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Abstract—Taking as input natural images and videos aug-

mented reality (AR) applications aim to enhance the real world

with superimposed digital contents enabling interaction between

the user and the environment. One important step in this process

is automatic scene analysis and understanding that should be

performed both in real time and with a good level of object recog-

nition accuracy. In this work an end-to-end framework based on

the combination of a Super Resolution network with a detection

and recognition deep network has been proposed to increase

performance and lower processing time. This novel approach has

been evaluated on two different datasets: the popular COCO

dataset whose real images are used for benchmarking many

different computer vision tasks, and a generated dataset with

synthetic images recreating a variety of environmental, lighting

and acquisition conditions. The evaluation analysis is focused on

small objects, which are more challenging to be correctly detected

and recognised. The results show that the Average Precision is

higher for smaller and low resolution objects for the proposed

end-to-end approach in most of the selected conditions.

Index Terms—Augmented Reality, Object Detection, Scene

Analysis, Scene Understanding, Object Recognition, Deep Learn-

ing, Super-Resolution, Feature Extraction

I. INTRODUCTION

Augmented Reality (AR) applications enable users to in-
teract with their surrounding environment by overlying digital
visuals on top of reality through the camera view. The aim
is to achieve an enhancement of the real word through the
combination of virtual information, such as text, images,
video, or 3D models, with scenes captured by a camera in real
time [30]. Furthermore, recent advances of computer system’s
capabilities, high-speed communication and computer vision
technologies has boosted the demand of human-digital inter-
action through Mixed Reality (XR) headsets, and new three-
dimensional interactive displays. The rapid development of AR
technologies has fostered its application to different fields such
as restoration, education, archaeology, art, tourism, commerce,
and healthcare [33].

These immersive technologies rely on the analysis of the
surrounding environment to extract content information. For

instance, in the field of autonomous vehicles, scene analysis
and understanding (e.g., vehicle detection, traffic signs and
light recognition, and pedestrian detection) is a key component
for decision making tasks and end-to-end control [24] so that
the augmented environment can be seamlessly visualised on
the car display. In the last decades the advances of computer
vision have fostered the design and implementation of object
recognition methods increasing computational performance
and lowering process time [37]. As a result, current AR tech-
nologies based on object recognition use complex computer
vision techniques to detect and track objects in the real world.
Examples of such technologies include the You Only Look
Once (YOLO) model [1], homomorphic filtering and Haar
markers [12] and the Single Shot Detector [5]. The use of
Convolutional Neural Networks (CNNs) and Deep Learning
(DL) led to faster and more accurate detection processes [35].
However, they still deliver poor performance when camera
resolution is low, or when the objects to recognise are very
small or far away. Thus this can have an impact on the scene
understanding and the overall AR experience.

The aim of this study is to provide a novel integrated end-to-
end solution that improve performance in such conditions by
introducing Super-Resolution (SR) mechanisms. Not only have
Generative Adversarial Networks (GANs) been used for new
data generation and study adversarial samples and attacks, but
also in the recent past they have been investigated to perform
SR tasks [15]. Inspired by this, the proposed approach is based
on a cascade of two connected networks. The first network
is a super resolution network that takes as input transformed
images. More specifically, a 3D representation is used where
the z-axis represents the colour channel of the image. The
second network is based on the YOLO series’ architecture that
was designed to improve performance at a low computational
cost. The key contributions of this work are a) the end-to-end
design and training of the two connected networks allowing
automatic minimisation of the SR reconstruction error and
maximisation of the detection and classification accuracy with



a singe novel optimisation function, b) a complete comparative
study under a variety of environmental conditions that are
known to affect the overall performance of AR devices and
c) a new dataset composed of synthetic objects created under
different conditions, which allows unbiased performance eval-
uation under different sensor and environmental parameters.
The paper is organised as follows: Section1 introduces the
problem and relevant technologies, sections 2 provides an
overview of related work, section 3 describes the proposed
end-to-end architecture, section 4 presents results obtained
using both a real image dataset (COCO) and a novel synthetic
image dataset, and section 4 draws the final conclusions.

II. OVERVIEW OF PREVIOUS WORK

Augmented reality applications rely on machine learning
and computer vision techniques to recognise the presence
of physical objects in the real world so that virtual objects
can be added and rendered in real time. In recent years, the
use of Deep CNNs significantly improved performance and
accuracy of computer vision for many tasks such as object
detection and recognition. In 2014 Girishick et al. proposed
the Regions with CNN features (RCNN) for object detection
[11]. First, initial object candidate boxes are extracted by a
selective search. Then, each box is rescaled to a fixed size
image that is fed to a CNN model trained on an AlexNet [31]
for feature extraction. Finally, object detection is performed
using a linear SVM classifier. Although this approach led
to significant improvement of the mean Average Precision
when compared with previous approaches, it suffers from slow
detection speed. To overcome this issue, He et.al. proposed
the Spatial Pyramid Pooling Network (SPPNet) [16]. Its main
novelty is a Spatial Pyramid Pooling (SPP) layer, which
generates a fixed-length representation regardless of image
size and scale allowing to feed images with varying sizes
during the training process which improves scale-invariance
and reduces overfitting. In the case of object detection, the
feature maps are computed from the entire image only once,
and then the features are aggregated in sub-regions to generate
fixed-length vectors for training the detectors. Evaluation of
this method showed that it could detect objects 24 to 102 times
faster than RCNN. In 2015, Girshick proposed an improved
version over the previous the RCNN architecture called Fast
RCNN detector [10]. Although this network allows to train
a detector and a bounding box regression simultaneously
with the same network configuration, slow speed remained
an issue. The same year, Ren et al. proposed the Faster
RCNN detector [28], which is considered the first almost real-
time deep learning detector using an end-to-end training This
architecture introduces a Region Proposal Network (RPN) to
speed up the detection process. Numerous variants of this
approach have been suggested the following years to decrease
any computational redundancy [20].

In particular, Cao et al. (2020) proposed a method called
D2Det [3], which is based on the Faster R-CNN framework.
Here the Region of Interest (ROI) features are processed
through two different stages: a high-density local regression,

which replaces the Faster RCNN offset regression, and a
discriminant ROI pooling. In contrast to all the methods
mentioned above, which are considered as two-stage detectors
as they perform a coarse to fine process, in 2016 Joseph et al
proposed a one-stage detector called You Only Look Once
(YOLO) [26]. The image is divided into regions, and the
network predicts bounding boxes for each region at the same
time. With such approach the whole process is completed
in one step applying a single network to the entire image
increasing significantly processing speed. Although YOLO’s
second and third versions have improved its prediction ac-
curacy [27], they still underperform in terms of localisation
accuracy when compared with the two-stage methods. Liu
et al. tried to improve this aspect proposing a Single Shot
MultiBox Detector (SSD) [23] introducing a multi-reference
and multi-resolution detection method detecting objects at
different scales on different network layers. As a result, the
SSD network gains small improvement outperforming YOLO
in PASCAL VOC detection task [6]. Suggesting that extreme
foreground-background class imbalance is the cause of the
lower accuracy of the one-stage detectors, in 2018, Lin et
al. introduced the RetinaNet [21] where a new loss function
called “focal loss” was added to improved their approach.
Indeed by modifying the standard cross entropy loss, the
detector is more attentive on misclassified examples during
training. A recent trend in object detection methods is anchor-
free techniques where the methods infer the bounding box
corners instead of fixed bounding boxes. A notable example
is CenterNet proposed by Zhou et el [36]. The CenterNet
method is a state-of-the-art Lidar-based 3D detection and
tracking framework. It could be viewed as an improvement
over CornerNet [18] which is an anchor-free approach to
detect bounding box as a pair of keypoints. The keypoints
are the top-left and the bottom-right corners retrieved via the
corner pooling technique introduced by the same authors [18].
The CenterNet method has introduced a notion of a center
keypoint to help associating the corner keypoints with an
object in the image. The CenterNet method has outperformed
common anchor-based solutions such as Faster RCNN and
YOLO by a significant margin. In 2020, Perez-Rua et al [25]
introduced OpeN-ended Center nEt (ONCE) which offered
a functionality that can detect objects from classes with a
small number of examples inside its training dataset. The
more recent approaches start to investigate possibilities of
transformers covered in the DEtection TRansformer (DETR)
method [4] with an advantage being simple yet on par with
the rest of the detection techniques used in the field. Later,
Zhu et al proposed Deformable DETR as an improvement to
address the performance in detecting small objects achieving
the state-of-the-art performance.

In parallel, approaches have been developed to enhance the
detection of small objects, which is particularly challenging
as they have fewer visible details. Super-resolution solutions
relying on Generative Adversarial Networks (GAN) [13] have
proved particularly successful [19]. Indeed, their competitive
process involving two neural networks, i.e., a generator net-



Fig. 1: Overview of the proposed novel framework trained end-to-end. For the SR and detector models any state-of-the-art
solutions can be used without affecting the overall pipeline and the proposed modular architecture.

Fig. 2: Training setup for the DAT SR deep network.

Fig. 3: YOLOX architecture relying on a decoupled head

work and a discriminant network, ensures that the generated
images are as realistic as possible.

Herein, we address the detection and recognition of visually
small objects by proposing a novel approach which is based
on a super-resolution network and a second network with a
modified YOLO architecture trained end-to-end. This solution
aims to provide accurate detection of objects that are very
small or very far from the camera sensor of the AR glasses
while delivering a fast processing time enabling its usage in
real time applications.

III. PROPOSED FRAMEWORK

In this paper we propose an end-to-end framework for scene
understanding that combines super-resolution, and object de-
tection and classification architectures. Figure 1 shows an
overview of the proposed methodology where the two main
components take as input an image (or a video) and are trained

Fig. 4: Confusion Matrix (the white colour of the image was
levelled up to see the numbers)

in an end-to-end manner. Details of these two processing
blocks are described in the following sections.

A. Super-Resolution Method

As reviewed in the Section 2, usage of super-resolution
in a pre-processing stage has been included in many com-
puter vision pipelines. Typically, the super-resolution model is
trained in an unsupervised manner using several independent
datasets, while the target classification or detection model
is trained only on a single task related dataset. By doing
so, some extra information, which is not available in the
target labelled dataset, is injected in the SR images [17]. SR
models are trained under the assumption that the low-scale
images, passed as input, are the results of some low-pass
filter, such as a Gaussian blur or a point spread function. The
training takes place by first down-sampling high resolution
images with such kernel and second optimising the model
to reconstruct these high-resolution images. Theoretically, the



(a) Ground - Camera
Subcategory - Golf
(97%)

(b) Ground - Light
Subcategory - City
Bus (96%)

(c) Ground - Weather
Subcategory - City
Bus (95%)

Fig. 5: Examples of the generated synthetic data. The bottom
row represents examples from the Ground category. From
the left, the first column shows the Camera sub-category,
the second column shows the Light sub-category, the third
columns displays the Weather sub-category.

kernel function should match the actual blurring process
caused by the camera used in the targeted application. As
it is usually unknown, ’standard’ kernels have been used.
However, as they fail to model the specific optics and sensors
of the actual cameras that captured the images of interest,
this leads to degraded performance in real-world scenarios.
To address this, methods have been proposed to learn the blur
kernel. The most accurate approaches, such as the state-of-
the-art network Deep Alternating Network (DAT) [17], have
relied on deep learning architectures. DAT was selected for our
pipeline because its learning is unsupervised and it delivers
fast computation, which makes it suitable for mobile devices
and low specification desktop computers. Indeed, the authors
showed that the average speed is 0.75 seconds per image, more
than 500 times faster than its competitors KernelGAN [2],
ZSSR [29] and 5 times faster than IKC [14]. The mentioned
average speeds are considered to be fast in the domain of
SR. Figure 2 shows DAT’s training setup. It is composed
of two main networks called Restorer and Estimator: the
Restorer produces the SR image, while the Estimator provides
an estimate of a blur kernel given the restored image. The two
networks are used in alternation improving at each Restorer-
Estimator step the quality of the SR image and the accuracy
of the estimated kernel. The sequence of Restorer-Estimator
is optimised end-to-end using a stochastic back-propagation
algorithm.

B. Object Detection Method
For augmented reality applications, object detection models

must deliver high accuracy in real-time. For the proposed
framework, the anchor-free model, YOLOX [8], offers the best
compromise. Indeed, its simple, powerful and computationally
efficient architecture was built upon one of the most used
detectors in the industry, YOLOv3 [27], which, in addition to
have a limited computational cost, has received excellent soft-
ware support. However, an important improvement of YOLOX
is that, unlike the previous architectures of the YOLO series,
it uses a decoupled head which improves convergence speed.
Figure 3 provides an overview of the architecture of YOLOX.
Following a 1 x 1 convolutional layer used to decrease the
number of channels, there are two parallel branches with 3

x 3 convolutional layers. Moreover, compared to the baseline
YOLOv3, an Intersection over Union (IoU) aware branch is
added in the regression branch.

Another enhancement of YOLOX is, unlike the past ver-
sions of YOLO detectors (except for YOLOv1), usage of an
anchor-free model. Anchors are candidates bounding boxes
with pre-defined dimensions that the detector selects during
the detection process and for which it predicts the delta
values for their centres and dimensions. Obviously, these
additional predictions require extra processing during both
the training and inference stages, which impacts the overall
computational time. On the other hand, when using an anchor
free approach, bounding boxes are predicted directly, which
reduces the number of design parameters. As such approach
requires advanced data augmentation to match the performance
of anchor-based models, state-of-the-art data augmentation
approaches, i.e., Mosaic and MixUp, were exploited [8] In-
deed, they are known to bring stability and reduce overfitting
during the training process. Finally, it is important to specify
that YOLOX leverages a high-performance CNN front-end
CSPNet [32],which is followed by a feature pyramids network
(FPN) [27].

C. End-to-end Framework

The methods described in sub-sections B and C were
integrated into an end-to-end framework. Thus, the framework
comprises two main components, i.e., Super-Resolution and
Detector. Equation (1) illustrates the proposed end-to-end
architecture where x is the input low-resolution image, y is
the image generated by the super resolution function S(·), and
z is the output of the detection function D(·).

(
y=S(x)
z=D(y)

! z = D(S(x)) (1)

In this framework, an input image is, first, handled by
the SR component which produces a super-resolved output
image. Second, this image is passed to the detector component
which recognises and locates objects. Through this process, the
detector learns from images enhanced by the SR component.
The input images are super-resolved using kernels. There are
many types of kernels such as common bicubic kernel or
linear kernel. They are well studied and don’t require an AI
network to calculate them. However, in regard to SR task,
the real world images don’t have information about the kernel
therefore it couldn’t successfully be restored. Consequently,
an estimator is used to infer the kernel during the training
process. Then, it is passed to the restorer to generate images.
As a result, the restored images contain features which are the
product of the kernel. These features could be picked up by
the detector during the training process creating a symbiotic
relationship between the SR and detector components leading
to an improved performance. To monitor and evaluate the
training of the framework, several state-of-the-art loss func-
tions were selected. The detector is trained using Varifocal
Loss [34] as classification loss function and SIoU [9] (Scylla



Fig. 6: Confusion Matrices for the four categories

Intersection over Union) as box regression loss function.
Moreover, the training process was facilitated with SimOTA -
a Simplification of OTA [7] (Optimal Transport Assignment)
- for dynamic label assignment [8]. The Varifocal Loss is
particularly efficient because it considers both classification
and localisation scores when ranking candidates using IoU.
Similarly, the SIoU loss function addresses direction mismatch
between expected and predicted bounding boxes by exploiting
angle, distance, shape, and IoU costs. Finally, the value of
SimOTA is to view the task of bounding box assignment as
an optimal transport problem where the unit transportation
cost between anchor-point and ground truth is expressed as
a weighted sum of their classification and regression losses to
find the best assignment solution

D. Parameters
The end-to-end framework was fine-tuned by running 10

epochs with a batch size of 3 on both real and synthetic
data under four different categories. While the learning rate
was set to 0.0001 for the SR component, it was set to
0.0032 with SGD (Stochastic Gradient Descent) optimisation
for the detector. Additionally, as mentioned earlier, training
was enhanced using Mosaic and MixUp as data augmentation
strategies.

IV. EVALUATION

The proposed method has been applied to object recognition
and scene understanding. Its evaluation was performed using
the Common Objects in Context (COCO) dataset [22] and
a synthetic dataset where different environmental conditions
were applied to affect image quality. COCO is widely used
to benchmark computer vision models. It consists of 330K
images, with more than 200K labelled images, 1.5 million
object instances, 80 object categories, 91 stuff categories,

TABLE I: Model Performance on the COCO Dataset in terms
of mAP (%)

RetinaNet YOLOv3 Faster R-CNN Proposed
52.61 44.76 40.50 67.09

and 5 captions per image. Comparisons with state-of-the-
art methods relies on the mean Average Precision (mAP), a
standard metric introduced in 2014 to quantify object detection
performance based on a user-defined set of criteria [22]. It
is defined as the mean value of the average precision of the
individual classes:

mAP =
1

n

nX

k=1

APk (2)

where APk is the Average Precision of class k and n is the
number of classes.

In this evaluation process, using the COCO dataset, Table
I shows performance in terms of mAP of the proposed
framework against that of other approaches presented in the
literature review. Our framework outperforms significantly
all its competitors. Moreover, the added value of the super-
resolution component is clearly established as it exceeds
YOLO’s mAP by over 20%. The confusion matrix in Figure
4 further demonstrates the performance of the model. In
particular, it predicts with high accuracy objects belonging to
the prevailing “car” category. However, one should highlight
that the “van” category is often mistaken for the “car” category,
which is due to the visual similarity between images of these
two classes.

Further evaluation has been carried out using a synthetic
dataset that we created using a 3D Rendering Engine. This
dataset consists of approximately 3000 low-resolution images



(a) Air - Camera Subcate-
gory - Hawker (97%)

(b) Air - Light Subcategory
- A380 (91%)

(c) Air Category - Weather
Subcategory - B747 (95%)

(d) Ground - Camera Sub-
category - Golf (97%)

(e) Ground - Light Subcate-
gory - City Bus (96%)

(f) Ground - Weather Sub-
category - City Bus (95%)

Fig. 7: Examples of the generated synthetic data. The bottom row represents examples from the Ground category. From the
left, the first column shows the Camera sub-category, the second column shows the Light sub-category, the third columns
displays the Weather sub-category.

(a) Air - Camera Subcategory -
Hawker (97%)

(b) Air - Light Subcategory - A380
(91%)

(c) Air - Weather Subcategory -
B747 (95%)

Fig. 8: Examples of the generated synthetic data. The bottom row represents examples from the Ground category. From the
left, the first column shows the Camera sub-category, the second column shows the Light sub-category, the third columns
displays the Weather sub-category.

per category of aerial and ground vehicles in different envi-
ronments and weather conditions. Its images belong to four
different categories, each allowing to assess our model on
specific properties: a) Camera, b) Light, c) Weather, and d)
Sensor. The “Camera” category contains images of objects
seen from different camera angles and distances. In the
“Light” category, images are generated under a variety of
lighting parameters mimicking different parts of a day such
as morning, afternoon, evening, and night. The “Weather”
category simulates images captured under diverse weather
circumstances, including varying rain and wind conditions.
Finally, the “Sensor” category mimics images collected by
standard, night vision and thermal cameras. The performance
of the proposed framework in terms of mAP is shown in Table

TABLE II: Model Performance on the Synthetic Dataset
according to the Four Image Categories

Category mAP(%)

Camera 80.14
Light 77.82

Weather 76.36
Sensor 23.72

II for these three categories.

V. CONCLUSION

The work presented in this paper offers an end-to-end
solution for object detection and recognition on AR devises.
The modular architecture allows the integration of different SR



and detection models under the same pipeline. An overview of
existing solutions and approaches is provided both for super
resolution and scene analysis methods with applications in
immersive applications. The proposed architecture was tested
both in real and synthetic datasets in a comparative study
including other state of the art approaches. The obtained re-
sults demonstrate a significant improvement especially for low
resolution or distant objects. Also, the proposed framework
was tested and analysed for different environmental conditions
and a variety of camera sensors. Additionally, a new balanced
synthetic dataset was produced with annotated data covering
multiple objects and environments.
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