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Abstract 

Software systems execute tasks that depend on different types of resources. 

However, the variability of resources may interfere with the ability of software 

systems to execute important tasks. Resource variability can occur due to several 

reasons including unexpected hardware failures, excess workloads, or lack of 

materials. For example, in automated warehouses, malfunctioning robots could delay 

product deliveries causing customer dissatisfaction and, therefore, reducing an 

enterprise’s sales. Moreover, the unavailability of medical materials hinders the ability 

of hospitals to perform medically-critical operations causing loss of life. In this thesis, 

we propose to address the problem of resource variability through resource-driven 

adaptation, using task models as input for adaptation decisions. The thesis presents 

the following contributions: 

• SPARK: a framework for performing proactive and reactive resource-driven 

adaptation based on multiple task-related criteria. The framework supports 

different types of depletable and reusable resources that could face variability. 

SPARK assists with four types of adaptation, namely: (i) execution of a similar task 

that requires fewer resources, (ii) substitution of resources by alternative ones, 

(iii) execution of tasks in a different order, and (iv) cancellation of the execution of 

tasks. 

• SERIES: a task modelling notation and editor tool that enables software 

practitioners to create task models that serve as input for SPARK. SERIES supports 

the representation of task priorities, task variants, task execution types, resource 

types, and properties representing users’ feedback. 

SPARK was evaluated in terms of the percentage of executed critical task requests, 

the average criticality of the executed task requests in comparison to the non-executed 

ones, overhead, and scalability through two case studies concerned with a medicine 

consumption system and a manufacturing system. The results of the evaluation 

showed that SPARK increased the number of executed critical task requests during 
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resource variability. Additionally, the results showed that the time it takes to prepare 

and apply adaptation plans does not add significant overhead that hinders the ability 

of software systems to execute tasks in a tolerable waiting time. Furthermore, SPARK 

was shown to be scalable since the abovementioned time increases polynomially 

relative to the input size (number of tasks and task variants). 

SERIES was evaluated through a user study with twenty software practitioners. The 

results showed that software practitioners performed very well when explaining and 

creating task models using SERIES. These results were reflected in the task modelling 

activities that the participants performed as well as in their positive feedback 

regarding the usability of SERIES and the clarity of its semantic constructs. 

Overall, we conclude that the research presented in the thesis contributes to 

addressing resource variability through resource-driven adaptation. We also provide 

suggestions for future work that can extend this research. 
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Glossary 

The following list includes definitions for key terms, which are frequently used 

throughout this thesis: 

⎯  Enterprise is an organisation (e.g., a business like a retail store). 

⎯  Enterprise System is a software system that manages the activities of enterprises. 

Examples of an enterprise system include an automated warehouse system, 

manufacturing system, and enterprise resource planning (ERP) system. 

⎯  Resource is an entity that is needed to carry out a task. 

⎯  Resource-driven Adaptive System is a type of self-adaptive system, where the 

trigger for adaptation is the variability of resources. 

⎯  Self-Adaptive System is a system that can adapt itself automatically based on 

changes in its context. 

⎯  Task represents an activity in a software system. 

⎯  Abstract Task involves complex actions and is broken down into a sequence of 

child (sub) tasks. 

⎯  Application Task is executed by the software system without user interaction. 

⎯  Application Task Variant is a special case of an application task and is needed to 

(1) avoid treating all executions of an application task in the same way when 

adapting and (2) identify how to execute an application task with fewer resources. 

⎯  Resource Intensiveness indicates the level of resource consumption of an 

application task variant for a type of resource. 
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1  

Introduction 

This thesis addresses resource variability, which prevents software systems from 

executing their tasks. This chapter motivates the research using examples of multiple 

types of software systems. It explains the research objectives, presents the research 

questions, and summarises the contribution. 

1.1 Problem and motivation 

Existing software systems rely on resources to execute tasks. For example, using 

robots in automated warehouses, medical materials in hospital management systems, 

energy in electricity grids, or ingredients in food production systems. The availability 

of resources, however, can vary due to several reasons such as unexpected hardware 

failures, excess workloads, or lack of materials. For example, product deliveries could 

be delayed due to robots malfunctioning in automated warehouses, medical operations 

may be cancelled due to unavailable materials and theatres in hospitals, prices of 

electricity may be increased due to high demand, or the food supply chain could be 

disrupted due to high demand of food products and lack of ingredients. 

Adaptation can help software systems to deal with resource variability (Adelstein et 

al., 2005). Resource-driven Adaptive Systems (RASs) are a type of self-adaptive system 

(SAS) in which changes in the system are driven by resource variability (Christi, Groce 

and Wellman, 2019). This means in RASs, the unavailability or scarcity of resources to 

carry out a task can trigger an adaptation that permits the software system to keep 

executing tasks. An autonomic manager oversees the adaptation process for a software 
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system by making adaptation decisions during resource variability. Figure 1.1 depicts 

the element of a RAS. 

Existing work on resource-driven adaptation focus on single types of adaptation 

that involve disabling optional components (Klein, Maggio, et al., 2014; Xu and Buyya, 

2019), reducing the data returned by a query (Gotz et al., 2015; Viswanathan, Jindal 

and Karanasos, 2018), changing system configurations through policies (Efstratiou et 

al., 2002; Keeney and Cahill, 2003), or reducing source code that consumes a lot of 

computational resources (Christi, Groce and Gopinath, 2017; Christi and Groce, 2018). 

By supporting multiple types of adaptation, software systems become more versatile in 

addressing resource variability. For example, if an optional component needs an 

unavailable resource, then it is possible to disable this component. Otherwise, if the 

component is not optional the software system should seek another type of adaptation. 

Additionally, existing resource-driven adaptation approaches focus on a single type 

of reusable resource like CPU (Maggio, Klein and Arzén, 2014; Sun, Cai and Loparo, 

2019), RAM (Huber et al., 2017; Christi and Groce, 2018), battery (Pascual, Pinto and 

Fuentes, 2015; Yan et al., 2019), and bandwidth (Sousa et al., 2006; Papakos, Capra and 

Rosenblum, 2010), or even on depletable resource types such as food ingredients 

(Bennaceur et al., 2019). However, software systems rely on multiple types of 

depletable and reusable resource types that are impacted by variability. For example, 

automated warehouse systems rely on resource types like robots, boxes, and bubble 

wrap for packing products to be shipped. As indicated by Xu and Buyya (2019), 

supporting multiple types of resources would make resource-driven adaptation 

approaches more comprehensive. This means the adaptation approach would be 

applicable to multiple types of resources rather than a specific type of resource. 

 

Figure 1.1 – A resource-driven adaptive system 
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Furthermore, the consideration of tasks in resource-driven adaptation provides 

granularity in the adaptation decision-making because there could be differences in (i) 

the priorities that specify the level of importance of each task, (ii) the applicability of 

an adaptation type to a task, (iii) the types of resource that are used by a task, and (iv) 

the resource consumption of task variants that represent different versions of a task. 

Instead of considering some software components to be always optional (Klein, 

Maggio, et al., 2014; Xu and Buyya, 2019) or using configurations that apply to an 

entire software system (Efstratiou et al., 2002; Papakos, Capra and Rosenblum, 2010), 

it is possible to make more granular adaptation decisions based on tasks. For example, 

the task of displaying product recommendations in an online retail store system can be 

optional when it is not initiated by users with privileged roles (e.g., VIP customers). 

This would reduce the consumption of computational resources during resource 

variability while keeping the task available where it is most needed. 

When considering tasks in resource-driven adaptation, it is not sufficient to support 

single-user scenarios as is done in some approaches that target mobile devices (Sousa 

et al., 2006; Rigole et al., 2007) because software systems have multiple users who are 

initiating tasks that are competing for resources. For example, multi-user enterprise 

systems differ from single-user mobile apps because the adaptation must consider the 

perspectives of end-users and corporate management regarding which tasks are more 

important during resource variability. Additionally, sharing resources among tasks for 

a limited time via a leasing mechanism (Perttunen, Jurmu and Riekki, 2007) is not 

sufficient because there are tasks that require using resources until completion (e.g., 

medical operations make use of medical equipment until completion). 

Moreover, software systems should perform resource-driven adaptation at runtime 

because information like the importance of a task or the choice of a type of adaptation 

is unknown at design time. Hence, existing approaches that modify the source code of 

software systems (Christi and Groce, 2018; Christi, Groce and Wellman, 2019) are not 

suitable for performing resource-driven adaptation at runtime. Furthermore, these 

approaches are limited to software systems that are written in particular 

programming languages because annotations are added to the code as is done by 

Christi et al. (2017) with Java programs. On the other hand, a resource-driven 

adaptation approach would be technology independent if such annotations are 

represented at a higher level of abstraction than source code. Resource-driven 

adaptation approaches would be applicable to multiple resource variability scenarios if 
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they support several types of software systems. Some existing approaches focus on 

types of software systems such as power consumption in unmanned aerial vehicles 

(Yan et al., 2019) and data exchange between robots (Gotz et al. 2015), which narrows 

their scope of applicability. 

1.2 Motivating examples 

In order to motivate, illustrate, and evaluate the work in this thesis, I consider three 

examples of enterprise systems, namely: warehouse systems, manufacturing systems, 

and Enterprise Resource Planning (ERP) systems. Enterprise systems are software 

systems that manage the activities of enterprises (Oz, 2009). What follows is an 

explanation of why enterprise systems are relevant examples for the research 

presented in this thesis. 

As shown by the examples in Figure 1.2, enterprise systems make use of tasks that 

require limited resources such as robots, boxes, raw materials, factory machinery, 

RAM and CPU. Hence, enterprise systems are affected by resource variability. 

Furthermore, enterprise systems make use of tasks that differ among enterprises 

(Lucas, Xu and Babaian, 2013). So, it is not possible to define a software system’s 

behaviour at development time in a single way that accommodates the needs of all 

enterprises based on the availability of resources. Therefore, software systems should 

perform resource-driven adaptation at runtime while prioritising tasks so limited 

resources would remain available for the tasks that need them most, namely the 

critical tasks. The prioritisation should consider multiple criteria, which include the 

task’s parameter values, resource consumption, initiation time during the day, user’s 

role, historical data about usage frequency, and domain-related criticality (e.g., it could 

be more critical for a warehouse to ensure timely delivery of products for VIP 

customers). The following sections discuss the usefulness of resource-driven 

adaptation with the abovementioned prioritisation criteria and the adaptation types 

mentioned in Section 1.1 in the context of the motivating examples presented in Figure 1.2. 

1.2.1 A warehouse system 

Consider that a retail store has a warehouse that is automated by robots. The retail 

store receives customer orders throughout the day. Robots perform order preparation 

tasks by retrieving from the warehouse the products corresponding to customer 
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orders and packing them in boxes ready for delivery. Hence, robots are essential 

resources for executing key warehouse activities. However, robots can temporarily go 

out of service due to unexpected errors or due to the need for recharging, thereby 

delaying order fulfilment and causing financial losses. Software systems could avoid 

these negative implications of resource variability through adaptation as explained 

below. 

The preparation of customer orders for shipping is a critical task, but robots also 

work on tasks like sorting returned products, which could be less important in some 

cases (e.g., during specific times of the day). Hence, it is possible to substitute 

inoperative order preparation robots with robots that are working on less important 

tasks. In this way, the order preparation stays on track until the inoperative robots are 

back in service (e.g., after repair). This demonstrates situations of task prioritisation, 

resource substitution, and execution of tasks in a different order (leaving the sorting of 

returned products for another time). 

Another possibility is to alter the robots’ behaviour by changing the way they pack 

products. Assume that the robots can pack products in a box using two ways: (i) 

placing similar products next to each other in a box (e.g., trousers and shirts in 

separate piles), or (ii) placing products randomly in a box. These two ways are variants 

of the same “pack products” task. The first variant provides a better presentation for 

 

Figure 1.2 – Enterprise systems as motivating examples 
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the customer, while the second one executes faster because robots do not have to 

arrange the products. It is possible to keep order preparations on track, by using the 

first variant for the orders of Very-Important-Person (VIP) customers and the second 

one for other orders. Hence, in this case, tasks are changed to similar ones by allowing 

products to be packed but in a random way. This example shows two variants of a task 

(pack products) and two types of resources (robots and boxes). 

1.2.2 A manufacturing system 

A manufacturing system controls the production of goods at a factory. One example 

is food manufacturing where a factory produces custard using resource types that 

include food ingredients and manufacturing machinery. In some cases, the required 

food ingredients are not available and should be substituted with others. For example, 

custard powder could be substituted with eggs and cornflour. In other cases, it may not 

be possible to manufacture the same product using the available resources. In such 

cases, the alternative is to change the behaviour of the manufacturing process to either 

produce less or to continue the production of some items at another time. Moreover, 

some tasks may be more critical than others and adaptation would help the system to 

keep limited resources available for the critical tasks that need them most. 

1.2.3 An Enterprise Resource Planning (ERP) system 

Consider an ERP system that is facing resource variability on one of its servers due 

to hardware failure. In this case, tasks would take longer to execute due to having less 

hardware capacity to serve the same number of task requests. The system would 

maintain a good response time by performing adaptation (e.g., executing task variants 

that consume fewer hardware resources). This is useful even if the failure will be 

repaired in a short time. Otherwise, critical tasks could be impeded causing harm to 

people and losses to enterprises. For example, if the ERP was used at a hospital, e.g., 

ERP for healthcare (2022), patients might not be given the necessary treatment on 

time due to delayed processing of paperwork (e.g., retrieval of medical records). In 

another example, if the ERP was used at an import/export company, e.g., Blue Link 

(2022), delayed paperwork could lead to customer dissatisfaction and ultimately leads 

to profit loss. What follows are examples of tasks, from ERP systems, which are 

common among many types of enterprises. 
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Consider that the task of issuing an invoice for a customer during peak time is more 

critical for an enterprise than the task of viewing a profit report. Also, consider that the 

task of viewing a profit report is CPU intensive and can execute later during the day. If 

tasks are executed on a first-come-first-serve basis, non-critical tasks like viewing a 

profit report could impede critical tasks like invoicing. Consider that the task of 

viewing a profit report has a summarised variant that is less CPU-intensive. Also, 

consider that there is a secondary server that hosts an older version of the data that 

the profit report requires. The software system could adapt by executing the 

summarised variant of the report; generating the report on the secondary server; 

queuing the report for the users to view it later outside peak work time. The software 

system needs to consider multiple adaptation possibilities because some might not be 

applicable. For example, if either the summarised report or the older data from the 

secondary server were insufficient for the user then the report would be queued for 

later. 

Moreover, consider that the abovementioned task of viewing a profit report is 

issued by a manager for a limited year range. In this case, the enterprise could consider 

the task of viewing a profit report to be critical because it is issued by a user who has a 

privileged role (manager) and with parameter values (year range) that reduce the data 

and make it less CPU intensive (i.e., consumes fewer resources). Hence, the software 

system should consider these variations otherwise tasks like viewing a profit report 

would always be less important than other tasks like issuing an invoice. 

1.3 Scope of the thesis 

The scope of the work in this thesis is concerned with run-time adaptation of 

software systems due to variation in available resources. More specifically, the work 

focuses on supporting (i) different types of adaptation activities due to variability of 

resources; (ii) adaptation due to various tasks that the system needs to fulfil; (iii) 

different types of resources and considering multiple resources at the same time; and 

(iv) a proactive and reactive approach for adapting software systems. 

Considering the abovementioned scope, I conducted a literature review and gap 

analysis of the existing work on resource-driven adaptation. This showed that the 

existing work on resource-driven adaptation does not (i) consider tasks and the 

various types of tasks to provide granularity in the resource-driven adaptation 
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process, (ii) support multiple types of resources to make the resource-driven 

adaptation applicable to multiple types of software systems, and (iii) support multiple 

types of adaptation to have alternatives in case a type of adaptation is not applicable. 

To address the problem of resource variability, a framework is needed to support 

resource-driven adaptation in software systems and fill the abovementioned gaps (i)-

(iii) in existing works. Furthermore, since this framework should consider tasks, it 

requires input data about the software system’s tasks. Hence, a task modelling 

notation is needed to define this input. I explored existing task modelling notations to 

check if they can support resource-driven adaptation and found that they are missing 

useful characteristics in this regard. Hence, new task modelling notation is also needed 

to complement the resource-driven adaptation framework. 

As discussed in Section 1.2, this thesis uses motivating examples from enterprise 

systems, like warehouse management systems and manufacturing systems, because 

they rely on multiple types of resource to execute tasks and are affected by resource 

variability. Nonetheless, other types of software systems that are affected by resource 

variability could also benefit from this work. 

1.4 Research Design 

This section introduces the research questions and maps them to the contribution 

and evaluation chapters as shown in Figure 1.3. It also provides an overview of the 

research methods that this thesis uses. 

1.4.1 Research questions, contributions, and evaluations 

The objective of this thesis is to address the research problem presented in Section 

1.1. This problem is captured by a broad research question (RQ), which is broken 

down into two sub-questions, RQ1 and RQ2, as follows: 

RQ: “How can software systems address resource variability through resource-driven 

adaptation?” 

• RQ1: “How to model tasks of software that require the use of resources?” 

• RQ2: “How and when software systems adapt to enable the execution of critical tasks 

when resources are limited?” 
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The answers to RQ1 and RQ2 constitute the two research contributions (RCs) of the 

proposed solution, namely devising a task modelling notation (RC1) and a framework 

(RC2) that supports resource-driven adaptation to address the issue of resource 

variability. Figure 1.4 provides a high-level overview of the proposed solution. A 

software system has tasks that are initiated by users and require resources to execute. 

These tasks and resources are represented as task models via the proposed task 

modelling notation. The task models serve as input for the proposed framework, which 

performs adaptation during resource variability. 

 

Figure 1.3 – Mapping research questions to chapters 

 

 

 

RQ1: How to model tasks of software that require the use of 
resources?

RQ2: How and when software systems adapt to enable the execution 
of critical tasks when resources are limited?

RQ: How can software systems address resource variability through resource-driven adaptation?

Chapter 5
SERIES: A Task Modeling Notation for Resource-Driven Adaptation

(Akiki et al. 2022)

Chapter 6
SPARK: A Framework for Resource-Driven Adaptation

(Akiki et al. 2021)

Chapter 7
Task Modelling Notation Evaluation (SERIES)

(1) A task modelling notation that supports resource-driven 
adaptation by including the following characteristics: 

• task variants that differ according to parameter  values, user 
roles, resource consumption, and priorities

• resources types required by tasks

•  task types and execution types that indicate the applicability 
of a type of adaptation to a task

• properties that specify how feedback is given and obtained to 
and from end-users after adaptation is performed

• service method that associates a task with its corresponding 
implementation in a software system s source code

(2) A prototype tool for performing task modelling using SERIES

Evaluation of the Notation

(1) Assessment of SERIES based on the Cognitive-Dimensions 
Framework and the Physics of Notations

(2) Evaluation through a study where software practitioners:

• viewed a brief tutorial of SERIES and its supporting tool

• explained and created task models using SERIES via its tool

• completed a questionnaire to provide feedback on the 
usability of SERIES and the clarity of its semantic constructs

Hypothesis

The use of SERIES will result in good user (software practitioner) 
performance in the interpretation and creation of task models for 
resource-driven adaptation.

Results (summary)

The results satisfy the hypothesis because the use of SERIES 
resulted in very good user performance in the interpretation and 
creation of task models for resource-driven adaptation. This was 
indicated by both the results of the activities that the participants 
performed using SERIES and the feedback that they provided.

(1) A resource-driven adaptation framework that works as follows:

• considers tasks that use depletable and reusable resource types

• proactively calculates unique task priorities using multiple criteria like 
forecasted number of task executions, user role, parameter values, etc.

• proactively calculates the cost of adapting tasks using four types of 
adaptation: (i) execution of a similar task (ii) substitution of resources; 
(iii) execution of tasks in a different order; and (iv) cancellation of tasks

• reactively monitors the state of resources based on stock levels and 
replenishment delays and the average execution durations of tasks

• reactively allocates executions to tasks that use resources facing 
variability and decides whether to adapt these tasks

(2) A prototype implementation of the proposed framework

Evaluation of the Framework

(1) Preliminary evaluation of feasibility with simulation of automated 
warehouse and preliminary evaluation of overhead and scalability

(2) Evaluation with two existing datasets were used from a medicine 
consumption system and a manufacturing system, where simulations were 
performed (a) without the framework, (b) with reactive adaptation only, 
(c) with proactive and reactive adaptation

The following metrics were measured:

• percentage of critical task requests that got executed

• average criticality of executed versus non-executed task requests

• overhead and scalability of the framework

Hypothesis

When resources are facing variability, SPARK s proactive and reactive 
adaptation improves a software system s ability to execute critical tasks.

Results (summary)

The results satisfy the hypothesis since SPARK helps software systems in 
increasing the number of executed critical task requests during resource 
variability without an overhead that exceeds a tolerable waiting time.

Chapter 4
Overview of the Work

(Akiki 2021)

An overview of the stakeholders, components, and data involved in the proposed solution for addressing resource variability via resource-driven 
adaptation.

Chapter 8
Framework for Resource-Driven Adaptation Evaluation (SPARK)
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As shown in Figure 1.4, a framework is needed to realise the components of the 

autonomic manager and to support resource-driven adaptation in multiple types of 

resource-dependent software systems. This framework makes adaptation decisions 

that enable a software system to keep executing (critical) tasks during resource 

variability. A critical task has high importance for its domain and is more privileged in 

accessing the resources it needs in comparison to non-critical tasks. The consideration 

of tasks in resource-driven adaptation provides granularity in adaptation decision-

making. Hence, a resource-driven adaptation framework requires input data that 

describes the software system’s tasks and their properties (e.g., required resources). 

This input enables the framework to decide on (i) the importance of tasks, (ii) whether 

adaptation is required for a task, (iii) which type(s) of adaptation (are) applicable for a 

task, and (iv) how to perform a type of adaptation. 

A task modelling notation is needed to create task models that represent the 

abovementioned input. Such notation facilitates the representation of task models 

hierarchically using a graphical syntax. Figure 1.3 shows a summary of the 

abovementioned research questions and the contributions of the work with respect to 

the research questions and specific chapters that describe the work. 

Chapter 4 presents an overview of my work. The overview depicts the involved 

stakeholders and data, in addition to the proposed adaptation components that are 

based on the MAPE-K control loop (Kephart and Chess, 2003). 

Chapter 5 presents a task modelling notation (RC1) for resource-driven 

adaptation called SERIES. This notation offers characteristics that are useful for 

resource-driven adaptation but are missing from existing task modelling notations 

 

Figure 1.4 – Proposed solution for addressing resource variability 
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(Limbourg and Vanderdonckt, 2004; Guerrero-García, González-Calleros and 

Vanderdonckt, 2012; Martinie et al., 2019). In brief, these characteristics include task 

variants, resource types, task execution types, end-user feedback properties, and 

service methods (refer to Figure 1.3). 

Chapter 6 presents a proactive and reactive framework (RC2) for resource-driven 

adaptation called SPARK. The framework uses historical data to proactively prepare an 

adaptation plan. This plan is used during reactive decisions to execute adaptation, due 

to variability in resources. In comparison to existing work on resource-driven 

adaptation, the novelty aspects of the framework are concerned with support for: (i) 

tasks that use multiple types of depletable and reusable resources, (ii) four types of 

adaptation, and (iii) unique prioritisation of tasks using multiple criteria that include 

task priorities, time of day, user role, task parameters, and forecasted task executions 

(refer to Figure 1.3). 

Chapters 7 and 8 present an evaluation of the task modelling notation SERIES and 

the resource-driven adaptation framework SPARK, respectively. The following section 

explains the research methods used in the evaluation of the work. 

1.4.2 Developing the proposed contributions 

I used meta-modelling and prototyping in this thesis to develop the proposed 

notation and framework. Meta-modelling involves creating a set of concepts and the 

relations between them, whereby this set of concepts (meta-model) is used to 

represent models (Allemang and Hendler, 2011). I used meta-modelling to describe 

the concepts of SERIES that represent task models.  

Moreover, prototyping involves creating a prototype software either to get 

feedback from users or to assess the feasibility of designing a system (Pressman, 2010, 

p. 43,75). I developed prototypes of SPARK and the supporting tool for SERIES. I used 

these prototypes as part of the evaluation of SERIES and SPARK, which involved the 

research methods explained next. 

1.4.3 Research methods 

Several research methods have been used in software engineering research (Shaw, 

2002). To evaluate the usability of the proposed notation, I conducted a user study, 

which is a type of controlled experiment that tests a hypothesis by measuring the 
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effect of a dependent variable (i.e., user performance) on an independent variable (i.e., 

interpretation and creation of task models) (Easterbrook et al., 2008). Hence, the user 

study allows us to test whether SERIES is usable by the intended population, namely 

software practitioners, to interpret and create task models. Furthermore, since it is a 

type of controlled experiment, the user study enables us to control what users do and 

to control influences that might impact their performance (Preece, Rogers and Sharp, 

2015, pp. 474–475). For example, all the participants were asked to use SERIES for 

activities that have the same level of difficulty. The user study measured the ability of 

software practitioners to explain and create SERIES task models. It also measured how 

the participants perceive the usability of SERIES and the clarity of its semantic 

constructs. Furthermore, the task modelling notation was assessed based on two 

paradigms, namely the Cognitive Dimensions Framework (Green and Petre, 1996) and 

the Physics of Notations (Moody, 2009). I used these paradigms to assess SERIES 

because they provide principles for evaluating visual notations. 

A case study serves as an inquiry that is either an exploratory preliminary 

investigation to derive new hypotheses, or a confirmatory main investigation to test 

hypotheses (Easterbrook et al., 2008). I evaluated SPARK using two case studies that 

involve running simulations of resource variability scenarios with existing datasets. 

This evaluation had multiple metrics. The metrics “percentage of executed critical task 

requests” and “average criticality of the executed task requests in comparison to the 

non-executed ones” show to what extent SPARK can address resource variability by 

enabling a software system to keep executing critical tasks that require limited or 

unavailable resources. Hence, a result is positive if SPARK increases the percentage of 

executed critical tasks and if the tasks that got executed were on average more critical 

that the ones that did not get executed (if any). The metrics “overhead” and 

“scalability” show whether SPARK’s adaptation process impacts a software system’s 

ability to execute tasks in a tolerable waiting time. I evaluated the “overhead” by 

measuring the running time and evaluated the scalability by increasing the size of 

SPARK’s input, namely the number of tasks from the datasets. 

The two case studies used for this evaluation were derived from real data on the 

topics of medicine consumption and manufacturing systems, two domains where 

resource variability is challenging (NHS, 2019; Carvalho et al., 2022). The metrics were 

used in the evaluation to compare the execution of tasks in the two case studies with 

variable resources when the adaptive framework is not present, when only the 
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reactive adaptation part of the framework is used, and when both the proactive and 

reactive adaptation parts of the framework are used. 

1.5 Thesis organisation 

The rest of this thesis is organised into the following chapters: 

Chapter 2 – Background provides a general understanding of the research area of 

this thesis and is a prelude to understanding the contents of the other chapters. 

Chapter 3 – Literature Review analyses the related work on resource-driven 

adaptation based on what can be adapted such as components, tasks, and source code. 

This chapter also presents tables that show the types of resources and systems that 

each approach targets. Furthermore, this chapter reviews task modelling notations 

based on whether they comprise characteristics for supporting resource-driven 

adaptation. 

Chapter 4 – Overview of the Work presents an overview of the work that this 

thesis proposes. It presents the stakeholders, components, and data involved in the 

solution (SERIES and SPARK) for addressing resource variability by performing 

resource-driven adaptation. 

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven 

Adaptation details the task modelling notation based on CTT (Paterno, Mancini and 

Meniconi, 1997), which is a notation for representing task models hierarchically using 

a graphical syntax. SERIES is supported by a software tool that enables software 

practitioners to create and modify task models. 

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation presents a 

resource-driven adaptation framework that works proactively and reactively. It 

supports tasks that use depletable and reusable resource types. Additionally, it 

supports the generation of unique task priorities using multiple criteria and four types 

of adaptation. 

Chapter 7 –Task Modelling Notation Evaluation (SERIES) assesses SERIES based 

on existing paradigms for designing notations, namely the Cognitive Dimensions 

Framework (Green and Petre, 1996) and the Physics of Notations (Moody, 2009). 

Furthermore, this chapter presents an evaluation study with software practitioners. In 

this study, the participants explained and created task models using SERIES and then 
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provided their feedback on the usability of SERIES and the clarity of its semantic 

constructs. 

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 

presents a preliminary evaluation conducted to evaluate the feasibility of SPARK by 

developing a software tool that simulates an automated warehouse system and 

measures overhead and scalability. Furthermore, this chapter presents an evaluation 

of SPARK in two case studies that are related to a medicine consumption system and a 

manufacturing system. In these two case studies, I applied SPARK to existing datasets 

and measured several metrics including the percentage of executed critical task 

requests, the average criticality of the executed task requests versus the non-executed 

ones, overhead, and scalability. 

Chapter 9 – Conclusions and Future Work summarises the work and discusses 

future directions. 
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2  

Background 

2.1 Introduction 

Section 1.1 discussed how adaptation helps software systems to keep executing 

critical tasks during periods of resource variability. Additionally, Section 1.3 discussed 

the research objectives of this thesis, which include creating a task modelling notation 

and framework for supporting resource-driven adaptation in software systems. This 

chapter presents background information to explain further the key concepts that are 

related to the abovementioned research objectives. In this regard, Section 2.2 presents 

a classification scheme and examples of resource types. Section 2.3 provides examples 

of tasks and their required resource types. Section 2.4 presents an overview of self-

adaptive systems (SASs). Section 2.5 explains the notion of a resource-driven software 

system and how SASs are a general case of resource-driven adaptive systems (RASs). 

2.2 Classification of resource types 

A resource is defined as an entity that is needed to carry out a task (Raunak and 

Osterweil, 2013). There are multiple types of resources. For example, a software 

system can have several resources of the type “robot” and several resources of the type 

“box”. The complexity of resource types differs among software systems and domains 

(Raunak and Osterweil, 2013). For example, a resource type could be as simple as a 

nail or as complex as manufacturing equipment. 

Four resource groups, which represent a way to classify resource types, have been 

identified in this thesis based on the analysis of existing literature and examples of 



16 2.2 Classification of resource types 

 
multiple types of resources such as CPU (Klein, Maggio, et al., 2014), food ingredients 

(Bennaceur et al., 2019), and battery (Yan et al., 2019). I chose this classification 

because it represents differences among resource types, which affect adaptation 

decisions. For example, a software system should prevent resources that can only be 

used once from being depleted by non-critical tasks during resource variability. These 

resource groups are explained below with examples of resource types that fit under 

each group. 

• Static resource: does not have a behaviour (actions that the resource performs) 

• Dynamic resource: has a behaviour that can be adapted 

• Reusable resource: is available to another task after a task that is using it is done 

• Depletable resource: is used once 

The groups “static” and “dynamic” indicate a resource’s form of behaviour whereas 

the groups “reusable” and “depletable” indicate its mode of consumption. Table 2.1 

shows examples of resource types and their corresponding resource groups. 

Additionally, a resource type can be related to more than one resource group. For 

example, batteries are static and reusable since they do not have a behaviour and can 

be reused when recharged; robots are dynamic and reusable since they have a 

behaviour and can be reused when a task is completed; raw materials are static and 

depletable since they do not have a behaviour and can be used once. To clarify further, 

a robot’s behaviour such as speed can be adapted whereas similar behaviour is not 

available on batteries and raw materials. Moreover, once a task that is using a battery 

or a robot is done, then other tasks can reuse these resource types. On the other hand, 

once a task uses a quantity of raw materials, then this quantity will no longer be 

available for other tasks. 

The abovementioned resource groups affect a software system’s adaptation choices. 

For example, if non-critical tasks are not restricted before they exhaust scarce 

depletable resources then critical tasks that need these resources would not be able to 

execute. Moreover, when reusable resource types are concerned, it is possible to 

assess whether adaptation is needed by measuring the time spent to gain access to a 

resource (Grohmann et al., 2021). However, this does not apply to depletable resource 

types because these are either available for a task to use directly or unavailable and 

hence adaptation would be needed. Additionally, when depletable resource types are 

unavailable they have to be ordered from a supplier and cannot be expanded directly 
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like virtual servers (Van Hoorn et al., 2009; Huber et al., 2017) or discovered for 

immediate use like software components (Garlan, Cheng, et al., 2004). Furthermore, 

the behaviour of dynamic resource types can be changed (e.g., through parameters 

such as a robot’s speed). In contrast, static resource types such as RAM and battery 

cannot change its behaviour. 

2.3 Tasks and their required resource types 

A task is issued through a software system and needs resources so it can execute. 

Software systems execute tasks that require multiple types of resources. For example, 

cloud computing systems rely on hardware resources such as CPU, RAM, and hard 

drives (Kurp, 2008; Lu et al., 2016). Hospital systems rely on multiple types of 

resources such as theatres, equipment, and medical materials like bandages and 

medicine (Hutzschenreuter, Bosman and La Poutré, 2009). IoT systems rely on 

batteries, sensors, and cameras (Ciccozzi et al., 2017). 

As indicated by Raunak and Osterweil (2013), the resources that a software system 

relies on to operate might not be of the same type. This depends on the diversity of 

tasks that the system needs to execute (Patel, Patel, and others, 2016). For example, a 

simple automated lighting system just relies on a motion sensor to execute a task that 

involves turning on the light when there is movement. On the other hand, an 

Table 2.1 – Examples of resource types and their groups 

 Resource Groups 

Resource Type Static Dynamic Reusable Depletable 

Battery ✓ 🗴 ✓ 🗴 

RAM ✓ 🗴 ✓ 🗴 

CPU ✓ 🗴 ✓ 🗴 

Autonomous vehicle 🗴 ✓ ✓ 🗴 

IoT device 🗴 ✓ ✓ 🗴 

Robot 🗴 ✓ ✓ 🗴 

Food ingredient ✓ 🗴 🗴 ✓ 

Fuel ✓ 🗴 🗴 ✓ 

Raw material ✓ 🗴 🗴 ✓ 
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automated warehouse system relies on robots, packing materials, and sensors to 

execute tasks for customer order preparation and stock replenishment. 

Table 2.2 presents a few examples of tasks, from multiple types of software systems 

alongside examples of resource types that each one requires so it can execute. For 

example, customers use a retail store’s website to issue the task “search for a product”, 

which depends on the CPU and RAM of the server for timely execution. Another 

example is the task “prepare an order for delivery”, which is issued on an automated 

warehouse management system and is performed by robots. In this example, the 

availability of the necessary resources can vary, due to reasons such as hardware 

failure and excess workloads, which can cause financial losses. 

2.4 Self-adaptive systems 

As explained in Section 1.1, adaptation can help software systems to deal with 

resource variability and to keep executing tasks that require scarce resources. Hence, 

this section presents some background information about SASs. 

2.4.1 Autonomic manager 

A SAS is a system that can adapt itself automatically based on changes in its context 

(Cheng et al., 2009; De Lemos et al., 2013). SASs are composed of an autonomic 

manager and a managed system. An autonomic manager corresponds to the control 

Table 2.2 – Examples of tasks and their primary required resources 

Software System Example Task Example of Resource Types 

Manufacturing Manufacture products Raw Materials and Factory 
Machinery 

Retail Store 

Search for a product RAM and CPU 

View sales report RAM and CPU 

Print sales report Printer 

Warehouse Prepare customer order Robots and Packing Materials 

Power Grid Run generator Generator and Fuel 

Surveillance Survey area Drone and Camera 
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unit that manages the adaptation process of the managed system. The autonomic 

manager adapts a managed system. 

An autonomic manager is defined using a control loop like the MAPE-K, which 

proposes components that enable self-adaptation (Kephart and Chess, 2003). MAPE-K 

is composed of five components: Monitor (M), Analyse (A), Plan (P), Execute (E), and 

Knowledge (K) base, as illustrated in Figure 2.1. 

• Monitor (M) collects data related to the managed system and the context using an 

interface of sensors, where the collected data is stored in the knowledge base. 

• Analyse (A) performs an analysis of the monitored data and determines if the 

managed system requires adaptation. 

• Plan (P) constructs the adaptation actions needed to achieve the managed 

system’s objectives. 

• Execute (E) carries out the generated actions in the planning phase to adapt the 

managed system using an interface of effectors. 

• Knowledge (K) base shares and maintains data resulting from the MAPE 

components for supporting the autonomic manager. 

 

Figure 2.1 – MAPE-K control loop 
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2.4.2 SAS questions and dimensions 

Researchers have proposed questions and dimensions to characterise SASs. Salehie 

and Tahvildari (2009) presented an overview of self-adaptive software and the 5W1H 

questions: When, Why, Where, What, Who, and How. Krupitzer et al. (2018) presented 

an extensive literature review and also proposed the same set of questions except 

“Who” because they considered that the nature of SAS requires automatic adaptation, 

which is based on using a control loop. Other authors have also used similar questions 

(McKinley et al., 2004; Buckley et al., 2005). The questions from Salehie and Tahvildari 

(2009) and Krupitzer et al. (2018) and their corresponding dimensions and examples 

are shown in Table 2.3 and explained as follows. 

“When to adapt” relates to time, whereby an adaptation can be either reactive or 

proactive. Reactive is applied when a software system acts after an event happens, 

whereas proactive is applied before an event happens. Reactive and proactive 

adaptations consist of similar activities regarding monitoring, planning, and executing, 

but differ when it comes to analysing. Reactive adaptation analyses the monitored data 

to check if an adaptation is required based on some decision criteria (e.g., rules), 

whereas proactive adaptation uses the monitored data to forecast the system 

behaviour or environmental state. Additionally, reactive adaptation could cause a 

delay if the adaptation is time-consuming, while proactive adaptation prepares the 

change in advance to reduce the delay. However, the suitability of the prediction 

algorithms, which are used for proactive adaptation, are dependent on the specific 

Table 2.3 – Questions and dimensions of self-adaptive systems 

Question Dimension Examples 

When? Time Reactive, proactive 

Why? Reason Context, resource 

Where? Level Software system, resource 

What? Technique Parameter, structure, context 

Who? Executor Autonomic manager, human 

How? Control Decision criteria, degree of decentralisation 
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prediction scenarios, and faulty predictions could cause suboptimal adaptations. 

Furthermore, the time at which an adaptation is needed is linked to the monitor and 

analyse components in MAPE-K since the monitored elements are used to determine 

whether an adaptation is needed. 

“Why do software systems adapt” relates to the reason for the adaptation based on 

changes in the context or the available resources. Hence, the reason for performing an 

adaptation helps in determining the elements that the monitor component monitors. 

Furthermore, the reason for performing an adaptation is related to the analyse 

component in MAPE-K since it determines whether adaptation is needed. 

“Where should a change be implemented” relates to the level at which the 

adaptation occurs in a SAS. As mentioned in Section 2.4.1, a SAS is composed of an 

autonomic manager and a managed system. Since the autonomic manager often stays 

the same (i.e., does not get adapted), then the level will be related to the managed 

system’s elements (e.g., tasks and resources). Furthermore, the level at which the 

adaptation occurs is related to the analyse component in MAPE-K since it determines 

where adaptation is needed. 

“What type of change is needed” relates to the applied adaptation technique such as 

parameter, structure, and context adaptation. Parameter adaptation changes the data 

values of a software system’s parameters (e.g., changing the speed of a robot). 

Structure adaptation changes the behaviour of a software system (e.g., by replacing a 

software component with another). Context adaptation relates to explicit adaptation of 

the environment and resources via the control loop (e.g., changing the physical space 

that a robot surveys). Furthermore, the type of change is related to the plan component 

in MAPE-K since it determines the actions that should be performed to adapt the 

managed system’s elements. 

“Who shall invoke the adaptation” relates to the executor that denotes the level of 

automation and human involvement in the SAS. The autonomic manager performs 

adaptation in an automated manner with minimal human intervention. Nonetheless, 

human involvement can be valuable to improve the manageability of a SAS (e.g., by 

providing feedback on the adaptation). Furthermore, the executor is related to the 

execute component in MAPE-K since it carries out the actions needed to adapt the 

managed system. Increasingly there are human-in-the-loop approaches that aim to 

address interactions and promote collaborations between humans and machines 

(Cleland-Huang et al., 2022). 
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“How is the adaptation performed” relates to the control over the adaptation 

through decision criteria (e.g., rules and goals) and the degree of decentralisation (e.g., 

centralised and decentralised). Furthermore, the control over the adaptation is related 

to the plan component in MAPE-K since it determines the actions needed to adapt the 

managed system’s elements. 

2.4.3 Self, context, and resources in self-adaptive systems 

Self and Context: Salehie and Tahvildari (2009) differentiate between a software 

system’s self and context. The word “self” denotes the whole multi-layer software 

system. On the other hand, the word “context” encompasses elements that exist in the 

operating environment of a software system and affect its properties and behaviour. 

Hence, they perceive a self-adaptive software system as a closed-loop that receives 

feedback from itself and its context. A self-adaptive system aims to adjust itself during 

its operation based on changes from the software system’s self (internal causes) or its 

context (external events). 

Resources versus self and context: Resources that impact the operation of a 

software system can be diverse as explained in Section 2.2. Based on the definition of 

Salehie and Tahvildari, it is possible to consider resources to be elements of a software 

system’s self (e.g., software component) or context (e.g., hardware). However, as 

explained in Section 2.2, this thesis considers resources as entities needed to carry out 

tasks; these entities differ from elements of a software system’s self or context in terms 

of representation and (re)allocation. 

Resources can be (re)allocated by a system based on feedback from itself and its 

context. For example, memory, processing capacity, and the number of allowed 

connections to a database can be (re)allocated based on things like user privileges, the 

task at hand, and the time of day. However, this does not apply to context elements 

such as the type of user (e.g., novice or expert), type of platform (e.g., operating 

system), and environment-related conditions (e.g., weather). The (re)allocation of 

resources can involve restriction, shifting, and substitution. 

2.5 Resource-driven adaptive systems 

A resource-driven adaptive system (RAS) is a type of SAS where the trigger for 

adaptation is the variability of resources (refer to Section 1.1). In a RAS, the managed 
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system relies significantly on resources and is therefore a resource-driven system. For 

example, a “calculator” is a single-user application that relies on a very small amount of 

CPU and RAM to operate. This means even when the CPU and RAM are facing 

variability, it is still possible to run this application without adaptation. Hence, the 

“calculator” is not considered to be resource-driven. On the other hand, an automated 

warehouse system relies significantly on resources like robots and packing materials 

to execute tasks that are initiated by its users. The tasks in an automated warehouse 

system could be competing for scarce resources. Hence, this system is highly affected 

by resource variability. Table 2.4 shows examples of software systems that are either 

affected or not affected by resource variability. In a RAS, resources are monitored via 

the autonomic manager’s monitor component. Additionally, the trigger for adaptation 

is related to the unavailability or scarcity of resources. 

2.6 Chapter summary 

This chapter presented background information about concepts that are relevant to 

this thesis. These concepts include resource types, tasks, and self-adaptive systems. 

This chapter classified resource types (e.g., robots and materials) under four resource 

groups static, dynamic, reusable, and depletable. Moreover, it presented examples of 

tasks and their related resource types from multiple software systems. Furthermore, 

this chapter presented questions and dimensions of SAS based on the existing 

literature and explained the components of an autonomic manager as proposed by the 

MAPE-K control loop. Finally, this chapter explained what types of systems this thesis 

considers to be resource-driven and how resource-driven adaptive systems (RASs) 

relate to SASs. 

Table 2.4 – Examples of software systems (un)affected by resource variability 

Software Resource Type 
Affected by Resource 

Variability 

Calculator CPU and RAM 🗴 

Text editor CPU and RAM 🗴 

Warehouse Robot and Packing Materials ✓ 

Manufacturing Raw Material and Factory Machinery ✓ 

 





 25 

 

3  

Literature Review 

This chapter presents a critical analysis that covers the strengths and shortcomings 

of related work about resource-driven adaptation approaches and task modelling 

notations. The critical analysis involves discussing the types of resources, adaptation, 

and software systems that are supported by existing resource-driven adaptation 

approaches. Furthermore, this chapter reviews existing task modelling notations based 

on the types of operators and tasks that they support and other characteristics that 

would specifically benefit resource-driven adaptation. This chapter presents tables 

that summarise information about the related work. 

3.1 Introduction 

Resource-driven adaptation approaches are categorised in this chapter according to 

their key characteristics, which are related to how the adaptation is performed and 

what is adapted. Some approaches follow the brownout paradigm and temporarily 

deactivate optional parts of a software system during resource variability (Xu and 

Buyya, 2019). Other approaches are task-based and do not just deactivate a part of a 

software system but adapt while considering the tasks that a system executes (Rigole 

et al., 2007). Scheduling approaches also consider tasks but are particularly concerned 

with optimising one or more performance measures like the total completion time of 

tasks (Gawiejnowicz, 2020). The source code of software systems is modified by code-

based approaches to reduce the consumption of resources (Christi, Groce and 

Wellman, 2019). Some approaches use policies (rules) that represent a choice 

concerning the behaviour of a system (Keeney and Cahill, 2003) while others use 
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Dynamic Software Product Lines (DSPLs) to produce software systems that are 

capable of adapting to changes at runtime (Pascual, Pinto and Fuentes, 2015). 

Reference architectures have also been proposed (Garlan, Poladian, et al., 2004). 

Moreover, query-based approaches either optimise queries or filter their results to 

avoid wasting resources due to returning unnecessary data (Gotz et al., 2015). 

As mentioned in Section 1.3, task models can serve as input for resource-driven 

adaptation. Task models are represented using task modelling notations. These 

notations are beneficial because they support the decomposition of tasks into subtasks 

that could differ in terms of their priorities and the resources that they require. Task 

modelling notations can represent several types of tasks and depicts how each task is 

temporally related to other tasks. Several task modelling notations have been 

proposed in the literature (Martinie et al., 2019). These notations model tasks and 

their relationships, mostly by using a graphical representation. This chapter examines 

existing task modelling notations to see if they support characteristics that are useful 

for resource-driven adaptation, including properties that represent the priorities of 

tasks and the types of resources that they use, task variants are useful for performing 

adaptation by executing similar tasks that consume fewer resources, and properties 

that indicate which types of adaptation apply to a task. Furthermore, this chapter 

discusses other characteristics of existing task modelling notations, namely operators 

and task types. These operators and task types are not specifically meant for 

supporting resource-driven adaptation but are rather useful for representing tasks and 

their relationships for any type of software application (including those that need to 

adapt based on resource variability). 

3.2 Resource-driven adaptation approaches 

This section presents the state-of-the-art resource-driven adaptation approaches 

and discusses their strengths and shortcomings with examples. It is important to 

discuss these approaches because the work presented in this thesis uses resource-

driven adaptation to address resource variability. 

3.2.1 Brownout 

The “brownout” paradigm involves the temporary deactivation of optional parts of 

a software system, including components and web-page contents; it was inspired by 
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and named after the intentional voltage drops often used in electrical grids to prevent 

blackouts through load reduction in case of emergency (Klein, Maggio, et al., 2014). 

Klein, Maggio, et al. (2014) proposed the brownout paradigm to cope with resource 

variability on the cloud infrastructure due to hardware failures and varying user 

workload levels without over-provisioning resources. Afterwards, several approaches 

adopted “brownout” to handle situations such as hardware failures and flash crowds in 

cloud computing systems (Xu and Buyya, 2019). The brownout approaches are 

relevant to this thesis because their primary aim is to handle resource variability 

through adaptation. The brownout paradigm is inspirational because it shows how 

certain parts of an application can be downplayed in favour of keeping other more 

important parts running during resource variability. Brownout gracefully stops part of 

a software system using adaptation, instead of stopping the entire system all at once 

due to the lack of resources. 

Although brownout approaches differ in their objectives, they perform the same 

type of adaptation that involves the activation and deactivation of optional parts. For 

example, Moreno et al. (2015) proposed a proactive approach to address adaptation 

latency, which is the lag between performing an adaptation and the effect that is 

produced from it, Zhao et al. (2017) proposed a framework to generate adaptation 

rules for user goals, and Pandey et al. (2016) combined two planning approaches to 

handle the trade-off between timeliness and optimality of the adaptation plan. The 

three abovementioned approaches were all evaluated using the brownout example of 

Klein et al. (2014), which involved adapting a web application by deactivating its 

(a) (b) 

 
 

 

Figure 3.1 – Example of UI and tasks: excerpt from the content of an ERP’s invoice UI 
(a) and an excerpt of the corresponding task “create invoice” (b) 
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optional parts when the CPU (resource) is facing variability. Similarly, Tomas et al. 

(2014) deactivate optional parts to address the issue of applications that are accepted 

to run on a cloud server, which does not have sufficient resources. Software systems 

would have more versatility in coping with resource variability if they support 

multiple types of adaptation, rather than just deactivating optional parts, because 

some types of adaptation might not work in some cases. For example, if part of a 

software system performs mandatory work that cannot be deactivated an alternative 

could be to process this work in the background at a later time when resources 

become available. The software system would notify the user when the work is done. 

This applies the substitution of inoperative robots in an automated warehouse with 

other types of robots instead of deactivating part of the software system and cancelling 

the work. 

In the brownout paradigm, a controller manages the activation and deactivation of 

the optional parts based on trade-offs between metrics (Maggio, Klein and Arzén, 

2014). The work of Klein, Papadopoulos, et al. (2014) and Dürango et al. (2014) 

involved performing trade-offs between response time and user experience. Klein, 

Papadopoulos, et al. (2014) extended the work of Klein, Maggio, et al. (2014) to apply 

brownout on multiple replicas (rather than just one) of an application using two novel 

load-balancing algorithms. Dürango et al. (2014) extended the work of Papadopoulos, 

et al. (2014) by considering other load-balancing algorithms and performing an 

additional evaluation. The work of Xu, Dastjerdi, and Buyya (2016) and Hasan et al. 

(2016) involved performing trade-offs between energy consumption and revenue. Xu, 

Dastjerdi, and Buyya (2016) worked on reducing energy consumption in cloud data 

centres by performing a trade-off between energy consumption and giving users a 

discount on the price. In their approach, if the user experience is degraded to reduce 

energy consumption, then users get a discount on the price.  Hasan et al. (2016) aim to 

achieve green energy awareness in cloud applications. They disable optional web 

content to increase the usage of green (clean) energies and decrease the usage of 

brown (polluted) energies while performing a trade-off between user experience and 

the service provider's revenue. In the brownout approaches, the controller that 

manages the activation and deactivation of the optional parts has a parameter that 

represents the probability of running the optional parts. The controller reduces the 

value of this parameter when the software system is close to saturation. Hence, for 

example, the optional part may be deactivated or served for every second user. 

However, performing task prioritisation using multiple criteria provides a more 
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granular way of deciding which parts to adapt so the resources are used by the tasks 

that need them most. For example, some users have more privileged roles and some 

tasks are more important at specific times of the day. Hence, instead of considering a 

part of a software system to be either optional or mandatory, its importance would be 

more accurately represented by prioritising the tasks that use it. This makes it possible 

to vary adaptation choices among tasks. What follows is an explanation of this point 

using two examples from an ERP system, one related to the contents of an invoice, 

shown in Figure 3.1, and another one related to invoice and profit report tasks that use 

the same components, shown in Figure 3.2. 

Consider the example presented in Figure 3.1a, which shows part of an invoice UI 

from an ERP system, whereby the creation of an invoice involves displaying product 

information like the description and the image. Consider that displaying a product’s 

image is optional and can be deactivated when there is a need to avoid saturation (if an 

application saturates it will be unable to serve users in a timely manner). However, 

instead of considering the image part to be always optional and deactivating it for 

random users, its importance would be more accurately represented using a task 

priority. For example, displaying the image of a product could have a high or a low 

priority depending on the types of products that the end-user selected, whereby each 

enterprise has particular values for these types of products (e.g., books and phones). 

To clarify further how tasks are related to the product image part of the invoice, 

consider that the task called “Create Invoice” that is shown in Figure 3.1b corresponds 

to the invoice example from Figure 3.1a. This task is presented using ConcurTaskTrees 

(CTT), which is a notation for representing task models hierarchically using a graphical 

syntax (Paterno, Mancini and Meniconi, 1997; Mori, Paternò and Santoro, 2002). The 

 

Figure 3.2 – Example of a component and tasks: two tasks from an ERP system use the 
same component to export documents to images 
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task “Create Invoice” has subtasks that include “display product description” and 

“display product image”. The priority of the task “display product image” would differ 

according to the value that the end-user chooses for the task’s parameter “product type”. 

Consider the example presented in Figure 3.2, which shows a “document to image 

exporter” component that multiple tasks from an ERP system use. In this case, the 

component is not optional. Hence, it cannot be deactivated as is done by the brownout 

approach. Sun et al. (2019) suggest substituting components with alternatives that are 

less resource-intensive during situations of resource variability. However, instead of 

substituting the “document to image exporter” component with an alternative one that 

uses a lower resolution across the entire software system, it is more effective to 

substitute a task with a similar one depending on the tasks’ priorities. This way the 

adaptation can vary according to the task rather than being applied to components and 

disregarding the differences among the tasks that share the component. For example, if 

the task “ xport Invoice to High-Resolution Image” has a higher priority than the task 

“ xport Profit Report to High-Resolution Image”, then the latter can be substituted by a 

similar task called “ xport Profit Report to Low-Resolution Image”. The tasks will still 

call the same component but with different parameters thereby allowing the high-

priority tasks to benefit from a high-resolution output while the low-priority tasks 

would still run but with a lower resolution to conserve resources. Furthermore, the 

priority of the task could differ according to the user who is initiating it. Hence, for 

example, the task "Export Profit Report to High-Resolution Image" has a low priority 

for all user roles except the manager. Moreover, consider that the “product image” part 

of the invoice shown in Figure 3.1a is a visual component that is reusable across 

several UIs. In this case, the component may be optional for the “Create Invoice” task 

but mandatory for the “Create Product” task. Considering this example, it is possible to 

say that some resource-intensive parts of a software system are not always optional. 

Hence, considering the tasks that are executed by software systems provides the 

necessary granularity to make accurate decisions on when to adapt based on task 

priorities. 

A few brownout approaches have considered prioritising components to decide 

which ones to deactivate first. Xu et al. (2016) prioritised components based on usage 

frequency while Sun et al. (2019) also added computational complexity. However, this 

prioritisation of components does not consider how tasks vary according to multiple 

criteria such as the time of the day when the task is initiated and the role of the user 
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who initiated it. Usage frequency is important but is not sufficient for prioritisation if it 

is not complemented by a managerial view of priorities. For example, management in 

an enterprise could decide that keeping high-resolution images in an inventory report 

is of a higher priority than keeping them in a sales report that is more frequently used. 

Considering both the end-user and managerial perspectives of priorities 

accommodates the interests of stakeholders during situations of resource variability. 

Furthermore, Sun et al. (2019) measured component complexity, which they used for 

prioritisation, by counting the number of files (.class, .html, and .xml) that define a 

component. This technique does not accurately determine resource intensiveness. For 

example, if a component used robots as a resource the number of files it has does not 

indicate how many robots are needed. Alternatively, if tasks were prioritised, high-

priority tasks would be given access to the resources that they need while adaptation 

would be applied to low-priority tasks during situations of resource variability. 

Resource types vary from one system to another. For example, some systems 

primarily depend on reusable hardware resources such as RAM and CPU, while other 

systems depend on depletable resources such as fuel and raw materials. The existing 

brownout approaches mostly target CPUs as resources and one work by Nikolov et al. 

(2014) targets networks. As Xu and Buyya (2019) indicate, brownout approaches 

would become more comprehensive if they supported multiple types of resources. 

3.2.2 Task-based 

Some approaches have considered tasks as part of the resource-driven adaptation 

decision-making process. These approaches target resource-driven adaptation in 

smart spaces such as smart homes (Wu and Fu, 2011). Rigole et al. (2007) presented 

an approach for gradual component deployment based on the tasks initiated by end-

users to avoid the needless consumption of computing resources and latencies on 

lightweight mobile devices. A system was developed based on Project Aura (Garlan et 

al., 2002) to adapt the Quality of Service (QoS) to changes in the environment and the 

end user's preferences according to the task that he or she is performing (Sousa et al., 

2006). An approach was presented for composing services to maximise the QoS for the 

currently active user task in smart spaces (Davidyuk, Ceberio and Riekki, 2007). Gajos 

(2001) presented a system called Rascal for resource mapping and conflict arbitration, 

whereby resource mapping is similar to web service discovery (i.e., finding a suitable 

service for a given task) and arbitration decides which task requests are more 
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important when resources are scarce. The relation between this part of the literature 

and my thesis is the consideration of tasks, which provides granularity in adaptation 

decisions because tasks that use the same resources could be different according to 

their priorities and resource consumption. It is important to analyse this part of the 

related work to understand how existing approaches use tasks as part of their 

adaptation process and how they represent these tasks. 

Some existing task-based approaches do not address resource variability in 

scenarios where end-users are initiating tasks that are competing for resources. Rigole 

et al. (2007) and Sousa et al. (2006) focus on the perspective of a single user who is 

performing a task on a mobile device. However, there are other cases like enterprises 

where many end-users (e.g., employees and customers) initiate tasks at the same time, 

and software systems should decide which tasks to execute as requested and which 

ones to adapt due to resource limitations. Multi-user scenarios differ from single-user 

ones because the adaptation must maintain the interest of stakeholders regarding 

which tasks are more important during resource variability. For example, in enterprises, 

it is important to consider the perspectives of end-users and corporate management. 

Hence, even if an end-user wants to execute a resource-intensive report at a specific 

time of the day, corporate management may consider that other tasks have a higher 

priority during this time. 

Moreover, Perttunen et al. (2007) adopt a leasing mechanism that gives users 

access to shared resources, such as a screen at an airport, for a limited amount of time. 

Consider the previously explained invoice example from Figure 3.1 or another example 

concerning an order preparation task at a warehouse that is automated by robots. 

Leasing is not ideal for such examples since the tasks require using the resources until 

completion. Furthermore, as Gajos et al. (2001) state, they decide on the importance of 

a request using “self-assigned need levels that they describe as a very simple and 

arbitrary scheme that can be replaced by another system”. Hence, it would be useful to 

consider task prioritisation that is not arbitrary but rather takes into account multiple 

criteria. 

The adaptation performed by Rigole et al. (2007) focuses on loading software 

components just-in-time rather than resource variability scenarios. Perttunen et al. 

(2007) focused on service composition while Garlan et al. (2004) and Sousa et al. 

(2006) did not discuss specific types of adaptation. As mentioned in Section 3.2.1, 

software systems would have more versatility in coping with resource variability by 
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supporting multiple adaptation types. Furthermore, these approaches focused on 

resources such as the computational resources on mobile phones and hardware 

equipment that exist in smart environments. However, other types of resources such 

as depletable resources were not considered. 

Concerning task representation, Rigole et al. (2007) represent task models using an 

existing task modelling notation, namely CTT (used for the example in Figure 3.1b). 

The other existing works discussed the concept of a task but did not use or present a 

way for representing the tasks. The representation of different types of tasks using a 

task modelling notation is useful because some types of adaptation only apply to some 

types of tasks. For example, tasks such as report generation can be postponed to 

another time and performed in the background. On the other hand, postponement 

could negatively impact usability when a task is followed by subsequent user 

interactions to initiate other tasks (e.g., searching for products and selecting a product 

from the result). CTT already supports multiple types of tasks and operators. Hence, it 

presents a viable starting point to represent tasks for resource-driven adaptive 

systems. Nonetheless, CTT is missing characteristics like task variants (e.g., as 

demonstrated by the example in Figure 3.2) that are useful for resource-driven 

adaptation. Furthermore, it would be useful to extend CTT with properties like a task’s 

required resources and priority and task types that are useful for deciding whether an 

adaptation type applies to a task. 

3.2.3 Scheduling 

Scheduling approaches aim to solve the problem of allocating resources to tasks in 

addition to the optimisation of performance measures. These approaches are part of 

the related work in the sense that they consider that resources, such as computational 

resources (Zhan et al., 2015) and machinery (Zhou, Zhang and Horn, 2020), are scarce 

and should be managed in a way that enables the tasks that need them to execute. 

Hence, they aim to accommodate the execution of tasks within the limitations of the 

available resources. 

Gawiejnowicz (2020) indicates that scheduling approaches mainly use offline 

algorithms, which require their input to be fully available before executing. However, 

the input that is required for scheduling tasks is not always available ahead of time. 

For example, resource variability produces new information at runtime (i.e., while 

tasks are executing). Additionally, Gawiejnowicz (2020) define scheduling problems by 
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saying that no resources other than machines are needed to complete the tasks. In this 

case, machines could represent several types of reusable resources like robots or 

manufacturing equipment. However, some systems also require depletable resources, 

which are either available or unavailable. When depletable resources are nearing 

depletion and replenishment is delayed measures should be taken at runtime to keep 

these resources available for the critical tasks that need them most. For example, when 

medicines are facing an unexpected delay in replenishment, the remaining stock 

should be used for treating the most critical medical conditions. Moreover, changing a 

task’s execution schedule is not always suitable. For example, the end-users of an ERP 

system expect an immediate result when searching for a product while creating an 

invoice. Hence, this task cannot be delayed and another type of adaptation is needed. 

Mohan et al. (2019) indicate that the majority of existing work is based on static 

demand and deterministic processing time. Static scheduling problems make several 

assumptions (Pinedo, 2018). What follows are five of these assumptions and an 

explanation of how they are limiting in environments that have unforeseen changes. 

First, all tasks that are going to be processed are available when the software system 

starts processing the tasks. However, this is not always the case. For example, users 

can initiate tasks via a software system at varying times during the day thereby 

creating a dynamic demand. Second, if additional tasks arrive during the day then they 

would have to be processed the next day. However, there are cases when it is vital to 

process critical tasks promptly even if these tasks arrive during the day. Third, the 

machines are always available during the processing period. This is not possible in 

environments that face resource variability. Fourth, the processing times of the tasks 

are known and deterministic. However, there are cases where the processing times of 

tasks are unknown, and these times can change for tasks of the same type (e.g., the 

time it takes to prepare an order differs from one order to another). Fifth, a task is 

done using one resource (one machine). However, multiple resources could be needed 

to execute a task even if it is a sub-task of a parent task. Hence, the relationship 

between resources and tasks is M-N rather than 1-N. For example, the task of packing 

products at an automated warehouse requires a robot in addition to boxes and other 

packing materials. 

Based on the abovementioned reasons, environments that face unforeseen changes 

like resource variability and do not have a static demand for tasks require a dynamic 

approach to allocate resources to tasks. Priority-generating functions that assign 
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priorities to tasks are commonly used for scheduling (Strusevich and Rustogi, 2017). 

However, the generation of those priorities becomes challenging in dynamic 

environments due to several reasons. First, there is limited availability of resources 

due to resource variability. For example, an automated warehouse could unexpectedly 

lose a significant part of its robot capacity due to hardware failures. Second, multiple 

criteria should be taken into account (e.g., the capabilities of resources like robots). 

Third, there are multiple competing agents. For example, in an automated warehouse 

system, multiple robots need boxes to pack orders and multiple tasks need robots to 

be executed. Fourth, there are multiple types of resources. For example, robots are 

reusable resources and boxes are depletable resources. Scheduling problems such as 

flow shop and job shop are NP-Hard. Furthermore, the combination of the 

abovementioned points makes the scheduling problem intractable (Gawiejnowicz, 

2020). Hence, a heuristic is needed to calculate priorities and provide a solution for 

resource allocation in complex environments. 

3.2.4 Code-based 

Some adaptation approaches modify the source code of software systems to create 

new versions that are better fit for some situations. It is useful to explore these 

approaches as part of the related work to see how they apply adaptation to a software 

system’s source-code and how this compares to performing adaptation while taking 

tasks into consideration. It is also useful to observe the impact of performing 

adaptation on the source-code on the ability of these approaches to address the 

resource variability problems in multiple types of software systems. 

Code-based approaches work at design time. However, resource-driven adaptation 

must be done at runtime because some information, like task priorities and the cost of 

applying a type of adaptation, are unknown at design time. For example, consider that 

two enterprises are using the same software system. The task “ xport Profit Report to 

High-Resolution Image”, shown in Figure 3.2, could have a high priority for one 

enterprise and a low priority for another. Furthermore, the cost of applying an 

adaptation type changes based on input collected from stakeholders such as systems 

administrators and end-users. For example, concerning the task “ xport Profit Report 

to High-Resolution Image” (Figure 3.2) end-users could favour exporting a report to a 

low-resolution image to get a result directly when resources are facing variability or 

they could favour delaying the task’s execution until resources become available to get 
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a high-resolution image. Therefore, adaptation approaches that perform source code 

reduction at design time are not suitable for addressing resource variability. 

A code-based design-time approach was presented to adapt software systems based 

on available resources (Christi, Groce and Wellman, 2019). This approach performs 

source-code reduction to make software systems consume less RAM. Annotations are 

added by programmers on the unit tests to identify which parts of the system are 

optional and can be removed when RAM consumption is above a threshold. The 

authors used the NetBeans IDE as a case to assess their work. The main limitation of 

this approach is that the software system must be recompiled to get an adapted 

version because the adaptation involves direct changes to the source code. 

Furthermore, as Christi et al. state, their approach is only valid for Java programs and 

does not generalise to programs written in other programming languages. Technology 

independence would improve if prioritisation and adaptation decisions were made at a 

higher level of abstraction such as tasks instead of being applied to source code. Yan et 

al. (2019) proposed an approach for adjusting the configuration of software systems to 

reduce power consumption on Unmanned Arial Vehicles (UAVs). This approach 

analyses source code at design time and adjusts the configuration at runtime to avoid 

having to recompile the software system. However, this approach is specific to power 

consumption in UAVs and does not apply to other types of software systems and 

resources. 

Huang et al. (2017) and Shao et al. (2014) presented approaches that particularly 

target mobile apps. The approach of Huang et al. (2017) reduces Android apps by 

removing the code elements of unwanted features to reduce the consumption of 

power, CPU, and bandwidth. Even with code modification aside, the idea of removing 

features from the software system is different from resource-driven adaptation. For 

example, if there is variability in resources such as CPUs and robots, the software 

system using these resources should adapt without permanently removing features 

that are required by the end-users. Huang et al. (2017) assume that in some software 

systems, some features can be removed because they are not being used at all by the 

end-users. However, this is not the case in other systems where required features face 

resource variability. The approach of Shao et al. (2014) detects whether Android apps 

have been repackaged to avoid the possible insertion of malware. This approach is 

described as resource-driven because it analyses app resource files such as layout and 

styles to detect changes. However, although these resources are static and reusable, 
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they do not face variability since every app has its copy of these files. Hence, the 

approach of Shao et al. (2014) does not aim to address resource variability through 

adaptation. 

3.2.5 Policy-based 

A policy is a rule that represents a choice concerning the behaviour of a system. For 

example, positive and negative authorisation policies define actions that subjects are 

authorised or unauthorised to perform respectively (Damianou et al., 2001).  

Chisel (2003) uses a policy language to define rules for adapting mobile systems 

that use services. Chisel dynamically inspects and adapts software systems using 

Iguana/J (Redmond and Cahill, 2000) with reflection (an API for examining and 

modifying the behaviour of methods and classes at runtime). The policies 

demonstrated by Chisel change configuration values to alter the behaviour of the 

system as a whole, but do not consider how individual tasks should be adapted when 

these configurations are not sufficient. Similarly, Efstratiou et al. (2002) use policies 

that include actions on a system-wide level to support the coordination of the adaptive 

behaviour of multiple mobile applications that share the same reusable resources. For 

example, one of Chisel’s policy examples initiates caching behaviour when memory is 

low. Consider that instead of memory the number of robots in a warehouse is low due 

to several unexpected hardware failures. In this case, changing a system setting is not 

enough to compensate for the missing robots, but performing task prioritisation and 

adaptation keeps the resources available to the most important parts of the work. 

Furthermore, using reflection to apply adaptations to the application could have 

performance implications, but these were not discussed.  

VOLARE adapts service requests at runtime based on rules defined using a policy 

language (Papakos, Capra and Rosenblum, 2010). Like some of the work discussed in 

Section 3.2.2, VOLARE focuses on single-user mobile application scenarios where the 

adaptation is based on the resources available in the environment and user 

preferences, but multi-user scenarios are not considered. For example, the case study 

done by VOLARE involves binding a mobile app to streaming services whose bitrates 

depend on the connection speed that is available for the mobile device. If this example 

was considered for a multi-user scenario, the adaptation will be done based on which 

tasks are more important rather than just individual user preferences. For example, if 

many robots at an automated warehouse were malfunctioning the remaining robots 
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that are working on low-priority tasks could be diverted to work on high-priority tasks 

until the other robots are repaired. 

Policies are also used to maintain service level agreements (SLAs) by setting the 

QoS (e.g., gold or silver) for software systems that use shared resources (Bandara et al., 

2004). David and Ledoux (2003) and Buisson et al. (2005) presented frameworks that 

enable software developers to specify policies for adapting components when resource 

availability changes at runtime. These policies are useful. However, more granularity in 

the adaptation decisions could be provided by considering the differences among tasks 

like priorities and resource consumption rather than adapting the software system or 

its components as a whole. Hence, for example, instead of considering that an entire 

software system has a high priority, multiple tasks from several software systems that 

are sharing resources could benefit from this privilege depending on their importance 

(e.g., for an enterprise). Furthermore, different types of adaptation could be suitable 

for each task. For example, usability is hindered by the postponement of tasks that are 

followed by subsequent user interactions to initiate other tasks (e.g., searching for 

products while creating an invoice on an ERP system). However, this type of 

adaptation could be possible for other tasks like the generation of non-critical reports.   

3.2.6 Architecture-based 

MAPE-K (Kephart and Chess, 2003) and the three-layer architecture (Kramer and 

Magee, 2007) serve as references for developing self-adaptive systems. Rainbow 

refines the MAPE-K control loop by adding a resource discovery mechanism to check 

the resources of the managed system (Garlan, Cheng, et al., 2004). This resource 

discovery mechanism was also added to MORPH (Braberman et al., 2017), which is a 

reference architecture that takes inspiration from Rainbow and the three-layered 

architecture and targets the adaptation of system configuration and behaviour. 

Rainbow’s resource discovery mechanism is limited to discovering and replacing 

software components, like a video conferencing gateway with existing ones, and it was 

implemented in a prototype that uses the network-sensitive service discovery 

mechanism (Huang and Steenkiste, 2003). Although this approach is feasible for 

software components, it would not work for other types of resources. For example, 

depletable resources cannot be discovered for direct use since these are delivered by a 

supplier and are affected by delays in the supply chain. Additionally, consider other 

resources such as robots. Even if existing resources were discovered these resources 
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cannot be used without taking into consideration task priorities. Otherwise, low-

priority tasks could be given access to resources that are needed by high-priority tasks. 

Furthermore, as Garlan, Cheng et al. (2004) note, Rainbow could be enhanced with 

proactive capabilities that will allow it to find improvement opportunities in an 

anticipatory manner. 

Huber et al. (2014, 2017) presented a domain-specific language for describing 

runtime adaptation at the system architecture level. The adaptation they performed 

involved dynamically adding and removing virtual CPUs and application servers 

(resources). Similarly, the SLAstic framework supports dynamic allocation and 

deallocation of data centre resources through node allocation and deallocation and 

load balancing (Van Hoorn et al., 2009). However, systems that are unrelated to 

virtualised environments use other types of resources like robots and raw materials, 

which cannot be added instantly on demand. Hence, these systems should adapt the 

way tasks are executed during resource variability using other types of adaptation like 

changing a task to a similar one that requires fewer resources. 

3.2.7 Query-based 

A few existing resource-driven adaptation approaches are query-based in the sense 

that they either directly target query optimisation or filter the results of queries to 

avoid returning unnecessary data that wastes resources. 

Viswanathan et al. (2018) devised an approach for query optimisation that takes 

resources into account to avoid performance loss in big data systems. Query 

optimisation is vital in the area of databases and incorporating resources into it is 

useful, but the approach of Viswanathan et al. is limited to this area and does not apply 

to other systems where resources differ, and the required adaptation does not merely 

involve tuning a query to make it faster. Gotz et al. (2015) presented an adaptive 

knowledge exchange technique that uses runtime models to manage the consumption 

of energy and memory in cyber-physical systems. The technique presented in this 

paper is specific to scenarios where robots clean rooms. However, the mentioned 

resource types are limited, and the meta-model does not illustrate how resources are 

associated with the software system. Furthermore, the adaptation performed by this 

technique is specific to changing the amount of data that is being transferred between 

robots via queries to reduce battery usage based on robot types and states. Hence, it 

does not generalise to other cases of resource variability. 
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3.2.8 Dynamic software-product-line 

Software Product Lines (SPLs) are used at design time to tailor software systems by 

creating variations from a set of features, while Dynamic Software Product Lines 

(DSPLs) are used to produce software systems that are capable of adapting to changes 

at runtime (Hallsteinsen et al., 2008). 

A few approaches have used DSPLs to support resource-driven adaptation. One 

approach used a genetic algorithm to automatically generate optimal software system 

configurations from a feature model at runtime according to the available resources 

(Pascual, Pinto and Fuentes, 2015). This approach helps software systems to cope with 

resource-constrained environments to improve their performance. Features are 

mapped to components that are added, removed, or given updated parameter values 

when a software system needs to adapt. However, working with tasks provides more 

granularity in adaptation decision-making because multiple tasks that use the same 

component could differ in terms of priorities and resource consumption. Saller et al. 

(2013) presented an approach that is concerned with overcoming resource limitations 

that inhibit the use of DSPLs on mobile devices because of the inability to deploy and 

explore a complete configuration space due to limited memory and processing 

capabilities respectively. However, the work of Saller et al. is not concerned with 

adapting software systems due to resource variability since its concern with resources 

is limited to the performance of DSPLs. Hence, it does not aim to address resource 

variability through adaptation. 

3.2.9 Other approaches 

SARDE is concerned with acting as a self-adaptive ensemble resource demand 

estimation approach (Grohmann et al., 2021). SARDE dynamically and continuously 

tunes, selects, and executes an ensemble of resource demand estimation approaches to 

improve the resulting estimation accuracy. Therefore, its adaptation is related to the 

tuning and selection of the approaches that are part of this ensemble. On the other 

hand, this thesis is concerned with making resources available for tasks in the cases 

where they are most needed and considering viable alternative task execution options 

when resources are unavailable. Furthermore, SARDE focuses on cloud computing 

applications and their resources (e.g., estimating resource demands for elastic cloud 

resource management and auto-scaling where the resources are mainly CPUs). 
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However, it does not cover a variety of resource types (depletable and reusable). Auto-

scaling enables the automatic increase or decrease of cloud services like server 

capacities when needed. Resource demand estimation for auto-scaling is specific to 

cloud computing and is not always feasible in other scenarios. For example, it is not 

possible to auto-scale depletable resources that are facing shortages due to a sudden 

problem in the supply chain. Additionally, it is costly to compensate for short-term 

resource variability by over-provisioning reusable and depletable resources such as 

robots and raw materials respectively. Furthermore, with depletable resources in 

particular there is no time spent to obtain a service from a resource (resource 

demand) as assumed by SARDE. The depletable resource is either available for a task 

to use directly or unavailable, hence the task cannot execute and could be adapted. 

A three-way adaptation technique was proposed for optimising the usage of the 

available resources to satisfice a set of requirements (Bennaceur et al., 2019). This 

adaptation technique consists of three steps (1) available resources are used for 

satisfying a set of requirements; (2) unavailable resources are substituted with similar 

available resources; (3) requirements are adapted based on the available resources. 

The motivating example for the three-way adaptation is based on a meal planning 

system, where recipes are considered as requirements and ingredients as resources. 

Unlike the previously discussed approaches, three-way adaptation targets food, which 

is a depletable resource. It is interesting to observe in this work an example of 

depletable resources, namely food, that are affected by resource variability, which is 

the problem that this thesis aims to address.  However, as previously mentioned it 

would be useful to consider multiple types of resources and tasks as part of the 

adaptation process. 

Samin et al. (2022) presented Pri-AwaRE, which performs decision-making for SASs 

while considering the priorities of non-functional requirements (NFRs). Hence, their 

approach performs adaptation with trade-offs between NFRs at runtime. Similar trade-

offs are performed by the brownout approaches that were discussed in Section 3.1 

(e.g., a trade-off between response time and user experience). However, Pri-AwaRE 

performs prioritisation, unlike most brownout approaches. Nonetheless, there are 

cases where the priorities differ by task and not just by NFR. Consider the example 

shown in Figure 3.1. In this example, response time could be overall more important 

than user experience for a variant of the task “Display Product Image” while user 

experience could be more important for other variants. 
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3.3 Task modelling 

As discussed in Section 3.2, considering tasks and their differences, like priorities 

and resource consumption, is useful because it provides granularity in the decision-

making process of a resource-driven adaptation approach. In this regard, a notation is 

needed to model the tasks of a software system, whereby these models would be used 

as input when making adaptation decisions. Hence, this section first provides an 

overview of existing task modelling notations and then discusses their shortcomings in 

the development of software systems that support resource-driven adaptation. The 

representation of task variants is one of the important characteristics for supporting 

resource-driven adaptation. Feature models can represent variations among features. 

Hence, this section also briefly discusses feature modelling notations to clarify how 

feature models differ from task models and why task models are more adequate for 

supporting resource-driven adaptation in software systems. 

3.3.1 Task modelling notations 

Task modelling notations are useful for representing the tasks and relationships of 

software systems as task models (Martinie et al., 2019). Task models describe how to 

perform activities by depicting how a task is divided into subtasks and how these 

subtasks are temporally related. For example, an automated warehouse system would 

comprise a task called “prepare customer order”, which is divided into sub-tasks like 

“locate product in the warehouse” and “pack product in a box”. In this example, the 

task “locate product in the warehouse” is executed first and is followed by the task 

“pack product in a box”. 

Several task modelling notations were proposed as described by existing surveys 

(Limbourg and Vanderdonckt, 2004; Guerrero-García, González-Calleros and 

Vanderdonckt, 2012; Martinie et al., 2019). Furthermore, these notations have been 

used by model-based software development approaches that target user interfaces 

(Calvary et al., 2003), games (Vidani and Chittaro, 2009), and collaborative learning 

systems (Molina et al., 2014). 
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3.3.1.1 Representation of task models 

Task modelling notations represent task models differently. Some notations like 

UAN (Hartson and Gray, 1992) and GOMS (Kieras, 2004) are textual, while other 

notations like CTT (Paterno, Mancini and Meniconi, 1997; Mori, Paternò and Santoro, 

2002) and HAMSTERS (Martinie, Palanque and Winckler, 2011) are graphical. 

Notations that describe the activities of software systems use different forms of 

representation. For example, “Yet Another Workflow Language” (YAWL) and “ usiness 

Process Model and Notation” (BPMN) adopt a graph representation, which enables 

them to represent workflows that include a sequence of steps with actions, conditions, 

and loops (van Welie, van der Veer and Eliëns, 1998). Task modelling notations follow 

a hierarchical structure because this provides the ability to represent abstractions 

with refinement as tasks and subtasks, which is the objective of these notations. Hence, 

task modelling notations mostly use graphical representations to visualise a hierarchy 

of tasks and relationships in a way that is easier to interpret by software practitioners. 

3.3.1.2 Operators and task types 

Task modelling notations support multiple modelling operators and task types, 

which are useful for representing software system tasks and their relationships. 

Although these operators and task types are not specifically related to resource-driven 

adaptation, they still form the starting point for any task model and are therefore 

briefly presented in this subsection. 

Task modelling notations support multiple operators including choice, concurrency, 

interruption, iteration, optionality, order independence, and sequence. The choice 

operator designates the possibility of choosing between multiple tasks so that when 

one task starts the others are disabled. Concurrency indicates that tasks can be 

performed simultaneously (i.e., one task can start before the other one finishes). The 

interruption operator indicates that a task is suspended until another task finishes its 

work, or a task is completely disabled by another one. Iteration is used to represent 

repetitive tasks once even though they may occur more than once. The optionality 

operator specifies whether a task is optional. Order independence and sequence 

specify that tasks can execute in any order and sequential order respectively. Some 

notations offer more operators than others. For example, AMBOSS (Giese et al., 2008), 

HTA (Annett, 2003), GTA (Van Der Veer, Lenting and Bergevoet, 1996), and Diane+ 
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(Tarby and Barthet, 1996) have more operators than TKS (Johnson and Hyde, 2003), 

GOMS, UAN, ANSI/CEA (2009), and MAD (Scapin and Pierret-Golbreich, 1989). 

Moreover, CTT and UsiXML (Limbourg et al., 2004) offer the most types of operators. 

Existing task modelling notations can represent tasks including abstract, interaction, 

application, and user. An abstract task represents an action that is divided into sub-

tasks. An interaction task involves user interaction with the software system. An 

application task is done entirely by the software system whereas a user task is done 

entirely by the user. Some notations like CTT and HAMSTERS support these task types 

explicitly whereas other notations like Amboss and Diane+ support them implicitly 

(i.e., tasks that are not labelled as abstract, interaction, application, or user but the 

meaning can be inferred by a human reader from what the task represents). TOOD 

(2001) has a “type” property for tasks but does not explicitly specify the values for this 

property. Moreover, task types in HAMSTERS can be extended with new ones. Explicit 

support for task types is more useful because software systems would be able to 

automatically determine the type of a task and make decisions accordingly. For 

example, in resource-driven adaptation, the choice of the type of adaptation could 

depend on the task type. 

3.3.1.3 Task modelling for resource-driven adaptation 

Most task modelling notations have operators and task types for representing the 

tasks of several types of software systems (e.g., desktop, mobile, and web). Few task 

modelling notations target particular areas of application. For example, Amboss 

targets safety-critical systems, and HTA targets some types of industrial systems (e.g., 

chemical and petroleum refining). However, existing task modelling notations do not 

target software systems that support resource-driven adaptation and are therefore 

missing characteristics that would be useful in representing the tasks of these systems 

as explained below. 

Existing task modelling notations do not support the association of resource types 

and priorities with tasks, which are important to identify potentially adaptable tasks 

due to resource variability. Although TOOD relates a task to a resource, this is not 

sufficient because additional information is required for performing resource-driven 

adaptation. This information includes the type of the resource, whether the task is 

allowed to use alternative resources, and the quantity of the resource that the task 

requires. Furthermore, the existing task modelling notations do not support task 
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variants that differ according to priorities, resource consumption, user roles, and 

parameter values. Such variants are useful for performing adaptation by executing 

similar tasks that consume fewer resources. Furthermore, it is important to support 

task variants because each one could have a different priority than its counterparts. 

For example, a task variant that consumes few resources and is initiated by users with 

privileged roles (e.g., manager) could be considered more important than a variant 

that consumes more resources and is initiated by users with less privileged roles. 

Another issue is concerned with the lack of stereotypes (tags) indicating which 

adaptation types apply to a task. For example, if a task strictly requires a specific type 

of resource, the system cannot adapt by performing resource substitution and should 

consider another type of adaptation (e.g., delay the task until the resource becomes 

available). On the other hand, if the end-users expect an immediate result from a task 

to perform additional interaction with the system then the task cannot be delayed. In 

such a case, the execution of a similar task (variant) could be possible. 

When adaptation is performed, it is important to give feedback to end-users about 

the rationale for the adaptation to keep them informed about why the software system 

made a particular decision. It is also useful to get feedback from the end-users about 

whether the system should improve its adaptation decisions. However, existing task 

modelling notations do not have properties for specifying whether and how a software 

system should present and receive adaptation-related feedback to and from end users. 

Considering the abovementioned limitations, it would be useful to have a task 

modelling notation for representing the tasks of software systems that support 

resource-driven adaptation. It is not necessary to create this notation from scratch 

because existing notations offer a good starting point (refer to Section 3.3.1.2 on the 

supported operators and task types). Hence, the desired characteristics (e.g., resource 

types and task variants) could be added to one of the existing notations. 

3.3.2 Feature modelling notations 

A feature model is a hierarchical organisation representing the constraints for valid 

configurations in a software product line (Hallsteinsen et al., 2008). Feature models 

are used by Software Product Lines (SPLs) to produce a collection of similar software 

systems by creating variations from a set of features. Like existing task modelling 

notations, feature modelling notations do not support resource-driven adaptation. 
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More specifically, feature modelling notations do not support the representation of 

resource types; priorities that differ according to parameter values, user roles, time of 

day, and resource intensiveness; information that affects which adaptation types are 

applicable; and configuration information regarding whether and how feedback is 

elicited from the end-users and presented to them. 

Feature modelling notations have been extended with additional attributes (e.g., 

cost of using a feature) by existing work (Benavides, Trinidad and Ruiz-Cortés, 2005). 

However, resource-driven adaptation could be better supported by extending a task 

modelling notation because task models represent concrete tasks rather than high-

level features, and these tasks could use different types of resources that affect if, 

when, and how a task is adapted. For example, consider an ERP system that has an 

“invoice” feature in its feature model. This feature corresponds, on a task model, to 

tasks such as “search for a product”, “display product description”, “display product 

image”, and “export invoice to image”. In this example, the software system could 

cancel the low-priority task “display product image” but not the high-priority task 

“display product description”. Furthermore, the temporal operators that are supported 

by task models are useful for anticipating which task will be executed next to inform 

adaptation decisions. For example, Rigole et al. (2007) used task models to perform 

gradual component deployment based on the tasks initiated by end-users to avoid the 

needless consumption of computing resources and latencies on lightweight mobile 

devices. 

One interesting thing about feature models, in comparison to task models, is that 

they represent variation, which is required for software product lines. As explained in 

Section 3.3.1.3, the modelling of variation is useful for distinguishing the modes of 

executing a task when performing resource-driven adaptation. However, variants in 

feature models are not meant for this purpose but are used for product derivation. 

Feature models and task models could be complementary whereby a feature maps 

to many tasks as explained by existing work on automated product derivation (Pleuss, 

Botterweck and Dhungana, 2010). Nonetheless, based on what I previously explained, 

task models are more appropriate for resource-driven adaptation and are therefore 

used in this thesis. 
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3.4 Summary of critical analysis 

Table 3.1 provides a summary of the resource-driven adaptation approaches, which 

were discussed in Section 3.2. This table shows, for each approach, the supported 

resource types and their corresponding resource groups (refer to Section 2.2). The 

most common resource groups are static and reusable with resource types like RAM 

and CPU. Hence, existing adaptation approaches support a limited number of resource 

types. Furthermore, these approaches do not support the creation of new resource 

types at runtime. Hence, it is not possible to extend the resource types that are already 

supported. This limits the applicability of these techniques because software systems 

could require different types of resources. For example, consider that an ERP system 

got upgraded to a new version that uses additional resource types. It is more 

convenient if these resource types are defined through data entry at runtime rather 

than modifying the source code of the adaptation approach’s implementation. 

Table 3.1 – Summary of existing resource-driven adaptation approaches 
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Time 
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Klein et al. (2014)     ◯     ◯ CPU     ◯ activate/deactivate optional contents Cloud-based 

Propose the brownout paradigm to cope with hardware failures and varying user workload levels without over-provisioning resources 

Dürango et al. (2014)     ◯     ◯ CPU     ◯ activate/deactivate optional contents Cloud-based 

Apply brownout on multiple replicas of an application using load-balancing algorithms 

Tomás et al. (2014)     ◯     ◯ CPU     ◯ activate/deactivate optional contents Cloud-based 

Work on the issue of applications that are accepted to run on a cloud server, which does not have sufficient resources 

Maggio et al. (2014)     ◯     ◯ CPU     ◯ activate/deactivate optional components Cloud-based 

Compare multiple control strategies with a trade-off between response time and user experience 

Nikolov et al. (2014)     ◯     ◯ Network     ◯ activate/deactivate optional components Cloud-based 

Manage resource reservations based on resource demands and predefined service level agreements 

Moreno et al. (2015)     ◯     ◯ CPU ◯     activate/deactivate optional contents Cloud-based 

Propose a proactive approach to address adaptation latency (i.e., the lag between performing an adaptation and its effect) 

Pandey et al. (2016)     ◯     ◯ CPU     ◯ activate/deactivate optional contents Cloud-based 

Combine two planning approaches to handle the trade-off between timeliness and optimality of the adaptation plan 

Xu et al. (2016)     ◯     ◯ CPU     ◯ activate/deactivate optional components Cloud-based 

Prioritise components based on usage frequency and perform a trade-off between energy consumption and revenue 

Hasan et al. (2016)     ◯     ◯ CPU     ◯ activate/deactivate optional contents Cloud-based 

Perform adaptation based on a trade-off between energy consumption and revenue 

Zhao et al. (2017)     ◯     ◯ CPU     ◯ activate/deactivate optional components Cloud-based 

Propose a framework to generate adaptation rules for user goals 

Sun et al. (2019)     ◯     ◯ CPU     ◯ 
activate/deactivate optional components, and 
substitute mandatory components 

Cloud-based 

Suggest substituting components with alternatives that are less resource-intensive during situations of resource variability 
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Gajos (2001)     ◯     ◯ Network     ◯ resource mapping and conflict arbitration Multi-Agent 

Present a framework for mapping resources to tasks in smart spaces 

Sousa et al. (2006)     ◯     ◯ 
CPU, RAM, and 
Bandwidth 

    ◯ adjust software configuration Ubiquitous 

Adapt the quality of service to changes in the environment and the end user's preferences according to the task 

Davidyuk et al. (2007)     ◯     ◯ CPU and RAM     ◯ lease shared resources Mobile 

Compose services to maximise the quality of service for the currently active user task in smart spaces 

Perttunen et al. (2007)     ◯     ◯ Network     ◯ lease shared resources Mobile 

Use a leasing mechanism that gives users access to shared resources for a limited amount of time 

Rigole et al. (2007)     ◯     ◯ CPU     ◯ load components just in time Mobile 

Perform gradual component deployment based on the tasks initiated by end-users to avoid needless consumption of computing resources 
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Huang et al. (2017)     ◯     ◯ 
CPU, Battery. and 
Bandwidth 

    ◯ remove code of unwanted app features Mobile 

Reduce Android apps by removing the code elements of unwanted features to reduce the consumption of power, CPU, and bandwidth 

Christi et al. (2017)     ◯     ◯ RAM     ◯ reduce source code Mission-Critical 

Perform source-code reduction to make software systems consume less RAM 

Yan et al. (2019)     ◯     ◯ Battery     ◯ adjust software configuration UAV 

Adjust the configuration of software systems to reduce power consumption on unmanned aerial vehicles 
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Efstratiou et al. (2002)      ◯     ◯ 
Battery and 
Bandwidth 

    ◯ 
coordinate adaptive behaviour for multiple 
applications 

Mobile 

Use system-wide policies to coordinate the adaptive behaviour of multiple mobile applications that share the same reusable resources 

Keeney et al. (2003)     ◯     ◯ 
CPU, RAM, and 
Bandwidth 

    ◯ 
adapt service objects to use different 
behaviours using reflection 

Mobile 

Use a policy language to define rules for adapting mobile systems that use services 

Buisson et al. (2005)     ◯     ◯ Server Computer     ◯ spawn and terminate process Grid 

Specify policies for adapting components when resource (machine) availability changes at runtime 

Papakos et al. (2010)     ◯     ◯ 
Battery and 
Bandwidth 

    ◯ 
adapt cloud service requests to match the 
required QoS 

Mobile 

Adapt service requests at runtime based on rules defined using a policy language 
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 Van Hoorn et al. (2009)     ◯     ◯ CPU     ◯ add and remove server nodes Cloud-based 

Perform dynamic allocation and deallocation of data centre resources 

Huber et al. (2017)     ◯     ◯ CPU and RAM ◯     add and remove virtual CPUs and servers Cloud-based 

Present a domain-specific language for describing runtime adaptation using quality of service models 
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Gotz et al. (2015)     ◯     ◯ RAM and Battery     ◯ change the amount of exchanged data Cyber-Physical 

Present an adaptive knowledge exchange technique that managed energy and memory consumption in cyber-physical systems 

Viswanathan et al. (2018)     ◯     ◯ CPU     ◯ adapt query plans (query optimisation) Big-Data 

Perform query optimisation and take resources into account to avoid performance loss 

D
S

P
L

 

Saller et al. (2013)     ◯     ◯ CPU and RAM     ◯ 
a trade-off between precomputation of 
reconfiguration at design time and on 
demand evolution at runtime 

Mobile 

Present an approach for overcoming resource limitations that inhibit the use of DSPLs on mobile devices due to limited resources 

(Pascual, Pinto and Fuentes, 
2015) 

    ◯     ◯ Battery     ◯ 
add and remove components and update 
their parameter values 

Mobile 

Generate optimal software system configurations from a feature model at runtime according to the available resources 

O
th

e
r 

Bennaceur et al. (2019)     ◯ ◯     Food ingredient     ◯ substitute resources/adapt requirements Food-based 

Optimise the usage of available resources to satisfice a set of requirements 

(Grohmann et al., 2021)     ◯     ◯ CPU     ◯ 
tunes and selects approaches for resource 
demand estimation 

Cloud-based 

Tune and execute an ensemble of resource demand estimation approaches to improve the resulting estimation accuracy 

(Samin, Bencomo and 
Sawyer, 2022) 

    ◯     ◯ Network     ◯ 
makes adaptation decisions while 
considering the priorities of NFRs 

IoT/data 
mirror network 

Perform adaptation with trade-offs between non-functional requirements 

Legend:     Supports ◯ Does not support – Not specified 
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Table 3.1 also shows the trigger time (reactive and proactive) and the adaptation 

types that are supported by each approach. The most common adaptation trigger is 

reactive, and the most common type of adaptation involves the activation and 

deactivation of optional contents or components. Moreover, as shown in Table 3.1, 

cloud-based systems and mobile systems are the most common examples of software 

systems that are targeted by existing resource-driven adaptation approaches. As 

discussed in Section 3.2, a system becomes more versatile in coping with resource 

variability if multiple types of adaptation were supported. Additionally, a resource-

driven adaptation approach becomes more useful if it supports multiple types of 

software systems. 

Table 3.2 – Summary of existing task modelling notations 

  Operators Task Types 
Useful Characteristics 
for Resource-driven 

Adaptation 
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AMBOSS Graphical ⦿ ⦿ ◯ ◯ ⦾ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Safety-critical 

ANSI/CEA Textual ⦾ ⦾ ◯ ⦾ ⦾ ◯ ⦾ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ 
Electronics 

devices 

CTT Graphical ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ◯ ◯ ◯ ◯ ◯ 
Desktop, mobile, 

and web 

Diane+ Graphical ⦿ ⦿ ◯ ⦿ ⦿ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

GOMS Textual ⦾ ⦾ ⦾ ⦾ ⦾ ⦾ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

GTA Graphical ⦿ ⦿ ⦾ ◯ ⦾ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

HAMSTERS Graphical ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ◯ ◯ ◯ ◯ ◯ 
Desktop, mobile, 

and web 

HTA Graphical ⦿ ⦾ ⦿ ⦾ ◯ – ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ 

Steel production, 
chemical and 

petroleum 
refining, and 

power generation 

MAD Graphical ⦿ ⦿ ⦿ ◯ ⦿ ◯ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

TKS Graphical ⦿ ◯ ◯ ◯ ◯ – ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

TOOD Graphical ⦿ ⦿ ⦿ ◯ ◯ – ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

UAN Textual ⦿ ⦿ ⦿ ⦿ ◯ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop 

UsiXML Graphical ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ◯ ◯ ◯ ◯ ◯ 
Desktop, mobile, 

and web 

Legend: ⦿ Explicitly Supports ⦾ Implicitly Supports ◯ Does not support – Not specified 
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Table 3.2 provides a summary of existing task modelling notations that were 

discussed in Section 3.3.1. This table summarises the operators and task types that 

task modelling notations support. It is important to explore these operators and task 

types to see which task modelling notation(s) offers a good starting point for adding 

characteristics that are useful for resource-driven adaptation but are missing from 

existing notations as shown in Table 3.2 and discussed in Section 3.3.1. 

3.5 Filling the gaps 

As explained in Section 1.3, to answer the research questions, this thesis presents a 

framework and a task modelling notation for supporting resource-driven adaptation in 

software systems. By supporting resource-driven adaptation, software systems would 

be able to address the problem of resource variability, which prevents them from 

executing critical tasks that require scarce resources. The abovementioned 

contributions aim to fill the gaps that were discussed in Sections 3.2 to 3.4 and are 

summarised as follows: 

1. Consider tasks in the resource-driven adaptation process to provide granularity in 

the adaptation decision-making based on task differences that include priority, 

resource consumption, parameters of the task, the role of the user who is initiating 

the task, when the task is initiated, and the applicability of a type of adaptation to 

the task 

2. Support multiple types of resources that belong to the previously defined four 

resource groups: reusable, depletable, static, and dynamic, to make the resource-

driven adaptation approach more comprehensive 

3. Support multiple types of adaptation to provide versatility in addressing resource 

variability, whereby if one type of adaptation is not applicable to a task the 

software system would be able to use other types of adaptation 

The work presented in this thesis considers tasks to offer more granularity for 

resource-driven adaptation decision-making in comparison to other approaches such 

as the ones that work with components or make decisions that apply to the entire 

software system (e.g., refer to Sections 3.2.1 and 3.2.5). Tasks are represented in task 

models where they are broken down into subtasks and prioritised to support decision-

making on whether they should be adapted in situations of resource variability. By 

working with tasks and keeping task models available at runtime, it is possible to 
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support multiple types of software systems and to make dynamic adaptation decisions, 

unlike the approaches discussed in Section 3.2.4. Furthermore, unlike some of the 

approaches discussed in Sections 3.2.2 and 3.2.5 that only consider single-user 

scenarios, this thesis considers scenarios involving multiple users who initiate tasks 

that compete for shared resources. 

Tasks are prioritised based on multiple criteria including the timeframe (from and 

to time of day) of the task’s execution, the role of the user who is attempting to execute 

the task, the forecasted number of task executions to be done by users, and the 

parameter values that distinguish task variants (refer to Figure 3.2 for an example). 

These prioritisation criteria include the perspectives of system administrators who 

provide task priorities based on their domain knowledge and end-users who indirectly 

indicate task priorities through actual use. In comparison, for example, Sun et al. 

(2019) rely on usage frequency only and Gajos et al. (2001) use an arbitrary scheme 

for indicating a task’s importance as discussed in Sections 3.2.1 and 3.2.2 respectively. 

A heuristic is proposed in this thesis as a solution for performing task prioritisation 

without affecting a software system’s performance when considering environments 

where changes occur at runtime due to resource variability (refer to the discussion in 

Section 3.2.3). 

Task priorities are used to decide which tasks execute by gaining access to the 

resources that they need, and which ones get adapted. To provide more versatility 

than the existing resource-driven adaptation approaches, multiple adaptation types 

are supported, including the execution of a similar task that requires fewer resources, 

the substitution of resources with alternative ones, the execution of tasks in a different 

order, or even the cancellation of low-priority tasks. As shown in Table 3.1 and 

explained in Section 3.2, existing resource-driven adaptation approaches have less 

diversity in their supported adaptation types. 

Moreover, the work presented in this thesis supports multiple types of resources 

belonging to the resource groups defined in Section 2.2, namely reusable, depletable, 

static, and dynamic, and the creation of new types of resources at runtime. As shown in 

Table 3.1 and explained in Section 3.2, existing resource-driven adaptation approaches 

support a limited number of resource types, which narrows the applicability of these 

approaches to specific cases because the way of performing the adaptation differs from 

one type of resource to another.  
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Furthermore, a new task modelling notation is presented and used in this thesis to 

represent task models that serve as input for resource-driven adaptation. The new 

notation is based on CTT and fills the gaps that are presented in Table 3.2 and 

discussed in Section 3.3.1. In comparison, existing task-based approaches discussed in 

Section 3.2.2 do not specify an explicit way of modelling tasks. Only Rigole et al. (2007) 

use task models but, as previously mentioned, their work is concerned with loading 

software components just-in-time rather than addressing resource variability. 

In summary, the characteristics of the work that this thesis presents to address 

resource variability are represented by the hierarchy shown in Figure 3.3a. These 

characteristics correspond to the self-* properties shown in Figure 3.3b (Salehie and 

Tahvildari, 2009). Task prioritisation, adaptation type selection, and feedback loops 

correspond to the property “self-adjusting”. Additionally, resource-driven adaptation, 

which is used to address resource variability, corresponds to the property “self-

adaptiveness”. 

 

 

Figure 3.3 – Characteristics of proposed work (a) and their self-* properties (b) 
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4  

Overview of the Work 

This chapter presents an overview of the work that this thesis presents to support 

resource-driven adaptation based on MAPE-K. It presents the involved stakeholders, 

components, and data. This chapter also illustrates how to integrate resource-driven 

adaptation capabilities into software systems. The concepts that this chapter presents 

serve as a basis for the resource-driven adaptation framework presented in a 

subsequent chapter. 

4.1 Introduction 

Figure 4.1 presents an overview of the work that this thesis proposes for 

supporting resource-driven adaptation to address the problem of resource variability. 

As this figure shows, three types of stakeholders are involved in the adaptation 

process, namely software practitioners, system administrators, and end-users. 

Software practitioners prepare task models that include setup data provided by system 

administrators based on their domain knowledge. End-users initiate tasks from the 

software system and provide their feedback on the adaptations. 

This thesis proposes components that work proactively and reactively to support 

resource-driven adaptation in software systems. These systems can in principle be any 

type of resource-driven software system. This thesis considers enterprise systems as 

an example of resource-driven software systems. The data used in the adaptation 

process includes the task models and setup data in addition to the adaptation plans 

that are prepared by the corresponding adaptation components. A knowledge base 

stores this data to make it available for the adaptation decision-making process during 

resource variability. 
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The following sections provide further details on the elements that are represented 

in Figure 4.1 including stakeholders, adaptation components, and task models, and 

how the proposed work follows the MAPE-K control loop (Kephart and Chess, 2003). 

Furthermore, the following sections present a way of integrating the proposed 

resource-driven adaptation components into software systems. This involves filtering 

task requests to decide whether to perform an adaptation before executing a task and 

returning its results to the end user. 

4.2 Stakeholders 

Figure 4.1 shows three types of stakeholders, namely software practitioners, system 

administrators, and end-users. Software practitioners work in the software industry in 

professions such as software design, programming, and deployment. System 

administrators are information technology (IT) professionals who handle the 

configuration and upkeep of software systems within an enterprise. End-users use the 

software system by initiating tasks from it. 

Software practitioners are responsible for creating task models because they have 

the knowledge related to the software system (e.g., tasks and relationships). Software 

practitioners use a tool to create task models that comprise tasks, which represent the 

activities that the software system can perform. They could require the domain 

 

Figure 4.1 – An overview of the proposed work for supporting resource-driven 
adaptation in software systems 
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expertise of system administrators to specify some information on the task models 

(e.g., priorities that represent a managerial perspective of the importance of tasks 

within an enterprise). Software practitioners create the task models via the tool and 

store them in a knowledge base to be used by the software system when it performs 

resource-driven adaptation. 

System administrators use a tool to specify setup data such as resource types and 

user roles. The tool stores this setup data in a knowledge base. Software practitioners 

use this data to assign values to the properties of tasks in a task model (e.g., the type of 

resource that a task uses and the roles of the users who can initiate a task). System 

administrators play an important role in many types of software systems. This is 

especially true for enterprise systems where system administrators assist software 

practitioners in configuring the software system during the deployment phase. Such 

configurations could take up to months for large-scale multimillion-dollar enterprise 

systems (Garg and Venkitakrishnan, 2003). Therefore, it is reasonable to assume that 

system administrators can play a role in providing setup data for supporting resource-

driven adaptation, especially since this data represents part of the domain knowledge 

that they possess. 

End-users interact with the software system by initiating tasks from it. End-users 

can provide feedback to rate the impact of an adaptation on a task’s available 

functionality and the quality of its outcome. This feedback is used during the 

preparation of an adaptation plan for choosing suitable types of adaptation. For 

example, assume that, for the sake of limiting CPU consumption, an adaptation lowered 

the resolution of images. If the end-users provided a low rating for the resolution 

quality, then, in the future, the system could choose another type of adaptation (e.g., 

delay the task’s execution instead of lowering the resolution). Furthermore, the 

opinions of end-users about task priorities are indirectly elicited by monitoring task 

usage. Hence, the tasks that end-users initiate more frequently would have a higher 

priority from an end-user perspective. This complements the managerial perspective 

of priorities provided by the system administrator. 

I considered the abovementioned three types of stakeholders, namely software 

practitioners, system administrators, and end-users, to represent the people who are 

involved in the adaptation process because their input is sufficient to support 

resource-driven adaptation in software systems. The software practitioners create the 

task models, the system administrators provide the domain knowledge, and the end-
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users provide feedback on the adaptations. People who play these roles are always 

present. Software practitioners must be present to create software systems for end-

users to use. 

Moreover, consider enterprise systems as an example, system administrators are 

present to configure and maintain the software systems of an enterprise. Although 

people who play other roles, e.g., the managers of an enterprise, also possess domain 

 

Figure 4.2 – The proposed adaptation components based on MAPE-K (the grey parts 
are repeated in the figure to avoid overlapping lines) 
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knowledge, system administrators can convey the knowledge to software practitioners 

because they work closely with them during the deployment of the software system. 

4.3 Adaptation components 

The proposed adaptation components follow the MAPE-K control loop because it 

serves as a reference for adapting software systems via components that handle 

actions from the collection of data to the execution of the adaptation (refer to Section 

2.4.1 for more information on MAPE-K). Hence, the proposed adaptation components 

include monitors (M), analysers (A), planners (P), executors (E), and a knowledge (K) 

base as shown in Figure 4.2. This thesis presents a framework that realises these 

components, which complement each other to address resource variability through 

resource-driven adaptation. The relationships between these components involve 

invoking one another and passing the required data. These relationships are denoted 

in Figure 4.2 by the arrows that connect the components. As indicated by the legend of 

Figure 4.2 the arrows that have a solid line represent an invocation between the 

managed system and the autonomic manager and among the components of the 

autonomic manager. Moreover, the arrows that have a dashed line represent reading 

and writing data. These arrows represent data storage and retrieval operations 

between the adaptation components and the knowledge base. 

The adaptation components support proactive and reactive adaptation processes. 

These adaptation processes rely on the notion of task prioritisation where tasks that 

use the same types of resources are executed in order of their priorities. The proactive 

process uses historical data and configurations to calculate the priorities of tasks and 

prepare an adaptation plan. The reactive process identifies the resource types that are 

facing variability and decides whether to perform the corresponding type of adaptation. 

As shown in Figure 4.1, the adaptation process executes with the support of ten 

components that work either proactively or reactively. One of the components, namely 

the task execution monitor, works both proactively and reactively. This component is 

responsible for monitoring the execution of tasks included in the task models and the 

use of their respective resources reactively. The task execution monitor uses a sensor 

to collect reactively the number of times tasks are initiated and stores it as historical 

data in the knowledge base. Then, the task execution monitor passes this historical data 

to the task execution forecaster so it can use it during the proactive adaptation process. 
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Sensors act as a bridge between the managed system and the autonomic manager. One 

sensor enables the task execution monitor to reactively identify when tasks are 

initiated in the managed system. Another sensor enables the task execution monitor to 

proactively decide if it is time to read the historical data from the knowledge base and 

invoke the task execution forecaster. The following subsections explain the remaining 

adaptation components. 

4.3.1 Proactive 

 The proactive adaptation process includes five components, namely task execution 

monitor (explained above), task execution forecaster, task priority calculator, task 

priority adjuster, and adaptation type selector. The task execution forecaster forecasts 

the number of executions of tasks based on their historical usage. The forecasted task 

execution is needed because it is part of the data used for calculating the task 

priorities. The task priority calculator and task priority adjuster calculate the priorities 

of tasks and adjust these priorities respectively when tasks with the same priority 

value require the same type of resources. This way each task is assigned a unique 

priority value. This helps in differentiating tasks by their importance and deciding 

whether to execute a task or perform adaptation. Finally, the adaptation type selector 

specifies the adaptation types that will be applied to the tasks. The supported 

adaptation types include (i) execution of task variants that require fewer resources; 

(ii) substitution of resource types with alternative ones; (iii) execution of tasks in a 

different order based on their priorities; and (iv) cancellation of tasks when no other 

task variant or resource can be used. The use of multiple adaptation types (i)-(iii) 

provides more versatility in the possible ways of performing adaptation to execute a 

task that requires resources, which are facing variability. Otherwise, the execution of 

the task would be cancelled (iv). 

4.3.2 Reactive 

 The reactive adaptation process includes eight components, namely task execution 

monitor (explained above), resource type state monitor, resource type state analyser, 

task execution manager, task execution allocator, adaptation executor, feedback elicitor, 

and feedback provider. The resource type state monitor observes the use of resources 

by tasks and stores the monitored data in the knowledge base. To obtain this data, the 

resource type state monitor uses a sensor that links it to the managed system and 
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enables it to observe the resources that are being used by the tasks.  The resource type 

state analyser analyses the data that is obtained by the resource type state monitor to 

check whether a resource type is facing variability. The task execution manager decides 

whether to execute or adapt the tasks, which use resources that are facing variability. 

The task execution allocator allocates the number of possible executions for each task 

based on the forecasted number of task executions, the task priorities, and the 

available quantities of resources. This helps in keeping resources available for the 

most important tasks. The adaptation executor performs adaptations to address 

situations of resource variability. The feedback elicitor and feedback provider gather 

and provide adaptation-related feedback from and to end-users respectively. The 

feedback that is elicited from the end-users helps in improving future adaptation-

related decisions. Moreover, feedback provided to the end-users helps them to 

understand the reason behind performing the adaptation. 

The adaptation executor uses an effector that enables it to make changes to the 

managed system that are necessary to perform adaptations. Additionally, an effector 

prompts end-users on the managed system to provide feedback about the adaptations 

that the adaptation executor performed and returns this data to the feedback elicitor. 

Furthermore, the feedback provider uses an effector to relay its feedback to end-users 

as messages on the managed system. 

4.3.3 The benefit of combining proactive and reactive adaptation 

The proactive adaptation uses forecasting based on historical data to predict future 

events (Hyndman and Athanasopoulos, 2018). In the adaptation components that this 

thesis proposes, the proactive adaptation process uses historical data such as task-

usage history to compute task priorities and user feedback to select adaptation types. 

This historical data is not used in reactive adaptation and leveraging it is a benefit of 

preparing an adaptation plan proactively. Additionally, preparing an adaptation plan 

reactively over very short periods (e.g., seconds) could be costly and cause 

interruptions. That is why Krupitzer et al. (2018) consider proactive adaptation to be 

preferable from a user point of view. However, Krupitzer et al. also note that the 

precision of a proactively prepared adaptation plan relies on forecast accuracy. Hence, 

even if multiple forecasting techniques are used or a suitable technique is selected 

based on historical data, the results could still have some inaccuracy (Bauer, 2019; 

Bauer et al., 2020). Therefore, the proactively prepared plan could serve as a starting 
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point that is complemented by a reactive decision on whether there is a need for 

adaptation. 

4.4 Task models 

As shown in Figure 4.1 and explained in Section 4.2, software practitioners use a 

tool to create task models and store them in a knowledge base. Software practitioners 

represent the task models using a task modelling notation that supports resource-

driven adaptation. This task modelling notation and its supporting tool are part of the 

contribution of this thesis. The knowledge base stores the task models following the 

notation’s meta-model so the software system can interpret them accordingly. 

The task models created by software practitioners serve as input for the 

preparation of adaptation plans and for making adaptation-related decisions during 

resource variability. For example, these models comprise knowledge that informs the 

system about which types of adaptation apply to a task and how to execute a task 

differently to reduce the strain on resources that are facing variability. 

4.5 Integrating resource-driven adaptation in a software system 

Figure 4.3 illustrates how this thesis proposes to integrate resource-driven 

adaptation into software systems. This figure shows the steps from when a user 

initiates a task request to when they receive a response and provide feedback on the 

task’s outcome passing through the steps that involve adaptation-related decisions. 

Figure 4.3 indicates the chronological order of these steps by the labels containing 

numbers 1 to 11. 

As shown in Figure 4.3, software systems are considered to have a client-side part 

and a server-side part. This is common in service-oriented applications such as 

enterprise systems, which end users access from multiple geographical locations 

within and outside the enterprise. The client-side part could be a desktop, mobile, or 

web application that comprises the presentation layer of the software system and runs 

on the end user’s device. On the other hand, the server-side part comprises the other 

layers of the application including business logic, data access, and web services, and 

runs on the server. 
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As shown in Figure 4.3, end-users initiate task requests on the client-side part of the 

software system, which forwards these requests to the server. Filters intercept task 

requests before reaching the server-side part of the software system. In the work 

presented in this thesis, the filters are implemented using .NET actions filters, which 

contain logic that executes before the software system’s code executes (Larkin et al., 

2021). A filter decides whether to execute adaptation-related logic before forwarding 

the task request to the software system. This is done after identifying the requested 

task from the task model that is stored in the knowledge base and checking the 

adaptation plan to see if adaptation is required due to resource variability. 

The adaptation components perform adaptation, when needed, using one of the 

supported adaptation types (refer to Section 4.3.1). Then, these components forward 
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an updated request to the server-side part of the software system. For example, if a 

similar task is to be executed instead of the one that was initiated, then the request 

would be forwarded with an updated task identifier number. Alternatively, if the 

adaptation involved resource substitution, then the request would be forwarded with 

the same task identifier number but a different identifier number for the type of 

resource. Moreover, if the adaptation delayed the task’s execution, then the task 

request would be added to a queue to be forwarded later. Finally, if the adaptation 

cancels the task altogether, then the task request would not be forwarded. Regardless 

of whether adaptation is performed and which type of adaptation is used, a response is 

returned to the client-side part of the software system. The end-user sees the result of 

the task, if it executes, and receives and gives adaptation-related feedback if the system 

performed an adaptation (refer to Section 4.3.2). 

4.6 Chapter summary 

This chapter presented an overview of the work that this thesis proposes for 

supporting resource-driven adaptation in software systems. This overview includes 

the involved stakeholders, namely software practitioners, system administrators, and 

end-users. This chapter explained the roles of these stakeholders in supporting 

resource-driven adaptation. In summary, software practitioners create task models, 

system administrators provide setup data, and end-users offer feedback on the 

adaptation performed by the system. 

This chapter also presented the adaptation components that this thesis proposes in 

the context of the MAPE-K control loop. It explained these components and their input 

that is represented as task models. Moreover, this chapter discussed the process of 

integrating resource-driven adaptation with software systems. The integration uses 

filters that intercept task requests to decide whether to perform adaptation during 

resource variability. 

This chapter provides an overview of the proposed solution for addressing resource 

variability through adaptation. Chapter 5 will present the proposed task modelling 

notation for supporting resource-driven adaptation (SERIES) and give a detailed 

explanation of the task models. Furthermore, Chapter 6 will present the proposed 

resource-driven adaptation framework (SPARK) and give a detailed explanation of the 

adaptation components. 
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5  

SERIES: A Task Modelling Notation for 

Resource-Driven Adaptation 

This chapter presents SERIES, which is a task modelling notation for supporting 

resource-driven adaptation. First, this chapter explains the meta-model that comprises 

the constructs of SERIES. Then, it presents an example of a SERIES task model from an 

automated warehouse system. This example demonstrates the constructs of SERIES and 

their graphical representation. Afterwards, this chapter presents the supporting tool of 

SERIES and explains its features. 

5.1 Introduction 

SERIES is a task modelling notation that supports resource-driven adaptation when 

a software system’s resources are facing variability. Task models that are represented 

using SERIES contain information that is used by the resource-driven adaptation 

components introduced in Section 4.3. Moreover, SERIES is based on CTT (Paterno, 

Mancini and Meniconi, 1997), which is a notation for representing task models 

hierarchically using a graphical syntax. The graphical representation of SERIES is also 

inspired by UML class diagrams (Fowler, 2003, pp. 35–52). For example, UML 

represents a class as a multi-part box with a set of attributes and operations. Similarly, 

SERIES represents a task as a multi-part box with properties. 

As explained in Section 3.3.1, existing task modelling notations have useful features 

such as tasks and relationships, but they also lack some characteristics that are 

important for supporting resource-driven adaptation in software systems. Several task 

modelling notations like CTT, HAMSTERS (Martinie, Palanque and Winckler, 2011), 
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and UsiXML (Limbourg et al., 2004) could be extended to support resource-driven 

adaptation. 

However, SERIES is based on CTT given its wide use in academia, government, and 

industry. The tool of CTT has been downloaded over 26,000 times and has over 10,000 

registered users (Vigo, Santoro and Paternò, 2017). Additionally, CTT supports useful 

characteristics like application tasks that SERIES extends with task variants. 

 

Figure 5.1 – Meta-model of SERIES represented as a class diagram - elements highlighted in 
grey are from the CTT notation; elements with a gear are used in the SPARK framework) 
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5.2 Meta-model of SERIES 

Figure 5.1 shows the meta-model of SERIES. This meta-model includes constructs 

that support resource-driven adaptation in software systems. The part of the meta-

model highlighted in grey is incorporated from CTT while the rest is added by SERIES. 

Moreover, the parts with a gear icon next to them in the meta-model are used in the 

adaptation components of the SPARK framework, which is explained in more detail in 

Chapter 6. The following subsections explain the meta-model and use bold and italic to 

emphasise the names of the constructs. 

5.2.1 Constructs that SERIES incorporates from CTT 

SERIES incorporates tasks and relationships with temporal operators from CTT. 

The meta-model represents these constructs by the Task class and its self-association 

“is followed by” and property FollowingTaskTemporalOperator. Tasks are connected 

using relationships that are annotated with temporal operators, which express how 

the tasks relate to each other. 

SERIES also incorporates from CTT two task types, namely abstract task and 

application task, which are represented by the enumeration TaskType. An abstract 

task involves complex actions and is broken down into a sequence of child (sub) tasks, 

which are represented in the class Task by the self-composition parent-child and the 

association class TaskParent. The property “IsMandatory” on this association class 

indicates whether a subtask is mandatory or optional. An application task is executed 

by the software system without user interaction. The child (sub) tasks of an abstract 

task are represented as application tasks. 

SERIES extends CTT with additional constructs that correspond to the non-grey 

parts of the meta-model shown in Figure 5.1. The following subsections explain these 

constructs. 

5.2.2 Abstract task 

What follows are the characteristics of an abstract task that are extended by 

SERIES. These characteristics include a description, an execution type, feedback 

properties, resource types, and parameters. 
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5.2.2.1 Description 

The name is a short text that indicates a task’s purpose and is available in task 

modelling notations like CTT. In addition to the name, SERIES tasks have a 

description, which is a longer text that provides more explanation about the task. The 

task name is mandatory because it makes the purpose of the task model 

comprehensible. On the other hand, the description is optional and becomes more 

beneficial when a task model gets larger and more complex in terms of the number of 

tasks and what the tasks represent in the corresponding domain. 

5.2.2.2 Execution type 

The execution type specifies whether or not end-users require an immediate result 

from the task to perform additional interaction with the software system. The possible 

values for the execution type are represented by the TaskExecutionType enumeration 

and include “followed-by-interaction” and “fire-and-forget”. 

If the end-users do not require an immediate result from a task to execute another 

task after it, then the task’s execution type will be “fire-and-forget”, otherwise it will be 

specified as “followed-by-interaction”. A “fire-and-forget” task is processed by the 

software system in the background while the user initiates other tasks. Hence, a user 

can initiate multiple “fire-and-forget” tasks (e.g., as a batch) and check their result later. 

On the other hand, a user would initiate one task with an execution type “followed-by-

interaction” and processes its result before deciding what to do next (e.g., stop 

initiating further tasks or initiate another task with data input that is based on the 

result of the previous task). 

The execution type of tasks affects adaptation decisions during resource variability. 

In this regard, a task that is “followed-by-interaction” cannot be delayed because the 

user is expecting an immediate result from it. On the other hand, a “fire-and-forget” 

task can be delayed to be executed later when there is less strain on the resource types 

that it requires and are facing variability. 

5.2.2.3 Feedback properties 

The adaptation type choice indicates whether the type of adaptation is selected 

manually by the end-user or automatically by the software system. The possible values 

for adaptation type choice are represented by the enumeration AdaptationTypeChoice 
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and include “automated” and “user”. The “automated” selection of the type of adaptation 

relieves end-users from having to frequently make manual choices. Additionally, if 

multiple types of adaptation share the lowest cost and the adaptation type choice 

property was set to “user”, then the software system prompts end-users to select one of 

the least costly types of adaptation. Otherwise, the software system automatically selects 

one of the least costly types of adaptation. 

The property feedback-from-user specifies whether the software system shall ask 

end-users to provide their feedback on the outcome of the task when adaptation is 

performed. This feedback enables the software system to improve its adaptation 

choices. The possible values are represented by the enumeration FeedbackFromUser 

and include “request” and “don’t request”. If feedback-from-user was set to “request”, 

then the software system would request feedback from end-users on how the 

adaptation affected their work and use this feedback to adjust the costs of applying 

multiple types of adaptation. In case the feedback from the user is not required, then 

the property feedback-from-user will be set to “don’t request”. 

The feedback location specifies where the software system shall request and give 

feedback from and to end-users respectively. The enumeration FeedbackLocation 

represents the possible values for feedback location, which include “UI element”, 

“panel”, and “none”. The “UI element” is a suitable option when end-users need to 

provide immediate feedback as they work. Hence, the software system will give 

feedback on the part of the UI that corresponds to a task (e.g., as a popup window next 

to the button that the end-user presses to initiate the task). On the other hand, the 

“panel” option groups multiple feedback messages that end-users can check later. The 

“panel” is dedicated to feedback and is separate from the part of the UI that 

corresponds to the task. In case no feedback is required, i.e., the property feedback-

from-user was set to “don’t request”, then the feedback location will be set to “none”. 

5.2.2.4 Resource types and their assignment to tasks 

Resource types represent entities that a task requires so it can execute. A resource 

type is represented by the class ResourceType, which has several properties. The 

property consumption type specifies whether the resource type is “reusable” or 

“depletable” as indicated by the enumeration ResourceConsumptionType. A “reusable” 

resource type is available to another task after the task that is using it is done, whereas 

a “depletable” resource type is used once. A resource type also has a behaviour type that 
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is either “static” or “dynamic” as indicated by the enumeration ResourceBehaviourType. 

A “static” resource type does not have a behaviour, whereas a “dynamic” resource type 

has a behaviour. Refer to Section 2.2 for more information on the types of consumption 

and behaviour of resource types. A resource type has an available quantity specified in 

terms of a measurement unit that is represented by the class MeasurementUnit. The 

available quantity indicates how many resources of a type are available on hand. This is 

useful for identifying whether resource types are facing shortages. 

A task resource type assignment represents an association between a task and 

the resource types that it requires. The property AppliesToChildTasks is set to either 

“true” or “false” to indicate whether or not the resource type that is assigned to a task 

also applies to its subtasks.  y setting this property to “true”, there would be no need 

to duplicate the effort and re-associate the same resource type will all the sub-tasks. 

Additionally, the ResourceIntensiveness property specifies whether the concerned task 

has a low, medium, or high consumption for the resource type that is assigned to it. 

This is useful to identify which tasks place more strain on which types of resources to 

make adaptation decisions accordingly. 

The task resource type assignment also specifies the resource type’s substitutability 

for the task. The substitutability is either “strict” or “flexible” as indicated by the 

ResourceTypeSubstitutability enumeration. A “strict” resource type cannot be 

substituted with alternatives. Hence, during resource variability situations the 

software system should seek a type of adaptation that does not involve resource 

substitution. On the other hand, a “flexible” resource type is substitutable with 

alternative resource types. 

5.2.2.5 Categories of resource types and tasks 

Resource types are categorisable under resource type categories, which are 

instances of the ResourceTypeCategory class. This categorisation helps in speeding up 

the work when tasks have common resource types assigned to them. Hence, if a task 

requires all the resource types in a category, then it would be associated with the 

category rather than with each resource type individually. 

Similar tasks are categorisable under task categories. Like resource type categories, 

task categories speed up the work by facilitating the association of resource types with 

tasks. Hence, if all the tasks in a task category use a resource type then the task category 
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is associated with this resource type. Additionally, if all the tasks in a task category use 

all the resource types in a resource type category, then the task category is associated 

with the resource type category rather than performing individual associations among 

the tasks and resource types. 

5.2.2.6 Parameters 

Parameters represent a task’s expected input data. A parameter has a name, data 

type, and parameter type. The data type specifies what kind of data the parameter 

holds (e.g., boolean, decimal, and string). On the other hand, the parameter type 

specifies whether a parameter is “changeable” or “non-changeable” as indicated by the 

enumeration ParameterType. If the parameter type is set to “changeable”, then the 

value of the parameter can be changed. Otherwise, the parameter type is set to “non-

changeable” to indicate that the value of the parameter cannot be changed. The ability 

to change a parameter’s value is important for performing adaptation to execute the 

task differently. However, in some cases parameter values should remain as they 

reached the software system (e.g., provided as input by the user or another system). 

Hence, there is a need for both parameter types “changeable” or “non-changeable”. 

5.2.3 Application task 

An application task has the same characteristics as an abstract task (refer to Section 

5.2.2) in addition to priorities and services. 

5.2.3.1 Priorities 

The priority that is assigned to a task on the task model represents the task’s 

importance in a domain. Hence, a priority is either “low”, “medium”, or “high” as 

indicated by the TaskPriority enumeration. Priorities are useful for adaptation during 

resource variability to keep scarce resources available for the most important tasks. 

The priorities that are specified in the task model are based on domain knowledge. 

Priorities could differ among timeframes, which represent intervals of time that are 

meaningful for a domain. For example, a task could have a “low” priority in the morning 

from 8:00 AM to 12:00 PM and a “high” priority in the afternoon from 12:01 PM to 5:00 

PM. The classes TimeFrame and TaskPriorityAssignment represent timeframes and the 

assignment of priorities to tasks respectively. 
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Priority assignments can be applied to task categories as well. This helps in speeding 

up the work when tasks that belong to the same task category have the same priority 

assignment. Hence, when a priority is assigned to a category it automatically applies to 

all the tasks within it. 

5.2.3.2 Service method 

The tasks represented in a task model correspond to a software system. Hence, the 

service method represents the function in the software system’s source code that is 

called when the task is executed. A service method is represented by the class 

ServiceMethod, which has two properties: method name and service name. A method 

name represents the name of the function that is called to execute a task, whereas a 

service name represents the name of the class where the function is implemented. 

Moreover, when the software system receives a request to initiate a task it checks 

whether adaptation is needed before executing the task. To make adaptation decisions, 

the software system requires information from the task model (e.g., which type of 

adaptation applies to the initiated task). Hence, upon receiving a task initiation request 

the software system identifies the corresponding task from the task model by 

comparing the names of the class and function that are invoked from the source code 

to the service methods in the task model. 

5.2.4 Application task variant 

An application task variant is a special case of an application task and is needed to 

(1) avoid treating all executions of an application task in the same way when adapting 

and (2) identify how to execute an application task with fewer resources. An 

application task variant has the same characteristics as an application task (refer to 

Section 5.2.3), with the addition of parameter conditions, resource intensiveness, roles, 

and substitutability. 

5.2.4.1 Parameter conditions 

Parameter conditions specify the parameter values that distinguish application 

task variants from each other. A parameter condition is represented by the class 

ParameterCondition and its subclasses “single value”, “value set”, and “range”. Single 

value, value set, and range parameter conditions compare the value of a parameter to a 
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single value (e.g., 10), set of values (e.g., 10, 15, and 20), and range of values (e.g., 10 to 

20) respectively. Moreover, the comparisons performed in the parameter conditions 

use one of five comparison operators “equal”, “not equal”, “in”, “not in”, and “between”, 

as indicated by the enumeration ComparisonOperator. The operators “equal” and “not 

equal” are used for single-value parameter conditions. Additionally, the operators “in” 

and “not in” are used for value-set parameter conditions. Furthermore, the operator 

“between” is used for range parameter conditions. 

5.2.4.2 Resource intensiveness 

Resource intensiveness indicates the level of resource consumption of an 

application task variant for a resource type (i.e., the strain that an application task 

variant places on a resource type). The value of resource intensiveness is either low, 

medium, or high as indicated by the enumeration ResourceIntensivenessLevel. A high 

resource intensiveness means that more resources are required to execute a task, and 

vice-versa. 

The resource intensiveness is represented in the class TaskResourceTypeAssignment 

since its value is specified per combination of task variant and resource type. Resource 

intensiveness helps in adaptation decision-making when a software system needs to 

execute a similar task variant that consumes fewer resources. This reduces the strain 

on resource types that are facing variability. 

5.2.4.3 Roles 

Although an application task variant is performed by the software system it could 

be initiated after a request from an end-user. Roles represent the groups of end-users 

who are eligible to initiate the application task variant. A typical example of a role in an 

enterprise is a job title like manager or clerk. However, roles are not necessarily 

related to job titles. For example, a role could be used to indicate the age groups of 

end-users. Roles and end-users are represented by the classes Roles and Users 

respectively. The association between these two classes denotes the assignment of 

roles to end-users. 

Roles are important for adaptation because they can be used by a software system 

to identify whether privileged users invoke a task variant thereby affecting its priority. 

For example, a task could be considered more important if it was invoked by a 
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manager in an enterprise system or by a senior citizen in a public service software 

system (e.g., transportation). 

5.2.4.4 Substitutability 

An application task variant can be either substitutable by another application task 

variant or non-substitutable. This depends on the type of parameter that is used in 

the parameter condition. If the parameter is “changeable”, then its value can be changed 

to invoke an alternative application task variant that expects a different value. On the 

other hand, if the parameter type is “non-changeable”, then its value cannot be changed. 

Hence, it is not possible to invoke an alternative application task variant that expects a 

different parameter value. The possible substitutability options, namely “substitutable 

application task variant” and “non-substitutable application task variant”, are defined 

by the enumeration TaskType alongside the “abstract task” and the “application task” 

explained in Section 5.2.1. 

A substitutable task variant could be executed instead of another one that has 

higher resource intensiveness (refer to Section 5.2.4.2). However, non-substitutable 

task variants are also important for addressing resource variability. Although non-

substitutable task variants cannot be interchanged like their substitutable 

counterparts, they have different priorities and are associated with parameter 

conditions (refer to Section 5.2.4.1) that specify in which cases these task variants are 

executed. This helps software systems in making adaptation decisions that reduce the 

strain on limited resources to keep them available to the most important task variants. 

5.3 Example task model from an automated warehouse system 

Consider an example of a warehouse for a retail store that receives customer orders 

throughout the day. In this example, the warehouse is automated by robots that 

perform order preparation tasks and pack items into boxes. To prepare a customer’s 

order, robots locate the respective items in the warehouse, pack the items in boxes, 

and decorate the boxes to make them ready for delivery (e.g., seal boxes, and attach 

labels with addresses). 



Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 73 

 

 

Consider that robots should place items of the same type together in a pile inside 

the boxes. Robots and boxes are essential resources for the retail store’s operations. 

Robots can temporarily go out of service due to unexpected errors or due to the need 

for recharging, thereby, delaying order fulfilment and causing financial losses. 

Similarly, due to the high demand for orders, the warehouse may run out of boxes to 

pack and deliver the orders. Figure 5.2 illustrates an excerpt of a task model for the 

automated warehouse system example. This task model is represented using the 

SERIES notation. Additionally, Figure 5.2 also shows a legend, which illustrates the 

constructs that are used in the task model. The legend consists of task types and a 

 

Figure 5.2 – A task model example from an automated warehouse system (excerpt) 
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relationship that SERIES uses from CTT, as well as task types, task execution types, 

relationships, and task properties that SERIES adds as extensions to CTT. 

5.3.1 Abstract task: Prepare Order 

The task model consists of an abstract task called “Prepare Order”, which is divided 

into three application tasks and represents the activity of preparing customer orders 

for delivery. 

5.3.1.1 Description 

The task “Prepare Order” has a description, which is accessed via the information 

icon displayed in the top right corner of the box that represents the task. This 

description explains further the purpose of the task “Prepare Order” and comprises the 

following text “This task represents order preparation at the warehouse before 

delivering the ordered products to the customers”. 

5.3.1.2 Execution type 

The task “Prepare Order” has a “fire-and-forget” execution type since end-users do 

not require a result from the task to interact with the system and execute another task. 

For example, the software system could execute a batch of order preparation tasks. 

The software system would process the batch and assign order preparation tasks from 

it to the robots at the warehouse. When the batch is done, a warehouse control 

employee checks the outcome of the batch of tasks altogether (e.g., if the software 

system returned any messages regarding changes to some customer orders). 

5.3.1.3 Parameters 

The task “Prepare Order” has two parameters. The first one is a changeable 

parameter called “PackMode”, which specifies the mode for packing items in a box. The 

second one is a non-changeable parameter called “CustomerType”, which specifies the 

type of customer for whom the order is being prepared. 

The parameter “PackMode” is set to be changeable because it is possible to change 

its value to indicate that the packing should be done differently (e.g., items are sorted 

by their type or randomly). Hence, it is possible to consider “PackMode” as a type of 
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configuration parameter. On the other hand, the “CustomerType” parameter is set to 

be non-changeable because it is based on domain-related data such as the total amount 

of purchases or the number of years as a customer, which indicate loyalty to the store. 

Hence, in this case, it is not possible to downgrade a VIP customer to a regular 

customer for performing adaptation. 

5.3.1.4 Resource types 

The task “Prepare Order” has a single flexible resource type called “Robot”, which is 

used for preparing a customer order. The robot is set as a flexible resource type to 

indicate that it is substitutable by another robot during resource variability (e.g., due 

to unexpected robot malfunctions). 

5.3.1.5 Feedback properties 

The adaptation type choice is set to “automated” for the task “Prepare Order”. This 

means the software system will automatically select the least costly adaptation type to 

apply to this task. Additionally, the property feedback-from-user is set to “request”. This 

means when an adaptation type is applied to this task, feedback will be requested from 

the end-user to provide input on the outcome of the adaptation. 

Moreover, the feedback location for “Prepare Order” is set to “panel”. This means 

end-users can provide feedback on a separate panel from the user interface that is 

used to run the task. For example, consider that a batch of “Prepare Order” tasks have 

finished executing and that adaptations were performed due to resource variability. 

The software system would list the performed adaptations as messages underneath 

each other in a side panel to inform the end-users about its decisions. The users could 

scroll through these messages and provide their feedback on the outcomes of the tasks. 

To provide a comparable example, the feedback panel discussed here resembles the 

notifications panel in Windows. 

5.3.2 Application tasks 

The abstract task “Prepare Order” is divided into three application tasks “Locate 

Items in Warehouse”, “Pack Items in a  ox”, and “Decorate  ox”. These application 

tasks represent the sequence of actions that are required for preparing an order. 
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5.3.2.1 Application task 1: Locate items in the warehouse 

The first application task that is executed as part of the “Prepare Order” abstract 

task is called “Locate Items in Warehouse”. This application task has a “high” priority 

between 8:00 AM and 4:00 PM and a “medium” priority between 4:01 PM and 8:00 PM. 

This example shows how a task’s priority can differ per timeframe. Additionally, the 

service method is set to “Order.LocateItems”, where “Order” and “LocateItems” 

represent the service name and method name respectively. 

5.3.2.2 Application task 2: Pack items in a box 

The second application task is called “Pack Items in a  ox”. This task has a single 

resource type called “ ox”, which represents a container that is used to pack the items 

of the customer order. The resource type “ ox” is set to strict to indicate that it is not 

substitutable. For example, in this case, it is not possible to substitute a box with 

another container such as a bag because the box provides better protection. However, 

there could be other cases where a resource type “ ox” could be set to flexible to 

indicate that it is substitutable; the choice depends on the requirements for a 

particular domain. Additionally, the service method is set to “Order.PackItems”, where 

“Order” and “PackItems” represent the service name and method name respectively. 

5.3.2.3 Application task 3: Decorate box 

The third application task is called “Decorate  ox”. This task has a single flexible 

resource type called “Decorative ow”, which is used to decorate the box once the items 

are packed in it. The “Decorative ow” is set to flexible since it can be substituted with 

other types of decorations during resource variability. Additionally, the service method 

is set to “Order.Decorate ox”, where “Order” and “Decorate ox” represent the service 

name and method name respectively. 

5.3.2.4 Order of the application tasks 

These three application tasks “Locate Items in Warehouse”, “Pack Items in a  ox”, 

and “Decorate  ox” execute in sequential order and are therefore linked by a “task 

enabling” relationship to indicate that one task enables the other. This means that 

“Locate Items in Warehouse” will execute first. Once the items are located the task 
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“Pack Items in a  ox” will execute. Finally, after the items are packed in a box the task 

“Decorate  ox” will execute to add decorations to the box. 

5.3.3 Application task variants for “pack items in a box” 

The application task “Pack Items in a  ox” has two application task variants, which 

are “Pack Randomly” and “Pack by Item Type”. These application task variants are 

substitutable because it is possible to change the value of the “PackMode” parameter to 

execute one variant instead of another. 

Furthermore, the variants of the task “Pack Items in a  ox” are linked to it via a 

“task to task variant” relationship. This relationship indicates that these variants are 

special cases of “Pack Items in a  ox”, whereby each variant performs the packing 

differently. The “task to task variant” relationship is similar to a generalisation 

relationship in UML. Hence, the application task variants use (inherit) the information 

found in their parent application task (e.g., resource type and service method). In this 

example, both “Pack Randomly” and “Pack by Item Type” use the resource type “ ox”. 

Furthermore, both of these variants call the same service method (Order.PackItems) 

but with a different value for the parameter “PackMode”. 

5.3.3.1 Application task variant 1: Pack randomly 

The application task variant “Pack Randomly” is executed when the “PackMode” 

parameter is equal to “Random”. This variant has a “low” resource intensiveness on the 

robot resource type since the robot will perform the packing randomly without taking 

additional time to sort the items before placing them in the box. Additionally, end-

users with any role can execute the “Pack Randomly” application task variant. Hence, 

the initiation of this task variant is not restricted to particular types of employees 

within the warehouse and its importance is not affected by who initiated it. 

Furthermore, “Pack Randomly” has a “high” priority value between 8:00 AM and 

4:00 PM and a “medium” priority value between 4:01 PM and 8:00 PM. This is an 

example of how priorities can differ among timeframes for an application task variant. 

The choice of timeframes with priorities depends on what is required for a domain. For 

example, the abovementioned priority and timeframe were chosen for the task variant 

“Pack Randomly” because customer orders are mostly fulfilled between 8:00 AM and 
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4:00 PM and packing items randomly would reduce the strain on the resources during 

this busy time. 

5.3.3.2 Application task variant 2: Pack by item type 

The application task variant “Pack by Item Type” is executed when the “PackMode” 

parameter is equal to “ yItemType”. This variant has a “high” resource intensiveness on 

the robot resource type since it would take the robot more time to identify the items 

and pack each type in a separate pile in comparison to packing items randomly. Like 

“Pack Randomly”, the task variant “Pack by Item Type” can be executed by users of any 

role. For example, this includes employees from the warehouse with any job title. 

Furthermore, “Pack by Item Type” has a “high” priority value for VIP customers and 

a “low” priority value for non-VIP customers. The priorities, in this case, apply to any 

timeframe. The task variant “Pack by Item Type” places more strain on the robots 

(resources) in comparison to its counterpart “Pack Randomly”. Hence, it was given a 

low priority for non-VIP customers. This example shows how the priority of an 

application task variant can be the same for any timeframe but differ according to 

parameter values. 

5.3.4 Application task variants for “decorate box” 

The application task “Decorate  ox” has two non-substitutable application task 

variants, which are “Decorate with Premium Decoration” and “Decorate with Regular 

Decoration”. Like the variants of the task “Pack Items in a  ox”, the variants of 

“Decorate  ox” are linked via a “task to task variant” relationship to indicate that the 

task variants are special cases of the application task. 

These variants are non-substitutable because the value of the “CustomerType” 

parameter cannot be changed. This means that it is not possible to change an order 

that is designated for a VIP customer to an order for a regular customer. Hence, it is 

not possible to execute the task variant “Decorate with Premium Decoration” instead 

of “Decorate with Regular Decoration” and vice-versa. 

5.3.4.1 Application task variant 1: Decorate with Premium decoration 

The application task variant “Decorate with Premium Decoration” is executed when 

the parameter “CustomerType” is equal to “VIP”. This means that VIP customers will 
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receive a premium decoration for their order. Additionally, end-users with any role can 

execute “Decorate with Premium Decoration”. Moreover, “Decorate with Premium 

Decoration” has a “high” priority value at any timeframe, which means it is important 

for VIP customers to receive a premium decoration on their order regardless of when 

the order is prepared. This is an example of how a single priority value can be given to 

an application task variant. 

5.3.4.2 Application task variant 2: Decorate with Regular decoration 

The application task variant “Decorate with Regular Decoration” is executed when 

the parameter “CustomerType” is not equal to “VIP”. This means non-VIP customers 

will receive a regular decoration for their orders. Additionally, end-users with any role 

can execute “Decorate with Regular Decoration”. Furthermore, “Decorate with Regular 

Decoration” has a “low” priority value at any timeframe, which means it is not 

important for non-VIP customers to receive a decoration for their order. For example, 

in case there is a shortage in the decorative bow resource type, then non-VIP customers 

 

Figure 5.3 – Tool for creating and modifying task models using SERIES 
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might not receive a decorated box. This could be achieved by performing an adaptation 

that cancels the execution of a “Decorate with Regular Decoration” task variant. 

5.4 Supporting tool of SERIES 

SERIES has a supporting tool that offers functionality for creating and modifying 

task models. A screenshot of this tool is shown in Figure 5.3. This tool was developed 

using C# and the Windows Presentation Foundation (WPF). 

5.4.1 Panels: Task model explorer, visual task model, and properties 

The supporting tool of SERIES is divided into three panels: (a) Task Model Explorer, 

(b) Visual Task Model, and (c) Properties, which are shown in Figure 5.3a, Figure 5.3b, 

and Figure 5.3c respectively. 

  

  

 

 

Figure 5.4 – Data entry windows for properties that represent sets of values 
 (the data displayed in these windows are examples) 
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The “Task Model  xplorer” panel offers a hierarchical view of a task model. This 

panel shows how the tasks are ordered under each other using a compact tree 

structure that enables users to navigate to the different parts of the model. The “Visual 

Task Model” panel displays the task model graphically using the S RI S notation. 

Moreover, it is possible to zoom in and out of the task model in the “Visual Task Model” 

panel using the “Zoom” slider. 

The “Properties” panel displays the properties of the selected task. Users use this 

panel to edit the values of the properties (e.g., change the name of a task). A property 

can either have a single value like task name and description or a set of values like 

resource types and parameters. Properties with lists of values are shown in the 

“Properties” panel with “Add”, “ dit”, and “Remove” buttons. The buttons “Add” and 

“ dit” open windows for inputting and editing the data of the respective property. 

 

Figure 5.5 – Supporting tool of SERIES – setup data tab 

 

 

 

  

Figure 5.6 – Data entry windows for setup data properties 
 (the data displayed in these windows are examples) 
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Figure 5.4 shows screenshots of those data entry windows with example data. On the 

other hand, the button “Remove” deletes the selected value. 

The possible set of values for the properties resource type, resource type category, 

measurement unit, role, and task category that are used in the data entry windows 

(Figure 5.4) are defined beforehand. The data entry windows for these properties are 

accessible through the “Setup Data” tab, shown in Figure 5.5, where the buttons open 

the corresponding data entry windows that are shown in Figure 5.6. 

The automated-warehouse-system example shown in Figure 5.2 is displayed in the 

supporting tool in Figure 5.3. The “Task Model  xplorer” panel shows the task model 

as a hierarchical view, which starts from the abstract task “Prepare Order”, followed by 

the application tasks and their corresponding application task variants. The “Visual 

Task Model” panel displays the task model, which is partially shown in Figure 5.3 to 

keep the text on the figure readable in the limited space on the page. The “Properties” 

panel shows the properties and their values for the abstract task “Prepare Order” that 

is selected in the task model. The name and description are editable as text, execution 

type and user feedback are selected from combo boxes, while resource types and 

parameters can be added, edited, or removed. Properties and values are displayed 

depending on which part of the task model is selected. For example, if a task variant 

was selected the “Properties” panel would also display parameter conditions, resource 

intensiveness, and roles. 

5.4.2 Actions: Creating, loading, and saving task models 

The actions tab shown in Figure 5.3d provides buttons for invoking the actions that 

are needed to create and modify task models. To clear the currently loaded task model 

(a) Opening task model (b) Saving task model 

  

Figure 5.7 – Opening and saving task models from and to a database 
 (the data displayed in these windows are examples) 
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and create a new one, the user presses the “New Task Model” button. A user loads an 

existing task model by pressing the “Open Task Model” button and selecting the 

corresponding name from a list of task models that were previously saved to a 

database (Figure 5.7a). Similarly, a user saves a task model to a database by pressing 

the “Save Task Model” button and specifying a task model name (Figure 5.7b). The 

database that stores the task models is a realisation of the knowledge base introduced 

in Section 4.1.  

The tool stores S RI S task models in JSON format. JSON stands for “JavaScript 

Object Notation” and is a well-known format that uses human-readable text to store 

data objects. The JSON format is a serialised (textual) representation of objects from a 

software system. The serialised objects in the supporting tool of SERIES represent task 

models. JSON is useful for storing task models in the database and also for transmitting 

Listing 5.1 – JSON representation of the “Prepare Order” abstract task 

1. { 

2.    "Id":1, 

3.    "Name":"Prepare Order", 

4.    "Description":"Preparing an order for a customer", 

5.    "ExecutionType":"<<fire-and-forget>>", 

6.    "TaskCategory":"Inventory", 

7.    "AdaptationTypeChoice":"Automated", 

8.    "FeedbackFromUser":"Request", 

9.    "FeedbackToUser":"Panel", 

10.    "ResourceTypes": 

11.    [ 

12.       { 

13.          "Name":"Robot", 

14.          "Quantity":1, 

15.          "Substitutability":"<<flexible>>" 

16.       } 

17.    ], 

18.    "Parameters": 

19.    [ 

20.       { 

21.          "Name":"Pack Mode", 

22.          "DataType":"string", 

23.          "ParameterType":"<<changeable>>" 

24.       }, 

25.       { 

26.          "Name":"Customer Type", 

27.          "DataType":"string", 

28.          "ParameterType":"<<non-changeable>>" 

29.       } 

30.    ] 

31. } 
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them over a network to be processed by a software application. The JSON documents 

that store the data of SERIES task models consist of all the tasks and task variants in a 

task model’s hierarchy and their property values. For example, as shown by the 

“Properties” panel in Figure 5.3c, the abstract task “Prepare Order” has data 

corresponding to the task name, description, execution type, task category, resource 

types, parameters, adaptation type choice, and feedback. This data is represented using 

JSON in Listing 5.1. 

5.4.3 Adding, modifying, and removing tasks 

The hierarchy of a task model starts with an abstract task. Hence, the first step in 

the creation of a task model is the addition of an abstract task by pressing the button 

“Add Abstract Task”. Moreover, when an abstract task is added and selected the button 

“Add Application Task” is enabled. Upon pressing this button an application task is 

added as a subtask of the abstract task. Task variants for an application task are added 

by pressing the button “Add Application Task Variant”. 

Upon selecting a task or a task variant on the “Task Model  xplorer” (Figure 5.3a) 

or the “Visual Task Model” (Figure 5.3b), the corresponding properties are 

automatically shown in the “Properties” panel (Figure 5.3c). When a user edits the 

values of these properties, the new values are directly reflected in the “Task Model 

 xplorer” and the “Visual Task Model”. For example, when a user changes the name of 

a task in the “Properties” panel, the new name directly appears on the graphical 

representation of the task model. 

Additionally, users can remove a task from the task model by selecting the task and 

clicking on the button “Remove Task”. This includes any child tasks that are linked to 

the removed task. For example, if an application task is removed and it has a set of 

application task variants, then those task variants will be removed as well. 

 

Figure 5.8 – Supporting tool of SERIES – configuration tab 
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5.5 Graphical representation of SERIES task models 

As mentioned in Section 5.1 and shown by the example presented in Section 5.3, the 

graphical representation of the constructs in SERIES is based on CTT and also inspired 

by UML class diagrams. 

5.5.1 Representation of tasks and task variants 

In CTT, a task is represented by an icon with the task name written underneath. 

However, SERIES represents tasks and task variants as boxes that resemble classes in a 

UML class diagram. The box representation is needed because SERIES extends CTT 

with additional characteristics that should be represented graphically. Hence, these 

boxes have multiple parts that represent the properties of the tasks and task variants. 

SERIES uses the icons of CTT for the abstract and application tasks (Paterno, 

Mancini and Meniconi, 1997). Furthermore, S RI S adds the letter “v” to the icon of 

the application task and uses the new icon for the application task variants. These 

icons are displayed in the top left corner of the boxes that represent tasks and task 

variants as shown by the example in Figure 5.2. Moreover, SERIES uses both a textual 

description and an icon for the properties of tasks and task variants (Figure 5.2). For 

example, the property that represents parameters has the word “Parameters” as a 

textual description alongside an icon of an arrow pointing inside a rectangle to denote 

an input that is given to the system. 

5.5.2 Representation of relationships 

A relationship that connects an abstract task to its subtasks (application tasks) is 

represented as a line without an arrow as is done in CTT. Additionally, a relationship 

that connects subtasks is represented as a line with a temporal operator as is done in 

CTT as well. 

On the other hand, a relationship that connects an application task to an application 

task variant resembles the generalisation relationship in UML. This relationship is 

represented as a line with a white triangle as an arrow tip. The generalisation 

relationship in UML connects a concept to its special cases (e.g., a class to its 

subclasses). The same principle applies to tasks and task variants, whereby the task 
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variants are special cases of a task. Hence, the graphical representation of the task-to-

task-variant relationship was inspired by UML’s generalisation relationship. 

5.5.3 Different levels of detail 

The “Configurations” tab, shown in Figure 5.8, has a set of options for showing or 

hiding parts of the task model. This enables users to show more or fewer details as 

needed. Hence, it is possible to hide the details that are not needed at the moment to 

show a bigger part of the task model on the screen. For example, it is possible to hide 

all the properties from the “Visual Task Model” and only keep the task names while 

retaining the ability to browse and edit the properties in the “Properties  ox”. It is also 

possible to hide properties that are less frequently used for a particular project. 

The ability to control the level of detail on the task model is inspired by UML class 

diagrams where it is possible to hide the parts of the boxes that represent the classes 

as needed. In UML class diagrams the box parts represent the class name, attributes, 

and operations. On the other hand, in a SERIES task model, the box parts represent the 

name of a task or a task variant and the properties (e.g., priority, parameters, resource 

intensiveness, etc.). 

5.5.4 The layout of task models 

SERIES adopts a hierarchical layout for task models. This type of layout is typically 

used by task modelling notations like CTT. Hence, the abstract task is displayed at the 

top of the task model. Then, the subtasks (application tasks) are displayed under the 

abstract task and the task variants are displayed under the subtasks. 

The supporting tool of SERIES automatically adjusts the layout of the task model 

when new tasks are added or removed. This facilitates the management of task models 

without having to worry about overlapping lines and the necessity of performing 

manual adjustments to keep the task model readable. Nonetheless, if a user wishes to 

perform a manual rearrangement of the task model’s layout, the tool also supports the 

dragging and dropping of tasks. The ability to drag and drop tasks is enabled by 

pressing the button “Enable Task Drag” from the “Configurations” tab, which is shown 

in Figure 5.8. 
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5.6 Mapping of concepts from SERIES to SPARK 

Table 5.1 shows the mapping of concepts from the meta-model of SERIES to the 

adaptation components of SPARK. In the class resource type, the consumption type and 

available quantity properties are used in three components, namely resource type 

state monitor, resource type state analyser, and task execution allocator. These 

properties are used to monitor the available quantities of reusable and depletable 

resources to check if they are facing variability and allocate accordingly the number of 

possible task executions. Moreover, the property behaviour type is used by the 

adaptation executor component to check whether the adaptation is applied to the 

software system or the resource accordingly to whether the type of resource type is 

static or dynamic respectively. 

Table 5.1 – Mapping concepts from SERIES meta-model to SPARK components  

SERIES SPARK 

Class name Class property Used by adaptation component 

Resource type 

Consumption type 

Available quantity 

Resource type state monitor 

Resource type state analyser 

Task execution allocator 

Behaviour type Adaptation executor 

Task priority assignment Priority value Task priority calculator 

Task resource type 
assignment 

Resource intensiveness 
Adaptation executor  
(task variant substitution) 

Substitutability Adaptation executor 
(resource substitution) Quantity 

Service method 
Service name 

Task execution monitor 
Method name 

Task and Task variant 

Feedback from user Feedback elicitor 

Feedback location Feedback provider 

Execution type 
Adaptation executor  
(delay task execution) 

Type 
Adaptation executor  
(task variant substitution) 
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In the class task priority assignment, the property priority value is used as input to 

the task priority calculator component to calculate the initial priority value for a task. 

In the class task resource type assignment, the property resource intensiveness is used 

by the adaptation executor component to check which task variant gets substituted by 

another one. The properties substitutability and quantity are used by the adaptation 

executor component to check if the resource type is substitutable and check the 

available quantities for the substitutable resource types respectively. In the class 

service method, the properties service name and method name are used by the task 

execution monitor component to identify which task (variant) is initiated by an end-

user so the appropriate adaptation decisions can be made accordingly. 

In the classes task and task variant, the property feedback-from-user is used by the 

feedback elicitor component to check if it needs to request feedback from the end-user 

when adaptation is performed. Moreover, the property feedback location is used by the 

feedback provider component to specify the location for providing feedback when an 

adaptation is performed (directly on the UI or in a separate panel). The property 

execution type is used by the adaptation executor component to identify whether a task 

can be delayed. The property type is used by the adaptation executor to identify 

whether a task variant is substitutable by another one. If one type of adaptation does 

not apply, the framework would apply another type. 

5.7 Chapter summary 

This chapter presented a task modelling notation called SERIES, which this thesis 

proposes for supporting resource-driven adaptation in software systems. SERIES is 

based on CTT and its graphical representation is also inspired by UML. 

The meta-model of SERIES was presented as a class diagram and its concepts were 

explained. The explanation differentiated between the concepts that were 

incorporated from CTT and those that were added by SERIES. Moreover, I have 

mapped the concepts from the SERIES meta-model to the adaptation components of 

the SPARK framework. Additionally, SERIES was demonstrated through an example 

task model that corresponds to an automated warehouse system. Furthermore, the 

supporting tool of SERIES was presented as screenshots and its features were 

explained. Moreover, the graphical representation of SERIES was explained and related 

to the example task model from the automated warehouse system. 
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6  

SPARK: A Framework for Resource-Driven 

Adaptation 

This chapter presents SPARK, which is a framework for supporting resource-driven 

adaptation. First, this chapter explains SPARK’s proactive and reactive adaptation 

components. Then, it presents an example from an automated warehouse system to 

demonstrate the calculations that are performed by SPARK’s adaptation components. 

Afterwards, this chapter gives an overview of a prototype implementation of these 

components. 

6.1 Introduction 

The SPARK framework executes resource-driven adaptation due to variations in 

resources used by software systems. SPARK realises the adaptation components 

introduced in Section 4.3, which is based on the MAPE-K control loop approach 

(Kephart and Chess, 2003). These components are defined, according to the MAPE-K, 

as monitors (M), analysers (A), planners (P), executors (E), and a knowledge (K) base. 

An example from an automated warehouse system is used in this chapter to explain 

the adaptation components. 

As explained in Section 3.2, existing resource-driven adaptation approaches target a 

limited number of resource types. SPARK supports tasks that use depletable and 

reusable resource types. Additionally, SPARK supports the generation of unique task 

priorities using multiple criteria including the task’s parameter values, the time of day 

when the task was initiated, the task’s resource intensiveness, the role of the user who 

initiated the task, and how critical the task is in its respective domain. Furthermore, 
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SPARK supports four types of adaptation, namely: (i) execution of other task variants 

that require fewer resources; (ii) substitution of resource types with alternative ones; 

(iii) execution of tasks in a different order based on their priorities; and (iv) 

cancellation of tasks when no other task variant or resource can be used. 

Figure 6.1 shows the classes that are used in SPARK for the prioritisation and 

logging of tasks in a software system. The grey parts in the class diagram represent the 

same classes that are used in the SERIES meta-model in Section 5.2. The explanation of 

the adaptation components in the next sections will reference Figure 6.1 in terms of 

the classes that are related to an adaptation component. Moreover, Figure 6.2 show 

these adaptation components, where each adaptation component is mapped to a 

MAPE-K component to illustrate the flow of the adaptation components’ execution. 

 

Figure 6.1 – Logging and prioritisation of tasks 
 (the grey parts represent the same classes used in the SERIES meta-model that was 

presented in Section 5.2) 
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Furthermore, the calculations performed by the adaptation components will be 

illustrated via an example of a warehouse for a retail store, which consists of tasks, 

namely “Pack Item in Container” (T1), “Receive Item to Warehouse” (T2), “Restock Item 

in Warehouse” (T3), “Sort Returned Items” (T4), and “Dispatch Item from Warehouse” 

(T5). In this example, robots pack the respective items in a container to prepare a 

customer order, receive items that are delivered to the warehouse, restock the items in 

the warehouse, sort returned items from customers, and dispatch items from the 

warehouse. This example comprises the abovementioned five tasks, a reusable 

resource type (robot), and a depletable resource type (container). 

 

Figure 6.2 – SPARK proactive and reactive adaptation components (based on MAPE-K) 

 

Task Execution Monitor M

Monitors the task executions in a software 
system and stores the monitored data in the 
knowledge base

Resource Type State Monitor M

Monitors the consumption of resource types 
and passes the monitored data to the 
 Resource Type State Analyser 

Resource Type State Analyser A

Checks if a resource type is facing variability 
and passes the state of a resource type to the 
 Task Execution Manager 

Task Execution Manager P

Decides whether a task should be executed or 
adaptation should be performed and invokes 
either the  Task Execution Allocator  or the 
 Adaptation Executor  accordingly

Feedback Provider E

Provides feedback to end-users about the 
performed adaptation

Feedback Elicitor E

Elicits feedback from end-users about the 
performed adaptation and stores it in the 
knowledge base

Adaptation Executor E

Performs adaptations and invokes the 
 Feedback Elicitor  and  Feedback Provider 

Task Execution Allocator P

Allocates the number of possible executions 
for each task and reduces this number when a 
task gets executed

Legend

Monitor component Analyse component Plan component Knowledge base

Read/Write data InvokeWrite data Read data

M A P KExecute componentE

Knowledge 
Base

K

Task Execution Forecaster A

Forecasts the number of task executions and 
passes it to the  Task Priority Calculator 

Task Execution Monitor M

Reads the monitored data from the 
knowledge base and passes it to the  Task 
Execution Forecaster 

Task Priority Adjuster P

Adjusts the priorities of the tasks to make 
them unique and passes the unique priorities 
to the  Adaptation Type Selector 

Adaptation Type Selector P

Computes the costs of applying the adaptation 
types to the tasks and selects the least costly 
adaptation type for each task

Task Priority Calculator P

Calculates the priorities of the tasks and passes 
these priorities to the  Task Priority Adjuster 

P
ro

a
ct

iv
e

 C
o

m
p

o
n

e
n

ts
R

ea
ct

iv
e

 C
o

m
p

o
n

e
n

ts



92 6.2 Proactive adaptation components 

 

6.2 Proactive adaptation components 

SPARK implements five proactive adaptation components that include a task 

execution monitor, task execution forecaster, task priority calculator, task priority 

adjuster, and adaptation type selector, which are illustrated in Figure 6.2 and explained 

in the following subsections. 

6.2.1 Task execution monitor 

SPARK monitors the execution of tasks in a software system via the task execution 

monitor component. The monitored data is logged in the knowledge base and is used 

as historical data for forecasting future executions of tasks. The classes shown under 

the “Usage Logs” package in Figure 6.1 are related to logging task executions. The class 

TaskExecutionLog represents who (Users) had used or attempted to initiate what task 

(or task variant) and during which TimeFrame. A user could attempt to initiate a task 

without being successful due to the lack of resources. This is indicated by the 

“Has xecuted” property. Nonetheless, the attempts are also logged to reflect what 

tasks the users find important during a timeframe. Both the number of task executions 

and the number of task execution attempts reflect the task’s priority from an end-user 

perspective. 

In order to prevent end-users from abusing their ability to impact the priority of a 

task through improper usage, SPARK avoids storing consecutive task execution 

attempts within milliseconds of each other. This is done by using throttling (Azure, 

2022), which reduces the trigger rate. Throttling is used in event-driven programming 

to ensure that a function is called at most once in a specified period (e.g., once every 2 

seconds). 

6.2.2 Task execution forecaster 

The data represented by the class TaskExecutionLog, shown in Figure 6.1, is used as 

historical data to forecast the number of task executions, which represents the number 

of times Users are expected to execute a Task (T) during a TimeFrame (TF). This is 

done via the task execution forecaster component. The forecasted task execution (FTE) 

represents a number of expected task executions based on a forecast from historical 

data. FTE is obtained using a regression algorithm from the ML.NET framework 



Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 93 

 

 

(2021), where FTE is the dependent variable and T and TF are the independent 

variables. The independent variables are used to forecast the value of the dependent 

variable. Regression analysis is used for analysing the relationship between variables 

for forecasting purposes. The type of regression analysis that is used in our case is 

multiple linear regression because there is one dependent variable (FTE) and multiple 

independent variables (T and TF). Moreover, FTE is used during the process of task 

prioritisation, which is discussed next. 

6.2.3 Task prioritisation 

Priorities play an important role to determine whether tasks are executed by 

directly gaining access to the resources or are executed after adaptation is performed. 

The priorities of tasks are calculated by the task priority calculator and the task priority 

adjuster components. The calculated priority value (Pv) is a real number between 1 and 

n as shown in Equation 6.1. Furthermore, each task’s Pv is then classified (i.e., C(Pv)) as 

high, medium, or low based on a threshold that provides an equivalent distribution for 

the priorities. The classification is based on the following ranges specified in Equation 

6.2: high-priority ∈ [1-2); medium-priority ∈ [2-3); low-priority ∈ [3-n]. 

6.2.3.1 Task priority calculator 

The task priority calculator computes initial priority values for tasks. The initial 

priority value for a task is based on two inputs that provide complementary 

perspectives: (i) domain priority and (ii) priority from the forecasted task execution. 

The domain priority (DP) reflects the importance of a task for a domain. Its value is 

obtained from someone who knows the domain like the system administrator. Tasks 

are assigned DPs as denoted by the class TaskPriorityAssignment, which is shown in 

Figure 6.1. The DP takes into consideration the following criteria: the timeframe of the 

task execution, the role of the user who is attempting to execute the task, and the task 

variants. Timeframes represent time intervals that are meaningful for a domain. 

For example, in a warehouse system, order preparation has a higher priority than 

sorting returned products during the daytime, when most of the orders are shipped. 

Roles characterise users and differ among software systems. For instance, roles can 

represent job titles such as warehouse clerk and manager in a warehouse system. Task 

priorities can differ according to roles because roles indicate that certain users are 
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more privileged, and a task can have a higher priority when it is initiated by someone 

with a more privileged role. For example, in a warehouse system, a shelf stock count 

task has a higher priority when it is initiated by a manager. 

The forecasted task execution (FTE) is calculated from the logged historical data 

(see Section 6.2.1). The forecasted task execution counter (FTEC) is then computed by 

sorting the FTE values in descending order, where the highest FTE value has an FTEC 

value that is equal to one. Moreover, SPARK uses thresholds to calculate priority values 

within the range specified in Equation 6.1. Here, a threshold (TH) value is calculated as 

described in Equation 6.3, whereby tasks with a lower FTEC have a higher priority. 

Furthermore, a threshold is applied to FTEC to ensure its value is within the priority 

range of 1 and 3 (mapping the priority levels of high, medium, and low). The result is a 

threshold forecasted task execution priority (TFTEP) as shown in Equation 6.4. The 

initial priority (PI) is then computed by multiplying each input (i.e., DP and TFTEP) by 

its corresponding weight as shown in Equation 6.5, where the sum of the weights is 

equal to one. 

𝑃𝑣 = { 𝑝 | 𝑝 ∈ ℝ ∧ 1 ≤ 𝑝 ≤ 𝑛 } 

Equation 6.1 – Priority value range 

𝐶(𝑃𝑣) = { 

𝐻𝑖𝑔ℎ      1 ≤ 𝑃𝑣 < 2
𝑀𝑒𝑑𝑖𝑢𝑚      2 ≤ 𝑃𝑣 < 3

𝐿𝑜𝑤      3 ≤ 𝑃𝑣 ≤ 𝑛
 

Equation 6.2 – Priority value classification 

𝑇𝐻 =
𝑚𝑖𝑛(𝐹𝑇𝐸𝐶) + 𝑚𝑎𝑥(𝐹𝑇𝐸𝐶)

𝑚𝑎𝑥(𝑃𝑣)
 

Equation 6.3 – Threshold calculation 

𝑇𝐹𝑇𝐸𝑃 = {
 1 𝐹𝑇𝐸𝐶 < 𝑇𝐻
 2      𝑇𝐻 ≤ 𝐹𝑇𝐸𝐶 ≤ 𝑇𝐻 × 2
 3 𝐹𝑇𝐸𝐶 > 𝑇𝐻 × 2

 

Equation 6.4 – Threshold forecasted task execution priority calculation 

𝑃𝐼 = (𝐷𝑃 × 𝑊𝐷𝑃) + (𝑇𝐹𝑇𝐸𝑃 × 𝑊𝑇𝐹𝑇𝐸𝑃) 

Equation 6.5 – Initial task priority calculation 
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Moreover, the TaskUsageLog data is combined with the PriorityAssignment to 

calculate the priorities during a TimeFrame. Each input has a weight that is indicated 

as part of the PriorityWeight class under “Priorities” in Figure 6.1. These weights can 

be the same for all tasks and can differ from one Task or TaskCategory to another. For 

example, the priority assignment could have a higher weight for some tasks that the 

management of an enterprise deems important (managerial view of priorities). In 

other cases, there could be a higher weight for task usage (user view of priorities). 

6.2.3.2 Task priority calculator: example 

Assume that all five tasks (T1 to T5) are monitored by SPARK via the task execution 

monitor component, and the task execution forecaster component forecasted the 

number of task executions (FTE) for each task as shown in Table 6.1. The forecasted 

task execution counter (FTEC) is then computed by sorting FTE in descending order 

and providing an incremental counter value for each task. The threshold (TH) value is 

computed by adding the minimum and maximum values of FTEC and then dividing by 

the maximum priority value. In this case, TH will be equal to 2, which is then used for 

computing TFTEP. Once TFTEP is computed, and the domain priority (DP) is specified, 

both inputs will be used to calculate the initial priority (PI) for each task. This is done 

by multiplying each input by its corresponding weight and then adding the results. The 

weights used in this example for the inputs are specified in Table 6.1. 

6.2.3.3 Task priority adjuster 

It is possible to have tasks that share the same resources with the same initial 

priority values (PI). The task priority adjuster component adjusts the PI of tasks to 

Table 6.1 – Initial priority calculation example 

Tasks DP FTE FTEC TH TFTEP PI 

T1 2 30 1 2 1 1.5 

T2 1 20 2 2 2 1.5 

T3 1 10 3 2 2 1.5 

T4 2 7 4 2 2 2.0 

T5 2 5 5 2 2 2.0 

*Assuming, for this example, the following priority weights: WDP = 0.5 and WTFTEP = 0.5 
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ensure that each task gets a unique priority value. Tasks with the same PI are grouped, 

and the cost function shown in Equation 6.6 is applied to deprioritise a task (CDT) and 

adjust the priorities of the tasks in each group. The cost function takes into 

consideration the following inputs: the cost of performing adaptation for the task, the 

sum of adjusted priorities from previous timeframes, the total number of dependent 

tasks, and the estimated duration of the task’s execution. Moreover, each input has a 

corresponding weight to specify its importance. These weights are illustrated under 

the package “Priorities” in Figure 6.1, where the class PriorityAdjustmentCostWeight 

represents the four weights used for the calculation of CDT. The abovementioned inputs 

of the cost function are explained next. 

 The first input is the result of a cost function that calculates the cost of adaptation. 

When a task cannot execute, due to the lack of resources, adaptation is performed 

using one of the supported adaptation types. The use of an adaptation type has a cost 

(to be discussed in Section 6.2.4). If an adaptation is needed, the type of adaptation 

that has the lowest cost is performed. When tasks have the same priority and the 

resources are not enough for all of them, it is possible to decide which one gets the 

resources based on how costly it would be to perform the adaptation for each of them. 

The second input involves summing up the task’s priorities in previous timeframes. 

This value will be larger for the task that had lower priorities and would increase the 

overall value of CDT. Hence, the advantage is given to the tasks that got fewer chances of 

being executed so far. 

𝐶𝐷𝑇 = 𝐶𝐴𝐷 × 𝑊𝐶𝐴𝐷
+ ∑ 𝑃𝐴 × 𝑊∑ 𝑃𝐴

+ |𝐷𝑇| × 𝑊|𝐷𝑇| + 𝐸𝐷 × 𝑊𝐸𝐷 

Equation 6.6 – Cost function for deprioritising a task 

𝜀0 =
𝑁𝑇𝐺𝑃𝐼

− 𝐶𝑇𝐺𝑃𝐼

|𝐶𝑇𝐺| + 1
, 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑁𝑇𝐺𝑃𝐼

) = 𝐶(𝐶𝑇𝐺𝑃𝐼
)  

Equation 6.7 – Initial epsilon value calculation 

𝑃𝐴 = 𝑃𝐼 + 𝜀𝑘, 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑃𝐴) = 𝐶(𝑃𝐼) 𝑎𝑛𝑑 𝜀𝑘 = {
𝜀0 𝑘 = 0

 𝜀𝑘−1 + 𝜀0 𝑘 > 0
 

Equation 6.8 – Priority adjustment calculation 
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The third input is the task’s number of dependent tasks. As explained in Section 

5.2.1, a task can enable its following task. For example, in the automated warehouse 

example, “locate items in the warehouse” enables “pack items in a box”, “pack items in 

a box” enables “decorate box”, and “decorate box” does not enable any following task 

(i.e., does not have dependents). The number of dependent tasks for “locate items in 

the warehouse”, “pack items in a box”, and “decorate box” is two, one, and zero. 

Therefore, tasks with a higher number of dependents are given a higher priority 

because without them other tasks would not get executed. 

The fourth input is the task’s estimated execution duration, which is obtained from 

the historical data by computing a task’s average execution duration from the 

TaskExecutionLog shown in Figure 6.1. The priority adjuster gives a higher priority to 

the tasks that require on average less time to complete. This way, more tasks can 

execute within a timeframe. 

Furthermore, that have the same PI are placed in a group and are sorted by the 

values of the cost function CDT. Each PI value for a task is incremented by an epsilon 

value εk, where k represents the task order (sequence number) in a group. An initial 

value of ε, represented as ε0, is computed based on Equation 6.7 to ensure that the 

values of the adjusted priorities are between the priority values of the tasks in the 

current group (𝐶𝑇𝐺𝑃𝐼
) and the priority values of tasks in the next group (𝑁𝑇𝐺𝑃𝐼

). It is 

important to note that the priority classification (high, medium, or low) of the tasks 

under 𝑁𝑇𝐺𝑃𝐼
 should be equal to the priority classification of the tasks under 𝐶𝑇𝐺𝑃𝐼

. 

Hence, the adjusted priority value (PA) and PI should have the same priority 

classification. For example, if 𝐶𝑇𝐺𝑃𝐼
 is equal to 1.5 and 𝑁𝑇𝐺𝑃𝐼

 is equal to 2.2, then both 

groups have different classifications. Therefore, 𝑁𝑇𝐺𝑃𝐼
 becomes 2.0 instead of 2.2, 

which allows the adjusted priority values for the tasks in CTG to remain in the same 

priority classification. Moreover, the first task in CTG (i.e., when k = 0) has an adjusted 

priority value PA equal PI + ε0 as shown in Equation 6.8. As for the rest of the tasks in 

the group (i.e., when k > 0), the value of εk is computed by adding the previous epsilon 

value (εk–1) with the initial epsilon value (ε0). The value of εk is then added with PI to 

compute a task’s PA, which is also shown in Equation 6.8. 

6.2.3.4 Task priority adjuster: example 

Based on the values in Table 6.1, three tasks have the same PI of 1.5 and two tasks 

with the same PI of 2.0. In this case, the cost function for deprioritising tasks (CDT) is 
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computed based on its four inputs (refer to Section 6.2.3.3). Assume that the four 

inputs have the values specified in Table 6.2. This table also shows the computed 

values for CDT. Moreover, two groups G1 and G2 are formed, where G1 has three tasks T1, 

T2, and T3 with PI equal to 1.5, and G2 has two tasks T4 and T5 with PI equal to 2.0. For 

each task in G1 and G2, the values of PA should be distinct and range between [1.5-2.0) 

and [2.0-3) respectively. Moreover, for the groups G1 and G2, ε will be equal to 0.125 

and 0.33 respectively. By sorting the tasks based on CDT, ε is then incremented by its 

value for each task in the group. This gives us the values found in Table 6.2. Therefore, 

the adjusted priority (PA) for each task is then computed by adding ε to the task’s PI. 

The PA of each task is shown in Table 6.2. 

6.2.4 Adaptation type selector 

After computing task priorities, the adaptation type selector component selects for 

each task the adaptation types that are viable when resources are facing variability. 

SPARK supports four adaptation types, which are explained next. 

6.2.4.1 Supported adaptation types 

A task is changed into a similar one by executing a task variant that takes alternative 

parameter values and consumes fewer resources. One example from an automated 

warehouse system involves using an alternative packing method for customer orders 

such as “Pack Randomly” and “Pack by Item Type” task variants for the “Pack Items in 

a  ox” task. Another example is related to variants of a “Verify Order” task, which 

checks whether the products packed in the box are the ones ordered by the customer. 

Table 6.2 – Adjusted priority calculation example 

Tasks CAD ∑ PA |DT| ED CDT ε PA 

T1 2 1.5 1 2 1.625 0.125 1.625 

T2 2 1.7 1 2 1.675 0.25 1.75 

T3 3 1.8 2 3 2.45 0.375 1.875 

T4 3 2.2 2 3 2.55 0.33 2.33 

T5 4 2.5 2 3 2.875 0.66 2.66 

*Assuming, for this example, the following values for the input weights: 𝑊𝐶𝐴𝐷
 = 0.25, 𝑊∑ 𝑃𝐴

 = 

0.25, 𝑊|𝐷𝑇| = 0.25, and 𝑊𝐸𝐷  = 0.25 
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One task variant performs the verification by scanning the products while the second 

one weighs the box and compares the result to the expected weight. The trade-off here 

is between accuracy and speed whereby scanning is generally more accurate whereas 

weighing the box is faster and has a satisfactory accuracy when the products are not 

very light. The faster variant is beneficial when many robots malfunction unexpectedly. 

Resources are substituted with alternative ones, so a task can be executed when the 

resources it requires are not available. For example, in an automated warehouse, a 

robot that needs repairs is substituted by another type of robot to avoid interrupting 

high-priority tasks. In a semi-automated warehouse, where humans collaborate with 

robots, a malfunctioning robot that was supposed to perform a high-priority task can 

be substituted by a human employee who is working on a low-priority task. 

Alternative task executions are considered when resources are not available by 

postponing the execution of low-priority tasks to another time until the required 

resources become available. For instance, the low-priority task of “sorting returned 

products” is postponed until more robots are available. This enables high-priority 

order preparation tasks to complete on time. Another example involves queuing robot 

repair tasks to be processed by order of their priority when a single robot repair bay is 

operational because the others are out-of-service due to machinery malfunctioning or 

technicians being sick. 

The execution of tasks can be cancelled when no other adaptation type is applicable. 

An example is cancelling the transmission of optional log data from a robot to a server 

to conserve battery power. Another example is cancelling a task that involves using 

optional decorative items like stickers to decorate a box of products that were ordered 

by non-VIP customers. This task is cancelled in situations where there is a low stock of 

decorative items due to an unexpected delay in the supply chain. Therefore, the 

addition of these optional items would only be done for the orders of VIP customers. 

Moreover, the abovementioned adaptation types consider the computed priorities 

for the tasks. For example, the resources of a task are not substituted with alternatives 

that are needed by higher-priority tasks. Additionally, when alternative tasks are 

executed the delayed task is executed at a time when resources are available, and it is 

important enough to execute. 
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6.2.4.2 Adaptation type selection 

First, the applicability of the adaptation types to a task is checked. Hence, if a task is 

“followed-by-interaction” (refer to Section 5.2.2.2) it is not possible to adapt by 

delaying the task because the users need the result immediately to perform additional 

interaction with the software system. On the other hand, this is possible for “fire-and-

forget” tasks. Additionally, if a task does not have variants (refer to Section 5.2.4) then 

it is not possible to adapt by executing a task variant that consumes fewer resources. 

Furthermore, if a task’s required resource is set to “strict” (refer to Section 5.2.2.4) 

then it is not possible to adapt by substituting this resource with another one. 

Then, one of the applicable adaptation types is selected for a task based on a cost, 

which is calculated using a cost function that takes four inputs. Each input is 

represented via a rating value that is on a scale of 1 to 5 as shown in Equation 6.9. The 

cost function for selecting an adaptation type is shown in Equation 6.10. In this cost 

function, the inputs for the cost of adaptation (CAD) represent sub-costs related to 

changing when a task is executed (CWTE), sacrificing functionality (SF), sacrificing 

quality (SQ), and financing a task’s execution (FET). These inputs are explained in the 

following subsections. 

6.2.4.3 Changing when a task is executed (CWTE) 

CWTE represents the effect of changing when a task is executed. For example, the 

cost of delaying the generation of a financial report. The cost of CWTE is determined 

from both initial configurations and data that is collected from end users. The initial 

configurations are done by assigning a cost value on a five-point scale based on 

Equation 6.9 (a system administrator does this assignment). Moreover, end-users can 

𝐼𝑛𝑝𝑢𝑡 = { 𝑣 | 𝑣 ∈ ℝ ∧ 1 ≤ 𝑣 ≤ 5 } 

Equation 6.9 – Input value range 

𝐶𝐴𝐷 = 𝐶𝑊𝑇𝐸 +
1

𝑛
∑ 𝑆𝐹𝑖

𝑛

𝑖=1

+
1

𝑛
∑ 𝑆𝑄𝑖

𝑛

𝑖=1

+
1

𝑛
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𝑛
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Equation 6.10 – Cost function for adaptation 
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provide their feedback to express to what extent the task’s delayed execution has 

affected them. 

6.2.4.4 Sacrificing functionality (SF) 

SF means that some functionality is not available during the execution of a task. A 

piece of functionality represents the ability to execute a task in a specific way (e.g., by 

disabling options or passing values to the task’s parameters). Functionality can be 

sacrificed by cancelling the execution of a task or by substituting a task with a similar 

one. The total cost of the sacrificed functionalities (SF) is defined as the sum of the 

costs of all the sacrificed functionalities (if any). Examples of software functionality 

that could be sacrificed include product recommendations in an online retail system 

and automated product identification via computer vision by robots that are preparing 

parcels for delivery (used to double-check the packed products). 

 The cost of sacrificing functionality is determined through end-users feedback, 

whereby end-users are asked to rate to what extent they were negatively affected 

when part of the functionality was sacrificed due to limited resources. End-users 

provide ratings on a five-point scale (Equation 6.9). 

6.2.4.5 Sacrificing quality (SQ) 

SQ means quality is reduced during the execution of a task. Multiple types of 

qualities could be sacrificed by performing an adaptation. The total cost of the 

sacrificed qualities (SQ) is defined as the sum of the costs of all the sacrificed qualities 

(if any). Examples of software-related qualities that could be sacrificed include the 

amount of data a user is allowed to view and the resolution of an image or video. 

Furthermore, some qualities that are not software related could also be affected in 

particular domains. For example, in food manufacturing, performing an adaptation like 

resource substitution could reduce the nutritional value (amount of nutrients) of a 

food product or the quality of its packaging. 

In the cases where sacrificed quality was due to sacrificed functionality (refer to 

Section 6.2.4.4), the cost shall be added to both the cost of SF and SQ. For example, 

packing items randomly in a box rather than by type means that functionality is 

sacrificed and the quality of the item’s layout in the box is also negatively affected. 
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The costs of sacrificing qualities are computed as a weighted average from both 

setup data (initial configurations) and data that is collected through end-user feedback. 

The setup data involves assigning a cost value on a five-point scale (Equation 6.9) to 

each type of quality. Consider the packaging of a product, where the safest packaging 

has no cost (scale value = 1) because there is no reduction in quality. The cost of 

sacrificing quality increases when the safety of the packaging is reduced. Hence, the 

two values are inversely proportional. Moreover, end-users can express to what extent 

the sacrifice in quality affected them. For example, if they deemed the packaging of a 

product to be acceptable they could give it a rating of 1 or 2, otherwise, they would 

give it a higher rating value to indicate that the cost was high. 

6.2.4.6 Financing a task’s execution (FET) 

FET is a monetary value converted to a rating scale and represents the financial cost 

of performing an adaptation type. For example, the substitution of a malfunctioning 

cheap robot for an expensive one adds extra financial costs for an automated 

warehouse. The reason is that all robots will have to be replaced at some point and it 

costs more to replace the expensive robot. The cost of financing a task’s execution is 

determined from setup data. The configuration is set for each task as a monetary value, 

which is then converted to a rating on a scale ranging from 1 to 5 (Equation 6.9). The 

conversion is applied based on min-max normalisation (Grus, 2015), where the set of 

values [a, b] represents the scale range between 1 and 5, and [min, max] represents the 

minimum and maximum financial values of the tasks respectively. 

Table 6.3 – Cost of adaptation calculation example 

 Cost Function Input Values  

Type of Adaptation CWTE SF SQ FET Total 

CExecute similar task (task variant) 0 1 2 1 5 

CPerform resource substitution 0 2 2 1 6 

CExecute alternative task (delay task) 2 0 0 5 7 

CCancel task execution 3 2 2 3 10 

Minimum Cost 5 

Selected Adaptation Type: Execute similar task (task variant) 
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6.2.5 Adaptation type selector: example 

After the prioritisation of tasks, the adaptation type selector component selects the 

least costly adaptation type that can be applied to a task in case an adaptation is 

required to execute a task. As mentioned in Section 6.2.4, SPARK supports four types of 

adaptation. The cost of applying each type of adaptation is computed using the cost 

function shown in Equation 6.10. Moreover, the cost function relies on four inputs, 

which are elicited either from a system administrator, end-users, or both. 

Consider the input values in Table 6.3, where the cost function for each type of 

adaptation is computed for a task based on the values of the four inputs. Among the 

four types of adaptation, the first type (i.e., executing a similar task) is the least costly 

one for the task in this example. This means in case the task needs to be adapted, then 

a similar task (task variant) will be executed. The cost function values are stored in the 

knowledge base as part of the adaptation plan. 

6.3 Reactive adaptation components 

In addition to the proactive adaptation components explained in Section 6.2, SPARK 

also consists of reactive adaptation components. These components, which are 

illustrated in Figure 6.2, include a resource type state monitor, resource type state 

analyser, task execution manager, task execution allocator, adaptation executor, 

feedback elicitor, and feedback provider. The following subsections explain each 

reactive adaptation component used in SPARK. 

6.3.1 Resource type state monitor 

Resources are monitored by the resource type state monitor component, which 

observes the use of resources by tasks. Information related to resource consumption is 

used by SPARK to identify if there are sufficient resources for the tasks to execute or to 

perform adaptation when resources are unavailable or have reached a low quantity. 

The historical usage of resource types is illustrated under “Usage Logs” in Figure 6.1 as 

a class related to logging resource type usage. The ResourceTypeUsageLog shows which 

task used a resource type, as well as the total usage of the resource type. Moreover, it 

uses different measurements to monitor depletable and reusable resource types due to 

the differences between them. 
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SPARK monitors depletable resources based on their quantity of hand (QOH), 

critical stock level (CSL), replenishment delay (RD) and critical replenishment delay 

(CRD). When a resource reaches its critical stock level, an order is placed to acquire 

new resources from a supplier. A critical stock level is calculated taking into 

consideration a maximum consumption of a resource and its delivery lead time, as well 

as replenishment and critical replenishment delays. The critical replenishment delay is 

used to determine when the adaptation process should start so that there are still 

enough resources to be used for executing high-priority tasks. 

Additionally, SPARK monitors reusable resource types based on the average 

execution duration (AED) of tasks that consume these resources. In order to reduce the 

overhead of monitoring reusable resources, SPARK monitors a sample of the most 

frequently executed high-priority tasks that use all resource types, rather than 

monitoring every task in the system. The average execution duration of a task is 

measured by the average between the sum of the execution duration of the task and 

the number of times the task is executed. 

Moreover, other ways have been considered for monitoring reusable resource types 

based on (i) resource usage conditions (e.g., robot usage > 90%), (ii) percentage of 

malfunctioning resources (e.g., 30% of robots are malfunctioning), or (iii) task 

response time. For (i), resources should not remain idle while tasks are waiting to be 

executed. For (ii), the remaining functioning resources could be enough to execute the 

tasks. For (iii), acceptable response time differs among tasks; for example, the 

acceptable response time of an automated order preparation task is different than that 

of a task that involves searching for a product in a database. Hence, AED was used as 

explained above. 

6.3.2 Resource type state analyser 

The resource type state analyser component identifies whether a resource type is 

facing variability based on notifications from the resource type state monitor (refer to 

Section 6.3.1). A depletable resource type faces variability when its quantity on hand 

(QOH) is below its critical stock level (CSL) and its replenishment delay (RD) is higher 

than its critical replenishment delay (CRD). A reusable resource type is facing 

variability when its use by a task causes an increase in the average execution duration 

(AED) of this task. Moreover, the resource type state analyser informs the task executor 

manager component about resource types that are facing variability. 
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6.3.3 Task execution manager 

Tasks are executed with the support of the task execution manager and task 

execution allocator components. The resource type state analyser informs the task 

executor manager about resource types that are facing variability. The task execution 

manager decides whether to execute a task or to invoke an adaptation. The task 

execution manager also informs the task execution allocator about changes to the states 

of the resource types to allocate a number of execution permissions to a task. 

 

Figure 6.3 – Activity diagram of the decision-logic for task execution 

 

U
se
r

So
ft
w
ar
e 
Sy
st
em

T
as
k
  
xe
cu
ti
o
n
 M
an
ag
er

A
d
ap
ta
ti
o
n
  
xe
cu
to
r

Re  est 
 ask

Exec tion

P
ri
v
il
eg
ed
 U
se
r

Re  est 
 ask

Exec tion

 askId

  lse 

 Tasks use resource 
types in a critical state 

Exec te 
 ask

 Task only uses Reusable 
Resource Types facing variability 

Exec te 
 ask

  lse 

Invoke 
 daptation

 Priority   Low or 
Priority   Medium 

Perform 
 daptation

 askId

T
as
k
  
xe
cu
ti
o
n
 A
ll
o
ca
to
r

A
d
ap
ta
ti
o
n
  
xe
cu
to
r

 Task use Depletable Resource Types facing variability 
(regardless of whether it uses Reusable Resource Types) 

 vai ab e Exec tions

 heck for  vai ab e 
Exec tions

Exec te 
 ask

Red ce 
   ocated

Exec tions
for  ask

 Available  xecutions   0 

 askId

Perform 
 daptation

Invoke 
 daptation

 Available  xecutions   0 

The  Invoke Adaptation  action and the  Adaptation  xecutor  swimlane 
(coloured in grey) are repeated merely to avoid overlapping lines.

 M1 or M2 Applies 

 heck  ask Priorit  
and Permission Option

 M3 Applies 

Priorit 

Re  est Permission

 Priority    High    
Request Permission   false 

 Priority   High 

 ecide on 
Permission

 et 
Permission

 Priority    High    
Request Permission   true 

Exec te 
 ask

Report 
 ecision

Prompt for 
 ecision

 Permit   false 

 Permit   true 



106 6.3 Reactive adaptation components 

 
Additionally, Figure 6.3 shows the activity diagram for the decision-making process 

of the task execution manager. As shown in the diagram, in case a task needs reusable 

resource types which are facing variability, the decision of whether to execute the task 

or perform an adaptation type depends on the task’s priority. If the task has a low or a 

medium priority and the resource type is facing variability, then adaptation is 

performed. Otherwise, the task is executed directly. 

Moreover, in case a task uses depletable resources which are facing variability, the 

decision of whether to execute the task or to perform an adaptation depends on the 

task’s consumption of the depletable resources (regardless of whether the task also 

uses reusable resource types). There are two types of resource consumption fixed and 

variable. For example, the task “Decorate  ox” uses one decorative bow and is an 

example of a task with fixed resource consumption. On the other hand, the number of 

boxes (resources) consumed by the task “Pack Items in a  ox” depends on the 

dimensions of the items being packed and is an example of a task with variable 

resource consumption. 

In case a task has a fixed consumption of depletable resources, the task execution 

manager executes the task as requested if the number of executions that were 

allocated to it by the task execution allocator is greater than zero. Otherwise, the task 

execution manager invokes an adaptation by calling the Adaptation Executor. In case a 

task has a variable resource consumption, the task execution manager executes the 

task if it has a high priority. If the task has a low or medium priority, the task execution 

manager checks the setup data to see if the task’s execution requires the permission of 

a user. If it does not require permission, then adaptation is performed. Otherwise, 

permission is requested, and the task is executed if permission is given otherwise 

adaptation is performed. 

Moreover, adaptations are performed by the adaptation executor component, using 

the appropriate types of adaptation as determined by the adaptation type selector and 

specified in the adaptation plans during the proactive process. 

6.3.4 Task execution allocator 

The task execution allocator specifies the number of times in which tasks that use 

depletable resource types can be executed, based on a task’s forecasted number of task 

executions and the available resources. The allocation of task executions is based on 
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three methods: M1, M2, and M3. Methods M1 and M2 are applied to tasks that use, per 

execution, fixed quantities of depletable resources. Method M3 is applied to tasks that 

use, per execution, variable quantities of depletable resources, where these quantities 

cannot be determined beforehand. 

M1 allocates as many as possible of the number of forecasted task executions by 

order of task priority until the resources cannot support further task executions. This 

is done by determining for each task (from highest to lowest priority) the depletable 

resources needed. M1 stops executing when no depletable resources are left to allocate 

task executions. The steps of M1 are presented in Figure 6.4. 

M2 allocates a percentage of the number of forecasted task executions by order of 

task priority until the resource cannot support further allocations. This is done by 

assigning to each task (from highest to lowest priority) a counter C (between 1 and n) 

and a percentage of forecasted executions to be allocated (PFEA). Additionally, a 

number of allocated task executions (NATE) is computed for the high-priority tasks 

first and, if possible, the remaining non-high-priority tasks. The steps of M2 and the 

equations for calculating PFEA and NATE are presented in Figure 6.5. 

M3 only executes high-priority tasks on a first-come-first-serve basis. Hence, with 

M1 and M2, in case of available resources, tasks with medium or low priorities may be 

allocated resources and executed; while with M3, only high-priority tasks are executed 

given that resources required by a task cannot be determined beforehand. In M3, tasks 

that do not have a high priority could be executed if permission is given by a user. 

Method M1: 

1. Let {T} be the set of all tasks 

2. Order {T} by task priority (highest first) 

3. Loop around the tasks in {T} from highest to lowest priority 

4. Determine the depletable resources used by each task 

5. Allocate to each task as many of its forecasted number of executions (NATE) 
as the available resources it requires can support 

6. Reduce the available resource quantities 

7. If there are no resources left to allocate additional task executions, then 
break the loop else continue 

Figure 6.4 – Method M1 steps 
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The decision to apply method M1 or method M2 for tasks that use fixed depletable 

resources is done by system administrators for the entire system, based on their 

domain knowledge of the system. M2 is more adequate for situations in which it is 

preferable to spread the execution of tasks with high priorities. For example, in the 

case in which high-priority tasks are financially critical and it is important to ensure 

that a percentage of all these tasks are executed such as spreading the purchase of 

shares in top companies. On the other hand, M1 is more useful for situations in which 

tasks should be allocated based purely on their priority, even if fewer tasks are 

executed. For example, when tasks involve medical operations that are more life-

threatening than others. 

Method M2: 

1. Let {T} be the set of all tasks  

2. Order {T} by task priority (highest first) 

3. Loop around the tasks in {T} from highest to lowest priority 

4. Assign to each task a number C that represents a counter from 1 to n, where 
n1 = 1, n2   2, …, nk = k. 

5. Loop around the tasks in {T} from highest to lowest priority 

6. Assign to each task T a number that represents the percentage of forecasted 
executions to be allocated (PFEA), which is calculated as follows where |T| is 
the total number of tasks: 

𝑃𝐹𝐸𝐴𝑇 = 1 −
𝐶𝑇

|𝑇|
, 𝑤ℎ𝑒𝑟𝑒 

𝐶𝑇

|𝑇|
∈ (0,1] 

7. Let {ST} ⊂ {T}, where Priority(T) = High 

8. Loop around the tasks in {ST} highest to lowest priority  

9. Allocate to each task T a number of executions (NATE), which is calculated as 
follows (decimal values are rounded), where FTE is the forecasted task 
executions: 

𝑁𝐴𝑇𝐸𝑇 = ⌈𝑃𝐹𝐸𝐴𝑇 × 𝐹𝑇𝐸𝑇⌉ 

10. Repeat the loop at Line 8 from the beginning while there are sufficient 
resources left to allocate task executions 

11. If there are resources left to allocate tasks executions, then Let {ST} ⊂ {T}, 
where Priority(T) ≠ High 

12. Repeat Lines 8 to 10 (allocate executions to the medium and low priority 
tasks based on the remaining resources) 

Figure 6.5 – Method M2 steps 
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6.3.5 Task execution allocator: example 

This section shows an example of how the task execution allocator works. This 

example illustrates how the computations corresponding to methods M1 and M2 are 

performed to obtain the number of executions that shall be allocated to a task. Based 

on the activity diagram shown in Figure 6.3, when a depletable resource type is facing 

variability, the task execution manager component checks which method (i.e., M1, M2, 

or M3) is used by the task execution allocator component. If M1 or M2 is selected, then 

a set of steps, shown in Figure 6.4 and Figure 6.5 for M1 and M2 respectively, are 

applied to calculate the number of allocated task executions (NATE).  

To show the difference between methods M1 and M2, consider the data shown in 

Table 6.4. In this example, tasks T1 to T5 use a depletable resource type with an 

available quantity of 60 units. For simplicity, assume that each task uses one unit of the 

depletable resource type per execution. Each task has a forecasted number of 

executions (FTE). Tasks are sorted in ascending order based on their adjusted 

priorities (PA). M1 specifies NATE based on FTE and the available units of a depletable 

resource type. M2 specifies a counter and computes PFEA for each task. Multiple 

iterations are applied for allocating the number of task executions based on FTE and 

the available depletable resource type units. NATE is then computed by summing up 

for each task the values in each iteration. As shown in Table 6.4, for M1, tasks T4 and 

T5 were not executed, while task T4 was allocated some executions for M2. 

Table 6.4 – Example data showing how M1 and M2 calculate NATE 

 M1 M2 

Task Priority FTE NATE Counter PFEA 
Iterations 

NATE 
#1 #2 

T1 1.625 30 30 1 80% 24 6 30 

T2 1.75 20 20 2 60% 12 8 20 

T3 1.875 10 10 3 40% 4 4 8 

T4 2.33 7 0 4 20% 1 1 2 

T5 2.66 5 0 5 0% 0 0 0 

*Assuming, for this example, that all tasks use, per execution, 1 unit of depletable resource type of 

which there are 60 units available 
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6.3.6 Feedback elicitor and provider 

SPARK’s feedback elicitor and feedback provider components elicit and provide 

feedback, respectively, from and to users about the performed adaptations. The 

feedback elicited from end-users indicates their opinions about the actions taken by 

the framework and it is used to improve the adaptation process in terms of choice of 

the types of adaptation for similar future situations. This improvement is done by the 

adaptation type selector component, which uses the feedback to recompute the cost of 

applying a type of adaptation.  

 

Figure 6.6 – Plan creation 
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Moreover, feedback provided to end-users informs them about the reasons for 

adaptation. This keeps the users in the loop of what is happening to avoid situations 

where the software system performs changes that the end users do not understand 

(e.g., the reduction in video quality should not be perceived by the end users as a 

problem with the system when it is done to address resource variability). 

6.4 Implementation of adaptation components 

The adaptation components of SPARK were implemented as a prototype using C#. 

This section provides an overview of SPARK’s implementation and presents example 

class diagrams and source code. 

 

Figure 6.7 – Task priority calculation overview 
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The class PlanCreator shown in Figure 6.6 is responsible for preparing adaptation 

plans that are followed to perform adaptation during resource variability. When 

Listing 6.1 – Priority calculation source code (excerpt) 

1.          CalculateTaskPrioritiesUsingPriorityAssignments(tasks, timeFrame) 

2.          { 

3. POL O(n)    var priorityAssignments  PriorityAssignmentLoader. 

4. .   .        GetTaskPriorityAssignments(timeFrame); 

5. POL O(n)    return priorityAssignments.Select(p => 

6. .   .        new TaskTimeFramePriority { 

7. .   .            Task = p.Task, 

8. .   .            TimeFrame = timeFrame, 

9. .   .              Priority = p.Priority }).ToList(); 

10.          } 

11.  

12.          CalculateTaskPrioritiesUsingPredictedUsage(tasks, timeFrame) 

13.          { 

14. POL O(n)    predictedTaskUsagesCount  PredictedTaskUsageCountLoader. 

15. .   .        LoadPredictedTaskUsageCount(tasks, timeFrame); 

16. CON O(1)    var counter  0, lastUsage  -1; 

17. POL O(n)    foreach (var usageCount in predictedTaskUsagesCount) 

18. .   .       { 

19. .   .           if (usageCount.Usage != lastUsage)  

20.                     counter++; 

21. .   .           usageCount.SequenceNumber  counter; 

22. .   .       } 

23. CON O(1)    var minSequenceNumber  1, numberOfPriorities  3; 

24. CON O(1)    var maxSequenceNumber  counter; 

25. CON O(1)    var threshold  (minSequenceNumber + 

26.                               maxSequenceNumber) / numberOfPriorities; 

27. CON O(1)    List<TaskTimeFramePriority> calculatedTaskPriorities  new(); 

28. POL O(n)    foreach (var _ in predictedTaskUsagesCount) 

29. .   .       { 

30. CON O(1)        TaskTimeFramePriority taskPriority = new() { 

31. .   .            Task = _.Task, 

32. .   .              TimeFrame = timeFrame, 

33. .   .              PredictedUsage = _.Usage }; 

34.  

35. CON O(1)        if (_.SequenceNumber < threshold) 

36. .   .               taskPriority.Priority  Priority.High; 

37. CON O(1)        else if (_.SequenceNumber > threshold * 2) 

38. .   .               taskPriority.Priority  Priority.Low; 

39. CON O(1)        else 

40. .   .               taskPriority.Priority  Priority.Medium; 

41.  

42. CON O(1)        calculatedTaskPriorities.Add(taskPriority); 

43.              } 

44. CON O(1)     return calculatedTaskPriorities; 

45.            } 
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SPARK creates an adaptation plan it stores it in the knowledge base (refer to Section 

6.1), which is implemented as a SQL Server database. 

Figure 6.6 shows five interfaces that represent the dependencies of PlanCreator. 

The interfaces ITaskLoader, IResourceTypeLoader, and ITimeFrameLoader are 

implemented by classes that retrieve tasks, resource types, and time frames 

respectively to be used as input data for the preparation of an adaptation plan. The 

tasks are assigned priorities for each time frame during the planning and the resource 

types are associated with the tasks to plan the choices of adaptation types (e.g., 

resource substitution). 

As shown in Figure 6.7, the interface ITaskPriorityCalculator is implemented by the 

class TaskPriorityCalculator, which is responsible for computing the priorities of tasks 

(refer to Section 6.2.3.2). Figure 6.7 also shows four interfaces that are the dependencies 

of the TaskPriorityCalculator. The interfaces ITaskPriorityFromAssignmentCalculator 

and ITaskPriorityFromUsageCalculator are implemented by classes that are 

responsible for computing priorities based on domain priorities and task usage 

respectively. The ITaskWeightedPriorityCalculator interface is implemented by a class 

that computes a weighted priority by combining the abovementioned domain and task 

usage priorities (refer to Section 6.2.3.2). The ITaskEqualPriorityAdjuster is 

implemented by a class that adjusts equal priorities to provide each task with a unique 

priority (refer to Section 6.2.3.4). 

An excerpt of the priority calculation algorithm is shown in Listing 6.1. The first 

method calculates the priorities of the tasks using their assigned domain priorities 

(refer to Section 6.2.3.2). The second method calculates the priorities of the tasks 

based on the forecasted task executions. Thresholding is applied to the priorities in the 

second method to set the priority values within the required range.  

Listing 6.1 also shows the running times using the “ ig O” notation (Cormen et al., 

2009), where POL and CON denote polynomial and constant running times 

respectively.  ased on the “ ig O” notation, the running times are O(2N) and O(3N) for 

the first and second methods respectively. This means that the overall priority 

calculation has a polynomial running time equal to O(N). 

The rest of SPARK’s algorithms also have polynomial running times. This is not just 

shown only shown by the “ ig O” notation but also by a performance and scalability 

evaluation that is reported later in this thesis. 
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6.5 Chapter summary 

This chapter presented a framework called SPARK, which this thesis proposes for 

supporting resource-driven adaptation to address resource variability. SPARK is based 

on MAPE-K and consists of proactive and reactive adaptation components. SPARK uses 

task models, represented using SERIES, as input for making adaptation decisions. 

This chapter started by introducing the proactive adaptation components that 

include the task execution monitor, task execution forecaster, task priority calculator, 

task priority adjuster, and adaptation type selector. Afterwards, it introduced the 

reactive adaptation components that include the resource type state monitor, resource 

type state analyser, task execution manager, task execution allocator, adaptation 

executor, feedback elicitor, and feedback provider.  

Then, this chapter demonstrates SPARK’s adaptation components through an 

example from an automated warehouse system. The example showed how these 

components perform their calculations. Finally, this chapter explained the prototype 

implementation of SPARK’s adaptation components by showing example class 

diagrams and an excerpt of source code related to the calculation of task priorities. 
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7  

Task Modelling Notation Evaluation 

(SERIES) 

This chapter presents the evaluation of SERIES, which is the task modelling notation 

proposed in this thesis for supporting resource-driven adaptation. Figure 7.1 presents 

an overview of this evaluation. SERIES was assessed based on existing recommendations 

for designing graphical notations. Additionally, I evaluated SERIES through a study with 

software practitioners. 

7.1 Introduction 

As indicated by (Moody, 2009), graphical notations are composed of syntax (form) 

and semantics (content). Hence, a meta-model represents semantic constructs that are 

visualised by graphical symbols. Section 5.2 presents the meta-model and graphical 

symbols of S RI S.  ased on Moody’s explanation, an example of a semantic construct 

in S RI S is a “Task Variant”. The graphical symbol that represents this semantic 

construct is a box with its corresponding icon. 

SERIES represents task models graphically like most existing task modelling 

notations such as CTT, HAMSTERS, UsiXML, and Amboss (refer to Table 3.2). Graphical 

representations favour legibility and understanding of models (Chattratichart and 

Kuljis, 2002). Task modelling notations propose hierarchical task decomposition, 

which is graphically visualised in a way that is easier to interpret by software 

practitioners. The concept of hierarchical representation is rooted in psychology 

(Sebillotte, 1988) and presents task models in the way that people structure their 

activities and enables the creation of several levels of abstraction and refinement. 
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Hence, in SERIES, software practitioners do not have to read dense text to understand 

how abstract tasks are decomposed into subtasks and how these subtasks are refined 

into task variants. 

I assessed SERIES based on existing recommendations for designing the syntax of 

graphical notations, which are provided by the Cognitive-Dimensions Framework 

(Green and Petre, 1996) and the Physics of Notations (Moody, 2009). Additionally, I 

evaluated SERIES through a study with software practitioners. The participants of this 

study explained and created SERIES task models and then provided feedback on the 

usability of SERIES and the clarity of its semantic constructs. 

7.2 Assessment of SERIES using existing recommendations 

As mentioned in Section 5.5, the visual representation of SERIES is inspired by CTT 

and UML class diagrams. However, since SERIES introduces new constructs and visual 

syntax it was assessed based on the recommendations of two paradigms, namely the 

Cognitive Dimensions Framework and the Physics of Notations. These two paradigms 

are widely used for assessing visual notations (Genon, Heymans and Amyot, 2011), 

and are used to assess SERIES because they provide principles that serve as a starting 

point for evaluating visual notations. 

 

Figure 7.1 – Overview of the evaluation of SERIES 

The evaluation presented in this chapter covers the proposed task modelling notation 
for supporting resource-driven adaptation (SERIES) and has the following two parts.

An assessment of SERIES using existing recommendations provided by the 
Cognitive Dimensions Framework and Physics of Notations

Evaluation of SERIES

A study with software practitioners to evaluate 
the usability of SERIES and the clarity of its semantic constructs
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7.2.1 Cognitive Dimensions Framework 

The Cognitive Dimensions Framework proposes dimensions that serve as 

discussion tools for assessing notations (Green and Petre, 1996). What follows is an 

assessment of SERIES based on these dimensions (their names are marked in bold). 

SERIES represents tasks consistently using boxes with multiple parts, which are 

based on the syntax of UML classes. These box parts represent properties that support 

resource-driven adaptation. The representation of relationships is also consistent. For 

example, the relationship between a task and its variants is represented by a line with 

a white triangle on top. This is inspired by the generalisation relationship in UML. 

Furthermore, the used terms have a consistent meaning throughout a task model. For 

example, “priorities” and “resource types” have the same meaning when used with 

different tasks and task variants. 

SERIES is abstraction-tolerant since it supports the representation of task models 

using predefined visual elements of tasks, properties, and relationships. It is not 

possible to add new visual elements. However, new abstractions are defined in the 

form of parent tasks that comprise default property values, which do not need to be 

specified for the child tasks. 

A premature commitment is not needed since a SERIES task model may comprise 

part of the tasks and property values at design time. Task variants and properties, like 

roles and priorities, are set at runtime when their corresponding data is available. 

Furthermore, a SERIES task model is arranged hierarchically to avoid “visual spaghetti” 

that could occur with some box-and-line notations. Even when new tasks are added at 

a later stage, the model is automatically rearranged without needing to look ahead to 

avoid a messy layout. 

Concerning diffuseness, each meaning of a task or property in SERIES is denoted by 

one box part that has an icon and a description that makes it easy to remember. The 

ability to add default property values at the parent task level reduces the number of 

properties in the boxes. This improves the overall visibility of the task model and makes 

the visual notation terse (compact) enough to represent multiple tasks on the screen. 

Furthermore, it is possible to suppress a group of task properties by hiding its box parts 

as is done with UML class diagrams. Hence, the notation supports multiple levels of 

terseness that are changeable according to how much detail a person wants to see. 
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SERIES does not have complex conditionals that create hard mental operations. 

Parameter conditions are defined as simple textual statements such as “PackMode   

Random”. Hence, these conditions do not use complex line connections that cause 

software practitioners to resort to tracking what is happening with their fingers. 

There are no hidden dependencies between the elements of a SERIES task model. 

The dependencies between tasks are shown as relationships. For example, task 

variants are linked to their base task using relationships that resemble UML 

generalisation to indicate that the variants are special cases of a general case. 

Furthermore, properties like parameter conditions and priorities are shown on the 

model without hidden formulas (e.g., like the ones in spreadsheets). 

Concerning role-expressiveness, a task’s name indicates its purpose. It is also 

possible to add a description that further explains a task’s purpose. This description is 

a secondary notation and is viewed by clicking on an information icon, which appears 

on tasks that have a description. 

SERIES has a low viscosity since little effort is needed to change tasks and properties 

using the supporting tool’s panels that include task model explorer, visual canvas, and 

properties box. The users can select a task by simply clicking on its representation in the 

task model explorer or on the visual canvas. Then, the corresponding properties can be 

modified by typing or selecting new values in the properties box. 

7.2.2 Physics of Notations 

The Physics of Notations is a theory that offers principles for visual notation design 

(Moody, 2009). What follows is an assessment of SERIES based on these principles 

(their names are marked in bold). 

SERIES provides semiotic clarity since it has a one-to-one correspondence between 

each symbol and the concept that it represents. Hence, there is no redundancy because 

no concept is represented by more than one symbol and there is no overload because no 

symbol represents more than one concept. In SERIES, a different icon is used for each 

property (e.g., priorities, roles, parameters, and parameter conditions). Furthermore, 

icons distinguish the boxes that represent abstract tasks, application tasks, and 

application task variants. The use of icons to differentiate task types is common practice 

in other task modelling notations like CTT and HAMSTERS. 
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SERIES provides semantic transparency because its task model nodes are 

represented hierarchically and connected by lines that look different, thereby allowing 

users to infer the relationships between tasks, subtasks, and task variants. 

The principle of complexity management is maintained in SERIES by representing 

tasks hierarchically with the abstraction (abstract tasks) shown at the top of the 

hierarchy and decomposition (subtasks and task variants) shown at the lower levels. A 

task model is browsable hierarchically in the supporting tool either on the visual 

canvas or on the task model explorer where nodes are collapsible. The hierarchical 

display also helps with perceptual discriminability since each level of the hierarchy 

displays task model elements that belong to the same category. The categories include 

abstract tasks, subtasks, and task variants. 

SERIES applies the principle of dual coding using text to complement graphics. All 

the properties in SERIES have an icon and a textual description. For example, the 

property that represents parameters has the word “Parameters” as a textual 

description alongside an icon that represents a parameter (an arrow pointing inside a 

box to denote an input). Additionally, a description that acts as a secondary notation 

can be used to provide a complementary textual description to tasks and task variants 

that are represented by a graphical shape with an icon. 

SERIES abides by the principle of graphic economy since its number of graphical 

symbols is cognitively manageable. SERIES provides six main symbols that represent 

abstract tasks, application tasks, substitutable and non-substitutable application task 

variants, task-to-sub-task relationships, and task-to-variant relationships. Although 

other symbols represent the properties of tasks and task variants, these symbols just 

appear on the diagram once the user modifies values in the properties box. Hence, the 

user is not required to choose and add these symbols from a toolbox as is done with 

the tasks, task variants, and relationships. 

7.2.3 Further evaluation 

Sections 7.2.1 and 7.2.2 explained how SERIES considers the recommendations of 

the Cognitive Dimensions Framework and the Physics of Notations. Nonetheless, 

further evaluation is required to determine how well software practitioners can use 

SERIES for task modelling. Such evaluation also determines how software practitioners 
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perceive SERIES concerning its usability and the clarity of its semantic constructs. 

Therefore, a study was conducted for this purpose as explained in the next section. 

7.3 A study to evaluate SERIES with software practitioners 

As mentioned in Section 4.2, software practitioners are responsible for creating 

task models using SERIES to support resource-driven adaptation in software systems. 

Hence, I conducted a study with software practitioners to evaluate SERIES. First, this 

section provides an overview of the participants’ background information. Then, it 

explains the design of the study. Afterwards, this section presents and discusses the 

results and the threats to validity. 

7.3.1 Participants 

This study had 20 participants. The number of participants is comparable to other 

studies that evaluate visual notations (Batra, Hoffler and Bostrom, 1990; Shoval and 

Shiran, 1997). Furthermore, the participants represent the target population, namely 

software practitioners. The participants provided some background information about 

their experience in the software industry and with visual modelling notations. What 

follows is an overview of this information. 

All the participants have experience with software engineering. The majority of them, 

16 out of 20, are currently working as software practitioners at software companies in 

the following countries: Lebanon, the United States, Canada, Denmark, Egypt, Germany, 

and the Netherlands (Figure 7.3). The remaining participants, 4 out of 20, are currently 

working as researchers at The Open University in the United Kingdom, but three of them 

had previous experience in the software industry. 

As shown in Figure 7.2, thirteen of the participants have between 1 and 5 years of 

experience in the software industry. Three participants have 6 to 10 years of 

experience. Another three participants have less than one year of experience. Only one 

participant never had any experience in the software industry. However, this 

participant has some personal experience in developing non-commercial software 

applications. The participants’ collective experience includes the development of 

software systems for multiple domains including business, education, electronics, 

games, government, and multimedia. These software systems cover several software 

paradigms including web, mobile, desktop, and virtual reality. 
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All the participants have previous experience in using visual modelling notations. 

As shown in Figure 7.4, their collective experience includes using UML diagrams, flow 

charts, ER models, relational models, logic circuits, and architecture diagrams. The 

participants have also used a variety of modelling tools including StarUML, Draw.io, 

Cadence, Dia, Jira, Lucid Chart, PgAdmin, and Umlet. As shown in Figure 7.5, thirteen of 

the participants (63%) have indicated that they have used visual modelling notations 

both at the work and in a course. The remaining seven participants (37%) have only 

  

Figure 7.2 – Experience of the 
participants in the software industry 

Figure 7.3 – Countries where the 
participants are working 

 

 

 

Figure 7.4 – Experience of the participants with 
visual modelling notations (each participant 

could list multiple notations) 

Figure 7.5 – Where the 
participants used visual 

modelling notations 
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used visual modelling notations in a course. The chart shown in Figure 7.4 might not 

be comprehensive because I asked the participants to recall and list the visual 

modelling notations that they have used. However, the examples they listed are 

indicative of their experience. 

The participants who are working as software practitioners (16 out of 20) were 

recruited from the Computer Science graduates (alumni) of Notre Dame University – 

Louaize (NDU), Lebanon, and the rest of the participants (4 out of 20) were recruited 

from the Computing researchers at The Open University (OU), United Kingdom. 

7.3.2 Design of the study 

Each participant took on average 55 minutes to complete this study, which involved 

the activities that are shown in Figure 7.6. Before beginning the study, I asked the 

participants to watch a brief seven-minute tutorial video on SERIES and its supporting 

tool. A tutorial video is used so that participants would receive the same explanation of 

SERIES, understand the semantic constructs of SERIES, and understand how the 

semantic constructs can be used via the supporting tool of SERIES. Then, I asked them 

to explain and create task models using SERIES via its supporting tool because these 

activities provide the means to check the usability of SERIES from the perspective of 

the participants. Afterwards, I asked the participants to complete a questionnaire to 

provide some background information (refer to Section 7.3.1) and offer their feedback 

on the usability of SERIES and the clarity of its semantic constructs. 

 

Figure 7.6 – Overview of the study’s activities 

Watch a brief tutorial video about SERIES and its supporting tool (7 minutes)

Explain task models represented using SERIES Create task models using SERIES

Use SERIES via its Tool

Provide some background 
information

Answer Questionnaire

Provide feedback on clarity of 
semantic constructs

Provide feedback on 
usability

Introduction
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Considering that the participants are from and working in different countries, it is 

important to note that the study was conducted in  nglish. Hence, the participants’ 

comments did not require translation into English from other languages. All the 

participants are proficient in English. The participants who were recruited from the 

Computer Science graduates (alumni) of NDU have all received their education in 

English (like many universities in Lebanon NDU offers all its courses in English). The 

participants who were recruited from the OU are living in the United Kingdom and are 

therefore either native speakers or have a working proficiency in English. 

7.3.2.1 Hypothesis 

The hypothesis for this study is described as follows: 

H1: The use of SERIES will result in good user (software practitioner) performance 

in the interpretation and creation of task models for resource-driven adaptation. 

This hypothesis was assessed based on the correctness of the answers given by the 

participants when explaining and creating SERIES task models and the feedback that 

they gave to indicate their perception of the clarity of the semantic constructs. It was also 

assessed based on the feedback that the participants gave on the usability of SERIES to 

see whether they found usability issues that hinder their ability to use this notation. 

7.3.2.2 Environment and data collection 

I conduct the study online due to the Covid-19 pandemic. However, this did not 

obstruct any of the planned activities. I gave the participants remote control of my 

computer via Zoom (videoconferencing software program). This way they were able to 

use the supporting tool of SERIES (refer to Section 5.4). I chose Zoom because it 

provided the best performance for remote access and videoconferencing with minimal 

to no lagging over an internet connection. I tested Zoom and compared it to two 

alternatives, namely Microsoft Teams and TeamViewer. 

The participants’ verbal input (feedback) and their work on the supporting tool of 

SERIES were captured using audio and screen recordings respectively. The task 

models that the participants created were also saved as files from the tool. The 

participants provided written input using a questionnaire that I presented to them as a 

Word document. 
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7.3.2.3 Explaining and creating task models 

The explanation and creation of models are recommended activities for studies that 

evaluate visual notations (Bork and Roelens, 2021). What follows is a description and 

examples of the SERIES task models that I asked the participants of this study to 

explain and create. 

Multiple domain choices: This study aims to assess SERIES rather than the 

participants’ knowledge of a domain. Hence, I asked the participants to select the domain 

of the task models that they were required to explain and create. The study included 

three domain options, namely hospital, manufacturing, and surveillance. Although there 

were three domain options, there was no discrepancy among them in the difficulty of the 

task models that the participants were asked to explain and create. 

 

Figure 7.7 – Example: task model that the participants explained 
 (the participants who chose the hospital domain explained this task model) 
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Hence, the task models from the three domains had the same number and types of 

tasks and task variants. Additionally, each task and task variant had the same number 

and types of properties as its counterparts from the other domains. This way, each 

participant could choose the domain that they prefer while maintaining the same level of 

difficulty for all the participants. 

Multiple levels of difficulty: The task models that the participants were expected to 

explain and create were presented to them with three levels of increasing difficulty, 

where level 1 is basic and level 3 is advanced. The complexity of the task model 

(1) Add an abstract task named "Book Medical Operation". This task has two parameters: an 

"Operation Type" that is non-changeable and a "Respiratory Mode" that is changeable. It also 

requires a "General Practitioner (GP)" resource type that is "flexible" with a quantity of 1. 

For this task, feedback from the user shall be requested and the feedback location shall be a 

panel. 

(2) Add three application tasks as subtasks of "Book Medical Operation". These three 

subtasks are named "Reserve Operation Material", "Reserve Respiratory Device", and 

"Reserve Operation Room" respectively. 

• "Reserve Operation Material" requires a "Material" resource type that is "flexible" with a 

quantity of 10. 

• "Reserve Respiratory Device" has the following description: "Reserve a ventilator or oxygen 

tank for the patient". This task requires a "Respiratory Device" resource type that is 

"flexible" with a quantity of 1. 

• "Reserve Operation Room" requires a "Medical Room" resource type that is “strict" with a 

quantity of 1. This task has a high priority at any time frame. 

(3) Add two application task variants for "Reserve Operation Material". 

• The first variant is named  Reserve Material for Urgent Operation  and has a high 

priority and a parameter condition that specifies "Operation Type=Urgent". 

• The second variant is named "Reserve Material for Elective Operation" and has a low 

priority and a parameter condition that specifies "Operation Type=Elective". 

Add two application task variants for "Reserve Respiratory Device". 

• The first task variant is named  Reserve Ventilator" and has a high priority, a 

parameter condition that specifies "Respiratory Mode=Ventilator", and a low resource 

intensiveness for the "Respiratory Device" resource type. 

• The second task variant is named  Reserve Oxygen Tank  and has a low priority, a 

parameter condition that specifies "Respiratory Mode=Oxygen Tank", and a high 

resource intensiveness for the "Respiratory Device" resource type. 

•  oth task variants have a  Role  that is equal to  Any . 

Figure 7.8 – Example: requirements for creating a task model 
(the participants who chose the hospital domain used these requirements) 
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hierarchy and the number of elements increased at each level. At level 1, the task model 

contains an abstract task with four properties including resource type, parameter, 

feedback-from-user, and feedback-location. At level 2, the abstract task is divided into 

three application subtasks that have priorities and resource types as properties. At level 

3, task variants are added with properties that include priority, parameter conditions, 

resource intensiveness, and roles. These levels show whether the participants would 

face difficulties in performing task modelling with SERIES when the complexity of the 

task model hierarchy increases. 

Examples of task models and requirements from the study: Figure 7.7 shows an 

example task model that I asked the participants to explain. I gave this task model to the 

participants who chose the hospital domain. The text shown in Figure 7.8 is an example 

of the requirements given to the participants to create a task model. I gave these 

requirements to the participants who chose the hospital domain. Figure 7.9 shows the 

task model that the participants were expected to produce from the requirements 

shown in Figure 7.8. The task models and requirements corresponding to the other two 

domains (manufacturing and surveillance) are shown in Appendix A. 

Process of explanation and creation of task models: The task models that I asked 

the participants to explain were presented to them using the SERIES notation within its 

 

Figure 7.9 – Example: task model that the participants created 
 (the participants who chose the hospital domain were expected to create this task 

model from the corresponding requirements) 
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supporting tool. I asked them to go through the task model elements and explain their 

meanings. For creating task models, the participants were presented with written 

requirements that were displayed in a panel within the supporting tool of SERIES. I 

asked them to read these requirements and create the corresponding task models using 

the tool. I asked the participants to think aloud when they are creating the task models. 

The think-aloud protocol is commonly practised during studies where participants are 

required to report what they are thinking while performing an activity (Oh and 

Wildemuth, 2009). In this study, the activity is task modelling using SERIES and its 

supporting tool. For example, this could show whether the participants are confused 

about how they should associate a requirement with its corresponding semantic 

construct(s) or whether they find it difficult to perform an action using the tool. 

7.3.2.4 Feedback questionnaire 

After the participants explained and created SERIES task models, they were asked to 

provide their feedback by completing the questionnaire shown in Appendix A. 

 The participants answered questions to indicate their perception of how well the 

semantic constructs of SERIES convey a clear meaning that enables a user (software 

practitioner) to explain and create task models using this notation. I also asked them to 

recommend changes if necessary. These questions complement the explanation and 

creation of task models (refer to Section 7.3.2.3) because even if the participants can 

explain and create SERIES task models, they could still have some feedback on 

possibilities for further improvement. 

The participants also answered questions that convey their perception of the 

usability of SERIES. I asked them to answer a set of five questions about the overall ease 

of use of SERIES and give any additional comments that they may have. The five 

questions on ease of use have been proposed in the literature and used in other studies 

that evaluate modelling notations (Davis, 1985; Batra, Hoffler and Bostrom, 1990). The 

answers given by the participants to these questions are used to compute a rating 

between one and five, where one is worst and five is best. 

Then, the participants selected three Product Reaction Cards (PRCs) that they 

thought were most suitable for describing SERIES. The PRCs were developed by 

Microsoft to understand the aspect of desirability corresponding to a user’s experience 

with a product (Benedek and Miner, 2002). I asked the participants to choose from a set 

of 16 PRCs (8 positive PRCs and 8 negative ones). The selection was not restricted to 
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either positive or negative. Hence, the participants were able to select any three PRCs, all 

positive, all negative, or a mixture of both. Additionally, the PRCs were not labelled as 

“positive” and “negative” to allow the participants to provide their interpretations. 

Hence, after choosing the three PRCs, I asked the participants to explain their choice and 

suggest improvements if necessary. Finally, I asked the participants if they had any 

remaining comments before concluding the study. 

7.3.3 Processing and presenting the data 

The data from the study should be processed and presented before being analysed. 

The quantitative data from ratings given on a scale are directly presented using box plots 

alongside descriptive statistics (mean, median, and standard deviation). Similarly, the 

selected PRCs are counted and presented using a bar chart. However, the outcomes of 

the participants’ explanation and creation of task models are scored first. The scores 

represent how well the participants were able to explain and create task models using 

S RI S. Furthermore, the qualitative data from the participants’ comments are 

categorised so they can be analysed. Hence, this section explains how the outcomes of 

the participants’ explanation and creation of task models are scored. It also explains how 

qualitative comments are categorised and presented anonymously. 

7.3.3.1 Scoring participants’ explanations and created task models 

I scored the participants’ explanations of the task models to see if they correctly 

interpreted the meanings of the semantic constructs. Similarly, I scored the task models 

that the participants created to see if they used the semantic constructs to correctly 

represent the given requirements. 

An answer key with a three-level scoring scheme (incorrect, partially correct, and 

correct) is used. A score is computed for each of the explained and created task models 

at the three levels of difficulty (refer to Section 7.3.2.3). An answer is incorrect if it does 

not have any correct part or if it is completely missing because a participant did not 

know how to answer. If part of the answer is correct, then it is partially correct. On the 

other hand, correct answers do not have any incorrect or missing parts. The scores that 

are awarded to incorrect, partially correct, and correct answers are 0, 0.5, and 1 

respectively. The grading scheme covers the semantic constructs of SERIES used in the 

task models. This way, each task model is divided into parts that are scored separately to 
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identify if the participants faced difficulty in a specific part. The task model parts are 

scored on the abovementioned three-level scoring scheme in the form of a rubric, where 

the rows are the task model parts and the columns are scoring options (incorrect, 

partially correct, and correct). A total score for a task model is computed over 100 from 

the scores of all the parts, which are given equal weights. 

An example from the grading scheme for explaining a task model at level 3 includes 

being able to explain a relationship between a task and a task variant, two priority 

properties, two parameter-condition properties, two resource-intensiveness properties, 

and two role properties. In this case, when there are two properties, an answer is 

considered partially correct if one of these properties is explained correctly. 

Furthermore, for example, in the case of the priority properties, a correct answer covers 

both the priority value and the corresponding time frame. On the other hand, for the 

explanation of the relationship between a task and a task variant the answer is either 

correct or incorrect (i.e., there is no partial credit). 

An example from the grading scheme for creating a task model at level 1 includes 

being able to add elements corresponding to the requirements that include an abstract 

task, a resource type (with quantity and substitutability), two parameters (with data type 

and parameter type), and two feedback properties (feedback-from-user and feedback-

location). In this case, the abstract task is either correct or incorrect (i.e., there is no 

partial credit). On the other hand, the resource type property is considered correct if 

both its quantity and substitutability are added correctly. If only one of them is correct 

then, the resource type property is considered partially correct. The two parameters are 

considered correct if both of them are added with their correct data types and parameter 

types. Otherwise, if only one of the two parameters was added correctly then the answer 

would be partially correct. The same applies to the feedback properties. For correcting 

the task models created by the participants, the tasks, task variants, relationships, and 

properties are compared one by one to a predefined task model that represents the 

correct answer. 

7.3.3.2 Quoting the participants and classifying their comments 

All the participants of this study have consented to be quoted anonymously. Hence, 

upon presenting the results the participants are quoted by using a reference number 

(e.g., P1) as a pseudonym next to the corresponding comment. The comments are 

italicised and placed between quotes. 
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Furthermore, the comments given by the participants represent qualitative data that 

complement the quantitative data that is obtained from the ratings given on a scale and 

the scores of the explanation and creation of task models. Categorisation is common in 

studies that involve qualitative data (Khalid et al., 2015; Neale, 2016). Hence, I 

categorised the comments given by the participants of this study to identify what they 

perceive as strengths of SERIES and what they suggest for potential improvement. I also 

classified the comments under broad themes that provide a general overview of what 

the participants said about their perception of SERIES. These themes were deduced from 

the abovementioned categories. I computed the percentage of comments in each theme. 

7.3.4 Results of participants’ explanation and creation of task models 

As explained in Section 7.3.2.3, the participants were able to choose a domain that 

they prefer from three choices including hospital, surveillance, and manufacturing. All 

three domains were selected by some participants. The hospital, surveillance, and 

 

Figure 7.10 – Time taken by the participants to explain the task models 
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier) 

 

Figure 7.11 – Time taken by the participants to create the task models 
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier) 
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manufacturing domains were selected by 50%, 30%, and 20% of the participants 

respectively. Each participant explained and created task models from the domain that 

they selected. The explanations and created task models were scored as explained in 

Section 7.3.3.1. The results are as follows. 

7.3.4.1 Results of the explanation of task models 

As Figure 7.10 shows, the participants took on average 1.86 minutes to explain the 

task models for each one of the three levels. The participants averaged close scores on 

the explanation of all three task model levels. As Figure 7.12 shows, their scores (over 

100) on the explanation were on average 86.25, 88.13, and 87, for levels 1, 2, and 3 

respectively, and their average score across all three levels was 87.13. These results 

show that the participants exhibited very good performance when explaining task 

models that are represented using SERIES. The close scores on the three task model 

levels indicate that the participant did not face difficulty when the complexity of the 

task model hierarchy increased. The average score on level 1 was slightly lower than 

 

Figure 7.12 – Scores on the participants’ exp anation of task mode s 
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier) 

 

Figure 7.13 – Scores on the participants’ creation of task mode s 
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier) 
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the scores on the other two levels, which are more complex. A reason for this could be 

that the purpose of the abstract task from level 1 became clearer once sub-tasks were 

shown at level 2. Several participants mentioned this point when they moved from the 

first level to the second one. 

Considering the overall explanation scores and that the mistakes were not focused 

on a particular semantic construct, it is possible to say that there is no major ambiguity 

in the meaning of a particular semantic construct in SERIES. Examples of the 

participants’ explanation mistakes include explaining a task without discussing its 

execution type, explaining a parameter property without discussing its parameter 

kind, and explaining a priority property without discussing its corresponding 

timeframe. Although there is room for improving the explanations to reach perfect 

scores, it is important to mind that the participants were only given a brief tutorial 

about SERIES and that they never had any previous experience with this notation. 

7.3.4.2 Results of the creating of task models 

As Figure 7.11 shows, the participants took on average 3.47 minutes to create the 

task models that correspond to the given requirements for each one of the three levels. 

The participants averaged close scores on the creation of task models for all three 

levels. As Figure 7.13 shows, their scores (over 100) were on average 98.80, 99.45, and 

94.45, for levels 1, 2, and 3 respectively, and the average score across all three levels 

was 97.57. These results show that the participants exhibited excellent performance 

when creating task models using SERIES via its supporting tool. The mean score on 

level 3 was slightly lower than the scores of the other two levels. Nonetheless, it is still 

very high (94.45). There were some outlier scores as shown in Figure 7.13. However, 

these scores were mostly ≥88. The mistakes were overall minor. For example, some 

participants did not specify the “non-substitutable” property on a pair of the task 

variants or specified the “role” property on one of the task variants but forgot to 

specify it on the other variant. Another example of a mistake is giving a parameter the 

wrong name (typo). These mistakes are mostly due to lapses that do not indicate the 

existence of any major difficulties in using SERIES to create task models. 
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7.3.4.3 Result comparison 

As explained above, both the explanation and the creation of task models yielded 

high scores. However, the mean scores for the creation of task models (Figure 7.13) 

were higher than the mean scores for the explanation of task models (Figure 7.12). 

This could be due to the participants performing the explanation of the task models 

first. Hence, this gave them some additional exposure to examples of SERIES task 

models before they created task models using this notation. 

As mentioned in Section 7.3.1, the level of experience of this study’s participants is 

diverse. I compared the scores of the participants to see whether the level of 

experience affected their ability to explain and create task models. 

Concerning the explanation of task models, the four participants with little or no 

experience (< 1 year - never) averaged a score of 85 across the three task model levels. 

The thirteen participants with medium experience (1 to 5 years) averaged a close 

score of 86.02. The three participants with high experience (6 to 10 years) averaged a 

score of 94.72 across the three task model levels. Although the average score of the 

participants with the most experience is higher, the other participants still averaged 

high scores (≥ 85) considering it’s the first time they work with SERIES. 

Concerning the creation of task models, there was little to no difference among the 

scores for participants of all levels of experience. This is expected considering that the 

overall scores are very high. The four participants with little or no experience (< 1 year 

- never) averaged a score of 97.33 across the three task model levels. The thirteen 

participants with medium experience (1 to 5 years) averaged the same score (97.33). 

On the other hand, the participants with high experience (6 to 10 years) averaged a 

score of 98.88 across the three task model levels. Since the scores are overall very 

close, the level of experience did not affect the ability of the participants to create task 

models using SERIES. 

7.3.5 Results of participants’ feedback on clarity of semantic constructs 

The participants rated the clarity of the semantic constructs of SERIES on a scale that 

ranged between 1 and 5, where 1 is the worst and 5 is the best. Figure 7.14 shows these 

ratings. We can see that the mean values for the semantic constructs ranged between 4.5 

and 5.0. These results indicate that the participants considered the semantic constructs 

of SERIES to convey a clear meaning that enables software practitioners to explain and 
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create task models. As Figure 7.14 shows, four of the semantic constructs had one outlier 

with a rating of three or two over five. In this case, the participants felt that it would be 

useful to have some more clarification about the respective constructs. However, these 

values do not affect the participants’ overall positive perception of the clarity of the 

semantic constructs as shown by the mean ratings that are ≥4.5. Some participants gave 

additional comments regarding the clarity of the semantic constructs of SERIES. These 

comments were classified under four categories as explained next. The names of the 

categories are marked in bold. 

The first category included comments that said the given tutorial is sufficient to 

clarify the meanings of the semantic constructs. The tutorial referred to in these 

comments is the brief video given to the participants at the beginning of the study (refer 

to Figure 7.6). In this regard, P10 said, “The constructs are clear once we see the tutorial.” 

and P20 said, “The brief tutorial was enough for me to understand the semantic constructs. 

I do not think that any changes are needed to these constructs.” These comments indicate 

that software practitioners could learn SERIES without significant time and effort. P8 

noted the same thing and elaborated further by saying, “Notation is easy to use after a 

quick tutorial. Terms mean the same throughout (e.g., resources for tasks and subtasks). 

 

Figure 7.14 – Participants’ feedback on the semantic constructs of SERIES – this 
feedback represents the participants’ perception of whether the semantic constructs 

convey a clear meaning for explaining and creating SERIES task models 
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier) 
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Output diagram is easily readable, you can directly notice if the design matches the 

requirements.” The idea presented by P8 on the terms meaning the same thing 

throughout the model is due to SERIES adhering to the dimension of consistency from the 

Cognitive Dimensions Framework as discussed in Section 7.2.1. It is also due to SERIES 

adhering to the principle of semiotic clarity from the Physics of Notations as discussed in 

Section 7.2.2. 

The second category of comments involved a minor clarification. In this regard, P12 

said, “Everything was mostly clear, maybe a bit more information on the priority times.” 

P14 also mentioned priorities and timeframes by saying “At the beginning, the timeframe 

and its relation with the priority was a bit confusing.” P12 and P14 mentioned this point 

because the brief tutorial that was given to the participants at the beginning of the study 

only demonstrated the association of priorities with a specific time frame (e.g., 8:00 AM 

to 12:00 PM). However, during the study, the participants were asked to set the 

priorities for any time frame. Nonetheless, even with the brief coverage of this concept, 

the participants' explanation, use, and feedback demonstrated that they know how to 

work with priorities and timeframes. Hence, this point did not cause a major issue 

overall. For example, both P12 and P14 rated the corresponding semantic constructs 

(priorities of tasks and task variants) with a 4 over 5 (i.e., “clear”) because the concepts 

got clarified after some reflection. Nonetheless, in a longer tutorial, more examples could 

be given to explain the relationship between priorities and timeframes. 

One comment involved a minor change suggestion, whereby P17 suggested having 

“colour coding for priorities”. The implementation of this suggestion is simple and could 

be useful to attract attention to the high-priority tasks and task variants. For example, 

 
Mean = 4.79, Median = 4.90, SD = 0.28 

Figure 7.15 – Participants’ feedback on the ease of use of SERIES 
(the “x” on the boxp ot represents the mean) 
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the priority property could be presented in red colour when its value is high. This should 

not visually saturate SERIES since colours are not used in other properties. 

One comment emphasised that the task hierarchy is clear. In this comment, P12 

said, “This is actually one of the things that I liked about SERIES. It is the ability to create 

the subtasks very clearly and to define how they follow each one after the other.” This 

indicates that the visual presentation of the hierarchy helped P12 to understand the 

meaning of the relationship between a task and its subtasks and among subtasks and 

relates to the principles of semantic transparency and perceptual discriminability from 

the Physics of Notations as explained in Section 7.2.2. 

7.3.6 Results of participants’ feedback on usability 

This section reports on the results of the participant feedback on the usability of 

SERIES. These results include the participants’ ratings of ease of use, selected PRCs, 

and additional comments that justify their answers and provide suggestions. 

7.3.6.1 Ratings for ease of use 

The participants were given five questions on ease of use that covered difficulty, 

clarity, understandability, frustration, and mental effort. The result reported in Figure 

7.15 is computed from the means of the answers that the participants gave to all five 

questions. The mean rating given by the participants on the ease of use questions is 

4.79 over 5 (1 is the worst and 5 is the best). This result indicates that the participants 

considered SERIES to be overall very easy to use. The participants gave some 

additional comments on the ease of use of SERIES and its supporting tool. These 

comments are classified under three categories as explained next. The names of the 

categories are marked in bold. 

P14 mentioned how the three-level SERIES task hierarchy is clear. In this regard, 

P14 said “The three-level hierarchy is very clear and helpful in analysing and formalising 

a complex task. The visual representation of the task, sub-tasks, and variants of the sub-

tasks is very well organized and lets the user have every information at hand.” This 

comment by P14 complements the comment that P12 gave on the clarity of the task 

hierarchy (refer to Section 7.3.5) and indicates that both the meaning and visual 

representation of the task hierarchy are clear.  



Chapter 7 – Task Modelling Notation Evaluation (SERIES) 137 

 

 

Some comments explained why the UI of the tool is usable. P7 said “The UI is very 

user-friendly. All functionality is easily visible.” Additionally, P14 said, “The user 

interface lets the user reach every window in an easy and organized manner – i.e., the 

user does not need to scroll menus to find and fill in the necessary information.” These 

two comments reflect a positive perception of the supporting tool’s usability, which 

complements the usability of the notation and facilitates task modelling using SERIES. 

There was one minor change suggestion. P8 suggested adding a “small UI” under 

the selection boxes of resources, priorities, and parameters so these properties can be 

added quickly without having to open a new (popup) window. P11 also preferred 

having a quicker way of setting these properties without having to open a new window 

but did not suggest a specific solution. It is worth noting that existing software 

development tools such as Visual Studio open new windows, in many cases, for setting 

properties from a properties box. Nonetheless, there could be an alternative. However, 

the addition of “small UIs” as P8 suggested could over-clutter the properties box if 

these UIs are always visible. Hence, one possibility could be to use dropdown UIs that 

the user opens via the selection boxes or buttons without navigating to a new window. 

 

Figure 7.16 – PRCs selected by the participants to describe SERIES – each participant 
was asked to select three PRCs 

(positive PRCs are shown in grey while the negative ones are shown in black) 
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7.3.6.2 Selected product reaction cards 

The participants were each asked to select three PRCs that they thought best 

describe SERIES. As Figure 7.16 shows, the PRCs that the participants selected were 

mostly positive (58 out of 60). The selected PRCs complement the results reported in 

Section 7.3.6.1, which indicates that the participants have a very positive perception of 

the usability of SERIES. The participants justified their choice of PRCs by giving 

additional comments. These comments are categorised under the corresponding PRCs. 

In some cases, the participants gave a single comment to justify their choice of multiple 

PRCs. Such comments are only listed under one of the corresponding PRCs. The PRCs are 

listed from the most to the least selected. The PRCs and the names of the categories of 

comments are marked in bold. 

1) Easy to Use: The PRC “easy to use” was the most selected by the participants. 

The comments that the participants gave for choosing this PRC are classified under 

three categories as follows. 

The first category includes comments that said the given tutorial is sufficient or 

even unnecessary to use SERIES easily. In this regard, P11 gave a combined 

justification for selecting “easy to use” and “understandable” by saying “The overall 

system was simple, and most of the controls were instinctive to use. I felt that I could’ve 

figured out the system without even having the tutorial, as the names and types were 

generally self-explanatory.” P14 thought S RI S was easy to use because a “short 

introduction was enough to be able to easily work with it.” These two comments by P11 

and P14 complement what participants P8, P10, and P20 said on the tutorial being 

sufficient to clarify the meanings of the semantic constructs (refer to Section 7.3.5). 

The second category includes comments that complement the abovementioned 

(first) category by saying that SERIES notation is understood quickly. In this regard, 

P18 said, “I got accustomed to it quite fast.” and P19 said, “SERIES was very easy to use. I 

did not find any difficulty understanding the notation.” P2 provided a combined 

comment for choosing “straightforward” and “easy to use” by saying S RI S is 

“straightforward and easy to use because there are not many concepts to deal with 

meaning that there are 3 main tasks (abstract task, application task, and application 

task variant).” These comments alongside those from the abovementioned (first) 

category indicate a positive perception of the learnability of SERIES. Furthermore, the 

comment given by P2 on SERIES not having too many concepts is related to how 



Chapter 7 – Task Modelling Notation Evaluation (SERIES) 139 

 

 

SERIES adheres to the principle of graphic economy from the Physics of Notations as 

explained in Section 7.2.2. 

The third category includes comments that said the SERIES notation and the UI of 

its supporting tool have a well-designed layout, which improves usability. P16 

commended the layout of SERIES and the friendly UI and particularly liked how tasks 

are automatically connected. In this regard, P16 said, “I found SERIES really easy to use 

since everything is laid out in front of me. Simple operations and a friendly interface. The 

particular thing that I found that’s really helpful is how the tasks are automatically 

connected without the need to draw lines and to choose specific relationships.” When 

tasks are added to the task model they are automatically connected and the task model 

is rearranged to avoid “visual spaghetti” in S RI S (refer to Section 7.2.1 – dimension 

about premature commitment from the Cognitive Dimensions Framework). P17 said, 

“everything is very to the point and isn’t complicated.” P3, P5, and P13 noted that the UI 

is usable. In this regard, P3 commented on the layout and labelling of the UI by saying, 

“The interface is very simple and well divided, everything is well labelled to properly 

represent what is needed.” Additionally, P5 mentioned the simplicity of the UI by saying 

“The UI is clean and simple to use.” Furthermore, P13 noted how the UI made it easy to 

use SERIES via its supporting tool by saying, “It is easy to use and clear because of the 

UI. It doesn’t take time to understand how to use the software.” 

2) Consistent / Straightforward: The PRCs “consistent” and “straightforward” are 

equally the second most selected by participants after “easy to use”. The comments 

related to these two PRCs are classified under two categories as explained next. 

The first category includes comments that said SERIES task model elements and 

information are consistently represented. P14 commented on the consistency of 

the visual representation at the three levels of the task model hierarchy by saying, 

“Each of the three-level-hierarchy parts uses similar panels to fill in the required pieces of 

information. Furthermore, the representation of the information in the main window – 

where the task model is represented – is consistent for each part, making it easily 

interpretable.” Similarly, P18 considered that the visual elements constituting the 

different task types are consistent and said, “All elements of the different task types are 

at the same place, making it easy to expect where the properties, resource types, etc… 

fall.” P5 considered that there is consistency in the wording and the design of the 

notation by saying, “SERIES uses the same wording and design elements across the 

diagram. It is easy to understand what elements mean across tasks/variants.” The 
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consistency in SERIES, which is discussed in the abovementioned comments is a result 

of taking into consideration the dimension of consistency from the Cognitive 

Dimensions Framework (refer to Section 7.2.1). 

The second category includes comments saying said the UI provides a consistent 

and effortless way to work with tasks and properties. Concerning consistency, P9 

said, “The UI was consistent throughout when creating either abstract tasks, application 

tasks, or application task variants.” Additionally, P17 commented on the consistency of 

the design by saying “The whole application follows the same design for entering new 

tasks and data.” Furthermore, P15 mentioned the similarity in the way all tasks are 

created by saying “creation of all types of tasks is similar to one another (name, 

description, properties...).” P12 justified choosing “straightforward” by giving a 

comment that complements that of P15, whereby P12 said, “It was very easy to use with 

the UI, adding, removing and editing tasks and their resources, parameters, etc… was 

straightforward and didn’t require any effort.” 

3) Clear / Understandable: The PRCs “clear” and “understandable” are equally the 

third most selected by the participants. The comments corresponding to these two 

PRCs are categorised under the following three categories. 

The comments in the first category noted that the task hierarchy is clear. P4 

considered that the task organisation provides clarity and makes the use of SERIES 

straightforward. In this regard, P4 said, “The different types of tasks were ordered 

hierarchically in a way that is straightforward and clear.” Additionally, P20 considered 

that the task hierarchy is organised clearly by saying “The hierarchy of tasks is 

organised in a clear way that makes it easy to navigate through the model and 

understand relationships among the tasks.” These two comments by P4 and P20 

complement what P12 said about the clarity of the task hierarchy of SERIES as 

mentioned in Section 7.3.5 about the clarify of the semantic constructs. Additionally, 

these comments reflect how the hierarchical representation of task models in SERIES 

abides by the principle of semantic transparency from the Physics of Notations 

explained in Section 7.2.2. 

The comments in the second category pointed out that there is clear labelling and 

understandable information. P4 and P19 commented on the clarity of the labelling 

whereby P4 said, “The panels are clear, the labels are enough to understand the fields 

needed to be filled.” and P19 said, “Everything was clear and labelled out.” The labelling 

that is part of the notation is a design choice that adheres to the principle of dual 
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coding in the Physics of Notations that recommends using text to complement graphics 

(refer to Section 7.2.2). Additionally, P14 and P15 noted that the information 

presented on the screen is understandable, whereby P14 said, “All the information is 

well summarized and represented in the main window in an understandable way.” and 

P15 said, “There is a help me button, but everything is already self-explanatory.” The 

terms “understandable” and “self-explanatory” indicate that P14 and P15 perceive 

SERIES to be intuitive, which means that it does not need a lot of effort and explanation 

to understand. P2 mentioned this point explicitly by saying “I find it very intuitive.” 

Two comments mentioned that the UI is clean and not cluttered. P18 justified 

choosing “understandable” by saying,  I got accustomed to it quite fast (same reason for 

choosing easy to use), in addition to the fact that the UI is not cluttered, it’s friendly". 

Additionally, P5 said, “The clean UI helps in understanding where all the buttons are. 

There is enough space for the diagram.” In this comment, P5 is saying that it is easy to 

locate functionality on the UI, which is important for working without hassle. P5 is also 

saying that the space (section of the UI), that is allocated for displaying and managing 

the task model is enough for the user to work comfortably. 

4) Familiar: This PRC was the fourth most selected by the participants 

(considering that two pairs of PRCs shared an equal number of selections). The 

comments on this PRC are classified under two categories as explained below. 

As mentioned in Section 5.5, the visual representation of SERIES is inspired by UML 

class diagrams (e.g., tasks are represented as boxes like classes in UML). The benefit of 

this design choice is reflected in comments that said there is familiarity due to the 

visual resemblance between SERIES and UML. P2 said that S RI S is “familiar 

because it is similar to UML.” Additionally, P9 said, “SERIES was familiar to use, as it 

builds on what the user has already been exposed to in the past, particularly UML.” 

Furthermore, P5 said, “The diagram uses simple design elements similar to UML which 

makes it familiar to use.” P20 also elaborated further on this point by saying, “Certain 

elements of the task model’s visual representation resemble UML class diagrams. Tasks 

are represented as boxes like classes and task variants are related to tasks using an 

arrow that resembles generalization relationships.” Although the purpose of SERIES is 

different than that of UML class diagrams, the visual resemblance in parts of the 

notation has created familiarity that helps software practitioners in learning SERIES as 

noted in the abovementioned comments. For example, in UML class diagrams the main 
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semantic construct, namely a class, is represented as a box. The same is done in SERIES 

but the main semantic construct is a task rather than a class. 

Other comments stated that there is familiarity due to the resemblance between 

the UI of the SERIES tool and the UIs of other tools. P2 said, “The tool resembles 

other tools making it very easy to learn.” Additionally, P13 said, “The UI of the tool is 

familiar because it resembles existing IDEs.” This was also a design choice because the 

panels of the tool were designed to resemble panels that are common in existing 

integrated development environments (ID s). For example, the “Task Model  xplorer” 

and the “Properties” panels in the supporting tool of S RI S resemble the solution 

explorer and properties box respectively in the Visual Studio IDE. 

5) Appealing / Friendly: P12 and P7 justified selecting “appealing” and “friendly” 

respectively, by saying that the tool is helpful, and the functionality is easily visible on 

the UI. P12 considered the tool to be appealing because it fits its purpose and said, “I 

found that this tool would be very helpful to use to model such tasks which made it very 

appealing to me.” Additionally, P7 positively commented on the usability of the UI by 

saying, “The UI is very user friendly. All functionality is easily visible.” 

6) Confusing / Rigid: Very few negative PRCs were selected, namely “rigid” and 

“confusing” were each selected once as shown in Figure 7.16. It is worth noting that 

participants P6 and P11, who chose these two PRCs, also chose two positive PRCs 

including “easy to use” and “consistent” for P6 and “easy to use” and “understandable” 

for P11. Furthermore, negative PRCs only constituted 3.33% (2 out of 60) of the total 

selected PRCs, whereas positive PRCs constituted 96.66% (58 out of 60). The 

participants who selected these two PRCs explained their choices by giving additional 

comments. Overall the reasons for their choices are minor and could be addressed as 

explained below. 

P6 chose “confusing” because some clarification is required for two terms, namely 

“changeable” and “strict”, which are used to annotate parameters and resource types 

respectively. P6 said, “The reason why I chose confusing is due to the usage of some not-

so straightforward terms (changeable and strict).” Although P6 found these two terms 

to be confusing the overall results of the explanation and creation of task models and 

the participants’ feedback are positive. Hence, it is possible to consider this to be a 

minor issue that can be resolved with some further explanation of the meanings of 

these terms and possibly additional examples. 
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P11 chose “rigid” and said, “The system did feel relatively rigid, as there were a very 

limited number of things I could do at any given time.” P11 explained further by saying 

that adding an application task requires selecting an abstract task and then clicking on 

“add application task”. Hence, the same actions have to be repeated for adding more 

application tasks. P11 preferred being able to add multiple application tasks without 

having to re-click on the abstract task. The supporting tool of SERIES works this way 

because it is shifting the focus to the newly added application task rather than keeping 

it on the abstract task. The focus is shifted so users would directly edit the properties 

of a newly added application task without having to select it. A possible solution for 

P11’s request could be to enable the addition of multiple application tasks with one 

click. This just requires a minor adjustment to the supporting tool of SERIES. 

7.3.7 Results: participants’ final comments 

A few participants gave comments at the end of the study. Some were just general 

positive observations. For example, P3 said, “An interesting tool with a lot of potential 

applications.” Other comments were more specific. P7 noted that S RI S task models 

are clear even when the task hierarchy has multiple levels. In this regard, P7 said, 

“The diagram remains very clear even when the relationships between the tasks become 

deeper.” This indicates that for P7 the increase in the level of difficulty, as explained in 

Section 7.3.2.3, did not make it harder to understand and work with SERIES task models. 

P7 also compared SERIES task models to UML diagrams by saying that SERIES task 

models are easier to manage than UML diagrams. In this regard, P7 said, “In UML 

diagrams when the hierarchy starts getting deep everything gets convoluted making it 

harder to see the relationships. Here it is nice how the diagram organizes itself.” Hence, P7 

found the auto-arrange feature that is offered by the supporting tool of SERIES to be 

useful. This feature automatically adjusts the layout of the task hierarchy when new 

tasks or task variants are added to avoid the “visual spaghetti” that affects some box-and-

line notations (refer to Section 7.2.1 on the Cognitive Dimensions Framework). 

 P5 suggested a minor change to the tool concerning default values and said, “It 

would be nice to have good defaults where it makes sense. For example, if I don’t specify a 

‘Role’ property it could be assumed to be ‘Any’.” The tool is currently a prototype which is 

why it does not have a default values settings feature. Nonetheless, this feature could be 

added as a dynamic settings window that enables the specification of default values for 

properties such as role, resource quantity, and so on. 
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7.3.8 Discussion of the results 

Concerning the results from quantitative data, the participants exhibited very good 

performance in the explanation and creation of task models using SERIES as indicated by 

the scores that were reported in Section 7.3.4. The mean scores over 100 were 87.13 for 

the explanation and 97.57 for the creation of task models. Additionally, the feedback of 

the participants also showed that they perceived the meanings of the semantic 

constructs to be clear, where the mean ratings of clarity ranged between 4.5 and 5 over 

5, where 1 is the worst and 5 is the best (refer to Section 7.3.5). Furthermore, the 

feedback from the participants showed that they perceived SERIES to be usable. The 

mean of the ratings that the participants gave for ease of use was 4.79 over 5, where 1 is 

the worst and 5 is the best. Additionally, 96.67% of the PRCs that the participants 

selected to describe SERIES were positive (refer to Section 7.3.6). These results provide 

a positive indication of the ability of software practitioners to use SERIES. 

Concerning the results from qualitative data, as explained in the previous sections, 

the participants gave comments that expressed their feedback on the clarity of the 

semantic constructs and the usability of SERIES and its supporting tool. These comments 

were presented and categorised in Sections 7.3.5, 7.3.6, and 7.3.7. Six themes are defined 

here to provide a broad overview of the content of these comments. These themes were 

deduced from the abovementioned comment categories and cover the usability and 
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learnability of the SERIES notation and its supporting tool and the suggested minor 

clarifications and changes. 

The six themes are “Notation is Usable”, “Tool is Usable”, “Notation is Learnable”, 

“Tool is Learnable”, “Minor Clarification Suggestions” and “Minor Change Suggestions”. 

The themes “Notation is Usable” and “Tool is Usable” are related to usability and indicate 

that the notation and tool can be used by specified users, namely, software practitioners, 

to achieve specified goals with effectiveness, efficiency, and satisfaction (ISO 9241, 

2008). On the other hand, the themes “Notation is Learnable” and “Tool is Learnable” are 

related to learnability and indicate that users, namely software practitioners, do not take 

a lot of time to understand how to use the notation and tool (ISO 9241, 2008). The 

themes “Minor Clarification Suggestions” and “Minor Change Suggestions” are related to 

minor suggestions given by the participants about clarifying a concept further and 

adding a basic feature, respectively. 

As Figure 7.17 shows, the participants discussed why they perceive the SERIES 

notation to be usable and learnable in 31% and 29% of their comments respectively. 

This indicates that the participants have a positive perception of SERIES concerning its 

syntax (form) and semantics (content), which constitute graphical notations as noted by 

(Moody, 2009). Additionally, the participants discussed how they perceive the tool to be 

usable and learnable in 14% and 8% of their comments respectively. Considering that 

the tool complements the notation, it is interesting to see that the participants also 

perceive it to be usable and learnable. Furthermore, the participants made suggestions 

for minor changes and minor clarifications in 10% and 8% and their comments 

respectively. As previously explained, these suggested changes and clarifications are 

minor and do not hinder the ability of software practitioners to use SERIES for task 

modelling. Nonetheless, they will be taken into consideration in the future. 

Based on the results of the study, as discussed above, the hypothesis that is defined in 

Section 7.3.2.1 is accepted because the use of SERIES resulted in very good user 

(software practitioner) performance in the interpretation and creation of task models 

for resource-driven adaptation. This was indicated by both the results of the activities 

that the participants performed using SERIES and the feedback that they provided. 
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7.3.9 Threats to validity 

This study involved 20 participants. This could limit the generalisability of the results. 

However, these participants accurately represent the group of people who are expected 

to use SERIES, namely software practitioners. Hence, the participants were able to give 

insights based on their knowledge and experience. Furthermore, the sample of 

participants was diverse in terms of the level of experience in the software industry and 

experience with software modelling notations as explained in Section 7.3.1. This 

diversity yields feedback from people with different perspectives and capabilities. 

A comparison was conducted in Section 7.3.4 among the scores of the participants 

from different levels of experience. However, it is important to clarify that this study is 

not intended or designed to be a between-groups comparison study based on level of 

experience. The latter is not this study’s objective and requires a larger number of 

participants in each group. For example, there were only three participants with six to 

ten years of experience. Hence, this comparison is only meant to provide a basic idea 

about possible differences in the ability to explain and create SERIES task models. 

7.4 Chapter summary 

This chapter presented the evaluation of the proposed task modelling notation for 

supporting resource-driven adaptation (SERIES). It presented an assessment of SERIES 

using existing guidelines for designing notations given by the Cognitive Dimensions 

Framework and Physics of Notations. Moreover, this chapter presented a study with 

software practitioners to evaluate SERIES. The study was divided into four parts: (i) 

watching a brief tutorial video about SERIES and its supporting tool; (ii) explaining 

tasks models that are represented using SERIES; (iii) creating a task model using 

SERIES via its supporting tool; (iv) completing a questionnaire to provide background 

information and feedback about the usability of SERIES and the clarity of its semantic 

constructs. The results of the study showed a very good user (software practitioner) 

performance in explaining and creating SERIES task models. Moreover, the 

participants gave positive feedback regarding the usability of SERIES and the clarity of 

its semantic constructs. 
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8  

Framework for Resource-Driven Adaptation 

Evaluation (SPARK) 

This chapter presents the evaluation of the proposed framework for resource-driven 

adaptation (SPARK). Figure 8.1 presents an overview of this evaluation. The evaluation 

of SPARK has two parts, a preliminary evaluation with generated data and two case 

studies with existing datasets. The metrics that I used in the evaluation include the 

percentage of executed critical task requests, the average criticality of the executed task 

requests versus the non-executed ones, overhead, scalability, and the intrusiveness of 

integrating SPARK into a software system. 

8.1 Introduction 

I conducted a preliminary evaluation of SPARK by developing a simulation tool for 

an automated warehouse where robots are responsible for preparing customer orders 

to be shipped. This tool served as a proof-of-concept prototype for evaluating SPARK’s 

feasibility. Additionally, I evaluated SPARK’s overhead and scalability using a varying 

number of business tasks that are commonly found in enterprise systems (e.g., “view 

sales report”). The preliminary evaluation used generated data. 

Afterwards, I evaluated SPARK in two case studies with existing datasets 

corresponding to (i) a medicine consumption system and (ii) a manufacturing system. 

These datasets include multiple tasks and types of resources. The two case studies 

involved measuring two metrics, namely the percentage of executed critical task 

requests and the average criticality of the executed task requests versus the non-

expected ones during resource variability. The outcomes of these two metrics were 
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compared when using SPARK’s proactive and reactive adaptation, reactive adaptation 

only, and no framework. Additionally, the overhead and scalability of SAPRK were 

measured using a varying number of tasks from the datasets. Furthermore, 

intrusiveness was evaluated by measuring the lines of code to be added or modified for 

integrating SPARK into a software system (based on what I proposed in Section 4.5). 

8.2 Preliminary evaluation of SPARK 

A preliminary evaluation of SPARK’s feasibility, overhead, and scalability was 

conducted. This section explains the design of this preliminary evaluation and presents 

its results and threats to validity. 

8.2.1 Evaluating feasibility with an automated warehouse simulation 

Some types of automated warehouse management systems like Ocado use robots 

that move on top of a grid to store and pick up items and prepare customer orders for 

delivery (Ocado Solutions, 2018; Mason, 2019). As shown in Figure 8.2, robots can 

malfunction and cause resource variability until repairs are performed. This delays the 

fulfilment of customer orders. I developed the software tool shown in Figure 8.4 to 

simulate a grid-based automated warehouse where robots are responsible for 

executing requests of the “Prepare Order” task that is shown in Figure 8.3. The settings 

shown in Figure 8.4a are used to specify the simulation parameters including the 

 

Figure 8.1 – Overview of the evaluation of SPARK 

The evaluation presented in this chapter covers the proposed framework for resource-
driven adaptation (SPARK) and has the following two parts.

Initial evaluation that involves developing software prototypes for simulating an 
automated warehouse and task requests

Evaluation of SPARK

Two case studies with existing datasets corresponding to a medicine consumption 
system and a manufacturing system
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number of robots and the number of customer orders. Figure 8.4b shows the availability 

of the simulated robots. The simulated warehouse environment is visualised in Figure 

8.4c. The completion progress of the customer orders is shown in Figure 8.4d. 

8.2.1.1 Design of the simulation 

The robots execute a task called “prepare order”, which has three subtasks “locate 

products in the warehouse”, “pack products in a box”, and “seal box” (Figure 8.3). The 

task “pack products in a box” has two variants “pack randomly” and “pack by 

category”. These two variants have a trade-off between presentation and speed, 

whereby “pack randomly” is faster but “pack by category” is more elegant. 

  
Figure 8.2 – Automated warehouse 

example (used in preliminary evaluation 
of SPARK) 

 

Figure 8.3 – Prepare order task (used in 
preliminary evaluation of SPARK - 

shown in summarised form of SERIES) 

 

 

Figure 8.4 – Automated warehouse simulation software (developed for the 
preliminary evaluation of SPARK) 
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Customer orders were generated with random products and the products in stock 

were dispersed across the grid of the warehouse. Ten types of products were used and 

included clothing items like shirts, jackets, shorts, trousers, ties, and caps. Upon 

running the simulation each robot is assigned a customer order that it should prepare. 

Then, the robots move around the grid and locate the products of the customer orders. 

Once a robot collects all the products for a customer order, it is assigned another 

customer order to prepare. 

The simulation included cases with full robot capacity and others where 40% and 

60% of the robots are missing. These cases included an increasing number of customer 

orders, namely 250, 500, and 750. In the cases where robots were missing, the 

simulation was executed with and without adaptation to observe the difference. The 

adaptation involved executing the faster variant of the “pack products in a box” task, 

namely “pack randomly” to speed up order preparation during resource variability 

(i.e., when robots are missing). What follows are the results of this simulation during 

resource variability with and without adaptation. 

8.2.1.2 Results 

The chart presented in Figure 8.5 shows how adaptation improved the order 

completion time when robots were unavailable. As this figure shows, in the cases 

where 40% or 60% of the robots were unavailable, adaptation reduced the order 

completion time by almost half in comparison to the cases with missing robots but 

without adaptation. Adaptation reduced order completion time by an average of 66% 

and 50% when 40% and 60% of the robots were missing, respectively. 

 

Figure 8.5 – Customer order preparation during resource variability with and without 
adaptation 
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These results show that, with adaptation, a smaller number of robots can prepare 

customer orders without major delays, until the malfunctioning robots are repaired. 

This simulation demonstrates the feasibility of SPARK as a resource-driven adaptation 

framework, which enables software systems to keep executing tasks during resource 

variability. 

8.2.2 Evaluation of overhead and scalability 

I evaluated the overhead and scalability for two parts of SPARK. The first part is 

proactive adaptation planning. The second part is the reactive identification of the 

invoked tasks and variants so SPARK can make adaptation choices. Refer to Sections 

6.2 and 6.3 for a detailed explanation of these parts. The overhead and scalability were 

evaluated using a varying number of business tasks that are commonly found in 

enterprise systems (e.g., “issue sales invoice”, “view sales report”, and “make item 

reception”). The evaluation was done on a Windows 10 computer with a Core i7 1.8 

GHz CPU and 16 GB of RAM. 

8.2.2.1 Proactive adaptation planning 

As shown in Figure 8.6, the running time ranges between 0.35 and 2.58 seconds 

when the number of tasks ranges between 1000 and 10,000. It is possible to say that 

SPARK has a minor overhead, especially when considering that proactive adaptation 

planning is not executed with every task request. Furthermore, as shown in Figure 8.6, 

the fitting curve of the running time is polynomial with R2 equal to 0.9988. Hence, the 

algorithm for proactive adaptation planning is scalable. 

 

Figure 8.6 – Running time scalability of proactive adaptation planning 



152 8.2 Preliminary evaluation of SPARK 

 

8.2.2.2 Reactive identification of tasks and task variants 

NBomber (2021) was used to simulate user requests to C# web service methods 

that represent tasks in a software system. Then, the evaluation involved measuring the 

time it took to identify the tasks and task variants, in a SERIES task model, which 

correspond to the service methods being called. 

Multiple test runs were performed with an increasing number of tasks and variants 

ranging from 1,000 to 10,000 tasks and 0 to 16 variants per task. The evaluation was 

done with two implementations, one that caches the task models in memory and 

another one that does not perform caching. NBomber simulated user requests for 10 

minutes per test run. The results are shown in Figure 8.7 (without caching) and Figure 

8.8 (with caching). The mean running time was measured in milliseconds and ranged 

between 0.95 and 7.36 without caching and 0.0047 and 0.0075 with caching. Hence, 

the overhead is minor. Furthermore, both fitting curves of the mean running times are 

polynomial with R2 equal to 0.9924 (without caching) and 0.9797 (with caching). This 

indicates that the algorithm for the reactive identification of tasks and task variants is 

scalable. The use of caching is favourable since it reduces overhead without burdening 

Without Caching 

 

Figure 8.7 – Overhead and scalability evaluation without caching for the identification 
of tasks and task variants from SERIES task models 
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the memory. As shown in Figure 8.8, the size of the cached model ranged from 0.02 MB 

to 17.84 MB, which is minor for modern RAM capacity. 

8.2.3 Summary of the results 

The automated warehouse management system example, which was used in this 

preliminary evaluation, demonstrates SPARK’s feasibility and its ability to support 

software systems to keep executing tasks during resource variability. Furthermore, the 

preliminary overhead and scalability evaluation showed that SPARK is scalable and 

has a minor overhead that does not hinder a software system’s ability to execute task 

requests in a tolerable waiting time (e.g., 2 to 4 seconds as indicated by Nah, (2004)). 

8.2.4 Threats to validity 

The automated warehouse management system example only considers one type of 

system, task, resource, and adaptation. Furthermore, the preliminary evaluation uses 

data that was generated by the researcher. Therefore, two case studies representing 

different systems were conducted to evaluate SPARK with scenarios that involve 

multiple types of tasks, resources, and adaptation. These two case studies are 

presented in the next section. 

With Caching 

 

Figure 8.8 – Overhead and scalability evaluation with caching for the identification of 
tasks and variants from SERIES task models 

 

Cached Model 
Size (In MB)

0.02 0.04 0.74 0.98 2.32 2.76 6.36 7.26 8.16 17.84

1000Tasks

Variants 
Per Task

0 0 2 2 4 4 8 8 16 16

0.0047Mean 0.0050 0.0068 0.0069 0.0070 0.0073 0.0074 0.0074 0.0074 0.0075

R
u

n
n

in
g

 T
im

e
(I

n
 M

il
li

se
co

n
d

s)

2000 3000 4000 5000 6000 7000 8000 9000 10000



154 8.3 Evaluating SPARK with two case studies 

 

8.3 Evaluating SPARK with two case studies 

I evaluated SPARK with two case studies involving two datasets from a medicine 

consumption system and a manufacturing system. In this evaluation, I measured four 

metrics including (i) the percentage of executed critical task requests, (ii) the average 

criticality of the executed task requests in comparison to the non-executed ones, (iii) 

the overhead of the approach, and (iv) the scalability of the approach. What follows are 

the details of these two case studies, including a description of the datasets, an 

explanation of the design of the case studies, and a presentation and discussion of the 

results and threats to validity. 

8.3.1 Datasets 

The two datasets used for evaluating SPARK were selected after searching publicly 

available datasets on several platforms including AWS Data Exchange (Amazon, 2019), 

Data.Mendeley (2013), Data.World (2016), IEEE DataPort (IEEE, no date), Kaggle 

(2010), Office for National Statistics (UK Statistics Authority, 1996), United States 

Census Bureau (US Department of Commerce, 1902), and Zenodo (CERN and 

OpenAIRE, 2013). The target datasets were expected to contain data for simulating 

software systems that execute resource-dependent tasks. Hence, candidate datasets 

were examined using four criteria to check if they contain (i) tasks and task variants; 

(ii) resources; (iii) task (variant) requests with a chronological order that could be 

replicated in a simulation; and (iv) association between each task (variant) request 

and the resources it requires. The characteristics of the datasets are summarised 

according to the abovementioned criteria (i)-(iv) in Table 8.1 and are elaborated below. 

The first selected dataset corresponds to a medicine consumption system (Ghodki, 

2021). This dataset contains 783 variants of a medicine allocation task. The task 

variants differ according to a parameter that represents the medical condition of the 

patient. This dataset has 153,385 task requests, whereby each one allocates a quantity 

of a medicine to treat a patient’s medical condition. This dataset has depletable 

resources, namely medicines. It also contains feedback provided by patients to rate, on 

a scale, the effectiveness of the medicines that they were given to treat their medical 

conditions. SPARK uses this type of user feedback to adjust its adaptation type choices 

(refer to Section 6.3.6). 
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The second selected dataset corresponds to a manufacturing system (Mota et al., 

2020). This dataset contains 4 tasks and one of these tasks has 4 variants. It also 

contains 275 task requests. This dataset has both depletable and reusable resources, 

namely raw materials and machines respectively. These resources are used to execute 

tasks related to the manufacturing of hang tags, which are “tags attached to an article 

of merchandise giving information about its material and proper care (Webster, 2022)”. 

The two selected datasets have four differences, which create diversity in the case 

studies conducted to evaluate SPARK. The first difference is in the types of resources. 

The types of resources in the medicine consumption dataset are depletable whereas 

the ones in the manufacturing dataset are depletable and reusable. The second 

difference is in the number of tasks and task variants. The medicine dataset has one 

task with a lot of variants whereas the manufacturing dataset has a few more tasks 

with few variants. The third difference is in the number of task requests. The medicine 

dataset has a larger number of task requests than the manufacturing dataset. The 

fourth difference is in the presence of user feedback. The medicine consumption 

dataset has user feedback in the form of ratings as previously mentioned, whereas the 

manufacturing dataset does not have such feedback data. 

8.3.2 Design of the case studies 

This section explains the evaluation metrics and how they are applied to different 

cases of task criticality, resource variability, and modes of adaptation. It also presents 

the hypothesis that is evaluated through the case studies. 

Table 8.1 – Characteristics of the datasets used in the evaluation 

 Dataset 1:  
Medicine Consumption 

Dataset 2:  
Manufacturing 

Number of tasks and task variants 783 7 

Number of resource types 3,260 17 

Number of task (variant) requests 153,385 275 

Association between each task 
(variant) request and the 
resources it requires 

✓ ✓ 
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8.3.2.1 Metrics and cases 

Four metrics were applied in both case studies. These metrics included measuring 

the percentage of executed critical task requests, the average criticality of the executed 

task requests in comparison to the non-executed ones, the overhead of the approach, 

and the scalability of the approach. 

The metrics “percentage of executed critical task requests” and “average criticality 

of the executed task requests in comparison to the non-executed ones” are related to 

task criticality. A critical task has high importance for its domain and should be more 

privileged in accessing the resources it needs in comparison to non-critical tasks. 

Three levels of criticality for the tasks were considered, where the first level is 

“critical” and the other two levels are “non-critical” namely tasks of moderate or little 

importance for the domain. 

The metric “percentage of executed critical task requests” is measured by counting 

the critical task requests that got executed and dividing this count by the total number 

of critical task requests. The metric “average criticality of the executed task requests in 

 

Figure 8.9 – Evaluation case studies with subcases of task criticality, resource 
variability, and mode of adaptation 
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comparison to the non-executed ones” is measured as follows. First, the executed and 

non-executed task requests are each grouped by the abovementioned three levels of 

criticality. Then, the difference between the percentages of executed task requests and 

non-executed ones is computed for each level of criticality. Afterwards, a weighted 

average of the percentages is computed (critical task requests have the highest weight). 

For the two case studies, the abovementioned two metrics are applied to multiple 

cases of task criticality, resource variability, and mode of adaptation as shown in 

Figure 8.9. There are four cases of task criticality, where 20%, 40%, 60%, and 80% 

of the overall tasks and variants are critical. Additionally, within each of the task 

criticality cases, there are four cases of resource variability, where 20%, 40%, 60%, 

and 80% of the resource types are facing variability. Furthermore, within each 

resource variability case, there are three cases of the mode of adaptation, namely (i) 

no use of the framework, (ii) use of the framework for the reactive process only, and 

(iii) use of the framework for the proactive and reactive processes. 

Concerning the three cases of adaptation, “no use of the framework” means that the 

task requests are executed as they arrive without any adaptation. The way of using the 

framework (SPARK) with both the “proactive and reactive” was explained in Sections 

6.2 and 6.3. On the other hand, using the “reactive” process only means that there is no 

proactive prioritisation. Hence, the framework reactively uses a task’s criticality as its 

priority without considering other factors such as historical task usage, which are used 

in the proactive computation of priorities. The reactive adaptation executes a critical 

task if the required resource type is not facing variability, otherwise, adaptation is 

applied. Additionally, since the priority values are not unique, resources are allocated 

to tasks on a first-come-first-serve basis when multiple tasks have the same priority. 

I evaluated the overhead and scalability for three parts of SPARK. The first part is 

proactive adaptation planning, which is responsible for preparing an adaptation plan 

proactively. The second part is the reactive identification of tasks and variants, which 

is responsible for identifying which task or task variant is being invoked so SPARK can 

make the necessary adaptation choices. The identification is done by associating the 

name of the service method being called with its corresponding task in the SERIES task 

model. The third part is the reactive task execution allocation, which is responsible for 

allocating executions to tasks when resources are facing variability. Refer to Sections 

6.2 and 6.3 for a detailed explanation of these parts. I evaluated the overhead by 

measuring the running time in each of these three parts to see if using SPARK impacts 
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a software system’s ability to execute tasks in a tolerable waiting time. Furthermore, 

an increasing number of tasks (variants) is used from the dataset when measuring the 

running time to determine whether SPARK is scalable based on the type of trendline 

(e.g., logarithmic, polynomial, or exponential). 

8.3.2.2 Simulation tool and adaptation types 

I developed a simulation tool to simulate the task requests found in the datasets. I 

implemented the modes of adaptation mentioned in Section 8.3.2.1. The simulation 

tool invoked the task requests while SPARK handled the resource-driven adaptation 

using multiple types of adaptation as explained next. 

The first case study involved, two types of adaptation, namely resource substitution 

and task cancellation. The substitutability of the depletable resource types (medicines) 

with one another was deduced from the dataset. Furthermore, this dataset contains 

user feedback that rates the effectiveness of medicines in treating medical conditions. 

These ratings are used for resource substitution to decide which potential substitute is 

the best choice. The adaptation types involving the execution of a task variant instead 

of another and delaying a task do not apply to this case study. Since the medical 

conditions are different from each other and are not interchangeable, the variants of 

the medicine allocation task are non-substitutable. For example, it is not possible to 

consider that patients have diabetes if they have allergies. Furthermore, delaying a 

task is not applicable because the resource types are depletable meaning that they are 

either available or unavailable. Hence, task requests do not need to wait their turn as is 

the case with reusable resources or when there are scheduled replenishments for the 

depletable resources which is not the case here. 

The second case study included all four of SPARK’s types of adaptation because the 

dataset of this case study contains both reusable and depletable resource types. This 

means when a reusable resource type is unavailable, it can be substituted with another 

one or the task request can be delayed and executed later. Additionally, this case study 

had substitutable task variants that produce a similar outcome but differ according to 

the time needed to execute. Hence, it is possible to execute one variant instead of 

another when needed to reduce the strain on the reusable resource types (machines). 

Moreover, the depletable resource types are also substitutable. Furthermore, task 

requests are cancelled when no other type of adaptation is applicable. 



Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 159 

 

 

8.3.2.3 Hypothesis 

Software systems comprise tasks that require resources. Hence, a software system 

can execute a task if the required resources are available. During resource variability, 

it is important to keep the resources available for critical tasks that need them most. 

Accordingly, the hypothesis H1 is described as follows: 

H1: When resources are facing variability, SPARK’s proactive and reactive adaptation 

improves a software system’s ability to execute critical tasks. 

The hypothesis is primarily evaluated using the metrics related to measuring the 

percentage of executed critical task requests and the average criticality of the executed 

task requests in comparison to the non-executed ones. Furthermore, the overhead and 

scalability of SPARK are measured to see whether using this framework to improve a 

software system’s ability to execute critical tasks is done while maintaining a tolerable 

waiting time. 

8.3.3 Case study 1: Medicine consumption system 

The first case study is related to a medicine consumption system. The results of the 

metrics for this case study are reported and discussed in the following subsections. 

8.3.3.1 Metric 1: Percentage of executed critical task requests 

Figure 8.10 (a to d) shows the percentage of executed critical task requests for the 

four cases of task criticality, four cases of resource variability, and three cases of the 

mode of adaptation that were explained in Section 8.3.2.1. For all cases of task 

criticality and resource variability, using SPARK’s proactive and reactive adaptation 

resulted in a higher percentage of executed critical task requests in comparison to 

using reactive adaptation. Additionally, using reactive adaptation resulted in a higher 

percentage of executed critical task requests in comparison to using no framework. 

Proactive and reactive adaptation increased the executed critical task requests by 1% 

to 6% and 10% to 31% in comparison to using reactive adaptation and no framework 

respectively. In this case study, each 1% of the abovementioned increase represents 

243, 901, 1137, and 1336 task requests when 20%, 40%, 60%, and 80% of the tasks 

are critical respectively. What follows is an analysis of these results based on the 

number of critical task requests and the number of resource types that are facing 

variability. 
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Figure 8.10a represents a case where 20% of the tasks are critical (in this case 

study, these are variants of a task as explained in Section 8.3.1). Table 8.2 shows the 

number of critical task requests and their corresponding number of resource types 

that are either facing or not facing variability for the case where 20% of tasks 

(variants) are critical. There were 24,264 critical task requests in total. When 20% of 

the resource types were facing variability, 19,266 critical task requests used 886 

resource types that are not facing variability and 4,998 critical task requests used 210 

resource types that are facing variability. Some of the 4,998 critical task requests were 

Medicine Consumption System 

(a) 
20% of Tasks are Critical 

(b) 
40% of Tasks are Critical 

  

(c) 
60% of Tasks are Critical 

(d) 
80% of Tasks are Critical 

  

Figure 8.10 – Case Study 1: percentages of executed critical task requests 
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able to use the resource types they originally needed, and most of the remaining task 

requests were executed after adaptation was performed. Hence, most critical task 

requests were able to access the resource types that they need. This explains the high 

percentage of executed critical task requests in this case, where 98% and 99% of the 

critical task requests were executed when using reactive adaptation and proactive and 

reactive adaptation respectively. 

Moreover, there is a linear drop in the percentage of executed critical task requests 

between the cases where 40% and 60% of resource types are facing variability (Figure 

8.10a). However, there is a higher drop between the cases where 60% and 80% of the 

resource types are facing variability. The reason for this higher drop is that, in the case 

where 80% of the resource types are facing variability, 4,008 critical task requests 

required 219 resource types not facing variability, and 20,256 critical task requests 

required 877 resource types facing variability. This means that most of the critical task 

requests required resource types that are facing variability. In comparison, in the case 

where 60% of the resource types are facing variability, the number of critical task 

requests (11,139) that require resource types not facing variability is close to the 

number of task requests (13,125) that require resource types facing variability. 

Table 8.2 – Case Study 1: the case where 20% of tasks (variants) are critical (number 
of critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 157 (20%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource 
Types facing and not 
facing variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% = 652 
886 not facing variability 153 19,266 

210 facing variability 100 4,998 

40% = 1,304 
661 not facing variability 144 14,319 

435 facing variability 128 9,945 

60% = 1,956 
466 not facing variability 123 11,139 

630 facing variability 141 13,125 

80% = 2,608 
219 not facing variability 86 4,008 

877 facing variability 153 20,256 
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When 40%, 60%, and 80% of tasks (variants) are critical (Figure 8.10b-d), there is a 

linear drop in the percentage of executed critical tasks between all the cases of 

resource variability. When comparing the cases where 20% (Figure 8.10a) and 40% 

(Figure 8.10b) of the tasks are critical, the percentage of executed critical tasks was 6% 

and 8% lower when 40% and 60% of the resources were facing variability 

respectively. This is due to a significant increase in the number of critical task requests. 

This number was 24,264 in the case where 20% of the tasks were critical and it 

became 90,105 in the case where 40% of the tasks are critical. Hence, the task requests 

increased by 271%. This increase is smaller when comparing the cases where 40% 

(Figure 8.10b) and 60% (Figure 8.10d) of the tasks are critical. The number of task 

requests was 90,105 in the case where 40% of the tasks are critical and it became 

113,688 in the case where 60% of the tasks are critical. Hence, the task requests only 

increased by 26%. Appendix B shows additional information on the number of critical 

task requests and their corresponding number of resource types for the cases where 

40%, 60%, and 80% of tasks (variants) are critical. 

8.3.3.2 Metric 2: Average criticality of executed tasks 

Figure 8.11(a-d) presents percentages that show how much more critical the 

executed task requests were in comparison to the non-executed ones. These 

percentages are presented for the four cases of task criticality, four cases of resource 

variability, and three cases of the mode of adaptation explained in Section 8.3.2.1. For 

all cases of task criticality and resource variability, the task requests that are executed 

when using proactive and reactive adaptation are on average more critical than the 

ones that are executed when using reactive adaptation. Additionally, using reactive 

adaptation gave a better result than using no framework. 

With proactive and reactive adaptation, the executed task requests were on average 

49% to 95% more critical than the non-executed ones. Proactive and reactive 

adaptation had better results than reactive adaptation with a difference of 1% to 3%, 

3% to 7%, 5% to 10%, and 7% to 13% in the cases where 20%, 40%, 60%, and 80% of 

tasks (variants) are critical respectively. This shows that SPARK was able to execute 

task requests of a higher criticality as the number of critical task requests increased. 

Additionally, as shown in Figure 8.11, the percentage is small (1% to 3%) when no 

framework is used in the case where 80% of the resource types are facing variability. 

The reason behind this result is that around half of the critical task requests were 
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executed, whereas the rest of the executed task requests were non-critical because 

without the framework the task requests just execute as they arrive. Hence, non-

critical task requests that arrived early depleted the resources that are needed for 

executing critical task requests that arrived late. 

Moreover, there is a linear drop between the cases where 20% and 40% and 40% 

and 60% of resource types are facing variability. However, a higher drop is shown 

Medicine Consumption System 

(a) 
20% of Tasks are Critical 

(b) 
40% of Tasks are Critical 

  

(c) 
60% of Tasks are Critical 

(d) 
80% of Tasks are Critical 

  

Figure 8.11 – Case Study 1: executed task requests that are more critical than non-executed 
ones (by percentage on average) 
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between the cases where 60% and 80% of resource types are facing variability. The 

reason for this higher drop is that most of the critical task requests required resource 

types that are facing variability. 

8.3.3.3 Metrics 3 and 4: Overhead and scalability 

I evaluated overhead and scalability in three parts of SPARK, namely proactive 

adaptation planning, reactive identification of tasks and variants, and reactive task 

execution allocation. What follows are the results of these two metrics. 

Proactive adaptation planning. The running time, shown in Figure 8.12, ranges 

between 33 and 294 milliseconds when the number of task variants is between 87 and 

783. The abovementioned values do not add a significant overhead to a software 

system, especially when considering that proactive adaptation planning is not 

executed with every task request. Additionally, the fitting curve in Figure 8.12 is 

polynomial with R2 equal to 0.9946, which indicates that the algorithm for proactive 

adaptation planning is scalable. 

Reactive identification of tasks and variants. The mean running time, shown in 

Figure 8.13, ranges between 0.0035 and 0.0040 milliseconds when the number of 

tasks is between 87 and 783. This overhead is minor, even though the identification is 

performed with every task request. Additionally, the fitting curve is polynomial with R2 

 

Figure 8.12 – Case Study 1: proactive adaptation planning running time 
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equal to 0.9807, which indicates that the algorithm for identifying tasks and variants is 

scalable. 

 Reactive task execution allocation. The running time for reactive task execution 

allocation is shown in Figure 8.14 and ranges between 1.81 and 10.92 milliseconds 

when the number of tasks is between 87 and 783. A few milliseconds are minor and do 

not constitute significant overhead. Additionally, the fitting curve in Figure 8.14 is 

polynomial with R2 equal to 0.9988, which makes the algorithm for task execution 

allocation scalable. 

The maximum overheads for the abovementioned three parts of SPARK in this case 

study were 294, 0.0040, and 10.92 milliseconds respectively. This overhead is minor 

and does not hinder a software system’s ability to execute tasks with a tolerable 

waiting time. For example, web users find it tolerable to wait for 2 to 4 seconds (Nah, 

2004). 

I compared the overhead values from this case study to those from the preliminary 

evaluation reported in Section 7.4. Consider the cases of 783 task variants in the case 

study and 1000 tasks in the preliminary evaluation since these are the closest to each 

other in the number of tasks (variants). The overhead reported in this case study was 

similar to that reported in the preliminary evaluation. The overhead for the proactive 

adaptation in this case study is 294 milliseconds, which is comparable to the 350 

milliseconds from the preliminary evaluation. Additionally, the overhead for the 

 

Figure 8.13 – Case Study 1: identification of tasks/variants running time 
(an “x” on the box p ot represents the mean) 
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reactive identification of tasks and variants in this case study is 0.0040 milliseconds, 

which is comparable to the 0.0047 milliseconds from the preliminary evaluation. 

Furthermore, the scalability is shown to be polynomial in both the preliminary 

evaluation and this case study. 

8.3.3.4 Summary of case study 1 

We can conclude from the results of this case study that using SPARK’s proactive 

and reactive adaptation produces better results for the first two metrics compared to 

using reactive adaptation only and to not using the framework. SPARK improved the 

percentage of executed critical task requests by 1% to 6% and 10% to 31% in 

comparison to using reactive adaptation only and no framework, respectively. It also 

improved the average criticality of executed task requests by 1% to 13% and 18% to 

55% in comparison to using reactive adaptation only and no framework, respectively. 

Furthermore, SPARK does not add significant overhead and is scalable. These results 

from this case study satisfy the hypothesis established in Section 8.3.2.3 because they 

show that SPARK helps software systems in increasing the number of executed critical 

task requests during resource variability without exceeding a tolerable waiting time 

concerning overhead and scalability. 

 

Figure 8.14 – Case Study 1: task execution allocation running time 

 

1.81
2.84

4.01
5.19

6.34

7.62
8.37

9.62

10.92

R² = 0.9988

0

2

4

6

8

10

12

87 174 261 348 435 522 609 696 783

R
u

n
n

in
g

 T
im

e
 

(I
n

 M
il

li
se

co
n

d
s)

Number of Tasks



Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 167 

 

 

8.3.4 Case study 2: Manufacturing system 

The second case study is related to a manufacturing system. The results of the 

metrics for this case study are reported and discussed in the following subsections. 

8.3.4.1 Metric 1: Percentage of executed critical task requests 

Figure 8.15 (a to d) shows the percentage of executed critical task requests for the 

four cases of task criticality, four cases of resource variability, and three cases of the 

mode of adaptation that were explained in Section 8.3.2.1. For all cases of task 

Manufacturing System 

(a) 
20% of Tasks are Critical 

(b) 
40% of Tasks are Critical 

  

(c) 
60% of Tasks are Critical 

(d) 
80% of Tasks are Critical 

  

Figure 8.15 – Case Study 2: percentages of executed critical task requests 
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criticality and resource variability, using SPARK’s proactive and reactive adaptation 

resulted in a higher percentage of executed critical task requests in comparison to 

using reactive adaptation only. Additionally, using reactive adaptation resulted in a 

higher percentage of executed critical task requests in comparison to using no 

framework. Proactive and reactive adaptation increased the executed critical task 

requests by 1% to 4% and 12% to 39% in comparison to using reactive adaptation and 

no framework respectively. What follows is an analysis of these results based on the 

number of critical task requests and the number of resource types that are facing 

variability. 

Figure 8.15a represents a case where 20% of the tasks are critical (in this case 

study, these are tasks and task variants as explained in Section 8.3.1). Table 8.3 shows 

the number of critical task requests and their corresponding number of resource types 

when facing and not facing variability for the case where 20% of tasks (variants) are 

critical. There were 111 critical task requests in total. When 20% of the resource types 

were facing variability, 65 critical task requests used 6 depletable and 2 reusable 

resource types that are not facing variability and 46 critical task requests used 3 

Table 8.3 – Case Study 2: the case where 20% of tasks (variants) are critical (number 
of critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 2 (20%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource Types 
facing and not facing 
variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% 

Not facing variability: 

6 depletable and 2 reusable 
2 65 

Facing variability: 

3 depletable and 1 reusable 
2 46 

40% 

Not facing variability: 

4 depletable and 2 reusable 
2 42 

Facing variability: 

5 depletable and 1 reusable 
2 69 

60% 

Not facing variability: 

4 depletable and 1 reusable 
2 42 

Facing variability: 

5 depletable and 2 reusable 
2 69 

80% 

Not facing variability: 

2 depletable and 1 reusable 
2 25 

Facing variability: 

7 depletable and 2 reusable 
2 86 
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depletable and 1 reusable resource types that are facing variability. Some of the 46 

critical task requests were able to use the resource types they originally needed, and 

most of the remaining task requests were executed after adaptation was performed. 

Hence, most critical task requests were able to access the resource types that they 

need. This explains the high percentage of executed critical task requests in this case, 

where 95% and 97% of the critical task requests were executed when using reactive 

adaptation and proactive and reactive adaptation respectively. 

Moreover, there is a linear drop in the percentage of executed critical task requests 

in the four cases of resource variability when 20% and 40% of tasks are critical (Figure 

8.15a-b). However, there is a higher drop in the cases where 60% and 80% of the 

resource types are facing variability when 60% and 80% of tasks are critical (Figure 

8.15c-d). The reason for this higher drop is that there is an increase in the number of 

critical task requests, which required a reusable resource type that is facing variability 

with no possible alternatives to execute the task requests. Appendix B shows 

additional information on the number of critical task requests and their corresponding 

number of resource types for the cases where 40%, 60%, and 80% of tasks (variants) 

are critical. 

8.3.4.2  Metric 2: Average criticality of executed tasks 

Figure 8.16 (a-d) presents percentages that show how much more critical the 

executed task requests were in comparison to the non-executed ones. These 

percentages are presented for the four cases of task criticality, four cases of resource 

variability, and three cases of the mode of adaptation explained in Section 8.3.2.1. For 

all cases of task criticality and resource variability, the task requests that are executed 

when using proactive and reactive adaptation are on average more critical than the 

ones that are executed when using reactive adaptation. Additionally, using reactive 

adaptation gave a better result than using no framework. 

With proactive and reactive adaptation, the executed task requests were on average 

6% to 75% more critical than the non-executed ones. Proactive and reactive adaptation 

had better results than reactive adaptation with an improvement of 1% to 4%, 1% to 

6%, 1% to 7%, and 1% to 4% in the cases where 20%, 40%, 60%, and 80% of tasks 

(variants) are critical respectively. This shows that SPARK was able to execute task 

requests of a higher criticality as the number of critical task requests increased. 
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As shown in Figure 8.16, the percentage becomes negative when no framework is 

used in the cases where 60% and 80% of the resource types are facing variability. A 

negative percentage means that the executed task requests are on average less critical 

than the non-executed ones. The reason behind this result is that a portion of the task 

requests required a reusable resource type that is facing variability and there is no 

Manufacturing System 

(a) 
20% of Tasks are Critical 

(b) 
40% of Tasks are Critical 

  

(c) 
60% of Tasks are Critical 

(d) 
80% of Tasks are Critical 

  

Figure 8.16 – Case Study 2: executed task requests are more or less critical than non-
executed ones - by percentage on average 

(positive percentages denote that the executed task requests are more critical while 
negative percentages denote that the executed task requests are less critical) 

 

24%

14%

-13%
-16%

74%

66%

44%

29%

75%

67%

47%

33%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 40% 60% 80%

E
x

e
cu

te
d

 T
a

sk
 R

e
q

u
e

st
s 

M
o

re
 o

r 
L

e
ss

 C
ri

ti
ca

l 
th

a
n

 N
o

n
-E

x
e

cu
te

d
 

O
n

e
s 

(B
y

 P
e

rc
e

n
ta

g
e

 o
n

 A
v

e
ra

g
e

)

Initial Percentage of Resource Types 
facing Variability

No Framework Reactive Proactive and Reactive

27%

19%

3%

-2%

63%

51%

30%

18%

64%

52%

35%

24%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

20% 40% 60% 80%
E

x
e

cu
te

d
 T

a
sk

 R
e

q
u

e
st

s 
M

o
re

 o
r 

L
e

ss
 C

ri
ti

ca
l 

th
a

n
 N

o
n

-E
x

e
cu

te
d

 
O

n
e

s 
(B

y
 P

e
rc

e
n

ta
g

e
 o

n
 A

v
e

ra
g

e
)

Initial Percentage of Resource Types 
facing Variability

No Framework Reactive Proactive and Reactive

26%
21%

-10%
-13%

66%

56%

17%

6%

67%

59%

24%

11%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

20% 40% 60% 80%

E
x

e
cu

te
d

 T
a

sk
 R

e
q

u
e

st
s 

M
o

re
 o

r 
L

e
ss

 C
ri

ti
ca

l 
th

a
n

 N
o

n
-E

x
e

cu
te

d
 

O
n

e
s 

(B
y

 P
e

rc
e

n
ta

g
e

 o
n

 A
v

e
ra

g
e

)

Initial Percentage of Resource Types 
facing Variability

No Framework Reactive Proactive and Reactive

28%
23%

-15% -16%

70%

60%

14%

2%

71%

63%

17%

6%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 40% 60% 80%

E
x

e
cu

te
d

 T
a

sk
 R

e
q

u
e

st
s 

M
o

re
 o

r 
L

e
ss

 C
ri

ti
ca

l 
th

a
n

 N
o

n
-E

x
e

cu
te

d
 

O
n

e
s 

(B
y

 P
e

rc
e

n
ta

g
e

 o
n

 A
v

e
ra

g
e

)

Initial Percentage of Resource Types 
facing Variability

No Framework Reactive Proactive and Reactive



Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 171 

 

 

framework to perform adaptation to address this issue. Hence, the resource was not 

kept available for the critical tasks that need it most. 

8.3.4.3 Metrics 3 and 4: Overhead and scalability 

Similar to the first case study, I evaluated the overhead and scalability in three parts 

of SPARK: (i) proactive adaptation planning, (ii) reactive identification of tasks and 

variants, and (iii) reactive task execution allocation. What follows are the results of 

these two metrics. 

Proactive adaptation planning. The proactive adaptation planning running time, 

shown in Figure 8.17, ranges between 1.45 and 2.57 milliseconds when the number of 

tasks and variants is between 1 and 7. Additionally, the fitting curve in Figure 8.17 is 

polynomial with R2 equal to 0.9862, which indicates that the algorithm for proactive 

adaptation planning is scalable. 

Reactive identification of tasks and variants. The reactive identification of tasks 

and variants running time, shown in Figure 8.18, ranges between 0.0020 and 0.0023 

milliseconds when the number of tasks and variants is between 1 and 7. Additionally, 

the fitting curve is polynomial with R2 equal to 0.9899, which indicates that the 

algorithm for the reactive identification of tasks and variants is scalable. 

Reactive task execution allocation. The reactive task execution allocation running 

time, shown in Figure 8.19, ranges between 0.0394 and 0.103 milliseconds when the 

 

Figure 8.17 – Case Study 2: proactive adaptation planning running time 
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number of tasks and variants is between 1 and 7. Additionally, the fitting curve in 

Figure 8.19 is polynomial with R2 equal to 0.9781, which indicates that the algorithm 

for reactive task execution allocation is scalable. 

Unlike the first case study, the results of overhead and scalability were not 

compared to the preliminary evaluation because the dataset of this case study has a 

smaller number of tasks and variants than the preliminary evaluation. However, like 

the first case study, SPARK’s overhead is minor and does not hinder a software 

system’s ability to execute tasks with a tolerable waiting time (e.g., 2 to 4 seconds as 

indicated by (Nah, 2004)). 

8.3.4.4 Summary of case study 2 

A conclusion that is drawn from the second case study is that SPARK’s proactive and 

reactive adaptation offers better results in the first two metrics compared to using 

reactive adaptation only and no framework. Proactive and reactive adaptation 

increased the percentage of executed critical task requests by 1% to 4% in comparison 

to reactive adaptation and by 12% to 39% in comparison to having no framework. 

Additionally, proactive and reactive adaptation increased the criticality of executed 

task requests by 1% to 7% in comparison to reactive adaptation and by 22% to 60% in 

comparison to having no framework. Furthermore, the results show that SPARK has 

low overhead and is scalable. The results of the four metrics satisfy the hypothesis 

 

Figure 8.18 – Case Study 2: identification of tasks/variants running time 
(an “x” on the box p ot represents the mean) 
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since SPARK helps software systems in increasing the number of executed critical task 

requests during resource variability without exceeding a tolerable waiting time 

concerning overhead and scalability. 

8.3.5 Comparison between the two case studies 

The average percentage of executed critical task requests is close in both case 

studies. For the four cases of resource variability and the four cases of task criticality, 

on average overall, 88% and 80% of the critical task requests were executed when 

using proactive and reactive adaptation in the first and second case study respectively. 

Additionally, the improvement that proactive and reactive adaptation provides over 

proactive adaptation is also close ranging from 1% to 6% in the first case study and 

1% to 4% in the second case study. 

In both case studies, the use of proactive and reactive adaptation provided an 

improvement over the use of reactive adaptation. This improvement is also close in 

both case studies and ranges from 1% to 6% in the first case study and 1% to 4% in 

the second case study. Additionally, in both case studies, having no framework yielded 

the lowest percentages of executed critical tasks compared to performing adaptation. 

In terms of overhead and scalability, both case studies show that SPARK has low 

overhead and is scalable, whereby the different parts of this framework have running 

times in milliseconds and the fittings curves of these running times are polynomial. 

 

Figure 8.19 – Case Study 2: task execution allocation running time 
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8.3.6 Threats to validity 

The evaluation results presented in this thesis have both internal and external 

threats to validity. An internal threat is related to the percentage of critical tasks and 

resource types facing variability, which were selected by the researcher. However, the 

evaluation considered multiple cases with an increasing percentage of critical tasks 

(20%, 40%, 60%, and 80%). Furthermore, each of the abovementioned cases had an 

increasing percentage of resource types that are facing variability (20%, 40%, 60%, 

and 80%). These cases show what would be the outcome when there is an increase in 

the percentage of critical tasks and the percentage of the resource types facing 

variability. Furthermore, since the percentages are increasing and reach up to 80%, the 

majority of tasks and resource types are included in the selection. 

As for the external threat to validity, the evaluation covered three types of systems, 

namely a medicine consumption system and a manufacturing system from the two 

case studies, in addition to the automated warehouse system from the preliminary 

evaluation. Therefore, the results may not be generalisable. However, the evaluation 

shows that different types of systems that depend on resources can benefit from 

SPARK. 

8.4 Evaluating intrusiveness 

The use of a framework with a software system requires some changes to the 

software system’s source code. These changes should be minimally intrusive for the 

source code because they would require less effort to perform (Klein, Maggio, et al., 

2014). Furthermore, there would be less possibility of introducing errors into the 

source code of a software system. Intrusiveness is measured in terms of the number of 

lines of code (LOC) and the number of source-code files that are added or modified to 

perform the integration. If minor changes are needed, then the integration is non-

intrusive. For example, consider that an enterprise system would benefit from using 

SPARK for performing resource-driven adaptation and that this system uses resources 

for many tasks (e.g., invoicing, manufacturing, reception, etc.). These tasks typically 

have many corresponding source code files at each layer of a multi-layer software 

architecture that includes business logic, controllers, infrastructure, and presentation 

(Martin, 2009). A minimally intrusive integration would only perform small changes to 

the smallest possible number of these source code files. 
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A prototype software application was developed to evaluate the intrusiveness of 

integrating SPARK into it. The integration was performed as I proposed in Section 4.5. 

The tasks being initiated in a software system should be intercepted and identified for 

SPARK to make adaptation decisions. Tasks are initiated by making a call to a service 

method. For example, to initiate an order preparation task a call is made to a 

corresponding service method called “PrepareOrder” in the software system. A service 

method is associated with its corresponding task on a SERIES task model as explained 

in Section 5.2.3.2. Hence, the prototype software application had service methods that 

correspond to tasks defined in a SERIES task model. 

Actions filters (Larkin et al., 2021) were used to intercept the service method calls 

and execute SPARK’s algorithm for identifying tasks and task variants. This way when 

a task or one of its variants is initiated SPARK can identify it and decide whether 

adaptation is needed. The implementation included one action filter with 136 LOC, 

which includes the functionality for intercepting tasks and caching task models to 

reduce execution time. The 136 LOC were added to two source-code files globally for 

the entire software system. This means that the number of LOC required for the 

integration of SPARK does not increase as the number of tasks in a software system 

increases. Based on this, it is possible to say that the integration is non-intrusive 

because it only requires the addition of a small number of LOC to a small number of 

source code files to make SPARK work for any number of tasks and task variants. Task-

specific source code files like business logic were not modified. This makes it easier to 

use SPARK with software systems that comprise thousands of tasks (e.g., enterprise 

systems). On the other hand, if the integration required the addition and modification 

of many LOC in several source-code files per task, then the intrusiveness would 

increase as the number of tasks increases, due to the widespread changes. 

8.5 Chapter summary 

This chapter presented the evaluation of the proposed framework for resource-

driven adaptation (SPARK). I conducted a preliminary evaluation of SPARK’s feasibility 

by developing a simulator of an automated warehouse system. Additionally, this 

preliminary evaluation involved measuring SPARK’s overhead and scalability. 

Furthermore, I evaluated SPARK through two case studies that include datasets from a 

medicine consumption system and a manufacturing system. I measured several 

metrics including the percentage of executed critical task requests, the average 
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criticality of the executed task requests versus the non-executed ones, overhead, and 

scalability. The results showed that SPARK’s proactive and reactive adaptation 

increased the number of executed critical task requests and the average criticality of 

the executed task requests during resource variability in comparison to using reactive 

adaptation only and no framework. SPARK did not add significant overhead and was 

shown to be scalable. Furthermore, a few lines of code are needed to make SPARK 

work with a software system; this means that it is non-intrusive. 
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9  

Conclusions and Future Work 

This chapter summarises the work described in the thesis by presenting an 

overview of the contributions and evaluation results. Moreover, this chapter presents 

ideas for future work and a few concluding final remarks. 

9.1 Conclusions 

This thesis contributed an approach for supporting resource-driven adaptation 

when software systems are facing resource variability. Chapter 3 presented a 

literature review of existing task modelling notations and resource-driven adaptation 

approaches. This literature review compared existing task modelling notations based 

on their task types and operators and their support for resource-driven adaptation 

(e.g., resource types and task variants). This helped in identifying the gaps in existing 

task modelling notations and in formulating the first research question (RQ1) as 

specified in Section 1.4.1. Additionally, the literature review categorised and critically 

analysed existing resource-driven adaptation approaches (e.g., based on the types of 

resources and adaptation that they support). This helped in formulating the second 

research question (RQ2) specified in Section 1.3.1. To answer these questions, this 

thesis proposed a task modelling notation called SERIES and a framework called 

SPARK to support resource-driven adaptation in software systems. 

The proposed notation (SERIES) and framework (SPARK) fill the gaps (1-3) 

presented in Section 3.5. The first gap is related to considering tasks in the resource-

driven adaptation process to provide granularity in the adaptation decision-making 

based on task differences. In this regard, SERIES supports the representation of tasks 

and their variants with properties like resource consumption and the role of the user 
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who is initiating the task. Additionally, SPARK uses this data in the resource-driven 

adaptation process to compute unique priorities for tasks and their variants and to 

decide whether an adaptation type is applicable to a task. The second gap is related to 

supporting multiple types of resources, to make the resource-driven adaptation 

approach more comprehensive. In this regard, SERIES supports the association of 

tasks with types of resources that are defined at runtime according to what the 

software system requires. Moreover, SPARK considers the differences among 

resources when making adaptation decisions. For example, it determines whether a 

resource is facing variability by observing the quantity on hand for depletable 

resources and the effect of reusable resources on the execution duration of tasks. The 

third gap is related to supporting multiple types of adaptation to provide versatility in 

addressing resource variability. In this regard, SPARK supports four types of 

adaptation, namely (i) execution of task variants that require fewer resources; (ii) 

substitution of resource types with alternative ones; (iii) execution of tasks in a 

different order based on their priorities; and (iv) cancellation of tasks when no other 

task variant or resource can be used. Hence, if one type of adaptation is not applicable 

to a task another type of adaptation would be chosen. 

Chapter 4 presented an overview of the proposed work. This overview showed the 

involved stakeholders, adaptation components, and data. The stakeholders include 

system administrators and software practitioners, whose role is to provide setup data 

and define task models related to the software system respectively. The stakeholders 

also include end-users who initiate tasks and provide feedback to the software system 

when it performs adaptation. Moreover, the adaptation components have proactive and 

reactive capabilities. The proactive components are mainly responsible for uniquely 

prioritising tasks based on multiple criteria and selecting the types of adaptation to 

perform based on their cost. The reactive components are mainly responsible for 

identifying if a type of resource is facing variability, managing the execution of the 

tasks, and eliciting and providing feedback from and to end-users. The data required 

by the proposed framework (SPARK) to perform the adaptation includes setup data 

(e.g., type of resources) and task models that are represented using the proposed task 

modelling notation (SERIES). Furthermore, the overview that Chapter 4 presented 

paved the way for the contributions of Chapters 5 and 6. 

Chapter 5 presented the proposed task modelling notation (SERIES). The meta-

model of SERIES consists of constructs for representing task models. Examples of 
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those constructs include resource types, task priorities, task variants, and feedback 

properties. SERIES represents task models graphically to make them more legible and 

understandable. Hence, software practitioners can understand how abstractions are 

refined (e.g., abstract tasks to subtasks) without having to read dense text. Chapter 5 

presented an example from an automated warehouse system to illustrate these 

constructs. Furthermore, Chapter 5 presented a tool for supporting the creation of task 

models using SERIES and for managing setup data (e.g., resource types and user roles). 

Chapter 6 presented the proposed resource-driven adaptation framework (SPARK). 

This chapter explained the proactive and reactive adaptation components of SPARK. 

Moreover, Chapter 6 presented an example from an automated warehouse system to 

demonstrate the calculations that SPARK’s adaptation components perform. Examples 

of those calculations included the calculation of task priorities, the selection of 

adaptation types, and the allocation of task executions. Furthermore, Chapter 6 

discussed the implementation of the adaptation components as a prototype. 

Chapter 7 presented an assessment of SERIES based on two paradigms, namely the 

Cognitive Dimensions Framework and the Physics of Notations. I used these paradigms 

because they provide useful principles for evaluating visual notations. Additionally, 

Chapter 7 presented an evaluation of SERIES via a user study with software 

practitioners. The purpose of the study was to measure the ability of software 

practitioners to explain and create task models, as well as the usability of SERIES and 

the clarity of its semantic constructs. The results showed that software practitioners 

performed very well when explaining and creating task models using SERIES. These 

results were reflected in the task modelling activities that the participants performed 

as well as in their positive feedback regarding the usability of SERIES and the clarity of 

its semantic constructs. The user study also provided some additional insights that 

were not part of the original research question. In this regard, the feedback of the 

participants on the SERIES notation included comments that were related to the 

dimensions and principles of the Cognitive Dimensions Framework and Physics of 

Notations paradigms respectively. This was an additional insight because the user 

study did not include questions that are directly related to these paradigms. The 

feedback provided by the participants complemented the initial assessment that I did 

with these two paradigms and showed that SERIES adhered to their recommendations. 

Additionally, participants with different levels of experience in the software industry 

achieved high scores on both the explanation and creation of SERIES task models. 
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Although it is not the study’s objective to compare these scores by level of experience, I 

was able to perform this comparison and get some insights because the sample of 

participants was diverse and included software practitioners whose levels of 

experience ranged from less than one year up to ten years. 

Chapter 8 presented a preliminary evaluation with generated data for SPARK via a 

tool that simulates an automated warehouse scenario. The tool served as a proof-of-

concept prototype to evaluate SPARK’s feasibility. Furthermore, Chapter 8 presented 

two case studies that evaluated SPARK with existing datasets that are related to a 

medicine consumption system and a manufacturing system. The two case studies 

involved measuring the percentage of executed critical task requests, and the average 

criticality of the executed task requests versus the non-executed ones, overhead, and 

scalability. The results showed an increase in the number of executed critical task 

requests during resource variability when using SPARK. Moreover, the time it took to 

prepare and apply adaptation plans did not add significant overhead that affects the 

software system’s ability to execute tasks in a tolerable waiting time. Furthermore, the 

results showed that SPARK is scalable relative to the increase in the number of tasks. 

Additionally, the preliminary evaluation done on the SPARK framework provided some 

additional insights that were not part of the original research question. In this regard, 

the identification of tasks and variants was initially applied without caching the tasks 

and variants. However, the results showed that the performance can be improved 

further. Hence, I created an alternative implementation that performs caching and 

compared both implementations in the evaluation. This shows that caching improved 

the performances and was therefore subsequently used in the case studies. Moreover, 

SPARK originally added a fixed epsilon value to the initial task priorities to make them 

unique if they were equal. However, I saw that the epsilon value should be changed 

when the number of tasks increases. Therefore, I adjusted the original design to have a 

changeable epsilon value, which makes the calculation of the adjusted priorities 

applicable to any number of tasks. 

9.2 Limitations 

The work presented in this thesis has some limitations that are discussed in the 

following subsections. These limitations do not undermine the contribution but are 

rather either out of the scope of this work or could complement it through future work. 
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9.2.1 Using SPARK in different types of software systems 

The evaluation of the SPARK framework was done with three types of software 

systems. However, the results may not be generalisable to some types of software 

systems that have different requirements. For example, embedded systems, such as 

domestic appliances, have a limited amount of computational resources and a small 

number of tasks running at the same time. In this type of system, SPARK would be 

excessive because it is intended for more complex cases of resource variability. 

9.2.2 Using SERIES with other frameworks 

Frameworks other than SPARK could potentially use SERIES for modelling tasks. 

Moreover, frameworks could rely on metrics as part of their adaptation process as is 

done, for example, in some brownout approaches (Xu and Buyya, 2019). SERIES task 

models reflect metrics like speed and aesthetics indirectly through task variants. 

However, SERIES was not designed to provide concepts for explicitly defining metrics. 

Therefore, SERIES would have to be extended if such metrics are explicitly needed by 

other frameworks. 

9.2.3 Integrating SPARK into applications 

I integrated SPARK into prototype software applications to evaluate it. However, an 

application programming interface (API) is needed to enable software practitioners to 

integrate SPARK into their software systems. This API should work with existing 

software development technologies such as Integrated Development Environments. 

This thesis did not present an integration API for SPARK because it is outside the scope 

of this work. 

9.2.4 Providing additional analysis in SPARK 

One of SPARK’s adaptation components forecasts the number of task execution 

requests in software systems. SPARK uses this forecasted number to estimate future 

workloads so it can prioritise tasks and allocate task executions accordingly. However, 

SPARK does not currently forecast the use of resources by future tasks before making 

resource substitution decisions. The forecasted resource usage would enable SPARK to 
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analyse which critical tasks may need certain types of resources in the future, to avoid 

allocating these resources to non-critical tasks that need to execute in the present. 

9.3 Future work 

SPARK and SERIES help software systems that rely on multiple resource types in 

addressing resource variability through resource-driven adaptation. Nonetheless, as 

explained in this section, there is room for extending SPARK and SERIES in the future. 

9.3.1 Extending SERIES and its supporting tool 

It is possible to investigate further how to elicit and present feedback to end-users 

based on the adaptation-related feedback properties of SERIES. In this regard, a study 

with end-users would provide ideas about how they prefer to receive and provide 

feedback when a software system performs adaptation to address resource variability. 

Based on the outcome of this study, it is possible to extend SERIES with additional 

properties. Furthermore, besides the extension of the notation, it is possible to create 

and refine a UI for end-user feedback. Software practitioners would integrate this UI 

with software systems that face resource variability and require resource-driven 

adaptation. 

It is also possible to extend the tool of SERIES to support additional features that 

would be useful for software practitioners. In this regard, the extension could target 

the generation of code that corresponds to the service methods of tasks in a SERIES 

task model. This enables software practitioners to automatically link the task models 

that they create using SERIES to the source code of their software systems. 

Additionally, having a search mechanism would enable software practitioners to 

search through multiple task models and find elements that match advanced search 

criteria (e.g., composite conditions with wild characters). Then, the software 

practitioners would be able to perform an update simultaneously on all the matching 

tasks and relationships from the search result. 

9.3.2 Integrating SPARK with real-world software systems 

In this thesis, I integrated SPARK with a prototype software system to evaluate its 

intrusiveness (refer to Section 8.4). It is possible to develop further the integration 
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mechanism by creating libraries that software practitioners can use through an 

application programming interface (API). This enables software practitioners to 

leverage resource-driven adaptation capabilities in the software systems that they are 

developing using existing IDEs. For example, software practitioners would be able to 

use classes from these libraries that represent concepts like tasks and resources and 

invoke services to perform adaptation when needed. These capabilities are already 

present in SPARK but having an API makes them more accessible during software 

development. 

By developing the abovementioned API and extending the supporting tool (refer to 

Section 9.3.1), it is possible to improve the adoption of resource-driven adaptation in 

the software industry. This would be due to the improvement of the ceiling of the tool 

(i.e., what it can achieve) and the ability to use the proposed framework as an out-of-

the-box solution like any software development framework. 

9.3.3 Exploring other techniques 

We also plan to investigate how to expand the proposed work by using other 

techniques. We discuss these possible expansions with the following techniques: (i) 

knapsack, (ii) operations research, (iii) AI planning, and (iv) benchmarks. 

Knapsack problem. The multidimensional knapsack problem (Lust and Teghem, 

2012) is an optimisation problem that involves making an optimal selection from 

items that have multidimensional weights. Methods M1 and M2 (refer to Section 6.3.4) 

allocate executions to tasks based on priorities. The items and weights in this case are 

the tasks and their priorities, respectively. The priorities are computed based on 

multiple criteria before applying methods M1 or M2. Hence, tasks that have a higher 

priority get allocated more executions. Since the multidimensional knapsack problem 

is known to be NP-hard (Chu and Beasley, 1998), we plan to investigate the use of the 

prioritisation technique and methods M1 and M2 proposed in this thesis for solving 

existing knapsack problems, like financial portfolio selection with a small amount of 

computational effort. 

Operations research. Operations research (OR) encompasses problem-solving 

techniques, such as simulation and mathematical optimisation, which support 

decision-making. Operations research is used for business decisions and helps 

companies in setting up their decision support systems (Gupta et al., 2022). Future 
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work could consider using OR for placing constraints on metrics that are meaningful 

for a domain (e.g., resource consumption rate, cost of resources, loss of human life, 

etc.). The work presented in this thesis indirectly reflects these metrics through 

priorities and task variants. For example, in the given automated warehouse example 

the task “pack items in a box” has two variants “pack randomly” and “pack by item 

type”, which improve speed and aesthetics respectively. It would be useful to explore 

whether the understandability of these metrics would improve if they were stated 

explicitly instead of keeping them implicitly stated via the task variants and priorities. 

AI planning. Future work could also explore how addressing resource variability 

could benefit from AI planning, which involves choosing actions to perform and 

structuring them in a plan (Wilkins, 2014, pp. 3–5). In this regard, it is possible to 

consider how AI planning could benefit both SERIES and SPARK. 

More specifically, SERIES could be extended with concepts that are offered by the 

Planning Domain Definition Language (PDDL+), which is a family of languages for 

defining a planning problem. PDDL+ has the concepts of events and effects (Coles and 

Coles, 2014). An event represents an occurrence within a system and an effect specifies 

a change that shall be done when the event occurs. The events and effects in PDDL+ 

could complement the work presented in this thesis in the case of dynamic resources. 

These resources have settings variables that a software system can change when there 

is resource variability. Examples include changing the brightness of a display to reduce 

battery consumption. In this thesis, these settings are changed via parameters of task 

variants to take into consideration differences among tasks. However, if some settings 

apply in the same way to all tasks, it could be possible to change them as an effect of 

resource variability events. Furthermore, if a language such as PDDL+ was used to 

complement SERIES it is important to evaluate its usability in comparison to the 

graphical notation of SERIES. Hence, some additional evaluation with software 

practitioners will provide insights into their ability to understand and use concepts 

like events and effects in a textual language like PDDL+. 

The PDDL+ events and effects shall be defined on SERIES task models and given as 

input to SPARK. Hence, SPARK shall identify when these events occur and apply their 

corresponding effects. To achieve this, SPARK shall define two additional adaptation 

components, namely an event monitor and an effector. The event monitor shall 

monitor the occurrence of events and notify the effector accordingly. In turn, the 

effector shall apply an event's corresponding effect, which will change the settings of a 
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dynamic resource to address a situation of resource variability. Some additional 

evaluation would also be needed on SPARK to assess its ability to handle events and 

apply their corresponding effects without adding significant overhead to software 

systems. 

Benchmarks. Benchmarks are important for comparing frameworks that have the 

same objective. Presently, there is a lack of benchmarks for evaluating resource-driven 

adaptation frameworks (Xu and Buyya, 2019). It is challenging to create such 

benchmarks because existing approaches have different objectives and capabilities. 

For example, SPARK supports depletable and reusable resources whereas other 

approaches only support one type of resource. Hence, an important direction for future 

work would be to create a set of benchmark metrics and datasets that can be used to 

evaluate and compare resource-driven adaptation frameworks. These benchmarks 

should consider different objectives of existing work on resource-driven adaptation, as 

well as different types of resources, and different ways of adapting the systems. The 

metrics and datasets that I used for evaluating SPARK could serve as a starting point to 

create benchmarks. Alternatively, benchmarks from AI planning could also be explored 

such as the ones that are used in international planning competitions (Coles et al., 

2012). Examples of these benchmarks include controlling ground traffic at an airport 

(Botea et al., 2005) and resupplying lines in a faulty electricity grid (Hoffmann et al., 

2006). 

9.4 Final thoughts 

The contributions of this thesis are not meant to replace existing software 

development approaches, but rather to further empower software practitioners to 

develop software systems that are capable of addressing resource variability through 

resource-driven adaptation. This in turn benefits end-users because software systems 

will be capable of executing important tasks when resources are scarce or unavailable. 

Although the focus of this thesis was on enterprise systems as motivating examples, 

SPARK and SERIES are not restricted to these systems. I chose enterprise systems 

because they encompass a variety of tasks and resources and their ability to function 

affects multiple domains (e.g., manufacturing and medical). Nonetheless, it is possible 

to use SPARK and SERIES to support resource-driven adaptation in other types of 

software systems that rely on resources, which are affected by variability. 
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The work presented in this thesis contributed to the field of self-adaptive systems 

by placing further emphasis on the importance of considering resource variability as a 

trigger for adaptation. Furthermore, this work does not only consider computing 

resources (e.g., CPU) that a software system needs, but it also considers different types 

of resources that are needed to execute the tasks that are meant to be fulfilled by these 

systems. Research on self-adaptive systems has been ongoing for years and it 

empowered software systems to manage themselves and dynamically adapt to change. 

Nonetheless, it is still possible to do further research work. Hence, in these final 

thoughts, it is worth mentioning that increasing the adoption of adaptation 

frameworks is important to benefit from the contributions of the research on self-

adaptive systems. APIs and tools can integrate adaptation frameworks and software 

development frameworks (e.g., web development frameworks that practitioners use in 

the software industry). Moreover, it would be interesting to see future research that 

explores what software practitioners think about adaptation frameworks and how 

they use them. The outcome could be a set of guidelines that informs research on self-

adaptive systems. Hence, when designing an adaptation framework, researchers would 

not only take into account how the framework works and whether it produces the 

desired outcome, but would also consider how it shall be used in practice by assessing 

it against a set of guidelines. 
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A 

Artefacts from the evaluation of SERIES 

This appendix presents the requirements and task models used in the user study 

from the manufacturing and surveillance domains, as well as the questionnaire. 

A.1 Manufacturing Domain: Requirements and Task Models 

 

Figure A.1 – Task model for explanation (manufacturing) 
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(1) Add an abstract task named "Manufacture Food Product". This task has two parameters: a 

"Product Quantity" that is non-changeable and a "Marking Type" that is changeable. It also 

requires "Ingredients" resource type that is "flexible" with a quantity of 10. For this task, 

feedback from the user shall be requested and the feedback location shall be a panel. 

(2) Add three application tasks as subtasks of "Manufacture Food Product". These three 

subtasks are named "Mix Ingredients", "Add Flavour", and "Mark Expiration Date" 

respectively. 

"Mix Ingredients" requires a "Mixer" resource type that is "strict" with a quantity of 1. 

"Add Flavour" has the following description: "Set a flavour for the food product". This task 

requires a "Product Flavour" resource type that is "flexible" with a quantity of 1. 

"Mark Expiration Date" requires a "Marking Machine" resource type that is "strict" with a 

quantity of 1. This task has a high priority at any time frame. 

(3) Add two application task variants for "Mix Ingredients". 

• The first variant is named "Fast Mix" and has a high priority and a parameter condition 

that specifies "Product Quantity > 100", and a high resource intensiveness for the "Mixer" 

resource type. 

• The second variant is named "Slow Mix" and has a low priority and a parameter 

condition that specifies "Product Quantity <= 100", and a low resource intensiveness for 

the "Mixer" resource type. 

Add two application task variants for "Mark Expiration Date". 

• The first task variant is named "Mark as Stamp" and has a low priority, a parameter 

condition that specifies "Marking Type=Stamp", and a high resource intensiveness for the 

"Marking Machine" resource type. 

• The second task variant is named "Mark as Sticker" and has a high priority, a parameter 

condition that specifies "Marking Type=Sticker", and a low resource intensiveness for the 

"Marking Machine" resource type. 

• Both task variants have a "Role" that is equal to "Any". 

Figure A.2 – Requirements to create a task model (manufacturing) 
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A.2 Surveillance Domain: Requirements and Task Models 

 

Figure A.4 – Task model for explanation (surveillance) 

 

Figure A.3 – Expected task model based on requirements (manufacturing) 
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(1) Add an abstract task named "Monitor Area". This task has two parameters: a "Robot 

Type" that is non-changeable and a "Video Quality" that is changeable. It also requires 

"Camera" resource type that is "strict" with a quantity of 10. For this task, feedback from the 

user shall be requested and the feedback location shall be a panel. 

(2) Add three application tasks as subtasks of "Monitor Area". These three subtasks are 

named "Set Surveillance Type", "Set Footage Quality", and "Record Footage" respectively. 

"Set Surveillance Type" requires a "Robot" resource type that is "strict" with a quantity of 10. 

"Set Footage Quality" has the following description: "HD or SD footage quality". This task 

requires a "Battery" resource type that is "strict" with a quantity of 1. 

"Record Footage" requires a "Bandwidth" resource type that is "strict". This task has a high 

priority at any time frame. 

(3) Add two application task variants for "Set Surveillance Type". 

• The first variant is named "Set to Aerial Surveillance" and has a high priority and a 

parameter condition that specifies "Robot Type=Drone". 

• The second variant is named "Set to Ground Operation" and has a low priority and a 

parameter condition that specifies "Robot Type=Driver Bot". 

Add two application task variants for "Set Footage Quality". 

• The first task variant is named "Set to HD Quality" and has a high priority, a parameter 

condition that specifies "Video Quality=HD", and a high resource intensiveness for the 

"Battery" resource type. 

• The second task variant is named "Set to SD Quality" and has a low priority, a parameter 

condition that specifies "Video Quality=SD", and a low resource intensiveness for the 

"Battery" resource type. 

• Both task variants have a "Role" that is equal to "Any". 

Figure A.5 – Requirements to create a task model (surveillance) 
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Figure A.6 – Expected task model based on requirements (surveillance) 
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A.3 Questionnaire 

Background Information 

1. How long have you been working professionally in the software industry 

(either employed or as a freelancer)? 

Never  Less than 1 Year  1 to 5 Years  

6 to 10 Years  Over 10 Years  

2. What kind of work do you do, e.g., software development, and what types of 

projects do you work on, e.g., games, business applications, etc.?  

(Skip if you answered “Never” to question 1) 

      

3. What kinds of visual models (diagrams) and modelling tools have you used 

and in what capacity (i.e., in a course, at work, or on your own)? 

Examples of visual models (diagrams) include the following: software models 

(e.g., flow charts, UML diagrams, etc.), engineering models (e.g., circuits and 

logic), and so on. 

Visual Model (Diagram) Tool Capacity 
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Questionnaire 

1. Perception and Suggestions Regarding Semantic Constructs  

1.1. Ratings. Please rate how well the S RI S constructs “a” to “f”, listed 

below, convey a clear meaning that enables you to explain and create task 

models. 

a. Hierarchy of a task and its subtasks: A task that comprises several actions 

is broken down into subtasks that represent these actions. An example is a 

“prepare customer order” task with the following subtasks: “locate items” 

and “pack items in a box”. 

Meaning is Very Unclear      Meaning is Very Clear 

b. Hierarchy of a task and its variants: A task that can be executed in 

different ways has task variants, which represent special cases of a task. For 

example, a task “pack items in a box” can be done “randomly” (variant 1) or 

“sorted by item type” (variant 2). 

Meaning is Very Unclear      Meaning is Very Clear 

c. Task variant properties: These are the properties according to which task 

variants (point b – above) differ and include parameter values, the role of 

the initiating user, and resource consumption. 

Meaning is Very Unclear      Meaning is Very Clear 

d. Priorities of tasks and task variants: Priorities represent the importance 

of tasks, whereby a high-priority task is more important than a low-priority 

one. These priorities could differ among timeframes (e.g., a task could have 

a high priority between 8:00 AM and 2:00 PM and a low priority between 

2:00 PM and 5:00 PM). 

Meaning is Very Unclear      Meaning is Very Clear 
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e. Resource types used by tasks: A task requires a certain resource type(s) 

to be executed. Examples of resource types include robots, boxes, and 

medicine. 

Meaning is Very Unclear      Meaning is Very Clear 

f. Feedback properties: These properties specify whether the system should 

ask the users for their feedback and how the system should present its 

feedback to the users. 

Meaning is Very Unclear      Meaning is Very Clear 

1.2. Do you recommend any changes to the abovementioned constructs? 

      

2. Perceived Usability 

2.1. How would you rate the overall ease of use of SERIES? 

a. I found SERIES difficult to use. 
Strongly 
Agree      

Strongly 
Disagree 

b. SERIES is clear and understandable to me. 
Strongly 
Agree      

Strongly 
Disagree 

c. Using SERIES was frustrating. 
Strongly 
Agree      

Strongly 
Disagree 

d. I found SERIES easy to use. 
Strongly 
Agree      

Strongly 
Disagree 

e. Using SERIES required a lot of mental effort. 
Strongly 
Agree      

Strongly 
Disagree 
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Do you have any comments regarding ease of use? 

      

2.2. Please choose three out of the following words to describe SERIES. The 

words that you choose may be positive, negative, or a combination of both. 

☐   Appealing ☐   Confusing 

☐   Easy to use ☐   Difficult 

☐   Consistent ☐   Hard to use 

☐   Clear ☐   Inconsistent 

☐   Familiar ☐   Intimidating 

☐   Friendly ☐   Overwhelming 

☐   Straight Forward ☐   Rigid 

☐   Understandable ☐   Incomprehensible 

Please clarify your choice of terms and mention any suggested improvements 

that you may have. 

      

3. Would you like to make any final comments? 

      

 





 213 

 

B 

Artefacts from the evaluation of SPARK 

This appendix presents the remaining cases (40%, 60%, and 80%) of task criticality 

and their four cases of resource variability, for the two case studies from Chapter 8. 

B.1 Case Study 1: Medicine Consumption System 

Table B.1 – Case Study 1: the case where 40% of tasks (variants) are critical (number of 
critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 314 (40%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource 
Types facing and not 
facing variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% = 652 
1,673 not facing variability 303 71,369 

406 facing variability 188 18,736 

40% = 1,304 
1,252 not facing variability 288 52,140 

827 facing variability 246 37,965 

60% = 1,956 
842 not facing variability 253 35,100 

1,237 facing variability 277 55,005 

80% = 2,608 
420 not facing variability 180 16,222 

1,659 facing variability 301 73,883 

 

 



214 B.1 Case Study 1: Medicine Consumption System  

 
Table B.2 – Case Study 1: the case where 60% of tasks (variants) are critical (number of 

critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 471 (60%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource Types 
facing and not facing 
variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% = 652 
2,114 not facing variability 448 90,828 

524 facing variability 279 22,860 

40% = 1,304 
1,590 not facing variability 421 66,073 

1,048 facing variability 365 47,615 

60% = 1,956 
1,068 not facing variability 371 44,334 

1,570 facing variability 415 69,354 

80% = 2,608 
539 not facing variability 270 21,534 

2,099 facing variability 452 92,154 

Table B.3 – Case Study 1: the case where 80% of tasks (variants) are critical (number of 
critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 628 (80%) 

Percentage of 
Resource Types facing 
variability 

Number of Resource 
Types facing and not 
facing variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% = 652 
2,407 not facing variability 599 106,799 

611 facing variability 377 26,825 

40% = 1,304 
1,804 not facing variability 562 79,150 

1,214 facing variability 499 54,474 

60% = 1,956 
1,208 not facing variability 497 53,179 

1,810 facing variability 559 80,445 

80% = 2,608 
610 not facing variability 365 25,296 

2,408 facing variability 605 108,328 
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B.2 Case Study 2: Manufacturing System 

Table B.4 – Case Study 2: the case where 40% of tasks (variants) are critical (number of 
critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 3 (40%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource Types 
facing and not facing 
variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% 

Not facing variability: 

7 depletable and 2 reusable 
3 75 

Facing variability: 

3 depletable and 1 reusable 
3 62 

40% 

Not facing variability: 

5 depletable and 2 reusable 
3 52 

Facing variability: 

5 depletable and 1 reusable 
3 85 

60% 

Not facing variability: 

4 depletable and 1 reusable 
3 47 

Facing variability: 

6 depletable and 2 reusable 
3 90 

80% 

Not facing variability: 

2 depletable and 1 reusable 
3 30 

Facing variability: 

8 depletable and 2 reusable 
3 107 
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Table B.5 – Case Study 2: the case where 60% of tasks (variants) are critical (number of 

critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 4 (60%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource Types 
facing and not facing 
variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% 

Not facing variability: 

6 depletable and 2 reusable 
4 115 

Facing variability: 

3 depletable and 1 reusable 
4 88 

40% 

Not facing variability: 

6 depletable and 2 reusable 
4 82 

Facing variability: 

6 depletable and 1 reusable 
4 121 

60% 

Not facing variability: 

4 depletable and 1 reusable 
4 57 

Facing variability: 

8 depletable and 2 reusable 
4 146 

80% 

Not facing variability: 

2 depletable and 1 reusable 
4 40 

Facing variability: 

10 depletable and 2 reusable 
4 163 

Table B.6 – Case Study 2: the case where 80% of tasks (variants) are critical (number of 
critical task requests and their corresponding number of resource types) 

Critical Tasks (variants) = 6 (80%) 

Percentage of 
Resource Types 
facing variability 

Number of Resource Types 
facing and not facing 
variability 

Critical 
Tasks 
(variants) 

Critical Task 
Requests 

20% 

Not facing variability: 

10 depletable and 2 reusable 
6 126 

Facing variability: 

3 depletable and 1 reusable 
4 88 

40% 

Not facing variability: 

7 depletable and 2 reusable 
6 93 

Facing variability: 

6 depletable and 1 reusable 
4 121 

60% 

Not facing variability: 

5 depletable and 1 reusable 
6 68 

Facing variability: 

8 depletable and 2 reusable 
4 146 

80% 

Not facing variability: 

2 depletable and 1 reusable 
5 45 

Facing variability: 

11 depletable and 2 reusable 
6 169 

 


