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Abstract—Current vision-based detection models within Au-

tonomous Vehicles, can be susceptible to changes within the

physical environment, which cause unexpected issues. Physical

attacks on traffic signs could be malicious or naturally occurring,

causing incorrect identification of the traffic sign which can

drastically alter the behaviour of the autonomous vehicle. We

propose two novel deep learning architectures which can be used

as detection and mitigation strategy for environmental attacks.

The first is an autoencoder which detects anomalies within a

given traffic sign, and the second is a reconstruction model which

generates a clean traffic sign without any anomalies. As the

anomaly detection model has been trained on normal images,

any abnormalities will provide a high reconstruction error value,

indicating an abnormal traffic sign. The reconstruction model

is a Generative Adversarial Network (GAN) and consists of

two networks; a generator and a discriminator. These map

the input traffic sign image into a meta representation as the

output. By using anomaly detection and reconstruction models as

mitigation strategies, we show that the performance of the other

models in pipelines such as traffic sign recognition models can be

significantly improved. In order to evaluate our models, several

types of attack circumstances were designed and on average, the

anomaly detection model achieved 0.84 accuracy with a 0.82 F1-

score in real datasets whereas the reconstruction model improved

performance of traffic sign recognition model from average F1-

score 0.41 to 0.641.

Index Terms—scene analysis, anomaly detection, Generative

Adversarial Network, attack restoration, autonomous vehicles

I. INTRODUCTION

Modern intelligent and automated cars are vulnerable to
environmental attacks, for example actions against traffic signs
[1] would impact the functionality of autonomous vehicles
[2]. Academic and industrial research groups have performed
advanced vision-based scene analysis for detecting anomalies
and enhance cybersecurity. These improve robustness and
car safety, particularly with respect to privacy, authenticity,
and integrity, in order to address existing security issues and
vulnerabilities of autonomous vehicles. Research works have
demonstrated the application of adversarial Machine Learning

(ML) methods to scene structural entities like pedestrians [3],
[4], traffic signs, Advanced Driver-Assistance System notifi-
cations and alerts, which can be compromised. Adversarial
attacks cause minor input changes, which despite the fact that
they cannot be noticed by humans, they can produce significant
deviations in the detection models’ estimates. This type of
attacks only concern Deep Learning models, with latest studies
in [5], [6], revealing that printed adversarial attacks applied to
networks in different illumination conditions, could also work.
3D printed samples are also erroneously classified by networks
at various orientations and scales, as described in [7].

Processes like sensor fusion [8], perception [9], scene anal-
ysis [10], and path planning [11] in smart and autonomous
vehicles can be executed using Machine Learning approaches.
ML methods and especially Deep Learning techniques, are
susceptible to specific visual-based attacks [1], [5], [6], [12],
[13] than can induce unexpected or even dangerous behaviours
in autonomous vehicles. Shortcomings in the existing au-
tonomous and connected vehicles make them susceptible to
attacks on physical objects like traffic signs [1]. Hence, the
formulation of a system design to address physical attacks is
necessary.

This work concerns traffic signs issues, which are consid-
ered crucial for the following reasons:

• Cases such as fake traffic signs tricking Tesla cars [14],
have shown that addressing such issues is needed for the
development of the automotive industry.

• Traffic signs are found in noisy uncontrolled setups,
with highly dynamic physical conditions such as weather,
lighting, viewing angle, and distance.

• Traffic signs can be simply accessed in public, insecure
spaces, hence, they can be easily targeted by physical ad-
versarial attacks on the behaviour of autonomous vehicles
[15], without requiring special knowledge or tools.

• Traffic signs are inherently crucial for the safety of
transportation.



The main contributions of our work are:
• A novel anomaly detection and mitigation strategies for

the environmental attack specially focusing on the traffic
signs.

• Two novel Deep Learning architectures, first to detect
anomalies and second to generate clean traffic signs
without any anomalies, in order to have a robust traffic
sign architecture.

• Considering the lack of standardised approach to evaluate
the physical attacks, we propose two different groups
of attacks to study the effectiveness on vastly different
methods.

• Finally, we evaluate our attacks on the real-world GTSRB
dataset [16] and demonstrate that a general purpose
Deep Learning architecture can be used to detect such
completely different types of anomalies.

II. ATTACK OVERVIEW

This section provides an overview of the proposed adversar-
ial attacks. In the threat modelling section, we establish our
assumption and the requirements for an attack, followed by
the proposed attack methods.

A. Threat Modelling

In this experiment, we have made a few key assumptions
regarding the attacker, their approach and the outcome of the
attack. We based our threat modelling on [2] and they are a)
knowledge threshold, equipment awareness, attacker position,
limitations and attack outcome.

• Knowledge threshold - We assumed that the attacker does
not have any prior information about any sensors used in
targeting the autonomous vehicle.

• Equipment awareness - Again, we assumed that the
attacker does not have any access to equipment used
in the autonomous vehicle. However, the attacker might
have general information about autonomous vehicle ar-
chitecture (i.e., we assumed that the attacker is aware
about the use of cameras for navigation purposes).

• Attacker position - Since our experiment deals with
physical adversarial attack, we assume that the attacker
is positioned outside the autonomous vehicle and has no
direct access to the vehicle.

• Attack outcome - The attack is an black-box attack and the
goal of such attack would be to degrade the performance
of the decision engine in the autonomous vehicle and
cause anomalous behaviour.

B. Attack Models

In the following section, we present the brief overview of
several types of attack models that have been considered for
physical adversarial attack on the traffic signs. These attacks
are an untargeted attack and our experiments only considered
black-box where the attacker has no access to decision engines.

• Gaussian Noise Attack - Gaussian Noise is a class of
statistical noise with a probability density function fol-
lowing the normal distribution, also known as Gaussian

Distribution. The Gaussian or Normal noise is the main
cause behind the grey value distribution in digital images
[17].

• Poisson Noise Attack - Poisson noise is a basic form
of uncertainty related with light measurements, which is
intrinsic to light’s quantized nature and the independence
of photon detection. The expected magnitude depends on
the signal properties and is the main source of image
noise, except in conditions of limited light [18].

• Speckle Noise Attack - Speckle noise is a granular pattern,
multiplicative in nature, usually present in synthetic-
aperture radar or satellite images.

• Pattern Attack - Pattern attacks constitute a type of
physical attacks on a specific entity. They are also known
as graffiti attacks. For instance, if a tape, sticker, or any
particular pattern is applied to an object, it could lead
to misclassification of the object or make it completely
undetectable.

• Mask Attack - In this case, a mask is formed to delimit the
surface area of the target object. This defines the physical
region, or spatial locality, which will be attacked [1].

III. METHODOLOGY

In the following, we describe our approach on the dataset
selection, generation as well as our methods used for traffic
sign attacks.

A. Dataset

The deep learning model needs vast amounts of data for
training [19]. In the following, we describe the datasets that
were used for training and testing purposes for our models.

1) German Traffic Sign Recognition Benchmark (GTSRB)

dataset: GTSRB is a traffic sign recognition dataset [16] and is
widely used for the traffic sign recognition benchmarking pur-
pose. The dataset consists of multi-class traffic signs captured
in various locations in Germany. It has 43 different labeled
traffic signs with varying image resolution. It contains a total
of 50, 000 images. Likewise, the dataset only consists of no
duplicate instance of any given traffic signs.The traffic sign
are captured in day time only.

2) German Traffic Sign Recognition Meta (GTSRM)

Dataset: In order to train our proposed mitigation model
(GAN model), a twin dataset of GTSRB was generated.
The dataset has an exact number of traffic signs as well as
classes. The only difference is the GTSRM dataset does not
consist of any background information. In addition, only 43
different images of each traffic class are generated and these
are duplicated to mirror the classes and the samples of GTSRB
(i.e., the dataset consists of same instance of traffic signs for
each class).

B. Model Architecture

In the following, we describe two proposed Deep learning
architectures for traffic sign anomaly detection and for recon-
struction models.



Fig. 1. The proposed architecture of anomaly detection used for real traffic
signs.

Fig. 2. Preview of input and output of the proposed anomaly detection model
described at section III-B1.

1) Anomaly Detection Model: Our proposed anomaly de-
tection model is based on Autoencoder (AE) architecture. The
model is trained in an unsupervised manner and does not
require any anomaly samples for training [20]. The primary
goal of the architecture is to learn the underlying general
attributes of the normal data instance in a lower dimension and
be able to reconstruct the normal instance from it [21]. The
assumptions of such an architecture and training approach is
that normal instances of data can be better reconstructed from
the lower dimension than anomalies. Thus, this characteristic
of the architecture can be also utilized for abnormal data
detection considering them as failed reconstructions.

Our proposed anomaly detection is visualised in Fig. 1 and
Table II shows the breakdown of the layer information.

The encoder is designed to capture the minute details of the
input data instance and preserve the most essential aspect in
the lower dimension. The encoder consists of several convo-
lutional layers followed by fully connected layers (i.e., dense
layers). The LeakyRELU function [22] is used as an activation
function. The dropout layer is used before the fully connected
layers. The dropout layers are used as a regularisation function
and the primary objective is to reduce the overfitting as well
as improve the overall robustness of the model. Furthermore,
instead of using the Maxpool layers which are commonly

employed to reduce the dimensions, we used the stride option
in the convolutional layer to reduce the feature dimension
based on the observation in [23]. This helped to improve
the simplicity in the encoder architecture design. The encoder
model receives an input image of dimension 48⇥48⇥3. Total
of 7 convolutional layers are used in sequential order with
decreasing height and width (H ⇥W ) resolution with various
features sizes. In general, feature sizes are usually increased
when the H ⇥ W are decreased. However, in our case, the
filter size of 128 is used multiple times corresponding with
the resolution downsampling. Our method forces the model
to learn not only the downsampling of the height and width
but also on the feature size. The aim is to capture the most
important features from all dimensions. Furthermore, half of
all the features are dropped using a dropout layer. The features
are then flatten and fully connected layers are used to reduce
features dimension to 48. These features points of the latent
space are fed to the decoder. The decoder is designed to
perform the heavy lifting since it needs to learn to represent the
latent space data into input data instances. Hence, additional
techniques such as convolutional transpose, residual block
and skip connection have been used. The decoder consists
of 10 layers including input and output layers (excluding the
residual block). We used Convolutional transpose to upscale
the features instead of simply using the Upsampling layer.
Since Upsampling layer does not perform any features ex-
traction, we choose to use convolution transpose instead of
Upsampling layer. Although this has increased the complexity
in the architecture, we also gain more features by using our
method.

In the decoder, the residual block has been utilized to extract
features useful in varying distances. The scale variety kernel
utilised to handle the traffic with different sizes (i.e., even
though the image size is cropped to 48 ⇥ 48 (H ⇥ W ), the
traffic within the image can be small or big). Hence, the
residual block is designed to be robust to such scale variants
by capturing features in different scales. The residual block
is repeated multi times (i.e., 4 times) and these features are
passed to the following convolutional layers. The features
are upsampled using a convolutional transpose layer and
compressed to 48 ⇥ 48 ⇥ 3 (H ⇥ W ⇥ C). Table I shows
all the parameters of the encoder as well as the decoder.

• Anomaly detection method - When the attack detection
model is fed with normal or abnormal traffic signs, the
model tries to reconstruct the input images. Fig. 2 shows
the reconstruction of normal images by anomaly detection
model. However, since the anomaly detection models
were only trained with normal data, we assumed that
the model performance would degrade with abnormal
data. This knowledge can be used for anomaly detection.
In order to detect anomalies, we need to first establish
a threshold value. This threshold value will be used to
identify if the traffic sign has an anomaly or not. Hence,
depending on the split ratio of normal/abnormal data in
testset, one can estimate threshold by calculating error



TABLE I
OVERVIEW OF THE ANOMALY DETECTION MODEL USED FOR REAL

TRAFFIC SIGNS.

Layer Type Output Shape Parameters

Input Layer 48 x 48 x 3 0
Encoder Layer 48 2,067,376
Decoder Layer 48 x 48 x3 6,643,383

Total Parameters 8,710,759

TABLE II
THE PROPOSED ENCODER ARCHITECTURE OF ANOMALY DETECTION USED

FOR REAL TRAFFIC SIGNS.

Type Output Strides Activation Filter

Input 48x48 1 Leaky ReLU 3
Conv2D- 1 48x48 2 Leaky ReLU 64
Conv2D- 2 24x24 1 Leaky ReLU 128
Conv2D- 3 24x24 2 Leaky ReLU 256
Conv2D- 4 12x12 1 Leaky ReLU 128
Conv2D- 6 12x12 2 Leaky ReLU 512
Conv2D- 7 6x6 1 Leaky ReLU 128

Dropout(0.5) - - - -
Flatten 4608 - - -

Dense - 1 48 - ReLU -
Dense - 2 55584 - ReLU -
Reshape 12x12 - ReLU 386

Conv2D-8 12x12 1 ReLU 512
Conv2D Transpose-1 12x12 2 ReLU 128

Conv2D-9 24x24 1 ReLU 256
Residual Block 24x24 1 ReLU 1 - 32
Concatenation 24x24 - - 320

Conv2D-10 24x24 2 ReLU 256
Conv2D Transpose-2 48x48 1 ReLU 128

Conv2D-11 48x48 1 ReLU 64
Dropout(0.5) - - - -
Conv2D-12 48x48 1 Tanh 3

TABLE III
OVERVIEW OF THE RECONSTRUCTION MODEL.

Type Output Shape Parameters

Input Layer 48⇥ 48⇥ 3 0
Generator (Model) 48⇥ 48⇥ 3 10, 512, 279

Discriminator (Model) 1 702, 849

Total Parameters 11, 215, 128

(e.g., mean square error) and N quantile error value which
splits the data into normal and abnormal is a threshold.

2) Reconstruction Model: The reconstruction model is a
GAN model which consists of generator and discriminator as
shown in Fig. 3. Our proposed reconstruction model is inspired
by image in-painting GAN architectures [30] where the gen-
erator is trained to generate meta-traffic signs for both normal
and abnormal data instances, whereas the discriminator is
trained to identify if the meta-traffic is the correct or incorrect
signs. The core aim of the generator is to learn the mapping

Fig. 3. The proposed architecture of reconstruction model used for real traffic
signs.

Fig. 4. The figure shows the input and out of our proposed reconstruction
model. The first row shows normal traffic signs with their reconstructed
meta-traffic signs. The others images are attack images and the reconstructed
images.

between the real traffic signs (normal or abnormal) to the meta-
traffic signs. The discriminator is trained to classify correct as
well as good quality meta-traffic signs. The generator model
within our proposed reconstruction model follows the similar
architecture used in the anomaly detection model and only
differs in the decoder section. The model not only needs to
map the normal traffic signs to meta-traffic signs but also
needs to understand the general features of traffic signs as
well as map the abnormal traffics to the clean meta-traffic
signs. Hence, additional latent space as well as filter have been
applied in the generator model (see Fig. 3, and Tables III, IV).

• Reconstruction Method - Although the reconstruction
model consists of generator and discriminator, only gen-
erator will be used for traffic sign anomaly reconstruc-
tion. The discriminator is only used during the training
process. Once the anomaly detection model detects an
anomaly, the traffic signs are input into the reconstruction



TABLE IV
THE PROPOSED ARCHITECTURE OF RECONSTRUCT MODEL USED FOR

REAL TRAFFIC SIGNS.

Type Output Strides Activation Filter

Input 48x48 1 Leaky ReLU 3
Conv2D- 1 48x48 2 Leaky ReLU 64
Conv2D- 2 24x24 1 Leaky ReLU 128
Conv2D- 3 24x24 1 Leaky ReLU 128
Conv2D- 4 24x24 2 Leaky ReLU 256
Conv2D- 5 12x12 1 Leaky ReLU 128
Conv2D- 6 12x12 2 Leaky ReLU 512
Conv2D- 7 6x6 1 Leaky ReLU 128
Dropout(0.5) - - - -
Flatten 4608 - - -
Dense - 1 128 - ReLU -
Dense - 2 36864 - ReLU -
Reshape 12x12 - ReLU 256
Conv2D-8 12x12 1 ReLU 512
Conv2D Transpose-1 12x12 2 ReLU 128
Conv2D-9 24x24 1 ReLU 256
Residual Block 24x24 1 ReLU 1 - 32
Concatenation 24x24 - - 320
Conv2D-10 24x24 2 ReLU 256
Conv2D Transpose-2 48x48 1 ReLU 128
Conv2D-11 48x48 1 ReLU 64
Dropout(0.5) - - - -
Conv2D-12 48x48 1 Tanh 3

model (generator) to generate clean meta-traffic signs.
3) Traffic sign recognition model: Traffic sign recognition

model is a widely researched field hence, we proposed a
simple traffic sign recognition model in order to enhance our
evaluation process for anomaly and reconstruction methods.
The traffic recognition model takes in 48 ⇥ 48 ⇥ 3 traffic
signs and outputs the class of the traffic signs. The model
is able to recognise 43 different traffic signs classes. Since the
architecture design of the traffic sign recognition model is out
of the scope of the paper, we only present the performance of
the traffic sign recognition model.

4) Training: The datasets described in section III-A, were
used for training and testing of anomaly detection, recon-
struction and recognition models. The GTSRB dataset [16]
was utilized to train and test the anomaly detection and
recognition models. Whereas our generated dataset GTSRM
was used to train to reconstruct the anomaly-free traffic signs
(i.e., clean meta-traffic signs). Likewise, all the images in the
dataset were pre-processed in order to fit the requirement of
the proposed models. Images were resized to 48 ⇥ 48 ⇥ 3
resolution, histogram equalisation (image colour balance) as
well as central cropping (removes unnecessary space around
traffic signs borders) and image normalisation were applied to
all the traffic signs as a pre-processing task.

• Anomaly Detection Model: An NVIDIA GTX 2080 Ti
GPU was used to train and evaluate the model, adopting
the Keras-Tensorflow framework. As a gradient optimiser,

Fig. 5. Example images of different attack types.

we employed the Adam optimiser. We applied a variety of
data augmentation schemes to the data, during the train-
ing phase. The augmentation task is performed to enhance
the robustness of the attack detection and reconstruction
models, via generating new varieties on the input data.

• Reconstruction Model: The generator and the discrim-
inator models are jointly trained. Nevertheless, only the
generator is utilized for the testing process. In the training
phase, the discriminator is trained to distinguish between
the generated image and the input image. The input image
for the generator is the normal/abnormal image and the
target is a clean meta traffic image. Again, for the training
process, an NVIDIA GTX 2080 Ti was utilized along
with the Keras-Tensorflow framework.

• Recognition Model: The traffic sign recognition model
was also trained in a similar fashion to above methods.
The traffic sign recognition model was trained to classify
43 different traffic sign using GTRSB dataset [16].

Fig. 6. Model performance with attack and with reconstruction traffic signs.



Fig. 7. Sample image of confusion matrix for anomaly detection and traffic sign recognition model. The confusion matrix is for attack types pattern - 1
(Large). The left is for anomaly detection, middle and right is for traffic sign recognition (with attack and with generated images by reconstruction model).

TABLE V
THE PERFORMANCE OF THE ANOMALY DETECTION MODEL ON VARIOUS

TYPES OF ATTACKS.

Type Precision Recall F1-

Score

Accuracy

Patter 1 - Larger 0.8833 0.9264 0.9043 0.8955
Pattern 1 - Small 0.8790 0.8950 0.8869 0.8798
Pattern 2 - Larger 0.8540 0.7368 0.7911 0.8008
Pattern 2 - Small 0.8624 0.7581 0.8069 0.8114
Pattern 3 - Larger 0.8845 0.9128 0.8984 0.8888
Pattern 3 - Small 0.8830 0.9074 0.8950 0.8860
Pattern 4 - Larger 0.8816 0.9109 0.8960 0.8878
Pattern 4 - Small 0.8842 0.9205 0.9020 0.8926
Pattern 5 - Larger 0.8824 0.9124 0.8972 0.8886
Pattern 5 - Small 0.8799 0.9000 0.8898 0.8824
Pattern 6 - Larger 0.8763 0.8721 0.8742 0.8684
Pattern 6 - Small 0.8744 0.8674 0.8709 0.8661
Gaussian Noise -
Low

0.8881 0.9233 0.9054 0.8940

Gaussian Noise -
High

0.8929 0.9900 0.9389 0.9324

Poisson - Low 0.6874 0.2395 0.3553 0.5521
Poisson Noise -
High

0.5106 0.1566 0.2397 0.5107

Speckle Noise -
Low

0.8918 0.9891 0.9379 0.9269

Speckle Noise -
High

0.8929 0.9900 0.9389 0.9324

Average Model Performance 0.824 0.844

IV. EVALUATION

Extensive experiments were performed to evaluate anomaly
detection and reconstruction models. For the evaluation pur-

TABLE VI
THE PERFORMANCE OF THE TRAFFIC SIGN RECOGNITION MODEL ON

NORMAL TRAFFIC SIGNS.

Type Precision Recall F1-

Score

Accuracy

Normal 0.978 0.99 0.983 0.99

TABLE VII
THE PERFORMANCE OF THE TRAFFIC SIGN RECOGNITION MODEL ON

NORMAL TRAFFIC SIGNS.

Attack Types F1-Score

(Attacked)

F1-Score

(Reconstructed)

Pattern - 1 (Large) 0.4 0.61
Pattern - 1 (Small) 0.5 0.7
Pattern - 2 (Large) 0.1 0.35
Pattern - 2 (Small) 0.15 0.45
Pattern - 3 (Large) 0.65 0.78
Pattern - 3 (Small) 0.5 0.7
Pattern - 4 (Large) 0.3 0.6
Pattern - 4 (Small) 0.33 0.63
Pattern - 5 (Large) 0.15 0.58
Pattern - 5 (Small) 0.3 0.65
Pattern - 6 (Large) 0.2 0.5
Pattern - 6 (Small) 0.35 0.7
Gaussian Noise (High) 0.72 0.8
Gaussian Noise (Low) 0.79 0.85
Poisson Noise (High) 0.58 0.71
Poisson Noise (Low) 0.5 0.68
Speckle Noise (High) 0.1 0.5
Speckle Noise (Low) 0.96 0.75
Average 0.421 0.641



pose, we generated a total of 9 different types of attacks. The
first 6 were pattern attacks whereas the rest were noise based
attacks. In addition, the attacks were divided into groups. For
the pattern attack, we have large and small patterns whereas for
the noise attacks we have high and low intensity noise attacks.
Likewise, in order to perform evaluation of the attacks on
traffic signs, we also trained a traffic sign recognition model.

For anomaly detection and reconstruction model perfor-
mance evaluation, we prepared test sets as following: A total of
2,580 images were used from GTSRB with each class contain-
ing 60 images (i.e. 60 image image instances per 43 classes).
These images are then used to create abnormal test datasets
where 2, 580 images ⇥9 types of attacks (i.e. total of 23220).
Fig. 5 shows all the attack types. Based on our test setup,
we calculated precision, recall, F1-score and model accuracy
for the anomaly detection. The results of our experiments are
shown in Table V. On average, the anomaly detection model
achieved 0.824 for F1-score and 0.844 for model accuracy.
Likewise, in order to evaluate the reconstruction model, we
used traffic sign recognition model as our evaluation metrics.
We compared the traffic sign recognition performance with
the attack and with the reconstructed traffic signs. Fig. 7
shows a confusion matrix of traffic sign recognition model
performance. The traffic sign recognition model performs
significantly better on normal signs with F1-Score 0.983 and
model accuracy 0.99 (see Table VI). As expected, performance
of the model degraded significantly on anomaly traffic signs
and achieved only F1-score 0.421 on average. However, with
the reconstructed traffic sign, the model achieved 1.5 times
better with F1-score as 0.641. Overall, all the metrics scores
were improved with reconstructed meta-traffic signs as shown
in Table VII and Fig. 6.

V. CONCLUSION

In this work, we devised and developed Vision-based
Anomaly Detection and Reconstruction models to address
and mitigate attacks on physical adversarial environments,
specifically on traffic signs which are subject to unsecure and
public locations. Anomaly detection techniques and mitigation
architecture were deployed and tested against a variety of
attacks, including noise and pattern attacks on traffic signs
as well as adversarial attacks on Deep Learning models.
For training and testing purposes, publicly available datasets
were used. Furthermore, additional datasets were generated
for mitigation purposes. The details on the performance of the
models were presented, and the implementation of the proto-
type algorithms was discussed. As shown in the evaluation,
the anomaly detection model achieved 0.844 accuracy with a
0.824 F1-score on the real traffic sign dataset.

In regards to future works, additional research can be
performed in order to design and develop a light version of the
model to be used in IoT devices. At the moment, the models
have a large number of parameters, and performing well in IoT
devices would be probably challenging. Additional studies can
also be carried out on the effects of the residual blocks and
their contribution to overall model performance.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon Europe research and innovation programme
under grant agreement No 101070450. Disclaimer: Funded
by the European Union. Views and opinions expressed are
however those of the author(s) only and do not necessarily
reflect those of the European Union or European Commission.
Neither the European Union nor the European Commission
can be held responsible for them.

REFERENCES

[1] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks
on deep learning visual classification,” in Proceedings of the IEEE

Conference on CVPR, pp. 1625–1634, 2018.
[2] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles:

Contactless attacks against sensors of self-driving vehicle,” p. 13, 2016.
[3] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning

in computer vision: A survey,” vol. 6, pp. 14410–14430, 2018. Confer-
ence Name: IEEE Access.

[4] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “Standard detectors aren’t
(currently) fooled by physical adversarial stop signs,” arXiv preprint

arXiv:1710.03337, 2017.
[5] A. Ranjan, J. Janai, A. Geiger, and M. J. Black, “Attacking optical flow,”

in Proceedings of the IEEE/CVF International Conference on Computer

Vision, pp. 2404–2413, 2019.
[6] W. Liu, M. Salzmann, and P. Fua, “Using depth for pixel-wise

detection of adversarial attacks in crowd counting,” arXiv preprint

arXiv:1911.11484, 2019.
[7] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a

false sense of security: Circumventing defenses to adversarial examples,”
in ICML, pp. 274–283, PMLR, 2018.

[8] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning
sensor fusion for autonomous vehicle perception and localization: A
review,” Sensors, vol. 20, no. 15, p. 4220, 2020.

[9] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in Proceedings

of the IEEE ICCV, pp. 2722–2730, 2015.
[10] L. Heng, B. Choi, Z. Cui, M. Geppert, S. Hu, B. Kuan, P. Liu,

R. Nguyen, Y. C. Yeo, A. Geiger, G. H. Lee, M. Pollefeys, and
T. Sattler, “Project AutoVision: Localization and 3d scene perception
for an autonomous vehicle with a multi-camera system,” in 2019 ICRA,
pp. 4695–4702, 2019. ISSN: 2577-087X.

[11] V. Mazzia, F. Salvetti, D. Aghi, and M. Chiaberge, “Deepway: a deep
learning estimator for unmanned ground vehicle global path planning,”
arXiv e-prints, pp. arXiv–2010, 2020.

[12] F. Lambert, “Understanding the fatal tesla accident on autopilot and the
nhtsa probe. 2016,” 2019.

[13] N. Morgulis, A. Kreines, S. Mendelowitz, and Y. Weisglass, “Fooling a
real car with adversarial traffic signs,” 2019.

[14] T. K. S. Lab, “Experimental security research of tesla autopilot,” 2019.
[15] S. Loveday, “Tesla model 3 traffic sign recognition tricked with fake

signs in UK,” 2020.
[16] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic

sign recognition benchmark: a multi-class classification competition,” in
2011 international conference on NN, pp. 1453–1460, IEEE, 2011.

[17] A. K. Boyat and B. K. Joshi, “A review paper: noise models in digital
image processing,” 2015.

[18] S. W. Hasinoff, “Photon, poisson noise,” in Computer Vision (K. Ikeuchi,
ed.), pp. 608–610, Springer US, 2014.

[19] P. Dar, “Datasets for deep learning open datasets,” 2018.
[20] C. Zhou and R. C. Paffenroth, “Anomaly detection with robust deep

autoencoders,” in 23rd ACM SIGKDD, pp. 665–674, 2017.
[21] Y. Yu, J. Long, and Z. Cai, “Network intrusion detection through

stacking dilated convolutional autoencoders,” vol. 2017, 2017. Hindawi.
[22] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities

improve neural network acoustic models,” in Proc. icml, vol. 30, p. 3,
Citeseer. Issue: 1.

[23] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” arXiv1412.6806, 2014.


