectively. From which, the amplitude Al
q and phase angles

ϕl
q are obtained as follows:

Al
q =

√
Re(C l

q)
2 + Im(C l

q)
2 (6.3)
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ϕl
q = atan2

[
Im(C l

q)

Re(C l
q)

]
(6.4)

To remove the periodicity associated with the values of ϕl
q, a phase shift is introduced such

that a factor of 2π rad is added or subtracted whenever the jump between consecutive phase

angles is greater than π rad. This is achieved using the unwrap function in MATLAB to

ensure the jump between any consecutive phase angles is always less than π rad. In doing

so, it ensures the monotonic behaviour of ϕl
q and simplifies its subsequent computation for

P (D|θ,M). When this is done, the frequency spectra of Al
q and ϕl

q are obtained as shown

in Figure 6.2 where it can be observed that beyond frequencies ω > 5.80 Hz, the values

of Al
q do not show any additional perturbations for all l, thereby allowing those data to be

discarded. Hence, only 30 values of ω between 0 Hz and 5.80 Hz are considered for both

Al
q and ϕl

q. Let this set of values of ω be denoted as ωn, for n = 1, . . . , 30. This effectively

reduces the total number of data for model calibration from 500100 to 6000 (i.e. 3000 for

Al
q and 3000 for ϕl

q).
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Figure 6.2: Illustration of the frequency spectra obtained from D1 via FFT.

To account for the variability of Al
q and ϕl

q at each ωn, the stochastic distance metric d

for P (D|θ,M) is the Wasserstein distance defined as [270]:

dW =

∫ ∞

−∞
|FD(x)− Fŷ(x)| · dx (6.5)
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whereby FD(x) and Fŷ(x) are the respective ECDFs of the data (i.e. Al
q and ϕl

q) and the

stochastic model output of ŷ at a given ωn, while x is the variable denoting either Al
q or ϕ

l
q.

In essence, dW quantifies the enclosed area between both ECDFs. The smaller dW is, the

higher the degree of similarity between the ECDFs of the data and the stochastic prediction

by ŷ [271]. Using Eq. (6.1), P (D|θ,M) is defined as:

P (D|θ,M) =
30∏
n=1

exp

−(dAW,n

εAn

)2

−

(
dϕW,n

εϕn

)2
 (6.6)

whereby the values of εAn and εϕn are approximated by the standard deviations of Al
q and

ϕl
q respectively at ωn. Independence is assumed between data sets to reduce computational

costs in computing P (D|θ,M). However, it needs to be highlighted that in reality, there

exists dependencies between the identified ωn for each lth sequence. To compute P (D|θ,M),

100 model evaluations by ŷ, per given set of model inputs {a, e}, are needed to construct

Fŷ(x).

6.2.3 Distribution-free approach

For the case of π5
a, the distribution is defined by the SDF as [272]:

πa =

hib ∀ a ∈ ((ib − 1) · κ, ib · κ]5 , for 1 ≤ ib ≤ Nb

0 , otherwise
(6.7)

where Nb = 50 is the number of bins, hib is the height of the SDF in the ib
th bin, and κ = 2

Nb

is the length of each sub-interval. It needs to be noted that hib ≥ 0 for all Nb bins and that

their values are obtained by solving the following convex optimisation problem:

ĥib = argmin
hib

≥0

{
J(h) :

Nb∑
ib=1

∫ ib·κ

(ib−1)·κ
z · hib · dz = µia ,

Nb∑
ib=1

∫ ib·κ

(ib−1)·κ
(z − µia)

r · hib · dz = (mr)ia

}
(6.8)

where r = 0, 2, 3, 4, and J(h) is the cost-function. Details on J(h) and Eq. (6.8) can be

found in [272, 33].

To avoid a potential error in the implementation of the likelihood function for the

Distribution-based approach being brought forward, a different set-up for P (D|θ,M) is used

in this analysis, where a different stochastic distance is employed and the data is analyzed
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in the time domain. Unlike in the Distribution-based approach, the discrete Bhattacharyya

distance [267] is employed as the stochastic distance metric d:

dB = − log


nb∑

iNt=1

· · ·
nb∑

i1=1

√
pD(bi1,...,iNt

) · pŷ(bi1,...,iNt
)

 (6.9)

where pD(bi1,...,iNt
) and pŷ(bi1,...,iNt

) are the Probability Mass Function (PMF) values of the

data from D1 and the stochastic model output from ŷ respectively within the bin bi1,...,iNt
,

and nb = 20 is the number of bins used to compute the Bhattacharyya distance.

It needs to be highlighted that each bin has Nt coordinates as it is generated within a

Nt-dimensional joint PMF space. Because of this, the resulting joint PMF space has an

excessive number of dimensions for a direct evaluation of P (D|θ,M). This brings the need

for a dimension-reduction procedure which is employed through the following steps [273]:

1. Define the window length Lw = 50 and divide the data set {yl(t)}l=1,...,100 into
⌈

Nt

Lw

⌉
distinct intervals where ⌈•⌉ is the ceil operator;

2. Compute the Root Mean Squared (RMS) values of each interval R =
[
R1, . . . , R⌈ Nt

Lw
⌉
]

and generate the sample set of the RMS values RD ∈ R100×⌈ Nt
Lw

⌉ where:

RD =

[
R1

D, . . . ,R
⌈ Nt

Lw
⌉

D

]
, with Rν

D = [R1,ν , . . . , R100,ν ]
T

for ν = 1, . . . ,
⌈

Nt

Lw

⌉
while Rŷ ∈ RNsim×⌈ Nt

Lw
⌉ where Nsim = 1000 the number of model

evaluations by ŷ per given set of model inputs {a, e}. It needs to be highlighted that

the matrix structure of Rŷ is similar to that of RD with the exception of the number

of row elements;

3. Evaluate dB between sample sets Rν
D and Rν

ŷ for all ν;

4. Obtain the corresponding RMS values RdB and use it as the distance metric.

Consequently, P (D|θ,M) is re-expressed as:

P (D|θ,M) = exp

(
−RdB

2

εB2

)
(6.10)

where εB = 0.01.
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6.2.4 Results and discussions

For this challenge problem, the model evaluation procedure by the given Black-box model ŷ

involves significant computational costs. In addition, there is also a need to ensure that the

sample size is sufficiently large to obtain Monte Carlo estimates on the inferred parameters θ

within an acceptable degree of uncertainty. To account for these 2 factors, N = 500 samples

are obtained from the resulting P (θ|D,M).

Based on the analysis done for all aleatory models πa, 2 models are chosen on the basis

of their quality of the results and for the subsequent purpose of comparison: π1
a and π5

a. It

needs to be highlighted, that π1
a is chosen given its relatively higher value of the evidence

P (D|M) compared to the other aleatory models used in the Distribution-based approach as

shown in Table 6.2.

Aleatory model π1
a π2

a π3
a π4

a

P (D|M) 3.2229× 10−7 2.1952× 10−7 5.0815× 10−10 1.0180× 10−9

Table 6.2: Results of the evidence computed via TEMCMC for each choice of model for πa.

To create the UM based on the information from the Bayesian model updating results, the

following procedure is undertaken: For the aleatory space, the histograms of the distribution

parameters of the given πa are obtained from P (θ|D,M). These histograms are converted

into probability distribution functions using Kernel density estimation with a Gaussian kernel

[274] and are normalised such that the distribution peak equals to 1. An illustration is

provided using the distribution parameters for π1
a as an example in Figure 6.3. From these

results, the posterior distributions are interpreted as Fuzzy sets where different levels of

statistical significance Lc ∈ [0, 1] would yield intervals of varying width. Such approach has

been proposed by Dubois et. al (2004) [275] and previously implemented in [36, 265] Here,

intervals at Lc = 0.50 level of confidence are considered for both the π1
a and π5

a distribution

parameters. The resulting intervals obtained would serve as shape parameter inputs of the

respective aleatory model πa. This yields the P-boxes [34, 182] of π1
a and π5

a which are

illustrated in Figure 6.4.

To define the epistemic space, the same procedure is done on the resulting histograms

of e1 to e4 obtained through P (θ|D,M) given the respective πa. These histograms are

illustrated in Figure 6.5 for the respective set-up. However, Lc = 0.05 level of confidence is

considered in the case of π1
a while Lc = 0.025 level of confidence is considered in the case of

124



Figure 6.3: Illustration of the resulting distribution functions to the respective shape param-
eters of π1

a (i.e. the joint Beta distribution) obtained via Kernel density estimates.
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Figure 6.4: P-box for a1 to a5 obtained from the respective UMs.

π5
a. The resulting intervals constitute the updated hyper-rectangular set E defined by each

of the resulting UM to which numerical results are presented in Table 6.6 in Section 6.3.3.

Let the UM determined from P (θ|D,M) given π1
a be denoted as UM1

y0, while that given π
5
a

be denoted as UM2
y0.
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Figure 6.5: Histograms for e1 to e4 obtained from P (θ|D,M) given π1
a (in blue) and π5

a (in
green).

To verify the calibration results, N = 500 samples are generated from the hyper-rectangle

defined by the bounds of the respective distribution parameters of πa and eie according to the

respective UMs. For each sample realization from this hyper-rectangle, 100 model outputs

of ŷ is obtained for t ∈ [0, 5] s. This is done by generating 100 realizations of a from πa,

given the distribution parameters from the hyper-rectangle sample, whilst keeping e fixed.

This yields a Nt × 100×Ns array of data output of ŷ for each UM whose results are plotted

in Figure 6.6. From the figure, it can be observed that the model output bands of UM1
y0

(in blue) and UM2
y0 (in green) generally encompasses D1 (in red) which indicates that the

model calibration procedure, via Bayesian model updating, was done satisfactorily.

To further substantiate this, P-boxes of the calibrated model output of each UM are

constructed at t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. Each P-box describes the extreme bounds of

the distribution of the N ECDFs whereby each ECDF comprises of the 100 model output

values at t. Figure 6.7 presents the resulting P-boxes from UM1
y0 (in blue) and UM2

y0 (in

green) at each chosen t. From the plots, it can be seen that the ECDF of D1 (in red) at any

given t is generally enclosed within the P-boxes. Furthermore, it can be observed that the

shape of both P-boxes generally follow the shape profile of the ECDF of D1 which indicates

a good degree of fit by both UMs.
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Figure 6.6: Output band from ŷ according to UM1
y0 (in blue) and UM2

y0 (in green) along
with the data sequence D1 (in red) after calibration.
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Figure 6.7: P-boxes of the model output from ŷ obtained from UM1
y0 (in blue) and UM2

y0

(in green) at various time slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. The red ECDF denotes the
distribution of the data D1.
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6.2.5 Further discussions

Figure 6.4 shows that the P-boxes obtained for a1 to a5 according to UM1
y0 are generally

wider than those according to UM2
y0. This indicates a higher degree of uncertainty on the

true distribution of all aia by UM1
y0 which makes it less informative in identifying the true

πa compared to UM2
y0. In addition, the P-boxes for a2 to a5 obtained by UM2

y0 are generally

enclosed within those of UM1
y0 which suggests that the true CDF defined by πa could lie

within the P-box defined by UM2
y0.

The intervals obtained from the posterior distributions for e1 to e4 through the model

based on Beta distributions is much wider compared to the UQ model obtained through the

SRV based approach as shown in Figure 6.5. This further highlights the less-informative

nature of UM1
y0, especially for the case of e3 and e4. In addition, the posteriors obtained

through the SRV based approach generally show a smaller spread about its means and that

such approach is able to identify the epistemic parameters much more effectively given that

the peaks are more pronounced. This leads to the uncertainty bounds of e according to UM2
y0

being significantly narrower such that they are generally enclosed within that according to

UM1
y0 as seen from Table 6.6 in Section 6.3.3.

Figure 6.6 shows that the output bands of ŷ obtained from both UMs follow the trend

defined by D1. However, from Figure 6.7, it is observed that the P-boxes obtained by UM2
y0

have much tighter bounds compared to UM1
y0 whilst still enclosing the ECDF of D1. This

is attributed to the P-box of the a and the bounds on e being narrower for UM2
y0 than that

for UM1
y0. This results in the former yielding a significantly better degree of fit over D1

than the latter. From the results, it can be concluded that UM1
y0 is much more conservative

compared to UM2
y0 in modelling the uncertainty of πa and e.

6.3 Task 2: Uncertainty reduction

The objective of this task is to identify the epistemic parameters which have more predictive

capability and improve the UM. This is achieved by performing a sensitivity analysis for the

epistemic model parameters and the subsequent refinement of the epistemic space.

6.3.1 Sensitivity analysis

In this analysis, the epistemic uncertainties are ranked according to their ability to improve

the predictive ability of the computational model of the subsystem. This predictive ability
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is quantified through the volume metric Ω defined as:

Ω =
nt∑

it=1

ρit ·∆it (6.11)

ρit is the area of the P-box at time-slice it, ∆it is the time-step between time-slice it − 1 and

it, and nt is the total of time-slices used for the computation. For the computation, the 6

time-slices, which were used for the illustration of the P-boxes in Figure 6.7, are considered.

Figure 6.8: Illustration to the approach in identifying the maximum reduction of Ω from the
pinching of eie .

In order to rank the the epistemic parameters according to their respective sensitivity, an

adaptive pinching method based on [36, 34] is proposed to provide a non-empirical approach

to determine the pinched bounds of a chosen epistemic parameter which yields the greatest

reduction in the value of Ω. To provide a visual understanding of the proposed method, a

schematic diagram is provided in Figure 6.8. The procedure is as follows: For a given ie,

the uncertainty space of eie is reduced by 90 %. This is done whilst keeping the uncertainty

space of the remaining 3 epistemic model parameters untouched. For a given eie , its bounds

would first be divided into 10 equally-spaced units. Next, at iteration j = 1, a segment of bin

length of 1 unit will be used to isolate the region of the epistemic space defined by the lower

and upper bounds of the first bin. This isolated region serves as the reduced (or “pinched”)

space. From there, the corresponding realizations of {a, e} from the UM, whose eie value

falls outside the bounds of the reduced epistemic space, is discarded. When this is done,

the reduced volume Ωp is computed again via Eq. (6.11). After this is done, the segment

shifts by 1 unit to the right as shown in Figure 6.8 and this initiates iteration j = 2 where

the above procedure is repeated all the way to iteration j = 10. This procedure is done for

e1 to e4. As an illustrative example, the results of the reduced volume Ωp for the respective

iteration j for each eie according to UM1
y0 are presented in Figure 6.9. From the figure, the

minimum value of Ωp for each eie is determined and the sensitivity index is computed:
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S = 1− Ωp

Ω0

(6.12)

where Ω0 is the initial volume before pinching. This sensitivity metric would then be used

to rank e1 to e4 to which the results according to the respective UMs are shown in Table 6.3.
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Figure 6.9: Results of Ωp for different pinched intervals for e1 to e4 according to UM1
y0. The

red line denotes the initial volume Ω = 0.2521, while the green bars represent the resulting
Ωp.

Rank Uncertainty model UM1
y0 Uncertainty model UM2

y0

Parameter Pinched bounds S Parameter Pinched bounds S
1 e2 [1.1729, 1.2748] 0.3300 e2 [0.8677, 0.9117] 0.4542
2 e3 [1.0449, 1.1647] 0.2972 e3 [0.3595, 0.4072] 0.3240
3 e1 [1.1619, 1.2670] 0.2882 e1 [0.5715, 0.5987] 0.2654
4 e4 [0.8425, 1.0148] 0.2272 e4 [0.8242, 0.9320] 0.2556

Table 6.3: The ranking order of the epistemic model parameters based on their respective
sensitivity index for the respective UMs.

Based on the results provided in Table 6.3, it is observed that e4 is ranked the lowest

in sensitivity according to both UMs. This implies that it is impossible to improve the

knowledge on e4 with the available model and data, making impossible to extract or infer

information on its true value, thus contributing the highest degree of non reducible epistemic

uncertainty in the calibration of the UM. For this reason, the first refinement request to the
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challenge host was made for the lower bound of e4, given the heavier left tail as seen from

its histogram obtained via the Distribution-free approach (in green) in Figure 6.5. Following

this, a second round of sensitivity analysis was performed following the approach outlined

above and accounting for the given refined bounds of e4 and the results are presented in

Table 6.4. From the results, e3 is consistently ranked within the bottom 2 according to both

UMs which suggests that e3 is the least informative parameter after e4. Hence, the second

refinement request was made for the lower bound of e3 given the lack of such information

according to both UMs as illustrated in Figure 6.5. The resulting epistemic space, with the

refined e3 and e4 bounds, constitutes the hyper-rectangle epistemic space denoted as E1.

Rank Uncertainty model UM1
y0 Uncertainty model UM2

y0

Parameter Pinched bounds S Parameter Pinched bounds S
1 e4 [1.0224, 1.0575] 0.5200 e2 [0.6036, 0.6476] 0.5999
2 e2 [0.4652, 0.5625] 0.5114 e4 [1.1276, 1.1632] 0.4128
3 e1 [0.6333, 0.7367] 0.5056 e3 [0.2166, 0.2642] 0.4024
4 e3 [0.9227, 1.0393] 0.4282 e1 [0.5715, 0.5988] 0.3821

Table 6.4: The ranking order of the epistemic model parameters based on their respective
sensitivity index for the respective UMs accounting for the refined bounds for e4.

6.3.2 Updated Uncertainty models

A second round of Bayesian model updating is performed with the bounds of the Uniform pri-

ors for the respective epistemic parameters defined by the hyper-rectangle E1. The approach

follows that outlined in Sections 6.2.2 and 6.2.3 from which UM1
y1 and UM2

y1 are obtained

respectively. From which, the corresponding numerical results of the updated bounds for

each eie according to UM1
y1 and UM2

y1 are presented in Table 6.6 in Section 6.3.3. Finally,

a sensitivity analysis was done again following the methodology presented in Section 6.3.1

and the results are summarized in Table 6.5. From the table, it can be observed that the

sensitivity ranking of each eie is the same as that in Table 6.3 for the respective UMs.

6.3.3 Results and discussions

The resulting model output of the response plot according to UM1
y1 and UM

2
y1 are illustrated

in Figure 6.10. From the figure, it can be observed that the response plots according to

both UMs are well-fitted against D1. However, such fitting is significantly tighter for the

case of UM2
y1 as seen in Figure 6.10 and this is supported by Figure 6.11 where it can
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Rank Uncertainty model UM1
y1 Uncertainty model UM2

y1

Parameter Pinched bounds S Parameter Pinched bounds S
1 e2 [0.4447, 0.5340] 0.4095 e2 [0.9514, 0.9726] 0.3610
2 e1 [0.9500, 1.0413] 0.2960 e3 [0.5675, 0.6173] 0.3245
3 e4 [0.9274, 0.9585] 0.2385 e1 [0.5550, 0.5725] 0.2981
4 e3 [0.3333, 0.3590] 0.2379 e4 [1.0225, 1.0584] 0.2782

Table 6.5: The ranking order of the epistemic model parameters based on their respective
sensitivity index for the respective UMs accounting for the refined space E1.

also be seen that the resulting P-boxes of the response plot across all chosen time-slices

t are significantly narrower compared to UM1
y1 whilst enclosing the ECDF for D1. This

observation is consistent to that discussed in Section 6.2.5 and concludes that the response

plot according to UM2
y1 is more representative of D1.

Figure 6.10: Output band from ŷ according to UM1
y1 (in blue) and UM2

y1 (in green) along
with the data sequence D1 (in red) after calibration.

Figure 6.12 illustrates the resulting P-boxes quantifying the uncertainty over the marginal

distributions of πa by the respective UMs. From the figure, it can be seen that the P-

boxes according to UM2
y1 is significantly narrower and enclosed within that according to

UM1
y1 which verifies that the true marginal distributions of πa could lie within the P-boxes

defined by UM2
y1. The results by UM1

y1 once again highlights its conservative nature in its

uncertainty over πa compared to UM2
y1.
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Figure 6.11: P-boxes of the model output from ŷ obtained from UM1
y1 (in blue) and UM2

y1

(in green) at various time slices t = {0.5, 1.0, 2.0, 3.0, 4.0, 5.0} s. The red ECDF denotes the
distribution of the data D1.
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Figure 6.12: P-box for a1 to a5 obtained from the respective UMs.

Finally, results from Table 6.6 show that the uncertainty bounds over e according to

UM2
y1 is significantly narrower and generally enclosed within that according to UM1

y1. This

result is supported by Figure 6.13 where it can be seen that the resulting histograms of
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the epistemic parameters obtained from P (θ|D,M) given π5
a are consistently narrower than

that obtained from P (θ|D,M) given π1
a. This verifies the results obtained by UM2

y1 which

further highlights its informative nature over UM1
y1. For this reason, UM2

y1 is chosen to

address the subsequent tasks of the challenge.

Figure 6.13: Histograms for e1 to e4 obtained from P (θ|D,M) given π1
a (in blue) and π5

a (in
green).

Uncertainty model e1 e2 e3 e4
UM1

y0 [0.3182, 1.3787] [0.3574, 1.3771] [0.0827, 1.2870] [0.1486, 1.8828]
UM2

y0 [0.4351, 0.7082] [0.5583, 1.0000] [0.0721, 0.5511] [0.6066, 1.6893]

UM1
y1 [0.3097, 1.2306] [0.3522, 1.2487] [0.2819, 0.5400] [0.8337, 1.1461]

UM2
y1 [0.4674, 0.6433] [0.7607, 0.9736] [0.2865, 0.4583] [0.9627, 1.1664]

Table 6.6: Updated epistemic space E for e1 to e4 according to the respective UMs.

6.4 Numerical implementation and computational time

In addressing the challenge tasks presented in the chapter, the adopted algorithms are mainly

based on random sampling and stochastic algorithms. Thus, the execution time fluctuates

significantly due to the inherent randomness depending on the uncontrolled conditions such

as starting samples, the evolution of the samples, etc. However, it needs to be noted that the
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random seed has not been fixed to allow for generality of the implementation and solution.

Therefore, the chapter only provides the approximate timing as the performance indicator:

1) the TEMCMC which takes between 5 to 8 hours of sampling time; and 2) the adaptive

pinching approach which involves less than a minute of computation time.

Finally, it needs to be highlighted that the computational times stated for the respective

tools are also dependent on the computational efficiency of the high-performance CPUs

which are used. These estimated timings may differ between different CPUs of different

specifications.

6.5 Chapter conclusion

The chapter has presented and demonstrated the different techniques implemented to address

Tasks 1 and 2 of the NASA-Langley Uncertainty Quantification Challenge.

In Task 1, the Bayesian model updating technique is used to calibrate the Uncertainty

Model by performing a probabilistic model update, via the Transitional Ensemble Markov

Chain Monte Carlo sampler, on both the distribution of the aleatory parameters as well

as the epistemic parameters. To provide a thorough comparison between different set-ups,

2 different Uncertainty Models have been proposed and analysed. Each of these models

adopt a different choice of joint distribution function for the aleatory space (i.e. the Beta

distribution vs the Staircase Density Functions), stochastic distance metric (i.e. Wasserstein

distance vs Bhattacharyya distance), and data type (i.e. frequency domain vs time domain).

Based on the results presented in Sections 6.2.4 and 6.3.3, it can be concluded that the use

of the Distribution-free approach provided more informative results on the bounds of the

distribution of the aleatory parameters and the epistemic parameters.

In Task 2, an adaptive pinching analysis was proposed to perform the sensitivity analysis

on the epistemic parameters, providing an efficient way of identifying the largest possible

reduction of the proposed volume metric by the single pinched component of the epistemic

space as well as the reduced bounds of the respective epistemic components. In doing so,

it allows for a systematic, non-empirical way to justify the pinched bounds and ensure that

all regions of the individual components of the epistemic space are accounted for in the

investigation of their respective effect on the 2 aforementioned quantities.
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Chapter 7

Sequential Ensemble Monte Carlo: A

Robust and Efficient sampler for

On-line Bayesian Model Updating

Abstract

Several on-line identification approaches are used for the “real-time” identification of pa-

rameter(s) of engineering systems and structures via Bayesian inference. For this purpose,

a robust and “tune-free” sampler is proposed and is referred to as the Sequential Ensemble

Monte Carlo sampler. The chapter presents an introduction to its theoretical framework

which seeks to extend an implementation of the Sequential Monte Carlo sampler towards

the identification of time-varying parameters which can be assumed constant whilst each set

of data collected, but may vary across the different sequences of data-sets. The proposed

approach involves the implementation of the Affine-invariant Ensemble sampler in place of

the Metropolis-Hastings sampler to update the samples. An adaptive-tuning algorithm is

also proposed to automatically tune the step-size of the Affine-invariant ensemble sampler

which, in turn, controls the acceptance rate of the samples across iterations. This is comple-

mented with a numerical investigation that provides evidence of the existence of an inherent

minimum value and maximum value on the acceptance rate, making the proposed sampler

robust by design.
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7.1 Background

In recent years, on-line learning has garnered significant attention for the purpose of pa-

rameter identification of engineering systems. On-line parameter identification involves the

learning and estimation of the parameter(s) of interest through distinct data-sets which are

obtained sequentially, contrary to the batch learning approach which requires the availability

of the entire data-set to produce estimates [276]. In particular, on-line parameter identifi-

cation is of value in situations when data is obtained over a period of time. This allows

for real-time parameter identification, making it a practical approach for investigating the

performance of engineering systems under operating conditions. For example, on-line pa-

rameter identification has been applied to identify: moveable mass positions within a 2DoF

shear frame [264, 1]; mistuning parameters of rotating blisks [277]; modal parameters of a

vehicle motion modes to investigate its dominant motion-mode [278]; structural parameters

of a nonlinear structural system to update its dynamical response model [279]; terrain pa-

rameters of the Wheel-Terrain model for wheeled motion control of mobile robots [280]; and

structural parameters of smart building structures for real-time damage detection [281].

The parameters identified through on-line learning are often time-invariant, see e.g. [243,

277, 278]. However, in many engineering applications, these parameters vary with time [282]

to which examples include: 1) structural modal parameters to study the dynamic response

of structures [221, 222]; 2) fatigue cracking parameters [223]; 3) stress data for performance

prediction of steel bridges [283]; 4) localized impact damage in composite panels based on

sensor data [284]; and 5) earthquake ground motion parameters using generalized Kalman

filter and structural absolute accelerations data [285].

Currently, within the time-domain applications, model parameters and system states (i.e.

displacements and velocities) are estimated via sequential Bayesian inference using Kalman

filters [286, 287], Gaussian Sum filters [288, 289], and Particle filters [290, 291]. Kalman

filters are computationally less-expensive compared to other filtering techniques. However,

they are designed specifically to deal with problems involving a linear dynamical system

and a Gaussian “noise” [292]. The Extended Kalman filter [293, 294] and the Unscented

Kalman filter [279, 286] extended the approach towards non-linear dynamical systems and

non-Gaussian “noise”. For instance, Gaussian Sum filters utilises weighted Gaussian Models

to approximate the predictive and posterior PDFs [289]. Thus, it does not require the

analytical form of the aforementioned PDFs. However, like the Kalman filter, Gaussian Sum

filters become ineffective when the dynamical system set-up becomes highly non-linear [295].
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Particle filters are applicable in both linear and non-linear dynamical systems and do not

assume the form of the “noise” [296]. However, they are computationally expensive and

perform poorly even with moderately high number of parameters (i.e. above 18 dimensions)

[210, 46]. For more information pertaining to the above approaches, the reader is referred

to the recent review paper by [297].

The focus of the chapter is on the SMC sampler whose concept was introduced in Chapter

3. Currently, it has been implemented under off-line (i.e. batch) and on-line settings towards

the parameter identification for numerous set-ups including: 1) non-linear time-series model;

2) non-linear state-space models; and 3) high-dimensional target distributions [178, 298]. At

present, the SMC sampler has not yet been implemented to identify model parameters that

are considered constant while a sequence of observations is obtained but may vary across

the different sequences of such observations. Under such settings, the posteriors of such

parameters are assumed to be static within an observation sequence from which the SMC

sampler is implemented to generate samples to provide estimates on the parameters at that

given time step sequence. The posteriors, and therefore the estimates on the parameters, may

vary between the different sequences of such observations. It needs to be emphasised that

such problem that is being investigated in the dissertation (i.e. see Chapter 8) is different

to those that can be addressed with the filtering methods such as the Kalman filter and

the Particle filter. Moreover, there exists the following short-comings in the SMC sampling

algorithm: 1) the choice of proposal distribution can significantly affect the sampler results

[52]; 2) it is computationally inefficient because of the number of parameters required to

compute and tune [299]; and 3) the moderation of acceptance rates of its samples has not

been investigated in detail.

To address these short-comings, a robust and “tune-free” Sequential Ensemble Monte

Carlo (SEMC) sampler is proposed based on the use of the AIES in place of the MH sampler

for the MCMC step [300]. The AIES has been proven to be robust in recent implementa-

tions for reliability analysis using Subset Simulation [301], and for model updating via the

TEMCMC sampler [101, 264] thanks to its capability of sampling from highly-skewed and

anisotropic distributions (i.e. see Chapter 4 of the dissertation). In addition, an adaptive-

tuning algorithm, inspired from the work by [169], is developed to provide a robust mech-

anism to ensure that the acceptance rate values have achieved convergence before moving

on to the next sampling iteration. Details on the adaptive-tuning algorithm are provided in

Section 7.4.1. Numerical investigation has proven the existence of inherent bounds in the

acceptance rates values and shown in Section 7.4.2. To the best of the author’s knowledge,
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such investigation and analysis is yet to be presented in existing literature.

7.2 Sequential Bayesian inference

Sequential Bayesian inference is a popular technique to address inverse problems and infer

time-varying model parameter(s) under uncertainty [37, 38]. Its mathematical formulation

extends from the Bayesian inference framework implemented to infer time-invariant model

parameter(s) as outlined in Chapter 2. As stated in Section 7.1, the interest here is in

the use of the sequential Bayesian inference framework towards inferring the time-varying

parameter(s) whose posterior is consequently static for a given observation sequence but

varying over time between the different observation sequences. To reflect such time-varying

aspects, θs is defined as the parameter(s) at the sth time step sequence whose instantaneous

(i.e. static) posterior can be expressed as P (θs|D1:s,M), whileD1:s = {D1, . . . ,Ds} denotes
the stream of data-set D obtained sequentially up to the sth time step sequence in an on-line

manner. An essential requirement in the inference of θs is the underlying Markov kernel

T (θs+1|θs) that describes the evolution from θs to θs+1 and can be expressed as [283]:

T (θs+1|θs) : θs+1 = Γ(θs) + νθ (7.1)

where Γ(•) is the nominal evolution model and νθ is the process “noise”. In this work, we

shall assume that νθ follows a zero-mean Normal distribution with fixed standard deviation

σν (see e.g. [283, 302, 303]).

The sequential Bayesian inference procedure can be summarised as follows [282]: At time

step sequence s = 1, the posterior P (θs|D1:s,M) is defined (see Eq. (2.8)). Following which,

the predictive distribution P (θs+1|D1:s,M) is computed [296]:

P (θs+1|D1:s,M) =

∫
T (θs+1|θs) · P (θs|D1:s,M) · dθs (7.2)

The predictive distribution P (θs+1|D1:s,M) describes our prediction of θs+1 before observ-

ing the data Ds+1 to be obtained in time step sequence number s + 1. In this regard,

P (θs+1|D1:s,M) is set as the new prior to be updated and the process is repeated for time

step sequence number s+ 1 until the terminal sequence send.

To sample sequentially from the given static posterior P (θs|D1:s,M), the SMC-MH sam-

pler is implemented as follows [181]: At iteration s = 0, sampling algorithm is initialized by

generating N samples generated from the prior P (θs). Next, the normalised weights of each
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ith sample ŵs
i is computed following Eq. (3.20). Following which, the algorithm proceeds to

the updating step where N single-step Markov chains are initiated, each starting from sample

θs
i obtained using weighted resampling (with replacement) according to ŵs

i . The Metropolis-

Hastings (MH) approach is then adopted to generate 1 sample from each Markov chains

[50]. The candidate samples are generated from a Normal proposal distribution q(θs∗
i |θs

i )

with mean θ̄s and covariance matrix Σs computed using Eq. (3.9) and Eq. (3.8) respectively.

From there, the candidate sample is accepted or rejected using Algorithm 2. After which,

the updated samples θs
i are then passed through the Markov kernel T (θs+1|θs) to generate

θs+1
i (i.e. the predictive samples). Finally, the predictive distribution function is estimated

using a Kernel Density Estimate in the form of:

P (θs+1|Ds,M) ≈ 1

N

N∑
i=1

K

(
θ − θs+1

i

h

)
(7.3)

where θ is a random variable, K(•) is the Kernel smoothing function which is set as the

standard Normal distribution, and h is the Nd-by-Nd diagonal bandwidth matrix where Nd

is the number of inferred parameter(s). Each diagonal element of the bandwidth matrix hd,

for d = 1, . . . , Nd is computed using the Silverman’s Rule of Thumb [304]:

hd = σ̃d ·
[

4

N · (d+ 2)

] 1
(d+4)

(7.4)

where σ̂d is the standard deviation of the dth component of θs+1. The algorithm proceeds to

the next time step s = s + 1 if data are available by setting θs+1
i as the new prior samples

and P (θs+1|D1:s,M) as the new prior PDF. When no further data is obtained beyond that

point, the algorithm terminates at time step s = send. A pseudo-algorithm of the sampling

procedure by the SMC-MH sampler is presented in Algorithm 8.
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Algorithm 8 SMC-MH sampler algorithm

1: procedure (Generate N samples sequentially from P (θs|D1:s,M))
2: Set s = 0 ▷ Initialise counter
3: Draw initial N sample set: θs

i ∼ P (θ|M) ▷ Generate samples prior
4: while s < send do ▷ Main sampling loop
5: Set s = s+ 1
6: Compute ŵs

i using Eq. (3.20)
7: for i = 1 : N do ▷ For each ith chain (MCMC step)
8: Resample: θs

i ∼ ŵj
s

9: Draw candidate sample: θs∗
i ∼ q(θs∗

i |θs
i )

10: Accept/Reject θs∗
i with probability αi using Algorithm 2

11: end for
12: Compute θs+1

i using T (θs+1|θs) ▷ Set as new prior samples
13: Compute PDF of P (θs+1

i |D1:s) using Eq. (7.3) ▷ Set as new prior
14: Compute P (D1:s|M) using Eq. (4.1)
15: end while
16: end procedure

7.3 Review of Sequential Monte Carlo

7.3.1 Advantages and limitations of current SMC sampler

One key advantage of the SMC sampler lies in its ability to sequentially compute the evidence

term P (D1:s|M) corresponding to the posterior P (θs|D1:s,M) at any given sth time step

sequence [52, 305]. The metric P (D1:s|M) also quantifies how well a given model class M

describes the available set of data D1:s as well as the time-evolution of θ. This makes the

SMC sampler well-suited in addressing problems regarding the model class selection of M

(see e.g. [306, 307, 305, 308, 309]). The evidence term P (D1:s|M) can be estimated by the

product of the mean of the nominal weights ws
i at any given time step sequence s ≥ 1 using

Eq. (4.1).

Another characteristic of the SMC sampler is the flexibility in the choice of auxiliary

parameters of the algorithm such as the scaling parameter of the covariance matrix and

the Markov kernel of the time-varying parameter (i.e. see Eq. (7.1)) [310, 311]. This is

because even if the samples do not follow the true distribution, the weighting process and

the conditional resampling step (i.e. the Bootstrapping with replacement), with which the

algorithm will correct and move the samples closer to its true distribution. To illustrate
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the resampling concept, a numerical example involving a a mixture of 2 bi-variate Gaussian

distributions based on work in [51] is presented. Here, we shall consider a 2-dimensional

Uniform prior such that: P (θ1) ∼ U(−2, 2) and P (θ2) ∼ U(−2, 2). The likelihood function is

defined as a mixture of 2 bi-variate Gaussian functions with means centered about {θ1, θ2} =

{0.5, 0.5} and {−0.5,−0.5} with covariance matrix 0.1 · I, where I is the identity matrix. As

an example, the SMC-MH sampler is implemented with N = 10000 samples from which the

prior samples with their associated normalised weights ŵs
i are presented in Figure 7.1. In

the figure, the samples which fall in the regions of the posterior indicated in yellow and light

blue are resampled with a higher probability than those which fall outside the regions of the

posterior indicated in dark blue. This allows for the Markov chains in the MCMC step to

initiate within the support of the posterior and removes any need to consider the burn-in.

Figure 7.1: Scatterplot of the prior samples, along with their associated normalised weights
ŵs

i , obtained from the posterior consisting of a mixture of two Gaussian distributions.

However, there are still limits to such flexibility as situations could arise whereby nearly all

the samples could still fall outside the true distribution even after the conditional resampling

step. This leads to nominal weights being close to 0 and the resampling step would fail to

converge the samples to the true distribution [312].

One key problem in the SMC sampler is that there exists no universal choice of proposal

distribution q(θs∗
i |θs

i ) to generate candidate samples θs∗
i [52]. This creates significant degree

of model uncertainty in deciding an appropriate distribution for q(θs∗
i |θs

i ). In practice, a
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Normal distribution is used to ease the computation of the acceptance ratio αi due to the

symmetric nature of the distribution [50, 233]. However, the ideal choice of q(θs∗
i |θs

i ) is one

that is “optimally” scaled to the current posterior P (θs|D1:s,M) [52, 233, 82]. Practically

speaking, this would be difficult for two reasons: 1) there is a lack of knowledge over the

analytical form of the true posterior itself; and 2) it is difficult to determine that “optimal”

scale, especially in the case where the random-walk MH algorithm is used as the MCMC

kernel (i.e. the SMC-MH sampler), although the problem can be addressed through the

use of the independent MH MCMC kernel in [181] which eliminates the need for parameter

tuning.

Another challenge is the computational cost of the SMC sampler. In particular, when the

dimensionality of the problem increases, a higher computation cost is incurred in computing

the covariance matrix of q(θs∗
i |θs

i ) at each s
th time step sequence, which can be the case for

both the independent MH [181] and random-walk MH algorithms.

7.3.2 Sequential Monte Carlo variants

Numerous MCMC move kernels within the SMC sampler have recently been considered

such as: 1) Particle Evolution Metropolis (i.e. PEM-SMC) [184, 313], 2) Gibbs sampler

(i.e. SMC for Vector Auto-regressions with Stochastic Volatility (VAR-SV)) [314], and 3)

target-invariant MCMC mutation kernel (i.e. SMC for high-dimensional inverse problems)

[214].

The PEM-SMC sampler has demonstrated its strength in generating samplers more ef-

fectively from complex-shaped distributions, especially those with multiple peaks [184]. The

sampler is also able to sample efficiently from moderate-dimensional posteriors (i.e. up to 30

dimensions) thanks to its effective way to explore the dimensional sample space and generate

more candidate samples with a high probability content. This ensures a quick convergence

of the samples towards the posterior distribution [184]. However, the effectiveness of the

algorithm is subjected to the choice of the proposal distribution (i.e. the transfer probability

distribution) which leads to the potential problem of model uncertainty.

The SMC sampler for VAR-SV has demonstrated its strength in tackling the problem

of degeneracy effectively through the use of the Gibbs sampler which ensures that there is

less repeated samples generated in the MCMC step. This increases the number of unique

samples, thereby, allowing the sample space defined by the posterior to be well-explored

[314]. In addition, it can be easily parallelised which allows for the rapid update of samples
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from one posterior to the next across iterations [314]. However, the sampler is limited by

the short-coming of the Gibbs sampler which is the latter’s dependency on the choice of

an appropriate conditional distribution to represent the posterior [136]. Should the poste-

rior be functionally complex, choosing such conditional distribution becomes non-trivial as

highlighted in Chapter 3 of the dissertation [46].

The target-invariant MCMC mutation kernel is also quite robust thanks to its ability

to address the issue of sample degeneracy effectively like the SMC for VAR-SV [214]. In

addition, the algorithm ensures a relatively quick convergence rate of the samples to the

posterior distribution through the adaptive tempering step which ensures a smooth transition

from one posterior to the next between successive iterations [214]. This allows for the

sampler to be applicable to cases with highly-dimensional and complex-shaped posteriors.

However, the use of such MCMCmove kernel introduces a relatively large number of auxiliary

parameters to compute such as the tempering parameter and the Fourier coefficients which

increases the computational cost of the algorithm [214].

For the work presented here, the AIES is implemented as the alternative MCMC kernel

to the MH. The reasons behind such proposal are: 1) to exploit the strength of the AIES

in its ability to sample from anisotropic and highly-skewed distributions (i.e. see Section

4.3.1 of the dissertation); and 2) the AIES can be parallelised. This gives rise to the SEMC

sampler to which an additional feature proposed is the adaptive tuning algorithm which

serves to control the acceptance rate of the sampler by tuning its step-size parameter in an

automatic manner.

7.4 Sequential Ensemble Monte Carlo sampler

A key feature of the proposed SEMC sampler is in the implementation of the AIES in place

of the MH sampler as the MCMC kernel to update the samples according to the current

posterior P (θ(ts)|D1:s,M). Detailed mathematical descriptions on the AIES, as well as a

discussion on its key advantages over the MH sampler, are provided in Section 4.3.1 of the

dissertation.

7.4.1 Adaptive-tuning algorithm

The proposed adaptive-tuning algorithm is based on the work by [169] which serves 2 key

purposes: 1) to adaptively tune and update the step-size u; and 2) to provide a mechanism to
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control the acceptance rates of the SEMC sampler such that they converge towards the user-

defined target acceptance rates and fall within the optimal bounds of [0.15, 0.50] suggested

by [150].

The procedure undertaken by the algorithm is as follows: At s = 1, an initial step-size

us=1 is defined by the user to which the recommended value is 2 [231, 239]. From this initial

value, the nominal step-size unom is computed after the MCMC step following Eq. (4.16).

If unom > 1, then us+1 = unom. Otherwise, the algorithm sets us+1 = 1.01 to ensure that

the step-size would never be less than 1. This procedure is then repeated at the end of each

iteration until the terminal iteration s = send.

To provide additional robustness to the SEMC sampler and assuring the acceptance

rates converge towards the target acceptance value at every iteration, “virtual” iterations are

introduced which involves the updating of the posterior samples with a series of repeated data

Ds. The termination criteria is defined whereby the acceptance rate values have converged.

This is indicated when the difference in the acceptance rate values ∆α between successive

“virtual” iterations j falls within 10 % of the value of αtr upon which the procedure ends.

In doing so, it not only allows for the automatic tuning of the step-size us but also ensures

that the acceptance rate values converge towards αtr across all s, independent of the data

provided.

7.4.2 Acceptance rates analysis

It needs to be noted that the target acceptance rate defined by Eq. (4.2) is based on the

analysis that was done for the MH sampler. There is currently no literature that looks

into the mathematical computation of the target acceptance rate for the AIES. While this is

used as a general reference for the AIES, there exists a minimum acceptance rate value based

on the analysis done in the context of the numerical example involving a mixture of 2 bi-

variate Gaussian distributions [51] presented in Section 7.3.1. For this study, the distribution

sequence P j is constructed following Eq. (3.6) with the step size set at ∆βs = 0.1 across

all time step sequences s, giving a total of 10 time step sequences. A sample size of 1000

samples is obtained from each P j. In total, 6 different simulation runs are conducted with

the corresponding acceptance rates αtr = {0.100, 0.283, 0.440, 0.800, 0.900, 1.000} and the

respective starting step-size values of us=1 = {15, 15, 10, 3, 2, 2, 2} to which the results are

presented in Figure 7.2.

From the results, it can be seen that the acceptance rates never fall below 0.300 despite
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having a larger value of us=1 and a lower target acceptance rate values as seen in the cases of

αtr = 0.100 and αtr = 0.283 The reason behind the existence of a minimum acceptance rate

value is attributed to the resampling procedure by the SEMC algorithm which ensures that

samples far from the posterior are eliminated while samples closer to or within the posterior

are re-populated. As a result, a proportion of the samples will always be accepted, resulting

in a non-zero acceptance rate. On the other hand, the upper bound of the acceptance rate

is in practice always less than 1 given that for a non-Uniform distribution a proportion

of samples are rejected by the sampling algorithm. In fact, in the cases where the chosen

target acceptance rate values were 0.900 and 1.000, the acceptance rates across the time step

sequences s never exceeded 0.850 as seen in Figure 7.2.

Hence, the existence of such bounds makes the algorithm particularly robust and generally

applicable without the need of guessing a “good” acceptance rate. Instead, the acceptance

rate can be used as a monitoring parameter of the performance of the algorithm. In fact, if

the acceptance rate is high (e.g. above 0.850), it could indicate that the samples are stuck in

a specific region of the posterior and the resulting sample distribution and its estimates may

not be representative of the true posterior distribution. The acceptance rate bounds may

depend on the dimension of the posterior distribution and the number of chains Nc used in

the sampler which requires further investigation.
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Figure 7.2: Results of the acceptance rates evolution by the SEMC sampler across s given
the target acceptance rate values αtr = {0.100, 0.283, 0.440, 0.800, 0.900, 1.000} with the
respective starting step-size values us=1 = {15, 15, 10, 3, 2, 2, 2}.
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Without the need to decide on a “good” acceptance rate, complemented with the pro-

posed adaptive-tuning algorithm involving the “virtual” iterations, these features highlight

the robustness of the proposed SEMC sampler in that: 1) it is “tune-free” for the users in

that they do not have to define an initial step-size value us=1; and 2) it is able to effectively

control the acceptance rates across the different time step sequence s as illustrated from the

results in Figure 7.2.

Algorithm 9 presents a summary of the SEMC sampling procedure. The resampling step

in line 10 ensures that: 1) the Markov chains initiate with a higher probability from samples

θs
i with a higher ws

i [51]; and 2) the final distribution of samples would be representative of

the analytical distribution of P (θs
i |D1:s,M).

Algorithm 9 Proposed SEMC sampler algorithm

1: procedure (Generate N samples from P (θs|D1:s,M))
2: Set s = 0 ▷ Initialise time step counter
3: Draw initial N sample set: θs

i ∼ P (θ|M) ▷ Generate samples from prior
4: Set us+1 = 2 ▷ Set initial value of step-size
5: while s < send do ▷ Loop over time steps
6: Set s = s+ 1
7: Set j = 1 & αold = αtr ▷ Initialize parameters
8: Compute ŵs

i using Eq. (3.20)
9: while do ▷ Initiate “virtual” loop
10: Resample N samples: θs

i ∼ ŵs
i

11: Set θs
i = θi,1 in ensemble θ⃗1 ▷ Initiate ensemble

12: Update θ⃗1 with 1 iteration of AIES (see Algorithm 6) ▷ MCMC step
13: Compute α using Eq. (4.10)
14: Compute unom using Eq. (4.16) ▷ Tuning the step-size
15: Set us+1 = max(unom, 1.01)
16: if |α− αold| < 0.1 · αtr then ▷ Check termination criteria
17: Break ▷ Exit “virtual” loop
18: end if
19: Set αold = α
20: Set j = j + 1
21: end while ▷ End “virtual” loop
22: Set updated ensemble θ⃗1 as θs

i ∼ P (θs|D1:s,M)
23: Compute θs+1

i using T (θs+1|θs) ▷ Set as new prior samples
24: Compute PDF of P (θs+1

i |D1:s) using Eq. (7.3) ▷ Set as new prior PDF
25: Compute P (D1:s|M) using Eq. (4.1)
26: end while
27: end procedure
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7.5 Chapter conclusion

The chapter has introduced the concept of the Sequential Ensemble Monte Carlo sampler

and how it can be implemented to infer the time-varying parameters that are considered

constant while a sequence of observations is obtained but may vary between the different

sequences of such observations. The proposed sampler seeks to be a robust and efficient vari-

ant of the Sequential Monte Carlo sampler. The proposed sampler includes 2 new features:

1) the implementation of the affine-invariant ensemble sampler in place of the traditional

Metropolis-Hasting sampler in the MCMC step; and 2) the introduction of an adaptive tun-

ing algorithm making the approach “tune-free” for users. For the second feature, to ensure

robustness in converging the sampler’s acceptance rate to the target value upon the first

iteration, additional “virtual iterations” in the form of while loops are introduced in the first

iteration which terminates upon satisfying the defined termination criteria. This serves to

tune the step-size parameter of the sampler in an iterative manner which, in turn, controls

the acceptance rate.

In addition, a novel analysis on the acceptance rates of the proposed sampler is being

studied which indicated the existence of inherent bounds on the acceptance rate values.

Through such findings, a qualitative explanation is provided behind the presence of an

inherent minimum value and maximum value on the acceptance rate. This also provides

a rationale as to why the analyst need not be concerned with the acceptance rate of the

sampler falling below the optimal value of 0.15 and that it is only essential to ensure that

the acceptance rate value is not too high (i.e. between 0.8 and 0.9).

Finally, it needs to be highlighted that a significant drawback of the sampler is the rel-

ative complexity in coding the Sequential Ensemble Monte Carlo algorithm from scratch

compared to the Sequential Monte Carlo sampler with Metropolis-Hastings kernel. To ad-

dress this issue, access to the MATLAB code is provided on GitHub: https://github.com/

Adolphus8/Sequential_Ensemble_Monte_Carlo.git

Following the chapter, the implementation of the proposed Sequential Ensemble Monte

Carlo sampler will be demonstrated on an experimental example involving experimental

data and a physical structure to which details and results are presented in Chapter 8 of

the dissertation. Through this example, a comparison in the sampling performance and the

resulting estimates on the inferred parameters (both time-varying and static) will be made

between the proposed Sequential Ensemble Monte Carlo sampler and the Sequential Monte

Carlo sampler with Metropolis-Hastings kernel.
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Chapter 8

On-line Identification of Time-varying

Model parameters for Structural

Health Monitoring

Abstract

The chapter illustrates the implementation of the proposed Sequential Ensemble Monte Carlo

sampler, presented in Chapter 7, in an experimental example involving a SDoF single-storey

Shear Frame structure subjected to a Coulomb friction. The study consists of 2 parts: In the

first part, the proposed sampler is implemented alongside the traditional Sequential Monte

Carlo sampler in identifying the most probable Markov kernel to describe the evolution of

the Coulomb friction with time. In the second part of the study, the time-varying Coulomb

friction as well as the time-invariant natural frequency of the structure and measurement

errors are inferred. As such, there are 4 objectives to this study: 1) to validate the pro-

posed sampler in the Bayesian identification of the aforementioned parameters using actual

experimental data; 2) to compare and verify the inference results obtained by the proposed

sampler against that of the Sequential Monte Carlo sampler; 3) to demonstrate the robust-

ness of the proposed sampler in controlling the acceptance rates under challenging settings;

and 4) to assess the robustness of the proposed sampler in identifying the most probable

Markov kernel under uncertainty.
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8.1 Background

Figure 8.1: Physical set-up of the SDoF single-storey shear frame structure subjected to
Coulomb friction.

Figure 8.2: Schematic diagram of the SDoF single-storey shear frame structure subjected
to Coulomb friction. Image adapted from [9].
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In this experimental example, the effect of the time-varying friction force on the response

dynamics of a physical structure will be investigated. Such application example is specifically

chosen due to its importance in assessing the dynamic performance of structures and avoid-

ing friction-related failures [9, 315]. This investigation is conducted using a single-storey

shear frame with a Coulomb friction contact, subjected to a harmonic base-excitation. The

physical set-up and schematic diagram of the structure are presented in Figures 8.1 and 8.2

respectively. Detailed description to the physical set-up can be found in [9].

The objective of this investigation are the following: 1) to evaluate the capability of

the proposed SEMC sampler in its ability to infer the values of Coulomb friction force at

each time step sequence, the time-invariant natural frequency of the structure, and the mea-

surement error using sets of actual experimental data obtained sequentially; 2) to verify

the inference results obtained by the proposed SEMC sampler against the SMC-MH sam-

pler; and 3) to evaluate the model identification capability of the SEMC sampler will also

be investigated in identifying the most probable Markov kernel to model the time-varying

characteristic of the Coulomb friction force under uncertainty.

8.2 Physics-based model of the structure

Figure 8.3: Spring-mass representation of the SDoF single-storey shear frame structure
subjected to Coulomb friction.

The building can be modelled as Spring-Mass-Damped system as shown in Figure 8.3

where the mass m and the stiffness k represent the participating mass and stiffness of the
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first vibrating mode of the structure [9, 315]. The Coulomb friction force Fµ is generated as

a result of contact between the mass m and a fixed wall and is obtained as the product of a

friction coefficient µ and the normal contact force FN .

To study the response dynamics of the structure as well as the parameters to be inferred

in this problem, it is possible to write the governing equation of this SDoF model in a

dimensionless form as [315]:

r2 · d
2x̃

dτb2
+ x̃+ β(t) · sgn

(
dx̃

dτb

)
= cos (τb) (8.1)

where x̃ is the dimensionless response of m, r is the frequency ratio, β(t) is the time-varying

friction ratio, and τb is the dimensionless time parameter. The dimensionless frequency ratio

r is defined as [315]:

r =
ωb

ωn

(8.2)

where ωn =
√

k
m

is the natural frequency of the structure which was determined experimen-

tally [9] to be 19.572 rad/s and ωb is the driving frequency of the harmonic base-excitation.

Hence, the dimensionless time τb in Eq. (8.1) is defined as: τb = ωb ·τ , where τ is the physical

time parameter. The dimensionless force ratio β(t) is defined as [315]:

β(t) =
Fµ(t)

kYb
(8.3)

where Yb is the driving displacement amplitude by the rotor. Thus, kYb is the driving force

amplitude whose value was measured experimentally to be 2.50 N . Hence, the dimensionless

response x̃ is defined as [315]:

x̃ =
x

Yb
(8.4)

where x is the response displacement of m. According to Den-Hartog’s theory [316], under

the assumptions of continuous and symmetric response, the steady-state solution of Eq. (8.1)

can be obtained analytically as [315]:

x̃num(τb) =

x̃(τb) for τb ∈ [0, π)

−x̃(τb − π) for τb ∈ [π, 2π)
(8.5)

where x̃(τb) can be evaluated as:
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x̃(τb) = x̃0 · cos(τb) + β(t)U · sin(τb) + β(t) ·
[
1− cos

(
τb
r

)
− Ur · sin

(
τb
r

)]
(8.6)

In Eq. (8.6), the damping function U is defined as:

U =
sin (π/r)

r · [1 + cos (π/r)]
(8.7)

while the dimensionless response amplitude x̃0 can be evaluated as:

x̃0 =

√(
1

1− r2

)2

− (β(t) · U)2 (8.8)

Details on the derivation of the above terms can be found in [315].

8.3 Data collection

For this study, 4 different values of Coulomb friction force Fµ(t) are considered to simulate

its time-varying aspect for t = {1, 2, 3, 4} months. This variation in Fµ(t) can be simulated

by varying the configuration of the weights in the counterweight system seen in Figure 8.2.

These values of Fµ(t) are: {1.435, 0.980, 0.662, 0.217} N respectively. For each Fµ(t), 9 sets of

phase angle data ϕ are collected across 9 chosen values of frequency ratio r. The phase angle ϕ

is chosen as the response data due to its high-degree of sensitivity to the variation in Fµ(t) as

shown in [9]. The reference values for the 9 chosen values of r, which can be obtained by ad-

justing ωb (i.e. see Eq. (8.2)), are: rnom = {0.65, 0.80, 0.95, 1.10, 1.25, 1.40, 1.55, 1.70, 1.85}.
The experimental procedure to obtain the phase angles ϕ from given values of Fµ(t) and r

can be found in [9].

The experimental measurements of ϕ, r, and Fµ(t) are obtained by Dr. Luca Marino and

are shown in Table 8.1 and in Figure 8.4. In Figure 8.4, the Den-Hartog’s boundary denotes

the boundary between the continuous motion and the stick-slip regime for the dynamic

response of the top plate under Coulomb friction, while the continuous colored lines represent

the true model output of ϕ, given Fµ(ts), for the different values of r within the continuous

motion regime. In addition, the values of the driving frequency ωb measured from each test

are presented in Table 8.2.

Based on the experimentally-obtained values of Fµ(t), 2 choices of Markov kernels are

identified to model the time-based degradation of Fµ(t):
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Exp. rnom Fµ(t1) = 1.435 N Fµ(t2) = 0.980 N Fµ(t3) = 0.662 N Fµ(t4) = 0.217 N
r ϕ r ϕ r ϕ r ϕ

[deg] [deg] [deg] [deg]
1 0.65 0.649 46.464 0.637 27.217 0.624 16.622 0.652 6.496
2 0.80 0.791 41.492 0.789 26.269 0.807 16.900 0.796 4.292
3 0.95 0.952 41.864 0.944 29.936 0.941 14.934 0.936 5.839
4 1.10 1.098 132.661 1.099 147.498 1.123 162.318 1.110 174.223
5 1.25 1.278 137.022 1.253 150.104 1.255 160.757 1.262 174.832
6 1.40 1.407 129.795 1.406 152.246 1.409 156.074 1.392 171.955
7 1.55 1.557 136.944 1.549 152.011 1.540 161.960 1.548 173.666
8 1.70 1.706 131.314 1.694 152.008 1.711 157.884 1.715 171.698
9 1.85 1.848 134.294 1.849 153.251 1.833 161.017 1.860 169.833

Table 8.1: Experimental results of r and ϕ obtained for the respective Fµ(ts).

Exp. Fµ(t1) = 1.435 N Fµ(t2) = 0.980 N Fµ(t3) = 0.662 N Fµ(t4) = 0.217 N
ωb ωb ωb ωb

[rad/s] [rad/s] [rad/s] [rad/s]
1 12.696 12.462 12.213 12.751
2 15.487 15.444 15.791 15.576
3 18.639 18.478 18.415 18.318
4 21.480 21.500 21.983 21.729
5 25.015 24.514 24.569 24.694
6 27.540 27.522 27.585 27.239
7 30.468 30.321 30.141 30.296
8 33.390 33.149 33.478 33.558
9 36.165 36.195 35.880 36.398

Table 8.2: Experimental values of ωb used for the respective Fµ(ts).

T1 : Fµ(ts+1) = Fµ(ts)− 0.375 + ν1 (8.9)

T2 : Fµ(ts+1) = exp [−0.470] · Fµ(ts) + ν2 (8.10)

whereby s = 1, . . . , 4 denotes the time sequence index, and ν1 and ν2 are the zero-mean

Normally-distributed process “noise” terms with the respective standard deviations: {σ1, σ2} =

{0.040, 0.090} N . The parameters of the Markov kernels are obtained using a curve-fitting

procedure via the Least-squares method on the experimentally-obtained values of Fµ(t). The

corresponding nominal models Γ1 and Γ2 (i.e. the Kernel models without the noise term as

defined in Eq. (7.1)) are shown in Figure 8.5. It needs to be added that while in this example

the parameters of the Markov kernel are assumed to be known, this is not always the case
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Figure 8.4: Plots of r and ϕ for the corresponding values of Fµ(ts) for s = {1, . . . , 4}.

in general. In such cases, the parameters of the Markov kernel can also be included in the

set of inferred parameters through Bayesian inference [37].
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Figure 8.5: Scatterplot of the true values of Fµ(ts) across the time step sequences s with the
nominal evolution models Γ1 and Γ2.
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8.4 Sequential Bayesian inference set-up

The sequential Bayesian inference procedure is done for θs = (Fµ(ts), ωn, σϕ, σr), where σϕ

and σr are the standard deviations of the respective “noise” associated with the experimentally-

obtained values of ϕ and r. The parameters ωn, σϕ and σr are assumed to be time-invariant

and it needs to be noted that σϕ and σr are are internal parameters of the likelihood function

and are not used in the models to predict Fµ(ts) and ωn. This gives rise to a 4-dimensional

Bayesian inference problem for the estimation of the aforementioned parameters at each time

sequence ts.

The initial priors at s = 1 for each of the inferred parameters are set as Uniform priors

whose bounds are listed in Table 8.3. For s ≥ 2 the prior is the predictive distribution that

is derived using Eq. (7.3) by propagating the samples obtained at previous time step s− 1

through the Markov kernel. The likelihood function for each time sequence ts is set to follow

a Normal distribution. Assuming independence between individual observations of ϕ and

r as well as between data-sets obtained at different time step sequences s, the likelihood

function is defined as:

P (Ds|θs, ϕ̂, r̂) =
9∏

q=1

1

2π · σr · σϕ
·

exp

−(rqnom − r̂(ωq,s
b , ωn))

2

2 · σr2
−

(
ϕq,s − ϕ̂(rq,s, Fµ(ts))

)2
2 · σϕ2

 (8.11)

where rqnom, ω
q
b and ϕq denote respectively the qth value/observation of rnom, ωb, and ϕ

obtained at time sequence ts for q = 1, . . . , 9, r̂ denotes the model used to compute r, ϕ̂ is

the model used to compute ϕ, and Ds = (ϕ, r)s denotes the data set obtained at time ts.

Parameter Bounds Units
Fµ(ts) [0.01, 100] N
ωn [0.01, 100] rad/s
σϕ [0.001, 10] deg
σr [0.001, 1] −

Table 8.3: The bounds assigned to the Uniform prior for the respective inferred parameters.

Details on models r̂ and ϕ̂ are as such. The model r̂ evaluates the analytical solution for
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r from a given value of ωb and ωn according to Eq. (8.2). The computation procedure by the

model ϕ̂ to evaluate the analytical solution of ϕ from a given value of Fµ(ts) and r consists

of 3 main steps [316]:

In the first step, the algorithm computes β(ts) with the input value of Fµ(ts) using Eq.

(8.3). In order to verify the assumption of continuous response, the value of β corresponding

to the boundary between continuous and stick-slip regimes, shown in Figure 8.4, is also

computed as [316]:

βlim =

√
1(

U2 + 1
r4

)
· (1− r2)2

(8.12)

If β(ts) > βlim, the condition for a continuous motion is not satisfied. Therefore, the algo-

rithm proceeds to assign a NaN (i.e. Not a Number) value for ϕ and the procedure terminates

here. Otherwise, the algorithm proceeds to the next step. In the second step, the analytical

steady-state response solution x̃num(τb) is computed for τb ∈ [0, 2π) from Eq. (8.5) and the

numerical excitation function ỹnum(τb), expressed as [316]:

ỹ(τb) = cos(τb + φ) (8.13)

where:

φ = atan2
[
−β(ts) · U · (1− r2), x̃0 · (1− r2)

]
(8.14)

is also computed for τb ∈ [0, 2π). Finally, in the last step, the algorithm proceeds to compute

the phase angle ϕ between the excitation and the response functions. This is done by

obtaining their respective dimensionless frequency spectra x̃FFT (f̃) and ỹFFT (f̃) using the

FFT algorithm [268, 317]. The dimensionless frequency is here defined as f̃ = 2π·f
ωb

, where

f is the frequency variable in the FFT-space. From there, the phase angle is computed at

f̃ = 1 (i.e. resonance) following [9]:

ϕ = arg{x̃FFT (f̃ = 1)} − arg{ỹFFT (f̃ = 1)} (8.15)

A pseudo-algorithm describing the above procedure is presented in Algorithm 10. It needs

to be acknowledged that the MATLAB codes to the model ϕ̂ used in the Bayesian inference

procedure is provided by Dr. Luca Marino. In the event ϕ̂ = NaN, the likelihood function

P (Ds|θs, ϕ̂, r̂) returns a 0.
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Algorithm 10 Pseudo-algorithm of model ϕ̂

1: procedure (Compute ϕ from Fµ(ts) and r)
2: Compute β(ts) with Fµ(ts) using Eq. (8.3)
3: Compute βlim with r using Eq. (8.12)
4: if β > βlim then ▷ Steady, continuous motion condition not satisfied
5: Set ϕ = NaN
6: else
7: Compute x̃num(τb) using Eq. (8.5)
8: Compute ỹnum(τb) using Eq. (8.13)
9: Execute FFT on x̃num(τb) to generate x̃FFT (f̃)
10: Execute FFT on ỹnum(τb) to generate ỹFFT (f̃)
11: Set f̃ = 1
12: Compute ϕ using Eq. (8.15)
13: end if
14: end procedure

8.4.1 Results and discussions

From the posteriors P (θs|D1:s,M), 1000 samples are generated at each given time step

sequence s by the proposed SEMC and SMC-MH samplers for each given Markov kernel.

For the case of the Markov kernel T1, the total sampling time by the SEMC and SMC-MH

samplers are 98.70 s and 111.25 s respectively. For the case of the Markov kernel T2, the total

sampling time by the SEMC and SMC-MH samplers are 95.40 s and 114.39 s respectively.

As a metric to quantify how probable a given Markov kernel is in modelling the variation

of Fµ(ts) across the time step sequences s, the log-evidence term log [P (D1:s|M)] is used and

computed at each s for each Markov kernel by both the SEMC and SMC-MH samplers. The

numerical results are summarised in Tables 8.4 and 8.5 while a graphical plot illustration is

provided in Figure 8.6. As seen in Tables 8.4 and 8.5, log [P (D1:s|M)] is consistently higher

for the case of T1 which indicates that T1 is the most probable Markov kernel to represent

the variation of Fµ(ts) across s.

As a metric to quantify and compare the sampling performance between the SEMC and

SMC-MH samplers, the effective sample size N s
eff is used. The metric N s

eff is computed at

each time step sequence s following [318]:

Neff =
1∑N

i=1(ŵ
s
i )

2
(8.16)

where ŵs
i is computed using Eq. (3.20). Should the value of N s

eff fall below a threshold value
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s log [P (D1:s|M)] | T1 log [P (D1:s|M)] | T2 Difference
1 −25.066 −28.458 3.392
2 −38.014 −53.547 15.533
3 −45.478 −74.898 29.420
4 −49.206 −93.903 44.697

Table 8.4: Log-evidence computed for the model identification procedure using the SEMC
sampler.

s log [P (D1:s|M)] | T1 log [P (D1:s|M)] | T2 Difference
1 −28.824 −29.963 1.139
2 −36.405 −53.949 17.544
3 −42.136 −74.300 32.164
4 −52.174 −93.976 41.802

Table 8.5: Log-evidence computed for the model identification procedure using the SMC-MH
sampler.
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Figure 8.6: Graphical plot illustration of the results for log-evidence computed across the
time step sequences s for each Markov kernel by the respective samplers.

of N
2
(i.e. 500 in this study) [52, 319], it indicates the presence of degeneracy where most of

the samples have weights ŵs
i that are close to 0 (i.e. see Section 3.2.1 for an illustration). As

highlighted in [52], the choice of forward kernels (i.e. the choice of MCMC move kernels) or
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backward kernels can have a dramatic effect on the N s
eff . The resulting statistics of N s

eff for

both the SEMC and SMC-MH samplers given both Markov kernels are presented in Figure

8.7 and Table 8.6. From the figure, it can be seen that the values of N s
eff across the time step

sequences s is generally higher for the case of the SEMC sampler compared to the SMC-MH

sampler for both Markov kernels. This is supported from the numerical results in Table

8.6. In addition, it can also be observed that the value of N s
eff falls below the threshold

value of 500 only once at time step sequence s = 1 in the case of the SEMC sampler for

both Markov kernels. In the case of the SMC-MH sampler, the value of N s
eff falls below the

threshold value at time step sequence s = 1 for the case of Markov kernel T1 and twice at

time step sequence s = 1 and s = 2 for the case of Markov kernel T2. These results indicate

a better mixing performance as a result of the implementation of the AIES as the MCMC

move kernel of the SEMC sampler compared to the MH in the case of the SMC-MH sampler.

Figure 8.7: Graphical plots summarising the statistics of the effective sample size across the
time step sequences s for each Markov kernel by the respective samplers .

The results of acceptance rates are illustrated in Figure 4.10. From the figure, it can

be observed that a superior convergence of the acceptance rates is achieved by the SEMC

sampler for both the Markov kernels T1 and T2 right from time step sequence s = 1 while

the SMC-MH sampler reached convergence from s = 3 onwards. This demonstrates the

effectiveness of the adaptive tuning algorithm within the SEMC sampler in ensuring the

convergence of the acceptance rates.
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s SEMC SMC-MH
T1 T2 T1 T2

1 2.637 1.800 1.001 1.755
2 921.041 650.795 530.409 246.153
3 725.305 698.942 705.795 630.369
4 887.287 752.461 643.819 650.163

Table 8.6: Statistics of the effective sample size by the SEMC and SMC-MH samplers given
each Markov kernel. The threshold effective sample size is 500.

Figure 8.8: Graphical plots summarising the statistics of the acceptance rates across the
time step sequences s by the SEMC and SMC-MH samplers for each Markov kernel. Target
acceptance rate: 0.283 (i.e. see Eq. (4.2)).

In reporting the statistics of each of the inferred parameters, the sample mean estimates,

the Monte Carlo standard error σSE, and the corresponding 3-σSE bounds are presented.

The Monte Carlo standard error σSE is computed from Eq. (3.4) with batch size nb = 100.

The resulting statistics of the estimates for Fµ(ts) across each time step sequence s are

obtained for each choice of the Markov kernel and summarised in Figure 8.9 and in Tables 8.7

to 8.8. Figure 8.9 shows the identified value of the parameter Fµ(ts) with the corresponding

error bars reflecting the 3-σSE bounds. For both the SEMC and SMC-MH samplers, their

estimates of Fµ(ts) generally follow the trend defined by the evolution model which is defined

within the Markov kernel (i.e. see Eq. (8.9) and Eq. (8.10)). The SEMC estimates for Fµ(ts)
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given T1 are generally closer to the true values compared to the estimates using T2 while the

standard error of the estimates at each time step sequence s are generally similar between

the different Markov kernels. A similar trend is also observed for the SMC-MH estimates.

This is due to the fact that T1 describes better the change of Fµ(ts) across the time step

sequences s compared to T2. Hence, this set of results illustrates the direct influence of the

choice of Markov kernel on not just the trajectory of the time-varying estimates of Fµ(ts),

but also the accuracy of the estimates of Fµ(ts) across any given s.
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Figure 8.9: Graphical plots summarising the statistics of the parameter estimates of Fµ(ts),
along with the 3-σSE bounds, by the SEMC and SMC-MH samplers given the Markov kernels
T1 (left) and T2 (right).

s True value SEMC | T1 SEMC | T2
E[Fµ(ts)] σSE 3-σSE bounds E[Fµ(ts)] σSE 3-σSE bounds

[N ] [N ] [N ] [N ] [N ] [N ] [N ]
1 1.435 1.432 0.003 [1.423, 1.441] 1.422 0.001 [1.419, 1.425]
2 0.980 0.966 0.002 [0.960, 0.972] 0.929 0.001 [0.926, 0.932]
3 0.662 0.623 0.001 [0.620, 0.626] 0.625 0.001 [0.622, 0.628]
4 0.217 0.238 0.002 [0.232, 0.244] 0.247 0.002 [0.241, 0.253]

Table 8.7: Statistics of the parameter estimates of Fµ(ts) by the SEMC sampler given each
Markov kernel.

162



s True value SMC-MH | T1 SMC-MH | T2
E[Fµ(ts)] σSE 3-σSE bounds E[Fµ(ts)] σSE 3-σSE bounds

[N ] [N ] [N ] [N ] [N ] [N ] [N ]
1 1.435 1.422 0.001 [1.419, 1.425] 1.418 0.002 [1.412, 1.424]
2 0.980 1.011 0.002 [1.005, 1.017] 0.854 0.002 [0.848, 0.860]
3 0.662 0.640 0.001 [0.637, 0.643] 0.522 0.002 [0.516, 0.528]
4 0.217 0.237 0.001 [0.234, 0.240] 0.244 0.002 [0.238, 0.250]

Table 8.8: Statistics of the parameter estimates of Fµ(ts) by the SMC-MH sampler given
each Markov kernel.

The resulting statistics of the estimates for the parameters, ωn, σϕ, and σr, across the

time step sequence s, obtained for each choice of the Markov kernel, are shown in Figures

8.10 and 8.11 while the corresponding numerical results summarised in Tables 8.9 to 8.14.

Like in Figure 8.9, the error bars correspond to the 3-σSE bounds. For the case of ωn, the

SEMC and SMC-MH estimates given either choice of the Markov kernel both converge to

the experimentally identified values (see Section 8.2). This indicates the effectiveness of the

samplers in inferring ωn. However, it can be observed from Tables 8.9 to 8.14 that the Monte

Carlo standard error of the estimates is generally smaller for the case of the SEMC sampler

compared to the SMC-MH sampler for both Markov kernels. This indicates that the SEMC

sampler is able to provide more precise sample estimates on ωn compared to the SMC-MH

sampler across the time step iterations s.

The reference values for σϕ and σr, denoted as σref
ϕ and σref

r respectively, are set as the

mean of the Root Mean-Squared-Error (RMSE) across ts which are computed as follows:

σref
ϕ =

1

4

4∑
s=1

√√√√1

9

9∑
q=1

[
ϕq,s − ϕ̂ (Fµ(ts), rq,s)

]2
(8.17)

σref
r =

1

4

4∑
s=1

√√√√1

9

9∑
q=1

(rq,s − rnom)
2 (8.18)

The SEMC sampler provides an estimate of σϕ close to the reference values given either choice

of the Markov kernel. However, the 3-σSE bounds of the estimates given the Markov kernel T2

is significantly larger than that for Markov kernel T1 (i.e. see Tables 8.11 and 8.12). A similar

observation is made for the SMC-MH estimates of σϕ although its estimates are significantly

larger than that by the SEMC sampler. In estimating σr, neither the results obtained by the

SEMC and SMC-MH samplers come close to the reference value of σref
r = 0.010 although
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the sample estimates obtained using the SEMC sampler yields values which are closer to

σref
r given either choice of the Markov kernel. In general, the Monte Carlo standard error

of the estimates by the SEMC sampler for σϕ and σr are generally smaller than that by the

SMC-MH sampler for the respective Markov kernel. This indicates a better precision of the

sample estimates by the SEMC sampler compared to the SMC-MH sampler.
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Figure 8.10: Graphical plots summarising the statistics of the parameter estimates of ωn,
σϕ, and σr, along with the 3-σSE bounds, by the SEMC and SMC-MH samplers given the
Markov kernel T1. The reference values for the respective parameters are: {ωn, σϕ, σr} =
{19.572 rad/s, 2.512o, 0.010}.

s Experimentally identified value SEMC | T1 SEMC | T2
E[ωn] σSE 3-σSE bounds E[ωn] σSE 3-σSE bounds

[rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]
1 19.572 20.766 0.050 [20.616, 20.916] 21.014 0.095 [20.729, 21.299]
2 19.572 20.224 0.012 [20.188, 20.260] 21.622 0.106 [21.304, 21.940]
3 19.572 20.329 0.014 [20.287, 20.371] 20.692 0.049 [20.545, 20.839]
4 19.572 21.043 0.011 [21.010, 21.076] 20.462 0.029 [20.375, 20.549]

Table 8.9: Statistics of the parameter estimates of ωn by the SEMC sampler given each
Markov kernel.
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Figure 8.11: Graphical plots summarising the statistics of the parameter estimates of ωn,
σϕ, and σr, along with the 3-σSE bounds, by the SEMC and SMC-MH samplers given the
Markov kernel T2. The reference values for the respective parameters are: {ωn, σϕ, σr} =
{19.572 rad/s, 2.512o, 0.010}.

s Experimentally identified value SMC-MH | T1 SMC-MH | T2
E[ωn] σSE 3-σSE bounds E[ωn] σSE 3-σSE bounds

[rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s] [rad/s]
1 19.572 46.264 0.440 [44.944, 47.584] 63.015 0.513 [61.476, 64.554]
2 19.572 21.572 0.192 [20.996, 22.148] 26.953 0.089 [26.686, 27.220]
3 19.572 21.327 0.126 [20.949, 21.705] 21.747 0.027 [21.666, 21.828]
4 19.572 20.555 0.080 [20.315, 20.795] 21.232 0.018 [21.178, 21.286]

Table 8.10: Statistics of the parameter estimates of ωn by the SMC-MH sampler given each
Markov kernel.

8.5 Chapter conclusion

The work presented in the chapter has demonstrated the implementation of the proposed

Sequential Ensemble Monte Carlo sampler in performing sequential Bayesian inference on

the time-varying and time-invariant parameters simultaneously using measured data under

realistic settings. Through the study, the robustness of the proposed sampler is illustrated

through its capability in identifying the most probable Markov kernel under model uncer-

tainty as well as being able to control the acceptance rates effectively across the time step
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s Reference value SEMC | T1 SEMC | T2
E[σϕ] σSE 3-σSE bounds E[σϕ] σSE 3-σSE bounds

[deg] [deg] [deg] [deg] [deg] [deg] [deg]
1 2.512 2.841 0.004 [2.829, 2.853] 6.442 0.038 [6.328, 6.556]
2 2.512 2.786 0.004 [2.774, 2.798] 2.295 0.033 [2.196, 2.394]
3 2.512 3.133 0.003 [3.124, 3.142] 2.082 0.019 [2.025, 2.139]
4 2.512 3.282 0.003 [3.273, 3.291] 2.062 0.007 [2.041, 2.083]

Table 8.11: Statistics of the parameter estimates of σϕ by the SEMC sampler given each
Markov kernel.

s True value SMC-MH | T1 SMC-MH | T2
E[σϕ] σSE 3-σSE bounds E[σϕ] σSE 3-σSE bounds

[deg] [deg] [deg] [deg] [deg] [deg] [deg]
1 2.512 6.400 0.028 [6.316, 6.484] 6.550 0.028 [6.466, 6.634]
2 2.512 7.519 0.010 [7.489, 7.549] 8.767 0.021 [8.704, 8.830]
3 2.512 7.692 0.010 [7.662, 7.722] 8.671 0.010 [8.641, 8.701]
4 2.512 7.715 0.008 [7.691, 7.739] 8.552 0.014 [8.510, 8.594]

Table 8.12: Statistics of the parameter estimates of σϕ by the SMC-MH sampler given each
Markov kernel.

s Reference value SEMC | T1 SEMC | T2
E[σr] σSE 3-σSE bounds E[σr] σSE 3-σSE bounds

1 0.010 0.313 0.002 [0.307, 0.319] 0.312 0.004 [0.300, 0.324]
2 0.010 0.329 0.001 [0.326, 0.332] 0.315 0.004 [0.303, 0.3327]
3 0.010 0.244 0.001 [0.241, 0.247] 0.351 0.003 [0.342, 0.360]
4 0.010 0.207 0.001 [0.204, 0.210] 0.347 0.001 [0.344, 0.350]

Table 8.13: Statistics of the parameter estimates of σr by the SEMC sampler given each
Markov kernel.

sequences whilst inferring both the time-varying and time-invariant parameters.

In addition, the experimental investigation has also shown that the choice of Markov

kernel can have an impact on the estimation of the parameters as seen in the case of the time-

varying Coulomb friction parameter. This demonstrates the applicability of the proposed

sampler in addressing engineering problems.

Furthermore, the effective sample size computed across the time step sequences are gen-

erally larger and falls below the threshold value on less occasions for the case of the Se-
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s True value SMC-MH | T1 SMC-MH | T2
E[σr] σSE 3-σSE bounds E[σr] σSE 3-σSE bounds

1 0.010 0.877 0.003 [0.868, 0.886] 0.862 0.004 [0.850, 0.874]
2 0.010 0.817 0.002 [0.811, 0.823] 0.351 0.001 [0.348, 0.354]
3 0.010 0.752 0.002 [0.746, 0.758] 0.339 0.001 [0.336, 0.342]
4 0.010 0.700 0.002 [0.694, 0.706] 0.331 0.001 [0.328, 0.334]

Table 8.14: Statistics of the parameter estimates of σr by the SMC-MH sampler given each
Markov kernel.

quential Ensemble Monte Carlo sampler compared to the Sequential Monte Carlo sampler

with Metropolis-Hastings kernel. This indicates a better mixing performance by the Affine-

invariant Ensemble sampler which justifies its use as a relatively efficient MCMC move kernel

than the MH sampler.

Finally, the MATLAB codes for the example presented in the chapter is made accessible

on GitHub: https://github.com/Adolphus8/Sequential_Ensemble_Monte_Carlo.git
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Chapter 9

Probabilistic Prediction of Nuclear

Material Properties with Artificial

Intelligence under Uncertainty

Abstract

The chapter presents a feasibility study aimed at developing a framework for the Proba-

bilistic Artificial Intelligence Prediction of Material Properties for Nuclear reactor designs.

Currently, Artificial Intelligence approaches are not largely implemented in the nuclear sector

compared to other sectors such as aerospace and manufacturing. The key challenge is the

availability of sparse data set to train AI models and the poor consideration of the uncer-

tainty in the data and the model. As such, the study seeks to propose a stochastic approach

towards enhancing the sparse data set from which the Bayesian inference framework is im-

plemented to account for the model uncertainty in the prediction of the material properties.

Such proposal involves increasing the training data set from the initial sparse data set while

retaining the physical dependencies among variables. This allows for a larger data set to

train a set of Artificial Neural Networks used to predict selected nuclear material properties.

From there, the Adaptive Bayesian Model Selection method is implemented to account for

the variability in the prediction results due to the model uncertainty and quantifies such un-

certainty using the Bayesian inference framework. This allows for robust predictions along

with the associated confidence bounds. The resulting estimates obtained using the proposed

approach are well-validated against the experimental data with improved accuracy.
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9.1 Background

This work presents a feasibility study aimed at devising a framework towards providing

a probabilistic Artificial Intelligence (AI) prediction of material properties relevant for the

design of Nuclear reactors.

At present, the existing AI models are trained using deterministic data set without ac-

counting for the uncertainties associated with the measured quantity. As such, a large

number of physical tests and experimental campaigns are required to increase the training

data size and account for the inherent variability of the material properties. However, doing

so would also increase the research costs. In a study by [320], each fracture test on a material

can amount to £15000 per test. Furthermore, an AI model is assumed to characterise rela-

tionship between the key input and output features of interest. In general, such assumption

may not hold true given the lack of certainty over the “true” relationship between the input

and output features, especially so in the absence of a physics-based model.

Hence, this work seeks to realize 3 main research objectives: 1) to improve the robustness

of the estimates by considering the inherent uncertainty on the training (i.e. experimental)

data set; 2) to enable the Artificial Neural Networks (ANNs) to deal with sparse and “noisy”

data in providing estimates on the quantity of interest along with its associated confidence

bounds; and 3) to loosen the assumption on the choice of model by considering a set of

ANNs, with different architectures, constructed to predict the same quantity of interest (i.e.

model uncertainty).

9.2 State of Artificial Intelligence in Nuclear

In a recent study, it was found that the AI technology is not widely implemented within the

Nuclear sector and that the sector is currently lagging behind in the Industry 4.0 revolution

compared to other industries such as the healthcare, automotive and manufacturing [320].

In addition, the industry seeks to develop new reactor designs for both fusion and fission.

These would come in the form of the newer generation Light Water Reactors, Liquid Metal

Cooled Reactors, and High-temperature Gas-cooled Reactors which are expected to be more

modular and compact in their designs. Furthermore, the nuclear industry has to deal with 2

key challenges [320]: 1) the need to decommission ageing reactors; and 2) the high costs of

building new reactors. With the latter point, it makes nuclear energy a much more expensive

option compared to other energy sources such as wind and solar. In this regard, this brings
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opportunities for the application of AI which can be expected to play an important role in

devising new ways to design, construct, operate, and decommission such reactors across the

entire project operation duration.

The role of AI within the Nuclear sector can be categorised into 2 types [320]: 1) De-

centralised decision-making; and 2) Technical assistance. The first category refers to the

capability of the AI systems to become autonomous, thereby being able to make simple

decisions itself without human intervention. The second category refers to the capability of

the AI systems in supporting humans in 2 aspects: 1) the decision-making process towards

solving a problem; and 2) providing assistance in completing tasks which are too complex

and risky for humans. These include accident identification, system performance, structural

integrity, predictive maintenance, and predicting material properties and behaviours. The

focus of the chapter is on the technical assistance aspect of AI in the context of material

properties prediction.

9.3 Methodology

For this feasibility study, a database of the material properties for 58 different steel types is

obtained from the National Institute for Materials Science (NIMS) based on a previous ex-

perimental campaign under the Material Properties Predictor for Power Plant Steels (M4PS)

project ([321]). The material properties covered in this database includes:

• Creep rupture properties - with 8005 observations;

• Tensile properties - with 2878 observations;

• Hardness properties - with 234 observations.

For the work presented here, the main focus would be on the prediction of Creep rupture

and Tensile properties of the steel materials whose key input and target features are sum-

marised in Tables 9.1 and 9.2 respectively. As an illustration, the scatterplot diagrams of

the corresponding raw data for the selected input and target features of the Creep rupture

and Tensile properties are presented in Figures 9.1 and 9.2.

From Figures 9.1 and 9.2, it can be observed from the scatterplot profiles of the data

that there are significant gaps between the data points. In addition, it can also be seen

that some data points are grouped about discrete values as seen in the plot for Elongation

vs Temperature in Figure 9.1 and that for RA vs Temperature in Figure 9.2. This leads
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Input features Target features
Material code Fracture Time (FT)
Cast code Elongation
Stress Reduction of Area (RA)
Temperature
Composition (19 elements)

Table 9.1: List of input and target features of interest for Creep rupture properties prediction.

Input features Target features
Material code Ultimate Tensile Strength (UTS)
Cast code Elongation
Temperature 0.2 % Proof Stress (PS02)
Composition (19 elements) RA

Table 9.2: List of input and target features of interest for Tensile properties prediction.
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Figure 9.1: Scatterplot representation of the raw data of the selected input features (i.e.
Stress, Temperature, and some of the comprising elements) for Creep rupture properties
against the Elongation target feature.

to significant loss of information as the data points do not explore the entire domain of

the experimental input values. As such, the need to enhance the data set arises to fill

such gaps so as to be able to effectively train the ANNs subsequently. A way to perform

such enhancement without he need to perform additional experimental campaigns would be
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Figure 9.2: Scatterplot representation of the raw data of the selected input features (i.e.
Stress, and some of the comprising elements) for Tensile properties against the RA target
feature.

through a stochastic approach to which details are presented in Section 9.3.1.

9.3.1 Data Enhancement

In this study, a particular category of steel type is chosen for Creep rupture and Tensile prop-

erties prediction. This leaves 13 observations for Creep rupture properties and 8 observations

for Tensile properties from the initial experimental data set.

To capture the physical relations between the key input and target features in the absence

of any physics-based model, the Pearson correlation coefficient ρ between the mth and nth

features is computed [322]:

ρ =

∑Ndata

i=1 (ymi − ȳm) · (yni − ȳn)√∑Ndata

i=1 (ymi − ȳm)2 ·
∑Ndata

i=1 (yni − ȳn)2
(9.1)

where Ndata is the data size, ymi and yni are the ith experimental data-point of the mth and

nth feature respectively, while ȳm and ȳn are the mean experimental values of the mth and

nth feature respectively. Hence, ρ = 1 for the case when m = n. This procedure is done

for the Creep rupture and Tensile properties data to which the resulting correlation matrix
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for the selected features of the Creep rupture and Tensile data are illustrated in Figure 9.3

while the numerical values to the Pearson correlation coefficient between the selected input

and target features of the Creep rupture and Tensile properties are presented in Tables 9.3

and 9.4 respectively.

Stress Temperature FT Elongation RA
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Temperature
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Elongation
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Figure 9.3: Colourplot matrix illustrating the correlation between the selected input and
target features of the: (a) Creep rupture properties; (b) Tensile properties.
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Stress Temperature FT Elongation RA
Stress 1 −0.601 −0.117 −0.154 0.053

Temperature −0.601 1 −0.149 −0.095 −0.376
FT −0.117 −0.149 1 −0.180 −0.141

Elongation −0.154 −0.095 −0.180 1 0.659
RA 0.053 −0.376 −0.141 0.659 1

Table 9.3: Numerical values to the Pearson correlation coefficient between the selected input
and target features of the Creep rupture properties.

Temperature PS02 UTS Elongation RA
Temperature 1 −0.371 −0.508 0.322 0.052

PS02 −0.371 1 0.661 −0.524 −0.240
UTS −0.508 0.661 1 −0.467 −0.360

Elongation 0.322 −0.524 −0.467 1 0.470
RA 0.052 −0.240 −0.360 0.470 1

Table 9.4: Numerical values to the Pearson correlation coefficient between the selected input
and target features of the Tensile properties.

Following this, a correlated multivariate Gaussian distribution is generated whose co-

variance matrix is constructed such that the standard deviation of each feature is set at 1

% of its data value while the correlation between the features is based on the computed ρ.

When this is done, the correlated multivariate Gaussian distribution is then centered about

a chosen experimental data from which a set of synthetic data, defined by the analyst, is

generated. Such procedure is performed across all the experimental data such that a total

of Ndata = 10000 synthetic data is obtained. This is done for both the Creep rupture and

Tensile properties data to which the resulting violin plots are illustrated in Figure 9.4. For

the illustrative purpose of presenting the data-points in the same scale, the data values of

the corresponding features have been standardised according to the standard normal in the

aforementioned figures.

It needs to be highlighted that the use of a multivariate Gaussian distribution model to

generate the synthetic data set is done under the assumption that the measurement noise

follows a zero-mean Normal distribution. In general, such assumption may not be true

and and the selection of an appropriate stochastic model to generate the synthetic data set

introduces a significant degree of model uncertainty.
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Figure 9.4: Violin plot of the synthetic data along with the experimental data for the fol-
lowing material property prediction: (a) Creep rupture properties; (b) Tensile properties.

9.3.2 Artificial Neural Network training

Due to the absence of a physics-based mathematical model describing the relationship be-

tween the input and target features, ANNs are used as the surrogate models due to its
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effectiveness and versatility in modelling such relationships. Descriptions on the concept of

ANNs can be found in Section 5.2.

In this study, the specific type of ANN used is the Feed-forward Neural Network [259]

with the rectified linear unit activation function [323] being the activation function. For

both Creep rupture and Tensile properties, 5 of such ANNs are constructed to predict the

corresponding target features. This is to loosen the assumption on the choice of the model

and introduce elements of model uncertainty. Each of these ANNs have one output node

but differ in the number of hidden-layers and/or hidden-nodes and are trained using the

synthetic data presented in Section 9.3.1. In training the ANNs, the 10000 sets of synthetic

data are split in the following manner: 70 % was used to train the ANN, 15 % for validation,

and 15 % for testing. The resulting training times for the corresponding ANN model to

predict the target features for Creep rupture and Tensile properties are presented in Tables

9.5 and 9.6 respectively.

From there, the trained ANNs are validated with the experimental data used to generate

the synthetic data. The performance index used to quantify the robustness of the ANN

model validation against the experimental data, for a given mth target feature, is the R2-

score defined as [324]:

R2 =

(
1−

∑Ndata

i=1 (yi − ŷi)
2∑Ndata

i=1 (yi − ȳi)
2

)
× 100% (9.2)

where ŷi is the ANN model prediction of the ith data-point of the target feature of interest.

The resulting R2-score computed for the corresponding ANN model in its prediction of the

target features for Creep rupture and Tensile properties, relative to the experimental data,

are presented in Tables 9.5 and 9.6 respectively.

Model no. Configuration Time R2-score
[s] [%]

FT Elongation RA FT Elongation RA
1 23− 18− 1 1.63 3.58 3.48 99.85 99.98 99.98
2 23− 32− 1 − 3.27 1.65 − 99.94 99.95
3 23− 18− 9− 1 5.29 10.42 7.60 99.99 99.99 99.99
4 23− 27− 18− 9− 1 17.79 18.04 119.68 99.99 99.99 99.99
5 23− 64− 32− 8− 1 98.14 − − 99.99 − −
6 23− 64− 32− 16− 1 540.94 314.35 298.52 99.99 99.99 99.99

Table 9.5: Training times and R2-score of the respective ANN model for the target features
for Creep rupture property prediction.

From Tables 9.5 and 9.6, it can be seen that the R2-scores are within the interval of
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Model no. Configuration Time R2-score
[s] [%]

UTS Elongation PS02 RA UTS Elongation PS02 RA
1 22− 18− 1 28.97 60.70 20.42 4.11 94.68 99.88 96.60 94.58
2 22− 32− 1 − − 7.09 − − − 96.59 −
3 22− 64− 1 45.14 5.14 − 6.56 99.99 99.99 − 94.58
4 22− 18− 9− 1 28.45 11.54 17.04 21.67 99.84 99.88 92.91 94.55
5 22− 27− 18− 9− 1 92.49 356.39 34.85 127.47 99.97 99.99 92.94 94.82
6 22− 64− 32− 16− 1 4180.60 1286.30 649.41 1534.80 99.99 100.00 99.98 99.95

Table 9.6: Training times and R2-score of the respective ANN model for the target features
for Tensile property prediction.

[92.91, 100.0]. This indicates that the trained ANN models are well-validated against the

experimental data and highlights the effectiveness of the use of the synthetic data as training

data. The reason for such result is due to the fact that the synthetic data includes the values

of the experimental data, ensuring that the data region where the experimental data exists

is also included in the training of the ANN.

Further investigations are also being done to study the robustness of the ANNs con-

structed for this work. In this study, the ANNs for the prediction of the UTS property

are trained with the entire experimental data set from NIMS. From there, the ANNs are

verified against the experimental data where it was found that despite a potential error in

the recorded data, the ANNs do not take into account such error. As an illustrative exam-

ple, a graphical plot of the result is provided in Figure 9.5 for the ANN with configuration:

22 − 64 − 32 − 16 − 1. This further justifies the use of the Feed-forward Neural Network

as the choice of ANN for this study. It needs to be noted, however, that such robustness is

observed due to there being only one outlier in the data. Should there be multiple outliers

within the trained data set, such results may not be observed and the ANN might eventually

predict such outliers.

9.3.3 Adaptive Bayesian Model Selection

To provide a robust probabilistic prediction of a given target feature by a set of ANNs with

the associated confidence bounds, the Adaptive Bayesian Model Selection (ABMS) method,

proposed by [325], is implemented. It uses an adaptive Bayesian model selection approach

to compute the continuous posterior distribution over a set of Nm distinct ANN models of

different configurations.

For a given vth ANN model Mv (for v = 1, . . . , Nm) and training data set: D =
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Figure 9.5: ANN prediction of UTS against the experimental data with configuration: 22−
64− 32− 16− 1.

{(x1, y1), . . . , (xNdata
, yNdata

)}, its continuous posterior probability P (Mv, yv|D) is defined

according to Bayes’ theorem [46, 236]:

P (Mv, yv|D) =
P (D|Mv, yv) · P (Mv, yv)∑Nm

u=1 P (D|Mu, yu) · P (Mu, yu)
(9.3)

where xi is the i
th input feature data, for i = 1, . . . , Ndata, P (Mv, yv) is the prior, P (D|Mv, yv)

is the likelihood function, the denominator term is the normalisation constant, and yv =

ŷv + ϵv is the true prediction value for which ϵv ∼ N(0, σv
2) is the bias associated with

the measurement “noise” and model error. The higher the value of P (Mv, yv|D), the more

reliable the value of yv for the given ANN model Mv.

The computation of the ABMS robust prediction yrb follows: Considering the ANN

prediction ŷv from Mv, it has an associated posterior probability P (Mv, ŷv|D). As such, the

best model prediction ŷ∗, defined as the prediction with the highest degree of accuracy, has

an associated posterior probability max [P (Mv, ŷ
∗|D)], for v = 1, . . . , Nm. From there, yrb is

computed [325]:

yrb = ŷ∗ +
Nm∑
v=1

P (Mv, ŷv|D) · (ŷv − ŷ∗) (9.4)

To derive the 95 % confidence bounds on yrb, denoted as [yrb, yrb], the standard deviation
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term Φ is first computed:

Φ =

√√√√Nm∑
v=1

P (Mv, ŷv|D) · (ŷv − yrb)2 (9.5)

Upon which, the corresponding values of yrb and yrb are calculated as follows:[
yrb, yrb

]
= yrb ∓ 1.95 · Φ (9.6)

Further details on the mathematical derivations and the ABMS algorithm are found in [325].

For the analysis, the prior P (Mv, yv) is set as a Uniform distribution given the apriori

assumption that all Nm ANN models are equally likely. The likelihood function for a given

ith data sample (xi, yi) is defined as ([325]):

P ((xi, yi)|Mv, ŷv,i) =
1

σv ·
√
2π

· exp
[
−(yi − ŷv,i)

2 · σv2

]
(9.7)

where σk can be estimated from D using maximum likelihood estimation. The posterior

P (Mv, yv|D) is approximated using a Gaussian Mixture Model. For each target feature to

be predicted, Nm = 5 ANNs are used as listed in Tables 9.5 and 9.6. The synthetic data

presented in Section 9.3.1 would serve as the training data D while the experimental data

is used to validate the prediction results from ABMS.

9.4 Results and discussions

The resulting probabilistic prediction of the steel’s Creep rupture and Tensile properties are

presented as graphical plots in Figure 9.6. From the figure, it can be seen that the 95 %

confidence bounds generally encloses all the experimental data-points with all of such points

falling within or on either bounds. This indicates that the probabilistic prediction by the

ABMS method is well-validated against the experimental data which can be justified from

the high R2-scores (i.e. above 90 %) of the ANNs used to predict the respective target

features as seen in Tables 9.5 and 9.6.

In addition, it can be observed from Figure 9.6(b) that the 95 % confidence bounds are

significantly wider for the Elongation and RA prediction compared to those for the same

target features in Figure 9.6(a). A reason for this is due to the worst R2-scores for the ANN

Tensile property predictions of Elongation and RA is at 99.88 % and 94.55 % respectively.
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Such scores are significantly lower in comparison to that for the Creep rupture property

predictions of Elongation and RA which are at 99.94 % and 99.95 % respectively. This gives

rise to a lower-degree of precision, leading to wider bounds seen in Figure 9.6(b) for the

aforementioned target feature predictions.
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Figure 9.6: Robust predictions, along with its 95 % confidence bounds, of the target features
of the chosen steel material’s: (a) Creep rupture properties; (b) Tensile properties.
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The computation times by the ABMS algorithm for the prediction of the target features

of the corresponding steel material properties are presented in Table 9.7. From the table, it

can be observed that the computation time of the ABMS is generally longer for the case of

predicting the Creep rupture than Tensile properties of the steel of interest. This is because,

there are more experimental data points of the input feature in the case of predicting the

Creep rupture properties (i.e. 13 experimental data points) compared to the prediction of

the Tensile properties (i.e. 8 data points).

Material property Target feature Time
[s]

Creep rupture FT 6.33
Elongation 4.51
RA 5.38

Tensile PS02 2.69
UTS 2.36
Elongation 2.01
RA 2.71

Table 9.7: Computation times for the respective target feature of a given material property
of the steel studied.

Finally, the resulting posterior probability P (Mv, yv|D) (i.e. see Eq. (9.3)) associated

with each of the ANN models in predicting the Creep rupture and Tensile properties of the

material are presented graphically in Figures 9.7 and 9.8 respectively. For both figures, the

colours correspond to the following ANN models: Red for ANN model 1; Blue for ANN model

2; Green for ANN model 3; Magenta for ANN model 4; Yellow for ANN model 5; and Cyan

for ANN model 6. Details on the ANN configuration for the corresponding model number are

found in Tables 9.5 and 9.6 for Creep rupture and Tensile properties prediction respectively.

It needs to be highlighted that in the prediction of the Elongation and Reduction of Area

(RA) of the material in Figure 9.8, the ANN models have almost equal posterior probability

P (Mv, yv|D).

9.5 Chapter conclusion

The work presents a general framework towards a robust probabilistic prediction on the

Nuclear material properties under sparse data. It involves the stochastic enhancement of the

experimental data set explained in Section 9.3.1, followed by the construction and training

of a set of ANNs with the synthetic data seen in Section 9.3.2, before finally incorporating
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Figure 9.7: Graphical plot of the resulting posterior probability of each of the given ANN
model in predicting the corresponding data points associated with the Creep rupture prop-
erties of the material.
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Figure 9.8: Graphical plot of the resulting posterior probability of each of the given ANN
model in predicting the corresponding data points associated with the Tensile properties of
the material.

Bayesian statistics in the ANN predictions to yield probabilistic estimates via ABMS which
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are well-validated against the experimental data as shown in Section 9.4.

There are 4 key benefits which this study seeks to provide: 1) by providing a probabilistic

prediction instead of a deterministic one, the uncertainty of the estimates is accounted for.

This allows for the users to determine the level of confidence on the predictions as well as

make an informative risk-based decision on the choice of materials to use in the design of

new Nuclear reactors; 2) the proposed framework accounts for the uncertainty associated

with the choice of the ANN models used for the prediction of the material properties. This

was done by considering 5 different ANN models to predict each target feature, thereby

loosening the assumption on the choice of models used. From which, a robust prediction

is provided based on Adaptive Bayesian Model Selection and Model Averaging along with

the 95 % confidence bounds to account for the model error; 3) the proposed framework

addresses the issue of sparse data via the stochastic data-enhancement method where the

use of a Gaussian Mixture Model, along with the information on the correlation between the

features of interest, is used to generate synthetic data from the experimental data. It needs

to be re-iterated, however, that the approach is implemented under the assumption that the

measurement noise follows a zero-mean Normal distribution and that such assumption may

not necessarily be true at all times. As such, broadly speaking, the selection of an appropriate

stochastic model to generate the synthetic data set introduces a significant degree of model

uncertainty; and 4) this framework can help reduce the need to run multiple experimental

campaigns, thereby saving costs.

For the benefit of the readers in understanding the proposed framework as well as to

reproduce the results presented in the chapter, codes and algorithms used for the study are

made available on GitHub via: https://github.com/Adolphus8/Project_PROMAP.git

Finally, as a supplement to the work presented in the chapter, a numerical study is

presented in the chapter Appendix (i.e. see Section 9.6) which seeks to further illustrate and

demonstrate the feasibility of the proposed framework.
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9.6 Chapter Appendix

Figure 9.9: Schematic diagram of the Cantilever beam set-up used in the study.

The presented study is a simple regression problem involving a Cantilever beam set-up

illustrated in Figure 9.9 which can be used to model the vibration of the secondary core

support pillar within a Nuclear Power Plant [326]. The resulting free-end displacement of

the beam D can be modelled as follows [327]:

D =
4 · L3

E · w · tB
·

√(
Fy

tB
2

)2

+

(
Fx

w2

)2

(9.8)

The descriptions to the respective parameters of Eq. (9.8) are presented in Table 9.8. It

needs to be noted that the parameters L, w, tB, and E are fixed while Fx and Fy are variables.

Parameter Description Value(s) Units
L Length of the Cantilever beam 2.50 [m]
w Width of the Cantilever beam 0.15 [m]
tB Thickness of the Cantilever beam 0.20 [m]
E Young’s Modulus of the Cantilever beam material 2.00× 109 [N/m2]
Fx Applied horizontal load [800, 900] ∪ [1000, 1200] [N ]
Fy Applied vertical load [300, 500] ∪ [600, 700] [N ]

Table 9.8: Descriptions to the key parameters of the Cantilever beam set-up.

9.6.1 Generating the Numerical data

The variables Fx and Fy are sampled independently from a 2D joint Uniform distribution

with the respective bounds defined in Table 9.8. For each realization of Fx and Fy, the

nominal free-end displacement value Dnom is obtained via Eq. (9.8). From the value of

Dnom, a measurement “noise” term ϵD is added following:
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D = Dnom + ϵD (9.9)

where ϵD follows a zero-mean Normal distribution with standard deviation σD = 0.0003 m.

In total, 30 sets of data for Fx, Fy, and D are generated whereby 10 of which will serve

as the observed data set while the remaining 20 will serve as the validation data set. The

numerical values of the respective data set are presented in Table 9.9.

S/N Observed data set Validation data set
Fx Fy D Fx Fy D
[N ] [N ] [m] [N ] [N ] [m]

1 834.84 386.29 0.0283 825.55 323.76 0.0263
2 819.91 396.65 0.0283 848.57 327.51 0.0263
3 849.90 422.88 0.0302 871.76 321.57 0.0273
4 872.06 454.28 0.0312 879.54 336.68 0.0276
5 1091.65 314.47 0.0317 829.98 387.39 0.0277
6 1102.16 358.73 0.0327 1021.41 317.62 0.0304
7 1123.39 431.10 0.0364 882.17 436.00 0.0308
8 820.96 643.49 0.0366 1027.93 337.93 0.0312
9 837.70 644.75 0.0371 1088.10 327.91 0.0318
10 1170.27 604.45 0.0413 1070.44 363.23 0.0323
11 803.96 600.89 0.0348
12 1174.54 408.72 0.0354
13 892.75 612.67 0.0365
14 880.61 614.15 0.0365
15 825.10 662.86 0.0377
16 860.16 669.23 0.0385
17 1148.12 613.26 0.0412
18 1095.51 663.07 0.0414
19 1132.75 630.14 0.0416
20 1105.89 677.04 0.0425

Table 9.9: Numerical values to the corresponding data set for Fx, Fy, and D.

As outlined in Section 9.3.1, to ensure that the synthetic data set generated from the

observed data set retains the information pertaining to the physical relationship between

the input and the output variables, the Pearson correlation coefficient ρ is computed based

on the observed data set following Eq. (9.1) The resulting correlation matrix between the

variables Fx, Fy, and D are illustrated in Figure 9.10 while the numerical values of the

Pearson correlation coefficient ρ between each pair of variables are presented in Table 9.10.

Following which, 3000 sets of synthetic data are generated stochastically from the given

observed data set following the methodology outlined in Section 9.3.1 and the resulting violin

plot is illustrated in Figure 9.11. For the illustrative purpose of presenting the data-points
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Figure 9.10: Colourplot matrix illustrating the correlation between the variables Fx, Fy, and
D.

Fx Fy D
Fx 1 −0.204 0.496
Fy −0.204 1 0.743
D 0.496 0.743 1

Table 9.10: Numerical values to the Pearson correlation coefficient between Fx, Fy, and D.

in the same scale, the data values of the corresponding variables have been standardised

according to the standard normal in the aforementioned figures.

9.6.2 Artificial Neural Network training

For the numerical study, the type of ANN used is the Feed-forward Neural Network with

the sigmoid function [258] being the activation function. To loosen the assumption on the

choice of the model and introduce model uncertainty, 5 different configurations of the ANN

architecture are constructed as presented in Table 9.11 to predict the Cantilever beam’s

free-end displacement D. It needs to be noted that for this study, small ANN architectures

are used given that there are only 2 input variables and one output variable. As outlined in

Section 9.3.2, the synthetic data set is used to train the ANNs. In training the ANNs, the

synthetic data set is split in the following manner: 60 % was used to train the ANN, 20 %

for testing, and 20 % for validation. Once trained, each of the ANNs are validated against
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Figure 9.11: Violin plot of the synthetic data along with the observed data and the validation
data.

the validation data set in which the validation performance is quantified using the R2-score

(i.e. see Eq. (9.2)) as the metric. The training times and the R2-scores for the corresponding

ANN are presented in Table 9.11. As seen from the table, the R2-scores for all the ANNs are

above 90 % which indicates that the ANN models are well-validated against the validation

data set.

In addition, the training procedure is repeated using the observed data set as the training

data set. This is performed on a separate set of ANNs with the same configurations as the

set trained with the synthetic data set. The resulting training times and the R2-scores for

the corresponding ANN are presented in Table 9.11. As per the case when trained with the

synthetic data set, the R2-scores for all the ANNs are above 90 % which indicates that the

ANN models are well-validated against the validation data set.

It needs to be noted that the R2-scores are generally lower for the case when the ANN

models are trained only with the observed data compared to the case when the ANN models

are trained only with the synthetic data. This is due to the former case having a smaller

training data set compared to the latter case leading to the ANNs trained using the observed

data set having a relatively poorer prediction performance. In addition, it is also observed

that the training times of the ANN models are generally longer when the synthetic data is

used as the training data due to its relatively large data set compared to the size of the
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Model no. Configuration Trained with Observed data Trained with Synthetic data
Time R2-score Time R2-score
[s] [%] [s] [%]

1 2− 1− 1 0.37 93.76 0.45 98.63
2 2− 2− 1 0.39 92.69 0.78 97.83
3 2− 4− 1 0.34 95.49 0.79 97.16
4 2− 6− 1 0.34 95.17 0.74 97.75
5 2− 8− 1 0.35 95.36 0.75 99.33

Table 9.11: Training times and R2-score of the respective ANN model for the prediction of
the Cantilever beam’s free-end displacement D.

observed data set.

9.6.3 Results and discussions

Figure 9.12: Robust predictions, along with its 95 % confidence bounds, of the Cantilever
beam’s free-end displacement D.

The ABMS method is implemented on the set of ANN models trained with the synthetic

data set and the set of ANN models trained with the observed data set. The computation

times elapsed by the ABMS algorithm was 7.24 s when implemented on the set of ANN

models trained with the synthetic data set, and 5.97 s when implemented on the set of ANN

models trained with the observed data set. Detailed descriptions to the ABMS method are
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presented in Section 9.3.3. The resulting probabilistic prediction of the Cantilever beam’s

free-end displacement D are presented as graphical plots in Figure 9.12 given both sets of

ANN models. From the figure, it can be seen that in general, the robust estimates of D for

the case when the synthetic data set is used as the training data set show a higher degree of

agreement with the validation data for D compared to the case when the observed data set is

used as the training data set. This is especially so for the case of the validation data number

1 to 10 where the robust estimates by the set of ANN models trained using the observed

data set show a relatively larger degree of deviation from the validation data values for D.

In addition, it can also be seen that while the 95 % confidence bounds have generally

the same width in both cases, such bounds enclose nearly all the validation data values for

D for the case of the set of the ANN models trained with the synthetic data set with the

exception of data numbers 5 and 12. On the other hand, for the case of the set of the ANN

models trained with the observed data set, the 95 % confidence bounds fail to enclose data

numbers 1, 2, 3, 4, 5, 12, 19, and 20. These observations highlight a significantly improved

probabilistic prediction performance via the ABMS method using the set of ANN models

trained using the synthetic data set.

A reason to account for the improved probabilistic prediction performance via the ABMS

method using the set of ANN models trained using the synthetic data set is due to the larger

data set which is used to train the ANN models leading to a relatively better prediction

performance compared to the ANN models trained only with the relatively smaller observed

data set. This is supported by the results of the R2-scores for both sets of ANN models as

presented in Table 9.11 to which discussions have been presented in Section 9.6.2.

Finally, the resulting posterior probability P (Mv, yv|D) (i.e. see Eq. (9.3)) associated

with each of the ANN models when trained solely with the observation data and those

trained solely with the synthetic data are presented graphically in Figure 9.13. It needs to

be noted that in both cases, when the ANNs are trained solely with the observe data and

those trained solely with the synthetic data, ANN model 5 has the highest value of posterior

probability P (Mv, yv|D) associated with it.

9.6.4 Appendix conclusion

The appendix section has presented a numerical example in the form of a Cantilever beam

set-up subjected to a 2D external force applied to its free-end. The purpose of the example is

to provide a comparison in the prediction performance by the ABMS method on a validation
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Figure 9.13: Graphical plot of the resulting posterior probability of each of the given ANN
model in predicting the corresponding data points associated with the beam’s free-end dis-
placement D.

data set given a set of ANN models trained with a synthetic data set generated via a

stochastic data enhancement approach proposed in Section 9.3.1 against a a set of ANN

models trained only with the observed data set. Results have shown a significantly improved

probabilistic prediction performance by the ABMS when using a set of ANN models trained

with the synthetic data set. This demonstrates the feasibility of the proposed framework set

forth in the chapter.

To allow for the reproducibility the results presented in the section, codes and algorithms

used for the study are also made available on GitHub via: https://github.com/Adolphus8/

Project_PROMAP.git
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Chapter 10

Conclusion

Abstract

The chapter will first present a summary of the research contributions as well as the research

objectives achieved. From which, recommendations to the future research works, which

serve as extensions to the research content presented, will be provided before concluding the

chapter and the dissertation.

191



10.1 Concluding remarks

The research works presented in the dissertation has provided approaches towards improving

the robustness and efficiency of sampling tools employed for Bayesian parameter identifica-

tion, model updating, and model selection in the context of the engineering applications. To

demonstrate the robustness and feasibility of the proposed approaches, numerical and exper-

imental case studies were presented and the results were verified against the corresponding

reference values. Although the discussions of the developed techniques in the dissertation

are limited within the structural and nuclear engineering disciplines, these approaches can

still be potentially applied beyond these domains such as finance [328, 329] and climate fore-

casting [330, 331]. As the focus of the dissertation revolves mainly about the development of

numerical and computational tools, the codes to the Transitional Ensemble Markov Chain

Monte Carlo sampler, Sequential Ensemble Monte Carlo sampler, and their respective ap-

plication examples are made available as open-source software for the readers to refer and

reproduce the results presented. In summary, the dissertation has achieved the following:

Firstly, a background introduction to the concept of model updating was presented where

the description to the deterministic and probabilistic model updating approaches, as well as

an evaluation between them, are presented. The Bayesian model updating framework was

subsequently identified and set as the context of discussion and basis of the research works

presented in the dissertation. The research challenges are identified from which the research

objectives are defined. This provided the direction and structure for the dissertation.

Following which, a review on the concept of the Bayesian model updating framework

is presented. This included detailed explanation behind the mathematical derivations, the

interpretation of the mathematical terms defined in the concept, as well as an extensive

literature review on recent developments within that domain. From there, a detailed ex-

planation behind the sampling algorithm is provided for the following Monte Carlo sampler

techniques: 1) Markov Chain Monte Carlo; 2) Transitional Markov Chain Monte Carlo; and

3) Sequential Monte Carlo samplers. To illustrate the implementation of the above samplers

and evaluate the sampling performance between them, 3 case studies have been presented

consisting of 2 numerical examples and an experimental application. The comparisons made

between the 3 sampling approaches are done on the basis of their computational efficiency

and the precision of their estimates on the inferred parameter(s). From this series of investi-

gations, the strengths and limitations of each sampling approach are presented. This helped

provide the motivation behind developing improved sampling algorithms to address some of
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the limitations which were presented.

With that, the dissertation proceeds to present the proposed Transitional Ensemble

Markov Chain Monte Carlo sampler which serves as a new variant to the existing class

of Transitional Markov Chain Monte Carlo samplers. To improve its sampling performance

and effectiveness from highly-skewed and complex-shaped distribution, the Affine-invariant

Ensemble sampler was incorporated as the Markov Chain Monte Carlo kernel along with an

improved resampling strategy to update the samples. In addition, an adaptive tuning algo-

rithm was introduced to automatically tune the step-size parameter of the Affine-invariant

Ensemble sampler which, in turn, allowed for the acceptance rates of the sampler to be

controlled within optimal bounds. In doing so, it makes the proposed sampler free from tun-

ing by the user. To demonstrate its feasibility and verify its results, the proposed sampler

has been implemented along with the traditional Transitional Markov Chain Monte Carlo

sampler in 2 numerical examples which highlighted 4 key results: 1) the proposed sampler

is generally able to yield estimates with a lower standard error than that of the Transitional

Markov Chain Monte Carlo sampler; 2) the proposed sampler takes relatively shorter time

to generate samples compared to the Transitional Markov Chain Monte Carlo sampler as a

result of utilising an efficient sample updating strategy which allows samples to be updated

in parallel at an ensemble level via the Affine-invariant Ensemble sampler; 3) the proposed

sampler demonstrates an improved mixing performance given that its transition step-size is

shown to be generally greater than those obtained by the Transitional Markov Chain Monte

Carlo sampler; and 4) the proposed sampler is able to generate samples which explore the

sample space better compared to the Transitional Markov Chain Monte Carlo sampler in

the case of sampling from a 4-peaked posterior.

To validate the proposed Transitional Ensemble Markov Chain Monte Carlo sampler,

2 experimental problems have been presented involving experimental data and performing

Bayesian inference and model updating under model uncertainty. The first of which is

the 2DoF shear aluminium frame problem where the sampler is implemented to infer the

moveable mass positions, used to represent the damage location, on the structure. Unlike

previous problems discussed up to this point, the uncertainty over the likelihood functions,

introduced apriori in [1], is considered. To provide a robust uncertainty quantification over

the inference of the mass positions, the Robust Bayes framework was implemented to account

for the uncertainty over the choice of likelihood function (i.e. model uncertainty) and provide

a 95 % Credible Interval over the inferred mass positions. The inference results generally

agree with the reference values obtained from the experiment campaign. In addition, a
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discussion was also provided to account for the cases where the 95 % Credible Interval of the

inference results do not encompass the true mass positions. Furthermore, a comparison was

made between the sampling performance of the Transitional Ensemble Markov Chain Monte

Carlo sampler in sampling from each configuration of the posterior. The results showed that

the proposed sampler required the highest number of iterations in sampling from the posterior

which comprised of the Uniform prior and the Normal distribution likelihood function due

to its relatively rapid posterior contraction from the prior.

The second problem involves the analysis of a dynamical black-box system to which

it is described by an Uncertainty Model consisting of both aleatory and epistemic model

parameters. In the first part of the study, the goal would be to calibrate the Uncertainty

Model given a set of response signal data. To do so, the Transitional Ensemble Markov

Chain Monte Carlo sampler is implemented to perform Bayesian model updating. For the

analysis, 2 Uncertainty Models were proposed, each differing in the aleatory model used for

the aleatory model parameters and the likelihood function set-up. For the first Uncertainty

Model, the Beta distribution is identified based on the log-evidence results from a family

of distributions considered and the model updating was done with the likelihood function

incorporating the Wasserstein distance as the stochastic distance metric and a subset of the

Fast Fourier Transformed signal output as the data. For the second Uncertainty Model, the

Staircase Density Function is considered and the model updating was done with the likelihood

function incorporating the Bhattacharyya distance as the stochastic distance metric and

the batched time-domain signal output as the data. Results concluded that the second

Uncertainty Model yielded much more precise results in its probabilistic model predictions

over the response signal output. In the second part of the study, a sensitivity analysis was

conducted to rank the sensitivity of the epistemic model parameters. To do so, an adaptive

pinching approach is introduced which considers the entire epistemic space defined by the

respective Uncertainty Model at a low computational cost.

After which, the conceptual framework behind the design of the Transitional Ensemble

Markov Chain Monte Carlo sampler is extended towards the development of the Sequential

Ensemble Monte Carlo sampler for the identification of time-varying parameters using Se-

quential Bayesian inference. This serves as a new variant to the existing class of Sequential

Monte Carlo samplers. In addition to the features that have been included and discussed

in proposing the Transitional Ensemble Markov Chain Monte Carlo sampler, the Sequential

Ensemble Monte Carlo sampler is made more robust with the introduction of “virtual” itera-

tions which serves to not only allow for the automatic tuning of the step-size parameter, but
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also ensures that the acceptance rate of the sampler converges towards the user-defined tar-

get value. To complement the study, an investigation into the existence of inherent bounds

on the acceptance rate values is also performed which concluded that the analyst need not be

concerned over the possibility of the acceptance rates falling below the optimal bounds and

that it is only essential to ensure that such value are not too high (i.e. above 0.8). To validate

the Sequential Ensemble Monte Carlo sampler, the proposed sampler is implemented on a

single-storey structure subjected to a time-varying Coulomb friction where the objectives

are to identify the Coulomb friction, natural frequency of the structure, measurement errors,

and the most probable Markov kernel. The results not only highlighted the robustness of

the proposed sampler in identifying the most probable Markov model under uncertainty, but

are also verified against those obtained by the traditional Sequential Monte Carlo sampler.

Finally, the dissertation proceeds to discuss a novel framework which seeks to merge

Artificial Intelligence tools with Bayesian statistics to yield probabilistic predictions over

the nuclear material properties under sparse data and model uncertainty. For this study, a

particular steel material is considered to which the data associated with the identified input

and target features are enhanced through a stochastic approach. Following which, 5 Artificial

Neural Network models were constructed and considered for the prediction of each material

property to introduce elements of model uncertainty. From there, the Adaptive Bayesian

Model Selection method was implemented to introduce Bayesian statistics to the prediction

by the set of Artificial Neural Network models and yield robust estimates and its associated

confidence bounds. Results have shown that the confidence bounds of the model predictions

generally enclose the actual experimental data which verifies the proposed framework.

10.2 Future works

A series of thorough literature reviews and investigations were conducted through the course

of this doctoral candidature which resulted in significant scientific contributions towards the

discipline of Uncertainty Quantification within the engineering field. While the proposed

approaches have demonstrated its robustness and efficiency based on the results presented,

these methods have not been proven to be entirely perfect as they are yet to be applied in

every possible engineering set-ups. This provided room for further improvements and helped

open up 5 follow-up research works which will serve as the research plan for the future. They

seek to investigate the following:
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1) Defining the target acceptance rate of the Affine-invariant Ensemble sampler:

In Chapter 4, an adaptive-tuning algorithm is proposed which seeks to adaptively tune the

step-size hyper-parameter of the Affine-invariant Ensemble sampler in the Markov Chain

Monte Carlo step. Such tuning is based on a reference target acceptance rate defined

in [150] which is based on the study of the Metropolis-Hastings Markov Chain Monte

Carlo sampler. In addition, the optimal acceptance rates bounds of [0.15, 0.50] was also

obtained from [150]. Currently, there is no literature that looks into the mathematical

derivation of the target acceptance rate and its optimal bounds in the case of the Affine-

invariant Ensemble sampler. A future research work seeks to investigate this to contribute

towards the theoretical findings behind the sampler’s performances.

2) Uncertainty Model analysis for the NASA-Langley Challenge problem:

In Chapter 6, 2 Uncertainty Models were proposed to quantify the uncertain model

parameters of the dynamical back-box system. Although it was found that the set-up for

the second Uncertainty Model is less uncertain, it was not investigated as to what are the

factors that allowed this to be so. For instance, did the choice of the Staircase Density

Function used to model the distribution function of the aleatory model parameters play a

significant role due to its flexibility in modelling complex or unknown distributions? Did

the choice of the stochastic distance metric in the likelihood function affected the results

over the identification of the distribution model of the aleatory model parameters? Did

the choice of the data type have an impact on the resulting Uncertainty Model calibration

results? To address this, a further 4 Uncertainty Models can be set-up and calibrated via

Bayesian model updating to which the analysis can be done as presented in Chapter 6.

These Uncertainty Models and their configurations are summarised in Table 10.1. While

the preliminary studies and results are presented in a paper accepted in the Journal of

Physics: Conference series, further investigations shall look into the reliability analysis of

the given design point for each Uncertainty Model. This seeks to compare the imprecise

failure probability estimates by each Uncertainty Model and provide an understanding as

to how the different configurations of the Uncertainty Model would affect the uncertainty

of such estimates.
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Uncertainty Model Distribution type Data type Distance metric
3 Beta Time-domain Bhattacharyya
4 Beta Frequency-domain Bhattacharyya
5 Beta Time-domain Wasserstein
6 Staircase Density Function Frequency-domain Wasserstein

Table 10.1: Set-up of the additional Uncertainty Models for subsequent investigations.

3) An inverse approach towards interval analysis under sparse data and model

uncertainty:

In Chapter 9, the gaps in the experimental data are filled through a stochastic data-

enhancement method. For this extended investigation, the gaps in the data would be

represented as intervals. In doing so, this would allow for model predictions to be rep-

resented as intervals given a set of interval model inputs. An inverse problem will be

presented as follows: Given a user-defined tolerated level of confidence interval on the

model prediction of the steel material property, what would be the corresponding interval

of the input data that would yield such interval output? Such problem can be addressed

using Bayesian model updating approach to yield interval estimates of the input parame-

ter(s) via the improved Transitional Ensemble Markov Chain Monte Carlo sampler from

the first extended research work. In addition, a set of Artificial Neural Network models

can be considered to introduce model uncertainty and the most probable model can be

identified using the evidence term computed from the aforementioned sampler.

4) Identifying Markov kernel parameter(s) under uncertainty using the Sequen-

tial Ensemble Monte Carlo sampler:

In Chapter 8, the Sequential Ensemble Monte Carlo sampler is implemented on a single-

story structure subjected to a time-varying Coulomb friction and considers the case where

the model parameter(s) of the Markov kernel are fixed and known. However, in general,

such parameter(s) are not known and would need to be inferred. Hence, this presents

a need to further investigate the robustness of the proposed algorithm in inferring the

model parameters of the Markov kernel in addition to the time-varying parameter(s) that

is/are being estimated.

5) Consideration of correlated and time-varying measurement errors:

The numerical and experimental case studies presented in the dissertation assumes that

the measurement errors are time-invariant and that they are independent between each
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measurement. As such, future investigations will look towards problems where such errors

vary with time where its identification will be performed using the proposed Sequential

Ensemble Monte Carlo sampler and a time-varying likelihood function. Such has been

highlighted in Chapter 3 as an open research topic. In addition, to introduce further com-

plexities and broaden the generality of the applications, correlations will be considered

as an extension to this study to investigate the robustness of the sampling performance

and identification of the time-varying parameter(s) by the proposed sampler under chal-

lenging conditions. The purpose of this is to validate the sampler and demonstrate its

feasibility to analyse real-world engineering problems.
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