
Open Research Online
The Open University’s repository of research publications
and other research outputs

Addressing Resource Variability Through
Resource-Driven Adaptation
Thesis
How to cite:

Akiki, Paul (2023). Addressing Resource Variability Through Resource-Driven Adaptation. PhD thesis The
Open University.

For guidance on citations see FAQs.

c© 2023 Paul Akiki

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.000159f5

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.21954/ou.ro.000159f5
http://oro.open.ac.uk/policies.html

School of Computing and Communications

Faculty of Science, Technology, Engineering, and Mathematics

The Open University

Addressing Resource Variability

Through Resource-Driven Adaptation

Paul A. Akiki

A thesis submitted in fulfilment of the requirements for the

degree of

Doctor of Philosophy in Computing

United Kingdom

March 2023

To my family:

My father Antoine and my mother Randa

My brother Pierre and my sister Patricia

 v

Abstract

Software systems execute tasks that depend on different types of resources.

However, the variability of resources may interfere with the ability of software

systems to execute important tasks. Resource variability can occur due to several

reasons including unexpected hardware failures, excess workloads, or lack of

materials. For example, in automated warehouses, malfunctioning robots could delay

product deliveries causing customer dissatisfaction and, therefore, reducing an

enterprise’s sales. Moreover, the unavailability of medical materials hinders the ability

of hospitals to perform medically-critical operations causing loss of life. In this thesis,

we propose to address the problem of resource variability through resource-driven

adaptation, using task models as input for adaptation decisions. The thesis presents

the following contributions:

• SPARK: a framework for performing proactive and reactive resource-driven

adaptation based on multiple task-related criteria. The framework supports

different types of depletable and reusable resources that could face variability.

SPARK assists with four types of adaptation, namely: (i) execution of a similar task

that requires fewer resources, (ii) substitution of resources by alternative ones,

(iii) execution of tasks in a different order, and (iv) cancellation of the execution of

tasks.

• SERIES: a task modelling notation and editor tool that enables software

practitioners to create task models that serve as input for SPARK. SERIES supports

the representation of task priorities, task variants, task execution types, resource

types, and properties representing users’ feedback.

SPARK was evaluated in terms of the percentage of executed critical task requests,

the average criticality of the executed task requests in comparison to the non-executed

ones, overhead, and scalability through two case studies concerned with a medicine

consumption system and a manufacturing system. The results of the evaluation

showed that SPARK increased the number of executed critical task requests during

vi

resource variability. Additionally, the results showed that the time it takes to prepare

and apply adaptation plans does not add significant overhead that hinders the ability

of software systems to execute tasks in a tolerable waiting time. Furthermore, SPARK

was shown to be scalable since the abovementioned time increases polynomially

relative to the input size (number of tasks and task variants).

SERIES was evaluated through a user study with twenty software practitioners. The

results showed that software practitioners performed very well when explaining and

creating task models using SERIES. These results were reflected in the task modelling

activities that the participants performed as well as in their positive feedback

regarding the usability of SERIES and the clarity of its semantic constructs.

Overall, we conclude that the research presented in the thesis contributes to

addressing resource variability through resource-driven adaptation. We also provide

suggestions for future work that can extend this research.

 vii

Author’s Declaration

The work presented in this thesis is an original contribution of the author. Parts of this

work were published in the following papers.

Book Chapter

P. Akiki, A. Zisman, and A. Bennaceur. Modelling Software Tasks for

Supporting Resource-driven Adaptation. LNBIP Series, Springer (under review)

Chapter 7 - (Akiki, Zisman and Bennaceur, under review)

Conference Proceedings

P. Akiki, A. Zisman, and A. Bennaceur. SERIES: A Task Modelling Notation for

Resource-driven Adaptation. Proceedings of the 24th International Conference

on Enterprise Information Systems (ICEIS), SCITEPRESS - Science and Technology

Publications, 2022

Chapter 5 - (Akiki, Zisman and Bennaceur, 2022)

Workshop Proceedings

P. Akiki, A. Zisman, and A. Bennaceur. Work With What You’ve Got: An

Approach for Resource-Driven Adaptation. International Conference on

Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C),

IEEE, 2021

Chapter 6 - (Akiki, Zisman and Bennaceur, 2021)

Doctoral Symposium

P. Akiki. Towards an approach for resource-driven adaptation. Proceedings

of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE), ACM,

2021

Chapter 4 - (Akiki, 2021)

 ix

Acknowledgements

First, I would like to thank my supervisors Prof. Andrea Zisman and Dr Amel

Bennaceur for their support and guidance throughout my PhD journey. I am very

grateful for their advice and comments, which helped in improving this work.

I would like to thank the SEAD/SPARE research group for their feedback on my

work. Moreover, I am grateful to Dr Tamara Lopez, Dr Irum Rauf, Dr Min Zhang, and Dr

Vikram Mehta for their valuable feedback that improved the design of my user study.

Furthermore, I am grateful to my mini-viva examiners Prof. Yijun Yu and Dr Patrick

Wong for their comments.

I would like to thank Prof. Marian Petre and Dr Daniel Gooch for managing the

postgraduate forum sessions, which provided support for PhD students in their

journey. I am also grateful to all the people who provided feedback on my work during

my presentations at the CRC student conferences, in particular Prof. Arosha Bandara,

Prof. Marian Petre, and Dr Daniel Gooch.

I would like to thank my third-party monitor Prof. Janet van der Linden for her

support during my PhD journey.

I would like to thank everyone who dedicated time to participate in my user study.

Your contribution was vital for the completion of this work.

I would like to extend my gratitude to my family, who have encouraged and

supported me during my PhD journey.

Finally, I would like to thank The Open University for granting me the funding and

opportunity to pursue a PhD degree.

 xi

Table of Contents.

ABSTRACT .. V

AUTHOR’S DECLARATION .. VII

ACKNOWLEDGEMENTS ... IX

TABLE OF CONTENTS. .. XI

LIST OF FIGURES .. XVII

LIST OF TABLES ... XXI

LIST OF EQUATIONS .. XXIII

LIST OF CODE LISTINGS ... XXV

LIST OF ABBREVIATIONS ... XXVII

GLOSSARY ... XXIX

1 Introduction ... 1

1.1 Problem and motivation ... 1

1.2 Motivating examples... 4

1.2.1 A warehouse system ... 4

1.2.2 A manufacturing system .. 6

1.2.3 An Enterprise Resource Planning (ERP) system 6

1.3 Scope of the thesis ... 7

1.4 Research Design ... 8

1.4.1 Research questions, contributions, and evaluations 8

1.4.2 Developing the proposed contributions .. 11

1.4.3 Research methods .. 11

1.5 Thesis organisation ... 13

2 Background ... 15

2.1 Introduction .. 15

2.2 Classification of resource types .. 15

2.3 Tasks and their required resource types .. 17

2.4 Self-adaptive systems ... 18

2.4.1 Autonomic manager ... 18

2.4.2 SAS questions and dimensions .. 20

2.4.3 Self, context, and resources in self-adaptive systems 22

2.5 Resource-driven adaptive systems ... 22

xii

2.6 Chapter summary ... 23

3 Literature Review ... 25

3.1 Introduction .. 25

3.2 Resource-driven adaptation approaches .. 26

3.2.1 Brownout .. 26

3.2.2 Task-based ... 31

3.2.3 Scheduling .. 33

3.2.4 Code-based ... 35

3.2.5 Policy-based .. 37

3.2.6 Architecture-based ... 38

3.2.7 Query-based ... 39

3.2.8 Dynamic software-product-line .. 40

3.2.9 Other approaches ... 40

3.3 Task modelling ... 42

3.3.1 Task modelling notations ... 42

3.3.1.1 Representation of task models... 43

3.3.1.2 Operators and task types ... 43

3.3.1.3 Task modelling for resource-driven adaptation 44

3.3.2 Feature modelling notations .. 45

3.4 Summary of critical analysis .. 47

3.5 Filling the gaps ... 50

4 Overview of the Work .. 53

4.1 Introduction .. 53

4.2 Stakeholders ... 54

4.3 Adaptation components .. 57

4.3.1 Proactive ... 58

4.3.2 Reactive .. 58

4.3.3 The benefit of combining proactive and reactive adaptation 59

4.4 Task models .. 60

4.5 Integrating resource-driven adaptation in a software system 60

4.6 Chapter summary ... 62

5 SERIES: A Task Modelling Notation for Resource-Driven

Adaptation ... 63

5.1 Introduction .. 63

5.2 Meta-model of SERIES ... 65

 xiii

5.2.1 Constructs that SERIES incorporates from CTT 65

5.2.2 Abstract task .. 65

5.2.2.1 Description ... 66

5.2.2.2 Execution type .. 66

5.2.2.3 Feedback properties ... 66

5.2.2.4 Resource types and their assignment to tasks 67

5.2.2.5 Categories of resource types and tasks.. 68

5.2.2.6 Parameters ... 69

5.2.3 Application task ... 69

5.2.3.1 Priorities ... 69

5.2.3.2 Service method ... 70

5.2.4 Application task variant .. 70

5.2.4.1 Parameter conditions ... 70

5.2.4.2 Resource intensiveness .. 71

5.2.4.3 Roles ... 71

5.2.4.4 Substitutability .. 72

5.3 Example task model from an automated warehouse system 72

5.3.1 Abstract task: Prepare Order ... 74

5.3.1.1 Description ... 74

5.3.1.2 Execution type .. 74

5.3.1.3 Parameters ... 74

5.3.1.4 Resource types .. 75

5.3.1.5 Feedback properties ... 75

5.3.2 Application tasks .. 75

5.3.2.1 Application task 1: Locate items in the warehouse 76

5.3.2.2 Application task 2: Pack items in a box 76

5.3.2.3 Application task 3: Decorate box ... 76

5.3.2.4 Order of the application tasks ... 76

5.3.3 Application task variants for “pack items in a box” 77

5.3.3.1 Application task variant 1: Pack randomly 77

5.3.3.2 Application task variant 2: Pack by item type 78

5.3.4 Application task variants for “decorate box” 78

5.3.4.1 Application task variant 1: Decorate with Premium decoration 78

5.3.4.2 Application task variant 2: Decorate with Regular decoration... 79

5.4 Supporting tool of SERIES ... 80

5.4.1 Panels: Task model explorer, visual task model, and properties 80

5.4.2 Actions: Creating, loading, and saving task models 82

5.4.3 Adding, modifying, and removing tasks .. 84

5.5 Graphical representation of SERIES task models 85

5.5.1 Representation of tasks and task variants .. 85

5.5.2 Representation of relationships ... 85

5.5.3 Different levels of detail ... 86

5.5.4 The layout of task models .. 86

5.6 Mapping of concepts from SERIES to SPARK ... 87

xiv

5.7 Chapter summary ... 88

6 SPARK: A Framework for Resource-Driven Adaptation 89

6.1 Introduction .. 89

6.2 Proactive adaptation components .. 92

6.2.1 Task execution monitor .. 92

6.2.2 Task execution forecaster .. 92

6.2.3 Task prioritisation ... 93

6.2.3.1 Task priority calculator ... 93

6.2.3.2 Task priority calculator: example .. 95

6.2.3.3 Task priority adjuster .. 95

6.2.3.4 Task priority adjuster: example .. 97

6.2.4 Adaptation type selector .. 98

6.2.4.1 Supported adaptation types ... 98

6.2.4.2 Adaptation type selection .. 100

6.2.4.3 Changing when a task is executed (CWTE) 100

6.2.4.4 Sacrificing functionality (SF) ... 101

6.2.4.5 Sacrificing quality (SQ) .. 101

6.2.4.6 Financing a task’s execution (FET) ... 102

6.2.5 Adaptation type selector: example ... 103

6.3 Reactive adaptation components .. 103

6.3.1 Resource type state monitor .. 103

6.3.2 Resource type state analyser ... 104

6.3.3 Task execution manager .. 105

6.3.4 Task execution allocator .. 106

6.3.5 Task execution allocator: example ... 109

6.3.6 Feedback elicitor and provider .. 110

6.4 Implementation of adaptation components ... 111

6.5 Chapter summary ... 114

7 Task Modelling Notation Evaluation (SERIES) 115

7.1 Introduction .. 115

7.2 Assessment of SERIES using existing recommendations 116

7.2.1 Cognitive Dimensions Framework .. 117

7.2.2 Physics of Notations ... 118

7.2.3 Further evaluation ... 119

7.3 A study to evaluate SERIES with software practitioners 120

7.3.1 Participants .. 120

7.3.2 Design of the study... 122

7.3.2.1 Hypothesis .. 123

 xv

7.3.2.2 Environment and data collection ... 123

7.3.2.3 Explaining and creating task models .. 124

7.3.2.4 Feedback questionnaire ... 127

7.3.3 Processing and presenting the data ... 128

7.3.3.1 Scoring participants’ explanations and created task models 128

7.3.3.2 Quoting the participants and classifying their comments 129

7.3.4 Results of participants’ explanation and creation of task models ... 130

7.3.4.1 Results of the explanation of task models 131

7.3.4.2 Results of the creating of task models 132

7.3.4.3 Result comparison .. 133

7.3.5 Results of participants’ feedback on clarity of semantic constructs 133

7.3.6 Results of participants’ feedback on usability 136

7.3.6.1 Ratings for ease of use ... 136

7.3.6.2 Selected product reaction cards ... 138

7.3.7 Results: participants’ final comments ... 143

7.3.8 Discussion of the results .. 144

7.3.9 Threats to validity .. 146

7.4 Chapter summary ... 146

8 Framework for Resource-Driven Adaptation Evaluation (SPARK)147

8.1 Introduction .. 147

8.2 Preliminary evaluation of SPARK ... 148

8.2.1 Evaluating feasibility with an automated warehouse simulation .. 148

8.2.1.1 Design of the simulation .. 149

8.2.1.2 Results .. 150

8.2.2 Evaluation of overhead and scalability.. 151

8.2.2.1 Proactive adaptation planning .. 151

8.2.2.2 Reactive identification of tasks and task variants 152

8.2.3 Summary of the results .. 153

8.2.4 Threats to validity .. 153

8.3 Evaluating SPARK with two case studies ... 154

8.3.1 Datasets .. 154

8.3.2 Design of the case studies .. 155

8.3.2.1 Metrics and cases ... 156

8.3.2.2 Simulation tool and adaptation types 158

8.3.2.3 Hypothesis .. 159

8.3.3 Case study 1: Medicine consumption system 159

8.3.3.1 Metric 1: Percentage of executed critical task requests 159

8.3.3.2 Metric 2: Average criticality of executed tasks 162

8.3.3.3 Metrics 3 and 4: Overhead and scalability 164

8.3.3.4 Summary of case study 1 ... 166

8.3.4 Case study 2: Manufacturing system .. 167

xvi

8.3.4.1 Metric 1: Percentage of executed critical task requests 167

8.3.4.2 Metric 2: Average criticality of executed tasks 169

8.3.4.3 Metrics 3 and 4: Overhead and scalability 171

8.3.4.4 Summary of case study 2 ... 172

8.3.5 Comparison between the two case studies 173

8.3.6 Threats to validity .. 174

8.4 Evaluating intrusiveness ... 174

8.5 Chapter summary ... 175

9 Conclusions and Future Work ... 177

9.1 Conclusions ... 177

9.2 Limitations ... 180

9.2.1 Using SPARK in different types of software systems 181

9.2.2 Using SERIES with other frameworks .. 181

9.2.3 Integrating SPARK into applications .. 181

9.2.4 Providing additional analysis in SPARK... 181

9.3 Future work .. 182

9.3.1 Extending SERIES and its supporting tool 182

9.3.2 Integrating SPARK with real-world software systems 182

9.3.3 Exploring other techniques .. 183

9.4 Final thoughts .. 185

BIBLIOGRAPHY .. 187

APPENDICES .. 201

A Artefacts from the evaluation of SERIES 203

A.1 Manufacturing Domain: Requirements and Task Models 203

A.2 Surveillance Domain: Requirements and Task Models 205

A.3 Questionnaire ... 208

B Artefacts from the evaluation of SPARK 213

B.1 Case Study 1: Medicine Consumption System 213

B.2 Case Study 2: Manufacturing System ... 215

 xvii

List of Figures

Figure 1.1 – A resource-driven adaptive system... 2

Figure 1.2 – Enterprise systems as motivating examples 5

Figure 1.3 – Mapping research questions to chapters .. 9

Figure 1.4 – Proposed solution for addressing resource variability 10

Figure 2.1 – MAPE-K control loop .. 19

Figure 3.1 – Example of UI and tasks ... 27

Figure 3.2 – Example of a component and tasks .. 29

Figure 3.3 – Characteristics of proposed work (a) and their self-* properties (b) . 52

Figure 4.1 – An overview of the proposed work .. 54

Figure 4.2 – The proposed adaptation components based on MAPE-K 56

Figure 4.3 – Integrating resource-driven adaptation in a software system 61

Figure 5.1 – Meta-model of SERIES represented as a class diagram 64

Figure 5.2 – A task model example from an automated warehouse system 73

Figure 5.3 – Tool for creating and modifying task models using SERIES 79

Figure 5.4 – Data entry windows for properties that represent sets of values .. 80

Figure 5.5 – Supporting tool of SERIES – setup data tab 81

Figure 5.6 – Data entry windows for setup data properties 81

Figure 5.7 – Opening and saving task models from and to a database 82

Figure 5.8 – Supporting tool of SERIES – configuration tab 84

Figure 6.1 – Logging and prioritisation of tasks ... 90

Figure 6.2 – SPARK proactive and reactive adaptation components 91

xviii

Figure 6.3 – Activity diagram of the decision-logic for task execution 105

Figure 6.4 – Method M1 steps ... 107

Figure 6.5 – Method M2 steps ... 108

Figure 6.6 – Plan creation ... 110

Figure 6.7 – Task priority calculation overview ... 111

Figure 7.1 – Overview of the evaluation of SERIES... 116

Figure 7.2 – Experience of the participants in the software industry 121

Figure 7.3 – Countries where the participants are working 121

Figure 7.4 – Experience of the participants with visual modelling notations . 121

Figure 7.5 – Where the participants used visual modelling notations 121

Figure 7.6 – Overview of the study’s activities ... 122

Figure 7.7 – Example: task model that the participants explained 124

Figure 7.8 – Example: requirements for creating a task model 125

Figure 7.9 – Example: task model that the participants created 126

Figure 7.10 – Time taken by the participants to explain the task models 130

Figure 7.11 – Time taken by the participants to create the task models 130

Figure 7.12 – Scores on the participants’ explanation of task models 131

Figure 7.13 – Scores on the participants’ creation of task models 131

Figure 7.14 – Participants’ feedback on the semantic constructs of SERIES .. 134

Figure 7.15 – Participants’ feedback on the ease of use of SERIES 135

Figure 7.16 – PRCs selected by the participants to describe SERIES 137

Figure 7.17 – Percentage of comments in each theme 144

Figure 8.1 – Overview of the evaluation of SPARK .. 148

Figure 8.2 – Automated warehouse example .. 149

Figure 8.3 – Prepare order task .. 149

 xix

Figure 8.4 – Automated warehouse simulation software 149

Figure 8.5 – Customer order preparation during resource variability............. 150

Figure 8.6 – Running time scalability of proactive adaptation planning 151

Figure 8.7 – Overhead and scalability evaluation without caching 152

Figure 8.8 – Overhead and scalability evaluation with caching 153

Figure 8.9 – Evaluation case studies with subcases ... 156

Figure 8.10 – Case Study 1: percentages of executed critical task requests 160

Figure 8.11 – Case Study 1: executed task requests that are more critical 163

Figure 8.12 – Case Study 1: proactive adaptation planning running time 164

Figure 8.13 – Case Study 1: identification of tasks/variants running time 165

Figure 8.14 – Case Study 1: task execution allocation running time 166

Figure 8.15 – Case Study 2: percentages of executed critical task requests 167

Figure 8.16 – Case Study 2: executed task requests are more or less critical . 170

Figure 8.17 – Case Study 2: proactive adaptation planning running time 171

Figure 8.18 – Case Study 2: identification of tasks/variants running time 172

Figure 8.19 – Case Study 2: task execution allocation running time 173

Figure A.1 – Task model for explanation (manufacturing) 203

Figure A.2 – Requirements to create a task model (manufacturing) 204

Figure A.3 – Expected task model based on requirements (manufacturing) ... 205

Figure A.4 – Task model for explanation (surveillance) 205

Figure A.5 – Requirements to create a task model (surveillance).................... 206

Figure A.6 – Expected task model based on requirements (surveillance) 207

 xxi

 List of Tables

Table 2.1 – Examples of resource types and their groups 17

Table 2.2 – Examples of tasks and their primary required resources 18

Table 2.3 – Questions and dimensions of self-adaptive systems 20

Table 2.4 – Examples of software systems (un)affected by resource variability 23

Table 3.1 – Summary of existing resource-driven adaptation approaches 47

Table 3.2 – Summary of existing task modelling notations 49

Table 5.1 – Mapping concepts from SERIES meta-model to SPARK components 87

Table 6.1 – Initial priority calculation example .. 95

Table 6.2 – Adjusted priority calculation example ... 98

Table 6.3 – Cost of adaptation calculation example ... 102

Table 6.4 – Example data showing how M1 and M2 calculate NATE 109

Table 8.1 – Characteristics of the datasets used in the evaluation 155

Table 8.2 – Case Study 1: the case where 20% of tasks (variants) are critical 161

Table 8.3 – Case Study 2: the case where 20% of tasks (variants) are critical 168

Table B.1 – Case Study 1: the case where 40% of tasks (variants) are critical 213

Table B.2 – Case Study 1: the case where 60% of tasks (variants) are critical 214

Table B.3 – Case Study 1: the case where 80% of tasks (variants) are critical 214

Table B.4 – Case Study 2: the case where 40% of tasks (variants) are critical 215

Table B.5 – Case Study 2: the case where 60% of tasks (variants) are critical 216

Table B.6 – Case Study 2: the case where 80% of tasks (variants) are critical 216

 xxiii

List of Equations

Equation 6.1 – Priority value range .. 94

Equation 6.2 – Priority value classification .. 94

Equation 6.3 – Threshold calculation ... 94

Equation 6.4 – Threshold forecasted task execution priority calculation 94

Equation 6.5 – Initial task priority calculation .. 94

Equation 6.6 – Cost function for deprioritising a task 96

Equation 6.7 – Initial epsilon value calculation ... 96

Equation 6.8 – Priority adjustment calculation .. 96

Equation 6.9 – Input value range ... 100

Equation 6.10 – Cost function for adaptation ... 100

 xxv

List of Code Listings

Listing 5.1 – JSON representation of the “Prepare Order” abstract task 83

Listing 6.1 – Priority calculation source code (excerpt) .. 112

 xxvii

List of Abbreviations

MAPE-K Monitor-Analyse-Plan-Execute-Knowledge

RAS Resource-driven Adaptive System

SAS Self-Adaptive System

SERIES taSk modElling notation for Resource-driven adaptatIon in

softwarE Systems

SPARK reSource-driven adaPtAtion fRameworK

 xxix

Glossary

The following list includes definitions for key terms, which are frequently used

throughout this thesis:

⎯ Enterprise is an organisation (e.g., a business like a retail store).

⎯ Enterprise System is a software system that manages the activities of enterprises.

Examples of an enterprise system include an automated warehouse system,

manufacturing system, and enterprise resource planning (ERP) system.

⎯ Resource is an entity that is needed to carry out a task.

⎯ Resource-driven Adaptive System is a type of self-adaptive system, where the

trigger for adaptation is the variability of resources.

⎯ Self-Adaptive System is a system that can adapt itself automatically based on

changes in its context.

⎯ Task represents an activity in a software system.

⎯ Abstract Task involves complex actions and is broken down into a sequence of

child (sub) tasks.

⎯ Application Task is executed by the software system without user interaction.

⎯ Application Task Variant is a special case of an application task and is needed to

(1) avoid treating all executions of an application task in the same way when

adapting and (2) identify how to execute an application task with fewer resources.

⎯ Resource Intensiveness indicates the level of resource consumption of an

application task variant for a type of resource.

 1

1

Introduction

This thesis addresses resource variability, which prevents software systems from

executing their tasks. This chapter motivates the research using examples of multiple

types of software systems. It explains the research objectives, presents the research

questions, and summarises the contribution.

1.1 Problem and motivation

Existing software systems rely on resources to execute tasks. For example, using

robots in automated warehouses, medical materials in hospital management systems,

energy in electricity grids, or ingredients in food production systems. The availability

of resources, however, can vary due to several reasons such as unexpected hardware

failures, excess workloads, or lack of materials. For example, product deliveries could

be delayed due to robots malfunctioning in automated warehouses, medical operations

may be cancelled due to unavailable materials and theatres in hospitals, prices of

electricity may be increased due to high demand, or the food supply chain could be

disrupted due to high demand of food products and lack of ingredients.

Adaptation can help software systems to deal with resource variability (Adelstein et

al., 2005). Resource-driven Adaptive Systems (RASs) are a type of self-adaptive system

(SAS) in which changes in the system are driven by resource variability (Christi, Groce

and Wellman, 2019). This means in RASs, the unavailability or scarcity of resources to

carry out a task can trigger an adaptation that permits the software system to keep

executing tasks. An autonomic manager oversees the adaptation process for a software

2 1.1 Problem and motivation

system by making adaptation decisions during resource variability. Figure 1.1 depicts

the element of a RAS.

Existing work on resource-driven adaptation focus on single types of adaptation

that involve disabling optional components (Klein, Maggio, et al., 2014; Xu and Buyya,

2019), reducing the data returned by a query (Gotz et al., 2015; Viswanathan, Jindal

and Karanasos, 2018), changing system configurations through policies (Efstratiou et

al., 2002; Keeney and Cahill, 2003), or reducing source code that consumes a lot of

computational resources (Christi, Groce and Gopinath, 2017; Christi and Groce, 2018).

By supporting multiple types of adaptation, software systems become more versatile in

addressing resource variability. For example, if an optional component needs an

unavailable resource, then it is possible to disable this component. Otherwise, if the

component is not optional the software system should seek another type of adaptation.

Additionally, existing resource-driven adaptation approaches focus on a single type

of reusable resource like CPU (Maggio, Klein and Arzén, 2014; Sun, Cai and Loparo,

2019), RAM (Huber et al., 2017; Christi and Groce, 2018), battery (Pascual, Pinto and

Fuentes, 2015; Yan et al., 2019), and bandwidth (Sousa et al., 2006; Papakos, Capra and

Rosenblum, 2010), or even on depletable resource types such as food ingredients

(Bennaceur et al., 2019). However, software systems rely on multiple types of

depletable and reusable resource types that are impacted by variability. For example,

automated warehouse systems rely on resource types like robots, boxes, and bubble

wrap for packing products to be shipped. As indicated by Xu and Buyya (2019),

supporting multiple types of resources would make resource-driven adaptation

approaches more comprehensive. This means the adaptation approach would be

applicable to multiple types of resources rather than a specific type of resource.

Figure 1.1 – A resource-driven adaptive system

Resource-driven Adaptive System

Software
System

Limited Resources

RAM

CPU

Printer

Battery

Robot

Factory
Machinery

Raw
Materials

Autonomic
Manager

. . .

are
used by

adapts

is monitored by

Chapter 1 – Introduction 3

Furthermore, the consideration of tasks in resource-driven adaptation provides

granularity in the adaptation decision-making because there could be differences in (i)

the priorities that specify the level of importance of each task, (ii) the applicability of

an adaptation type to a task, (iii) the types of resource that are used by a task, and (iv)

the resource consumption of task variants that represent different versions of a task.

Instead of considering some software components to be always optional (Klein,

Maggio, et al., 2014; Xu and Buyya, 2019) or using configurations that apply to an

entire software system (Efstratiou et al., 2002; Papakos, Capra and Rosenblum, 2010),

it is possible to make more granular adaptation decisions based on tasks. For example,

the task of displaying product recommendations in an online retail store system can be

optional when it is not initiated by users with privileged roles (e.g., VIP customers).

This would reduce the consumption of computational resources during resource

variability while keeping the task available where it is most needed.

When considering tasks in resource-driven adaptation, it is not sufficient to support

single-user scenarios as is done in some approaches that target mobile devices (Sousa

et al., 2006; Rigole et al., 2007) because software systems have multiple users who are

initiating tasks that are competing for resources. For example, multi-user enterprise

systems differ from single-user mobile apps because the adaptation must consider the

perspectives of end-users and corporate management regarding which tasks are more

important during resource variability. Additionally, sharing resources among tasks for

a limited time via a leasing mechanism (Perttunen, Jurmu and Riekki, 2007) is not

sufficient because there are tasks that require using resources until completion (e.g.,

medical operations make use of medical equipment until completion).

Moreover, software systems should perform resource-driven adaptation at runtime

because information like the importance of a task or the choice of a type of adaptation

is unknown at design time. Hence, existing approaches that modify the source code of

software systems (Christi and Groce, 2018; Christi, Groce and Wellman, 2019) are not

suitable for performing resource-driven adaptation at runtime. Furthermore, these

approaches are limited to software systems that are written in particular

programming languages because annotations are added to the code as is done by

Christi et al. (2017) with Java programs. On the other hand, a resource-driven

adaptation approach would be technology independent if such annotations are

represented at a higher level of abstraction than source code. Resource-driven

adaptation approaches would be applicable to multiple resource variability scenarios if

4 1.2 Motivating examples

they support several types of software systems. Some existing approaches focus on

types of software systems such as power consumption in unmanned aerial vehicles

(Yan et al., 2019) and data exchange between robots (Gotz et al. 2015), which narrows

their scope of applicability.

1.2 Motivating examples

In order to motivate, illustrate, and evaluate the work in this thesis, I consider three

examples of enterprise systems, namely: warehouse systems, manufacturing systems,

and Enterprise Resource Planning (ERP) systems. Enterprise systems are software

systems that manage the activities of enterprises (Oz, 2009). What follows is an

explanation of why enterprise systems are relevant examples for the research

presented in this thesis.

As shown by the examples in Figure 1.2, enterprise systems make use of tasks that

require limited resources such as robots, boxes, raw materials, factory machinery,

RAM and CPU. Hence, enterprise systems are affected by resource variability.

Furthermore, enterprise systems make use of tasks that differ among enterprises

(Lucas, Xu and Babaian, 2013). So, it is not possible to define a software system’s

behaviour at development time in a single way that accommodates the needs of all

enterprises based on the availability of resources. Therefore, software systems should

perform resource-driven adaptation at runtime while prioritising tasks so limited

resources would remain available for the tasks that need them most, namely the

critical tasks. The prioritisation should consider multiple criteria, which include the

task’s parameter values, resource consumption, initiation time during the day, user’s

role, historical data about usage frequency, and domain-related criticality (e.g., it could

be more critical for a warehouse to ensure timely delivery of products for VIP

customers). The following sections discuss the usefulness of resource-driven

adaptation with the abovementioned prioritisation criteria and the adaptation types

mentioned in Section 1.1 in the context of the motivating examples presented in Figure 1.2.

1.2.1 A warehouse system

Consider that a retail store has a warehouse that is automated by robots. The retail

store receives customer orders throughout the day. Robots perform order preparation

tasks by retrieving from the warehouse the products corresponding to customer

Chapter 1 – Introduction 5

orders and packing them in boxes ready for delivery. Hence, robots are essential

resources for executing key warehouse activities. However, robots can temporarily go

out of service due to unexpected errors or due to the need for recharging, thereby

delaying order fulfilment and causing financial losses. Software systems could avoid

these negative implications of resource variability through adaptation as explained

below.

The preparation of customer orders for shipping is a critical task, but robots also

work on tasks like sorting returned products, which could be less important in some

cases (e.g., during specific times of the day). Hence, it is possible to substitute

inoperative order preparation robots with robots that are working on less important

tasks. In this way, the order preparation stays on track until the inoperative robots are

back in service (e.g., after repair). This demonstrates situations of task prioritisation,

resource substitution, and execution of tasks in a different order (leaving the sorting of

returned products for another time).

Another possibility is to alter the robots’ behaviour by changing the way they pack

products. Assume that the robots can pack products in a box using two ways: (i)

placing similar products next to each other in a box (e.g., trousers and shirts in

separate piles), or (ii) placing products randomly in a box. These two ways are variants

of the same “pack products” task. The first variant provides a better presentation for

Figure 1.2 – Enterprise systems as motivating examples

Issue
Invoice

View Profit
Report

...

...

RAM CPU

Users

John
(Employee)

Jane
(Manager)

Produce
Custard

Produce
Device

...

...

Raw
Materials

Factory
Machinery

Prepare
Order

Sort
Returns

...

...

Robots Boxes

ERP SystemManufacturing SystemWarehouse System

L
im

it
e

d

R
e

so
u

rc
e

s
T

a
sk

s

6 1.2 Motivating examples

the customer, while the second one executes faster because robots do not have to

arrange the products. It is possible to keep order preparations on track, by using the

first variant for the orders of Very-Important-Person (VIP) customers and the second

one for other orders. Hence, in this case, tasks are changed to similar ones by allowing

products to be packed but in a random way. This example shows two variants of a task

(pack products) and two types of resources (robots and boxes).

1.2.2 A manufacturing system

A manufacturing system controls the production of goods at a factory. One example

is food manufacturing where a factory produces custard using resource types that

include food ingredients and manufacturing machinery. In some cases, the required

food ingredients are not available and should be substituted with others. For example,

custard powder could be substituted with eggs and cornflour. In other cases, it may not

be possible to manufacture the same product using the available resources. In such

cases, the alternative is to change the behaviour of the manufacturing process to either

produce less or to continue the production of some items at another time. Moreover,

some tasks may be more critical than others and adaptation would help the system to

keep limited resources available for the critical tasks that need them most.

1.2.3 An Enterprise Resource Planning (ERP) system

Consider an ERP system that is facing resource variability on one of its servers due

to hardware failure. In this case, tasks would take longer to execute due to having less

hardware capacity to serve the same number of task requests. The system would

maintain a good response time by performing adaptation (e.g., executing task variants

that consume fewer hardware resources). This is useful even if the failure will be

repaired in a short time. Otherwise, critical tasks could be impeded causing harm to

people and losses to enterprises. For example, if the ERP was used at a hospital, e.g.,

ERP for healthcare (2022), patients might not be given the necessary treatment on

time due to delayed processing of paperwork (e.g., retrieval of medical records). In

another example, if the ERP was used at an import/export company, e.g., Blue Link

(2022), delayed paperwork could lead to customer dissatisfaction and ultimately leads

to profit loss. What follows are examples of tasks, from ERP systems, which are

common among many types of enterprises.

Chapter 1 – Introduction 7

Consider that the task of issuing an invoice for a customer during peak time is more

critical for an enterprise than the task of viewing a profit report. Also, consider that the

task of viewing a profit report is CPU intensive and can execute later during the day. If

tasks are executed on a first-come-first-serve basis, non-critical tasks like viewing a

profit report could impede critical tasks like invoicing. Consider that the task of

viewing a profit report has a summarised variant that is less CPU-intensive. Also,

consider that there is a secondary server that hosts an older version of the data that

the profit report requires. The software system could adapt by executing the

summarised variant of the report; generating the report on the secondary server;

queuing the report for the users to view it later outside peak work time. The software

system needs to consider multiple adaptation possibilities because some might not be

applicable. For example, if either the summarised report or the older data from the

secondary server were insufficient for the user then the report would be queued for

later.

Moreover, consider that the abovementioned task of viewing a profit report is

issued by a manager for a limited year range. In this case, the enterprise could consider

the task of viewing a profit report to be critical because it is issued by a user who has a

privileged role (manager) and with parameter values (year range) that reduce the data

and make it less CPU intensive (i.e., consumes fewer resources). Hence, the software

system should consider these variations otherwise tasks like viewing a profit report

would always be less important than other tasks like issuing an invoice.

1.3 Scope of the thesis

The scope of the work in this thesis is concerned with run-time adaptation of

software systems due to variation in available resources. More specifically, the work

focuses on supporting (i) different types of adaptation activities due to variability of

resources; (ii) adaptation due to various tasks that the system needs to fulfil; (iii)

different types of resources and considering multiple resources at the same time; and

(iv) a proactive and reactive approach for adapting software systems.

Considering the abovementioned scope, I conducted a literature review and gap

analysis of the existing work on resource-driven adaptation. This showed that the

existing work on resource-driven adaptation does not (i) consider tasks and the

various types of tasks to provide granularity in the resource-driven adaptation

8 1.4 Research Design

process, (ii) support multiple types of resources to make the resource-driven

adaptation applicable to multiple types of software systems, and (iii) support multiple

types of adaptation to have alternatives in case a type of adaptation is not applicable.

To address the problem of resource variability, a framework is needed to support

resource-driven adaptation in software systems and fill the abovementioned gaps (i)-

(iii) in existing works. Furthermore, since this framework should consider tasks, it

requires input data about the software system’s tasks. Hence, a task modelling

notation is needed to define this input. I explored existing task modelling notations to

check if they can support resource-driven adaptation and found that they are missing

useful characteristics in this regard. Hence, new task modelling notation is also needed

to complement the resource-driven adaptation framework.

As discussed in Section 1.2, this thesis uses motivating examples from enterprise

systems, like warehouse management systems and manufacturing systems, because

they rely on multiple types of resource to execute tasks and are affected by resource

variability. Nonetheless, other types of software systems that are affected by resource

variability could also benefit from this work.

1.4 Research Design

This section introduces the research questions and maps them to the contribution

and evaluation chapters as shown in Figure 1.3. It also provides an overview of the

research methods that this thesis uses.

1.4.1 Research questions, contributions, and evaluations

The objective of this thesis is to address the research problem presented in Section

1.1. This problem is captured by a broad research question (RQ), which is broken

down into two sub-questions, RQ1 and RQ2, as follows:

RQ: “How can software systems address resource variability through resource-driven

adaptation?”

• RQ1: “How to model tasks of software that require the use of resources?”

• RQ2: “How and when software systems adapt to enable the execution of critical tasks

when resources are limited?”

Chapter 1 – Introduction 9

The answers to RQ1 and RQ2 constitute the two research contributions (RCs) of the

proposed solution, namely devising a task modelling notation (RC1) and a framework

(RC2) that supports resource-driven adaptation to address the issue of resource

variability. Figure 1.4 provides a high-level overview of the proposed solution. A

software system has tasks that are initiated by users and require resources to execute.

These tasks and resources are represented as task models via the proposed task

modelling notation. The task models serve as input for the proposed framework, which

performs adaptation during resource variability.

Figure 1.3 – Mapping research questions to chapters

RQ1: How to model tasks of software that require the use of
resources?

RQ2: How and when software systems adapt to enable the execution
of critical tasks when resources are limited?

RQ: How can software systems address resource variability through resource-driven adaptation?

Chapter 5
SERIES: A Task Modeling Notation for Resource-Driven Adaptation

(Akiki et al. 2022)

Chapter 6
SPARK: A Framework for Resource-Driven Adaptation

(Akiki et al. 2021)

Chapter 7
Task Modelling Notation Evaluation (SERIES)

(1) A task modelling notation that supports resource-driven
adaptation by including the following characteristics:

• task variants that differ according to parameter values, user
roles, resource consumption, and priorities

• resources types required by tasks

• task types and execution types that indicate the applicability
of a type of adaptation to a task

• properties that specify how feedback is given and obtained to
and from end-users after adaptation is performed

• service method that associates a task with its corresponding
implementation in a software system s source code

(2) A prototype tool for performing task modelling using SERIES

Evaluation of the Notation

(1) Assessment of SERIES based on the Cognitive-Dimensions
Framework and the Physics of Notations

(2) Evaluation through a study where software practitioners:

• viewed a brief tutorial of SERIES and its supporting tool

• explained and created task models using SERIES via its tool

• completed a questionnaire to provide feedback on the
usability of SERIES and the clarity of its semantic constructs

Hypothesis

The use of SERIES will result in good user (software practitioner)
performance in the interpretation and creation of task models for
resource-driven adaptation.

Results (summary)

The results satisfy the hypothesis because the use of SERIES
resulted in very good user performance in the interpretation and
creation of task models for resource-driven adaptation. This was
indicated by both the results of the activities that the participants
performed using SERIES and the feedback that they provided.

(1) A resource-driven adaptation framework that works as follows:

• considers tasks that use depletable and reusable resource types

• proactively calculates unique task priorities using multiple criteria like
forecasted number of task executions, user role, parameter values, etc.

• proactively calculates the cost of adapting tasks using four types of
adaptation: (i) execution of a similar task (ii) substitution of resources;
(iii) execution of tasks in a different order; and (iv) cancellation of tasks

• reactively monitors the state of resources based on stock levels and
replenishment delays and the average execution durations of tasks

• reactively allocates executions to tasks that use resources facing
variability and decides whether to adapt these tasks

(2) A prototype implementation of the proposed framework

Evaluation of the Framework

(1) Preliminary evaluation of feasibility with simulation of automated
warehouse and preliminary evaluation of overhead and scalability

(2) Evaluation with two existing datasets were used from a medicine
consumption system and a manufacturing system, where simulations were
performed (a) without the framework, (b) with reactive adaptation only,
(c) with proactive and reactive adaptation

The following metrics were measured:

• percentage of critical task requests that got executed

• average criticality of executed versus non-executed task requests

• overhead and scalability of the framework

Hypothesis

When resources are facing variability, SPARK s proactive and reactive
adaptation improves a software system s ability to execute critical tasks.

Results (summary)

The results satisfy the hypothesis since SPARK helps software systems in
increasing the number of executed critical task requests during resource
variability without an overhead that exceeds a tolerable waiting time.

Chapter 4
Overview of the Work

(Akiki 2021)

An overview of the stakeholders, components, and data involved in the proposed solution for addressing resource variability via resource-driven
adaptation.

Chapter 8
Framework for Resource-Driven Adaptation Evaluation (SPARK)

10 1.4 Research Design

As shown in Figure 1.4, a framework is needed to realise the components of the

autonomic manager and to support resource-driven adaptation in multiple types of

resource-dependent software systems. This framework makes adaptation decisions

that enable a software system to keep executing (critical) tasks during resource

variability. A critical task has high importance for its domain and is more privileged in

accessing the resources it needs in comparison to non-critical tasks. The consideration

of tasks in resource-driven adaptation provides granularity in adaptation decision-

making. Hence, a resource-driven adaptation framework requires input data that

describes the software system’s tasks and their properties (e.g., required resources).

This input enables the framework to decide on (i) the importance of tasks, (ii) whether

adaptation is required for a task, (iii) which type(s) of adaptation (are) applicable for a

task, and (iv) how to perform a type of adaptation.

A task modelling notation is needed to create task models that represent the

abovementioned input. Such notation facilitates the representation of task models

hierarchically using a graphical syntax. Figure 1.3 shows a summary of the

abovementioned research questions and the contributions of the work with respect to

the research questions and specific chapters that describe the work.

Chapter 4 presents an overview of my work. The overview depicts the involved

stakeholders and data, in addition to the proposed adaptation components that are

based on the MAPE-K control loop (Kephart and Chess, 2003).

Chapter 5 presents a task modelling notation (RC1) for resource-driven

adaptation called SERIES. This notation offers characteristics that are useful for

resource-driven adaptation but are missing from existing task modelling notations

Figure 1.4 – Proposed solution for addressing resource variability

Resource-driven Adaptive System

FrameworkSoftware System

Tasks Limited Resources

RAM

CPU

Printer

Battery

Robot

Factory
Machinery

Raw
Materials

Users

User 1

User 2

User n

. . .

Task 1

Task 2

Task n

. . .

Adaptation
Components

. . .

Task Models

initiate use

is represented as are used by

adapts

is monitored by

Chapter 1 – Introduction 11

(Limbourg and Vanderdonckt, 2004; Guerrero-García, González-Calleros and

Vanderdonckt, 2012; Martinie et al., 2019). In brief, these characteristics include task

variants, resource types, task execution types, end-user feedback properties, and

service methods (refer to Figure 1.3).

Chapter 6 presents a proactive and reactive framework (RC2) for resource-driven

adaptation called SPARK. The framework uses historical data to proactively prepare an

adaptation plan. This plan is used during reactive decisions to execute adaptation, due

to variability in resources. In comparison to existing work on resource-driven

adaptation, the novelty aspects of the framework are concerned with support for: (i)

tasks that use multiple types of depletable and reusable resources, (ii) four types of

adaptation, and (iii) unique prioritisation of tasks using multiple criteria that include

task priorities, time of day, user role, task parameters, and forecasted task executions

(refer to Figure 1.3).

Chapters 7 and 8 present an evaluation of the task modelling notation SERIES and

the resource-driven adaptation framework SPARK, respectively. The following section

explains the research methods used in the evaluation of the work.

1.4.2 Developing the proposed contributions

I used meta-modelling and prototyping in this thesis to develop the proposed

notation and framework. Meta-modelling involves creating a set of concepts and the

relations between them, whereby this set of concepts (meta-model) is used to

represent models (Allemang and Hendler, 2011). I used meta-modelling to describe

the concepts of SERIES that represent task models.

Moreover, prototyping involves creating a prototype software either to get

feedback from users or to assess the feasibility of designing a system (Pressman, 2010,

p. 43,75). I developed prototypes of SPARK and the supporting tool for SERIES. I used

these prototypes as part of the evaluation of SERIES and SPARK, which involved the

research methods explained next.

1.4.3 Research methods

Several research methods have been used in software engineering research (Shaw,

2002). To evaluate the usability of the proposed notation, I conducted a user study,

which is a type of controlled experiment that tests a hypothesis by measuring the

12 1.4 Research Design

effect of a dependent variable (i.e., user performance) on an independent variable (i.e.,

interpretation and creation of task models) (Easterbrook et al., 2008). Hence, the user

study allows us to test whether SERIES is usable by the intended population, namely

software practitioners, to interpret and create task models. Furthermore, since it is a

type of controlled experiment, the user study enables us to control what users do and

to control influences that might impact their performance (Preece, Rogers and Sharp,

2015, pp. 474–475). For example, all the participants were asked to use SERIES for

activities that have the same level of difficulty. The user study measured the ability of

software practitioners to explain and create SERIES task models. It also measured how

the participants perceive the usability of SERIES and the clarity of its semantic

constructs. Furthermore, the task modelling notation was assessed based on two

paradigms, namely the Cognitive Dimensions Framework (Green and Petre, 1996) and

the Physics of Notations (Moody, 2009). I used these paradigms to assess SERIES

because they provide principles for evaluating visual notations.

A case study serves as an inquiry that is either an exploratory preliminary

investigation to derive new hypotheses, or a confirmatory main investigation to test

hypotheses (Easterbrook et al., 2008). I evaluated SPARK using two case studies that

involve running simulations of resource variability scenarios with existing datasets.

This evaluation had multiple metrics. The metrics “percentage of executed critical task

requests” and “average criticality of the executed task requests in comparison to the

non-executed ones” show to what extent SPARK can address resource variability by

enabling a software system to keep executing critical tasks that require limited or

unavailable resources. Hence, a result is positive if SPARK increases the percentage of

executed critical tasks and if the tasks that got executed were on average more critical

that the ones that did not get executed (if any). The metrics “overhead” and

“scalability” show whether SPARK’s adaptation process impacts a software system’s

ability to execute tasks in a tolerable waiting time. I evaluated the “overhead” by

measuring the running time and evaluated the scalability by increasing the size of

SPARK’s input, namely the number of tasks from the datasets.

The two case studies used for this evaluation were derived from real data on the

topics of medicine consumption and manufacturing systems, two domains where

resource variability is challenging (NHS, 2019; Carvalho et al., 2022). The metrics were

used in the evaluation to compare the execution of tasks in the two case studies with

variable resources when the adaptive framework is not present, when only the

Chapter 1 – Introduction 13

reactive adaptation part of the framework is used, and when both the proactive and

reactive adaptation parts of the framework are used.

1.5 Thesis organisation

The rest of this thesis is organised into the following chapters:

Chapter 2 – Background provides a general understanding of the research area of

this thesis and is a prelude to understanding the contents of the other chapters.

Chapter 3 – Literature Review analyses the related work on resource-driven

adaptation based on what can be adapted such as components, tasks, and source code.

This chapter also presents tables that show the types of resources and systems that

each approach targets. Furthermore, this chapter reviews task modelling notations

based on whether they comprise characteristics for supporting resource-driven

adaptation.

Chapter 4 – Overview of the Work presents an overview of the work that this

thesis proposes. It presents the stakeholders, components, and data involved in the

solution (SERIES and SPARK) for addressing resource variability by performing

resource-driven adaptation.

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven

Adaptation details the task modelling notation based on CTT (Paterno, Mancini and

Meniconi, 1997), which is a notation for representing task models hierarchically using

a graphical syntax. SERIES is supported by a software tool that enables software

practitioners to create and modify task models.

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation presents a

resource-driven adaptation framework that works proactively and reactively. It

supports tasks that use depletable and reusable resource types. Additionally, it

supports the generation of unique task priorities using multiple criteria and four types

of adaptation.

Chapter 7 –Task Modelling Notation Evaluation (SERIES) assesses SERIES based

on existing paradigms for designing notations, namely the Cognitive Dimensions

Framework (Green and Petre, 1996) and the Physics of Notations (Moody, 2009).

Furthermore, this chapter presents an evaluation study with software practitioners. In

this study, the participants explained and created task models using SERIES and then

14 1.5 Thesis organisation

provided their feedback on the usability of SERIES and the clarity of its semantic

constructs.

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK)

presents a preliminary evaluation conducted to evaluate the feasibility of SPARK by

developing a software tool that simulates an automated warehouse system and

measures overhead and scalability. Furthermore, this chapter presents an evaluation

of SPARK in two case studies that are related to a medicine consumption system and a

manufacturing system. In these two case studies, I applied SPARK to existing datasets

and measured several metrics including the percentage of executed critical task

requests, the average criticality of the executed task requests versus the non-executed

ones, overhead, and scalability.

Chapter 9 – Conclusions and Future Work summarises the work and discusses

future directions.

 15

2

Background

2.1 Introduction

Section 1.1 discussed how adaptation helps software systems to keep executing

critical tasks during periods of resource variability. Additionally, Section 1.3 discussed

the research objectives of this thesis, which include creating a task modelling notation

and framework for supporting resource-driven adaptation in software systems. This

chapter presents background information to explain further the key concepts that are

related to the abovementioned research objectives. In this regard, Section 2.2 presents

a classification scheme and examples of resource types. Section 2.3 provides examples

of tasks and their required resource types. Section 2.4 presents an overview of self-

adaptive systems (SASs). Section 2.5 explains the notion of a resource-driven software

system and how SASs are a general case of resource-driven adaptive systems (RASs).

2.2 Classification of resource types

A resource is defined as an entity that is needed to carry out a task (Raunak and

Osterweil, 2013). There are multiple types of resources. For example, a software

system can have several resources of the type “robot” and several resources of the type

“box”. The complexity of resource types differs among software systems and domains

(Raunak and Osterweil, 2013). For example, a resource type could be as simple as a

nail or as complex as manufacturing equipment.

Four resource groups, which represent a way to classify resource types, have been

identified in this thesis based on the analysis of existing literature and examples of

16 2.2 Classification of resource types

multiple types of resources such as CPU (Klein, Maggio, et al., 2014), food ingredients

(Bennaceur et al., 2019), and battery (Yan et al., 2019). I chose this classification

because it represents differences among resource types, which affect adaptation

decisions. For example, a software system should prevent resources that can only be

used once from being depleted by non-critical tasks during resource variability. These

resource groups are explained below with examples of resource types that fit under

each group.

• Static resource: does not have a behaviour (actions that the resource performs)

• Dynamic resource: has a behaviour that can be adapted

• Reusable resource: is available to another task after a task that is using it is done

• Depletable resource: is used once

The groups “static” and “dynamic” indicate a resource’s form of behaviour whereas

the groups “reusable” and “depletable” indicate its mode of consumption. Table 2.1

shows examples of resource types and their corresponding resource groups.

Additionally, a resource type can be related to more than one resource group. For

example, batteries are static and reusable since they do not have a behaviour and can

be reused when recharged; robots are dynamic and reusable since they have a

behaviour and can be reused when a task is completed; raw materials are static and

depletable since they do not have a behaviour and can be used once. To clarify further,

a robot’s behaviour such as speed can be adapted whereas similar behaviour is not

available on batteries and raw materials. Moreover, once a task that is using a battery

or a robot is done, then other tasks can reuse these resource types. On the other hand,

once a task uses a quantity of raw materials, then this quantity will no longer be

available for other tasks.

The abovementioned resource groups affect a software system’s adaptation choices.

For example, if non-critical tasks are not restricted before they exhaust scarce

depletable resources then critical tasks that need these resources would not be able to

execute. Moreover, when reusable resource types are concerned, it is possible to

assess whether adaptation is needed by measuring the time spent to gain access to a

resource (Grohmann et al., 2021). However, this does not apply to depletable resource

types because these are either available for a task to use directly or unavailable and

hence adaptation would be needed. Additionally, when depletable resource types are

unavailable they have to be ordered from a supplier and cannot be expanded directly

Chapter 2 - Literature Review 17

like virtual servers (Van Hoorn et al., 2009; Huber et al., 2017) or discovered for

immediate use like software components (Garlan, Cheng, et al., 2004). Furthermore,

the behaviour of dynamic resource types can be changed (e.g., through parameters

such as a robot’s speed). In contrast, static resource types such as RAM and battery

cannot change its behaviour.

2.3 Tasks and their required resource types

A task is issued through a software system and needs resources so it can execute.

Software systems execute tasks that require multiple types of resources. For example,

cloud computing systems rely on hardware resources such as CPU, RAM, and hard

drives (Kurp, 2008; Lu et al., 2016). Hospital systems rely on multiple types of

resources such as theatres, equipment, and medical materials like bandages and

medicine (Hutzschenreuter, Bosman and La Poutré, 2009). IoT systems rely on

batteries, sensors, and cameras (Ciccozzi et al., 2017).

As indicated by Raunak and Osterweil (2013), the resources that a software system

relies on to operate might not be of the same type. This depends on the diversity of

tasks that the system needs to execute (Patel, Patel, and others, 2016). For example, a

simple automated lighting system just relies on a motion sensor to execute a task that

involves turning on the light when there is movement. On the other hand, an

Table 2.1 – Examples of resource types and their groups

 Resource Groups

Resource Type Static Dynamic Reusable Depletable

Battery ✓ 🗴 ✓ 🗴

RAM ✓ 🗴 ✓ 🗴

CPU ✓ 🗴 ✓ 🗴

Autonomous vehicle 🗴 ✓ ✓ 🗴

IoT device 🗴 ✓ ✓ 🗴

Robot 🗴 ✓ ✓ 🗴

Food ingredient ✓ 🗴 🗴 ✓

Fuel ✓ 🗴 🗴 ✓

Raw material ✓ 🗴 🗴 ✓

18 2.4 Self-adaptive systems

automated warehouse system relies on robots, packing materials, and sensors to

execute tasks for customer order preparation and stock replenishment.

Table 2.2 presents a few examples of tasks, from multiple types of software systems

alongside examples of resource types that each one requires so it can execute. For

example, customers use a retail store’s website to issue the task “search for a product”,

which depends on the CPU and RAM of the server for timely execution. Another

example is the task “prepare an order for delivery”, which is issued on an automated

warehouse management system and is performed by robots. In this example, the

availability of the necessary resources can vary, due to reasons such as hardware

failure and excess workloads, which can cause financial losses.

2.4 Self-adaptive systems

As explained in Section 1.1, adaptation can help software systems to deal with

resource variability and to keep executing tasks that require scarce resources. Hence,

this section presents some background information about SASs.

2.4.1 Autonomic manager

A SAS is a system that can adapt itself automatically based on changes in its context

(Cheng et al., 2009; De Lemos et al., 2013). SASs are composed of an autonomic

manager and a managed system. An autonomic manager corresponds to the control

Table 2.2 – Examples of tasks and their primary required resources

Software System Example Task Example of Resource Types

Manufacturing Manufacture products Raw Materials and Factory
Machinery

Retail Store

Search for a product RAM and CPU

View sales report RAM and CPU

Print sales report Printer

Warehouse Prepare customer order Robots and Packing Materials

Power Grid Run generator Generator and Fuel

Surveillance Survey area Drone and Camera

Chapter 2 - Literature Review 19

unit that manages the adaptation process of the managed system. The autonomic

manager adapts a managed system.

An autonomic manager is defined using a control loop like the MAPE-K, which

proposes components that enable self-adaptation (Kephart and Chess, 2003). MAPE-K

is composed of five components: Monitor (M), Analyse (A), Plan (P), Execute (E), and

Knowledge (K) base, as illustrated in Figure 2.1.

• Monitor (M) collects data related to the managed system and the context using an

interface of sensors, where the collected data is stored in the knowledge base.

• Analyse (A) performs an analysis of the monitored data and determines if the

managed system requires adaptation.

• Plan (P) constructs the adaptation actions needed to achieve the managed

system’s objectives.

• Execute (E) carries out the generated actions in the planning phase to adapt the

managed system using an interface of effectors.

• Knowledge (K) base shares and maintains data resulting from the MAPE

components for supporting the autonomic manager.

Figure 2.1 – MAPE-K control loop

Autonomic Manager

Monitor

Analyse Plan

 xecute

Managed System

Sensors ffectors

Knowledge ase

20 2.4 Self-adaptive systems

2.4.2 SAS questions and dimensions

Researchers have proposed questions and dimensions to characterise SASs. Salehie

and Tahvildari (2009) presented an overview of self-adaptive software and the 5W1H

questions: When, Why, Where, What, Who, and How. Krupitzer et al. (2018) presented

an extensive literature review and also proposed the same set of questions except

“Who” because they considered that the nature of SAS requires automatic adaptation,

which is based on using a control loop. Other authors have also used similar questions

(McKinley et al., 2004; Buckley et al., 2005). The questions from Salehie and Tahvildari

(2009) and Krupitzer et al. (2018) and their corresponding dimensions and examples

are shown in Table 2.3 and explained as follows.

“When to adapt” relates to time, whereby an adaptation can be either reactive or

proactive. Reactive is applied when a software system acts after an event happens,

whereas proactive is applied before an event happens. Reactive and proactive

adaptations consist of similar activities regarding monitoring, planning, and executing,

but differ when it comes to analysing. Reactive adaptation analyses the monitored data

to check if an adaptation is required based on some decision criteria (e.g., rules),

whereas proactive adaptation uses the monitored data to forecast the system

behaviour or environmental state. Additionally, reactive adaptation could cause a

delay if the adaptation is time-consuming, while proactive adaptation prepares the

change in advance to reduce the delay. However, the suitability of the prediction

algorithms, which are used for proactive adaptation, are dependent on the specific

Table 2.3 – Questions and dimensions of self-adaptive systems

Question Dimension Examples

When? Time Reactive, proactive

Why? Reason Context, resource

Where? Level Software system, resource

What? Technique Parameter, structure, context

Who? Executor Autonomic manager, human

How? Control Decision criteria, degree of decentralisation

Chapter 2 - Literature Review 21

prediction scenarios, and faulty predictions could cause suboptimal adaptations.

Furthermore, the time at which an adaptation is needed is linked to the monitor and

analyse components in MAPE-K since the monitored elements are used to determine

whether an adaptation is needed.

“Why do software systems adapt” relates to the reason for the adaptation based on

changes in the context or the available resources. Hence, the reason for performing an

adaptation helps in determining the elements that the monitor component monitors.

Furthermore, the reason for performing an adaptation is related to the analyse

component in MAPE-K since it determines whether adaptation is needed.

“Where should a change be implemented” relates to the level at which the

adaptation occurs in a SAS. As mentioned in Section 2.4.1, a SAS is composed of an

autonomic manager and a managed system. Since the autonomic manager often stays

the same (i.e., does not get adapted), then the level will be related to the managed

system’s elements (e.g., tasks and resources). Furthermore, the level at which the

adaptation occurs is related to the analyse component in MAPE-K since it determines

where adaptation is needed.

“What type of change is needed” relates to the applied adaptation technique such as

parameter, structure, and context adaptation. Parameter adaptation changes the data

values of a software system’s parameters (e.g., changing the speed of a robot).

Structure adaptation changes the behaviour of a software system (e.g., by replacing a

software component with another). Context adaptation relates to explicit adaptation of

the environment and resources via the control loop (e.g., changing the physical space

that a robot surveys). Furthermore, the type of change is related to the plan component

in MAPE-K since it determines the actions that should be performed to adapt the

managed system’s elements.

“Who shall invoke the adaptation” relates to the executor that denotes the level of

automation and human involvement in the SAS. The autonomic manager performs

adaptation in an automated manner with minimal human intervention. Nonetheless,

human involvement can be valuable to improve the manageability of a SAS (e.g., by

providing feedback on the adaptation). Furthermore, the executor is related to the

execute component in MAPE-K since it carries out the actions needed to adapt the

managed system. Increasingly there are human-in-the-loop approaches that aim to

address interactions and promote collaborations between humans and machines

(Cleland-Huang et al., 2022).

22 2.5 Resource-driven adaptive systems

“How is the adaptation performed” relates to the control over the adaptation

through decision criteria (e.g., rules and goals) and the degree of decentralisation (e.g.,

centralised and decentralised). Furthermore, the control over the adaptation is related

to the plan component in MAPE-K since it determines the actions needed to adapt the

managed system’s elements.

2.4.3 Self, context, and resources in self-adaptive systems

Self and Context: Salehie and Tahvildari (2009) differentiate between a software

system’s self and context. The word “self” denotes the whole multi-layer software

system. On the other hand, the word “context” encompasses elements that exist in the

operating environment of a software system and affect its properties and behaviour.

Hence, they perceive a self-adaptive software system as a closed-loop that receives

feedback from itself and its context. A self-adaptive system aims to adjust itself during

its operation based on changes from the software system’s self (internal causes) or its

context (external events).

Resources versus self and context: Resources that impact the operation of a

software system can be diverse as explained in Section 2.2. Based on the definition of

Salehie and Tahvildari, it is possible to consider resources to be elements of a software

system’s self (e.g., software component) or context (e.g., hardware). However, as

explained in Section 2.2, this thesis considers resources as entities needed to carry out

tasks; these entities differ from elements of a software system’s self or context in terms

of representation and (re)allocation.

Resources can be (re)allocated by a system based on feedback from itself and its

context. For example, memory, processing capacity, and the number of allowed

connections to a database can be (re)allocated based on things like user privileges, the

task at hand, and the time of day. However, this does not apply to context elements

such as the type of user (e.g., novice or expert), type of platform (e.g., operating

system), and environment-related conditions (e.g., weather). The (re)allocation of

resources can involve restriction, shifting, and substitution.

2.5 Resource-driven adaptive systems

A resource-driven adaptive system (RAS) is a type of SAS where the trigger for

adaptation is the variability of resources (refer to Section 1.1). In a RAS, the managed

Chapter 2 - Literature Review 23

system relies significantly on resources and is therefore a resource-driven system. For

example, a “calculator” is a single-user application that relies on a very small amount of

CPU and RAM to operate. This means even when the CPU and RAM are facing

variability, it is still possible to run this application without adaptation. Hence, the

“calculator” is not considered to be resource-driven. On the other hand, an automated

warehouse system relies significantly on resources like robots and packing materials

to execute tasks that are initiated by its users. The tasks in an automated warehouse

system could be competing for scarce resources. Hence, this system is highly affected

by resource variability. Table 2.4 shows examples of software systems that are either

affected or not affected by resource variability. In a RAS, resources are monitored via

the autonomic manager’s monitor component. Additionally, the trigger for adaptation

is related to the unavailability or scarcity of resources.

2.6 Chapter summary

This chapter presented background information about concepts that are relevant to

this thesis. These concepts include resource types, tasks, and self-adaptive systems.

This chapter classified resource types (e.g., robots and materials) under four resource

groups static, dynamic, reusable, and depletable. Moreover, it presented examples of

tasks and their related resource types from multiple software systems. Furthermore,

this chapter presented questions and dimensions of SAS based on the existing

literature and explained the components of an autonomic manager as proposed by the

MAPE-K control loop. Finally, this chapter explained what types of systems this thesis

considers to be resource-driven and how resource-driven adaptive systems (RASs)

relate to SASs.

Table 2.4 – Examples of software systems (un)affected by resource variability

Software Resource Type
Affected by Resource

Variability

Calculator CPU and RAM 🗴

Text editor CPU and RAM 🗴

Warehouse Robot and Packing Materials ✓

Manufacturing Raw Material and Factory Machinery ✓

 25

3

Literature Review

This chapter presents a critical analysis that covers the strengths and shortcomings

of related work about resource-driven adaptation approaches and task modelling

notations. The critical analysis involves discussing the types of resources, adaptation,

and software systems that are supported by existing resource-driven adaptation

approaches. Furthermore, this chapter reviews existing task modelling notations based

on the types of operators and tasks that they support and other characteristics that

would specifically benefit resource-driven adaptation. This chapter presents tables

that summarise information about the related work.

3.1 Introduction

Resource-driven adaptation approaches are categorised in this chapter according to

their key characteristics, which are related to how the adaptation is performed and

what is adapted. Some approaches follow the brownout paradigm and temporarily

deactivate optional parts of a software system during resource variability (Xu and

Buyya, 2019). Other approaches are task-based and do not just deactivate a part of a

software system but adapt while considering the tasks that a system executes (Rigole

et al., 2007). Scheduling approaches also consider tasks but are particularly concerned

with optimising one or more performance measures like the total completion time of

tasks (Gawiejnowicz, 2020). The source code of software systems is modified by code-

based approaches to reduce the consumption of resources (Christi, Groce and

Wellman, 2019). Some approaches use policies (rules) that represent a choice

concerning the behaviour of a system (Keeney and Cahill, 2003) while others use

26 3.2 Resource-driven adaptation approaches

Dynamic Software Product Lines (DSPLs) to produce software systems that are

capable of adapting to changes at runtime (Pascual, Pinto and Fuentes, 2015).

Reference architectures have also been proposed (Garlan, Poladian, et al., 2004).

Moreover, query-based approaches either optimise queries or filter their results to

avoid wasting resources due to returning unnecessary data (Gotz et al., 2015).

As mentioned in Section 1.3, task models can serve as input for resource-driven

adaptation. Task models are represented using task modelling notations. These

notations are beneficial because they support the decomposition of tasks into subtasks

that could differ in terms of their priorities and the resources that they require. Task

modelling notations can represent several types of tasks and depicts how each task is

temporally related to other tasks. Several task modelling notations have been

proposed in the literature (Martinie et al., 2019). These notations model tasks and

their relationships, mostly by using a graphical representation. This chapter examines

existing task modelling notations to see if they support characteristics that are useful

for resource-driven adaptation, including properties that represent the priorities of

tasks and the types of resources that they use, task variants are useful for performing

adaptation by executing similar tasks that consume fewer resources, and properties

that indicate which types of adaptation apply to a task. Furthermore, this chapter

discusses other characteristics of existing task modelling notations, namely operators

and task types. These operators and task types are not specifically meant for

supporting resource-driven adaptation but are rather useful for representing tasks and

their relationships for any type of software application (including those that need to

adapt based on resource variability).

3.2 Resource-driven adaptation approaches

This section presents the state-of-the-art resource-driven adaptation approaches

and discusses their strengths and shortcomings with examples. It is important to

discuss these approaches because the work presented in this thesis uses resource-

driven adaptation to address resource variability.

3.2.1 Brownout

The “brownout” paradigm involves the temporary deactivation of optional parts of

a software system, including components and web-page contents; it was inspired by

Chapter 3 – Literature Review 27

and named after the intentional voltage drops often used in electrical grids to prevent

blackouts through load reduction in case of emergency (Klein, Maggio, et al., 2014).

Klein, Maggio, et al. (2014) proposed the brownout paradigm to cope with resource

variability on the cloud infrastructure due to hardware failures and varying user

workload levels without over-provisioning resources. Afterwards, several approaches

adopted “brownout” to handle situations such as hardware failures and flash crowds in

cloud computing systems (Xu and Buyya, 2019). The brownout approaches are

relevant to this thesis because their primary aim is to handle resource variability

through adaptation. The brownout paradigm is inspirational because it shows how

certain parts of an application can be downplayed in favour of keeping other more

important parts running during resource variability. Brownout gracefully stops part of

a software system using adaptation, instead of stopping the entire system all at once

due to the lack of resources.

Although brownout approaches differ in their objectives, they perform the same

type of adaptation that involves the activation and deactivation of optional parts. For

example, Moreno et al. (2015) proposed a proactive approach to address adaptation

latency, which is the lag between performing an adaptation and the effect that is

produced from it, Zhao et al. (2017) proposed a framework to generate adaptation

rules for user goals, and Pandey et al. (2016) combined two planning approaches to

handle the trade-off between timeliness and optimality of the adaptation plan. The

three abovementioned approaches were all evaluated using the brownout example of

Klein et al. (2014), which involved adapting a web application by deactivating its

(a) (b)

Figure 3.1 – Example of UI and tasks: excerpt from the content of an ERP’s invoice UI
(a) and an excerpt of the corresponding task “create invoice” (b)

Customer

...

Code Description Quantity

I001 ABCD 4

I002 XYZ 1

I003 EFG 2

Products

Image (of selected product)

John Smith

Create Sales Invoice

Display
Product Description

Display
Product Image

Legend: Abstract task Application task

>>

High Priority High Priority for electronics

Low Priority for other types
of products

......

28 3.2 Resource-driven adaptation approaches

optional parts when the CPU (resource) is facing variability. Similarly, Tomas et al.

(2014) deactivate optional parts to address the issue of applications that are accepted

to run on a cloud server, which does not have sufficient resources. Software systems

would have more versatility in coping with resource variability if they support

multiple types of adaptation, rather than just deactivating optional parts, because

some types of adaptation might not work in some cases. For example, if part of a

software system performs mandatory work that cannot be deactivated an alternative

could be to process this work in the background at a later time when resources

become available. The software system would notify the user when the work is done.

This applies the substitution of inoperative robots in an automated warehouse with

other types of robots instead of deactivating part of the software system and cancelling

the work.

In the brownout paradigm, a controller manages the activation and deactivation of

the optional parts based on trade-offs between metrics (Maggio, Klein and Arzén,

2014). The work of Klein, Papadopoulos, et al. (2014) and Dürango et al. (2014)

involved performing trade-offs between response time and user experience. Klein,

Papadopoulos, et al. (2014) extended the work of Klein, Maggio, et al. (2014) to apply

brownout on multiple replicas (rather than just one) of an application using two novel

load-balancing algorithms. Dürango et al. (2014) extended the work of Papadopoulos,

et al. (2014) by considering other load-balancing algorithms and performing an

additional evaluation. The work of Xu, Dastjerdi, and Buyya (2016) and Hasan et al.

(2016) involved performing trade-offs between energy consumption and revenue. Xu,

Dastjerdi, and Buyya (2016) worked on reducing energy consumption in cloud data

centres by performing a trade-off between energy consumption and giving users a

discount on the price. In their approach, if the user experience is degraded to reduce

energy consumption, then users get a discount on the price. Hasan et al. (2016) aim to

achieve green energy awareness in cloud applications. They disable optional web

content to increase the usage of green (clean) energies and decrease the usage of

brown (polluted) energies while performing a trade-off between user experience and

the service provider's revenue. In the brownout approaches, the controller that

manages the activation and deactivation of the optional parts has a parameter that

represents the probability of running the optional parts. The controller reduces the

value of this parameter when the software system is close to saturation. Hence, for

example, the optional part may be deactivated or served for every second user.

However, performing task prioritisation using multiple criteria provides a more

Chapter 3 – Literature Review 29

granular way of deciding which parts to adapt so the resources are used by the tasks

that need them most. For example, some users have more privileged roles and some

tasks are more important at specific times of the day. Hence, instead of considering a

part of a software system to be either optional or mandatory, its importance would be

more accurately represented by prioritising the tasks that use it. This makes it possible

to vary adaptation choices among tasks. What follows is an explanation of this point

using two examples from an ERP system, one related to the contents of an invoice,

shown in Figure 3.1, and another one related to invoice and profit report tasks that use

the same components, shown in Figure 3.2.

Consider the example presented in Figure 3.1a, which shows part of an invoice UI

from an ERP system, whereby the creation of an invoice involves displaying product

information like the description and the image. Consider that displaying a product’s

image is optional and can be deactivated when there is a need to avoid saturation (if an

application saturates it will be unable to serve users in a timely manner). However,

instead of considering the image part to be always optional and deactivating it for

random users, its importance would be more accurately represented using a task

priority. For example, displaying the image of a product could have a high or a low

priority depending on the types of products that the end-user selected, whereby each

enterprise has particular values for these types of products (e.g., books and phones).

To clarify further how tasks are related to the product image part of the invoice,

consider that the task called “Create Invoice” that is shown in Figure 3.1b corresponds

to the invoice example from Figure 3.1a. This task is presented using ConcurTaskTrees

(CTT), which is a notation for representing task models hierarchically using a graphical

syntax (Paterno, Mancini and Meniconi, 1997; Mori, Paternò and Santoro, 2002). The

Figure 3.2 – Example of a component and tasks: two tasks from an ERP system use the
same component to export documents to images

Task: Export Profit Report To Image

Export Profit Report To High Resolution Image

Export Profit Report To Low Resolution Image

Task: Export Invoice To Image

Export Invoice To High Resolution Image

Export Invoice To Low Resolution Image

Low Priority for all user roles (except manager)

High Priority all user roles

High Priority all user roles

Su
b

st
it

u
ta

b
le

 b
y

si

m
il

ar
 t

as
k

High Priority all user roles

DocumentToImageExporter

ResolutionResolution

30 3.2 Resource-driven adaptation approaches

task “Create Invoice” has subtasks that include “display product description” and

“display product image”. The priority of the task “display product image” would differ

according to the value that the end-user chooses for the task’s parameter “product type”.

Consider the example presented in Figure 3.2, which shows a “document to image

exporter” component that multiple tasks from an ERP system use. In this case, the

component is not optional. Hence, it cannot be deactivated as is done by the brownout

approach. Sun et al. (2019) suggest substituting components with alternatives that are

less resource-intensive during situations of resource variability. However, instead of

substituting the “document to image exporter” component with an alternative one that

uses a lower resolution across the entire software system, it is more effective to

substitute a task with a similar one depending on the tasks’ priorities. This way the

adaptation can vary according to the task rather than being applied to components and

disregarding the differences among the tasks that share the component. For example, if

the task “ xport Invoice to High-Resolution Image” has a higher priority than the task

“ xport Profit Report to High-Resolution Image”, then the latter can be substituted by a

similar task called “ xport Profit Report to Low-Resolution Image”. The tasks will still

call the same component but with different parameters thereby allowing the high-

priority tasks to benefit from a high-resolution output while the low-priority tasks

would still run but with a lower resolution to conserve resources. Furthermore, the

priority of the task could differ according to the user who is initiating it. Hence, for

example, the task "Export Profit Report to High-Resolution Image" has a low priority

for all user roles except the manager. Moreover, consider that the “product image” part

of the invoice shown in Figure 3.1a is a visual component that is reusable across

several UIs. In this case, the component may be optional for the “Create Invoice” task

but mandatory for the “Create Product” task. Considering this example, it is possible to

say that some resource-intensive parts of a software system are not always optional.

Hence, considering the tasks that are executed by software systems provides the

necessary granularity to make accurate decisions on when to adapt based on task

priorities.

A few brownout approaches have considered prioritising components to decide

which ones to deactivate first. Xu et al. (2016) prioritised components based on usage

frequency while Sun et al. (2019) also added computational complexity. However, this

prioritisation of components does not consider how tasks vary according to multiple

criteria such as the time of the day when the task is initiated and the role of the user

Chapter 3 – Literature Review 31

who initiated it. Usage frequency is important but is not sufficient for prioritisation if it

is not complemented by a managerial view of priorities. For example, management in

an enterprise could decide that keeping high-resolution images in an inventory report

is of a higher priority than keeping them in a sales report that is more frequently used.

Considering both the end-user and managerial perspectives of priorities

accommodates the interests of stakeholders during situations of resource variability.

Furthermore, Sun et al. (2019) measured component complexity, which they used for

prioritisation, by counting the number of files (.class, .html, and .xml) that define a

component. This technique does not accurately determine resource intensiveness. For

example, if a component used robots as a resource the number of files it has does not

indicate how many robots are needed. Alternatively, if tasks were prioritised, high-

priority tasks would be given access to the resources that they need while adaptation

would be applied to low-priority tasks during situations of resource variability.

Resource types vary from one system to another. For example, some systems

primarily depend on reusable hardware resources such as RAM and CPU, while other

systems depend on depletable resources such as fuel and raw materials. The existing

brownout approaches mostly target CPUs as resources and one work by Nikolov et al.

(2014) targets networks. As Xu and Buyya (2019) indicate, brownout approaches

would become more comprehensive if they supported multiple types of resources.

3.2.2 Task-based

Some approaches have considered tasks as part of the resource-driven adaptation

decision-making process. These approaches target resource-driven adaptation in

smart spaces such as smart homes (Wu and Fu, 2011). Rigole et al. (2007) presented

an approach for gradual component deployment based on the tasks initiated by end-

users to avoid the needless consumption of computing resources and latencies on

lightweight mobile devices. A system was developed based on Project Aura (Garlan et

al., 2002) to adapt the Quality of Service (QoS) to changes in the environment and the

end user's preferences according to the task that he or she is performing (Sousa et al.,

2006). An approach was presented for composing services to maximise the QoS for the

currently active user task in smart spaces (Davidyuk, Ceberio and Riekki, 2007). Gajos

(2001) presented a system called Rascal for resource mapping and conflict arbitration,

whereby resource mapping is similar to web service discovery (i.e., finding a suitable

service for a given task) and arbitration decides which task requests are more

32 3.2 Resource-driven adaptation approaches

important when resources are scarce. The relation between this part of the literature

and my thesis is the consideration of tasks, which provides granularity in adaptation

decisions because tasks that use the same resources could be different according to

their priorities and resource consumption. It is important to analyse this part of the

related work to understand how existing approaches use tasks as part of their

adaptation process and how they represent these tasks.

Some existing task-based approaches do not address resource variability in

scenarios where end-users are initiating tasks that are competing for resources. Rigole

et al. (2007) and Sousa et al. (2006) focus on the perspective of a single user who is

performing a task on a mobile device. However, there are other cases like enterprises

where many end-users (e.g., employees and customers) initiate tasks at the same time,

and software systems should decide which tasks to execute as requested and which

ones to adapt due to resource limitations. Multi-user scenarios differ from single-user

ones because the adaptation must maintain the interest of stakeholders regarding

which tasks are more important during resource variability. For example, in enterprises,

it is important to consider the perspectives of end-users and corporate management.

Hence, even if an end-user wants to execute a resource-intensive report at a specific

time of the day, corporate management may consider that other tasks have a higher

priority during this time.

Moreover, Perttunen et al. (2007) adopt a leasing mechanism that gives users

access to shared resources, such as a screen at an airport, for a limited amount of time.

Consider the previously explained invoice example from Figure 3.1 or another example

concerning an order preparation task at a warehouse that is automated by robots.

Leasing is not ideal for such examples since the tasks require using the resources until

completion. Furthermore, as Gajos et al. (2001) state, they decide on the importance of

a request using “self-assigned need levels that they describe as a very simple and

arbitrary scheme that can be replaced by another system”. Hence, it would be useful to

consider task prioritisation that is not arbitrary but rather takes into account multiple

criteria.

The adaptation performed by Rigole et al. (2007) focuses on loading software

components just-in-time rather than resource variability scenarios. Perttunen et al.

(2007) focused on service composition while Garlan et al. (2004) and Sousa et al.

(2006) did not discuss specific types of adaptation. As mentioned in Section 3.2.1,

software systems would have more versatility in coping with resource variability by

Chapter 3 – Literature Review 33

supporting multiple adaptation types. Furthermore, these approaches focused on

resources such as the computational resources on mobile phones and hardware

equipment that exist in smart environments. However, other types of resources such

as depletable resources were not considered.

Concerning task representation, Rigole et al. (2007) represent task models using an

existing task modelling notation, namely CTT (used for the example in Figure 3.1b).

The other existing works discussed the concept of a task but did not use or present a

way for representing the tasks. The representation of different types of tasks using a

task modelling notation is useful because some types of adaptation only apply to some

types of tasks. For example, tasks such as report generation can be postponed to

another time and performed in the background. On the other hand, postponement

could negatively impact usability when a task is followed by subsequent user

interactions to initiate other tasks (e.g., searching for products and selecting a product

from the result). CTT already supports multiple types of tasks and operators. Hence, it

presents a viable starting point to represent tasks for resource-driven adaptive

systems. Nonetheless, CTT is missing characteristics like task variants (e.g., as

demonstrated by the example in Figure 3.2) that are useful for resource-driven

adaptation. Furthermore, it would be useful to extend CTT with properties like a task’s

required resources and priority and task types that are useful for deciding whether an

adaptation type applies to a task.

3.2.3 Scheduling

Scheduling approaches aim to solve the problem of allocating resources to tasks in

addition to the optimisation of performance measures. These approaches are part of

the related work in the sense that they consider that resources, such as computational

resources (Zhan et al., 2015) and machinery (Zhou, Zhang and Horn, 2020), are scarce

and should be managed in a way that enables the tasks that need them to execute.

Hence, they aim to accommodate the execution of tasks within the limitations of the

available resources.

Gawiejnowicz (2020) indicates that scheduling approaches mainly use offline

algorithms, which require their input to be fully available before executing. However,

the input that is required for scheduling tasks is not always available ahead of time.

For example, resource variability produces new information at runtime (i.e., while

tasks are executing). Additionally, Gawiejnowicz (2020) define scheduling problems by

34 3.2 Resource-driven adaptation approaches

saying that no resources other than machines are needed to complete the tasks. In this

case, machines could represent several types of reusable resources like robots or

manufacturing equipment. However, some systems also require depletable resources,

which are either available or unavailable. When depletable resources are nearing

depletion and replenishment is delayed measures should be taken at runtime to keep

these resources available for the critical tasks that need them most. For example, when

medicines are facing an unexpected delay in replenishment, the remaining stock

should be used for treating the most critical medical conditions. Moreover, changing a

task’s execution schedule is not always suitable. For example, the end-users of an ERP

system expect an immediate result when searching for a product while creating an

invoice. Hence, this task cannot be delayed and another type of adaptation is needed.

Mohan et al. (2019) indicate that the majority of existing work is based on static

demand and deterministic processing time. Static scheduling problems make several

assumptions (Pinedo, 2018). What follows are five of these assumptions and an

explanation of how they are limiting in environments that have unforeseen changes.

First, all tasks that are going to be processed are available when the software system

starts processing the tasks. However, this is not always the case. For example, users

can initiate tasks via a software system at varying times during the day thereby

creating a dynamic demand. Second, if additional tasks arrive during the day then they

would have to be processed the next day. However, there are cases when it is vital to

process critical tasks promptly even if these tasks arrive during the day. Third, the

machines are always available during the processing period. This is not possible in

environments that face resource variability. Fourth, the processing times of the tasks

are known and deterministic. However, there are cases where the processing times of

tasks are unknown, and these times can change for tasks of the same type (e.g., the

time it takes to prepare an order differs from one order to another). Fifth, a task is

done using one resource (one machine). However, multiple resources could be needed

to execute a task even if it is a sub-task of a parent task. Hence, the relationship

between resources and tasks is M-N rather than 1-N. For example, the task of packing

products at an automated warehouse requires a robot in addition to boxes and other

packing materials.

Based on the abovementioned reasons, environments that face unforeseen changes

like resource variability and do not have a static demand for tasks require a dynamic

approach to allocate resources to tasks. Priority-generating functions that assign

Chapter 3 – Literature Review 35

priorities to tasks are commonly used for scheduling (Strusevich and Rustogi, 2017).

However, the generation of those priorities becomes challenging in dynamic

environments due to several reasons. First, there is limited availability of resources

due to resource variability. For example, an automated warehouse could unexpectedly

lose a significant part of its robot capacity due to hardware failures. Second, multiple

criteria should be taken into account (e.g., the capabilities of resources like robots).

Third, there are multiple competing agents. For example, in an automated warehouse

system, multiple robots need boxes to pack orders and multiple tasks need robots to

be executed. Fourth, there are multiple types of resources. For example, robots are

reusable resources and boxes are depletable resources. Scheduling problems such as

flow shop and job shop are NP-Hard. Furthermore, the combination of the

abovementioned points makes the scheduling problem intractable (Gawiejnowicz,

2020). Hence, a heuristic is needed to calculate priorities and provide a solution for

resource allocation in complex environments.

3.2.4 Code-based

Some adaptation approaches modify the source code of software systems to create

new versions that are better fit for some situations. It is useful to explore these

approaches as part of the related work to see how they apply adaptation to a software

system’s source-code and how this compares to performing adaptation while taking

tasks into consideration. It is also useful to observe the impact of performing

adaptation on the source-code on the ability of these approaches to address the

resource variability problems in multiple types of software systems.

Code-based approaches work at design time. However, resource-driven adaptation

must be done at runtime because some information, like task priorities and the cost of

applying a type of adaptation, are unknown at design time. For example, consider that

two enterprises are using the same software system. The task “ xport Profit Report to

High-Resolution Image”, shown in Figure 3.2, could have a high priority for one

enterprise and a low priority for another. Furthermore, the cost of applying an

adaptation type changes based on input collected from stakeholders such as systems

administrators and end-users. For example, concerning the task “ xport Profit Report

to High-Resolution Image” (Figure 3.2) end-users could favour exporting a report to a

low-resolution image to get a result directly when resources are facing variability or

they could favour delaying the task’s execution until resources become available to get

36 3.2 Resource-driven adaptation approaches

a high-resolution image. Therefore, adaptation approaches that perform source code

reduction at design time are not suitable for addressing resource variability.

A code-based design-time approach was presented to adapt software systems based

on available resources (Christi, Groce and Wellman, 2019). This approach performs

source-code reduction to make software systems consume less RAM. Annotations are

added by programmers on the unit tests to identify which parts of the system are

optional and can be removed when RAM consumption is above a threshold. The

authors used the NetBeans IDE as a case to assess their work. The main limitation of

this approach is that the software system must be recompiled to get an adapted

version because the adaptation involves direct changes to the source code.

Furthermore, as Christi et al. state, their approach is only valid for Java programs and

does not generalise to programs written in other programming languages. Technology

independence would improve if prioritisation and adaptation decisions were made at a

higher level of abstraction such as tasks instead of being applied to source code. Yan et

al. (2019) proposed an approach for adjusting the configuration of software systems to

reduce power consumption on Unmanned Arial Vehicles (UAVs). This approach

analyses source code at design time and adjusts the configuration at runtime to avoid

having to recompile the software system. However, this approach is specific to power

consumption in UAVs and does not apply to other types of software systems and

resources.

Huang et al. (2017) and Shao et al. (2014) presented approaches that particularly

target mobile apps. The approach of Huang et al. (2017) reduces Android apps by

removing the code elements of unwanted features to reduce the consumption of

power, CPU, and bandwidth. Even with code modification aside, the idea of removing

features from the software system is different from resource-driven adaptation. For

example, if there is variability in resources such as CPUs and robots, the software

system using these resources should adapt without permanently removing features

that are required by the end-users. Huang et al. (2017) assume that in some software

systems, some features can be removed because they are not being used at all by the

end-users. However, this is not the case in other systems where required features face

resource variability. The approach of Shao et al. (2014) detects whether Android apps

have been repackaged to avoid the possible insertion of malware. This approach is

described as resource-driven because it analyses app resource files such as layout and

styles to detect changes. However, although these resources are static and reusable,

Chapter 3 – Literature Review 37

they do not face variability since every app has its copy of these files. Hence, the

approach of Shao et al. (2014) does not aim to address resource variability through

adaptation.

3.2.5 Policy-based

A policy is a rule that represents a choice concerning the behaviour of a system. For

example, positive and negative authorisation policies define actions that subjects are

authorised or unauthorised to perform respectively (Damianou et al., 2001).

Chisel (2003) uses a policy language to define rules for adapting mobile systems

that use services. Chisel dynamically inspects and adapts software systems using

Iguana/J (Redmond and Cahill, 2000) with reflection (an API for examining and

modifying the behaviour of methods and classes at runtime). The policies

demonstrated by Chisel change configuration values to alter the behaviour of the

system as a whole, but do not consider how individual tasks should be adapted when

these configurations are not sufficient. Similarly, Efstratiou et al. (2002) use policies

that include actions on a system-wide level to support the coordination of the adaptive

behaviour of multiple mobile applications that share the same reusable resources. For

example, one of Chisel’s policy examples initiates caching behaviour when memory is

low. Consider that instead of memory the number of robots in a warehouse is low due

to several unexpected hardware failures. In this case, changing a system setting is not

enough to compensate for the missing robots, but performing task prioritisation and

adaptation keeps the resources available to the most important parts of the work.

Furthermore, using reflection to apply adaptations to the application could have

performance implications, but these were not discussed.

VOLARE adapts service requests at runtime based on rules defined using a policy

language (Papakos, Capra and Rosenblum, 2010). Like some of the work discussed in

Section 3.2.2, VOLARE focuses on single-user mobile application scenarios where the

adaptation is based on the resources available in the environment and user

preferences, but multi-user scenarios are not considered. For example, the case study

done by VOLARE involves binding a mobile app to streaming services whose bitrates

depend on the connection speed that is available for the mobile device. If this example

was considered for a multi-user scenario, the adaptation will be done based on which

tasks are more important rather than just individual user preferences. For example, if

many robots at an automated warehouse were malfunctioning the remaining robots

38 3.2 Resource-driven adaptation approaches

that are working on low-priority tasks could be diverted to work on high-priority tasks

until the other robots are repaired.

Policies are also used to maintain service level agreements (SLAs) by setting the

QoS (e.g., gold or silver) for software systems that use shared resources (Bandara et al.,

2004). David and Ledoux (2003) and Buisson et al. (2005) presented frameworks that

enable software developers to specify policies for adapting components when resource

availability changes at runtime. These policies are useful. However, more granularity in

the adaptation decisions could be provided by considering the differences among tasks

like priorities and resource consumption rather than adapting the software system or

its components as a whole. Hence, for example, instead of considering that an entire

software system has a high priority, multiple tasks from several software systems that

are sharing resources could benefit from this privilege depending on their importance

(e.g., for an enterprise). Furthermore, different types of adaptation could be suitable

for each task. For example, usability is hindered by the postponement of tasks that are

followed by subsequent user interactions to initiate other tasks (e.g., searching for

products while creating an invoice on an ERP system). However, this type of

adaptation could be possible for other tasks like the generation of non-critical reports.

3.2.6 Architecture-based

MAPE-K (Kephart and Chess, 2003) and the three-layer architecture (Kramer and

Magee, 2007) serve as references for developing self-adaptive systems. Rainbow

refines the MAPE-K control loop by adding a resource discovery mechanism to check

the resources of the managed system (Garlan, Cheng, et al., 2004). This resource

discovery mechanism was also added to MORPH (Braberman et al., 2017), which is a

reference architecture that takes inspiration from Rainbow and the three-layered

architecture and targets the adaptation of system configuration and behaviour.

Rainbow’s resource discovery mechanism is limited to discovering and replacing

software components, like a video conferencing gateway with existing ones, and it was

implemented in a prototype that uses the network-sensitive service discovery

mechanism (Huang and Steenkiste, 2003). Although this approach is feasible for

software components, it would not work for other types of resources. For example,

depletable resources cannot be discovered for direct use since these are delivered by a

supplier and are affected by delays in the supply chain. Additionally, consider other

resources such as robots. Even if existing resources were discovered these resources

Chapter 3 – Literature Review 39

cannot be used without taking into consideration task priorities. Otherwise, low-

priority tasks could be given access to resources that are needed by high-priority tasks.

Furthermore, as Garlan, Cheng et al. (2004) note, Rainbow could be enhanced with

proactive capabilities that will allow it to find improvement opportunities in an

anticipatory manner.

Huber et al. (2014, 2017) presented a domain-specific language for describing

runtime adaptation at the system architecture level. The adaptation they performed

involved dynamically adding and removing virtual CPUs and application servers

(resources). Similarly, the SLAstic framework supports dynamic allocation and

deallocation of data centre resources through node allocation and deallocation and

load balancing (Van Hoorn et al., 2009). However, systems that are unrelated to

virtualised environments use other types of resources like robots and raw materials,

which cannot be added instantly on demand. Hence, these systems should adapt the

way tasks are executed during resource variability using other types of adaptation like

changing a task to a similar one that requires fewer resources.

3.2.7 Query-based

A few existing resource-driven adaptation approaches are query-based in the sense

that they either directly target query optimisation or filter the results of queries to

avoid returning unnecessary data that wastes resources.

Viswanathan et al. (2018) devised an approach for query optimisation that takes

resources into account to avoid performance loss in big data systems. Query

optimisation is vital in the area of databases and incorporating resources into it is

useful, but the approach of Viswanathan et al. is limited to this area and does not apply

to other systems where resources differ, and the required adaptation does not merely

involve tuning a query to make it faster. Gotz et al. (2015) presented an adaptive

knowledge exchange technique that uses runtime models to manage the consumption

of energy and memory in cyber-physical systems. The technique presented in this

paper is specific to scenarios where robots clean rooms. However, the mentioned

resource types are limited, and the meta-model does not illustrate how resources are

associated with the software system. Furthermore, the adaptation performed by this

technique is specific to changing the amount of data that is being transferred between

robots via queries to reduce battery usage based on robot types and states. Hence, it

does not generalise to other cases of resource variability.

40 3.2 Resource-driven adaptation approaches

3.2.8 Dynamic software-product-line

Software Product Lines (SPLs) are used at design time to tailor software systems by

creating variations from a set of features, while Dynamic Software Product Lines

(DSPLs) are used to produce software systems that are capable of adapting to changes

at runtime (Hallsteinsen et al., 2008).

A few approaches have used DSPLs to support resource-driven adaptation. One

approach used a genetic algorithm to automatically generate optimal software system

configurations from a feature model at runtime according to the available resources

(Pascual, Pinto and Fuentes, 2015). This approach helps software systems to cope with

resource-constrained environments to improve their performance. Features are

mapped to components that are added, removed, or given updated parameter values

when a software system needs to adapt. However, working with tasks provides more

granularity in adaptation decision-making because multiple tasks that use the same

component could differ in terms of priorities and resource consumption. Saller et al.

(2013) presented an approach that is concerned with overcoming resource limitations

that inhibit the use of DSPLs on mobile devices because of the inability to deploy and

explore a complete configuration space due to limited memory and processing

capabilities respectively. However, the work of Saller et al. is not concerned with

adapting software systems due to resource variability since its concern with resources

is limited to the performance of DSPLs. Hence, it does not aim to address resource

variability through adaptation.

3.2.9 Other approaches

SARDE is concerned with acting as a self-adaptive ensemble resource demand

estimation approach (Grohmann et al., 2021). SARDE dynamically and continuously

tunes, selects, and executes an ensemble of resource demand estimation approaches to

improve the resulting estimation accuracy. Therefore, its adaptation is related to the

tuning and selection of the approaches that are part of this ensemble. On the other

hand, this thesis is concerned with making resources available for tasks in the cases

where they are most needed and considering viable alternative task execution options

when resources are unavailable. Furthermore, SARDE focuses on cloud computing

applications and their resources (e.g., estimating resource demands for elastic cloud

resource management and auto-scaling where the resources are mainly CPUs).

Chapter 3 – Literature Review 41

However, it does not cover a variety of resource types (depletable and reusable). Auto-

scaling enables the automatic increase or decrease of cloud services like server

capacities when needed. Resource demand estimation for auto-scaling is specific to

cloud computing and is not always feasible in other scenarios. For example, it is not

possible to auto-scale depletable resources that are facing shortages due to a sudden

problem in the supply chain. Additionally, it is costly to compensate for short-term

resource variability by over-provisioning reusable and depletable resources such as

robots and raw materials respectively. Furthermore, with depletable resources in

particular there is no time spent to obtain a service from a resource (resource

demand) as assumed by SARDE. The depletable resource is either available for a task

to use directly or unavailable, hence the task cannot execute and could be adapted.

A three-way adaptation technique was proposed for optimising the usage of the

available resources to satisfice a set of requirements (Bennaceur et al., 2019). This

adaptation technique consists of three steps (1) available resources are used for

satisfying a set of requirements; (2) unavailable resources are substituted with similar

available resources; (3) requirements are adapted based on the available resources.

The motivating example for the three-way adaptation is based on a meal planning

system, where recipes are considered as requirements and ingredients as resources.

Unlike the previously discussed approaches, three-way adaptation targets food, which

is a depletable resource. It is interesting to observe in this work an example of

depletable resources, namely food, that are affected by resource variability, which is

the problem that this thesis aims to address. However, as previously mentioned it

would be useful to consider multiple types of resources and tasks as part of the

adaptation process.

Samin et al. (2022) presented Pri-AwaRE, which performs decision-making for SASs

while considering the priorities of non-functional requirements (NFRs). Hence, their

approach performs adaptation with trade-offs between NFRs at runtime. Similar trade-

offs are performed by the brownout approaches that were discussed in Section 3.1

(e.g., a trade-off between response time and user experience). However, Pri-AwaRE

performs prioritisation, unlike most brownout approaches. Nonetheless, there are

cases where the priorities differ by task and not just by NFR. Consider the example

shown in Figure 3.1. In this example, response time could be overall more important

than user experience for a variant of the task “Display Product Image” while user

experience could be more important for other variants.

42 3.3 Task modelling

3.3 Task modelling

As discussed in Section 3.2, considering tasks and their differences, like priorities

and resource consumption, is useful because it provides granularity in the decision-

making process of a resource-driven adaptation approach. In this regard, a notation is

needed to model the tasks of a software system, whereby these models would be used

as input when making adaptation decisions. Hence, this section first provides an

overview of existing task modelling notations and then discusses their shortcomings in

the development of software systems that support resource-driven adaptation. The

representation of task variants is one of the important characteristics for supporting

resource-driven adaptation. Feature models can represent variations among features.

Hence, this section also briefly discusses feature modelling notations to clarify how

feature models differ from task models and why task models are more adequate for

supporting resource-driven adaptation in software systems.

3.3.1 Task modelling notations

Task modelling notations are useful for representing the tasks and relationships of

software systems as task models (Martinie et al., 2019). Task models describe how to

perform activities by depicting how a task is divided into subtasks and how these

subtasks are temporally related. For example, an automated warehouse system would

comprise a task called “prepare customer order”, which is divided into sub-tasks like

“locate product in the warehouse” and “pack product in a box”. In this example, the

task “locate product in the warehouse” is executed first and is followed by the task

“pack product in a box”.

Several task modelling notations were proposed as described by existing surveys

(Limbourg and Vanderdonckt, 2004; Guerrero-García, González-Calleros and

Vanderdonckt, 2012; Martinie et al., 2019). Furthermore, these notations have been

used by model-based software development approaches that target user interfaces

(Calvary et al., 2003), games (Vidani and Chittaro, 2009), and collaborative learning

systems (Molina et al., 2014).

Chapter 3 – Literature Review 43

3.3.1.1 Representation of task models

Task modelling notations represent task models differently. Some notations like

UAN (Hartson and Gray, 1992) and GOMS (Kieras, 2004) are textual, while other

notations like CTT (Paterno, Mancini and Meniconi, 1997; Mori, Paternò and Santoro,

2002) and HAMSTERS (Martinie, Palanque and Winckler, 2011) are graphical.

Notations that describe the activities of software systems use different forms of

representation. For example, “Yet Another Workflow Language” (YAWL) and “ usiness

Process Model and Notation” (BPMN) adopt a graph representation, which enables

them to represent workflows that include a sequence of steps with actions, conditions,

and loops (van Welie, van der Veer and Eliëns, 1998). Task modelling notations follow

a hierarchical structure because this provides the ability to represent abstractions

with refinement as tasks and subtasks, which is the objective of these notations. Hence,

task modelling notations mostly use graphical representations to visualise a hierarchy

of tasks and relationships in a way that is easier to interpret by software practitioners.

3.3.1.2 Operators and task types

Task modelling notations support multiple modelling operators and task types,

which are useful for representing software system tasks and their relationships.

Although these operators and task types are not specifically related to resource-driven

adaptation, they still form the starting point for any task model and are therefore

briefly presented in this subsection.

Task modelling notations support multiple operators including choice, concurrency,

interruption, iteration, optionality, order independence, and sequence. The choice

operator designates the possibility of choosing between multiple tasks so that when

one task starts the others are disabled. Concurrency indicates that tasks can be

performed simultaneously (i.e., one task can start before the other one finishes). The

interruption operator indicates that a task is suspended until another task finishes its

work, or a task is completely disabled by another one. Iteration is used to represent

repetitive tasks once even though they may occur more than once. The optionality

operator specifies whether a task is optional. Order independence and sequence

specify that tasks can execute in any order and sequential order respectively. Some

notations offer more operators than others. For example, AMBOSS (Giese et al., 2008),

HTA (Annett, 2003), GTA (Van Der Veer, Lenting and Bergevoet, 1996), and Diane+

44 3.3 Task modelling

(Tarby and Barthet, 1996) have more operators than TKS (Johnson and Hyde, 2003),

GOMS, UAN, ANSI/CEA (2009), and MAD (Scapin and Pierret-Golbreich, 1989).

Moreover, CTT and UsiXML (Limbourg et al., 2004) offer the most types of operators.

Existing task modelling notations can represent tasks including abstract, interaction,

application, and user. An abstract task represents an action that is divided into sub-

tasks. An interaction task involves user interaction with the software system. An

application task is done entirely by the software system whereas a user task is done

entirely by the user. Some notations like CTT and HAMSTERS support these task types

explicitly whereas other notations like Amboss and Diane+ support them implicitly

(i.e., tasks that are not labelled as abstract, interaction, application, or user but the

meaning can be inferred by a human reader from what the task represents). TOOD

(2001) has a “type” property for tasks but does not explicitly specify the values for this

property. Moreover, task types in HAMSTERS can be extended with new ones. Explicit

support for task types is more useful because software systems would be able to

automatically determine the type of a task and make decisions accordingly. For

example, in resource-driven adaptation, the choice of the type of adaptation could

depend on the task type.

3.3.1.3 Task modelling for resource-driven adaptation

Most task modelling notations have operators and task types for representing the

tasks of several types of software systems (e.g., desktop, mobile, and web). Few task

modelling notations target particular areas of application. For example, Amboss

targets safety-critical systems, and HTA targets some types of industrial systems (e.g.,

chemical and petroleum refining). However, existing task modelling notations do not

target software systems that support resource-driven adaptation and are therefore

missing characteristics that would be useful in representing the tasks of these systems

as explained below.

Existing task modelling notations do not support the association of resource types

and priorities with tasks, which are important to identify potentially adaptable tasks

due to resource variability. Although TOOD relates a task to a resource, this is not

sufficient because additional information is required for performing resource-driven

adaptation. This information includes the type of the resource, whether the task is

allowed to use alternative resources, and the quantity of the resource that the task

requires. Furthermore, the existing task modelling notations do not support task

Chapter 3 – Literature Review 45

variants that differ according to priorities, resource consumption, user roles, and

parameter values. Such variants are useful for performing adaptation by executing

similar tasks that consume fewer resources. Furthermore, it is important to support

task variants because each one could have a different priority than its counterparts.

For example, a task variant that consumes few resources and is initiated by users with

privileged roles (e.g., manager) could be considered more important than a variant

that consumes more resources and is initiated by users with less privileged roles.

Another issue is concerned with the lack of stereotypes (tags) indicating which

adaptation types apply to a task. For example, if a task strictly requires a specific type

of resource, the system cannot adapt by performing resource substitution and should

consider another type of adaptation (e.g., delay the task until the resource becomes

available). On the other hand, if the end-users expect an immediate result from a task

to perform additional interaction with the system then the task cannot be delayed. In

such a case, the execution of a similar task (variant) could be possible.

When adaptation is performed, it is important to give feedback to end-users about

the rationale for the adaptation to keep them informed about why the software system

made a particular decision. It is also useful to get feedback from the end-users about

whether the system should improve its adaptation decisions. However, existing task

modelling notations do not have properties for specifying whether and how a software

system should present and receive adaptation-related feedback to and from end users.

Considering the abovementioned limitations, it would be useful to have a task

modelling notation for representing the tasks of software systems that support

resource-driven adaptation. It is not necessary to create this notation from scratch

because existing notations offer a good starting point (refer to Section 3.3.1.2 on the

supported operators and task types). Hence, the desired characteristics (e.g., resource

types and task variants) could be added to one of the existing notations.

3.3.2 Feature modelling notations

A feature model is a hierarchical organisation representing the constraints for valid

configurations in a software product line (Hallsteinsen et al., 2008). Feature models

are used by Software Product Lines (SPLs) to produce a collection of similar software

systems by creating variations from a set of features. Like existing task modelling

notations, feature modelling notations do not support resource-driven adaptation.

46 3.3 Task modelling

More specifically, feature modelling notations do not support the representation of

resource types; priorities that differ according to parameter values, user roles, time of

day, and resource intensiveness; information that affects which adaptation types are

applicable; and configuration information regarding whether and how feedback is

elicited from the end-users and presented to them.

Feature modelling notations have been extended with additional attributes (e.g.,

cost of using a feature) by existing work (Benavides, Trinidad and Ruiz-Cortés, 2005).

However, resource-driven adaptation could be better supported by extending a task

modelling notation because task models represent concrete tasks rather than high-

level features, and these tasks could use different types of resources that affect if,

when, and how a task is adapted. For example, consider an ERP system that has an

“invoice” feature in its feature model. This feature corresponds, on a task model, to

tasks such as “search for a product”, “display product description”, “display product

image”, and “export invoice to image”. In this example, the software system could

cancel the low-priority task “display product image” but not the high-priority task

“display product description”. Furthermore, the temporal operators that are supported

by task models are useful for anticipating which task will be executed next to inform

adaptation decisions. For example, Rigole et al. (2007) used task models to perform

gradual component deployment based on the tasks initiated by end-users to avoid the

needless consumption of computing resources and latencies on lightweight mobile

devices.

One interesting thing about feature models, in comparison to task models, is that

they represent variation, which is required for software product lines. As explained in

Section 3.3.1.3, the modelling of variation is useful for distinguishing the modes of

executing a task when performing resource-driven adaptation. However, variants in

feature models are not meant for this purpose but are used for product derivation.

Feature models and task models could be complementary whereby a feature maps

to many tasks as explained by existing work on automated product derivation (Pleuss,

Botterweck and Dhungana, 2010). Nonetheless, based on what I previously explained,

task models are more appropriate for resource-driven adaptation and are therefore

used in this thesis.

Chapter 3 – Literature Review 47

3.4 Summary of critical analysis

Table 3.1 provides a summary of the resource-driven adaptation approaches, which

were discussed in Section 3.2. This table shows, for each approach, the supported

resource types and their corresponding resource groups (refer to Section 2.2). The

most common resource groups are static and reusable with resource types like RAM

and CPU. Hence, existing adaptation approaches support a limited number of resource

types. Furthermore, these approaches do not support the creation of new resource

types at runtime. Hence, it is not possible to extend the resource types that are already

supported. This limits the applicability of these techniques because software systems

could require different types of resources. For example, consider that an ERP system

got upgraded to a new version that uses additional resource types. It is more

convenient if these resource types are defined through data entry at runtime rather

than modifying the source code of the adaptation approach’s implementation.

Table 3.1 – Summary of existing resource-driven adaptation approaches

 Resource Group
Trigger

Time

Existing Work

S
ta

ti
c

D
y

n
a

m
ic

R
e

u
sa

b
le

D
e

p
le

ta
b

le

Resource
Type

R
e

a
ct

iv
e

P
ro

a
ct

iv
e

Adaptation Type
Software

System Type

B
ro

w
n

o
u

t

Klein et al. (2014) ◯ ◯ CPU ◯ activate/deactivate optional contents Cloud-based

Propose the brownout paradigm to cope with hardware failures and varying user workload levels without over-provisioning resources

Dürango et al. (2014) ◯ ◯ CPU ◯ activate/deactivate optional contents Cloud-based

Apply brownout on multiple replicas of an application using load-balancing algorithms

Tomás et al. (2014) ◯ ◯ CPU ◯ activate/deactivate optional contents Cloud-based

Work on the issue of applications that are accepted to run on a cloud server, which does not have sufficient resources

Maggio et al. (2014) ◯ ◯ CPU ◯ activate/deactivate optional components Cloud-based

Compare multiple control strategies with a trade-off between response time and user experience

Nikolov et al. (2014) ◯ ◯ Network ◯ activate/deactivate optional components Cloud-based

Manage resource reservations based on resource demands and predefined service level agreements

Moreno et al. (2015) ◯ ◯ CPU ◯ activate/deactivate optional contents Cloud-based

Propose a proactive approach to address adaptation latency (i.e., the lag between performing an adaptation and its effect)

Pandey et al. (2016) ◯ ◯ CPU ◯ activate/deactivate optional contents Cloud-based

Combine two planning approaches to handle the trade-off between timeliness and optimality of the adaptation plan

Xu et al. (2016) ◯ ◯ CPU ◯ activate/deactivate optional components Cloud-based

Prioritise components based on usage frequency and perform a trade-off between energy consumption and revenue

Hasan et al. (2016) ◯ ◯ CPU ◯ activate/deactivate optional contents Cloud-based

Perform adaptation based on a trade-off between energy consumption and revenue

Zhao et al. (2017) ◯ ◯ CPU ◯ activate/deactivate optional components Cloud-based

Propose a framework to generate adaptation rules for user goals

Sun et al. (2019) ◯ ◯ CPU ◯
activate/deactivate optional components, and
substitute mandatory components

Cloud-based

Suggest substituting components with alternatives that are less resource-intensive during situations of resource variability

48 3.4 Summary of critical analysis

 Resource Group

Trigger
Time

Existing Work

S
ta

ti
c

D
y

n
a

m
ic

R
e

u
sa

b
le

D
e

p
le

ta
b

le

Resource
Type

R
e

a
ct

iv
e

P
ro

a
ct

iv
e

Adaptation Type
Software

System Type

T
a

sk
-b

a
se

d

Gajos (2001) ◯ ◯ Network ◯ resource mapping and conflict arbitration Multi-Agent

Present a framework for mapping resources to tasks in smart spaces

Sousa et al. (2006) ◯ ◯
CPU, RAM, and
Bandwidth

 ◯ adjust software configuration Ubiquitous

Adapt the quality of service to changes in the environment and the end user's preferences according to the task

Davidyuk et al. (2007) ◯ ◯ CPU and RAM ◯ lease shared resources Mobile

Compose services to maximise the quality of service for the currently active user task in smart spaces

Perttunen et al. (2007) ◯ ◯ Network ◯ lease shared resources Mobile

Use a leasing mechanism that gives users access to shared resources for a limited amount of time

Rigole et al. (2007) ◯ ◯ CPU ◯ load components just in time Mobile

Perform gradual component deployment based on the tasks initiated by end-users to avoid needless consumption of computing resources

C
o

d
e

-b
a

se
d

Huang et al. (2017) ◯ ◯
CPU, Battery. and
Bandwidth

 ◯ remove code of unwanted app features Mobile

Reduce Android apps by removing the code elements of unwanted features to reduce the consumption of power, CPU, and bandwidth

Christi et al. (2017) ◯ ◯ RAM ◯ reduce source code Mission-Critical

Perform source-code reduction to make software systems consume less RAM

Yan et al. (2019) ◯ ◯ Battery ◯ adjust software configuration UAV

Adjust the configuration of software systems to reduce power consumption on unmanned aerial vehicles

P
o

li
cy

-b
a

se
d

Efstratiou et al. (2002) ◯ ◯
Battery and
Bandwidth

 ◯
coordinate adaptive behaviour for multiple
applications

Mobile

Use system-wide policies to coordinate the adaptive behaviour of multiple mobile applications that share the same reusable resources

Keeney et al. (2003) ◯ ◯
CPU, RAM, and
Bandwidth

 ◯
adapt service objects to use different
behaviours using reflection

Mobile

Use a policy language to define rules for adapting mobile systems that use services

Buisson et al. (2005) ◯ ◯ Server Computer ◯ spawn and terminate process Grid

Specify policies for adapting components when resource (machine) availability changes at runtime

Papakos et al. (2010) ◯ ◯
Battery and
Bandwidth

 ◯
adapt cloud service requests to match the
required QoS

Mobile

Adapt service requests at runtime based on rules defined using a policy language

A
rc

h
it

e
ct

u
re

 Van Hoorn et al. (2009) ◯ ◯ CPU ◯ add and remove server nodes Cloud-based

Perform dynamic allocation and deallocation of data centre resources

Huber et al. (2017) ◯ ◯ CPU and RAM ◯ add and remove virtual CPUs and servers Cloud-based

Present a domain-specific language for describing runtime adaptation using quality of service models

Q
u

e
ry

-b
a

se
d

Gotz et al. (2015) ◯ ◯ RAM and Battery ◯ change the amount of exchanged data Cyber-Physical

Present an adaptive knowledge exchange technique that managed energy and memory consumption in cyber-physical systems

Viswanathan et al. (2018) ◯ ◯ CPU ◯ adapt query plans (query optimisation) Big-Data

Perform query optimisation and take resources into account to avoid performance loss

D
S

P
L

Saller et al. (2013) ◯ ◯ CPU and RAM ◯
a trade-off between precomputation of
reconfiguration at design time and on
demand evolution at runtime

Mobile

Present an approach for overcoming resource limitations that inhibit the use of DSPLs on mobile devices due to limited resources

(Pascual, Pinto and Fuentes,
2015)

 ◯ ◯ Battery ◯
add and remove components and update
their parameter values

Mobile

Generate optimal software system configurations from a feature model at runtime according to the available resources

O
th

e
r

Bennaceur et al. (2019) ◯ ◯ Food ingredient ◯ substitute resources/adapt requirements Food-based

Optimise the usage of available resources to satisfice a set of requirements

(Grohmann et al., 2021) ◯ ◯ CPU ◯
tunes and selects approaches for resource
demand estimation

Cloud-based

Tune and execute an ensemble of resource demand estimation approaches to improve the resulting estimation accuracy

(Samin, Bencomo and
Sawyer, 2022)

 ◯ ◯ Network ◯
makes adaptation decisions while
considering the priorities of NFRs

IoT/data
mirror network

Perform adaptation with trade-offs between non-functional requirements

Legend: Supports ◯ Does not support – Not specified

Chapter 3 – Literature Review 49

Table 3.1 also shows the trigger time (reactive and proactive) and the adaptation

types that are supported by each approach. The most common adaptation trigger is

reactive, and the most common type of adaptation involves the activation and

deactivation of optional contents or components. Moreover, as shown in Table 3.1,

cloud-based systems and mobile systems are the most common examples of software

systems that are targeted by existing resource-driven adaptation approaches. As

discussed in Section 3.2, a system becomes more versatile in coping with resource

variability if multiple types of adaptation were supported. Additionally, a resource-

driven adaptation approach becomes more useful if it supports multiple types of

software systems.

Table 3.2 – Summary of existing task modelling notations

 Operators Task Types
Useful Characteristics
for Resource-driven

Adaptation

R

e
p

re
se

n
ta

ti
o

n

C
h

o
ic

e

C
o

n
cu

rr
e

n
cy

In
te

rr
u

p
ti

o
n

It
e

ra
ti

o
n

O
p

ti
o

n
a

li
ty

O
rd

e
r

In
d

e
p

e
n

d
e

n
ce

S
e

q
u

e
n

ce

A
b

st
ra

ct

In
te

ra
ct

io
n

A
p

p
li

ca
ti

o
n

U
se

r

R
e

so
u

rc
e

 T
y

p
e

s

P
ri

o
ri

ti
e

s

T
a

sk
 E

x
e

cu
ti

o
n

 T
y

p
e

T
a

sk
 V

a
ri

a
n

ts

F
e

e
d

b
a

ck
 P

ro
p

e
rt

ie
s

S
o

ft
w

a
re

 S
y

st
e

m
 T

y
p

e

AMBOSS Graphical ⦿ ⦿ ◯ ◯ ⦾ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Safety-critical

ANSI/CEA Textual ⦾ ⦾ ◯ ⦾ ⦾ ◯ ⦾ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯
Electronics

devices

CTT Graphical ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ◯ ◯ ◯ ◯ ◯
Desktop, mobile,

and web

Diane+ Graphical ⦿ ⦿ ◯ ⦿ ⦿ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

GOMS Textual ⦾ ⦾ ⦾ ⦾ ⦾ ⦾ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

GTA Graphical ⦿ ⦿ ⦾ ◯ ⦾ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

HAMSTERS Graphical ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ◯ ◯ ◯ ◯ ◯
Desktop, mobile,

and web

HTA Graphical ⦿ ⦾ ⦿ ⦾ ◯ – ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯

Steel production,
chemical and

petroleum
refining, and

power generation

MAD Graphical ⦿ ⦿ ⦿ ◯ ⦿ ◯ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

TKS Graphical ⦿ ◯ ◯ ◯ ◯ – ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

TOOD Graphical ⦿ ⦿ ⦿ ◯ ◯ – ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

UAN Textual ⦿ ⦿ ⦿ ⦿ ◯ ⦿ ⦿ ⦾ ⦾ ⦾ ⦾ ◯ ◯ ◯ ◯ ◯ Desktop

UsiXML Graphical ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ⦿ ◯ ◯ ◯ ◯ ◯
Desktop, mobile,

and web

Legend: ⦿ Explicitly Supports ⦾ Implicitly Supports ◯ Does not support – Not specified

50 3.5 Filling the gaps

Table 3.2 provides a summary of existing task modelling notations that were

discussed in Section 3.3.1. This table summarises the operators and task types that

task modelling notations support. It is important to explore these operators and task

types to see which task modelling notation(s) offers a good starting point for adding

characteristics that are useful for resource-driven adaptation but are missing from

existing notations as shown in Table 3.2 and discussed in Section 3.3.1.

3.5 Filling the gaps

As explained in Section 1.3, to answer the research questions, this thesis presents a

framework and a task modelling notation for supporting resource-driven adaptation in

software systems. By supporting resource-driven adaptation, software systems would

be able to address the problem of resource variability, which prevents them from

executing critical tasks that require scarce resources. The abovementioned

contributions aim to fill the gaps that were discussed in Sections 3.2 to 3.4 and are

summarised as follows:

1. Consider tasks in the resource-driven adaptation process to provide granularity in

the adaptation decision-making based on task differences that include priority,

resource consumption, parameters of the task, the role of the user who is initiating

the task, when the task is initiated, and the applicability of a type of adaptation to

the task

2. Support multiple types of resources that belong to the previously defined four

resource groups: reusable, depletable, static, and dynamic, to make the resource-

driven adaptation approach more comprehensive

3. Support multiple types of adaptation to provide versatility in addressing resource

variability, whereby if one type of adaptation is not applicable to a task the

software system would be able to use other types of adaptation

The work presented in this thesis considers tasks to offer more granularity for

resource-driven adaptation decision-making in comparison to other approaches such

as the ones that work with components or make decisions that apply to the entire

software system (e.g., refer to Sections 3.2.1 and 3.2.5). Tasks are represented in task

models where they are broken down into subtasks and prioritised to support decision-

making on whether they should be adapted in situations of resource variability. By

working with tasks and keeping task models available at runtime, it is possible to

Chapter 3 – Literature Review 51

support multiple types of software systems and to make dynamic adaptation decisions,

unlike the approaches discussed in Section 3.2.4. Furthermore, unlike some of the

approaches discussed in Sections 3.2.2 and 3.2.5 that only consider single-user

scenarios, this thesis considers scenarios involving multiple users who initiate tasks

that compete for shared resources.

Tasks are prioritised based on multiple criteria including the timeframe (from and

to time of day) of the task’s execution, the role of the user who is attempting to execute

the task, the forecasted number of task executions to be done by users, and the

parameter values that distinguish task variants (refer to Figure 3.2 for an example).

These prioritisation criteria include the perspectives of system administrators who

provide task priorities based on their domain knowledge and end-users who indirectly

indicate task priorities through actual use. In comparison, for example, Sun et al.

(2019) rely on usage frequency only and Gajos et al. (2001) use an arbitrary scheme

for indicating a task’s importance as discussed in Sections 3.2.1 and 3.2.2 respectively.

A heuristic is proposed in this thesis as a solution for performing task prioritisation

without affecting a software system’s performance when considering environments

where changes occur at runtime due to resource variability (refer to the discussion in

Section 3.2.3).

Task priorities are used to decide which tasks execute by gaining access to the

resources that they need, and which ones get adapted. To provide more versatility

than the existing resource-driven adaptation approaches, multiple adaptation types

are supported, including the execution of a similar task that requires fewer resources,

the substitution of resources with alternative ones, the execution of tasks in a different

order, or even the cancellation of low-priority tasks. As shown in Table 3.1 and

explained in Section 3.2, existing resource-driven adaptation approaches have less

diversity in their supported adaptation types.

Moreover, the work presented in this thesis supports multiple types of resources

belonging to the resource groups defined in Section 2.2, namely reusable, depletable,

static, and dynamic, and the creation of new types of resources at runtime. As shown in

Table 3.1 and explained in Section 3.2, existing resource-driven adaptation approaches

support a limited number of resource types, which narrows the applicability of these

approaches to specific cases because the way of performing the adaptation differs from

one type of resource to another.

52 3.5 Filling the gaps

Furthermore, a new task modelling notation is presented and used in this thesis to

represent task models that serve as input for resource-driven adaptation. The new

notation is based on CTT and fills the gaps that are presented in Table 3.2 and

discussed in Section 3.3.1. In comparison, existing task-based approaches discussed in

Section 3.2.2 do not specify an explicit way of modelling tasks. Only Rigole et al. (2007)

use task models but, as previously mentioned, their work is concerned with loading

software components just-in-time rather than addressing resource variability.

In summary, the characteristics of the work that this thesis presents to address

resource variability are represented by the hierarchy shown in Figure 3.3a. These

characteristics correspond to the self-* properties shown in Figure 3.3b (Salehie and

Tahvildari, 2009). Task prioritisation, adaptation type selection, and feedback loops

correspond to the property “self-adjusting”. Additionally, resource-driven adaptation,

which is used to address resource variability, corresponds to the property “self-

adaptiveness”.

Figure 3.3 – Characteristics of proposed work (a) and their self-* properties (b)

Support tasks and their variants and
multiple types of resources

Multi-criteria task prioritisation

Adaptation type selection

Resource-
driven

adaptation

Feedback
Self-adjusting

Self-
adaptiveness

Corresponds to

(a) (b)

Correspond to

 53

4

Overview of the Work

This chapter presents an overview of the work that this thesis presents to support

resource-driven adaptation based on MAPE-K. It presents the involved stakeholders,

components, and data. This chapter also illustrates how to integrate resource-driven

adaptation capabilities into software systems. The concepts that this chapter presents

serve as a basis for the resource-driven adaptation framework presented in a

subsequent chapter.

4.1 Introduction

Figure 4.1 presents an overview of the work that this thesis proposes for

supporting resource-driven adaptation to address the problem of resource variability.

As this figure shows, three types of stakeholders are involved in the adaptation

process, namely software practitioners, system administrators, and end-users.

Software practitioners prepare task models that include setup data provided by system

administrators based on their domain knowledge. End-users initiate tasks from the

software system and provide their feedback on the adaptations.

This thesis proposes components that work proactively and reactively to support

resource-driven adaptation in software systems. These systems can in principle be any

type of resource-driven software system. This thesis considers enterprise systems as

an example of resource-driven software systems. The data used in the adaptation

process includes the task models and setup data in addition to the adaptation plans

that are prepared by the corresponding adaptation components. A knowledge base

stores this data to make it available for the adaptation decision-making process during

resource variability.

54 4.2 Stakeholders

The following sections provide further details on the elements that are represented

in Figure 4.1 including stakeholders, adaptation components, and task models, and

how the proposed work follows the MAPE-K control loop (Kephart and Chess, 2003).

Furthermore, the following sections present a way of integrating the proposed

resource-driven adaptation components into software systems. This involves filtering

task requests to decide whether to perform an adaptation before executing a task and

returning its results to the end user.

4.2 Stakeholders

Figure 4.1 shows three types of stakeholders, namely software practitioners, system

administrators, and end-users. Software practitioners work in the software industry in

professions such as software design, programming, and deployment. System

administrators are information technology (IT) professionals who handle the

configuration and upkeep of software systems within an enterprise. End-users use the

software system by initiating tasks from it.

Software practitioners are responsible for creating task models because they have

the knowledge related to the software system (e.g., tasks and relationships). Software

practitioners use a tool to create task models that comprise tasks, which represent the

activities that the software system can perform. They could require the domain

Figure 4.1 – An overview of the proposed work for supporting resource-driven
adaptation in software systems

System
Administrator

Tool

Knowledge
Base

Software
Practitioner

End-user

Software
System

Adaptation
Components

(Proactive
and Reactive)

Resources

Resource-driven Adaptive System

Task Models

Setup Data

Adaptation
Plans

Adaptation
Feedback

Chapter 4 – Overview of the Work 55

expertise of system administrators to specify some information on the task models

(e.g., priorities that represent a managerial perspective of the importance of tasks

within an enterprise). Software practitioners create the task models via the tool and

store them in a knowledge base to be used by the software system when it performs

resource-driven adaptation.

System administrators use a tool to specify setup data such as resource types and

user roles. The tool stores this setup data in a knowledge base. Software practitioners

use this data to assign values to the properties of tasks in a task model (e.g., the type of

resource that a task uses and the roles of the users who can initiate a task). System

administrators play an important role in many types of software systems. This is

especially true for enterprise systems where system administrators assist software

practitioners in configuring the software system during the deployment phase. Such

configurations could take up to months for large-scale multimillion-dollar enterprise

systems (Garg and Venkitakrishnan, 2003). Therefore, it is reasonable to assume that

system administrators can play a role in providing setup data for supporting resource-

driven adaptation, especially since this data represents part of the domain knowledge

that they possess.

End-users interact with the software system by initiating tasks from it. End-users

can provide feedback to rate the impact of an adaptation on a task’s available

functionality and the quality of its outcome. This feedback is used during the

preparation of an adaptation plan for choosing suitable types of adaptation. For

example, assume that, for the sake of limiting CPU consumption, an adaptation lowered

the resolution of images. If the end-users provided a low rating for the resolution

quality, then, in the future, the system could choose another type of adaptation (e.g.,

delay the task’s execution instead of lowering the resolution). Furthermore, the

opinions of end-users about task priorities are indirectly elicited by monitoring task

usage. Hence, the tasks that end-users initiate more frequently would have a higher

priority from an end-user perspective. This complements the managerial perspective

of priorities provided by the system administrator.

I considered the abovementioned three types of stakeholders, namely software

practitioners, system administrators, and end-users, to represent the people who are

involved in the adaptation process because their input is sufficient to support

resource-driven adaptation in software systems. The software practitioners create the

task models, the system administrators provide the domain knowledge, and the end-

56 4.2 Stakeholders

users provide feedback on the adaptations. People who play these roles are always

present. Software practitioners must be present to create software systems for end-

users to use.

Moreover, consider enterprise systems as an example, system administrators are

present to configure and maintain the software systems of an enterprise. Although

people who play other roles, e.g., the managers of an enterprise, also possess domain

Figure 4.2 – The proposed adaptation components based on MAPE-K (the grey parts
are repeated in the figure to avoid overlapping lines)

Autonomic Manager

Task Execution
Monitor

Resource Type
State Monitor

Task Execution
Allocator

Adaptation
Executor

Task Priority
Calculator

Task Priority
Adjuster

Adaptation
Type Selector

Task Execution
Manager

Task Execution
Monitor

Task Execution
Forecaster

Sensors

M

A

P

P

P

M

M

P

P

E

Effectors

P
ro

a
ct

iv
e

 C
o

m
p

o
n

e
n

ts

R
e

a
ctiv

e
 C

o
m

p
o

n
e

n
ts

Knowledge
Base

Feedback
Elicitor

E Feedback
Provider

E

K

Resource Type
State Analyser

A

Managed System

Resources

Managed System

Resources

Legend

Monitor component

Analyse component

Plan component

Execute component

Knowledge base

Read/Write data

Invoke

Write data

Read data

M

A

P

E

K

Chapter 4 – Overview of the Work 57

knowledge, system administrators can convey the knowledge to software practitioners

because they work closely with them during the deployment of the software system.

4.3 Adaptation components

The proposed adaptation components follow the MAPE-K control loop because it

serves as a reference for adapting software systems via components that handle

actions from the collection of data to the execution of the adaptation (refer to Section

2.4.1 for more information on MAPE-K). Hence, the proposed adaptation components

include monitors (M), analysers (A), planners (P), executors (E), and a knowledge (K)

base as shown in Figure 4.2. This thesis presents a framework that realises these

components, which complement each other to address resource variability through

resource-driven adaptation. The relationships between these components involve

invoking one another and passing the required data. These relationships are denoted

in Figure 4.2 by the arrows that connect the components. As indicated by the legend of

Figure 4.2 the arrows that have a solid line represent an invocation between the

managed system and the autonomic manager and among the components of the

autonomic manager. Moreover, the arrows that have a dashed line represent reading

and writing data. These arrows represent data storage and retrieval operations

between the adaptation components and the knowledge base.

The adaptation components support proactive and reactive adaptation processes.

These adaptation processes rely on the notion of task prioritisation where tasks that

use the same types of resources are executed in order of their priorities. The proactive

process uses historical data and configurations to calculate the priorities of tasks and

prepare an adaptation plan. The reactive process identifies the resource types that are

facing variability and decides whether to perform the corresponding type of adaptation.

As shown in Figure 4.1, the adaptation process executes with the support of ten

components that work either proactively or reactively. One of the components, namely

the task execution monitor, works both proactively and reactively. This component is

responsible for monitoring the execution of tasks included in the task models and the

use of their respective resources reactively. The task execution monitor uses a sensor

to collect reactively the number of times tasks are initiated and stores it as historical

data in the knowledge base. Then, the task execution monitor passes this historical data

to the task execution forecaster so it can use it during the proactive adaptation process.

58 4.3 Adaptation components

Sensors act as a bridge between the managed system and the autonomic manager. One

sensor enables the task execution monitor to reactively identify when tasks are

initiated in the managed system. Another sensor enables the task execution monitor to

proactively decide if it is time to read the historical data from the knowledge base and

invoke the task execution forecaster. The following subsections explain the remaining

adaptation components.

4.3.1 Proactive

 The proactive adaptation process includes five components, namely task execution

monitor (explained above), task execution forecaster, task priority calculator, task

priority adjuster, and adaptation type selector. The task execution forecaster forecasts

the number of executions of tasks based on their historical usage. The forecasted task

execution is needed because it is part of the data used for calculating the task

priorities. The task priority calculator and task priority adjuster calculate the priorities

of tasks and adjust these priorities respectively when tasks with the same priority

value require the same type of resources. This way each task is assigned a unique

priority value. This helps in differentiating tasks by their importance and deciding

whether to execute a task or perform adaptation. Finally, the adaptation type selector

specifies the adaptation types that will be applied to the tasks. The supported

adaptation types include (i) execution of task variants that require fewer resources;

(ii) substitution of resource types with alternative ones; (iii) execution of tasks in a

different order based on their priorities; and (iv) cancellation of tasks when no other

task variant or resource can be used. The use of multiple adaptation types (i)-(iii)

provides more versatility in the possible ways of performing adaptation to execute a

task that requires resources, which are facing variability. Otherwise, the execution of

the task would be cancelled (iv).

4.3.2 Reactive

 The reactive adaptation process includes eight components, namely task execution

monitor (explained above), resource type state monitor, resource type state analyser,

task execution manager, task execution allocator, adaptation executor, feedback elicitor,

and feedback provider. The resource type state monitor observes the use of resources

by tasks and stores the monitored data in the knowledge base. To obtain this data, the

resource type state monitor uses a sensor that links it to the managed system and

Chapter 4 – Overview of the Work 59

enables it to observe the resources that are being used by the tasks. The resource type

state analyser analyses the data that is obtained by the resource type state monitor to

check whether a resource type is facing variability. The task execution manager decides

whether to execute or adapt the tasks, which use resources that are facing variability.

The task execution allocator allocates the number of possible executions for each task

based on the forecasted number of task executions, the task priorities, and the

available quantities of resources. This helps in keeping resources available for the

most important tasks. The adaptation executor performs adaptations to address

situations of resource variability. The feedback elicitor and feedback provider gather

and provide adaptation-related feedback from and to end-users respectively. The

feedback that is elicited from the end-users helps in improving future adaptation-

related decisions. Moreover, feedback provided to the end-users helps them to

understand the reason behind performing the adaptation.

The adaptation executor uses an effector that enables it to make changes to the

managed system that are necessary to perform adaptations. Additionally, an effector

prompts end-users on the managed system to provide feedback about the adaptations

that the adaptation executor performed and returns this data to the feedback elicitor.

Furthermore, the feedback provider uses an effector to relay its feedback to end-users

as messages on the managed system.

4.3.3 The benefit of combining proactive and reactive adaptation

The proactive adaptation uses forecasting based on historical data to predict future

events (Hyndman and Athanasopoulos, 2018). In the adaptation components that this

thesis proposes, the proactive adaptation process uses historical data such as task-

usage history to compute task priorities and user feedback to select adaptation types.

This historical data is not used in reactive adaptation and leveraging it is a benefit of

preparing an adaptation plan proactively. Additionally, preparing an adaptation plan

reactively over very short periods (e.g., seconds) could be costly and cause

interruptions. That is why Krupitzer et al. (2018) consider proactive adaptation to be

preferable from a user point of view. However, Krupitzer et al. also note that the

precision of a proactively prepared adaptation plan relies on forecast accuracy. Hence,

even if multiple forecasting techniques are used or a suitable technique is selected

based on historical data, the results could still have some inaccuracy (Bauer, 2019;

Bauer et al., 2020). Therefore, the proactively prepared plan could serve as a starting

60 4.4 Task models

point that is complemented by a reactive decision on whether there is a need for

adaptation.

4.4 Task models

As shown in Figure 4.1 and explained in Section 4.2, software practitioners use a

tool to create task models and store them in a knowledge base. Software practitioners

represent the task models using a task modelling notation that supports resource-

driven adaptation. This task modelling notation and its supporting tool are part of the

contribution of this thesis. The knowledge base stores the task models following the

notation’s meta-model so the software system can interpret them accordingly.

The task models created by software practitioners serve as input for the

preparation of adaptation plans and for making adaptation-related decisions during

resource variability. For example, these models comprise knowledge that informs the

system about which types of adaptation apply to a task and how to execute a task

differently to reduce the strain on resources that are facing variability.

4.5 Integrating resource-driven adaptation in a software system

Figure 4.3 illustrates how this thesis proposes to integrate resource-driven

adaptation into software systems. This figure shows the steps from when a user

initiates a task request to when they receive a response and provide feedback on the

task’s outcome passing through the steps that involve adaptation-related decisions.

Figure 4.3 indicates the chronological order of these steps by the labels containing

numbers 1 to 11.

As shown in Figure 4.3, software systems are considered to have a client-side part

and a server-side part. This is common in service-oriented applications such as

enterprise systems, which end users access from multiple geographical locations

within and outside the enterprise. The client-side part could be a desktop, mobile, or

web application that comprises the presentation layer of the software system and runs

on the end user’s device. On the other hand, the server-side part comprises the other

layers of the application including business logic, data access, and web services, and

runs on the server.

Chapter 4 – Overview of the Work 61

As shown in Figure 4.3, end-users initiate task requests on the client-side part of the

software system, which forwards these requests to the server. Filters intercept task

requests before reaching the server-side part of the software system. In the work

presented in this thesis, the filters are implemented using .NET actions filters, which

contain logic that executes before the software system’s code executes (Larkin et al.,

2021). A filter decides whether to execute adaptation-related logic before forwarding

the task request to the software system. This is done after identifying the requested

task from the task model that is stored in the knowledge base and checking the

adaptation plan to see if adaptation is required due to resource variability.

The adaptation components perform adaptation, when needed, using one of the

supported adaptation types (refer to Section 4.3.1). Then, these components forward

Figure 4.3 – Integrating resource-driven adaptation in a software system

Software System
(Client-side)

End-user

Software System
(Server-side)

Initiate
Task Request

Forward
Task Request

Filter

if (no adaptation required)
{
 Forward Request
}

else
{
 Perform Adaptation
}

Intercept
Task Request

Return
Reply

Knowledge Base

Identify
Task from

Task Model

1

2

4

3

6

9Check
Adaptation

Plan

5

7

Forward
Updated
Request

8

10

if (adaption performed)
{
 Show feedback to user
}

if (adaption performed)
{
 Give feedback
 to the system
}

11

62 4.6 Chapter summary

an updated request to the server-side part of the software system. For example, if a

similar task is to be executed instead of the one that was initiated, then the request

would be forwarded with an updated task identifier number. Alternatively, if the

adaptation involved resource substitution, then the request would be forwarded with

the same task identifier number but a different identifier number for the type of

resource. Moreover, if the adaptation delayed the task’s execution, then the task

request would be added to a queue to be forwarded later. Finally, if the adaptation

cancels the task altogether, then the task request would not be forwarded. Regardless

of whether adaptation is performed and which type of adaptation is used, a response is

returned to the client-side part of the software system. The end-user sees the result of

the task, if it executes, and receives and gives adaptation-related feedback if the system

performed an adaptation (refer to Section 4.3.2).

4.6 Chapter summary

This chapter presented an overview of the work that this thesis proposes for

supporting resource-driven adaptation in software systems. This overview includes

the involved stakeholders, namely software practitioners, system administrators, and

end-users. This chapter explained the roles of these stakeholders in supporting

resource-driven adaptation. In summary, software practitioners create task models,

system administrators provide setup data, and end-users offer feedback on the

adaptation performed by the system.

This chapter also presented the adaptation components that this thesis proposes in

the context of the MAPE-K control loop. It explained these components and their input

that is represented as task models. Moreover, this chapter discussed the process of

integrating resource-driven adaptation with software systems. The integration uses

filters that intercept task requests to decide whether to perform adaptation during

resource variability.

This chapter provides an overview of the proposed solution for addressing resource

variability through adaptation. Chapter 5 will present the proposed task modelling

notation for supporting resource-driven adaptation (SERIES) and give a detailed

explanation of the task models. Furthermore, Chapter 6 will present the proposed

resource-driven adaptation framework (SPARK) and give a detailed explanation of the

adaptation components.

 63

5

SERIES: A Task Modelling Notation for

Resource-Driven Adaptation

This chapter presents SERIES, which is a task modelling notation for supporting

resource-driven adaptation. First, this chapter explains the meta-model that comprises

the constructs of SERIES. Then, it presents an example of a SERIES task model from an

automated warehouse system. This example demonstrates the constructs of SERIES and

their graphical representation. Afterwards, this chapter presents the supporting tool of

SERIES and explains its features.

5.1 Introduction

SERIES is a task modelling notation that supports resource-driven adaptation when

a software system’s resources are facing variability. Task models that are represented

using SERIES contain information that is used by the resource-driven adaptation

components introduced in Section 4.3. Moreover, SERIES is based on CTT (Paterno,

Mancini and Meniconi, 1997), which is a notation for representing task models

hierarchically using a graphical syntax. The graphical representation of SERIES is also

inspired by UML class diagrams (Fowler, 2003, pp. 35–52). For example, UML

represents a class as a multi-part box with a set of attributes and operations. Similarly,

SERIES represents a task as a multi-part box with properties.

As explained in Section 3.3.1, existing task modelling notations have useful features

such as tasks and relationships, but they also lack some characteristics that are

important for supporting resource-driven adaptation in software systems. Several task

modelling notations like CTT, HAMSTERS (Martinie, Palanque and Winckler, 2011),

64 5.1 Introduction

and UsiXML (Limbourg et al., 2004) could be extended to support resource-driven

adaptation.

However, SERIES is based on CTT given its wide use in academia, government, and

industry. The tool of CTT has been downloaded over 26,000 times and has over 10,000

registered users (Vigo, Santoro and Paternò, 2017). Additionally, CTT supports useful

characteristics like application tasks that SERIES extends with task variants.

Figure 5.1 – Meta-model of SERIES represented as a class diagram - elements highlighted in
grey are from the CTT notation; elements with a gear are used in the SPARK framework)

Tasks

Task

+Id: int {id}
+Name: string
+Description: string
+Type: TaskType

+ExecutionType: TaskExecutionType

+FollowingTaskTemporalOperator: TemporalOperator

+AdaptationTypeChoice: AdaptationTypeChoice
+FeedbackFromUser: FeedbackFromUser
+FeedbackLocation: FeedbackLocation

TaskCategory

+Id: int {id}
+Name: string
+IsMonitored: bool

+Has
1

1..*

+Has
+Parent

0..1

+Child

0..*

+Has

+Parent 0..1

+Child

0..*

+Has

0..*

0..1

+Has

0..* 0..1

Parameter

+Id: int {id}
+Name: string
+DataType: string
+IsOptional: bool
+Type: ParameterType

+Has 0..*

1

TaskVariant

+Is Followed By

1 0..1

TaskParent

+IsMandatory: bool

+Has

0..* 1..*

1..*
+Has

1..*

+Has

10..*

«abstract»
ParameterCondition

+Id: int {id}
+ComparisonOperator: ComparisonOperator

ValueSetParameterCondition

+ValueSet: List<string>

RangeParameterCondition

+FromValue: string
+ToValue: string

SingleValueParameterCondition

+Value: string

+Has

0..*0..1

+Has

1..*

1..*

+Has

0..*

0..1

ServiceMethod

+Id: int {id}
+ServiceName: string
+MethodName: string

«enumeration»
TaskType

Abstract

Application
SubstitutableApplicationTaskVariant
NonSubstitutableApplicationTaskVariant

«enumeration»
TaskExecutionType

FollowedByInteraction
FireAndForget

«enumeration»
TaskPriority

Low
Medium
High

«enumeration»
ComparisonOperator

Equal
NotEqual
In
NotIn
Between

«enumeration»
ParameterType

Changeable
NonChangeable

TaskResourceTypeAssignment

+Id: int {id}
+AppliesToChildTasks: bool
+ResourceIntensiveness: ResourceIntensivenessLevel
+Substitutability: ResourceTypeSubstitutability
«optional»+Quantity: double

TaskPriorityAssignment

+Id: int {id}
+PriorityValue: TaskPriority

+Has

11

+Has
0..*

1

Resources

ResourceTypeCategory

+Id: int {id}
+Name: string

ResourceType

+Id: int {id}
+Name: string
+ConsumptionType: ResourceConsumptionType
+BehaviourType: ResourceBehaviourType
+AvailableQuantity: double

+Has1..*

1

MeasurementUnit

+Id: int {id}
+Name: string

«enumeration»
ResourceConsumptionType

Reusable
Depletable

«enumeration»
ResourceBehaviourType

Static
Dynamic

+Has

0..1

0..*

«enumeration»
ResourceTypeSubstitutabilty

Strict
Flexible

TimeFrame

+Id: int {id}
+FromTime: Time
+ToTime: Time
«optional»+FromDayOfWeek: int
«optional»+ToDayOfWeek: int

User

+Id: int {id}
+Name: string

Role

+Id: int {id}
+Name: string

«enumeration»
AdaptationTypeChoice

Automated
User

«enumeration»
FeedbackFromUser

Request
DontRequest

«enumeration»
FeedbackLocation

UIElement
Panel
None

+Has 1..*

1

0..*

+Has

0..1

«enumeration»
ResourceIntensivenessLevel

Low
Medium
High

From CTT Legend: Used by the SPARK framework

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 65

5.2 Meta-model of SERIES

Figure 5.1 shows the meta-model of SERIES. This meta-model includes constructs

that support resource-driven adaptation in software systems. The part of the meta-

model highlighted in grey is incorporated from CTT while the rest is added by SERIES.

Moreover, the parts with a gear icon next to them in the meta-model are used in the

adaptation components of the SPARK framework, which is explained in more detail in

Chapter 6. The following subsections explain the meta-model and use bold and italic to

emphasise the names of the constructs.

5.2.1 Constructs that SERIES incorporates from CTT

SERIES incorporates tasks and relationships with temporal operators from CTT.

The meta-model represents these constructs by the Task class and its self-association

“is followed by” and property FollowingTaskTemporalOperator. Tasks are connected

using relationships that are annotated with temporal operators, which express how

the tasks relate to each other.

SERIES also incorporates from CTT two task types, namely abstract task and

application task, which are represented by the enumeration TaskType. An abstract

task involves complex actions and is broken down into a sequence of child (sub) tasks,

which are represented in the class Task by the self-composition parent-child and the

association class TaskParent. The property “IsMandatory” on this association class

indicates whether a subtask is mandatory or optional. An application task is executed

by the software system without user interaction. The child (sub) tasks of an abstract

task are represented as application tasks.

SERIES extends CTT with additional constructs that correspond to the non-grey

parts of the meta-model shown in Figure 5.1. The following subsections explain these

constructs.

5.2.2 Abstract task

What follows are the characteristics of an abstract task that are extended by

SERIES. These characteristics include a description, an execution type, feedback

properties, resource types, and parameters.

66 5.2 Meta-model of SERIES

5.2.2.1 Description

The name is a short text that indicates a task’s purpose and is available in task

modelling notations like CTT. In addition to the name, SERIES tasks have a

description, which is a longer text that provides more explanation about the task. The

task name is mandatory because it makes the purpose of the task model

comprehensible. On the other hand, the description is optional and becomes more

beneficial when a task model gets larger and more complex in terms of the number of

tasks and what the tasks represent in the corresponding domain.

5.2.2.2 Execution type

The execution type specifies whether or not end-users require an immediate result

from the task to perform additional interaction with the software system. The possible

values for the execution type are represented by the TaskExecutionType enumeration

and include “followed-by-interaction” and “fire-and-forget”.

If the end-users do not require an immediate result from a task to execute another

task after it, then the task’s execution type will be “fire-and-forget”, otherwise it will be

specified as “followed-by-interaction”. A “fire-and-forget” task is processed by the

software system in the background while the user initiates other tasks. Hence, a user

can initiate multiple “fire-and-forget” tasks (e.g., as a batch) and check their result later.

On the other hand, a user would initiate one task with an execution type “followed-by-

interaction” and processes its result before deciding what to do next (e.g., stop

initiating further tasks or initiate another task with data input that is based on the

result of the previous task).

The execution type of tasks affects adaptation decisions during resource variability.

In this regard, a task that is “followed-by-interaction” cannot be delayed because the

user is expecting an immediate result from it. On the other hand, a “fire-and-forget”

task can be delayed to be executed later when there is less strain on the resource types

that it requires and are facing variability.

5.2.2.3 Feedback properties

The adaptation type choice indicates whether the type of adaptation is selected

manually by the end-user or automatically by the software system. The possible values

for adaptation type choice are represented by the enumeration AdaptationTypeChoice

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 67

and include “automated” and “user”. The “automated” selection of the type of adaptation

relieves end-users from having to frequently make manual choices. Additionally, if

multiple types of adaptation share the lowest cost and the adaptation type choice

property was set to “user”, then the software system prompts end-users to select one of

the least costly types of adaptation. Otherwise, the software system automatically selects

one of the least costly types of adaptation.

The property feedback-from-user specifies whether the software system shall ask

end-users to provide their feedback on the outcome of the task when adaptation is

performed. This feedback enables the software system to improve its adaptation

choices. The possible values are represented by the enumeration FeedbackFromUser

and include “request” and “don’t request”. If feedback-from-user was set to “request”,

then the software system would request feedback from end-users on how the

adaptation affected their work and use this feedback to adjust the costs of applying

multiple types of adaptation. In case the feedback from the user is not required, then

the property feedback-from-user will be set to “don’t request”.

The feedback location specifies where the software system shall request and give

feedback from and to end-users respectively. The enumeration FeedbackLocation

represents the possible values for feedback location, which include “UI element”,

“panel”, and “none”. The “UI element” is a suitable option when end-users need to

provide immediate feedback as they work. Hence, the software system will give

feedback on the part of the UI that corresponds to a task (e.g., as a popup window next

to the button that the end-user presses to initiate the task). On the other hand, the

“panel” option groups multiple feedback messages that end-users can check later. The

“panel” is dedicated to feedback and is separate from the part of the UI that

corresponds to the task. In case no feedback is required, i.e., the property feedback-

from-user was set to “don’t request”, then the feedback location will be set to “none”.

5.2.2.4 Resource types and their assignment to tasks

Resource types represent entities that a task requires so it can execute. A resource

type is represented by the class ResourceType, which has several properties. The

property consumption type specifies whether the resource type is “reusable” or

“depletable” as indicated by the enumeration ResourceConsumptionType. A “reusable”

resource type is available to another task after the task that is using it is done, whereas

a “depletable” resource type is used once. A resource type also has a behaviour type that

68 5.2 Meta-model of SERIES

is either “static” or “dynamic” as indicated by the enumeration ResourceBehaviourType.

A “static” resource type does not have a behaviour, whereas a “dynamic” resource type

has a behaviour. Refer to Section 2.2 for more information on the types of consumption

and behaviour of resource types. A resource type has an available quantity specified in

terms of a measurement unit that is represented by the class MeasurementUnit. The

available quantity indicates how many resources of a type are available on hand. This is

useful for identifying whether resource types are facing shortages.

A task resource type assignment represents an association between a task and

the resource types that it requires. The property AppliesToChildTasks is set to either

“true” or “false” to indicate whether or not the resource type that is assigned to a task

also applies to its subtasks. y setting this property to “true”, there would be no need

to duplicate the effort and re-associate the same resource type will all the sub-tasks.

Additionally, the ResourceIntensiveness property specifies whether the concerned task

has a low, medium, or high consumption for the resource type that is assigned to it.

This is useful to identify which tasks place more strain on which types of resources to

make adaptation decisions accordingly.

The task resource type assignment also specifies the resource type’s substitutability

for the task. The substitutability is either “strict” or “flexible” as indicated by the

ResourceTypeSubstitutability enumeration. A “strict” resource type cannot be

substituted with alternatives. Hence, during resource variability situations the

software system should seek a type of adaptation that does not involve resource

substitution. On the other hand, a “flexible” resource type is substitutable with

alternative resource types.

5.2.2.5 Categories of resource types and tasks

Resource types are categorisable under resource type categories, which are

instances of the ResourceTypeCategory class. This categorisation helps in speeding up

the work when tasks have common resource types assigned to them. Hence, if a task

requires all the resource types in a category, then it would be associated with the

category rather than with each resource type individually.

Similar tasks are categorisable under task categories. Like resource type categories,

task categories speed up the work by facilitating the association of resource types with

tasks. Hence, if all the tasks in a task category use a resource type then the task category

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 69

is associated with this resource type. Additionally, if all the tasks in a task category use

all the resource types in a resource type category, then the task category is associated

with the resource type category rather than performing individual associations among

the tasks and resource types.

5.2.2.6 Parameters

Parameters represent a task’s expected input data. A parameter has a name, data

type, and parameter type. The data type specifies what kind of data the parameter

holds (e.g., boolean, decimal, and string). On the other hand, the parameter type

specifies whether a parameter is “changeable” or “non-changeable” as indicated by the

enumeration ParameterType. If the parameter type is set to “changeable”, then the

value of the parameter can be changed. Otherwise, the parameter type is set to “non-

changeable” to indicate that the value of the parameter cannot be changed. The ability

to change a parameter’s value is important for performing adaptation to execute the

task differently. However, in some cases parameter values should remain as they

reached the software system (e.g., provided as input by the user or another system).

Hence, there is a need for both parameter types “changeable” or “non-changeable”.

5.2.3 Application task

An application task has the same characteristics as an abstract task (refer to Section

5.2.2) in addition to priorities and services.

5.2.3.1 Priorities

The priority that is assigned to a task on the task model represents the task’s

importance in a domain. Hence, a priority is either “low”, “medium”, or “high” as

indicated by the TaskPriority enumeration. Priorities are useful for adaptation during

resource variability to keep scarce resources available for the most important tasks.

The priorities that are specified in the task model are based on domain knowledge.

Priorities could differ among timeframes, which represent intervals of time that are

meaningful for a domain. For example, a task could have a “low” priority in the morning

from 8:00 AM to 12:00 PM and a “high” priority in the afternoon from 12:01 PM to 5:00

PM. The classes TimeFrame and TaskPriorityAssignment represent timeframes and the

assignment of priorities to tasks respectively.

70 5.2 Meta-model of SERIES

Priority assignments can be applied to task categories as well. This helps in speeding

up the work when tasks that belong to the same task category have the same priority

assignment. Hence, when a priority is assigned to a category it automatically applies to

all the tasks within it.

5.2.3.2 Service method

The tasks represented in a task model correspond to a software system. Hence, the

service method represents the function in the software system’s source code that is

called when the task is executed. A service method is represented by the class

ServiceMethod, which has two properties: method name and service name. A method

name represents the name of the function that is called to execute a task, whereas a

service name represents the name of the class where the function is implemented.

Moreover, when the software system receives a request to initiate a task it checks

whether adaptation is needed before executing the task. To make adaptation decisions,

the software system requires information from the task model (e.g., which type of

adaptation applies to the initiated task). Hence, upon receiving a task initiation request

the software system identifies the corresponding task from the task model by

comparing the names of the class and function that are invoked from the source code

to the service methods in the task model.

5.2.4 Application task variant

An application task variant is a special case of an application task and is needed to

(1) avoid treating all executions of an application task in the same way when adapting

and (2) identify how to execute an application task with fewer resources. An

application task variant has the same characteristics as an application task (refer to

Section 5.2.3), with the addition of parameter conditions, resource intensiveness, roles,

and substitutability.

5.2.4.1 Parameter conditions

Parameter conditions specify the parameter values that distinguish application

task variants from each other. A parameter condition is represented by the class

ParameterCondition and its subclasses “single value”, “value set”, and “range”. Single

value, value set, and range parameter conditions compare the value of a parameter to a

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 71

single value (e.g., 10), set of values (e.g., 10, 15, and 20), and range of values (e.g., 10 to

20) respectively. Moreover, the comparisons performed in the parameter conditions

use one of five comparison operators “equal”, “not equal”, “in”, “not in”, and “between”,

as indicated by the enumeration ComparisonOperator. The operators “equal” and “not

equal” are used for single-value parameter conditions. Additionally, the operators “in”

and “not in” are used for value-set parameter conditions. Furthermore, the operator

“between” is used for range parameter conditions.

5.2.4.2 Resource intensiveness

Resource intensiveness indicates the level of resource consumption of an

application task variant for a resource type (i.e., the strain that an application task

variant places on a resource type). The value of resource intensiveness is either low,

medium, or high as indicated by the enumeration ResourceIntensivenessLevel. A high

resource intensiveness means that more resources are required to execute a task, and

vice-versa.

The resource intensiveness is represented in the class TaskResourceTypeAssignment

since its value is specified per combination of task variant and resource type. Resource

intensiveness helps in adaptation decision-making when a software system needs to

execute a similar task variant that consumes fewer resources. This reduces the strain

on resource types that are facing variability.

5.2.4.3 Roles

Although an application task variant is performed by the software system it could

be initiated after a request from an end-user. Roles represent the groups of end-users

who are eligible to initiate the application task variant. A typical example of a role in an

enterprise is a job title like manager or clerk. However, roles are not necessarily

related to job titles. For example, a role could be used to indicate the age groups of

end-users. Roles and end-users are represented by the classes Roles and Users

respectively. The association between these two classes denotes the assignment of

roles to end-users.

Roles are important for adaptation because they can be used by a software system

to identify whether privileged users invoke a task variant thereby affecting its priority.

For example, a task could be considered more important if it was invoked by a

72 5.3 Example task model from an automated warehouse system

manager in an enterprise system or by a senior citizen in a public service software

system (e.g., transportation).

5.2.4.4 Substitutability

An application task variant can be either substitutable by another application task

variant or non-substitutable. This depends on the type of parameter that is used in

the parameter condition. If the parameter is “changeable”, then its value can be changed

to invoke an alternative application task variant that expects a different value. On the

other hand, if the parameter type is “non-changeable”, then its value cannot be changed.

Hence, it is not possible to invoke an alternative application task variant that expects a

different parameter value. The possible substitutability options, namely “substitutable

application task variant” and “non-substitutable application task variant”, are defined

by the enumeration TaskType alongside the “abstract task” and the “application task”

explained in Section 5.2.1.

A substitutable task variant could be executed instead of another one that has

higher resource intensiveness (refer to Section 5.2.4.2). However, non-substitutable

task variants are also important for addressing resource variability. Although non-

substitutable task variants cannot be interchanged like their substitutable

counterparts, they have different priorities and are associated with parameter

conditions (refer to Section 5.2.4.1) that specify in which cases these task variants are

executed. This helps software systems in making adaptation decisions that reduce the

strain on limited resources to keep them available to the most important task variants.

5.3 Example task model from an automated warehouse system

Consider an example of a warehouse for a retail store that receives customer orders

throughout the day. In this example, the warehouse is automated by robots that

perform order preparation tasks and pack items into boxes. To prepare a customer’s

order, robots locate the respective items in the warehouse, pack the items in boxes,

and decorate the boxes to make them ready for delivery (e.g., seal boxes, and attach

labels with addresses).

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 73

Consider that robots should place items of the same type together in a pile inside

the boxes. Robots and boxes are essential resources for the retail store’s operations.

Robots can temporarily go out of service due to unexpected errors or due to the need

for recharging, thereby, delaying order fulfilment and causing financial losses.

Similarly, due to the high demand for orders, the warehouse may run out of boxes to

pack and deliver the orders. Figure 5.2 illustrates an excerpt of a task model for the

automated warehouse system example. This task model is represented using the

SERIES notation. Additionally, Figure 5.2 also shows a legend, which illustrates the

constructs that are used in the task model. The legend consists of task types and a

Figure 5.2 – A task model example from an automated warehouse system (excerpt)

Application task

V Substitutable application task variantAbstract task

<<followed-by-interaction>>

<<fire-and-forget>>

CTT task types SERIES extended task types

Resource Types Parameters

Priority
(High, Medium, Low) for
Time Frame [From, To]
and Parameter Condition

SERIES extended task properties

Roles (of users)

Service Method

<<changeable>><<strict>>
<<flexible>>V Non-substitutable application task variant

Resource
Intensiveness

>> Task enabling
Parameter ConditionsC

CTT relationship

Adaptation Type Choice
(Automated, User)

Feedback from User
(Request, Don t Request)

Feedback Location
(UI Element, Panel, None)

<<non-changeable>>

Description of a task s
purpose

SERIES extended task execution types

Automated Warehouse System

Pack Items in a Box

Parameter Conditions
PackMode = Random

Roles Any

V Pack Randomly

Priority
High {TimeFrame = 8:00 AM to 4:00 PM}
Medium {TimeFrame = 4:01 PM to 8:00 PM}

Locate Items in Warehouse

Priority
High {TimeFrame = 8:00 AM to 4:00 PM}
Medium {TimeFrame = 4:01 PM to 8:00 PM}

>>

Parameter Conditions
PackMode = ByItemType

V Pack by Item Type

Priority
High {TimeFrame = Any, CustomerType = VIP
Low {TimeFrame = Any, CustomerType != VIP

Resource Types
Box, Quantity = 1 <<strict>>

Service Method
Order.PackItems

Decorate Box

Resource Types
DecorativeBow, Quantity = 1 <<flexible>>

Resource Intensiveness
Robot = Low

>>

C C

Roles Any

Resource Intensiveness
Robot = High

Service Method
Order.LocateItems

Service Method
Order.DecorateBox

Roles Any

V Decorate with Regular Decoration

Priority Low

Parameter Conditions
CustomerType != VIP

C

<<fire-and-forget>>

Prepare Order

Parameters
PackMode : string <<changeable>>
CustomerType: string <<non-changeable>>

Resource Types
Robot, Quantity = 1 <<flexible>>

Adaptation Type Choice
Automated

Feedback from User
Request

Feedback Location
Panel

SERIES extended relationship

Task to task variant relationship

Legend

Roles Any

V Decorate with Premium Decoration

Priority High

Parameter Conditions
CustomerType = VIP

C

74 5.3 Example task model from an automated warehouse system

relationship that SERIES uses from CTT, as well as task types, task execution types,

relationships, and task properties that SERIES adds as extensions to CTT.

5.3.1 Abstract task: Prepare Order

The task model consists of an abstract task called “Prepare Order”, which is divided

into three application tasks and represents the activity of preparing customer orders

for delivery.

5.3.1.1 Description

The task “Prepare Order” has a description, which is accessed via the information

icon displayed in the top right corner of the box that represents the task. This

description explains further the purpose of the task “Prepare Order” and comprises the

following text “This task represents order preparation at the warehouse before

delivering the ordered products to the customers”.

5.3.1.2 Execution type

The task “Prepare Order” has a “fire-and-forget” execution type since end-users do

not require a result from the task to interact with the system and execute another task.

For example, the software system could execute a batch of order preparation tasks.

The software system would process the batch and assign order preparation tasks from

it to the robots at the warehouse. When the batch is done, a warehouse control

employee checks the outcome of the batch of tasks altogether (e.g., if the software

system returned any messages regarding changes to some customer orders).

5.3.1.3 Parameters

The task “Prepare Order” has two parameters. The first one is a changeable

parameter called “PackMode”, which specifies the mode for packing items in a box. The

second one is a non-changeable parameter called “CustomerType”, which specifies the

type of customer for whom the order is being prepared.

The parameter “PackMode” is set to be changeable because it is possible to change

its value to indicate that the packing should be done differently (e.g., items are sorted

by their type or randomly). Hence, it is possible to consider “PackMode” as a type of

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 75

configuration parameter. On the other hand, the “CustomerType” parameter is set to

be non-changeable because it is based on domain-related data such as the total amount

of purchases or the number of years as a customer, which indicate loyalty to the store.

Hence, in this case, it is not possible to downgrade a VIP customer to a regular

customer for performing adaptation.

5.3.1.4 Resource types

The task “Prepare Order” has a single flexible resource type called “Robot”, which is

used for preparing a customer order. The robot is set as a flexible resource type to

indicate that it is substitutable by another robot during resource variability (e.g., due

to unexpected robot malfunctions).

5.3.1.5 Feedback properties

The adaptation type choice is set to “automated” for the task “Prepare Order”. This

means the software system will automatically select the least costly adaptation type to

apply to this task. Additionally, the property feedback-from-user is set to “request”. This

means when an adaptation type is applied to this task, feedback will be requested from

the end-user to provide input on the outcome of the adaptation.

Moreover, the feedback location for “Prepare Order” is set to “panel”. This means

end-users can provide feedback on a separate panel from the user interface that is

used to run the task. For example, consider that a batch of “Prepare Order” tasks have

finished executing and that adaptations were performed due to resource variability.

The software system would list the performed adaptations as messages underneath

each other in a side panel to inform the end-users about its decisions. The users could

scroll through these messages and provide their feedback on the outcomes of the tasks.

To provide a comparable example, the feedback panel discussed here resembles the

notifications panel in Windows.

5.3.2 Application tasks

The abstract task “Prepare Order” is divided into three application tasks “Locate

Items in Warehouse”, “Pack Items in a ox”, and “Decorate ox”. These application

tasks represent the sequence of actions that are required for preparing an order.

76 5.3 Example task model from an automated warehouse system

5.3.2.1 Application task 1: Locate items in the warehouse

The first application task that is executed as part of the “Prepare Order” abstract

task is called “Locate Items in Warehouse”. This application task has a “high” priority

between 8:00 AM and 4:00 PM and a “medium” priority between 4:01 PM and 8:00 PM.

This example shows how a task’s priority can differ per timeframe. Additionally, the

service method is set to “Order.LocateItems”, where “Order” and “LocateItems”

represent the service name and method name respectively.

5.3.2.2 Application task 2: Pack items in a box

The second application task is called “Pack Items in a ox”. This task has a single

resource type called “ ox”, which represents a container that is used to pack the items

of the customer order. The resource type “ ox” is set to strict to indicate that it is not

substitutable. For example, in this case, it is not possible to substitute a box with

another container such as a bag because the box provides better protection. However,

there could be other cases where a resource type “ ox” could be set to flexible to

indicate that it is substitutable; the choice depends on the requirements for a

particular domain. Additionally, the service method is set to “Order.PackItems”, where

“Order” and “PackItems” represent the service name and method name respectively.

5.3.2.3 Application task 3: Decorate box

The third application task is called “Decorate ox”. This task has a single flexible

resource type called “Decorative ow”, which is used to decorate the box once the items

are packed in it. The “Decorative ow” is set to flexible since it can be substituted with

other types of decorations during resource variability. Additionally, the service method

is set to “Order.Decorate ox”, where “Order” and “Decorate ox” represent the service

name and method name respectively.

5.3.2.4 Order of the application tasks

These three application tasks “Locate Items in Warehouse”, “Pack Items in a ox”,

and “Decorate ox” execute in sequential order and are therefore linked by a “task

enabling” relationship to indicate that one task enables the other. This means that

“Locate Items in Warehouse” will execute first. Once the items are located the task

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 77

“Pack Items in a ox” will execute. Finally, after the items are packed in a box the task

“Decorate ox” will execute to add decorations to the box.

5.3.3 Application task variants for “pack items in a box”

The application task “Pack Items in a ox” has two application task variants, which

are “Pack Randomly” and “Pack by Item Type”. These application task variants are

substitutable because it is possible to change the value of the “PackMode” parameter to

execute one variant instead of another.

Furthermore, the variants of the task “Pack Items in a ox” are linked to it via a

“task to task variant” relationship. This relationship indicates that these variants are

special cases of “Pack Items in a ox”, whereby each variant performs the packing

differently. The “task to task variant” relationship is similar to a generalisation

relationship in UML. Hence, the application task variants use (inherit) the information

found in their parent application task (e.g., resource type and service method). In this

example, both “Pack Randomly” and “Pack by Item Type” use the resource type “ ox”.

Furthermore, both of these variants call the same service method (Order.PackItems)

but with a different value for the parameter “PackMode”.

5.3.3.1 Application task variant 1: Pack randomly

The application task variant “Pack Randomly” is executed when the “PackMode”

parameter is equal to “Random”. This variant has a “low” resource intensiveness on the

robot resource type since the robot will perform the packing randomly without taking

additional time to sort the items before placing them in the box. Additionally, end-

users with any role can execute the “Pack Randomly” application task variant. Hence,

the initiation of this task variant is not restricted to particular types of employees

within the warehouse and its importance is not affected by who initiated it.

Furthermore, “Pack Randomly” has a “high” priority value between 8:00 AM and

4:00 PM and a “medium” priority value between 4:01 PM and 8:00 PM. This is an

example of how priorities can differ among timeframes for an application task variant.

The choice of timeframes with priorities depends on what is required for a domain. For

example, the abovementioned priority and timeframe were chosen for the task variant

“Pack Randomly” because customer orders are mostly fulfilled between 8:00 AM and

78 5.3 Example task model from an automated warehouse system

4:00 PM and packing items randomly would reduce the strain on the resources during

this busy time.

5.3.3.2 Application task variant 2: Pack by item type

The application task variant “Pack by Item Type” is executed when the “PackMode”

parameter is equal to “ yItemType”. This variant has a “high” resource intensiveness on

the robot resource type since it would take the robot more time to identify the items

and pack each type in a separate pile in comparison to packing items randomly. Like

“Pack Randomly”, the task variant “Pack by Item Type” can be executed by users of any

role. For example, this includes employees from the warehouse with any job title.

Furthermore, “Pack by Item Type” has a “high” priority value for VIP customers and

a “low” priority value for non-VIP customers. The priorities, in this case, apply to any

timeframe. The task variant “Pack by Item Type” places more strain on the robots

(resources) in comparison to its counterpart “Pack Randomly”. Hence, it was given a

low priority for non-VIP customers. This example shows how the priority of an

application task variant can be the same for any timeframe but differ according to

parameter values.

5.3.4 Application task variants for “decorate box”

The application task “Decorate ox” has two non-substitutable application task

variants, which are “Decorate with Premium Decoration” and “Decorate with Regular

Decoration”. Like the variants of the task “Pack Items in a ox”, the variants of

“Decorate ox” are linked via a “task to task variant” relationship to indicate that the

task variants are special cases of the application task.

These variants are non-substitutable because the value of the “CustomerType”

parameter cannot be changed. This means that it is not possible to change an order

that is designated for a VIP customer to an order for a regular customer. Hence, it is

not possible to execute the task variant “Decorate with Premium Decoration” instead

of “Decorate with Regular Decoration” and vice-versa.

5.3.4.1 Application task variant 1: Decorate with Premium decoration

The application task variant “Decorate with Premium Decoration” is executed when

the parameter “CustomerType” is equal to “VIP”. This means that VIP customers will

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 79

receive a premium decoration for their order. Additionally, end-users with any role can

execute “Decorate with Premium Decoration”. Moreover, “Decorate with Premium

Decoration” has a “high” priority value at any timeframe, which means it is important

for VIP customers to receive a premium decoration on their order regardless of when

the order is prepared. This is an example of how a single priority value can be given to

an application task variant.

5.3.4.2 Application task variant 2: Decorate with Regular decoration

The application task variant “Decorate with Regular Decoration” is executed when

the parameter “CustomerType” is not equal to “VIP”. This means non-VIP customers

will receive a regular decoration for their orders. Additionally, end-users with any role

can execute “Decorate with Regular Decoration”. Furthermore, “Decorate with Regular

Decoration” has a “low” priority value at any timeframe, which means it is not

important for non-VIP customers to receive a decoration for their order. For example,

in case there is a shortage in the decorative bow resource type, then non-VIP customers

Figure 5.3 – Tool for creating and modifying task models using SERIES

(a) (b) (c)

(d)

80 5.4 Supporting tool of SERIES

might not receive a decorated box. This could be achieved by performing an adaptation

that cancels the execution of a “Decorate with Regular Decoration” task variant.

5.4 Supporting tool of SERIES

SERIES has a supporting tool that offers functionality for creating and modifying

task models. A screenshot of this tool is shown in Figure 5.3. This tool was developed

using C# and the Windows Presentation Foundation (WPF).

5.4.1 Panels: Task model explorer, visual task model, and properties

The supporting tool of SERIES is divided into three panels: (a) Task Model Explorer,

(b) Visual Task Model, and (c) Properties, which are shown in Figure 5.3a, Figure 5.3b,

and Figure 5.3c respectively.

Figure 5.4 – Data entry windows for properties that represent sets of values
 (the data displayed in these windows are examples)

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 81

The “Task Model xplorer” panel offers a hierarchical view of a task model. This

panel shows how the tasks are ordered under each other using a compact tree

structure that enables users to navigate to the different parts of the model. The “Visual

Task Model” panel displays the task model graphically using the S RI S notation.

Moreover, it is possible to zoom in and out of the task model in the “Visual Task Model”

panel using the “Zoom” slider.

The “Properties” panel displays the properties of the selected task. Users use this

panel to edit the values of the properties (e.g., change the name of a task). A property

can either have a single value like task name and description or a set of values like

resource types and parameters. Properties with lists of values are shown in the

“Properties” panel with “Add”, “ dit”, and “Remove” buttons. The buttons “Add” and

“ dit” open windows for inputting and editing the data of the respective property.

Figure 5.5 – Supporting tool of SERIES – setup data tab

Figure 5.6 – Data entry windows for setup data properties
 (the data displayed in these windows are examples)

82 5.4 Supporting tool of SERIES

Figure 5.4 shows screenshots of those data entry windows with example data. On the

other hand, the button “Remove” deletes the selected value.

The possible set of values for the properties resource type, resource type category,

measurement unit, role, and task category that are used in the data entry windows

(Figure 5.4) are defined beforehand. The data entry windows for these properties are

accessible through the “Setup Data” tab, shown in Figure 5.5, where the buttons open

the corresponding data entry windows that are shown in Figure 5.6.

The automated-warehouse-system example shown in Figure 5.2 is displayed in the

supporting tool in Figure 5.3. The “Task Model xplorer” panel shows the task model

as a hierarchical view, which starts from the abstract task “Prepare Order”, followed by

the application tasks and their corresponding application task variants. The “Visual

Task Model” panel displays the task model, which is partially shown in Figure 5.3 to

keep the text on the figure readable in the limited space on the page. The “Properties”

panel shows the properties and their values for the abstract task “Prepare Order” that

is selected in the task model. The name and description are editable as text, execution

type and user feedback are selected from combo boxes, while resource types and

parameters can be added, edited, or removed. Properties and values are displayed

depending on which part of the task model is selected. For example, if a task variant

was selected the “Properties” panel would also display parameter conditions, resource

intensiveness, and roles.

5.4.2 Actions: Creating, loading, and saving task models

The actions tab shown in Figure 5.3d provides buttons for invoking the actions that

are needed to create and modify task models. To clear the currently loaded task model

(a) Opening task model (b) Saving task model

Figure 5.7 – Opening and saving task models from and to a database
 (the data displayed in these windows are examples)

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 83

and create a new one, the user presses the “New Task Model” button. A user loads an

existing task model by pressing the “Open Task Model” button and selecting the

corresponding name from a list of task models that were previously saved to a

database (Figure 5.7a). Similarly, a user saves a task model to a database by pressing

the “Save Task Model” button and specifying a task model name (Figure 5.7b). The

database that stores the task models is a realisation of the knowledge base introduced

in Section 4.1.

The tool stores S RI S task models in JSON format. JSON stands for “JavaScript

Object Notation” and is a well-known format that uses human-readable text to store

data objects. The JSON format is a serialised (textual) representation of objects from a

software system. The serialised objects in the supporting tool of SERIES represent task

models. JSON is useful for storing task models in the database and also for transmitting

Listing 5.1 – JSON representation of the “Prepare Order” abstract task

1. {

2. "Id":1,

3. "Name":"Prepare Order",

4. "Description":"Preparing an order for a customer",

5. "ExecutionType":"<<fire-and-forget>>",

6. "TaskCategory":"Inventory",

7. "AdaptationTypeChoice":"Automated",

8. "FeedbackFromUser":"Request",

9. "FeedbackToUser":"Panel",

10. "ResourceTypes":

11. [

12. {

13. "Name":"Robot",

14. "Quantity":1,

15. "Substitutability":"<<flexible>>"

16. }

17.],

18. "Parameters":

19. [

20. {

21. "Name":"Pack Mode",

22. "DataType":"string",

23. "ParameterType":"<<changeable>>"

24. },

25. {

26. "Name":"Customer Type",

27. "DataType":"string",

28. "ParameterType":"<<non-changeable>>"

29. }

30.]

31. }

84 5.4 Supporting tool of SERIES

them over a network to be processed by a software application. The JSON documents

that store the data of SERIES task models consist of all the tasks and task variants in a

task model’s hierarchy and their property values. For example, as shown by the

“Properties” panel in Figure 5.3c, the abstract task “Prepare Order” has data

corresponding to the task name, description, execution type, task category, resource

types, parameters, adaptation type choice, and feedback. This data is represented using

JSON in Listing 5.1.

5.4.3 Adding, modifying, and removing tasks

The hierarchy of a task model starts with an abstract task. Hence, the first step in

the creation of a task model is the addition of an abstract task by pressing the button

“Add Abstract Task”. Moreover, when an abstract task is added and selected the button

“Add Application Task” is enabled. Upon pressing this button an application task is

added as a subtask of the abstract task. Task variants for an application task are added

by pressing the button “Add Application Task Variant”.

Upon selecting a task or a task variant on the “Task Model xplorer” (Figure 5.3a)

or the “Visual Task Model” (Figure 5.3b), the corresponding properties are

automatically shown in the “Properties” panel (Figure 5.3c). When a user edits the

values of these properties, the new values are directly reflected in the “Task Model

 xplorer” and the “Visual Task Model”. For example, when a user changes the name of

a task in the “Properties” panel, the new name directly appears on the graphical

representation of the task model.

Additionally, users can remove a task from the task model by selecting the task and

clicking on the button “Remove Task”. This includes any child tasks that are linked to

the removed task. For example, if an application task is removed and it has a set of

application task variants, then those task variants will be removed as well.

Figure 5.8 – Supporting tool of SERIES – configuration tab

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 85

5.5 Graphical representation of SERIES task models

As mentioned in Section 5.1 and shown by the example presented in Section 5.3, the

graphical representation of the constructs in SERIES is based on CTT and also inspired

by UML class diagrams.

5.5.1 Representation of tasks and task variants

In CTT, a task is represented by an icon with the task name written underneath.

However, SERIES represents tasks and task variants as boxes that resemble classes in a

UML class diagram. The box representation is needed because SERIES extends CTT

with additional characteristics that should be represented graphically. Hence, these

boxes have multiple parts that represent the properties of the tasks and task variants.

SERIES uses the icons of CTT for the abstract and application tasks (Paterno,

Mancini and Meniconi, 1997). Furthermore, S RI S adds the letter “v” to the icon of

the application task and uses the new icon for the application task variants. These

icons are displayed in the top left corner of the boxes that represent tasks and task

variants as shown by the example in Figure 5.2. Moreover, SERIES uses both a textual

description and an icon for the properties of tasks and task variants (Figure 5.2). For

example, the property that represents parameters has the word “Parameters” as a

textual description alongside an icon of an arrow pointing inside a rectangle to denote

an input that is given to the system.

5.5.2 Representation of relationships

A relationship that connects an abstract task to its subtasks (application tasks) is

represented as a line without an arrow as is done in CTT. Additionally, a relationship

that connects subtasks is represented as a line with a temporal operator as is done in

CTT as well.

On the other hand, a relationship that connects an application task to an application

task variant resembles the generalisation relationship in UML. This relationship is

represented as a line with a white triangle as an arrow tip. The generalisation

relationship in UML connects a concept to its special cases (e.g., a class to its

subclasses). The same principle applies to tasks and task variants, whereby the task

86 5.5 Graphical representation of SERIES task models

variants are special cases of a task. Hence, the graphical representation of the task-to-

task-variant relationship was inspired by UML’s generalisation relationship.

5.5.3 Different levels of detail

The “Configurations” tab, shown in Figure 5.8, has a set of options for showing or

hiding parts of the task model. This enables users to show more or fewer details as

needed. Hence, it is possible to hide the details that are not needed at the moment to

show a bigger part of the task model on the screen. For example, it is possible to hide

all the properties from the “Visual Task Model” and only keep the task names while

retaining the ability to browse and edit the properties in the “Properties ox”. It is also

possible to hide properties that are less frequently used for a particular project.

The ability to control the level of detail on the task model is inspired by UML class

diagrams where it is possible to hide the parts of the boxes that represent the classes

as needed. In UML class diagrams the box parts represent the class name, attributes,

and operations. On the other hand, in a SERIES task model, the box parts represent the

name of a task or a task variant and the properties (e.g., priority, parameters, resource

intensiveness, etc.).

5.5.4 The layout of task models

SERIES adopts a hierarchical layout for task models. This type of layout is typically

used by task modelling notations like CTT. Hence, the abstract task is displayed at the

top of the task model. Then, the subtasks (application tasks) are displayed under the

abstract task and the task variants are displayed under the subtasks.

The supporting tool of SERIES automatically adjusts the layout of the task model

when new tasks are added or removed. This facilitates the management of task models

without having to worry about overlapping lines and the necessity of performing

manual adjustments to keep the task model readable. Nonetheless, if a user wishes to

perform a manual rearrangement of the task model’s layout, the tool also supports the

dragging and dropping of tasks. The ability to drag and drop tasks is enabled by

pressing the button “Enable Task Drag” from the “Configurations” tab, which is shown

in Figure 5.8.

Chapter 5 – SERIES: A Task Modelling Notation for Resource-Driven Adaptation 87

5.6 Mapping of concepts from SERIES to SPARK

Table 5.1 shows the mapping of concepts from the meta-model of SERIES to the

adaptation components of SPARK. In the class resource type, the consumption type and

available quantity properties are used in three components, namely resource type

state monitor, resource type state analyser, and task execution allocator. These

properties are used to monitor the available quantities of reusable and depletable

resources to check if they are facing variability and allocate accordingly the number of

possible task executions. Moreover, the property behaviour type is used by the

adaptation executor component to check whether the adaptation is applied to the

software system or the resource accordingly to whether the type of resource type is

static or dynamic respectively.

Table 5.1 – Mapping concepts from SERIES meta-model to SPARK components

SERIES SPARK

Class name Class property Used by adaptation component

Resource type

Consumption type

Available quantity

Resource type state monitor

Resource type state analyser

Task execution allocator

Behaviour type Adaptation executor

Task priority assignment Priority value Task priority calculator

Task resource type
assignment

Resource intensiveness
Adaptation executor
(task variant substitution)

Substitutability Adaptation executor
(resource substitution) Quantity

Service method
Service name

Task execution monitor
Method name

Task and Task variant

Feedback from user Feedback elicitor

Feedback location Feedback provider

Execution type
Adaptation executor
(delay task execution)

Type
Adaptation executor
(task variant substitution)

88 5.7 Chapter summary

In the class task priority assignment, the property priority value is used as input to

the task priority calculator component to calculate the initial priority value for a task.

In the class task resource type assignment, the property resource intensiveness is used

by the adaptation executor component to check which task variant gets substituted by

another one. The properties substitutability and quantity are used by the adaptation

executor component to check if the resource type is substitutable and check the

available quantities for the substitutable resource types respectively. In the class

service method, the properties service name and method name are used by the task

execution monitor component to identify which task (variant) is initiated by an end-

user so the appropriate adaptation decisions can be made accordingly.

In the classes task and task variant, the property feedback-from-user is used by the

feedback elicitor component to check if it needs to request feedback from the end-user

when adaptation is performed. Moreover, the property feedback location is used by the

feedback provider component to specify the location for providing feedback when an

adaptation is performed (directly on the UI or in a separate panel). The property

execution type is used by the adaptation executor component to identify whether a task

can be delayed. The property type is used by the adaptation executor to identify

whether a task variant is substitutable by another one. If one type of adaptation does

not apply, the framework would apply another type.

5.7 Chapter summary

This chapter presented a task modelling notation called SERIES, which this thesis

proposes for supporting resource-driven adaptation in software systems. SERIES is

based on CTT and its graphical representation is also inspired by UML.

The meta-model of SERIES was presented as a class diagram and its concepts were

explained. The explanation differentiated between the concepts that were

incorporated from CTT and those that were added by SERIES. Moreover, I have

mapped the concepts from the SERIES meta-model to the adaptation components of

the SPARK framework. Additionally, SERIES was demonstrated through an example

task model that corresponds to an automated warehouse system. Furthermore, the

supporting tool of SERIES was presented as screenshots and its features were

explained. Moreover, the graphical representation of SERIES was explained and related

to the example task model from the automated warehouse system.

 89

6

SPARK: A Framework for Resource-Driven

Adaptation

This chapter presents SPARK, which is a framework for supporting resource-driven

adaptation. First, this chapter explains SPARK’s proactive and reactive adaptation

components. Then, it presents an example from an automated warehouse system to

demonstrate the calculations that are performed by SPARK’s adaptation components.

Afterwards, this chapter gives an overview of a prototype implementation of these

components.

6.1 Introduction

The SPARK framework executes resource-driven adaptation due to variations in

resources used by software systems. SPARK realises the adaptation components

introduced in Section 4.3, which is based on the MAPE-K control loop approach

(Kephart and Chess, 2003). These components are defined, according to the MAPE-K,

as monitors (M), analysers (A), planners (P), executors (E), and a knowledge (K) base.

An example from an automated warehouse system is used in this chapter to explain

the adaptation components.

As explained in Section 3.2, existing resource-driven adaptation approaches target a

limited number of resource types. SPARK supports tasks that use depletable and

reusable resource types. Additionally, SPARK supports the generation of unique task

priorities using multiple criteria including the task’s parameter values, the time of day

when the task was initiated, the task’s resource intensiveness, the role of the user who

initiated the task, and how critical the task is in its respective domain. Furthermore,

90 6.1 Introduction

SPARK supports four types of adaptation, namely: (i) execution of other task variants

that require fewer resources; (ii) substitution of resource types with alternative ones;

(iii) execution of tasks in a different order based on their priorities; and (iv)

cancellation of tasks when no other task variant or resource can be used.

Figure 6.1 shows the classes that are used in SPARK for the prioritisation and

logging of tasks in a software system. The grey parts in the class diagram represent the

same classes that are used in the SERIES meta-model in Section 5.2. The explanation of

the adaptation components in the next sections will reference Figure 6.1 in terms of

the classes that are related to an adaptation component. Moreover, Figure 6.2 show

these adaptation components, where each adaptation component is mapped to a

MAPE-K component to illustrate the flow of the adaptation components’ execution.

Figure 6.1 – Logging and prioritisation of tasks
 (the grey parts represent the same classes used in the SERIES meta-model that was

presented in Section 5.2)

Usage Logs

TaskExecutionLog

+Id: int {id}
+RequestDateTime: DateTime
+ExecutionDateTime: DateTime
+CompletionDateTime: DateTime
+/HasExecuted: bool
+/ExecutionDuration: double

ResourceTypeUsageLog

+Id: int {id}
+StartDateTime: DateTime
+EndDateTime: DateTime
+TotalResourceTypeUsage: double

Tasks

Role UserTimeFrame

Priorities

TaskPriorityAssignment

PriorityWeight

+WeightOfPriorityAssignment: double
+WeightOfTaskUsagePriority: double

Task

+Has

0..*

1

+Has

0..*

1

+Has

0..*

1

TaskExecutionUserRating

+Id: int {id}
+QualityRating: double
+FunctionalityRating: double

+Is Requested During

1..*

1

+Is Done By

0..*

1

+Is Done For

0..* 1

+Has

1 0..*

Resources

Tasks

TaskCategory

Task

ResourceType

PriorityAdjustmentCostWeights

+WeightOfAdaptationTypeCost: double
+WeightOfPriorityInPreviousTimeFrame: double
+WeightOfDependentTaskCount: double
+WeightOfExecutionDuration: double

ResourceTypeCategory

+Has

0..*

0..1

+Has

0..*

0..1

+Has

1..*

1..*

+Has

0..*

0..1

+Has

0..*

0..1

+Has

0..*0..1

+Has

0..*0..1

+Has

0..* 0..1

+Has

0..* 0..1

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 91

Furthermore, the calculations performed by the adaptation components will be

illustrated via an example of a warehouse for a retail store, which consists of tasks,

namely “Pack Item in Container” (T1), “Receive Item to Warehouse” (T2), “Restock Item

in Warehouse” (T3), “Sort Returned Items” (T4), and “Dispatch Item from Warehouse”

(T5). In this example, robots pack the respective items in a container to prepare a

customer order, receive items that are delivered to the warehouse, restock the items in

the warehouse, sort returned items from customers, and dispatch items from the

warehouse. This example comprises the abovementioned five tasks, a reusable

resource type (robot), and a depletable resource type (container).

Figure 6.2 – SPARK proactive and reactive adaptation components (based on MAPE-K)

Task Execution Monitor M

Monitors the task executions in a software
system and stores the monitored data in the
knowledge base

Resource Type State Monitor M

Monitors the consumption of resource types
and passes the monitored data to the
 Resource Type State Analyser

Resource Type State Analyser A

Checks if a resource type is facing variability
and passes the state of a resource type to the
 Task Execution Manager

Task Execution Manager P

Decides whether a task should be executed or
adaptation should be performed and invokes
either the Task Execution Allocator or the
 Adaptation Executor accordingly

Feedback Provider E

Provides feedback to end-users about the
performed adaptation

Feedback Elicitor E

Elicits feedback from end-users about the
performed adaptation and stores it in the
knowledge base

Adaptation Executor E

Performs adaptations and invokes the
 Feedback Elicitor and Feedback Provider

Task Execution Allocator P

Allocates the number of possible executions
for each task and reduces this number when a
task gets executed

Legend

Monitor component Analyse component Plan component Knowledge base

Read/Write data InvokeWrite data Read data

M A P KExecute componentE

Knowledge
Base

K

Task Execution Forecaster A

Forecasts the number of task executions and
passes it to the Task Priority Calculator

Task Execution Monitor M

Reads the monitored data from the
knowledge base and passes it to the Task
Execution Forecaster

Task Priority Adjuster P

Adjusts the priorities of the tasks to make
them unique and passes the unique priorities
to the Adaptation Type Selector

Adaptation Type Selector P

Computes the costs of applying the adaptation
types to the tasks and selects the least costly
adaptation type for each task

Task Priority Calculator P

Calculates the priorities of the tasks and passes
these priorities to the Task Priority Adjuster

P
ro

a
ct

iv
e

 C
o

m
p

o
n

e
n

ts
R

ea
ct

iv
e

 C
o

m
p

o
n

e
n

ts

92 6.2 Proactive adaptation components

6.2 Proactive adaptation components

SPARK implements five proactive adaptation components that include a task

execution monitor, task execution forecaster, task priority calculator, task priority

adjuster, and adaptation type selector, which are illustrated in Figure 6.2 and explained

in the following subsections.

6.2.1 Task execution monitor

SPARK monitors the execution of tasks in a software system via the task execution

monitor component. The monitored data is logged in the knowledge base and is used

as historical data for forecasting future executions of tasks. The classes shown under

the “Usage Logs” package in Figure 6.1 are related to logging task executions. The class

TaskExecutionLog represents who (Users) had used or attempted to initiate what task

(or task variant) and during which TimeFrame. A user could attempt to initiate a task

without being successful due to the lack of resources. This is indicated by the

“Has xecuted” property. Nonetheless, the attempts are also logged to reflect what

tasks the users find important during a timeframe. Both the number of task executions

and the number of task execution attempts reflect the task’s priority from an end-user

perspective.

In order to prevent end-users from abusing their ability to impact the priority of a

task through improper usage, SPARK avoids storing consecutive task execution

attempts within milliseconds of each other. This is done by using throttling (Azure,

2022), which reduces the trigger rate. Throttling is used in event-driven programming

to ensure that a function is called at most once in a specified period (e.g., once every 2

seconds).

6.2.2 Task execution forecaster

The data represented by the class TaskExecutionLog, shown in Figure 6.1, is used as

historical data to forecast the number of task executions, which represents the number

of times Users are expected to execute a Task (T) during a TimeFrame (TF). This is

done via the task execution forecaster component. The forecasted task execution (FTE)

represents a number of expected task executions based on a forecast from historical

data. FTE is obtained using a regression algorithm from the ML.NET framework

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 93

(2021), where FTE is the dependent variable and T and TF are the independent

variables. The independent variables are used to forecast the value of the dependent

variable. Regression analysis is used for analysing the relationship between variables

for forecasting purposes. The type of regression analysis that is used in our case is

multiple linear regression because there is one dependent variable (FTE) and multiple

independent variables (T and TF). Moreover, FTE is used during the process of task

prioritisation, which is discussed next.

6.2.3 Task prioritisation

Priorities play an important role to determine whether tasks are executed by

directly gaining access to the resources or are executed after adaptation is performed.

The priorities of tasks are calculated by the task priority calculator and the task priority

adjuster components. The calculated priority value (Pv) is a real number between 1 and

n as shown in Equation 6.1. Furthermore, each task’s Pv is then classified (i.e., C(Pv)) as

high, medium, or low based on a threshold that provides an equivalent distribution for

the priorities. The classification is based on the following ranges specified in Equation

6.2: high-priority ∈ [1-2); medium-priority ∈ [2-3); low-priority ∈ [3-n].

6.2.3.1 Task priority calculator

The task priority calculator computes initial priority values for tasks. The initial

priority value for a task is based on two inputs that provide complementary

perspectives: (i) domain priority and (ii) priority from the forecasted task execution.

The domain priority (DP) reflects the importance of a task for a domain. Its value is

obtained from someone who knows the domain like the system administrator. Tasks

are assigned DPs as denoted by the class TaskPriorityAssignment, which is shown in

Figure 6.1. The DP takes into consideration the following criteria: the timeframe of the

task execution, the role of the user who is attempting to execute the task, and the task

variants. Timeframes represent time intervals that are meaningful for a domain.

For example, in a warehouse system, order preparation has a higher priority than

sorting returned products during the daytime, when most of the orders are shipped.

Roles characterise users and differ among software systems. For instance, roles can

represent job titles such as warehouse clerk and manager in a warehouse system. Task

priorities can differ according to roles because roles indicate that certain users are

94 6.2 Proactive adaptation components

more privileged, and a task can have a higher priority when it is initiated by someone

with a more privileged role. For example, in a warehouse system, a shelf stock count

task has a higher priority when it is initiated by a manager.

The forecasted task execution (FTE) is calculated from the logged historical data

(see Section 6.2.1). The forecasted task execution counter (FTEC) is then computed by

sorting the FTE values in descending order, where the highest FTE value has an FTEC

value that is equal to one. Moreover, SPARK uses thresholds to calculate priority values

within the range specified in Equation 6.1. Here, a threshold (TH) value is calculated as

described in Equation 6.3, whereby tasks with a lower FTEC have a higher priority.

Furthermore, a threshold is applied to FTEC to ensure its value is within the priority

range of 1 and 3 (mapping the priority levels of high, medium, and low). The result is a

threshold forecasted task execution priority (TFTEP) as shown in Equation 6.4. The

initial priority (PI) is then computed by multiplying each input (i.e., DP and TFTEP) by

its corresponding weight as shown in Equation 6.5, where the sum of the weights is

equal to one.

𝑃𝑣 = { 𝑝 | 𝑝 ∈ ℝ ∧ 1 ≤ 𝑝 ≤ 𝑛 }

Equation 6.1 – Priority value range

𝐶(𝑃𝑣) = {

𝐻𝑖𝑔ℎ 1 ≤ 𝑃𝑣 < 2
𝑀𝑒𝑑𝑖𝑢𝑚 2 ≤ 𝑃𝑣 < 3

𝐿𝑜𝑤 3 ≤ 𝑃𝑣 ≤ 𝑛

Equation 6.2 – Priority value classification

𝑇𝐻 =
𝑚𝑖𝑛(𝐹𝑇𝐸𝐶) + 𝑚𝑎𝑥(𝐹𝑇𝐸𝐶)

𝑚𝑎𝑥(𝑃𝑣)

Equation 6.3 – Threshold calculation

𝑇𝐹𝑇𝐸𝑃 = {
 1 𝐹𝑇𝐸𝐶 < 𝑇𝐻
 2 𝑇𝐻 ≤ 𝐹𝑇𝐸𝐶 ≤ 𝑇𝐻 × 2
 3 𝐹𝑇𝐸𝐶 > 𝑇𝐻 × 2

Equation 6.4 – Threshold forecasted task execution priority calculation

𝑃𝐼 = (𝐷𝑃 × 𝑊𝐷𝑃) + (𝑇𝐹𝑇𝐸𝑃 × 𝑊𝑇𝐹𝑇𝐸𝑃)

Equation 6.5 – Initial task priority calculation

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 95

Moreover, the TaskUsageLog data is combined with the PriorityAssignment to

calculate the priorities during a TimeFrame. Each input has a weight that is indicated

as part of the PriorityWeight class under “Priorities” in Figure 6.1. These weights can

be the same for all tasks and can differ from one Task or TaskCategory to another. For

example, the priority assignment could have a higher weight for some tasks that the

management of an enterprise deems important (managerial view of priorities). In

other cases, there could be a higher weight for task usage (user view of priorities).

6.2.3.2 Task priority calculator: example

Assume that all five tasks (T1 to T5) are monitored by SPARK via the task execution

monitor component, and the task execution forecaster component forecasted the

number of task executions (FTE) for each task as shown in Table 6.1. The forecasted

task execution counter (FTEC) is then computed by sorting FTE in descending order

and providing an incremental counter value for each task. The threshold (TH) value is

computed by adding the minimum and maximum values of FTEC and then dividing by

the maximum priority value. In this case, TH will be equal to 2, which is then used for

computing TFTEP. Once TFTEP is computed, and the domain priority (DP) is specified,

both inputs will be used to calculate the initial priority (PI) for each task. This is done

by multiplying each input by its corresponding weight and then adding the results. The

weights used in this example for the inputs are specified in Table 6.1.

6.2.3.3 Task priority adjuster

It is possible to have tasks that share the same resources with the same initial

priority values (PI). The task priority adjuster component adjusts the PI of tasks to

Table 6.1 – Initial priority calculation example

Tasks DP FTE FTEC TH TFTEP PI

T1 2 30 1 2 1 1.5

T2 1 20 2 2 2 1.5

T3 1 10 3 2 2 1.5

T4 2 7 4 2 2 2.0

T5 2 5 5 2 2 2.0

*Assuming, for this example, the following priority weights: WDP = 0.5 and WTFTEP = 0.5

96 6.2 Proactive adaptation components

ensure that each task gets a unique priority value. Tasks with the same PI are grouped,

and the cost function shown in Equation 6.6 is applied to deprioritise a task (CDT) and

adjust the priorities of the tasks in each group. The cost function takes into

consideration the following inputs: the cost of performing adaptation for the task, the

sum of adjusted priorities from previous timeframes, the total number of dependent

tasks, and the estimated duration of the task’s execution. Moreover, each input has a

corresponding weight to specify its importance. These weights are illustrated under

the package “Priorities” in Figure 6.1, where the class PriorityAdjustmentCostWeight

represents the four weights used for the calculation of CDT. The abovementioned inputs

of the cost function are explained next.

 The first input is the result of a cost function that calculates the cost of adaptation.

When a task cannot execute, due to the lack of resources, adaptation is performed

using one of the supported adaptation types. The use of an adaptation type has a cost

(to be discussed in Section 6.2.4). If an adaptation is needed, the type of adaptation

that has the lowest cost is performed. When tasks have the same priority and the

resources are not enough for all of them, it is possible to decide which one gets the

resources based on how costly it would be to perform the adaptation for each of them.

The second input involves summing up the task’s priorities in previous timeframes.

This value will be larger for the task that had lower priorities and would increase the

overall value of CDT. Hence, the advantage is given to the tasks that got fewer chances of

being executed so far.

𝐶𝐷𝑇 = 𝐶𝐴𝐷 × 𝑊𝐶𝐴𝐷
+ ∑ 𝑃𝐴 × 𝑊∑ 𝑃𝐴

+ |𝐷𝑇| × 𝑊|𝐷𝑇| + 𝐸𝐷 × 𝑊𝐸𝐷

Equation 6.6 – Cost function for deprioritising a task

𝜀0 =
𝑁𝑇𝐺𝑃𝐼

− 𝐶𝑇𝐺𝑃𝐼

|𝐶𝑇𝐺| + 1
, 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑁𝑇𝐺𝑃𝐼

) = 𝐶(𝐶𝑇𝐺𝑃𝐼
)

Equation 6.7 – Initial epsilon value calculation

𝑃𝐴 = 𝑃𝐼 + 𝜀𝑘, 𝑤ℎ𝑒𝑟𝑒 𝐶(𝑃𝐴) = 𝐶(𝑃𝐼) 𝑎𝑛𝑑 𝜀𝑘 = {
𝜀0 𝑘 = 0

 𝜀𝑘−1 + 𝜀0 𝑘 > 0

Equation 6.8 – Priority adjustment calculation

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 97

The third input is the task’s number of dependent tasks. As explained in Section

5.2.1, a task can enable its following task. For example, in the automated warehouse

example, “locate items in the warehouse” enables “pack items in a box”, “pack items in

a box” enables “decorate box”, and “decorate box” does not enable any following task

(i.e., does not have dependents). The number of dependent tasks for “locate items in

the warehouse”, “pack items in a box”, and “decorate box” is two, one, and zero.

Therefore, tasks with a higher number of dependents are given a higher priority

because without them other tasks would not get executed.

The fourth input is the task’s estimated execution duration, which is obtained from

the historical data by computing a task’s average execution duration from the

TaskExecutionLog shown in Figure 6.1. The priority adjuster gives a higher priority to

the tasks that require on average less time to complete. This way, more tasks can

execute within a timeframe.

Furthermore, that have the same PI are placed in a group and are sorted by the

values of the cost function CDT. Each PI value for a task is incremented by an epsilon

value εk, where k represents the task order (sequence number) in a group. An initial

value of ε, represented as ε0, is computed based on Equation 6.7 to ensure that the

values of the adjusted priorities are between the priority values of the tasks in the

current group (𝐶𝑇𝐺𝑃𝐼
) and the priority values of tasks in the next group (𝑁𝑇𝐺𝑃𝐼

). It is

important to note that the priority classification (high, medium, or low) of the tasks

under 𝑁𝑇𝐺𝑃𝐼
 should be equal to the priority classification of the tasks under 𝐶𝑇𝐺𝑃𝐼

.

Hence, the adjusted priority value (PA) and PI should have the same priority

classification. For example, if 𝐶𝑇𝐺𝑃𝐼
 is equal to 1.5 and 𝑁𝑇𝐺𝑃𝐼

 is equal to 2.2, then both

groups have different classifications. Therefore, 𝑁𝑇𝐺𝑃𝐼
 becomes 2.0 instead of 2.2,

which allows the adjusted priority values for the tasks in CTG to remain in the same

priority classification. Moreover, the first task in CTG (i.e., when k = 0) has an adjusted

priority value PA equal PI + ε0 as shown in Equation 6.8. As for the rest of the tasks in

the group (i.e., when k > 0), the value of εk is computed by adding the previous epsilon

value (εk–1) with the initial epsilon value (ε0). The value of εk is then added with PI to

compute a task’s PA, which is also shown in Equation 6.8.

6.2.3.4 Task priority adjuster: example

Based on the values in Table 6.1, three tasks have the same PI of 1.5 and two tasks

with the same PI of 2.0. In this case, the cost function for deprioritising tasks (CDT) is

98 6.2 Proactive adaptation components

computed based on its four inputs (refer to Section 6.2.3.3). Assume that the four

inputs have the values specified in Table 6.2. This table also shows the computed

values for CDT. Moreover, two groups G1 and G2 are formed, where G1 has three tasks T1,

T2, and T3 with PI equal to 1.5, and G2 has two tasks T4 and T5 with PI equal to 2.0. For

each task in G1 and G2, the values of PA should be distinct and range between [1.5-2.0)

and [2.0-3) respectively. Moreover, for the groups G1 and G2, ε will be equal to 0.125

and 0.33 respectively. By sorting the tasks based on CDT, ε is then incremented by its

value for each task in the group. This gives us the values found in Table 6.2. Therefore,

the adjusted priority (PA) for each task is then computed by adding ε to the task’s PI.

The PA of each task is shown in Table 6.2.

6.2.4 Adaptation type selector

After computing task priorities, the adaptation type selector component selects for

each task the adaptation types that are viable when resources are facing variability.

SPARK supports four adaptation types, which are explained next.

6.2.4.1 Supported adaptation types

A task is changed into a similar one by executing a task variant that takes alternative

parameter values and consumes fewer resources. One example from an automated

warehouse system involves using an alternative packing method for customer orders

such as “Pack Randomly” and “Pack by Item Type” task variants for the “Pack Items in

a ox” task. Another example is related to variants of a “Verify Order” task, which

checks whether the products packed in the box are the ones ordered by the customer.

Table 6.2 – Adjusted priority calculation example

Tasks CAD ∑ PA |DT| ED CDT ε PA

T1 2 1.5 1 2 1.625 0.125 1.625

T2 2 1.7 1 2 1.675 0.25 1.75

T3 3 1.8 2 3 2.45 0.375 1.875

T4 3 2.2 2 3 2.55 0.33 2.33

T5 4 2.5 2 3 2.875 0.66 2.66

*Assuming, for this example, the following values for the input weights: 𝑊𝐶𝐴𝐷
 = 0.25, 𝑊∑ 𝑃𝐴

 =

0.25, 𝑊|𝐷𝑇| = 0.25, and 𝑊𝐸𝐷 = 0.25

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 99

One task variant performs the verification by scanning the products while the second

one weighs the box and compares the result to the expected weight. The trade-off here

is between accuracy and speed whereby scanning is generally more accurate whereas

weighing the box is faster and has a satisfactory accuracy when the products are not

very light. The faster variant is beneficial when many robots malfunction unexpectedly.

Resources are substituted with alternative ones, so a task can be executed when the

resources it requires are not available. For example, in an automated warehouse, a

robot that needs repairs is substituted by another type of robot to avoid interrupting

high-priority tasks. In a semi-automated warehouse, where humans collaborate with

robots, a malfunctioning robot that was supposed to perform a high-priority task can

be substituted by a human employee who is working on a low-priority task.

Alternative task executions are considered when resources are not available by

postponing the execution of low-priority tasks to another time until the required

resources become available. For instance, the low-priority task of “sorting returned

products” is postponed until more robots are available. This enables high-priority

order preparation tasks to complete on time. Another example involves queuing robot

repair tasks to be processed by order of their priority when a single robot repair bay is

operational because the others are out-of-service due to machinery malfunctioning or

technicians being sick.

The execution of tasks can be cancelled when no other adaptation type is applicable.

An example is cancelling the transmission of optional log data from a robot to a server

to conserve battery power. Another example is cancelling a task that involves using

optional decorative items like stickers to decorate a box of products that were ordered

by non-VIP customers. This task is cancelled in situations where there is a low stock of

decorative items due to an unexpected delay in the supply chain. Therefore, the

addition of these optional items would only be done for the orders of VIP customers.

Moreover, the abovementioned adaptation types consider the computed priorities

for the tasks. For example, the resources of a task are not substituted with alternatives

that are needed by higher-priority tasks. Additionally, when alternative tasks are

executed the delayed task is executed at a time when resources are available, and it is

important enough to execute.

100 6.2 Proactive adaptation components

6.2.4.2 Adaptation type selection

First, the applicability of the adaptation types to a task is checked. Hence, if a task is

“followed-by-interaction” (refer to Section 5.2.2.2) it is not possible to adapt by

delaying the task because the users need the result immediately to perform additional

interaction with the software system. On the other hand, this is possible for “fire-and-

forget” tasks. Additionally, if a task does not have variants (refer to Section 5.2.4) then

it is not possible to adapt by executing a task variant that consumes fewer resources.

Furthermore, if a task’s required resource is set to “strict” (refer to Section 5.2.2.4)

then it is not possible to adapt by substituting this resource with another one.

Then, one of the applicable adaptation types is selected for a task based on a cost,

which is calculated using a cost function that takes four inputs. Each input is

represented via a rating value that is on a scale of 1 to 5 as shown in Equation 6.9. The

cost function for selecting an adaptation type is shown in Equation 6.10. In this cost

function, the inputs for the cost of adaptation (CAD) represent sub-costs related to

changing when a task is executed (CWTE), sacrificing functionality (SF), sacrificing

quality (SQ), and financing a task’s execution (FET). These inputs are explained in the

following subsections.

6.2.4.3 Changing when a task is executed (CWTE)

CWTE represents the effect of changing when a task is executed. For example, the

cost of delaying the generation of a financial report. The cost of CWTE is determined

from both initial configurations and data that is collected from end users. The initial

configurations are done by assigning a cost value on a five-point scale based on

Equation 6.9 (a system administrator does this assignment). Moreover, end-users can

𝐼𝑛𝑝𝑢𝑡 = { 𝑣 | 𝑣 ∈ ℝ ∧ 1 ≤ 𝑣 ≤ 5 }

Equation 6.9 – Input value range

𝐶𝐴𝐷 = 𝐶𝑊𝑇𝐸 +
1

𝑛
∑ 𝑆𝐹𝑖

𝑛

𝑖=1

+
1

𝑛
∑ 𝑆𝑄𝑖

𝑛

𝑖=1

+
1

𝑛
∑ 𝐹𝐸𝑇𝑖

𝑛

𝑖=1

Equation 6.10 – Cost function for adaptation

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 101

provide their feedback to express to what extent the task’s delayed execution has

affected them.

6.2.4.4 Sacrificing functionality (SF)

SF means that some functionality is not available during the execution of a task. A

piece of functionality represents the ability to execute a task in a specific way (e.g., by

disabling options or passing values to the task’s parameters). Functionality can be

sacrificed by cancelling the execution of a task or by substituting a task with a similar

one. The total cost of the sacrificed functionalities (SF) is defined as the sum of the

costs of all the sacrificed functionalities (if any). Examples of software functionality

that could be sacrificed include product recommendations in an online retail system

and automated product identification via computer vision by robots that are preparing

parcels for delivery (used to double-check the packed products).

 The cost of sacrificing functionality is determined through end-users feedback,

whereby end-users are asked to rate to what extent they were negatively affected

when part of the functionality was sacrificed due to limited resources. End-users

provide ratings on a five-point scale (Equation 6.9).

6.2.4.5 Sacrificing quality (SQ)

SQ means quality is reduced during the execution of a task. Multiple types of

qualities could be sacrificed by performing an adaptation. The total cost of the

sacrificed qualities (SQ) is defined as the sum of the costs of all the sacrificed qualities

(if any). Examples of software-related qualities that could be sacrificed include the

amount of data a user is allowed to view and the resolution of an image or video.

Furthermore, some qualities that are not software related could also be affected in

particular domains. For example, in food manufacturing, performing an adaptation like

resource substitution could reduce the nutritional value (amount of nutrients) of a

food product or the quality of its packaging.

In the cases where sacrificed quality was due to sacrificed functionality (refer to

Section 6.2.4.4), the cost shall be added to both the cost of SF and SQ. For example,

packing items randomly in a box rather than by type means that functionality is

sacrificed and the quality of the item’s layout in the box is also negatively affected.

102 6.2 Proactive adaptation components

The costs of sacrificing qualities are computed as a weighted average from both

setup data (initial configurations) and data that is collected through end-user feedback.

The setup data involves assigning a cost value on a five-point scale (Equation 6.9) to

each type of quality. Consider the packaging of a product, where the safest packaging

has no cost (scale value = 1) because there is no reduction in quality. The cost of

sacrificing quality increases when the safety of the packaging is reduced. Hence, the

two values are inversely proportional. Moreover, end-users can express to what extent

the sacrifice in quality affected them. For example, if they deemed the packaging of a

product to be acceptable they could give it a rating of 1 or 2, otherwise, they would

give it a higher rating value to indicate that the cost was high.

6.2.4.6 Financing a task’s execution (FET)

FET is a monetary value converted to a rating scale and represents the financial cost

of performing an adaptation type. For example, the substitution of a malfunctioning

cheap robot for an expensive one adds extra financial costs for an automated

warehouse. The reason is that all robots will have to be replaced at some point and it

costs more to replace the expensive robot. The cost of financing a task’s execution is

determined from setup data. The configuration is set for each task as a monetary value,

which is then converted to a rating on a scale ranging from 1 to 5 (Equation 6.9). The

conversion is applied based on min-max normalisation (Grus, 2015), where the set of

values [a, b] represents the scale range between 1 and 5, and [min, max] represents the

minimum and maximum financial values of the tasks respectively.

Table 6.3 – Cost of adaptation calculation example

 Cost Function Input Values

Type of Adaptation CWTE SF SQ FET Total

CExecute similar task (task variant) 0 1 2 1 5

CPerform resource substitution 0 2 2 1 6

CExecute alternative task (delay task) 2 0 0 5 7

CCancel task execution 3 2 2 3 10

Minimum Cost 5

Selected Adaptation Type: Execute similar task (task variant)

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 103

6.2.5 Adaptation type selector: example

After the prioritisation of tasks, the adaptation type selector component selects the

least costly adaptation type that can be applied to a task in case an adaptation is

required to execute a task. As mentioned in Section 6.2.4, SPARK supports four types of

adaptation. The cost of applying each type of adaptation is computed using the cost

function shown in Equation 6.10. Moreover, the cost function relies on four inputs,

which are elicited either from a system administrator, end-users, or both.

Consider the input values in Table 6.3, where the cost function for each type of

adaptation is computed for a task based on the values of the four inputs. Among the

four types of adaptation, the first type (i.e., executing a similar task) is the least costly

one for the task in this example. This means in case the task needs to be adapted, then

a similar task (task variant) will be executed. The cost function values are stored in the

knowledge base as part of the adaptation plan.

6.3 Reactive adaptation components

In addition to the proactive adaptation components explained in Section 6.2, SPARK

also consists of reactive adaptation components. These components, which are

illustrated in Figure 6.2, include a resource type state monitor, resource type state

analyser, task execution manager, task execution allocator, adaptation executor,

feedback elicitor, and feedback provider. The following subsections explain each

reactive adaptation component used in SPARK.

6.3.1 Resource type state monitor

Resources are monitored by the resource type state monitor component, which

observes the use of resources by tasks. Information related to resource consumption is

used by SPARK to identify if there are sufficient resources for the tasks to execute or to

perform adaptation when resources are unavailable or have reached a low quantity.

The historical usage of resource types is illustrated under “Usage Logs” in Figure 6.1 as

a class related to logging resource type usage. The ResourceTypeUsageLog shows which

task used a resource type, as well as the total usage of the resource type. Moreover, it

uses different measurements to monitor depletable and reusable resource types due to

the differences between them.

104 6.3 Reactive adaptation components

SPARK monitors depletable resources based on their quantity of hand (QOH),

critical stock level (CSL), replenishment delay (RD) and critical replenishment delay

(CRD). When a resource reaches its critical stock level, an order is placed to acquire

new resources from a supplier. A critical stock level is calculated taking into

consideration a maximum consumption of a resource and its delivery lead time, as well

as replenishment and critical replenishment delays. The critical replenishment delay is

used to determine when the adaptation process should start so that there are still

enough resources to be used for executing high-priority tasks.

Additionally, SPARK monitors reusable resource types based on the average

execution duration (AED) of tasks that consume these resources. In order to reduce the

overhead of monitoring reusable resources, SPARK monitors a sample of the most

frequently executed high-priority tasks that use all resource types, rather than

monitoring every task in the system. The average execution duration of a task is

measured by the average between the sum of the execution duration of the task and

the number of times the task is executed.

Moreover, other ways have been considered for monitoring reusable resource types

based on (i) resource usage conditions (e.g., robot usage > 90%), (ii) percentage of

malfunctioning resources (e.g., 30% of robots are malfunctioning), or (iii) task

response time. For (i), resources should not remain idle while tasks are waiting to be

executed. For (ii), the remaining functioning resources could be enough to execute the

tasks. For (iii), acceptable response time differs among tasks; for example, the

acceptable response time of an automated order preparation task is different than that

of a task that involves searching for a product in a database. Hence, AED was used as

explained above.

6.3.2 Resource type state analyser

The resource type state analyser component identifies whether a resource type is

facing variability based on notifications from the resource type state monitor (refer to

Section 6.3.1). A depletable resource type faces variability when its quantity on hand

(QOH) is below its critical stock level (CSL) and its replenishment delay (RD) is higher

than its critical replenishment delay (CRD). A reusable resource type is facing

variability when its use by a task causes an increase in the average execution duration

(AED) of this task. Moreover, the resource type state analyser informs the task executor

manager component about resource types that are facing variability.

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 105

6.3.3 Task execution manager

Tasks are executed with the support of the task execution manager and task

execution allocator components. The resource type state analyser informs the task

executor manager about resource types that are facing variability. The task execution

manager decides whether to execute a task or to invoke an adaptation. The task

execution manager also informs the task execution allocator about changes to the states

of the resource types to allocate a number of execution permissions to a task.

Figure 6.3 – Activity diagram of the decision-logic for task execution

U
se
r

So
ft
w
ar
e
Sy
st
em

T
as
k

xe
cu
ti
o
n
 M
an
ag
er

A
d
ap
ta
ti
o
n

xe
cu
to
r

Re est
 ask

Exec tion

P
ri
v
il
eg
ed
 U
se
r

Re est
 ask

Exec tion

 askId

 lse

 Tasks use resource
types in a critical state

Exec te
 ask

 Task only uses Reusable
Resource Types facing variability

Exec te
 ask

 lse

Invoke
 daptation

 Priority Low or
Priority Medium

Perform
 daptation

 askId

T
as
k

xe
cu
ti
o
n
 A
ll
o
ca
to
r

A
d
ap
ta
ti
o
n

xe
cu
to
r

 Task use Depletable Resource Types facing variability
(regardless of whether it uses Reusable Resource Types)

 vai ab e Exec tions

 heck for vai ab e
Exec tions

Exec te
 ask

Red ce
 ocated

Exec tions
for ask

 Available xecutions 0

 askId

Perform
 daptation

Invoke
 daptation

 Available xecutions 0

The Invoke Adaptation action and the Adaptation xecutor swimlane
(coloured in grey) are repeated merely to avoid overlapping lines.

 M1 or M2 Applies

 heck ask Priorit
and Permission Option

 M3 Applies

Priorit

Re est Permission

 Priority High
Request Permission false

 Priority High

 ecide on
Permission

 et
Permission

 Priority High
Request Permission true

Exec te
 ask

Report
 ecision

Prompt for
 ecision

 Permit false

 Permit true

106 6.3 Reactive adaptation components

Additionally, Figure 6.3 shows the activity diagram for the decision-making process

of the task execution manager. As shown in the diagram, in case a task needs reusable

resource types which are facing variability, the decision of whether to execute the task

or perform an adaptation type depends on the task’s priority. If the task has a low or a

medium priority and the resource type is facing variability, then adaptation is

performed. Otherwise, the task is executed directly.

Moreover, in case a task uses depletable resources which are facing variability, the

decision of whether to execute the task or to perform an adaptation depends on the

task’s consumption of the depletable resources (regardless of whether the task also

uses reusable resource types). There are two types of resource consumption fixed and

variable. For example, the task “Decorate ox” uses one decorative bow and is an

example of a task with fixed resource consumption. On the other hand, the number of

boxes (resources) consumed by the task “Pack Items in a ox” depends on the

dimensions of the items being packed and is an example of a task with variable

resource consumption.

In case a task has a fixed consumption of depletable resources, the task execution

manager executes the task as requested if the number of executions that were

allocated to it by the task execution allocator is greater than zero. Otherwise, the task

execution manager invokes an adaptation by calling the Adaptation Executor. In case a

task has a variable resource consumption, the task execution manager executes the

task if it has a high priority. If the task has a low or medium priority, the task execution

manager checks the setup data to see if the task’s execution requires the permission of

a user. If it does not require permission, then adaptation is performed. Otherwise,

permission is requested, and the task is executed if permission is given otherwise

adaptation is performed.

Moreover, adaptations are performed by the adaptation executor component, using

the appropriate types of adaptation as determined by the adaptation type selector and

specified in the adaptation plans during the proactive process.

6.3.4 Task execution allocator

The task execution allocator specifies the number of times in which tasks that use

depletable resource types can be executed, based on a task’s forecasted number of task

executions and the available resources. The allocation of task executions is based on

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 107

three methods: M1, M2, and M3. Methods M1 and M2 are applied to tasks that use, per

execution, fixed quantities of depletable resources. Method M3 is applied to tasks that

use, per execution, variable quantities of depletable resources, where these quantities

cannot be determined beforehand.

M1 allocates as many as possible of the number of forecasted task executions by

order of task priority until the resources cannot support further task executions. This

is done by determining for each task (from highest to lowest priority) the depletable

resources needed. M1 stops executing when no depletable resources are left to allocate

task executions. The steps of M1 are presented in Figure 6.4.

M2 allocates a percentage of the number of forecasted task executions by order of

task priority until the resource cannot support further allocations. This is done by

assigning to each task (from highest to lowest priority) a counter C (between 1 and n)

and a percentage of forecasted executions to be allocated (PFEA). Additionally, a

number of allocated task executions (NATE) is computed for the high-priority tasks

first and, if possible, the remaining non-high-priority tasks. The steps of M2 and the

equations for calculating PFEA and NATE are presented in Figure 6.5.

M3 only executes high-priority tasks on a first-come-first-serve basis. Hence, with

M1 and M2, in case of available resources, tasks with medium or low priorities may be

allocated resources and executed; while with M3, only high-priority tasks are executed

given that resources required by a task cannot be determined beforehand. In M3, tasks

that do not have a high priority could be executed if permission is given by a user.

Method M1:

1. Let {T} be the set of all tasks

2. Order {T} by task priority (highest first)

3. Loop around the tasks in {T} from highest to lowest priority

4. Determine the depletable resources used by each task

5. Allocate to each task as many of its forecasted number of executions (NATE)
as the available resources it requires can support

6. Reduce the available resource quantities

7. If there are no resources left to allocate additional task executions, then
break the loop else continue

Figure 6.4 – Method M1 steps

108 6.3 Reactive adaptation components

The decision to apply method M1 or method M2 for tasks that use fixed depletable

resources is done by system administrators for the entire system, based on their

domain knowledge of the system. M2 is more adequate for situations in which it is

preferable to spread the execution of tasks with high priorities. For example, in the

case in which high-priority tasks are financially critical and it is important to ensure

that a percentage of all these tasks are executed such as spreading the purchase of

shares in top companies. On the other hand, M1 is more useful for situations in which

tasks should be allocated based purely on their priority, even if fewer tasks are

executed. For example, when tasks involve medical operations that are more life-

threatening than others.

Method M2:

1. Let {T} be the set of all tasks

2. Order {T} by task priority (highest first)

3. Loop around the tasks in {T} from highest to lowest priority

4. Assign to each task a number C that represents a counter from 1 to n, where
n1 = 1, n2 2, …, nk = k.

5. Loop around the tasks in {T} from highest to lowest priority

6. Assign to each task T a number that represents the percentage of forecasted
executions to be allocated (PFEA), which is calculated as follows where |T| is
the total number of tasks:

𝑃𝐹𝐸𝐴𝑇 = 1 −
𝐶𝑇

|𝑇|
, 𝑤ℎ𝑒𝑟𝑒

𝐶𝑇

|𝑇|
∈ (0,1]

7. Let {ST} ⊂ {T}, where Priority(T) = High

8. Loop around the tasks in {ST} highest to lowest priority

9. Allocate to each task T a number of executions (NATE), which is calculated as
follows (decimal values are rounded), where FTE is the forecasted task
executions:

𝑁𝐴𝑇𝐸𝑇 = ⌈𝑃𝐹𝐸𝐴𝑇 × 𝐹𝑇𝐸𝑇⌉

10. Repeat the loop at Line 8 from the beginning while there are sufficient
resources left to allocate task executions

11. If there are resources left to allocate tasks executions, then Let {ST} ⊂ {T},
where Priority(T) ≠ High

12. Repeat Lines 8 to 10 (allocate executions to the medium and low priority
tasks based on the remaining resources)

Figure 6.5 – Method M2 steps

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 109

6.3.5 Task execution allocator: example

This section shows an example of how the task execution allocator works. This

example illustrates how the computations corresponding to methods M1 and M2 are

performed to obtain the number of executions that shall be allocated to a task. Based

on the activity diagram shown in Figure 6.3, when a depletable resource type is facing

variability, the task execution manager component checks which method (i.e., M1, M2,

or M3) is used by the task execution allocator component. If M1 or M2 is selected, then

a set of steps, shown in Figure 6.4 and Figure 6.5 for M1 and M2 respectively, are

applied to calculate the number of allocated task executions (NATE).

To show the difference between methods M1 and M2, consider the data shown in

Table 6.4. In this example, tasks T1 to T5 use a depletable resource type with an

available quantity of 60 units. For simplicity, assume that each task uses one unit of the

depletable resource type per execution. Each task has a forecasted number of

executions (FTE). Tasks are sorted in ascending order based on their adjusted

priorities (PA). M1 specifies NATE based on FTE and the available units of a depletable

resource type. M2 specifies a counter and computes PFEA for each task. Multiple

iterations are applied for allocating the number of task executions based on FTE and

the available depletable resource type units. NATE is then computed by summing up

for each task the values in each iteration. As shown in Table 6.4, for M1, tasks T4 and

T5 were not executed, while task T4 was allocated some executions for M2.

Table 6.4 – Example data showing how M1 and M2 calculate NATE

 M1 M2

Task Priority FTE NATE Counter PFEA
Iterations

NATE
#1 #2

T1 1.625 30 30 1 80% 24 6 30

T2 1.75 20 20 2 60% 12 8 20

T3 1.875 10 10 3 40% 4 4 8

T4 2.33 7 0 4 20% 1 1 2

T5 2.66 5 0 5 0% 0 0 0

*Assuming, for this example, that all tasks use, per execution, 1 unit of depletable resource type of

which there are 60 units available

110 6.3 Reactive adaptation components

6.3.6 Feedback elicitor and provider

SPARK’s feedback elicitor and feedback provider components elicit and provide

feedback, respectively, from and to users about the performed adaptations. The

feedback elicited from end-users indicates their opinions about the actions taken by

the framework and it is used to improve the adaptation process in terms of choice of

the types of adaptation for similar future situations. This improvement is done by the

adaptation type selector component, which uses the feedback to recompute the cost of

applying a type of adaptation.

Figure 6.6 – Plan creation

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 111

Moreover, feedback provided to end-users informs them about the reasons for

adaptation. This keeps the users in the loop of what is happening to avoid situations

where the software system performs changes that the end users do not understand

(e.g., the reduction in video quality should not be perceived by the end users as a

problem with the system when it is done to address resource variability).

6.4 Implementation of adaptation components

The adaptation components of SPARK were implemented as a prototype using C#.

This section provides an overview of SPARK’s implementation and presents example

class diagrams and source code.

Figure 6.7 – Task priority calculation overview

112 6.4 Implementation of adaptation components

The class PlanCreator shown in Figure 6.6 is responsible for preparing adaptation

plans that are followed to perform adaptation during resource variability. When

Listing 6.1 – Priority calculation source code (excerpt)

1. CalculateTaskPrioritiesUsingPriorityAssignments(tasks, timeFrame)

2. {

3. POL O(n) var priorityAssignments PriorityAssignmentLoader.

4. . . GetTaskPriorityAssignments(timeFrame);

5. POL O(n) return priorityAssignments.Select(p =>

6. . . new TaskTimeFramePriority {

7. . . Task = p.Task,

8. . . TimeFrame = timeFrame,

9. . . Priority = p.Priority }).ToList();

10. }

11.

12. CalculateTaskPrioritiesUsingPredictedUsage(tasks, timeFrame)

13. {

14. POL O(n) predictedTaskUsagesCount PredictedTaskUsageCountLoader.

15. . . LoadPredictedTaskUsageCount(tasks, timeFrame);

16. CON O(1) var counter 0, lastUsage -1;

17. POL O(n) foreach (var usageCount in predictedTaskUsagesCount)

18. . . {

19. . . if (usageCount.Usage != lastUsage)

20. counter++;

21. . . usageCount.SequenceNumber counter;

22. . . }

23. CON O(1) var minSequenceNumber 1, numberOfPriorities 3;

24. CON O(1) var maxSequenceNumber counter;

25. CON O(1) var threshold (minSequenceNumber +

26. maxSequenceNumber) / numberOfPriorities;

27. CON O(1) List<TaskTimeFramePriority> calculatedTaskPriorities new();

28. POL O(n) foreach (var _ in predictedTaskUsagesCount)

29. . . {

30. CON O(1) TaskTimeFramePriority taskPriority = new() {

31. . . Task = _.Task,

32. . . TimeFrame = timeFrame,

33. . . PredictedUsage = _.Usage };

34.

35. CON O(1) if (_.SequenceNumber < threshold)

36. . . taskPriority.Priority Priority.High;

37. CON O(1) else if (_.SequenceNumber > threshold * 2)

38. . . taskPriority.Priority Priority.Low;

39. CON O(1) else

40. . . taskPriority.Priority Priority.Medium;

41.

42. CON O(1) calculatedTaskPriorities.Add(taskPriority);

43. }

44. CON O(1) return calculatedTaskPriorities;

45. }

Chapter 6 – SPARK: A Framework for Resource-Driven Adaptation 113

SPARK creates an adaptation plan it stores it in the knowledge base (refer to Section

6.1), which is implemented as a SQL Server database.

Figure 6.6 shows five interfaces that represent the dependencies of PlanCreator.

The interfaces ITaskLoader, IResourceTypeLoader, and ITimeFrameLoader are

implemented by classes that retrieve tasks, resource types, and time frames

respectively to be used as input data for the preparation of an adaptation plan. The

tasks are assigned priorities for each time frame during the planning and the resource

types are associated with the tasks to plan the choices of adaptation types (e.g.,

resource substitution).

As shown in Figure 6.7, the interface ITaskPriorityCalculator is implemented by the

class TaskPriorityCalculator, which is responsible for computing the priorities of tasks

(refer to Section 6.2.3.2). Figure 6.7 also shows four interfaces that are the dependencies

of the TaskPriorityCalculator. The interfaces ITaskPriorityFromAssignmentCalculator

and ITaskPriorityFromUsageCalculator are implemented by classes that are

responsible for computing priorities based on domain priorities and task usage

respectively. The ITaskWeightedPriorityCalculator interface is implemented by a class

that computes a weighted priority by combining the abovementioned domain and task

usage priorities (refer to Section 6.2.3.2). The ITaskEqualPriorityAdjuster is

implemented by a class that adjusts equal priorities to provide each task with a unique

priority (refer to Section 6.2.3.4).

An excerpt of the priority calculation algorithm is shown in Listing 6.1. The first

method calculates the priorities of the tasks using their assigned domain priorities

(refer to Section 6.2.3.2). The second method calculates the priorities of the tasks

based on the forecasted task executions. Thresholding is applied to the priorities in the

second method to set the priority values within the required range.

Listing 6.1 also shows the running times using the “ ig O” notation (Cormen et al.,

2009), where POL and CON denote polynomial and constant running times

respectively. ased on the “ ig O” notation, the running times are O(2N) and O(3N) for

the first and second methods respectively. This means that the overall priority

calculation has a polynomial running time equal to O(N).

The rest of SPARK’s algorithms also have polynomial running times. This is not just

shown only shown by the “ ig O” notation but also by a performance and scalability

evaluation that is reported later in this thesis.

114 6.5 Chapter summary

6.5 Chapter summary

This chapter presented a framework called SPARK, which this thesis proposes for

supporting resource-driven adaptation to address resource variability. SPARK is based

on MAPE-K and consists of proactive and reactive adaptation components. SPARK uses

task models, represented using SERIES, as input for making adaptation decisions.

This chapter started by introducing the proactive adaptation components that

include the task execution monitor, task execution forecaster, task priority calculator,

task priority adjuster, and adaptation type selector. Afterwards, it introduced the

reactive adaptation components that include the resource type state monitor, resource

type state analyser, task execution manager, task execution allocator, adaptation

executor, feedback elicitor, and feedback provider.

Then, this chapter demonstrates SPARK’s adaptation components through an

example from an automated warehouse system. The example showed how these

components perform their calculations. Finally, this chapter explained the prototype

implementation of SPARK’s adaptation components by showing example class

diagrams and an excerpt of source code related to the calculation of task priorities.

 115

7

Task Modelling Notation Evaluation

(SERIES)

This chapter presents the evaluation of SERIES, which is the task modelling notation

proposed in this thesis for supporting resource-driven adaptation. Figure 7.1 presents

an overview of this evaluation. SERIES was assessed based on existing recommendations

for designing graphical notations. Additionally, I evaluated SERIES through a study with

software practitioners.

7.1 Introduction

As indicated by (Moody, 2009), graphical notations are composed of syntax (form)

and semantics (content). Hence, a meta-model represents semantic constructs that are

visualised by graphical symbols. Section 5.2 presents the meta-model and graphical

symbols of S RI S. ased on Moody’s explanation, an example of a semantic construct

in S RI S is a “Task Variant”. The graphical symbol that represents this semantic

construct is a box with its corresponding icon.

SERIES represents task models graphically like most existing task modelling

notations such as CTT, HAMSTERS, UsiXML, and Amboss (refer to Table 3.2). Graphical

representations favour legibility and understanding of models (Chattratichart and

Kuljis, 2002). Task modelling notations propose hierarchical task decomposition,

which is graphically visualised in a way that is easier to interpret by software

practitioners. The concept of hierarchical representation is rooted in psychology

(Sebillotte, 1988) and presents task models in the way that people structure their

activities and enables the creation of several levels of abstraction and refinement.

116 7.2 Assessment of SERIES using existing recommendations

Hence, in SERIES, software practitioners do not have to read dense text to understand

how abstract tasks are decomposed into subtasks and how these subtasks are refined

into task variants.

I assessed SERIES based on existing recommendations for designing the syntax of

graphical notations, which are provided by the Cognitive-Dimensions Framework

(Green and Petre, 1996) and the Physics of Notations (Moody, 2009). Additionally, I

evaluated SERIES through a study with software practitioners. The participants of this

study explained and created SERIES task models and then provided feedback on the

usability of SERIES and the clarity of its semantic constructs.

7.2 Assessment of SERIES using existing recommendations

As mentioned in Section 5.5, the visual representation of SERIES is inspired by CTT

and UML class diagrams. However, since SERIES introduces new constructs and visual

syntax it was assessed based on the recommendations of two paradigms, namely the

Cognitive Dimensions Framework and the Physics of Notations. These two paradigms

are widely used for assessing visual notations (Genon, Heymans and Amyot, 2011),

and are used to assess SERIES because they provide principles that serve as a starting

point for evaluating visual notations.

Figure 7.1 – Overview of the evaluation of SERIES

The evaluation presented in this chapter covers the proposed task modelling notation
for supporting resource-driven adaptation (SERIES) and has the following two parts.

An assessment of SERIES using existing recommendations provided by the
Cognitive Dimensions Framework and Physics of Notations

Evaluation of SERIES

A study with software practitioners to evaluate
the usability of SERIES and the clarity of its semantic constructs

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 117

7.2.1 Cognitive Dimensions Framework

The Cognitive Dimensions Framework proposes dimensions that serve as

discussion tools for assessing notations (Green and Petre, 1996). What follows is an

assessment of SERIES based on these dimensions (their names are marked in bold).

SERIES represents tasks consistently using boxes with multiple parts, which are

based on the syntax of UML classes. These box parts represent properties that support

resource-driven adaptation. The representation of relationships is also consistent. For

example, the relationship between a task and its variants is represented by a line with

a white triangle on top. This is inspired by the generalisation relationship in UML.

Furthermore, the used terms have a consistent meaning throughout a task model. For

example, “priorities” and “resource types” have the same meaning when used with

different tasks and task variants.

SERIES is abstraction-tolerant since it supports the representation of task models

using predefined visual elements of tasks, properties, and relationships. It is not

possible to add new visual elements. However, new abstractions are defined in the

form of parent tasks that comprise default property values, which do not need to be

specified for the child tasks.

A premature commitment is not needed since a SERIES task model may comprise

part of the tasks and property values at design time. Task variants and properties, like

roles and priorities, are set at runtime when their corresponding data is available.

Furthermore, a SERIES task model is arranged hierarchically to avoid “visual spaghetti”

that could occur with some box-and-line notations. Even when new tasks are added at

a later stage, the model is automatically rearranged without needing to look ahead to

avoid a messy layout.

Concerning diffuseness, each meaning of a task or property in SERIES is denoted by

one box part that has an icon and a description that makes it easy to remember. The

ability to add default property values at the parent task level reduces the number of

properties in the boxes. This improves the overall visibility of the task model and makes

the visual notation terse (compact) enough to represent multiple tasks on the screen.

Furthermore, it is possible to suppress a group of task properties by hiding its box parts

as is done with UML class diagrams. Hence, the notation supports multiple levels of

terseness that are changeable according to how much detail a person wants to see.

118 7.2 Assessment of SERIES using existing recommendations

SERIES does not have complex conditionals that create hard mental operations.

Parameter conditions are defined as simple textual statements such as “PackMode

Random”. Hence, these conditions do not use complex line connections that cause

software practitioners to resort to tracking what is happening with their fingers.

There are no hidden dependencies between the elements of a SERIES task model.

The dependencies between tasks are shown as relationships. For example, task

variants are linked to their base task using relationships that resemble UML

generalisation to indicate that the variants are special cases of a general case.

Furthermore, properties like parameter conditions and priorities are shown on the

model without hidden formulas (e.g., like the ones in spreadsheets).

Concerning role-expressiveness, a task’s name indicates its purpose. It is also

possible to add a description that further explains a task’s purpose. This description is

a secondary notation and is viewed by clicking on an information icon, which appears

on tasks that have a description.

SERIES has a low viscosity since little effort is needed to change tasks and properties

using the supporting tool’s panels that include task model explorer, visual canvas, and

properties box. The users can select a task by simply clicking on its representation in the

task model explorer or on the visual canvas. Then, the corresponding properties can be

modified by typing or selecting new values in the properties box.

7.2.2 Physics of Notations

The Physics of Notations is a theory that offers principles for visual notation design

(Moody, 2009). What follows is an assessment of SERIES based on these principles

(their names are marked in bold).

SERIES provides semiotic clarity since it has a one-to-one correspondence between

each symbol and the concept that it represents. Hence, there is no redundancy because

no concept is represented by more than one symbol and there is no overload because no

symbol represents more than one concept. In SERIES, a different icon is used for each

property (e.g., priorities, roles, parameters, and parameter conditions). Furthermore,

icons distinguish the boxes that represent abstract tasks, application tasks, and

application task variants. The use of icons to differentiate task types is common practice

in other task modelling notations like CTT and HAMSTERS.

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 119

SERIES provides semantic transparency because its task model nodes are

represented hierarchically and connected by lines that look different, thereby allowing

users to infer the relationships between tasks, subtasks, and task variants.

The principle of complexity management is maintained in SERIES by representing

tasks hierarchically with the abstraction (abstract tasks) shown at the top of the

hierarchy and decomposition (subtasks and task variants) shown at the lower levels. A

task model is browsable hierarchically in the supporting tool either on the visual

canvas or on the task model explorer where nodes are collapsible. The hierarchical

display also helps with perceptual discriminability since each level of the hierarchy

displays task model elements that belong to the same category. The categories include

abstract tasks, subtasks, and task variants.

SERIES applies the principle of dual coding using text to complement graphics. All

the properties in SERIES have an icon and a textual description. For example, the

property that represents parameters has the word “Parameters” as a textual

description alongside an icon that represents a parameter (an arrow pointing inside a

box to denote an input). Additionally, a description that acts as a secondary notation

can be used to provide a complementary textual description to tasks and task variants

that are represented by a graphical shape with an icon.

SERIES abides by the principle of graphic economy since its number of graphical

symbols is cognitively manageable. SERIES provides six main symbols that represent

abstract tasks, application tasks, substitutable and non-substitutable application task

variants, task-to-sub-task relationships, and task-to-variant relationships. Although

other symbols represent the properties of tasks and task variants, these symbols just

appear on the diagram once the user modifies values in the properties box. Hence, the

user is not required to choose and add these symbols from a toolbox as is done with

the tasks, task variants, and relationships.

7.2.3 Further evaluation

Sections 7.2.1 and 7.2.2 explained how SERIES considers the recommendations of

the Cognitive Dimensions Framework and the Physics of Notations. Nonetheless,

further evaluation is required to determine how well software practitioners can use

SERIES for task modelling. Such evaluation also determines how software practitioners

120 7.3 A study to evaluate SERIES with software practitioners

perceive SERIES concerning its usability and the clarity of its semantic constructs.

Therefore, a study was conducted for this purpose as explained in the next section.

7.3 A study to evaluate SERIES with software practitioners

As mentioned in Section 4.2, software practitioners are responsible for creating

task models using SERIES to support resource-driven adaptation in software systems.

Hence, I conducted a study with software practitioners to evaluate SERIES. First, this

section provides an overview of the participants’ background information. Then, it

explains the design of the study. Afterwards, this section presents and discusses the

results and the threats to validity.

7.3.1 Participants

This study had 20 participants. The number of participants is comparable to other

studies that evaluate visual notations (Batra, Hoffler and Bostrom, 1990; Shoval and

Shiran, 1997). Furthermore, the participants represent the target population, namely

software practitioners. The participants provided some background information about

their experience in the software industry and with visual modelling notations. What

follows is an overview of this information.

All the participants have experience with software engineering. The majority of them,

16 out of 20, are currently working as software practitioners at software companies in

the following countries: Lebanon, the United States, Canada, Denmark, Egypt, Germany,

and the Netherlands (Figure 7.3). The remaining participants, 4 out of 20, are currently

working as researchers at The Open University in the United Kingdom, but three of them

had previous experience in the software industry.

As shown in Figure 7.2, thirteen of the participants have between 1 and 5 years of

experience in the software industry. Three participants have 6 to 10 years of

experience. Another three participants have less than one year of experience. Only one

participant never had any experience in the software industry. However, this

participant has some personal experience in developing non-commercial software

applications. The participants’ collective experience includes the development of

software systems for multiple domains including business, education, electronics,

games, government, and multimedia. These software systems cover several software

paradigms including web, mobile, desktop, and virtual reality.

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 121

All the participants have previous experience in using visual modelling notations.

As shown in Figure 7.4, their collective experience includes using UML diagrams, flow

charts, ER models, relational models, logic circuits, and architecture diagrams. The

participants have also used a variety of modelling tools including StarUML, Draw.io,

Cadence, Dia, Jira, Lucid Chart, PgAdmin, and Umlet. As shown in Figure 7.5, thirteen of

the participants (63%) have indicated that they have used visual modelling notations

both at the work and in a course. The remaining seven participants (37%) have only

Figure 7.2 – Experience of the
participants in the software industry

Figure 7.3 – Countries where the
participants are working

Figure 7.4 – Experience of the participants with
visual modelling notations (each participant

could list multiple notations)

Figure 7.5 – Where the
participants used visual

modelling notations

Never to to

N

m

b
e
r

o
f
P
a
rt

ic
ip

a
n
ts

 ears of Experience in the
Soft are Ind str

e
b
a
n
o
n

U

U
 S

a
n
a
d
a

e
n
m

a
rk

E

p
t

e
rm

a
n

N
e
th

e
r

a
n
d
s

N

m

b
e
r

o
f
P
a
rt

ic
ip

a
n
ts

 o ntries here the
Participants are orkin

U

ia
 r

a
m

s

 o

h
a
rt

s

E
R

o
d
e
 s

R
e
 a

ti
o
n
a

o
d
e
 s

o
 i

c

ir

c
it

s

rc

h
it

e
ct

re

ia

 r
a
m

s

N

m

b
e
r

o
f

P
a
rt

ic
ip

a
n
ts

 is a ode in Notations

 o rse
and

 ork

 o rse

122 7.3 A study to evaluate SERIES with software practitioners

used visual modelling notations in a course. The chart shown in Figure 7.4 might not

be comprehensive because I asked the participants to recall and list the visual

modelling notations that they have used. However, the examples they listed are

indicative of their experience.

The participants who are working as software practitioners (16 out of 20) were

recruited from the Computer Science graduates (alumni) of Notre Dame University –

Louaize (NDU), Lebanon, and the rest of the participants (4 out of 20) were recruited

from the Computing researchers at The Open University (OU), United Kingdom.

7.3.2 Design of the study

Each participant took on average 55 minutes to complete this study, which involved

the activities that are shown in Figure 7.6. Before beginning the study, I asked the

participants to watch a brief seven-minute tutorial video on SERIES and its supporting

tool. A tutorial video is used so that participants would receive the same explanation of

SERIES, understand the semantic constructs of SERIES, and understand how the

semantic constructs can be used via the supporting tool of SERIES. Then, I asked them

to explain and create task models using SERIES via its supporting tool because these

activities provide the means to check the usability of SERIES from the perspective of

the participants. Afterwards, I asked the participants to complete a questionnaire to

provide some background information (refer to Section 7.3.1) and offer their feedback

on the usability of SERIES and the clarity of its semantic constructs.

Figure 7.6 – Overview of the study’s activities

Watch a brief tutorial video about SERIES and its supporting tool (7 minutes)

Explain task models represented using SERIES Create task models using SERIES

Use SERIES via its Tool

Provide some background
information

Answer Questionnaire

Provide feedback on clarity of
semantic constructs

Provide feedback on
usability

Introduction

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 123

Considering that the participants are from and working in different countries, it is

important to note that the study was conducted in nglish. Hence, the participants’

comments did not require translation into English from other languages. All the

participants are proficient in English. The participants who were recruited from the

Computer Science graduates (alumni) of NDU have all received their education in

English (like many universities in Lebanon NDU offers all its courses in English). The

participants who were recruited from the OU are living in the United Kingdom and are

therefore either native speakers or have a working proficiency in English.

7.3.2.1 Hypothesis

The hypothesis for this study is described as follows:

H1: The use of SERIES will result in good user (software practitioner) performance

in the interpretation and creation of task models for resource-driven adaptation.

This hypothesis was assessed based on the correctness of the answers given by the

participants when explaining and creating SERIES task models and the feedback that

they gave to indicate their perception of the clarity of the semantic constructs. It was also

assessed based on the feedback that the participants gave on the usability of SERIES to

see whether they found usability issues that hinder their ability to use this notation.

7.3.2.2 Environment and data collection

I conduct the study online due to the Covid-19 pandemic. However, this did not

obstruct any of the planned activities. I gave the participants remote control of my

computer via Zoom (videoconferencing software program). This way they were able to

use the supporting tool of SERIES (refer to Section 5.4). I chose Zoom because it

provided the best performance for remote access and videoconferencing with minimal

to no lagging over an internet connection. I tested Zoom and compared it to two

alternatives, namely Microsoft Teams and TeamViewer.

The participants’ verbal input (feedback) and their work on the supporting tool of

SERIES were captured using audio and screen recordings respectively. The task

models that the participants created were also saved as files from the tool. The

participants provided written input using a questionnaire that I presented to them as a

Word document.

124 7.3 A study to evaluate SERIES with software practitioners

7.3.2.3 Explaining and creating task models

The explanation and creation of models are recommended activities for studies that

evaluate visual notations (Bork and Roelens, 2021). What follows is a description and

examples of the SERIES task models that I asked the participants of this study to

explain and create.

Multiple domain choices: This study aims to assess SERIES rather than the

participants’ knowledge of a domain. Hence, I asked the participants to select the domain

of the task models that they were required to explain and create. The study included

three domain options, namely hospital, manufacturing, and surveillance. Although there

were three domain options, there was no discrepancy among them in the difficulty of the

task models that the participants were asked to explain and create.

Figure 7.7 – Example: task model that the participants explained
 (the participants who chose the hospital domain explained this task model)

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 125

Hence, the task models from the three domains had the same number and types of

tasks and task variants. Additionally, each task and task variant had the same number

and types of properties as its counterparts from the other domains. This way, each

participant could choose the domain that they prefer while maintaining the same level of

difficulty for all the participants.

Multiple levels of difficulty: The task models that the participants were expected to

explain and create were presented to them with three levels of increasing difficulty,

where level 1 is basic and level 3 is advanced. The complexity of the task model

(1) Add an abstract task named "Book Medical Operation". This task has two parameters: an

"Operation Type" that is non-changeable and a "Respiratory Mode" that is changeable. It also

requires a "General Practitioner (GP)" resource type that is "flexible" with a quantity of 1.

For this task, feedback from the user shall be requested and the feedback location shall be a

panel.

(2) Add three application tasks as subtasks of "Book Medical Operation". These three

subtasks are named "Reserve Operation Material", "Reserve Respiratory Device", and

"Reserve Operation Room" respectively.

• "Reserve Operation Material" requires a "Material" resource type that is "flexible" with a

quantity of 10.

• "Reserve Respiratory Device" has the following description: "Reserve a ventilator or oxygen

tank for the patient". This task requires a "Respiratory Device" resource type that is

"flexible" with a quantity of 1.

• "Reserve Operation Room" requires a "Medical Room" resource type that is “strict" with a

quantity of 1. This task has a high priority at any time frame.

(3) Add two application task variants for "Reserve Operation Material".

• The first variant is named Reserve Material for Urgent Operation and has a high

priority and a parameter condition that specifies "Operation Type=Urgent".

• The second variant is named "Reserve Material for Elective Operation" and has a low

priority and a parameter condition that specifies "Operation Type=Elective".

Add two application task variants for "Reserve Respiratory Device".

• The first task variant is named Reserve Ventilator" and has a high priority, a

parameter condition that specifies "Respiratory Mode=Ventilator", and a low resource

intensiveness for the "Respiratory Device" resource type.

• The second task variant is named Reserve Oxygen Tank and has a low priority, a

parameter condition that specifies "Respiratory Mode=Oxygen Tank", and a high

resource intensiveness for the "Respiratory Device" resource type.

• oth task variants have a Role that is equal to Any .

Figure 7.8 – Example: requirements for creating a task model
(the participants who chose the hospital domain used these requirements)

126 7.3 A study to evaluate SERIES with software practitioners

hierarchy and the number of elements increased at each level. At level 1, the task model

contains an abstract task with four properties including resource type, parameter,

feedback-from-user, and feedback-location. At level 2, the abstract task is divided into

three application subtasks that have priorities and resource types as properties. At level

3, task variants are added with properties that include priority, parameter conditions,

resource intensiveness, and roles. These levels show whether the participants would

face difficulties in performing task modelling with SERIES when the complexity of the

task model hierarchy increases.

Examples of task models and requirements from the study: Figure 7.7 shows an

example task model that I asked the participants to explain. I gave this task model to the

participants who chose the hospital domain. The text shown in Figure 7.8 is an example

of the requirements given to the participants to create a task model. I gave these

requirements to the participants who chose the hospital domain. Figure 7.9 shows the

task model that the participants were expected to produce from the requirements

shown in Figure 7.8. The task models and requirements corresponding to the other two

domains (manufacturing and surveillance) are shown in Appendix A.

Process of explanation and creation of task models: The task models that I asked

the participants to explain were presented to them using the SERIES notation within its

Figure 7.9 – Example: task model that the participants created
 (the participants who chose the hospital domain were expected to create this task

model from the corresponding requirements)

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 127

supporting tool. I asked them to go through the task model elements and explain their

meanings. For creating task models, the participants were presented with written

requirements that were displayed in a panel within the supporting tool of SERIES. I

asked them to read these requirements and create the corresponding task models using

the tool. I asked the participants to think aloud when they are creating the task models.

The think-aloud protocol is commonly practised during studies where participants are

required to report what they are thinking while performing an activity (Oh and

Wildemuth, 2009). In this study, the activity is task modelling using SERIES and its

supporting tool. For example, this could show whether the participants are confused

about how they should associate a requirement with its corresponding semantic

construct(s) or whether they find it difficult to perform an action using the tool.

7.3.2.4 Feedback questionnaire

After the participants explained and created SERIES task models, they were asked to

provide their feedback by completing the questionnaire shown in Appendix A.

 The participants answered questions to indicate their perception of how well the

semantic constructs of SERIES convey a clear meaning that enables a user (software

practitioner) to explain and create task models using this notation. I also asked them to

recommend changes if necessary. These questions complement the explanation and

creation of task models (refer to Section 7.3.2.3) because even if the participants can

explain and create SERIES task models, they could still have some feedback on

possibilities for further improvement.

The participants also answered questions that convey their perception of the

usability of SERIES. I asked them to answer a set of five questions about the overall ease

of use of SERIES and give any additional comments that they may have. The five

questions on ease of use have been proposed in the literature and used in other studies

that evaluate modelling notations (Davis, 1985; Batra, Hoffler and Bostrom, 1990). The

answers given by the participants to these questions are used to compute a rating

between one and five, where one is worst and five is best.

Then, the participants selected three Product Reaction Cards (PRCs) that they

thought were most suitable for describing SERIES. The PRCs were developed by

Microsoft to understand the aspect of desirability corresponding to a user’s experience

with a product (Benedek and Miner, 2002). I asked the participants to choose from a set

of 16 PRCs (8 positive PRCs and 8 negative ones). The selection was not restricted to

128 7.3 A study to evaluate SERIES with software practitioners

either positive or negative. Hence, the participants were able to select any three PRCs, all

positive, all negative, or a mixture of both. Additionally, the PRCs were not labelled as

“positive” and “negative” to allow the participants to provide their interpretations.

Hence, after choosing the three PRCs, I asked the participants to explain their choice and

suggest improvements if necessary. Finally, I asked the participants if they had any

remaining comments before concluding the study.

7.3.3 Processing and presenting the data

The data from the study should be processed and presented before being analysed.

The quantitative data from ratings given on a scale are directly presented using box plots

alongside descriptive statistics (mean, median, and standard deviation). Similarly, the

selected PRCs are counted and presented using a bar chart. However, the outcomes of

the participants’ explanation and creation of task models are scored first. The scores

represent how well the participants were able to explain and create task models using

S RI S. Furthermore, the qualitative data from the participants’ comments are

categorised so they can be analysed. Hence, this section explains how the outcomes of

the participants’ explanation and creation of task models are scored. It also explains how

qualitative comments are categorised and presented anonymously.

7.3.3.1 Scoring participants’ explanations and created task models

I scored the participants’ explanations of the task models to see if they correctly

interpreted the meanings of the semantic constructs. Similarly, I scored the task models

that the participants created to see if they used the semantic constructs to correctly

represent the given requirements.

An answer key with a three-level scoring scheme (incorrect, partially correct, and

correct) is used. A score is computed for each of the explained and created task models

at the three levels of difficulty (refer to Section 7.3.2.3). An answer is incorrect if it does

not have any correct part or if it is completely missing because a participant did not

know how to answer. If part of the answer is correct, then it is partially correct. On the

other hand, correct answers do not have any incorrect or missing parts. The scores that

are awarded to incorrect, partially correct, and correct answers are 0, 0.5, and 1

respectively. The grading scheme covers the semantic constructs of SERIES used in the

task models. This way, each task model is divided into parts that are scored separately to

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 129

identify if the participants faced difficulty in a specific part. The task model parts are

scored on the abovementioned three-level scoring scheme in the form of a rubric, where

the rows are the task model parts and the columns are scoring options (incorrect,

partially correct, and correct). A total score for a task model is computed over 100 from

the scores of all the parts, which are given equal weights.

An example from the grading scheme for explaining a task model at level 3 includes

being able to explain a relationship between a task and a task variant, two priority

properties, two parameter-condition properties, two resource-intensiveness properties,

and two role properties. In this case, when there are two properties, an answer is

considered partially correct if one of these properties is explained correctly.

Furthermore, for example, in the case of the priority properties, a correct answer covers

both the priority value and the corresponding time frame. On the other hand, for the

explanation of the relationship between a task and a task variant the answer is either

correct or incorrect (i.e., there is no partial credit).

An example from the grading scheme for creating a task model at level 1 includes

being able to add elements corresponding to the requirements that include an abstract

task, a resource type (with quantity and substitutability), two parameters (with data type

and parameter type), and two feedback properties (feedback-from-user and feedback-

location). In this case, the abstract task is either correct or incorrect (i.e., there is no

partial credit). On the other hand, the resource type property is considered correct if

both its quantity and substitutability are added correctly. If only one of them is correct

then, the resource type property is considered partially correct. The two parameters are

considered correct if both of them are added with their correct data types and parameter

types. Otherwise, if only one of the two parameters was added correctly then the answer

would be partially correct. The same applies to the feedback properties. For correcting

the task models created by the participants, the tasks, task variants, relationships, and

properties are compared one by one to a predefined task model that represents the

correct answer.

7.3.3.2 Quoting the participants and classifying their comments

All the participants of this study have consented to be quoted anonymously. Hence,

upon presenting the results the participants are quoted by using a reference number

(e.g., P1) as a pseudonym next to the corresponding comment. The comments are

italicised and placed between quotes.

130 7.3 A study to evaluate SERIES with software practitioners

Furthermore, the comments given by the participants represent qualitative data that

complement the quantitative data that is obtained from the ratings given on a scale and

the scores of the explanation and creation of task models. Categorisation is common in

studies that involve qualitative data (Khalid et al., 2015; Neale, 2016). Hence, I

categorised the comments given by the participants of this study to identify what they

perceive as strengths of SERIES and what they suggest for potential improvement. I also

classified the comments under broad themes that provide a general overview of what

the participants said about their perception of SERIES. These themes were deduced from

the abovementioned categories. I computed the percentage of comments in each theme.

7.3.4 Results of participants’ explanation and creation of task models

As explained in Section 7.3.2.3, the participants were able to choose a domain that

they prefer from three choices including hospital, surveillance, and manufacturing. All

three domains were selected by some participants. The hospital, surveillance, and

Figure 7.10 – Time taken by the participants to explain the task models
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier)

Figure 7.11 – Time taken by the participants to create the task models
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier)

Mean=1.88, Median=1.78, SD=0.89

Mean=1.98, Median=1.65, SD=0.90

Mean=1.73, Median=1.63, SD=0.53

Mean=1.86, Median=1.79, SD=0.62

0 1 2 3 4 5

Time
(In Minutes)

T
a

sk
 M

o
d

e
l

L
e

v
e

l

Mean=2.58, Median=2.50, SD=0.76

Mean=3.03, Median=2.93, SD=0.69

Mean=4.81, Median=4.86, SD=0.89

Mean=3.47, Median=3.47, SD=0.62

0 1 2

Time
(In Minutes)

3 4 5 6 7

T
a

sk
 M

o
d

e
l

L
e

v
e

l

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 131

manufacturing domains were selected by 50%, 30%, and 20% of the participants

respectively. Each participant explained and created task models from the domain that

they selected. The explanations and created task models were scored as explained in

Section 7.3.3.1. The results are as follows.

7.3.4.1 Results of the explanation of task models

As Figure 7.10 shows, the participants took on average 1.86 minutes to explain the

task models for each one of the three levels. The participants averaged close scores on

the explanation of all three task model levels. As Figure 7.12 shows, their scores (over

100) on the explanation were on average 86.25, 88.13, and 87, for levels 1, 2, and 3

respectively, and their average score across all three levels was 87.13. These results

show that the participants exhibited very good performance when explaining task

models that are represented using SERIES. The close scores on the three task model

levels indicate that the participant did not face difficulty when the complexity of the

task model hierarchy increased. The average score on level 1 was slightly lower than

Figure 7.12 – Scores on the participants’ exp anation of task mode s
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier)

Figure 7.13 – Scores on the participants’ creation of task mode s
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier)

50

Score
(Over 100)

80 100

Mean=86.25, Median=87.50, SD=13.64

Mean=88.13, Median=87.50, SD=11.51

Mean=87.00, Median=90.00, SD=14.53

Mean=87.13, Median=88.33, SD=9.84

907060

T
a

sk
 M

o
d

e
l

L
e

v
e

l

80

Score
(Over 100)

90 100

Mean=98.80, Median=100, SD=3.60

Mean=99.45, Median=100, SD=2.40

Mean=94.45, Median=95.00, SD=3.41

Mean=97.57, Median=98.33, SD=1.84T
a

sk
 M

o
d

e
l

L
e

v
e

l

84 9482 86 88 92 96 98

132 7.3 A study to evaluate SERIES with software practitioners

the scores on the other two levels, which are more complex. A reason for this could be

that the purpose of the abstract task from level 1 became clearer once sub-tasks were

shown at level 2. Several participants mentioned this point when they moved from the

first level to the second one.

Considering the overall explanation scores and that the mistakes were not focused

on a particular semantic construct, it is possible to say that there is no major ambiguity

in the meaning of a particular semantic construct in SERIES. Examples of the

participants’ explanation mistakes include explaining a task without discussing its

execution type, explaining a parameter property without discussing its parameter

kind, and explaining a priority property without discussing its corresponding

timeframe. Although there is room for improving the explanations to reach perfect

scores, it is important to mind that the participants were only given a brief tutorial

about SERIES and that they never had any previous experience with this notation.

7.3.4.2 Results of the creating of task models

As Figure 7.11 shows, the participants took on average 3.47 minutes to create the

task models that correspond to the given requirements for each one of the three levels.

The participants averaged close scores on the creation of task models for all three

levels. As Figure 7.13 shows, their scores (over 100) were on average 98.80, 99.45, and

94.45, for levels 1, 2, and 3 respectively, and the average score across all three levels

was 97.57. These results show that the participants exhibited excellent performance

when creating task models using SERIES via its supporting tool. The mean score on

level 3 was slightly lower than the scores of the other two levels. Nonetheless, it is still

very high (94.45). There were some outlier scores as shown in Figure 7.13. However,

these scores were mostly ≥88. The mistakes were overall minor. For example, some

participants did not specify the “non-substitutable” property on a pair of the task

variants or specified the “role” property on one of the task variants but forgot to

specify it on the other variant. Another example of a mistake is giving a parameter the

wrong name (typo). These mistakes are mostly due to lapses that do not indicate the

existence of any major difficulties in using SERIES to create task models.

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 133

7.3.4.3 Result comparison

As explained above, both the explanation and the creation of task models yielded

high scores. However, the mean scores for the creation of task models (Figure 7.13)

were higher than the mean scores for the explanation of task models (Figure 7.12).

This could be due to the participants performing the explanation of the task models

first. Hence, this gave them some additional exposure to examples of SERIES task

models before they created task models using this notation.

As mentioned in Section 7.3.1, the level of experience of this study’s participants is

diverse. I compared the scores of the participants to see whether the level of

experience affected their ability to explain and create task models.

Concerning the explanation of task models, the four participants with little or no

experience (< 1 year - never) averaged a score of 85 across the three task model levels.

The thirteen participants with medium experience (1 to 5 years) averaged a close

score of 86.02. The three participants with high experience (6 to 10 years) averaged a

score of 94.72 across the three task model levels. Although the average score of the

participants with the most experience is higher, the other participants still averaged

high scores (≥ 85) considering it’s the first time they work with SERIES.

Concerning the creation of task models, there was little to no difference among the

scores for participants of all levels of experience. This is expected considering that the

overall scores are very high. The four participants with little or no experience (< 1 year

- never) averaged a score of 97.33 across the three task model levels. The thirteen

participants with medium experience (1 to 5 years) averaged the same score (97.33).

On the other hand, the participants with high experience (6 to 10 years) averaged a

score of 98.88 across the three task model levels. Since the scores are overall very

close, the level of experience did not affect the ability of the participants to create task

models using SERIES.

7.3.5 Results of participants’ feedback on clarity of semantic constructs

The participants rated the clarity of the semantic constructs of SERIES on a scale that

ranged between 1 and 5, where 1 is the worst and 5 is the best. Figure 7.14 shows these

ratings. We can see that the mean values for the semantic constructs ranged between 4.5

and 5.0. These results indicate that the participants considered the semantic constructs

of SERIES to convey a clear meaning that enables software practitioners to explain and

134 7.3 A study to evaluate SERIES with software practitioners

create task models. As Figure 7.14 shows, four of the semantic constructs had one outlier

with a rating of three or two over five. In this case, the participants felt that it would be

useful to have some more clarification about the respective constructs. However, these

values do not affect the participants’ overall positive perception of the clarity of the

semantic constructs as shown by the mean ratings that are ≥4.5. Some participants gave

additional comments regarding the clarity of the semantic constructs of SERIES. These

comments were classified under four categories as explained next. The names of the

categories are marked in bold.

The first category included comments that said the given tutorial is sufficient to

clarify the meanings of the semantic constructs. The tutorial referred to in these

comments is the brief video given to the participants at the beginning of the study (refer

to Figure 7.6). In this regard, P10 said, “The constructs are clear once we see the tutorial.”

and P20 said, “The brief tutorial was enough for me to understand the semantic constructs.

I do not think that any changes are needed to these constructs.” These comments indicate

that software practitioners could learn SERIES without significant time and effort. P8

noted the same thing and elaborated further by saying, “Notation is easy to use after a

quick tutorial. Terms mean the same throughout (e.g., resources for tasks and subtasks).

Figure 7.14 – Participants’ feedback on the semantic constructs of SERIES – this
feedback represents the participants’ perception of whether the semantic constructs

convey a clear meaning for explaining and creating SERIES task models
(an “x” on the boxp ot represents a mean and a circ e represents an o t ier)

Mean=4.90, Median=5.0, SD=0.30

Mean=5.0, Median=5.0, SD=0

Mean=4.70, Median=5.0, SD=0.55

Mean=4.65, Median=5.0, SD=0.65

Mean=4.90, Median=5.0, SD=0.43

Mean=4.50, Median=5.0, SD=0.74

1 2 3 4 5

Rating
(Worst=1 and Best=5)

S
e

m
a

n
ti

c
C

o
n

st
ru

ct

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 135

Output diagram is easily readable, you can directly notice if the design matches the

requirements.” The idea presented by P8 on the terms meaning the same thing

throughout the model is due to SERIES adhering to the dimension of consistency from the

Cognitive Dimensions Framework as discussed in Section 7.2.1. It is also due to SERIES

adhering to the principle of semiotic clarity from the Physics of Notations as discussed in

Section 7.2.2.

The second category of comments involved a minor clarification. In this regard, P12

said, “Everything was mostly clear, maybe a bit more information on the priority times.”

P14 also mentioned priorities and timeframes by saying “At the beginning, the timeframe

and its relation with the priority was a bit confusing.” P12 and P14 mentioned this point

because the brief tutorial that was given to the participants at the beginning of the study

only demonstrated the association of priorities with a specific time frame (e.g., 8:00 AM

to 12:00 PM). However, during the study, the participants were asked to set the

priorities for any time frame. Nonetheless, even with the brief coverage of this concept,

the participants' explanation, use, and feedback demonstrated that they know how to

work with priorities and timeframes. Hence, this point did not cause a major issue

overall. For example, both P12 and P14 rated the corresponding semantic constructs

(priorities of tasks and task variants) with a 4 over 5 (i.e., “clear”) because the concepts

got clarified after some reflection. Nonetheless, in a longer tutorial, more examples could

be given to explain the relationship between priorities and timeframes.

One comment involved a minor change suggestion, whereby P17 suggested having

“colour coding for priorities”. The implementation of this suggestion is simple and could

be useful to attract attention to the high-priority tasks and task variants. For example,

Mean = 4.79, Median = 4.90, SD = 0.28

Figure 7.15 – Participants’ feedback on the ease of use of SERIES
(the “x” on the boxp ot represents the mean)

4 4.1 4.2

Rating
(Worst=1 and Best=5)

4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

136 7.3 A study to evaluate SERIES with software practitioners

the priority property could be presented in red colour when its value is high. This should

not visually saturate SERIES since colours are not used in other properties.

One comment emphasised that the task hierarchy is clear. In this comment, P12

said, “This is actually one of the things that I liked about SERIES. It is the ability to create

the subtasks very clearly and to define how they follow each one after the other.” This

indicates that the visual presentation of the hierarchy helped P12 to understand the

meaning of the relationship between a task and its subtasks and among subtasks and

relates to the principles of semantic transparency and perceptual discriminability from

the Physics of Notations as explained in Section 7.2.2.

7.3.6 Results of participants’ feedback on usability

This section reports on the results of the participant feedback on the usability of

SERIES. These results include the participants’ ratings of ease of use, selected PRCs,

and additional comments that justify their answers and provide suggestions.

7.3.6.1 Ratings for ease of use

The participants were given five questions on ease of use that covered difficulty,

clarity, understandability, frustration, and mental effort. The result reported in Figure

7.15 is computed from the means of the answers that the participants gave to all five

questions. The mean rating given by the participants on the ease of use questions is

4.79 over 5 (1 is the worst and 5 is the best). This result indicates that the participants

considered SERIES to be overall very easy to use. The participants gave some

additional comments on the ease of use of SERIES and its supporting tool. These

comments are classified under three categories as explained next. The names of the

categories are marked in bold.

P14 mentioned how the three-level SERIES task hierarchy is clear. In this regard,

P14 said “The three-level hierarchy is very clear and helpful in analysing and formalising

a complex task. The visual representation of the task, sub-tasks, and variants of the sub-

tasks is very well organized and lets the user have every information at hand.” This

comment by P14 complements the comment that P12 gave on the clarity of the task

hierarchy (refer to Section 7.3.5) and indicates that both the meaning and visual

representation of the task hierarchy are clear.

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 137

Some comments explained why the UI of the tool is usable. P7 said “The UI is very

user-friendly. All functionality is easily visible.” Additionally, P14 said, “The user

interface lets the user reach every window in an easy and organized manner – i.e., the

user does not need to scroll menus to find and fill in the necessary information.” These

two comments reflect a positive perception of the supporting tool’s usability, which

complements the usability of the notation and facilitates task modelling using SERIES.

There was one minor change suggestion. P8 suggested adding a “small UI” under

the selection boxes of resources, priorities, and parameters so these properties can be

added quickly without having to open a new (popup) window. P11 also preferred

having a quicker way of setting these properties without having to open a new window

but did not suggest a specific solution. It is worth noting that existing software

development tools such as Visual Studio open new windows, in many cases, for setting

properties from a properties box. Nonetheless, there could be an alternative. However,

the addition of “small UIs” as P8 suggested could over-clutter the properties box if

these UIs are always visible. Hence, one possibility could be to use dropdown UIs that

the user opens via the selection boxes or buttons without navigating to a new window.

Figure 7.16 – PRCs selected by the participants to describe SERIES – each participant
was asked to select three PRCs

(positive PRCs are shown in grey while the negative ones are shown in black)

Confusing

Rigid

Appealing

Friendly

Familiar

Understandable

Clear

Straight Forward

Consistent

 asy to use

N mber of imes Se ected b Participants

P
ro

d

ct

 R
e
a
ct

io
n

a
rd

138 7.3 A study to evaluate SERIES with software practitioners

7.3.6.2 Selected product reaction cards

The participants were each asked to select three PRCs that they thought best

describe SERIES. As Figure 7.16 shows, the PRCs that the participants selected were

mostly positive (58 out of 60). The selected PRCs complement the results reported in

Section 7.3.6.1, which indicates that the participants have a very positive perception of

the usability of SERIES. The participants justified their choice of PRCs by giving

additional comments. These comments are categorised under the corresponding PRCs.

In some cases, the participants gave a single comment to justify their choice of multiple

PRCs. Such comments are only listed under one of the corresponding PRCs. The PRCs are

listed from the most to the least selected. The PRCs and the names of the categories of

comments are marked in bold.

1) Easy to Use: The PRC “easy to use” was the most selected by the participants.

The comments that the participants gave for choosing this PRC are classified under

three categories as follows.

The first category includes comments that said the given tutorial is sufficient or

even unnecessary to use SERIES easily. In this regard, P11 gave a combined

justification for selecting “easy to use” and “understandable” by saying “The overall

system was simple, and most of the controls were instinctive to use. I felt that I could’ve

figured out the system without even having the tutorial, as the names and types were

generally self-explanatory.” P14 thought S RI S was easy to use because a “short

introduction was enough to be able to easily work with it.” These two comments by P11

and P14 complement what participants P8, P10, and P20 said on the tutorial being

sufficient to clarify the meanings of the semantic constructs (refer to Section 7.3.5).

The second category includes comments that complement the abovementioned

(first) category by saying that SERIES notation is understood quickly. In this regard,

P18 said, “I got accustomed to it quite fast.” and P19 said, “SERIES was very easy to use. I

did not find any difficulty understanding the notation.” P2 provided a combined

comment for choosing “straightforward” and “easy to use” by saying S RI S is

“straightforward and easy to use because there are not many concepts to deal with

meaning that there are 3 main tasks (abstract task, application task, and application

task variant).” These comments alongside those from the abovementioned (first)

category indicate a positive perception of the learnability of SERIES. Furthermore, the

comment given by P2 on SERIES not having too many concepts is related to how

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 139

SERIES adheres to the principle of graphic economy from the Physics of Notations as

explained in Section 7.2.2.

The third category includes comments that said the SERIES notation and the UI of

its supporting tool have a well-designed layout, which improves usability. P16

commended the layout of SERIES and the friendly UI and particularly liked how tasks

are automatically connected. In this regard, P16 said, “I found SERIES really easy to use

since everything is laid out in front of me. Simple operations and a friendly interface. The

particular thing that I found that’s really helpful is how the tasks are automatically

connected without the need to draw lines and to choose specific relationships.” When

tasks are added to the task model they are automatically connected and the task model

is rearranged to avoid “visual spaghetti” in S RI S (refer to Section 7.2.1 – dimension

about premature commitment from the Cognitive Dimensions Framework). P17 said,

“everything is very to the point and isn’t complicated.” P3, P5, and P13 noted that the UI

is usable. In this regard, P3 commented on the layout and labelling of the UI by saying,

“The interface is very simple and well divided, everything is well labelled to properly

represent what is needed.” Additionally, P5 mentioned the simplicity of the UI by saying

“The UI is clean and simple to use.” Furthermore, P13 noted how the UI made it easy to

use SERIES via its supporting tool by saying, “It is easy to use and clear because of the

UI. It doesn’t take time to understand how to use the software.”

2) Consistent / Straightforward: The PRCs “consistent” and “straightforward” are

equally the second most selected by participants after “easy to use”. The comments

related to these two PRCs are classified under two categories as explained next.

The first category includes comments that said SERIES task model elements and

information are consistently represented. P14 commented on the consistency of

the visual representation at the three levels of the task model hierarchy by saying,

“Each of the three-level-hierarchy parts uses similar panels to fill in the required pieces of

information. Furthermore, the representation of the information in the main window –

where the task model is represented – is consistent for each part, making it easily

interpretable.” Similarly, P18 considered that the visual elements constituting the

different task types are consistent and said, “All elements of the different task types are

at the same place, making it easy to expect where the properties, resource types, etc…

fall.” P5 considered that there is consistency in the wording and the design of the

notation by saying, “SERIES uses the same wording and design elements across the

diagram. It is easy to understand what elements mean across tasks/variants.” The

140 7.3 A study to evaluate SERIES with software practitioners

consistency in SERIES, which is discussed in the abovementioned comments is a result

of taking into consideration the dimension of consistency from the Cognitive

Dimensions Framework (refer to Section 7.2.1).

The second category includes comments saying said the UI provides a consistent

and effortless way to work with tasks and properties. Concerning consistency, P9

said, “The UI was consistent throughout when creating either abstract tasks, application

tasks, or application task variants.” Additionally, P17 commented on the consistency of

the design by saying “The whole application follows the same design for entering new

tasks and data.” Furthermore, P15 mentioned the similarity in the way all tasks are

created by saying “creation of all types of tasks is similar to one another (name,

description, properties...).” P12 justified choosing “straightforward” by giving a

comment that complements that of P15, whereby P12 said, “It was very easy to use with

the UI, adding, removing and editing tasks and their resources, parameters, etc… was

straightforward and didn’t require any effort.”

3) Clear / Understandable: The PRCs “clear” and “understandable” are equally the

third most selected by the participants. The comments corresponding to these two

PRCs are categorised under the following three categories.

The comments in the first category noted that the task hierarchy is clear. P4

considered that the task organisation provides clarity and makes the use of SERIES

straightforward. In this regard, P4 said, “The different types of tasks were ordered

hierarchically in a way that is straightforward and clear.” Additionally, P20 considered

that the task hierarchy is organised clearly by saying “The hierarchy of tasks is

organised in a clear way that makes it easy to navigate through the model and

understand relationships among the tasks.” These two comments by P4 and P20

complement what P12 said about the clarity of the task hierarchy of SERIES as

mentioned in Section 7.3.5 about the clarify of the semantic constructs. Additionally,

these comments reflect how the hierarchical representation of task models in SERIES

abides by the principle of semantic transparency from the Physics of Notations

explained in Section 7.2.2.

The comments in the second category pointed out that there is clear labelling and

understandable information. P4 and P19 commented on the clarity of the labelling

whereby P4 said, “The panels are clear, the labels are enough to understand the fields

needed to be filled.” and P19 said, “Everything was clear and labelled out.” The labelling

that is part of the notation is a design choice that adheres to the principle of dual

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 141

coding in the Physics of Notations that recommends using text to complement graphics

(refer to Section 7.2.2). Additionally, P14 and P15 noted that the information

presented on the screen is understandable, whereby P14 said, “All the information is

well summarized and represented in the main window in an understandable way.” and

P15 said, “There is a help me button, but everything is already self-explanatory.” The

terms “understandable” and “self-explanatory” indicate that P14 and P15 perceive

SERIES to be intuitive, which means that it does not need a lot of effort and explanation

to understand. P2 mentioned this point explicitly by saying “I find it very intuitive.”

Two comments mentioned that the UI is clean and not cluttered. P18 justified

choosing “understandable” by saying, I got accustomed to it quite fast (same reason for

choosing easy to use), in addition to the fact that the UI is not cluttered, it’s friendly".

Additionally, P5 said, “The clean UI helps in understanding where all the buttons are.

There is enough space for the diagram.” In this comment, P5 is saying that it is easy to

locate functionality on the UI, which is important for working without hassle. P5 is also

saying that the space (section of the UI), that is allocated for displaying and managing

the task model is enough for the user to work comfortably.

4) Familiar: This PRC was the fourth most selected by the participants

(considering that two pairs of PRCs shared an equal number of selections). The

comments on this PRC are classified under two categories as explained below.

As mentioned in Section 5.5, the visual representation of SERIES is inspired by UML

class diagrams (e.g., tasks are represented as boxes like classes in UML). The benefit of

this design choice is reflected in comments that said there is familiarity due to the

visual resemblance between SERIES and UML. P2 said that S RI S is “familiar

because it is similar to UML.” Additionally, P9 said, “SERIES was familiar to use, as it

builds on what the user has already been exposed to in the past, particularly UML.”

Furthermore, P5 said, “The diagram uses simple design elements similar to UML which

makes it familiar to use.” P20 also elaborated further on this point by saying, “Certain

elements of the task model’s visual representation resemble UML class diagrams. Tasks

are represented as boxes like classes and task variants are related to tasks using an

arrow that resembles generalization relationships.” Although the purpose of SERIES is

different than that of UML class diagrams, the visual resemblance in parts of the

notation has created familiarity that helps software practitioners in learning SERIES as

noted in the abovementioned comments. For example, in UML class diagrams the main

142 7.3 A study to evaluate SERIES with software practitioners

semantic construct, namely a class, is represented as a box. The same is done in SERIES

but the main semantic construct is a task rather than a class.

Other comments stated that there is familiarity due to the resemblance between

the UI of the SERIES tool and the UIs of other tools. P2 said, “The tool resembles

other tools making it very easy to learn.” Additionally, P13 said, “The UI of the tool is

familiar because it resembles existing IDEs.” This was also a design choice because the

panels of the tool were designed to resemble panels that are common in existing

integrated development environments (ID s). For example, the “Task Model xplorer”

and the “Properties” panels in the supporting tool of S RI S resemble the solution

explorer and properties box respectively in the Visual Studio IDE.

5) Appealing / Friendly: P12 and P7 justified selecting “appealing” and “friendly”

respectively, by saying that the tool is helpful, and the functionality is easily visible on

the UI. P12 considered the tool to be appealing because it fits its purpose and said, “I

found that this tool would be very helpful to use to model such tasks which made it very

appealing to me.” Additionally, P7 positively commented on the usability of the UI by

saying, “The UI is very user friendly. All functionality is easily visible.”

6) Confusing / Rigid: Very few negative PRCs were selected, namely “rigid” and

“confusing” were each selected once as shown in Figure 7.16. It is worth noting that

participants P6 and P11, who chose these two PRCs, also chose two positive PRCs

including “easy to use” and “consistent” for P6 and “easy to use” and “understandable”

for P11. Furthermore, negative PRCs only constituted 3.33% (2 out of 60) of the total

selected PRCs, whereas positive PRCs constituted 96.66% (58 out of 60). The

participants who selected these two PRCs explained their choices by giving additional

comments. Overall the reasons for their choices are minor and could be addressed as

explained below.

P6 chose “confusing” because some clarification is required for two terms, namely

“changeable” and “strict”, which are used to annotate parameters and resource types

respectively. P6 said, “The reason why I chose confusing is due to the usage of some not-

so straightforward terms (changeable and strict).” Although P6 found these two terms

to be confusing the overall results of the explanation and creation of task models and

the participants’ feedback are positive. Hence, it is possible to consider this to be a

minor issue that can be resolved with some further explanation of the meanings of

these terms and possibly additional examples.

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 143

P11 chose “rigid” and said, “The system did feel relatively rigid, as there were a very

limited number of things I could do at any given time.” P11 explained further by saying

that adding an application task requires selecting an abstract task and then clicking on

“add application task”. Hence, the same actions have to be repeated for adding more

application tasks. P11 preferred being able to add multiple application tasks without

having to re-click on the abstract task. The supporting tool of SERIES works this way

because it is shifting the focus to the newly added application task rather than keeping

it on the abstract task. The focus is shifted so users would directly edit the properties

of a newly added application task without having to select it. A possible solution for

P11’s request could be to enable the addition of multiple application tasks with one

click. This just requires a minor adjustment to the supporting tool of SERIES.

7.3.7 Results: participants’ final comments

A few participants gave comments at the end of the study. Some were just general

positive observations. For example, P3 said, “An interesting tool with a lot of potential

applications.” Other comments were more specific. P7 noted that S RI S task models

are clear even when the task hierarchy has multiple levels. In this regard, P7 said,

“The diagram remains very clear even when the relationships between the tasks become

deeper.” This indicates that for P7 the increase in the level of difficulty, as explained in

Section 7.3.2.3, did not make it harder to understand and work with SERIES task models.

P7 also compared SERIES task models to UML diagrams by saying that SERIES task

models are easier to manage than UML diagrams. In this regard, P7 said, “In UML

diagrams when the hierarchy starts getting deep everything gets convoluted making it

harder to see the relationships. Here it is nice how the diagram organizes itself.” Hence, P7

found the auto-arrange feature that is offered by the supporting tool of SERIES to be

useful. This feature automatically adjusts the layout of the task hierarchy when new

tasks or task variants are added to avoid the “visual spaghetti” that affects some box-and-

line notations (refer to Section 7.2.1 on the Cognitive Dimensions Framework).

 P5 suggested a minor change to the tool concerning default values and said, “It

would be nice to have good defaults where it makes sense. For example, if I don’t specify a

‘Role’ property it could be assumed to be ‘Any’.” The tool is currently a prototype which is

why it does not have a default values settings feature. Nonetheless, this feature could be

added as a dynamic settings window that enables the specification of default values for

properties such as role, resource quantity, and so on.

144 7.3 A study to evaluate SERIES with software practitioners

7.3.8 Discussion of the results

Concerning the results from quantitative data, the participants exhibited very good

performance in the explanation and creation of task models using SERIES as indicated by

the scores that were reported in Section 7.3.4. The mean scores over 100 were 87.13 for

the explanation and 97.57 for the creation of task models. Additionally, the feedback of

the participants also showed that they perceived the meanings of the semantic

constructs to be clear, where the mean ratings of clarity ranged between 4.5 and 5 over

5, where 1 is the worst and 5 is the best (refer to Section 7.3.5). Furthermore, the

feedback from the participants showed that they perceived SERIES to be usable. The

mean of the ratings that the participants gave for ease of use was 4.79 over 5, where 1 is

the worst and 5 is the best. Additionally, 96.67% of the PRCs that the participants

selected to describe SERIES were positive (refer to Section 7.3.6). These results provide

a positive indication of the ability of software practitioners to use SERIES.

Concerning the results from qualitative data, as explained in the previous sections,

the participants gave comments that expressed their feedback on the clarity of the

semantic constructs and the usability of SERIES and its supporting tool. These comments

were presented and categorised in Sections 7.3.5, 7.3.6, and 7.3.7. Six themes are defined

here to provide a broad overview of the content of these comments. These themes were

deduced from the abovementioned comment categories and cover the usability and

Figure 7.17 – Percentage of comments in each theme

 oo is earnab e

 oo is Usab e

 inor
 ari ication
S estion

 inor han e
S estion

Notation is
 earnab e

Notation is
Usab e

Chapter 7 – Task Modelling Notation Evaluation (SERIES) 145

learnability of the SERIES notation and its supporting tool and the suggested minor

clarifications and changes.

The six themes are “Notation is Usable”, “Tool is Usable”, “Notation is Learnable”,

“Tool is Learnable”, “Minor Clarification Suggestions” and “Minor Change Suggestions”.

The themes “Notation is Usable” and “Tool is Usable” are related to usability and indicate

that the notation and tool can be used by specified users, namely, software practitioners,

to achieve specified goals with effectiveness, efficiency, and satisfaction (ISO 9241,

2008). On the other hand, the themes “Notation is Learnable” and “Tool is Learnable” are

related to learnability and indicate that users, namely software practitioners, do not take

a lot of time to understand how to use the notation and tool (ISO 9241, 2008). The

themes “Minor Clarification Suggestions” and “Minor Change Suggestions” are related to

minor suggestions given by the participants about clarifying a concept further and

adding a basic feature, respectively.

As Figure 7.17 shows, the participants discussed why they perceive the SERIES

notation to be usable and learnable in 31% and 29% of their comments respectively.

This indicates that the participants have a positive perception of SERIES concerning its

syntax (form) and semantics (content), which constitute graphical notations as noted by

(Moody, 2009). Additionally, the participants discussed how they perceive the tool to be

usable and learnable in 14% and 8% of their comments respectively. Considering that

the tool complements the notation, it is interesting to see that the participants also

perceive it to be usable and learnable. Furthermore, the participants made suggestions

for minor changes and minor clarifications in 10% and 8% and their comments

respectively. As previously explained, these suggested changes and clarifications are

minor and do not hinder the ability of software practitioners to use SERIES for task

modelling. Nonetheless, they will be taken into consideration in the future.

Based on the results of the study, as discussed above, the hypothesis that is defined in

Section 7.3.2.1 is accepted because the use of SERIES resulted in very good user

(software practitioner) performance in the interpretation and creation of task models

for resource-driven adaptation. This was indicated by both the results of the activities

that the participants performed using SERIES and the feedback that they provided.

146 7.4 Chapter summary

7.3.9 Threats to validity

This study involved 20 participants. This could limit the generalisability of the results.

However, these participants accurately represent the group of people who are expected

to use SERIES, namely software practitioners. Hence, the participants were able to give

insights based on their knowledge and experience. Furthermore, the sample of

participants was diverse in terms of the level of experience in the software industry and

experience with software modelling notations as explained in Section 7.3.1. This

diversity yields feedback from people with different perspectives and capabilities.

A comparison was conducted in Section 7.3.4 among the scores of the participants

from different levels of experience. However, it is important to clarify that this study is

not intended or designed to be a between-groups comparison study based on level of

experience. The latter is not this study’s objective and requires a larger number of

participants in each group. For example, there were only three participants with six to

ten years of experience. Hence, this comparison is only meant to provide a basic idea

about possible differences in the ability to explain and create SERIES task models.

7.4 Chapter summary

This chapter presented the evaluation of the proposed task modelling notation for

supporting resource-driven adaptation (SERIES). It presented an assessment of SERIES

using existing guidelines for designing notations given by the Cognitive Dimensions

Framework and Physics of Notations. Moreover, this chapter presented a study with

software practitioners to evaluate SERIES. The study was divided into four parts: (i)

watching a brief tutorial video about SERIES and its supporting tool; (ii) explaining

tasks models that are represented using SERIES; (iii) creating a task model using

SERIES via its supporting tool; (iv) completing a questionnaire to provide background

information and feedback about the usability of SERIES and the clarity of its semantic

constructs. The results of the study showed a very good user (software practitioner)

performance in explaining and creating SERIES task models. Moreover, the

participants gave positive feedback regarding the usability of SERIES and the clarity of

its semantic constructs.

 147

8

Framework for Resource-Driven Adaptation

Evaluation (SPARK)

This chapter presents the evaluation of the proposed framework for resource-driven

adaptation (SPARK). Figure 8.1 presents an overview of this evaluation. The evaluation

of SPARK has two parts, a preliminary evaluation with generated data and two case

studies with existing datasets. The metrics that I used in the evaluation include the

percentage of executed critical task requests, the average criticality of the executed task

requests versus the non-executed ones, overhead, scalability, and the intrusiveness of

integrating SPARK into a software system.

8.1 Introduction

I conducted a preliminary evaluation of SPARK by developing a simulation tool for

an automated warehouse where robots are responsible for preparing customer orders

to be shipped. This tool served as a proof-of-concept prototype for evaluating SPARK’s

feasibility. Additionally, I evaluated SPARK’s overhead and scalability using a varying

number of business tasks that are commonly found in enterprise systems (e.g., “view

sales report”). The preliminary evaluation used generated data.

Afterwards, I evaluated SPARK in two case studies with existing datasets

corresponding to (i) a medicine consumption system and (ii) a manufacturing system.

These datasets include multiple tasks and types of resources. The two case studies

involved measuring two metrics, namely the percentage of executed critical task

requests and the average criticality of the executed task requests versus the non-

expected ones during resource variability. The outcomes of these two metrics were

148 8.2 Preliminary evaluation of SPARK

compared when using SPARK’s proactive and reactive adaptation, reactive adaptation

only, and no framework. Additionally, the overhead and scalability of SAPRK were

measured using a varying number of tasks from the datasets. Furthermore,

intrusiveness was evaluated by measuring the lines of code to be added or modified for

integrating SPARK into a software system (based on what I proposed in Section 4.5).

8.2 Preliminary evaluation of SPARK

A preliminary evaluation of SPARK’s feasibility, overhead, and scalability was

conducted. This section explains the design of this preliminary evaluation and presents

its results and threats to validity.

8.2.1 Evaluating feasibility with an automated warehouse simulation

Some types of automated warehouse management systems like Ocado use robots

that move on top of a grid to store and pick up items and prepare customer orders for

delivery (Ocado Solutions, 2018; Mason, 2019). As shown in Figure 8.2, robots can

malfunction and cause resource variability until repairs are performed. This delays the

fulfilment of customer orders. I developed the software tool shown in Figure 8.4 to

simulate a grid-based automated warehouse where robots are responsible for

executing requests of the “Prepare Order” task that is shown in Figure 8.3. The settings

shown in Figure 8.4a are used to specify the simulation parameters including the

Figure 8.1 – Overview of the evaluation of SPARK

The evaluation presented in this chapter covers the proposed framework for resource-
driven adaptation (SPARK) and has the following two parts.

Initial evaluation that involves developing software prototypes for simulating an
automated warehouse and task requests

Evaluation of SPARK

Two case studies with existing datasets corresponding to a medicine consumption
system and a manufacturing system

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 149

number of robots and the number of customer orders. Figure 8.4b shows the availability

of the simulated robots. The simulated warehouse environment is visualised in Figure

8.4c. The completion progress of the customer orders is shown in Figure 8.4d.

8.2.1.1 Design of the simulation

The robots execute a task called “prepare order”, which has three subtasks “locate

products in the warehouse”, “pack products in a box”, and “seal box” (Figure 8.3). The

task “pack products in a box” has two variants “pack randomly” and “pack by

category”. These two variants have a trade-off between presentation and speed,

whereby “pack randomly” is faster but “pack by category” is more elegant.

Figure 8.2 – Automated warehouse

example (used in preliminary evaluation
of SPARK)

Figure 8.3 – Prepare order task (used in
preliminary evaluation of SPARK -

shown in summarised form of SERIES)

Figure 8.4 – Automated warehouse simulation software (developed for the
preliminary evaluation of SPARK)

Repairs

Customer Order Preparation

Recharging

Warehouse Automated by Robots
Prepare Order

Locate products
in the warehouse

 Pack products
in a box

Seal box

Pack Randomly

Pack by Category

V

V

VLegend:
Abstract
task

Application
task

Application
task variant

>> >>

150 8.2 Preliminary evaluation of SPARK

Customer orders were generated with random products and the products in stock

were dispersed across the grid of the warehouse. Ten types of products were used and

included clothing items like shirts, jackets, shorts, trousers, ties, and caps. Upon

running the simulation each robot is assigned a customer order that it should prepare.

Then, the robots move around the grid and locate the products of the customer orders.

Once a robot collects all the products for a customer order, it is assigned another

customer order to prepare.

The simulation included cases with full robot capacity and others where 40% and

60% of the robots are missing. These cases included an increasing number of customer

orders, namely 250, 500, and 750. In the cases where robots were missing, the

simulation was executed with and without adaptation to observe the difference. The

adaptation involved executing the faster variant of the “pack products in a box” task,

namely “pack randomly” to speed up order preparation during resource variability

(i.e., when robots are missing). What follows are the results of this simulation during

resource variability with and without adaptation.

8.2.1.2 Results

The chart presented in Figure 8.5 shows how adaptation improved the order

completion time when robots were unavailable. As this figure shows, in the cases

where 40% or 60% of the robots were unavailable, adaptation reduced the order

completion time by almost half in comparison to the cases with missing robots but

without adaptation. Adaptation reduced order completion time by an average of 66%

and 50% when 40% and 60% of the robots were missing, respectively.

Figure 8.5 – Customer order preparation during resource variability with and without
adaptation

O
rd

e
r

o
m

p
 e

ti
o
n

im

e
 (
In

in

te

s)

N mber of Orders

All Robots

Missing 40 of Robots Without Adaptation

Missing 40 of Robots With Adaptation

Missing 60 of Robots Without Adaptation

Missing 60 of Robots With Adaptation

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 151

These results show that, with adaptation, a smaller number of robots can prepare

customer orders without major delays, until the malfunctioning robots are repaired.

This simulation demonstrates the feasibility of SPARK as a resource-driven adaptation

framework, which enables software systems to keep executing tasks during resource

variability.

8.2.2 Evaluation of overhead and scalability

I evaluated the overhead and scalability for two parts of SPARK. The first part is

proactive adaptation planning. The second part is the reactive identification of the

invoked tasks and variants so SPARK can make adaptation choices. Refer to Sections

6.2 and 6.3 for a detailed explanation of these parts. The overhead and scalability were

evaluated using a varying number of business tasks that are commonly found in

enterprise systems (e.g., “issue sales invoice”, “view sales report”, and “make item

reception”). The evaluation was done on a Windows 10 computer with a Core i7 1.8

GHz CPU and 16 GB of RAM.

8.2.2.1 Proactive adaptation planning

As shown in Figure 8.6, the running time ranges between 0.35 and 2.58 seconds

when the number of tasks ranges between 1000 and 10,000. It is possible to say that

SPARK has a minor overhead, especially when considering that proactive adaptation

planning is not executed with every task request. Furthermore, as shown in Figure 8.6,

the fitting curve of the running time is polynomial with R2 equal to 0.9988. Hence, the

algorithm for proactive adaptation planning is scalable.

Figure 8.6 – Running time scalability of proactive adaptation planning

152 8.2 Preliminary evaluation of SPARK

8.2.2.2 Reactive identification of tasks and task variants

NBomber (2021) was used to simulate user requests to C# web service methods

that represent tasks in a software system. Then, the evaluation involved measuring the

time it took to identify the tasks and task variants, in a SERIES task model, which

correspond to the service methods being called.

Multiple test runs were performed with an increasing number of tasks and variants

ranging from 1,000 to 10,000 tasks and 0 to 16 variants per task. The evaluation was

done with two implementations, one that caches the task models in memory and

another one that does not perform caching. NBomber simulated user requests for 10

minutes per test run. The results are shown in Figure 8.7 (without caching) and Figure

8.8 (with caching). The mean running time was measured in milliseconds and ranged

between 0.95 and 7.36 without caching and 0.0047 and 0.0075 with caching. Hence,

the overhead is minor. Furthermore, both fitting curves of the mean running times are

polynomial with R2 equal to 0.9924 (without caching) and 0.9797 (with caching). This

indicates that the algorithm for the reactive identification of tasks and task variants is

scalable. The use of caching is favourable since it reduces overhead without burdening

Without Caching

Figure 8.7 – Overhead and scalability evaluation without caching for the identification
of tasks and task variants from SERIES task models

1000

0 0 2 2 4 4 8 8 16 16

0.95 0.99 1.88 2.62 3.09 3.58 5.03 5.73 6.36 7.36

R
u

n
n

in
g

 T
im

e
(I

n
 M

il
li

se
co

n
d

s)

2000 3000 4000 5000 6000 7000 8000 9000 10000

the black bars
represent medians

Tasks

Variants
Per Task

Mean

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 153

the memory. As shown in Figure 8.8, the size of the cached model ranged from 0.02 MB

to 17.84 MB, which is minor for modern RAM capacity.

8.2.3 Summary of the results

The automated warehouse management system example, which was used in this

preliminary evaluation, demonstrates SPARK’s feasibility and its ability to support

software systems to keep executing tasks during resource variability. Furthermore, the

preliminary overhead and scalability evaluation showed that SPARK is scalable and

has a minor overhead that does not hinder a software system’s ability to execute task

requests in a tolerable waiting time (e.g., 2 to 4 seconds as indicated by Nah, (2004)).

8.2.4 Threats to validity

The automated warehouse management system example only considers one type of

system, task, resource, and adaptation. Furthermore, the preliminary evaluation uses

data that was generated by the researcher. Therefore, two case studies representing

different systems were conducted to evaluate SPARK with scenarios that involve

multiple types of tasks, resources, and adaptation. These two case studies are

presented in the next section.

With Caching

Figure 8.8 – Overhead and scalability evaluation with caching for the identification of
tasks and variants from SERIES task models

Cached Model
Size (In MB)

0.02 0.04 0.74 0.98 2.32 2.76 6.36 7.26 8.16 17.84

1000Tasks

Variants
Per Task

0 0 2 2 4 4 8 8 16 16

0.0047Mean 0.0050 0.0068 0.0069 0.0070 0.0073 0.0074 0.0074 0.0074 0.0075

R
u

n
n

in
g

 T
im

e
(I

n
 M

il
li

se
co

n
d

s)

2000 3000 4000 5000 6000 7000 8000 9000 10000

154 8.3 Evaluating SPARK with two case studies

8.3 Evaluating SPARK with two case studies

I evaluated SPARK with two case studies involving two datasets from a medicine

consumption system and a manufacturing system. In this evaluation, I measured four

metrics including (i) the percentage of executed critical task requests, (ii) the average

criticality of the executed task requests in comparison to the non-executed ones, (iii)

the overhead of the approach, and (iv) the scalability of the approach. What follows are

the details of these two case studies, including a description of the datasets, an

explanation of the design of the case studies, and a presentation and discussion of the

results and threats to validity.

8.3.1 Datasets

The two datasets used for evaluating SPARK were selected after searching publicly

available datasets on several platforms including AWS Data Exchange (Amazon, 2019),

Data.Mendeley (2013), Data.World (2016), IEEE DataPort (IEEE, no date), Kaggle

(2010), Office for National Statistics (UK Statistics Authority, 1996), United States

Census Bureau (US Department of Commerce, 1902), and Zenodo (CERN and

OpenAIRE, 2013). The target datasets were expected to contain data for simulating

software systems that execute resource-dependent tasks. Hence, candidate datasets

were examined using four criteria to check if they contain (i) tasks and task variants;

(ii) resources; (iii) task (variant) requests with a chronological order that could be

replicated in a simulation; and (iv) association between each task (variant) request

and the resources it requires. The characteristics of the datasets are summarised

according to the abovementioned criteria (i)-(iv) in Table 8.1 and are elaborated below.

The first selected dataset corresponds to a medicine consumption system (Ghodki,

2021). This dataset contains 783 variants of a medicine allocation task. The task

variants differ according to a parameter that represents the medical condition of the

patient. This dataset has 153,385 task requests, whereby each one allocates a quantity

of a medicine to treat a patient’s medical condition. This dataset has depletable

resources, namely medicines. It also contains feedback provided by patients to rate, on

a scale, the effectiveness of the medicines that they were given to treat their medical

conditions. SPARK uses this type of user feedback to adjust its adaptation type choices

(refer to Section 6.3.6).

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 155

The second selected dataset corresponds to a manufacturing system (Mota et al.,

2020). This dataset contains 4 tasks and one of these tasks has 4 variants. It also

contains 275 task requests. This dataset has both depletable and reusable resources,

namely raw materials and machines respectively. These resources are used to execute

tasks related to the manufacturing of hang tags, which are “tags attached to an article

of merchandise giving information about its material and proper care (Webster, 2022)”.

The two selected datasets have four differences, which create diversity in the case

studies conducted to evaluate SPARK. The first difference is in the types of resources.

The types of resources in the medicine consumption dataset are depletable whereas

the ones in the manufacturing dataset are depletable and reusable. The second

difference is in the number of tasks and task variants. The medicine dataset has one

task with a lot of variants whereas the manufacturing dataset has a few more tasks

with few variants. The third difference is in the number of task requests. The medicine

dataset has a larger number of task requests than the manufacturing dataset. The

fourth difference is in the presence of user feedback. The medicine consumption

dataset has user feedback in the form of ratings as previously mentioned, whereas the

manufacturing dataset does not have such feedback data.

8.3.2 Design of the case studies

This section explains the evaluation metrics and how they are applied to different

cases of task criticality, resource variability, and modes of adaptation. It also presents

the hypothesis that is evaluated through the case studies.

Table 8.1 – Characteristics of the datasets used in the evaluation

 Dataset 1:
Medicine Consumption

Dataset 2:
Manufacturing

Number of tasks and task variants 783 7

Number of resource types 3,260 17

Number of task (variant) requests 153,385 275

Association between each task
(variant) request and the
resources it requires

✓ ✓

156 8.3 Evaluating SPARK with two case studies

8.3.2.1 Metrics and cases

Four metrics were applied in both case studies. These metrics included measuring

the percentage of executed critical task requests, the average criticality of the executed

task requests in comparison to the non-executed ones, the overhead of the approach,

and the scalability of the approach.

The metrics “percentage of executed critical task requests” and “average criticality

of the executed task requests in comparison to the non-executed ones” are related to

task criticality. A critical task has high importance for its domain and should be more

privileged in accessing the resources it needs in comparison to non-critical tasks.

Three levels of criticality for the tasks were considered, where the first level is

“critical” and the other two levels are “non-critical” namely tasks of moderate or little

importance for the domain.

The metric “percentage of executed critical task requests” is measured by counting

the critical task requests that got executed and dividing this count by the total number

of critical task requests. The metric “average criticality of the executed task requests in

Figure 8.9 – Evaluation case studies with subcases of task criticality, resource
variability, and mode of adaptation

Evaluation

20% of
Tasks are

Critical

40% of
Tasks are

Critical

20% of
Resource
are Facing
Variability

No
Framework

Reactive
Adaptation

Proactive and
Reactive

Adaptation

40% of
Resource
are Facing
Variability

No
Framework

Reactive
Adaptation

Proactive and
Reactive

Adaptation

60% of
Resource
are Facing
Variability

No
Framework

Reactive
Adaptation

Proactive and
Reactive

Adaptation

80% of
Resource
are Facing
Variability

No
Framework

Reactive
Adaptation

Proactive and
Reactive

Adaptation

Same
hierarchy
as of

Task are
Critical

(left)

60% of
Tasks are

Critical

Same
hierarchy
as of

Task are
Critical

(left)

80% of
Tasks are

Critical

Same
hierarchy
as of

Task are
Critical

(left)

...

Case Study 1:
Medicine Consumption System

Case Study 2:
Manufacturing System

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 157

comparison to the non-executed ones” is measured as follows. First, the executed and

non-executed task requests are each grouped by the abovementioned three levels of

criticality. Then, the difference between the percentages of executed task requests and

non-executed ones is computed for each level of criticality. Afterwards, a weighted

average of the percentages is computed (critical task requests have the highest weight).

For the two case studies, the abovementioned two metrics are applied to multiple

cases of task criticality, resource variability, and mode of adaptation as shown in

Figure 8.9. There are four cases of task criticality, where 20%, 40%, 60%, and 80%

of the overall tasks and variants are critical. Additionally, within each of the task

criticality cases, there are four cases of resource variability, where 20%, 40%, 60%,

and 80% of the resource types are facing variability. Furthermore, within each

resource variability case, there are three cases of the mode of adaptation, namely (i)

no use of the framework, (ii) use of the framework for the reactive process only, and

(iii) use of the framework for the proactive and reactive processes.

Concerning the three cases of adaptation, “no use of the framework” means that the

task requests are executed as they arrive without any adaptation. The way of using the

framework (SPARK) with both the “proactive and reactive” was explained in Sections

6.2 and 6.3. On the other hand, using the “reactive” process only means that there is no

proactive prioritisation. Hence, the framework reactively uses a task’s criticality as its

priority without considering other factors such as historical task usage, which are used

in the proactive computation of priorities. The reactive adaptation executes a critical

task if the required resource type is not facing variability, otherwise, adaptation is

applied. Additionally, since the priority values are not unique, resources are allocated

to tasks on a first-come-first-serve basis when multiple tasks have the same priority.

I evaluated the overhead and scalability for three parts of SPARK. The first part is

proactive adaptation planning, which is responsible for preparing an adaptation plan

proactively. The second part is the reactive identification of tasks and variants, which

is responsible for identifying which task or task variant is being invoked so SPARK can

make the necessary adaptation choices. The identification is done by associating the

name of the service method being called with its corresponding task in the SERIES task

model. The third part is the reactive task execution allocation, which is responsible for

allocating executions to tasks when resources are facing variability. Refer to Sections

6.2 and 6.3 for a detailed explanation of these parts. I evaluated the overhead by

measuring the running time in each of these three parts to see if using SPARK impacts

158 8.3 Evaluating SPARK with two case studies

a software system’s ability to execute tasks in a tolerable waiting time. Furthermore,

an increasing number of tasks (variants) is used from the dataset when measuring the

running time to determine whether SPARK is scalable based on the type of trendline

(e.g., logarithmic, polynomial, or exponential).

8.3.2.2 Simulation tool and adaptation types

I developed a simulation tool to simulate the task requests found in the datasets. I

implemented the modes of adaptation mentioned in Section 8.3.2.1. The simulation

tool invoked the task requests while SPARK handled the resource-driven adaptation

using multiple types of adaptation as explained next.

The first case study involved, two types of adaptation, namely resource substitution

and task cancellation. The substitutability of the depletable resource types (medicines)

with one another was deduced from the dataset. Furthermore, this dataset contains

user feedback that rates the effectiveness of medicines in treating medical conditions.

These ratings are used for resource substitution to decide which potential substitute is

the best choice. The adaptation types involving the execution of a task variant instead

of another and delaying a task do not apply to this case study. Since the medical

conditions are different from each other and are not interchangeable, the variants of

the medicine allocation task are non-substitutable. For example, it is not possible to

consider that patients have diabetes if they have allergies. Furthermore, delaying a

task is not applicable because the resource types are depletable meaning that they are

either available or unavailable. Hence, task requests do not need to wait their turn as is

the case with reusable resources or when there are scheduled replenishments for the

depletable resources which is not the case here.

The second case study included all four of SPARK’s types of adaptation because the

dataset of this case study contains both reusable and depletable resource types. This

means when a reusable resource type is unavailable, it can be substituted with another

one or the task request can be delayed and executed later. Additionally, this case study

had substitutable task variants that produce a similar outcome but differ according to

the time needed to execute. Hence, it is possible to execute one variant instead of

another when needed to reduce the strain on the reusable resource types (machines).

Moreover, the depletable resource types are also substitutable. Furthermore, task

requests are cancelled when no other type of adaptation is applicable.

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 159

8.3.2.3 Hypothesis

Software systems comprise tasks that require resources. Hence, a software system

can execute a task if the required resources are available. During resource variability,

it is important to keep the resources available for critical tasks that need them most.

Accordingly, the hypothesis H1 is described as follows:

H1: When resources are facing variability, SPARK’s proactive and reactive adaptation

improves a software system’s ability to execute critical tasks.

The hypothesis is primarily evaluated using the metrics related to measuring the

percentage of executed critical task requests and the average criticality of the executed

task requests in comparison to the non-executed ones. Furthermore, the overhead and

scalability of SPARK are measured to see whether using this framework to improve a

software system’s ability to execute critical tasks is done while maintaining a tolerable

waiting time.

8.3.3 Case study 1: Medicine consumption system

The first case study is related to a medicine consumption system. The results of the

metrics for this case study are reported and discussed in the following subsections.

8.3.3.1 Metric 1: Percentage of executed critical task requests

Figure 8.10 (a to d) shows the percentage of executed critical task requests for the

four cases of task criticality, four cases of resource variability, and three cases of the

mode of adaptation that were explained in Section 8.3.2.1. For all cases of task

criticality and resource variability, using SPARK’s proactive and reactive adaptation

resulted in a higher percentage of executed critical task requests in comparison to

using reactive adaptation. Additionally, using reactive adaptation resulted in a higher

percentage of executed critical task requests in comparison to using no framework.

Proactive and reactive adaptation increased the executed critical task requests by 1%

to 6% and 10% to 31% in comparison to using reactive adaptation and no framework

respectively. In this case study, each 1% of the abovementioned increase represents

243, 901, 1137, and 1336 task requests when 20%, 40%, 60%, and 80% of the tasks

are critical respectively. What follows is an analysis of these results based on the

number of critical task requests and the number of resource types that are facing

variability.

160 8.3 Evaluating SPARK with two case studies

Figure 8.10a represents a case where 20% of the tasks are critical (in this case

study, these are variants of a task as explained in Section 8.3.1). Table 8.2 shows the

number of critical task requests and their corresponding number of resource types

that are either facing or not facing variability for the case where 20% of tasks

(variants) are critical. There were 24,264 critical task requests in total. When 20% of

the resource types were facing variability, 19,266 critical task requests used 886

resource types that are not facing variability and 4,998 critical task requests used 210

resource types that are facing variability. Some of the 4,998 critical task requests were

Medicine Consumption System

(a)
20% of Tasks are Critical

(b)
40% of Tasks are Critical

(c)
60% of Tasks are Critical

(d)
80% of Tasks are Critical

Figure 8.10 – Case Study 1: percentages of executed critical task requests

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 161

able to use the resource types they originally needed, and most of the remaining task

requests were executed after adaptation was performed. Hence, most critical task

requests were able to access the resource types that they need. This explains the high

percentage of executed critical task requests in this case, where 98% and 99% of the

critical task requests were executed when using reactive adaptation and proactive and

reactive adaptation respectively.

Moreover, there is a linear drop in the percentage of executed critical task requests

between the cases where 40% and 60% of resource types are facing variability (Figure

8.10a). However, there is a higher drop between the cases where 60% and 80% of the

resource types are facing variability. The reason for this higher drop is that, in the case

where 80% of the resource types are facing variability, 4,008 critical task requests

required 219 resource types not facing variability, and 20,256 critical task requests

required 877 resource types facing variability. This means that most of the critical task

requests required resource types that are facing variability. In comparison, in the case

where 60% of the resource types are facing variability, the number of critical task

requests (11,139) that require resource types not facing variability is close to the

number of task requests (13,125) that require resource types facing variability.

Table 8.2 – Case Study 1: the case where 20% of tasks (variants) are critical (number
of critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 157 (20%)

Percentage of
Resource Types
facing variability

Number of Resource
Types facing and not
facing variability

Critical
Tasks
(variants)

Critical Task
Requests

20% = 652
886 not facing variability 153 19,266

210 facing variability 100 4,998

40% = 1,304
661 not facing variability 144 14,319

435 facing variability 128 9,945

60% = 1,956
466 not facing variability 123 11,139

630 facing variability 141 13,125

80% = 2,608
219 not facing variability 86 4,008

877 facing variability 153 20,256

162 8.3 Evaluating SPARK with two case studies

When 40%, 60%, and 80% of tasks (variants) are critical (Figure 8.10b-d), there is a

linear drop in the percentage of executed critical tasks between all the cases of

resource variability. When comparing the cases where 20% (Figure 8.10a) and 40%

(Figure 8.10b) of the tasks are critical, the percentage of executed critical tasks was 6%

and 8% lower when 40% and 60% of the resources were facing variability

respectively. This is due to a significant increase in the number of critical task requests.

This number was 24,264 in the case where 20% of the tasks were critical and it

became 90,105 in the case where 40% of the tasks are critical. Hence, the task requests

increased by 271%. This increase is smaller when comparing the cases where 40%

(Figure 8.10b) and 60% (Figure 8.10d) of the tasks are critical. The number of task

requests was 90,105 in the case where 40% of the tasks are critical and it became

113,688 in the case where 60% of the tasks are critical. Hence, the task requests only

increased by 26%. Appendix B shows additional information on the number of critical

task requests and their corresponding number of resource types for the cases where

40%, 60%, and 80% of tasks (variants) are critical.

8.3.3.2 Metric 2: Average criticality of executed tasks

Figure 8.11(a-d) presents percentages that show how much more critical the

executed task requests were in comparison to the non-executed ones. These

percentages are presented for the four cases of task criticality, four cases of resource

variability, and three cases of the mode of adaptation explained in Section 8.3.2.1. For

all cases of task criticality and resource variability, the task requests that are executed

when using proactive and reactive adaptation are on average more critical than the

ones that are executed when using reactive adaptation. Additionally, using reactive

adaptation gave a better result than using no framework.

With proactive and reactive adaptation, the executed task requests were on average

49% to 95% more critical than the non-executed ones. Proactive and reactive

adaptation had better results than reactive adaptation with a difference of 1% to 3%,

3% to 7%, 5% to 10%, and 7% to 13% in the cases where 20%, 40%, 60%, and 80% of

tasks (variants) are critical respectively. This shows that SPARK was able to execute

task requests of a higher criticality as the number of critical task requests increased.

Additionally, as shown in Figure 8.11, the percentage is small (1% to 3%) when no

framework is used in the case where 80% of the resource types are facing variability.

The reason behind this result is that around half of the critical task requests were

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 163

executed, whereas the rest of the executed task requests were non-critical because

without the framework the task requests just execute as they arrive. Hence, non-

critical task requests that arrived early depleted the resources that are needed for

executing critical task requests that arrived late.

Moreover, there is a linear drop between the cases where 20% and 40% and 40%

and 60% of resource types are facing variability. However, a higher drop is shown

Medicine Consumption System

(a)
20% of Tasks are Critical

(b)
40% of Tasks are Critical

(c)
60% of Tasks are Critical

(d)
80% of Tasks are Critical

Figure 8.11 – Case Study 1: executed task requests that are more critical than non-executed
ones (by percentage on average)

164 8.3 Evaluating SPARK with two case studies

between the cases where 60% and 80% of resource types are facing variability. The

reason for this higher drop is that most of the critical task requests required resource

types that are facing variability.

8.3.3.3 Metrics 3 and 4: Overhead and scalability

I evaluated overhead and scalability in three parts of SPARK, namely proactive

adaptation planning, reactive identification of tasks and variants, and reactive task

execution allocation. What follows are the results of these two metrics.

Proactive adaptation planning. The running time, shown in Figure 8.12, ranges

between 33 and 294 milliseconds when the number of task variants is between 87 and

783. The abovementioned values do not add a significant overhead to a software

system, especially when considering that proactive adaptation planning is not

executed with every task request. Additionally, the fitting curve in Figure 8.12 is

polynomial with R2 equal to 0.9946, which indicates that the algorithm for proactive

adaptation planning is scalable.

Reactive identification of tasks and variants. The mean running time, shown in

Figure 8.13, ranges between 0.0035 and 0.0040 milliseconds when the number of

tasks is between 87 and 783. This overhead is minor, even though the identification is

performed with every task request. Additionally, the fitting curve is polynomial with R2

Figure 8.12 – Case Study 1: proactive adaptation planning running time

33

72

122

166
198

217
237

276
294

R² = 0.9946

0

50

100

150

200

250

300

350

87 174 261 348 435 522 609 696 783

R
u

n
n

in
g

 T
im

e

(I
n

 M
il

li
se

co
n

d
s)

Number of Tasks

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 165

equal to 0.9807, which indicates that the algorithm for identifying tasks and variants is

scalable.

 Reactive task execution allocation. The running time for reactive task execution

allocation is shown in Figure 8.14 and ranges between 1.81 and 10.92 milliseconds

when the number of tasks is between 87 and 783. A few milliseconds are minor and do

not constitute significant overhead. Additionally, the fitting curve in Figure 8.14 is

polynomial with R2 equal to 0.9988, which makes the algorithm for task execution

allocation scalable.

The maximum overheads for the abovementioned three parts of SPARK in this case

study were 294, 0.0040, and 10.92 milliseconds respectively. This overhead is minor

and does not hinder a software system’s ability to execute tasks with a tolerable

waiting time. For example, web users find it tolerable to wait for 2 to 4 seconds (Nah,

2004).

I compared the overhead values from this case study to those from the preliminary

evaluation reported in Section 7.4. Consider the cases of 783 task variants in the case

study and 1000 tasks in the preliminary evaluation since these are the closest to each

other in the number of tasks (variants). The overhead reported in this case study was

similar to that reported in the preliminary evaluation. The overhead for the proactive

adaptation in this case study is 294 milliseconds, which is comparable to the 350

milliseconds from the preliminary evaluation. Additionally, the overhead for the

Figure 8.13 – Case Study 1: identification of tasks/variants running time
(an “x” on the box p ot represents the mean)

166 8.3 Evaluating SPARK with two case studies

reactive identification of tasks and variants in this case study is 0.0040 milliseconds,

which is comparable to the 0.0047 milliseconds from the preliminary evaluation.

Furthermore, the scalability is shown to be polynomial in both the preliminary

evaluation and this case study.

8.3.3.4 Summary of case study 1

We can conclude from the results of this case study that using SPARK’s proactive

and reactive adaptation produces better results for the first two metrics compared to

using reactive adaptation only and to not using the framework. SPARK improved the

percentage of executed critical task requests by 1% to 6% and 10% to 31% in

comparison to using reactive adaptation only and no framework, respectively. It also

improved the average criticality of executed task requests by 1% to 13% and 18% to

55% in comparison to using reactive adaptation only and no framework, respectively.

Furthermore, SPARK does not add significant overhead and is scalable. These results

from this case study satisfy the hypothesis established in Section 8.3.2.3 because they

show that SPARK helps software systems in increasing the number of executed critical

task requests during resource variability without exceeding a tolerable waiting time

concerning overhead and scalability.

Figure 8.14 – Case Study 1: task execution allocation running time

1.81
2.84

4.01
5.19

6.34

7.62
8.37

9.62

10.92

R² = 0.9988

0

2

4

6

8

10

12

87 174 261 348 435 522 609 696 783

R
u

n
n

in
g

 T
im

e

(I
n

 M
il

li
se

co
n

d
s)

Number of Tasks

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 167

8.3.4 Case study 2: Manufacturing system

The second case study is related to a manufacturing system. The results of the

metrics for this case study are reported and discussed in the following subsections.

8.3.4.1 Metric 1: Percentage of executed critical task requests

Figure 8.15 (a to d) shows the percentage of executed critical task requests for the

four cases of task criticality, four cases of resource variability, and three cases of the

mode of adaptation that were explained in Section 8.3.2.1. For all cases of task

Manufacturing System

(a)
20% of Tasks are Critical

(b)
40% of Tasks are Critical

(c)
60% of Tasks are Critical

(d)
80% of Tasks are Critical

Figure 8.15 – Case Study 2: percentages of executed critical task requests

66%
59%

52% 50%

95% 93%
90%

83%

97% 95%
91%

86%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

20% 40% 60% 80%

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
cu

te
d

C

ri
ti

ca
l T

a
sk

 R
e

q
u

e
st

s

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

66%
62%

60% 57%

85%

78% 76%
69%

87%
80% 78%

72%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

20% 40% 60% 80%

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
cu

te
d

C

ri
ti

ca
l T

a
sk

 R
e

q
u

e
st

s

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

65% 63%

49% 48%

86%

80%

65%

59%

88%
84%

68%

62%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

20% 40% 60% 80%

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
cu

te
d

C

ri
ti

ca
l T

a
sk

 R
e

q
u

e
st

s

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

66%
63%

46% 45%

88%
84%

61%

55%

89%
86%

63%
57%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

20% 40% 60% 80%

P
e

rc
e

n
ta

g
e

 o
f

E
x

e
cu

te
d

C

ri
ti

ca
l T

a
sk

 R
e

q
u

e
st

s

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

168 8.3 Evaluating SPARK with two case studies

criticality and resource variability, using SPARK’s proactive and reactive adaptation

resulted in a higher percentage of executed critical task requests in comparison to

using reactive adaptation only. Additionally, using reactive adaptation resulted in a

higher percentage of executed critical task requests in comparison to using no

framework. Proactive and reactive adaptation increased the executed critical task

requests by 1% to 4% and 12% to 39% in comparison to using reactive adaptation and

no framework respectively. What follows is an analysis of these results based on the

number of critical task requests and the number of resource types that are facing

variability.

Figure 8.15a represents a case where 20% of the tasks are critical (in this case

study, these are tasks and task variants as explained in Section 8.3.1). Table 8.3 shows

the number of critical task requests and their corresponding number of resource types

when facing and not facing variability for the case where 20% of tasks (variants) are

critical. There were 111 critical task requests in total. When 20% of the resource types

were facing variability, 65 critical task requests used 6 depletable and 2 reusable

resource types that are not facing variability and 46 critical task requests used 3

Table 8.3 – Case Study 2: the case where 20% of tasks (variants) are critical (number
of critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 2 (20%)

Percentage of
Resource Types
facing variability

Number of Resource Types
facing and not facing
variability

Critical
Tasks
(variants)

Critical Task
Requests

20%

Not facing variability:

6 depletable and 2 reusable
2 65

Facing variability:

3 depletable and 1 reusable
2 46

40%

Not facing variability:

4 depletable and 2 reusable
2 42

Facing variability:

5 depletable and 1 reusable
2 69

60%

Not facing variability:

4 depletable and 1 reusable
2 42

Facing variability:

5 depletable and 2 reusable
2 69

80%

Not facing variability:

2 depletable and 1 reusable
2 25

Facing variability:

7 depletable and 2 reusable
2 86

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 169

depletable and 1 reusable resource types that are facing variability. Some of the 46

critical task requests were able to use the resource types they originally needed, and

most of the remaining task requests were executed after adaptation was performed.

Hence, most critical task requests were able to access the resource types that they

need. This explains the high percentage of executed critical task requests in this case,

where 95% and 97% of the critical task requests were executed when using reactive

adaptation and proactive and reactive adaptation respectively.

Moreover, there is a linear drop in the percentage of executed critical task requests

in the four cases of resource variability when 20% and 40% of tasks are critical (Figure

8.15a-b). However, there is a higher drop in the cases where 60% and 80% of the

resource types are facing variability when 60% and 80% of tasks are critical (Figure

8.15c-d). The reason for this higher drop is that there is an increase in the number of

critical task requests, which required a reusable resource type that is facing variability

with no possible alternatives to execute the task requests. Appendix B shows

additional information on the number of critical task requests and their corresponding

number of resource types for the cases where 40%, 60%, and 80% of tasks (variants)

are critical.

8.3.4.2 Metric 2: Average criticality of executed tasks

Figure 8.16 (a-d) presents percentages that show how much more critical the

executed task requests were in comparison to the non-executed ones. These

percentages are presented for the four cases of task criticality, four cases of resource

variability, and three cases of the mode of adaptation explained in Section 8.3.2.1. For

all cases of task criticality and resource variability, the task requests that are executed

when using proactive and reactive adaptation are on average more critical than the

ones that are executed when using reactive adaptation. Additionally, using reactive

adaptation gave a better result than using no framework.

With proactive and reactive adaptation, the executed task requests were on average

6% to 75% more critical than the non-executed ones. Proactive and reactive adaptation

had better results than reactive adaptation with an improvement of 1% to 4%, 1% to

6%, 1% to 7%, and 1% to 4% in the cases where 20%, 40%, 60%, and 80% of tasks

(variants) are critical respectively. This shows that SPARK was able to execute task

requests of a higher criticality as the number of critical task requests increased.

170 8.3 Evaluating SPARK with two case studies

As shown in Figure 8.16, the percentage becomes negative when no framework is

used in the cases where 60% and 80% of the resource types are facing variability. A

negative percentage means that the executed task requests are on average less critical

than the non-executed ones. The reason behind this result is that a portion of the task

requests required a reusable resource type that is facing variability and there is no

Manufacturing System

(a)
20% of Tasks are Critical

(b)
40% of Tasks are Critical

(c)
60% of Tasks are Critical

(d)
80% of Tasks are Critical

Figure 8.16 – Case Study 2: executed task requests are more or less critical than non-
executed ones - by percentage on average

(positive percentages denote that the executed task requests are more critical while
negative percentages denote that the executed task requests are less critical)

24%

14%

-13%
-16%

74%

66%

44%

29%

75%

67%

47%

33%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 40% 60% 80%

E
x

e
cu

te
d

 T
a

sk
 R

e
q

u
e

st
s

M
o

re
 o

r
L

e
ss

 C
ri

ti
ca

l
th

a
n

 N
o

n
-E

x
e

cu
te

d

O
n

e
s

(B
y

 P
e

rc
e

n
ta

g
e

 o
n

 A
v

e
ra

g
e

)

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

27%

19%

3%

-2%

63%

51%

30%

18%

64%

52%

35%

24%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

20% 40% 60% 80%
E

x
e

cu
te

d
 T

a
sk

 R
e

q
u

e
st

s
M

o
re

 o
r

L
e

ss
 C

ri
ti

ca
l

th
a

n
 N

o
n

-E
x

e
cu

te
d

O

n
e

s
(B

y
 P

e
rc

e
n

ta
g

e
 o

n
 A

v
e

ra
g

e
)

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

26%
21%

-10%
-13%

66%

56%

17%

6%

67%

59%

24%

11%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

20% 40% 60% 80%

E
x

e
cu

te
d

 T
a

sk
 R

e
q

u
e

st
s

M
o

re
 o

r
L

e
ss

 C
ri

ti
ca

l
th

a
n

 N
o

n
-E

x
e

cu
te

d

O
n

e
s

(B
y

 P
e

rc
e

n
ta

g
e

 o
n

 A
v

e
ra

g
e

)

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

28%
23%

-15% -16%

70%

60%

14%

2%

71%

63%

17%

6%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

20% 40% 60% 80%

E
x

e
cu

te
d

 T
a

sk
 R

e
q

u
e

st
s

M
o

re
 o

r
L

e
ss

 C
ri

ti
ca

l
th

a
n

 N
o

n
-E

x
e

cu
te

d

O
n

e
s

(B
y

 P
e

rc
e

n
ta

g
e

 o
n

 A
v

e
ra

g
e

)

Initial Percentage of Resource Types
facing Variability

No Framework Reactive Proactive and Reactive

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 171

framework to perform adaptation to address this issue. Hence, the resource was not

kept available for the critical tasks that need it most.

8.3.4.3 Metrics 3 and 4: Overhead and scalability

Similar to the first case study, I evaluated the overhead and scalability in three parts

of SPARK: (i) proactive adaptation planning, (ii) reactive identification of tasks and

variants, and (iii) reactive task execution allocation. What follows are the results of

these two metrics.

Proactive adaptation planning. The proactive adaptation planning running time,

shown in Figure 8.17, ranges between 1.45 and 2.57 milliseconds when the number of

tasks and variants is between 1 and 7. Additionally, the fitting curve in Figure 8.17 is

polynomial with R2 equal to 0.9862, which indicates that the algorithm for proactive

adaptation planning is scalable.

Reactive identification of tasks and variants. The reactive identification of tasks

and variants running time, shown in Figure 8.18, ranges between 0.0020 and 0.0023

milliseconds when the number of tasks and variants is between 1 and 7. Additionally,

the fitting curve is polynomial with R2 equal to 0.9899, which indicates that the

algorithm for the reactive identification of tasks and variants is scalable.

Reactive task execution allocation. The reactive task execution allocation running

time, shown in Figure 8.19, ranges between 0.0394 and 0.103 milliseconds when the

Figure 8.17 – Case Study 2: proactive adaptation planning running time

1.45 1.56 1.64
1.78 1.89

2.17

2.57

R² = 0.9862

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7

R
u

n
n

in
g

 T
im

e

(I
n

 M
il

li
se

co
n

d
s)

Number of Tasks

172 8.3 Evaluating SPARK with two case studies

number of tasks and variants is between 1 and 7. Additionally, the fitting curve in

Figure 8.19 is polynomial with R2 equal to 0.9781, which indicates that the algorithm

for reactive task execution allocation is scalable.

Unlike the first case study, the results of overhead and scalability were not

compared to the preliminary evaluation because the dataset of this case study has a

smaller number of tasks and variants than the preliminary evaluation. However, like

the first case study, SPARK’s overhead is minor and does not hinder a software

system’s ability to execute tasks with a tolerable waiting time (e.g., 2 to 4 seconds as

indicated by (Nah, 2004)).

8.3.4.4 Summary of case study 2

A conclusion that is drawn from the second case study is that SPARK’s proactive and

reactive adaptation offers better results in the first two metrics compared to using

reactive adaptation only and no framework. Proactive and reactive adaptation

increased the percentage of executed critical task requests by 1% to 4% in comparison

to reactive adaptation and by 12% to 39% in comparison to having no framework.

Additionally, proactive and reactive adaptation increased the criticality of executed

task requests by 1% to 7% in comparison to reactive adaptation and by 22% to 60% in

comparison to having no framework. Furthermore, the results show that SPARK has

low overhead and is scalable. The results of the four metrics satisfy the hypothesis

Figure 8.18 – Case Study 2: identification of tasks/variants running time
(an “x” on the box p ot represents the mean)

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 173

since SPARK helps software systems in increasing the number of executed critical task

requests during resource variability without exceeding a tolerable waiting time

concerning overhead and scalability.

8.3.5 Comparison between the two case studies

The average percentage of executed critical task requests is close in both case

studies. For the four cases of resource variability and the four cases of task criticality,

on average overall, 88% and 80% of the critical task requests were executed when

using proactive and reactive adaptation in the first and second case study respectively.

Additionally, the improvement that proactive and reactive adaptation provides over

proactive adaptation is also close ranging from 1% to 6% in the first case study and

1% to 4% in the second case study.

In both case studies, the use of proactive and reactive adaptation provided an

improvement over the use of reactive adaptation. This improvement is also close in

both case studies and ranges from 1% to 6% in the first case study and 1% to 4% in

the second case study. Additionally, in both case studies, having no framework yielded

the lowest percentages of executed critical tasks compared to performing adaptation.

In terms of overhead and scalability, both case studies show that SPARK has low

overhead and is scalable, whereby the different parts of this framework have running

times in milliseconds and the fittings curves of these running times are polynomial.

Figure 8.19 – Case Study 2: task execution allocation running time

0.039 0.043
0.049

0.071
0.079

0.089

0.103

R² = 0.9781

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7

R
u

n
n

in
g

 T
im

e

(I
n

 M
il

li
se

co
n

d
s)

Number of Tasks

174 8.4 Evaluating intrusiveness

8.3.6 Threats to validity

The evaluation results presented in this thesis have both internal and external

threats to validity. An internal threat is related to the percentage of critical tasks and

resource types facing variability, which were selected by the researcher. However, the

evaluation considered multiple cases with an increasing percentage of critical tasks

(20%, 40%, 60%, and 80%). Furthermore, each of the abovementioned cases had an

increasing percentage of resource types that are facing variability (20%, 40%, 60%,

and 80%). These cases show what would be the outcome when there is an increase in

the percentage of critical tasks and the percentage of the resource types facing

variability. Furthermore, since the percentages are increasing and reach up to 80%, the

majority of tasks and resource types are included in the selection.

As for the external threat to validity, the evaluation covered three types of systems,

namely a medicine consumption system and a manufacturing system from the two

case studies, in addition to the automated warehouse system from the preliminary

evaluation. Therefore, the results may not be generalisable. However, the evaluation

shows that different types of systems that depend on resources can benefit from

SPARK.

8.4 Evaluating intrusiveness

The use of a framework with a software system requires some changes to the

software system’s source code. These changes should be minimally intrusive for the

source code because they would require less effort to perform (Klein, Maggio, et al.,

2014). Furthermore, there would be less possibility of introducing errors into the

source code of a software system. Intrusiveness is measured in terms of the number of

lines of code (LOC) and the number of source-code files that are added or modified to

perform the integration. If minor changes are needed, then the integration is non-

intrusive. For example, consider that an enterprise system would benefit from using

SPARK for performing resource-driven adaptation and that this system uses resources

for many tasks (e.g., invoicing, manufacturing, reception, etc.). These tasks typically

have many corresponding source code files at each layer of a multi-layer software

architecture that includes business logic, controllers, infrastructure, and presentation

(Martin, 2009). A minimally intrusive integration would only perform small changes to

the smallest possible number of these source code files.

Chapter 8 – Framework for Resource-Driven Adaptation Evaluation (SPARK) 175

A prototype software application was developed to evaluate the intrusiveness of

integrating SPARK into it. The integration was performed as I proposed in Section 4.5.

The tasks being initiated in a software system should be intercepted and identified for

SPARK to make adaptation decisions. Tasks are initiated by making a call to a service

method. For example, to initiate an order preparation task a call is made to a

corresponding service method called “PrepareOrder” in the software system. A service

method is associated with its corresponding task on a SERIES task model as explained

in Section 5.2.3.2. Hence, the prototype software application had service methods that

correspond to tasks defined in a SERIES task model.

Actions filters (Larkin et al., 2021) were used to intercept the service method calls

and execute SPARK’s algorithm for identifying tasks and task variants. This way when

a task or one of its variants is initiated SPARK can identify it and decide whether

adaptation is needed. The implementation included one action filter with 136 LOC,

which includes the functionality for intercepting tasks and caching task models to

reduce execution time. The 136 LOC were added to two source-code files globally for

the entire software system. This means that the number of LOC required for the

integration of SPARK does not increase as the number of tasks in a software system

increases. Based on this, it is possible to say that the integration is non-intrusive

because it only requires the addition of a small number of LOC to a small number of

source code files to make SPARK work for any number of tasks and task variants. Task-

specific source code files like business logic were not modified. This makes it easier to

use SPARK with software systems that comprise thousands of tasks (e.g., enterprise

systems). On the other hand, if the integration required the addition and modification

of many LOC in several source-code files per task, then the intrusiveness would

increase as the number of tasks increases, due to the widespread changes.

8.5 Chapter summary

This chapter presented the evaluation of the proposed framework for resource-

driven adaptation (SPARK). I conducted a preliminary evaluation of SPARK’s feasibility

by developing a simulator of an automated warehouse system. Additionally, this

preliminary evaluation involved measuring SPARK’s overhead and scalability.

Furthermore, I evaluated SPARK through two case studies that include datasets from a

medicine consumption system and a manufacturing system. I measured several

metrics including the percentage of executed critical task requests, the average

176 8.5 Chapter summary

criticality of the executed task requests versus the non-executed ones, overhead, and

scalability. The results showed that SPARK’s proactive and reactive adaptation

increased the number of executed critical task requests and the average criticality of

the executed task requests during resource variability in comparison to using reactive

adaptation only and no framework. SPARK did not add significant overhead and was

shown to be scalable. Furthermore, a few lines of code are needed to make SPARK

work with a software system; this means that it is non-intrusive.

 177

9

Conclusions and Future Work

This chapter summarises the work described in the thesis by presenting an

overview of the contributions and evaluation results. Moreover, this chapter presents

ideas for future work and a few concluding final remarks.

9.1 Conclusions

This thesis contributed an approach for supporting resource-driven adaptation

when software systems are facing resource variability. Chapter 3 presented a

literature review of existing task modelling notations and resource-driven adaptation

approaches. This literature review compared existing task modelling notations based

on their task types and operators and their support for resource-driven adaptation

(e.g., resource types and task variants). This helped in identifying the gaps in existing

task modelling notations and in formulating the first research question (RQ1) as

specified in Section 1.4.1. Additionally, the literature review categorised and critically

analysed existing resource-driven adaptation approaches (e.g., based on the types of

resources and adaptation that they support). This helped in formulating the second

research question (RQ2) specified in Section 1.3.1. To answer these questions, this

thesis proposed a task modelling notation called SERIES and a framework called

SPARK to support resource-driven adaptation in software systems.

The proposed notation (SERIES) and framework (SPARK) fill the gaps (1-3)

presented in Section 3.5. The first gap is related to considering tasks in the resource-

driven adaptation process to provide granularity in the adaptation decision-making

based on task differences. In this regard, SERIES supports the representation of tasks

and their variants with properties like resource consumption and the role of the user

178 9.1 Conclusions

who is initiating the task. Additionally, SPARK uses this data in the resource-driven

adaptation process to compute unique priorities for tasks and their variants and to

decide whether an adaptation type is applicable to a task. The second gap is related to

supporting multiple types of resources, to make the resource-driven adaptation

approach more comprehensive. In this regard, SERIES supports the association of

tasks with types of resources that are defined at runtime according to what the

software system requires. Moreover, SPARK considers the differences among

resources when making adaptation decisions. For example, it determines whether a

resource is facing variability by observing the quantity on hand for depletable

resources and the effect of reusable resources on the execution duration of tasks. The

third gap is related to supporting multiple types of adaptation to provide versatility in

addressing resource variability. In this regard, SPARK supports four types of

adaptation, namely (i) execution of task variants that require fewer resources; (ii)

substitution of resource types with alternative ones; (iii) execution of tasks in a

different order based on their priorities; and (iv) cancellation of tasks when no other

task variant or resource can be used. Hence, if one type of adaptation is not applicable

to a task another type of adaptation would be chosen.

Chapter 4 presented an overview of the proposed work. This overview showed the

involved stakeholders, adaptation components, and data. The stakeholders include

system administrators and software practitioners, whose role is to provide setup data

and define task models related to the software system respectively. The stakeholders

also include end-users who initiate tasks and provide feedback to the software system

when it performs adaptation. Moreover, the adaptation components have proactive and

reactive capabilities. The proactive components are mainly responsible for uniquely

prioritising tasks based on multiple criteria and selecting the types of adaptation to

perform based on their cost. The reactive components are mainly responsible for

identifying if a type of resource is facing variability, managing the execution of the

tasks, and eliciting and providing feedback from and to end-users. The data required

by the proposed framework (SPARK) to perform the adaptation includes setup data

(e.g., type of resources) and task models that are represented using the proposed task

modelling notation (SERIES). Furthermore, the overview that Chapter 4 presented

paved the way for the contributions of Chapters 5 and 6.

Chapter 5 presented the proposed task modelling notation (SERIES). The meta-

model of SERIES consists of constructs for representing task models. Examples of

Chapter 9 – Conclusions and Future Work 179

those constructs include resource types, task priorities, task variants, and feedback

properties. SERIES represents task models graphically to make them more legible and

understandable. Hence, software practitioners can understand how abstractions are

refined (e.g., abstract tasks to subtasks) without having to read dense text. Chapter 5

presented an example from an automated warehouse system to illustrate these

constructs. Furthermore, Chapter 5 presented a tool for supporting the creation of task

models using SERIES and for managing setup data (e.g., resource types and user roles).

Chapter 6 presented the proposed resource-driven adaptation framework (SPARK).

This chapter explained the proactive and reactive adaptation components of SPARK.

Moreover, Chapter 6 presented an example from an automated warehouse system to

demonstrate the calculations that SPARK’s adaptation components perform. Examples

of those calculations included the calculation of task priorities, the selection of

adaptation types, and the allocation of task executions. Furthermore, Chapter 6

discussed the implementation of the adaptation components as a prototype.

Chapter 7 presented an assessment of SERIES based on two paradigms, namely the

Cognitive Dimensions Framework and the Physics of Notations. I used these paradigms

because they provide useful principles for evaluating visual notations. Additionally,

Chapter 7 presented an evaluation of SERIES via a user study with software

practitioners. The purpose of the study was to measure the ability of software

practitioners to explain and create task models, as well as the usability of SERIES and

the clarity of its semantic constructs. The results showed that software practitioners

performed very well when explaining and creating task models using SERIES. These

results were reflected in the task modelling activities that the participants performed

as well as in their positive feedback regarding the usability of SERIES and the clarity of

its semantic constructs. The user study also provided some additional insights that

were not part of the original research question. In this regard, the feedback of the

participants on the SERIES notation included comments that were related to the

dimensions and principles of the Cognitive Dimensions Framework and Physics of

Notations paradigms respectively. This was an additional insight because the user

study did not include questions that are directly related to these paradigms. The

feedback provided by the participants complemented the initial assessment that I did

with these two paradigms and showed that SERIES adhered to their recommendations.

Additionally, participants with different levels of experience in the software industry

achieved high scores on both the explanation and creation of SERIES task models.

180 9.2 Limitations

Although it is not the study’s objective to compare these scores by level of experience, I

was able to perform this comparison and get some insights because the sample of

participants was diverse and included software practitioners whose levels of

experience ranged from less than one year up to ten years.

Chapter 8 presented a preliminary evaluation with generated data for SPARK via a

tool that simulates an automated warehouse scenario. The tool served as a proof-of-

concept prototype to evaluate SPARK’s feasibility. Furthermore, Chapter 8 presented

two case studies that evaluated SPARK with existing datasets that are related to a

medicine consumption system and a manufacturing system. The two case studies

involved measuring the percentage of executed critical task requests, and the average

criticality of the executed task requests versus the non-executed ones, overhead, and

scalability. The results showed an increase in the number of executed critical task

requests during resource variability when using SPARK. Moreover, the time it took to

prepare and apply adaptation plans did not add significant overhead that affects the

software system’s ability to execute tasks in a tolerable waiting time. Furthermore, the

results showed that SPARK is scalable relative to the increase in the number of tasks.

Additionally, the preliminary evaluation done on the SPARK framework provided some

additional insights that were not part of the original research question. In this regard,

the identification of tasks and variants was initially applied without caching the tasks

and variants. However, the results showed that the performance can be improved

further. Hence, I created an alternative implementation that performs caching and

compared both implementations in the evaluation. This shows that caching improved

the performances and was therefore subsequently used in the case studies. Moreover,

SPARK originally added a fixed epsilon value to the initial task priorities to make them

unique if they were equal. However, I saw that the epsilon value should be changed

when the number of tasks increases. Therefore, I adjusted the original design to have a

changeable epsilon value, which makes the calculation of the adjusted priorities

applicable to any number of tasks.

9.2 Limitations

The work presented in this thesis has some limitations that are discussed in the

following subsections. These limitations do not undermine the contribution but are

rather either out of the scope of this work or could complement it through future work.

Chapter 9 – Conclusions and Future Work 181

9.2.1 Using SPARK in different types of software systems

The evaluation of the SPARK framework was done with three types of software

systems. However, the results may not be generalisable to some types of software

systems that have different requirements. For example, embedded systems, such as

domestic appliances, have a limited amount of computational resources and a small

number of tasks running at the same time. In this type of system, SPARK would be

excessive because it is intended for more complex cases of resource variability.

9.2.2 Using SERIES with other frameworks

Frameworks other than SPARK could potentially use SERIES for modelling tasks.

Moreover, frameworks could rely on metrics as part of their adaptation process as is

done, for example, in some brownout approaches (Xu and Buyya, 2019). SERIES task

models reflect metrics like speed and aesthetics indirectly through task variants.

However, SERIES was not designed to provide concepts for explicitly defining metrics.

Therefore, SERIES would have to be extended if such metrics are explicitly needed by

other frameworks.

9.2.3 Integrating SPARK into applications

I integrated SPARK into prototype software applications to evaluate it. However, an

application programming interface (API) is needed to enable software practitioners to

integrate SPARK into their software systems. This API should work with existing

software development technologies such as Integrated Development Environments.

This thesis did not present an integration API for SPARK because it is outside the scope

of this work.

9.2.4 Providing additional analysis in SPARK

One of SPARK’s adaptation components forecasts the number of task execution

requests in software systems. SPARK uses this forecasted number to estimate future

workloads so it can prioritise tasks and allocate task executions accordingly. However,

SPARK does not currently forecast the use of resources by future tasks before making

resource substitution decisions. The forecasted resource usage would enable SPARK to

182 9.3 Future work

analyse which critical tasks may need certain types of resources in the future, to avoid

allocating these resources to non-critical tasks that need to execute in the present.

9.3 Future work

SPARK and SERIES help software systems that rely on multiple resource types in

addressing resource variability through resource-driven adaptation. Nonetheless, as

explained in this section, there is room for extending SPARK and SERIES in the future.

9.3.1 Extending SERIES and its supporting tool

It is possible to investigate further how to elicit and present feedback to end-users

based on the adaptation-related feedback properties of SERIES. In this regard, a study

with end-users would provide ideas about how they prefer to receive and provide

feedback when a software system performs adaptation to address resource variability.

Based on the outcome of this study, it is possible to extend SERIES with additional

properties. Furthermore, besides the extension of the notation, it is possible to create

and refine a UI for end-user feedback. Software practitioners would integrate this UI

with software systems that face resource variability and require resource-driven

adaptation.

It is also possible to extend the tool of SERIES to support additional features that

would be useful for software practitioners. In this regard, the extension could target

the generation of code that corresponds to the service methods of tasks in a SERIES

task model. This enables software practitioners to automatically link the task models

that they create using SERIES to the source code of their software systems.

Additionally, having a search mechanism would enable software practitioners to

search through multiple task models and find elements that match advanced search

criteria (e.g., composite conditions with wild characters). Then, the software

practitioners would be able to perform an update simultaneously on all the matching

tasks and relationships from the search result.

9.3.2 Integrating SPARK with real-world software systems

In this thesis, I integrated SPARK with a prototype software system to evaluate its

intrusiveness (refer to Section 8.4). It is possible to develop further the integration

Chapter 9 – Conclusions and Future Work 183

mechanism by creating libraries that software practitioners can use through an

application programming interface (API). This enables software practitioners to

leverage resource-driven adaptation capabilities in the software systems that they are

developing using existing IDEs. For example, software practitioners would be able to

use classes from these libraries that represent concepts like tasks and resources and

invoke services to perform adaptation when needed. These capabilities are already

present in SPARK but having an API makes them more accessible during software

development.

By developing the abovementioned API and extending the supporting tool (refer to

Section 9.3.1), it is possible to improve the adoption of resource-driven adaptation in

the software industry. This would be due to the improvement of the ceiling of the tool

(i.e., what it can achieve) and the ability to use the proposed framework as an out-of-

the-box solution like any software development framework.

9.3.3 Exploring other techniques

We also plan to investigate how to expand the proposed work by using other

techniques. We discuss these possible expansions with the following techniques: (i)

knapsack, (ii) operations research, (iii) AI planning, and (iv) benchmarks.

Knapsack problem. The multidimensional knapsack problem (Lust and Teghem,

2012) is an optimisation problem that involves making an optimal selection from

items that have multidimensional weights. Methods M1 and M2 (refer to Section 6.3.4)

allocate executions to tasks based on priorities. The items and weights in this case are

the tasks and their priorities, respectively. The priorities are computed based on

multiple criteria before applying methods M1 or M2. Hence, tasks that have a higher

priority get allocated more executions. Since the multidimensional knapsack problem

is known to be NP-hard (Chu and Beasley, 1998), we plan to investigate the use of the

prioritisation technique and methods M1 and M2 proposed in this thesis for solving

existing knapsack problems, like financial portfolio selection with a small amount of

computational effort.

Operations research. Operations research (OR) encompasses problem-solving

techniques, such as simulation and mathematical optimisation, which support

decision-making. Operations research is used for business decisions and helps

companies in setting up their decision support systems (Gupta et al., 2022). Future

184 9.3 Future work

work could consider using OR for placing constraints on metrics that are meaningful

for a domain (e.g., resource consumption rate, cost of resources, loss of human life,

etc.). The work presented in this thesis indirectly reflects these metrics through

priorities and task variants. For example, in the given automated warehouse example

the task “pack items in a box” has two variants “pack randomly” and “pack by item

type”, which improve speed and aesthetics respectively. It would be useful to explore

whether the understandability of these metrics would improve if they were stated

explicitly instead of keeping them implicitly stated via the task variants and priorities.

AI planning. Future work could also explore how addressing resource variability

could benefit from AI planning, which involves choosing actions to perform and

structuring them in a plan (Wilkins, 2014, pp. 3–5). In this regard, it is possible to

consider how AI planning could benefit both SERIES and SPARK.

More specifically, SERIES could be extended with concepts that are offered by the

Planning Domain Definition Language (PDDL+), which is a family of languages for

defining a planning problem. PDDL+ has the concepts of events and effects (Coles and

Coles, 2014). An event represents an occurrence within a system and an effect specifies

a change that shall be done when the event occurs. The events and effects in PDDL+

could complement the work presented in this thesis in the case of dynamic resources.

These resources have settings variables that a software system can change when there

is resource variability. Examples include changing the brightness of a display to reduce

battery consumption. In this thesis, these settings are changed via parameters of task

variants to take into consideration differences among tasks. However, if some settings

apply in the same way to all tasks, it could be possible to change them as an effect of

resource variability events. Furthermore, if a language such as PDDL+ was used to

complement SERIES it is important to evaluate its usability in comparison to the

graphical notation of SERIES. Hence, some additional evaluation with software

practitioners will provide insights into their ability to understand and use concepts

like events and effects in a textual language like PDDL+.

The PDDL+ events and effects shall be defined on SERIES task models and given as

input to SPARK. Hence, SPARK shall identify when these events occur and apply their

corresponding effects. To achieve this, SPARK shall define two additional adaptation

components, namely an event monitor and an effector. The event monitor shall

monitor the occurrence of events and notify the effector accordingly. In turn, the

effector shall apply an event's corresponding effect, which will change the settings of a

Chapter 9 – Conclusions and Future Work 185

dynamic resource to address a situation of resource variability. Some additional

evaluation would also be needed on SPARK to assess its ability to handle events and

apply their corresponding effects without adding significant overhead to software

systems.

Benchmarks. Benchmarks are important for comparing frameworks that have the

same objective. Presently, there is a lack of benchmarks for evaluating resource-driven

adaptation frameworks (Xu and Buyya, 2019). It is challenging to create such

benchmarks because existing approaches have different objectives and capabilities.

For example, SPARK supports depletable and reusable resources whereas other

approaches only support one type of resource. Hence, an important direction for future

work would be to create a set of benchmark metrics and datasets that can be used to

evaluate and compare resource-driven adaptation frameworks. These benchmarks

should consider different objectives of existing work on resource-driven adaptation, as

well as different types of resources, and different ways of adapting the systems. The

metrics and datasets that I used for evaluating SPARK could serve as a starting point to

create benchmarks. Alternatively, benchmarks from AI planning could also be explored

such as the ones that are used in international planning competitions (Coles et al.,

2012). Examples of these benchmarks include controlling ground traffic at an airport

(Botea et al., 2005) and resupplying lines in a faulty electricity grid (Hoffmann et al.,

2006).

9.4 Final thoughts

The contributions of this thesis are not meant to replace existing software

development approaches, but rather to further empower software practitioners to

develop software systems that are capable of addressing resource variability through

resource-driven adaptation. This in turn benefits end-users because software systems

will be capable of executing important tasks when resources are scarce or unavailable.

Although the focus of this thesis was on enterprise systems as motivating examples,

SPARK and SERIES are not restricted to these systems. I chose enterprise systems

because they encompass a variety of tasks and resources and their ability to function

affects multiple domains (e.g., manufacturing and medical). Nonetheless, it is possible

to use SPARK and SERIES to support resource-driven adaptation in other types of

software systems that rely on resources, which are affected by variability.

186 9.4 Final thoughts

The work presented in this thesis contributed to the field of self-adaptive systems

by placing further emphasis on the importance of considering resource variability as a

trigger for adaptation. Furthermore, this work does not only consider computing

resources (e.g., CPU) that a software system needs, but it also considers different types

of resources that are needed to execute the tasks that are meant to be fulfilled by these

systems. Research on self-adaptive systems has been ongoing for years and it

empowered software systems to manage themselves and dynamically adapt to change.

Nonetheless, it is still possible to do further research work. Hence, in these final

thoughts, it is worth mentioning that increasing the adoption of adaptation

frameworks is important to benefit from the contributions of the research on self-

adaptive systems. APIs and tools can integrate adaptation frameworks and software

development frameworks (e.g., web development frameworks that practitioners use in

the software industry). Moreover, it would be interesting to see future research that

explores what software practitioners think about adaptation frameworks and how

they use them. The outcome could be a set of guidelines that informs research on self-

adaptive systems. Hence, when designing an adaptation framework, researchers would

not only take into account how the framework works and whether it produces the

desired outcome, but would also consider how it shall be used in practice by assessing

it against a set of guidelines.

Bibliography 187

Bibliography

Adelstein, F. et al. (2005) Fundamentals of mobile and pervasive computing.

McGraw-Hill New York.

Akiki, P., Zisman, A. and Bennaceur, A. (2022) ‘SERIES: A Task Modelling

Notation for Resource-driven Adaptation’, in. 24th International Conference

on Enterprise Information Systems, Online Streaming: SCITEPRESS -

Science and Technology Publications, pp. 29–39. Available at:

https://doi.org/10.5220/0011001800003179.

Akiki, P., Zisman, A. and Bennaceur, A. (2023) ‘Modelling Software Tasks for

Supporting Resource-driven Adaptation’, in. Springer (Lecture Notes in

Business Information Processing).

Akiki, P.A. (2021) ‘Towards an approach for resource-driven adaptation’, in.

ESEC/FSE ’21: 29th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, Athens Greece:

ACM, pp. 1625–1629. Available at: https://doi.org/10.1145/3468264.3473098.

Akiki, P.A., Zisman, A. and Bennaceur, A. (2021) ‘Work With What You’ve Got:

An Approach for Resource-Driven Adaptation’, in. 2021 IEEE International

Conference on Autonomic Computing and Self-Organizing Systems

Companion (ACSOS-C), DC, USA: IEEE, pp. 105–110. Available at:

https://doi.org/10.1109/ACSOS-C52956.2021.00030.

Allemang, D. and Hendler, J. (2011) Semantic web for the working ontologist:

effective modeling in RDFS and OWL. Elsevier.

Amazon (2019) AWS Data Exchange. Available at:

https://aws.amazon.com/data-exchange/.

Annett, J. (2003) ‘Hierarchical task analysis’, Handbook of cognitive task

design, 2, pp. 17–35.

Azure (2022) Throttling pattern. Available at: https://learn.microsoft.com/en-

us/azure/architecture/patterns/throttling.

Bandara, A.K. et al. (2004) ‘A goal-based approach to policy refinement’, in

Proceedings. Fifth IEEE International Workshop on Policies for Distributed

Systems and Networks, 2004. POLICY 2004. IEEE, pp. 229–239.

Batra, D., Hoffler, J.A. and Bostrom, R.P. (1990) ‘Comparing representations

with relational and EER models’, Communications of the ACM, 33(2), pp.

126–139. Available at: https://doi.org/10.1145/75577.75579.

188 Bibliography

Bauer, A. (2019) ‘Challenges and Approaches: Forecasting for Autonomic

Computing’, in Organic Computing: Doctoral Dissertation Colloquium 2018.

kassel university press GmbH, p. 1.

Bauer, A. et al. (2020) ‘Time Series Forecasting for Self-Aware Systems’,

Proceedings of the IEEE [Preprint].

Benavides, D., Trinidad, P. and Ruiz-Cortés, A. (2005) ‘Automated reasoning on

feature models’, in International Conference on Advanced Information

Systems Engineering. Springer, pp. 491–503.

Benedek, J. and Miner, T. (2002) ‘Measuring Desirability: New methods for

evaluating desirability in a usability lab setting’, Proceedings of Usability

Professionals Association, 2003(8–12), p. 57.

Bennaceur, A. et al. (2019) ‘Won’t Take No for an Answer: Resource-Driven

Requirements Adaptation’, in 2019 IEEE/ACM 14th International

Symposium on Software Engineering for Adaptive and Self-Managing

Systems (SEAMS). 2019 IEEE/ACM 14th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems (SEAMS),

Montreal, QC, Canada: IEEE, pp. 77–88. Available at:

https://doi.org/10.1109/SEAMS.2019.00019.

Blue Link (2022) ‘Import & Export Software’. Available at:

https://www.bluelinkerp.com/import-export-inventory-accounting-software/.

Bork, D. and Roelens, B. (2021) ‘A technique for evaluating and improving the

semantic transparency of modeling language notations’, Software and

Systems Modeling, 20(4), pp. 939–963. Available at:

https://doi.org/10.1007/s10270-021-00895-w.

Botea, A. et al. (2005) ‘Macro-FF: Improving AI Planning with Automatically

Learned Macro-Operators’, Journal of Artificial Intelligence Research, 24, pp.

581–621. Available at: https://doi.org/10.1613/jair.1696.

Braberman, V. et al. (2017) ‘An extended description of morph: A reference

architecture for configuration and behaviour self-adaptation’, in Software

Engineering for Self-Adaptive Systems III. Assurances. Springer, pp. 377–

408.

Buckley, J. et al. (2005) ‘Towards a taxonomy of software change’, Journal of

Software Maintenance and Evolution: Research and Practice, 17(5), pp. 309–

332.

Buisson, J., André, F. and Pazat, J.-L. (2005) ‘A framework for dynamic

adaptation of parallel components’, in International Conference ParCo, p. 65.

Calvary, G. et al. (2003) ‘A unifying reference framework for multi-target user

interfaces’, Interacting with computers, 15(3), pp. 289–308.

Carvalho, H. et al. (2022) ‘The resilience of on-time delivery to capacity and

material shortages: An empirical investigation in the automotive supply

Bibliography 189

chain’, Computers & Industrial Engineering, 171, p. 108375. Available at:

https://doi.org/10.1016/j.cie.2022.108375.

CEA, A. (2009). Available at: https://www.w3.org/2005/Incubator/model-based-

ui/wiki/ANSI/CEA-2018.

CERN and OpenAIRE (2013) ‘Zenodo’. CERN. Available at:

https://doi.org/10.25495/7GXK-RD71.

Chattratichart, J. and Kuljis, J. (2002) ‘Exploring the Effect of Control-Flow

and Traversal Direction on VPL Usability for Novices’, Journal of Visual

Languages & Computing, 13(5), pp. 471–500. Available at:

https://doi.org/10.1006/jvlc.2002.0240.

Cheng, B.H.C. et al. (2009) ‘Software Engineering for Self-Adaptive Systems: A

Research Roadmap’, in B.H.C. Cheng et al. (eds) Software Engineering for

Self-Adaptive Systems. Berlin, Heidelberg: Springer Berlin Heidelberg

(Lecture Notes in Computer Science), pp. 1–26. Available at:

https://doi.org/10.1007/978-3-642-02161-9_1.

Christi, A. and Groce, A. (2018) ‘Target selection for test-based resource

adaptation’, in 2018 IEEE International Conference on Software Quality,

Reliability and Security (QRS). IEEE, pp. 458–469. Available at:

https://doi.org/10.1109/QRS.2018.00059.

Christi, A., Groce, A. and Gopinath, R. (2017) ‘Resource adaptation via test-

based software minimization’, in 2017 IEEE 11th International Conference

on Self-Adaptive and Self-Organizing Systems (SASO). IEEE, pp. 61–70.

Available at: https://doi.org/10.1109/SASO.2017.15.

Christi, A., Groce, A. and Wellman, A. (2019) ‘Building Resource Adaptations

via Test-Based Software Minimization: Application, Challenges, and

Opportunities’, in 2019 IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW). IEEE, pp. 73–78. Available

at: https://doi.org/10.1109/ISSREW.2019.00046.

Chu, P.C. and Beasley, J.E. (1998) ‘A Genetic Algorithm for the

Multidimensional Knapsack Problem’, Journal of Heuristics, 4(1), pp. 63–86.

Available at: https://doi.org/10.1023/A:1009642405419.

Ciccozzi, F. et al. (2017) ‘Model-driven engineering for mission-critical iot

systems’, IEEE software, 34(1), pp. 46–53.

Cleland-Huang, J. et al. (2022) ‘Extending MAPE-K to support human-machine

teaming’, in Proceedings of the 17th Symposium on Software Engineering for

Adaptive and Self-Managing Systems. SEAMS ’22: 17th International

Symposium on Software Engineering for Adaptive and Self-Managing

Systems, Pittsburgh Pennsylvania: ACM, pp. 120–131. Available at:

https://doi.org/10.1145/3524844.3528054.

190 Bibliography

Coles, Amanda et al. (2012) ‘A Survey of the Seventh International Planning

Competition’, AI Magazine, 33(1), pp. 83–88. Available at:

https://doi.org/10.1609/aimag.v33i1.2392.

Coles, Amanda and Coles, Andrew (2014) ‘PDDL+ Planning with Events and

Linear Processes’, Proceedings of the International Conference on Automated

Planning and Scheduling, 24, pp. 74–82. Available at:

https://doi.org/10.1609/icaps.v24i1.13647.

Cormen, T.H. et al. (2009) Introduction to algorithms. MIT press.

Damianou, N. et al. (2001) ‘The ponder policy specification language’, in

International Workshop on Policies for Distributed Systems and Networks.

Springer, pp. 18–38.

Data.World (2016). Data.World, Inc. Available at: https://data.world/.

David, P.-C. and Ledoux, T. (2003) ‘Towards a framework for self-adaptive

component-based applications’, in IFIP International Conference on

Distributed Applications and Interoperable Systems. Springer, pp. 1–14.

Davidyuk, O., Ceberio, J. and Riekki, J. (2007) ‘An algorithm for task-based

application composition’, in Proc. of the 11th IASTED International

Conference on Software Engineering and Applications (SEA07), Cambridge,

Massachusetts, USA. Citeseer.

Davis, F.D. (1985) A technology acceptance model for empirically testing new

end-user information systems: Theory and results. PhD Thesis.

Massachusetts Institute of Technology.

De Lemos, R. et al. (2013) ‘Software engineering for self-adaptive systems: A

second research roadmap’, in Software Engineering for Self-Adaptive

Systems II. Springer, pp. 1–32.

Dürango, J. et al. (2014) ‘Control-theoretical load-balancing for cloud

applications with brownout’, in 53rd IEEE Conference on Decision and

Control. IEEE, pp. 5320–5327.

Easterbrook, S. et al. (2008) ‘Selecting empirical methods for software

engineering research’, in Guide to advanced empirical software engineering.

Springer, pp. 285–311.

Efstratiou, C. et al. (2002) ‘A platform supporting coordinated adaptation in

mobile systems’, in Proceedings Fourth IEEE Workshop on Mobile

Computing Systems and Applications. IEEE, pp. 128–137.

ERP for Healthcare (2022) ‘Best ERP Software for Healthcare’. ERP Research.

Available at: https://www.erpresearch.com/en-us/best-erp-for-healthcare.

Fowler, M. (2003) UML distilled: a brief guide to the standard object modeling

language. 3rd ed. Boston: Addison-Wesley.

Bibliography 191

Gajos, K. (2001) ‘Rascal—a resource manager for multi agent systems in smart

spaces’, in International Workshop of Central and Eastern Europe on Multi-

Agent Systems. Springer, pp. 111–120.

Garg, V.K. and Venkitakrishnan, N. (2003) Enterprise Resource Planning:

concepts and practice. PHI Learning Pvt. Ltd.

Garlan, D. et al. (2002) ‘Project aura: Toward distraction-free pervasive

computing’, IEEE Pervasive computing, 1(2), pp. 22–31.

Garlan, D., Cheng, S.-W., et al. (2004) ‘Rainbow: Architecture-based self-

adaptation with reusable infrastructure’, Computer, 37(10), pp. 46–54.

Garlan, D., Poladian, V., et al. (2004) ‘Task-based self-adaptation’, in

Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems,

pp. 54–57.

Gawiejnowicz, S. (2020) ‘A review of four decades of time-dependent scheduling:

Main results, new topics, and open problems’, Journal of Scheduling, 23(1),

pp. 3–47.

Genon, N., Heymans, P. and Amyot, D. (2011) ‘Analysing the Cognitive

Effectiveness of the BPMN 2.0 Visual Notation’, in B. Malloy, S. Staab, and

M. van den Brand (eds) Software Language Engineering. Berlin, Heidelberg:

Springer Berlin Heidelberg (Lecture Notes in Computer Science), pp. 377–

396. Available at: https://doi.org/10.1007/978-3-642-19440-5_25.

Ghodki, D. (2021) Medicine. Available at:

https://www.kaggle.com/datasets/deepalighodki/medicine-review.

Giese, M. et al. (2008) ‘AMBOSS: a task modeling approach for safety-critical

systems’, in Engineering Interactive Systems. Springer, pp. 98–109.

Gotz, S. et al. (2015) ‘Adaptive Exchange of Distributed Partial

Models@run.time for Highly Dynamic Systems’, in 2015 IEEE/ACM 10th

International Symposium on Software Engineering for Adaptive and Self-

Managing Systems. 2015 IEEE/ACM 10th International Symposium on

Software Engineering for Adaptive and Self-Managing Systems (SEAMS),

Florence, Italy: IEEE, pp. 64–70. Available at:

https://doi.org/10.1109/SEAMS.2015.25.

Green, T.R.G. and Petre, M. (1996) ‘Usability analysis of visual programming

environments: a “cognitive dimensions” framework’, Journal of Visual

Languages & Computing, 7(2), pp. 131–174.

Grohmann, J. et al. (2021) ‘SARDE: A Framework for Continuous and Self-

Adaptive Resource Demand Estimation’, ACM Transactions on Autonomous

and Adaptive Systems (TAAS), 15(2), pp. 1–31.

Grus, J. (2015) Data science from scratch: first principles with Python. First

edition. Sebastopol, CA: O’Reilly.

192 Bibliography

Guerrero-García, J., González-Calleros, J. and Vanderdonckt, J. (2012) ‘A

Comparative Analysis of Task Modeling Notations.’, Acta Universitaria, 22,

pp. 90–97.

Gupta, S. et al. (2022) ‘Artificial intelligence for decision support systems in the

field of operations research: review and future scope of research’, Annals of

Operations Research, 308(1–2), pp. 215–274. Available at:

https://doi.org/10.1007/s10479-020-03856-6.

Hallsteinsen, S. et al. (2008) ‘Dynamic software product lines’, Computer, 41(4),

pp. 93–95.

Hartson, H.R. and Gray, P.D. (1992) ‘Temporal aspects of tasks in the user

action notation’, Human-Computer Interaction, 7(1), pp. 1–45.

Hasan, M.S. et al. (2016) ‘Enabling green energy awareness in interactive cloud

application’, in 2016 IEEE International Conference on Cloud Computing

Technology and Science (CloudCom). IEEE, pp. 414–422.

Hoffmann, J. et al. (2006) ‘Engineering Benchmarks for Planning: the Domains

Used in the Deterministic Part of IPC-4’, Journal of Artificial Intelligence

Research, 26, pp. 453–541. Available at: https://doi.org/10.1613/jair.1982.

Huang, A.-C. and Steenkiste, P. (2003) ‘Network-sensitive service discovery’,

Journal of grid computing, 1(3), pp. 309–326.

Huang, J. et al. (2017) ‘UI driven Android application reduction’, in 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering

(ASE). IEEE, pp. 286–296.

Huber, N. et al. (2014) ‘Modeling run-time adaptation at the system

architecture level in dynamic service-oriented environments’, Service

Oriented Computing and Applications, 8(1), pp. 73–89.

Huber, N. et al. (2017) ‘Model-Based Self-Aware Performance and Resource

Management Using the Descartes Modeling Language’, IEEE Transactions

on Software Engineering, 43(5), pp. 432–452. Available at:

https://doi.org/10.1109/TSE.2016.2613863.

Hutzschenreuter, A.K., Bosman, P.A. and La Poutré, H. (2009) ‘Evolutionary

multiobjective optimization for dynamic hospital resource management’, in

International Conference on Evolutionary Multi-Criterion Optimization.

Springer, pp. 320–334.

Hyndman, R.J. and Athanasopoulos, G. (2018) Forecasting: principles and

practice. OTexts.

IEEE (no date). IEEE. Available at: https://ieee-dataport.org/.

ISO 9241 (2008) ISO 9241-12:1998 - Ergonomic Requirements for Office Work

with Visual Display Terminals (VDTs) -- Part 12: Presentation of

information. Available at: https://www.iso.org/standard/16884.html.

Bibliography 193

Johnson, H. and Hyde, J. (2003) ‘Towards modeling individual and collaborative

construction of jigsaws using task knowledge structures (TKS)’, ACM

Transactions on Computer-Human Interaction (TOCHI), 10(4), pp. 339–387.

Kaggle (2010). Kaggle, Inc. Available at: https://www.kaggle.com/.

Keeney, J. and Cahill, V. (2003) ‘Chisel: A policy-driven, context-aware,

dynamic adaptation framework’, in Proceedings POLICY 2003. IEEE 4th

International Workshop on Policies for Distributed Systems and Networks.

IEEE, pp. 3–14.

Kephart, J.O. and Chess, D.M. (2003) ‘The vision of autonomic computing’,

Computer, 36(1), pp. 41–50. Available at:

https://doi.org/10.1109/MC.2003.1160055.

Khalid, H. et al. (2015) ‘What Do Mobile App Users Complain About?’, IEEE

Software, 32(3), pp. 70–77. Available at: https://doi.org/10.1109/MS.2014.50.

Kieras, D. (2004) ‘GOMS Models for Task Analysis. The Handbook of Task

Analysis for Human-Computer Interaction, Ed. Dan Diaper, Neville A.

Stanton’. Lawrence Erlbaum Associates.

Klein, C., Maggio, M., et al. (2014) ‘Brownout: building more robust cloud

applications’, in Proceedings of the 36th International Conference on

Software Engineering - ICSE 2014. the 36th International Conference,

Hyderabad, India: ACM Press, pp. 700–711. Available at:

https://doi.org/10.1145/2568225.2568227.

Klein, C., Papadopoulos, A.V., et al. (2014) ‘Improving cloud service resilience

using brownout-aware load-balancing’, in 2014 IEEE 33rd International

Symposium on Reliable Distributed Systems. IEEE, pp. 31–40.

Kramer, J. and Magee, J. (2007) ‘Self-managed systems: an architectural

challenge’, in 2007 Future of Software Engineering. IEEE Computer Society,

pp. 259–268.

Krupitzer, C. et al. (2018) ‘A survey on engineering approaches for self-adaptive

systems (extended version)’.

Kurp, P. (2008) ‘Green computing’, Communications of the ACM, 51(10), pp. 11–

13.

Larkin, K. et al. (2021) Filters in ASP.NET Core. Available at:

https://docs.microsoft.com/en-

us/aspnet/core/mvc/controllers/filters?view=aspnetcore-5.0.

Limbourg, Q. et al. (2004) ‘USIXML: A language supporting multi-path

development of user interfaces’, in IFIP International Conference on

Engineering for Human-Computer Interaction. Springer, pp. 200–220.

194 Bibliography

Limbourg, Q. and Vanderdonckt, J. (2004) ‘Comparing task models for user

interface design’, The handbook of task analysis for human-computer

interaction, 6, pp. 135–154.

Lu, Y. et al. (2016) ‘RVLBPNN: A workload forecasting model for smart cloud

computing’, Scientific Programming, 2016.

Lucas, W.T., Xu, J. and Babaian, T. (2013) ‘Visualizing ERP Usage Logs in Real

Time.’, in ICEIS (3), pp. 83–90.

Lust, T. and Teghem, J. (2012) ‘The multiobjective multidimensional knapsack

problem: a survey and a new approach’, International Transactions in

Operational Research, 19(4), pp. 495–520. Available at:

https://doi.org/10.1111/j.1475-3995.2011.00840.x.

Maggio, M., Klein, C. and Arzén, K.-E. (2014) ‘Control strategies for predictable

brownouts in cloud computing’, IFAC proceedings volumes, 47(3), pp. 689–

694.

Mahfoudhi, A., Abed, M. and Tabary, D. (2001) ‘From the formal specifications

of users tasks to the automatic generation of the HCI specifications’, in

People and Computers XV—Interaction without Frontiers. Springer, pp.

331–347.

Martin, R.C. (2009) Clean code: a handbook of agile software craftsmanship.

Pearson Education.

Martinie, C. et al. (2019) ‘Analysing and demonstrating tool-supported

customizable task notations’, Proceedings of the ACM on human-computer

interaction, 3(EICS), pp. 1–26.

Martinie, C., Palanque, P. and Winckler, M. (2011) ‘Structuring and

composition mechanisms to address scalability issues in task models’, in IFIP

Conference on Human-Computer Interaction. Springer, pp. 589–609.

Mason, R. (2019) ‘Developing a Profitable Online Grocery Logistics Business:

Exploring Innovations in Ordering, Fulfilment, and Distribution at Ocado’, in

Contemporary Operations and Logistics. Springer, pp. 365–383.

McKinley, P.K. et al. (2004) ‘Composing adaptive software’, Computer, 37(7),

pp. 56–64.

Mendeley Data (2013). Elsevier. Available at: https://data.mendeley.com/.

ML.NET Framework (2021). Available at: https://dotnet.microsoft.com/en-

us/apps/machinelearning-ai/ml-dotnet.

Mohan, J., Lanka, K. and Rao, A.N. (2019) ‘A review of dynamic job shop

scheduling techniques’, Procedia Manufacturing, 30, pp. 34–39.

Bibliography 195

Molina, A.I. et al. (2014) ‘Evaluating a graphical notation for modeling

collaborative learning activities: A family of experiments’, Science of

Computer Programming, 88, pp. 54–81.

Moody, D. (2009) ‘The “physics” of notations: toward a scientific basis for

constructing visual notations in software engineering’, IEEE Transactions on

software engineering, 35(6), pp. 756–779.

Moreno, G.A. et al. (2015) ‘Proactive self-adaptation under uncertainty: a

probabilistic model checking approach’, in Proceedings of the 2015 10th joint

meeting on foundations of software engineering, pp. 1–12.

Mori, G., Paternò, F. and Santoro, C. (2002) ‘CTTE: support for developing and

analyzing task models for interactive system design’, IEEE Transactions on

software engineering, 28(8), pp. 797–813.

Mota, B. et al. (2020) ‘Production line dataset for task scheduling and energy

optimization - Schedule Optimization’. Zenodo. Available at:

https://doi.org/10.5281/ZENODO.4106746.

Nah, F.F.-H. (2004) ‘A study on tolerable waiting time: how long are web users

willing to wait?’, Behaviour & Information Technology, 23(3), pp. 153–163.

NBomber (2021). Available at: https://nbomber.com/.

Neale, J. (2016) ‘Iterative categorization (IC): a systematic technique for

analysing qualitative data: Systematic technique for analysing qualitative

data’, Addiction, 111(6), pp. 1096–1106. Available at:

https://doi.org/10.1111/add.13314.

NHS (2019) A Guide to Managing Medicines Supply and Shortages. Available

at: https://www.england.nhs.uk/publication/a-guide-to-managing-medicines-

supply-and-shortages/.

Nikolov, V. et al. (2014) ‘Cloudfarm: An elastic cloud platform with flexible and

adaptive resource management’, in 2014 IEEE/ACM 7th International

Conference on Utility and Cloud Computing. IEEE, pp. 547–553.

Ocado Solutions (2018). Available at:

https://www.youtube.com/watch?v=hdyHnak61OI.

Oh, S. and Wildemuth, B. (2009) ‘Think-aloud protocols’, Applications of social

research methods to questions in information and library science, pp. 178–

188.

Oz, E. (2009) Management information systems. 6th ed. Boston, Mass:

Thomson/Course Technology.

Pandey, A. et al. (2016) ‘Hybrid planning for decision making in self-adaptive

systems’, in 2016 IEEE 10th International Conference on Self-Adaptive and

Self-Organizing Systems (SASO). IEEE, pp. 130–139.

196 Bibliography

Papakos, P., Capra, L. and Rosenblum, D.S. (2010) ‘Volare: context-aware

adaptive cloud service discovery for mobile systems’, in Proceedings of the

9th International Workshop on Adaptive and Reflective Middleware, pp. 32–

38.

Pascual, G.G., Pinto, M. and Fuentes, L. (2015) ‘Self-adaptation of mobile

systems driven by the common variability language’, Future Generation

Computer Systems, 47, pp. 127–144. Available at:

https://doi.org/10.1016/j.future.2014.08.015.

Patel, K.K., Patel, S.M., and others (2016) ‘Internet of things-IOT: definition,

characteristics, architecture, enabling technologies, application & future

challenges’, International journal of engineering science and computing, 6(5).

Paterno, F., Mancini, C. and Meniconi, S. (1997) ‘ConcurTaskTrees: A

diagrammatic notation for specifying task models’, in Human-computer

interaction INTERACT’97. Springer, pp. 362–369.

Perttunen, M., Jurmu, M. and Riekki, J. (2007) ‘A QoS model for task-based

service composition’, in Proc. 4th International Workshop on Managing

Ubiquitous Communications and Services, p. 11.

Pinedo, M. (2018) Scheduling: theory, algorithms, and systems. Springer.

Pleuss, A., Botterweck, G. and Dhungana, D. (2010) ‘Integrating automated

product derivation and individual user interface design’.

Preece, J., Rogers, Y. and Sharp, H. (2015) Interaction design: beyond human-

computer interaction. 4. ed. Chichester: Wiley.

Pressman, R.S. (2010) Software engineering: a practitioners approach. 7. ed.,

alternate ed. Boston, Mass. [u: McGraw-Hill Higher Education.

Raunak, M.S. and Osterweil, L.J. (2013) ‘Resource Management for Complex,

Dynamic Environments’, IEEE Transactions on Software Engineering, 39(3),

pp. 384–402. Available at: https://doi.org/10.1109/TSE.2012.31.

Redmond, B. and Cahill, V. (2000) ‘Iguana/J: Towards a dynamic and efficient

reflective architecture for Java’, in ECOOP 2000 Workshop on Reflection and

Metalevel Architectures.

Rigole, P. et al. (2007) ‘Task-driven automated component deployment for

ambient intelligence environments’, Pervasive and Mobile Computing, 3(3),

pp. 276–299.

Salehie, M. and Tahvildari, L. (2009) ‘Self-adaptive software: Landscape and

research challenges’, ACM Transactions on Autonomous and Adaptive

Systems, 4(2), pp. 1–42. Available at:

https://doi.org/10.1145/1516533.1516538.

Saller, K., Lochau, M. and Reimund, I. (2013) ‘Context-aware DSPLs: model-

based runtime adaptation for resource-constrained systems’, in Proceedings

Bibliography 197

of the 17th International Software Product Line Conference co-located

workshops, pp. 106–113.

Samin, H., Bencomo, N. and Sawyer, P. (2022) ‘Decision-making under

uncertainty: be aware of your priorities’, Software and Systems Modeling, pp.

1–30.

Scapin, D. and Pierret-Golbreich, C. (1989) ‘Towards a method for task

description: MAD’, Work with display units, 89, pp. 371–380.

Sebillotte, S. (1988) ‘Hierarchical planning as method for task analysis: the

example of office task analysis’, Behaviour & Information Technology, 7(3),

pp. 275–293. Available at: https://doi.org/10.1080/01449298808901878.

Shao, Y. et al. (2014) ‘Towards a scalable resource-driven approach for detecting

repackaged android applications’, in Proceedings of the 30th Annual

Computer Security Applications Conference, pp. 56–65.

Shaw, M. (2002) ‘What makes good research in software engineering?’,

International Journal on Software Tools for Technology Transfer, 4(1), pp. 1–

7.

Shoval, P. and Shiran, S. (1997) ‘Entity-relationship and object-oriented data

modeling — An experimental comparison of design quality’, Data &

Knowledge Engineering, 21(3), pp. 297–315. Available at:

https://doi.org/10.1016/S0169-023X(97)88935-5.

Sousa, J.P. et al. (2006) ‘Task-based adaptation for ubiquitous computing’,

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications

and Reviews), 36(3), pp. 328–340. Available at:

https://doi.org/10.1109/TSMCC.2006.871588.

Strusevich, V.A. and Rustogi, K. (2017) Scheduling with Time-Changing Effects

and Rate-Modifying Activities. 1st ed. 2017. Cham: Springer International

Publishing : Imprint: Springer (International Series in Operations Research

& Management Science, 243). Available at: https://doi.org/10.1007/978-3-319-

39574-6.

Sun, Y., Cai, X. and Loparo, K.A. (2019) ‘Learning-based Adaptation

Framework for Elastic Software Systems.’, in SEKE, pp. 281–372. Available

at: https://doi.org/10.18293/SEKE2019-00.

Tarby, J.-C. and Barthet, M.-F. (1996) ‘The DIANE+ Method.’, in CADUI, pp.

95–119.

Tomás, L. et al. (2014) ‘The straw that broke the camel’s back: safe cloud

overbooking with application brownout’, in 2014 International Conference on

Cloud and Autonomic Computing. IEEE, pp. 151–160.

UK Statistics Authority (1996) UK Statistics Authority. Available at:

https://www.ons.gov.uk/.

198 Bibliography

US Department of Commerce (1902) US Department of Commerce. Available

at: https://www.census.gov/.

Van Der Veer, G.C., Lenting, B.F. and Bergevoet, B.A. (1996) ‘GTA: Groupware

task analysis—Modeling complexity’, Acta psychologica, 91(3), pp. 297–322.

Van Hoorn, A. et al. (2009) ‘An adaptation framework enabling resource-

efficient operation of software systems’, in Proceedings of the Warm Up

Workshop for ACM/IEEE ICSE 2010, pp. 41–44.

Vidani, A.C. and Chittaro, L. (2009) ‘Using a task modeling formalism in the

design of serious games for emergency medical procedures’, in 2009

Conference in Games and Virtual Worlds for Serious Applications. IEEE, pp.

95–102.

Vigo, M., Santoro, C. and Paternò, F. (2017) ‘The usability of task modeling

tools’, in 2017 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC). IEEE, pp. 95–99.

Viswanathan, L., Jindal, A. and Karanasos, K. (2018) ‘Query and resource

optimization: Bridging the gap’, in 2018 IEEE 34th International Conference

on Data Engineering (ICDE). IEEE, pp. 1384–1387. Available at:

https://doi.org/10.1109/ICDE.2018.00156.

Webster, M. (2022) Definition of hangtag. Available at: https://www.merriam-

webster.com/dictionary/hangtag.

van Welie, M., van der Veer, G.C. and Eliëns, A. (1998) ‘An Ontology for Task

World Models’, in P. Markopoulos and P. Johnson (eds) Design, Specification

and Verification of Interactive Systems ’98. Vienna: Springer Vienna

(Eurographics), pp. 57–70. Available at: https://doi.org/10.1007/978-3-7091-

3693-5_5.

Wilkins, D.E. (2014) Practical planning: extending the classical AI planning

paradigm. Elsevier.

Wu, C.-L. and Fu, L.-C. (2011) ‘Design and realization of a framework for

human–system interaction in smart homes’, IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, 42(1), pp. 15–31.

Xu, M. and Buyya, R. (2019) ‘Brownout approach for adaptive management of

resources and applications in cloud computing systems: A taxonomy and

future directions’, ACM Computing Surveys (CSUR), 52(1), pp. 1–27.

Xu, M., Dastjerdi, A.V. and Buyya, R. (2016) ‘Energy efficient scheduling of

cloud application components with brownout’, IEEE Transactions on

Sustainable Computing, 1(2), pp. 40–53.

Yan, S. et al. (2019) ‘Conf-Adaption: Adaptive Adjustment of Software

Configuration On UAV by Resource Dependency Analysis’, in 2019 IEEE 8th

Joint International Information Technology and Artificial Intelligence

Bibliography 199

Conference (ITAIC). IEEE, pp. 155–161. Available at:

https://doi.org/10.1109/ITAIC.2019.8785785.

Zhan, Z.-H. et al. (2015) ‘Cloud computing resource scheduling and a survey of

its evolutionary approaches’, ACM Computing Surveys (CSUR), 47(4), pp. 1–

33.

Zhao, T. et al. (2017) ‘A reinforcement learning-based framework for the

generation and evolution of adaptation rules’, in 2017 IEEE International

Conference on Autonomic Computing (ICAC). IEEE, pp. 103–112.

Zhou, L., Zhang, L. and Horn, B.K.P. (2020) ‘Deep reinforcement learning-based

dynamic scheduling in smart manufacturing’, Procedia CIRP, 93, pp. 383–

388. Available at: https://doi.org/10.1016/j.procir.2020.05.163.

Appendices

 203

A

Artefacts from the evaluation of SERIES

This appendix presents the requirements and task models used in the user study

from the manufacturing and surveillance domains, as well as the questionnaire.

A.1 Manufacturing Domain: Requirements and Task Models

Figure A.1 – Task model for explanation (manufacturing)

204 0

(1) Add an abstract task named "Manufacture Food Product". This task has two parameters: a

"Product Quantity" that is non-changeable and a "Marking Type" that is changeable. It also

requires "Ingredients" resource type that is "flexible" with a quantity of 10. For this task,

feedback from the user shall be requested and the feedback location shall be a panel.

(2) Add three application tasks as subtasks of "Manufacture Food Product". These three

subtasks are named "Mix Ingredients", "Add Flavour", and "Mark Expiration Date"

respectively.

"Mix Ingredients" requires a "Mixer" resource type that is "strict" with a quantity of 1.

"Add Flavour" has the following description: "Set a flavour for the food product". This task

requires a "Product Flavour" resource type that is "flexible" with a quantity of 1.

"Mark Expiration Date" requires a "Marking Machine" resource type that is "strict" with a

quantity of 1. This task has a high priority at any time frame.

(3) Add two application task variants for "Mix Ingredients".

• The first variant is named "Fast Mix" and has a high priority and a parameter condition

that specifies "Product Quantity > 100", and a high resource intensiveness for the "Mixer"

resource type.

• The second variant is named "Slow Mix" and has a low priority and a parameter

condition that specifies "Product Quantity <= 100", and a low resource intensiveness for

the "Mixer" resource type.

Add two application task variants for "Mark Expiration Date".

• The first task variant is named "Mark as Stamp" and has a low priority, a parameter

condition that specifies "Marking Type=Stamp", and a high resource intensiveness for the

"Marking Machine" resource type.

• The second task variant is named "Mark as Sticker" and has a high priority, a parameter

condition that specifies "Marking Type=Sticker", and a low resource intensiveness for the

"Marking Machine" resource type.

• Both task variants have a "Role" that is equal to "Any".

Figure A.2 – Requirements to create a task model (manufacturing)

Appendix A – Artefacts from the evaluation of SERIES 205

A.2 Surveillance Domain: Requirements and Task Models

Figure A.4 – Task model for explanation (surveillance)

Figure A.3 – Expected task model based on requirements (manufacturing)

206 A.2 Surveillance Domain: Requirements and Task Models

(1) Add an abstract task named "Monitor Area". This task has two parameters: a "Robot

Type" that is non-changeable and a "Video Quality" that is changeable. It also requires

"Camera" resource type that is "strict" with a quantity of 10. For this task, feedback from the

user shall be requested and the feedback location shall be a panel.

(2) Add three application tasks as subtasks of "Monitor Area". These three subtasks are

named "Set Surveillance Type", "Set Footage Quality", and "Record Footage" respectively.

"Set Surveillance Type" requires a "Robot" resource type that is "strict" with a quantity of 10.

"Set Footage Quality" has the following description: "HD or SD footage quality". This task

requires a "Battery" resource type that is "strict" with a quantity of 1.

"Record Footage" requires a "Bandwidth" resource type that is "strict". This task has a high

priority at any time frame.

(3) Add two application task variants for "Set Surveillance Type".

• The first variant is named "Set to Aerial Surveillance" and has a high priority and a

parameter condition that specifies "Robot Type=Drone".

• The second variant is named "Set to Ground Operation" and has a low priority and a

parameter condition that specifies "Robot Type=Driver Bot".

Add two application task variants for "Set Footage Quality".

• The first task variant is named "Set to HD Quality" and has a high priority, a parameter

condition that specifies "Video Quality=HD", and a high resource intensiveness for the

"Battery" resource type.

• The second task variant is named "Set to SD Quality" and has a low priority, a parameter

condition that specifies "Video Quality=SD", and a low resource intensiveness for the

"Battery" resource type.

• Both task variants have a "Role" that is equal to "Any".

Figure A.5 – Requirements to create a task model (surveillance)

Appendix A – Artefacts from the evaluation of SERIES 207

Figure A.6 – Expected task model based on requirements (surveillance)

208 A.3 Questionnaire

A.3 Questionnaire

Background Information

1. How long have you been working professionally in the software industry

(either employed or as a freelancer)?

Never Less than 1 Year 1 to 5 Years

6 to 10 Years Over 10 Years

2. What kind of work do you do, e.g., software development, and what types of

projects do you work on, e.g., games, business applications, etc.?

(Skip if you answered “Never” to question 1)

3. What kinds of visual models (diagrams) and modelling tools have you used

and in what capacity (i.e., in a course, at work, or on your own)?

Examples of visual models (diagrams) include the following: software models

(e.g., flow charts, UML diagrams, etc.), engineering models (e.g., circuits and

logic), and so on.

Visual Model (Diagram) Tool Capacity

Appendix A – Artefacts from the evaluation of SERIES 209

Questionnaire

1. Perception and Suggestions Regarding Semantic Constructs

1.1. Ratings. Please rate how well the S RI S constructs “a” to “f”, listed

below, convey a clear meaning that enables you to explain and create task

models.

a. Hierarchy of a task and its subtasks: A task that comprises several actions

is broken down into subtasks that represent these actions. An example is a

“prepare customer order” task with the following subtasks: “locate items”

and “pack items in a box”.

Meaning is Very Unclear Meaning is Very Clear

b. Hierarchy of a task and its variants: A task that can be executed in

different ways has task variants, which represent special cases of a task. For

example, a task “pack items in a box” can be done “randomly” (variant 1) or

“sorted by item type” (variant 2).

Meaning is Very Unclear Meaning is Very Clear

c. Task variant properties: These are the properties according to which task

variants (point b – above) differ and include parameter values, the role of

the initiating user, and resource consumption.

Meaning is Very Unclear Meaning is Very Clear

d. Priorities of tasks and task variants: Priorities represent the importance

of tasks, whereby a high-priority task is more important than a low-priority

one. These priorities could differ among timeframes (e.g., a task could have

a high priority between 8:00 AM and 2:00 PM and a low priority between

2:00 PM and 5:00 PM).

Meaning is Very Unclear Meaning is Very Clear

210 A.3 Questionnaire

e. Resource types used by tasks: A task requires a certain resource type(s)

to be executed. Examples of resource types include robots, boxes, and

medicine.

Meaning is Very Unclear Meaning is Very Clear

f. Feedback properties: These properties specify whether the system should

ask the users for their feedback and how the system should present its

feedback to the users.

Meaning is Very Unclear Meaning is Very Clear

1.2. Do you recommend any changes to the abovementioned constructs?

2. Perceived Usability

2.1. How would you rate the overall ease of use of SERIES?

a. I found SERIES difficult to use.
Strongly
Agree

Strongly
Disagree

b. SERIES is clear and understandable to me.
Strongly
Agree

Strongly
Disagree

c. Using SERIES was frustrating.
Strongly
Agree

Strongly
Disagree

d. I found SERIES easy to use.
Strongly
Agree

Strongly
Disagree

e. Using SERIES required a lot of mental effort.
Strongly
Agree

Strongly
Disagree

Appendix A – Artefacts from the evaluation of SERIES 211

Do you have any comments regarding ease of use?

2.2. Please choose three out of the following words to describe SERIES. The

words that you choose may be positive, negative, or a combination of both.

☐ Appealing ☐ Confusing

☐ Easy to use ☐ Difficult

☐ Consistent ☐ Hard to use

☐ Clear ☐ Inconsistent

☐ Familiar ☐ Intimidating

☐ Friendly ☐ Overwhelming

☐ Straight Forward ☐ Rigid

☐ Understandable ☐ Incomprehensible

Please clarify your choice of terms and mention any suggested improvements

that you may have.

3. Would you like to make any final comments?

 213

B

Artefacts from the evaluation of SPARK

This appendix presents the remaining cases (40%, 60%, and 80%) of task criticality

and their four cases of resource variability, for the two case studies from Chapter 8.

B.1 Case Study 1: Medicine Consumption System

Table B.1 – Case Study 1: the case where 40% of tasks (variants) are critical (number of
critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 314 (40%)

Percentage of
Resource Types
facing variability

Number of Resource
Types facing and not
facing variability

Critical
Tasks
(variants)

Critical Task
Requests

20% = 652
1,673 not facing variability 303 71,369

406 facing variability 188 18,736

40% = 1,304
1,252 not facing variability 288 52,140

827 facing variability 246 37,965

60% = 1,956
842 not facing variability 253 35,100

1,237 facing variability 277 55,005

80% = 2,608
420 not facing variability 180 16,222

1,659 facing variability 301 73,883

214 B.1 Case Study 1: Medicine Consumption System

Table B.2 – Case Study 1: the case where 60% of tasks (variants) are critical (number of

critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 471 (60%)

Percentage of
Resource Types
facing variability

Number of Resource Types
facing and not facing
variability

Critical
Tasks
(variants)

Critical Task
Requests

20% = 652
2,114 not facing variability 448 90,828

524 facing variability 279 22,860

40% = 1,304
1,590 not facing variability 421 66,073

1,048 facing variability 365 47,615

60% = 1,956
1,068 not facing variability 371 44,334

1,570 facing variability 415 69,354

80% = 2,608
539 not facing variability 270 21,534

2,099 facing variability 452 92,154

Table B.3 – Case Study 1: the case where 80% of tasks (variants) are critical (number of
critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 628 (80%)

Percentage of
Resource Types facing
variability

Number of Resource
Types facing and not
facing variability

Critical
Tasks
(variants)

Critical Task
Requests

20% = 652
2,407 not facing variability 599 106,799

611 facing variability 377 26,825

40% = 1,304
1,804 not facing variability 562 79,150

1,214 facing variability 499 54,474

60% = 1,956
1,208 not facing variability 497 53,179

1,810 facing variability 559 80,445

80% = 2,608
610 not facing variability 365 25,296

2,408 facing variability 605 108,328

Appendix B – Artefacts from the evaluation of SPARK 215

B.2 Case Study 2: Manufacturing System

Table B.4 – Case Study 2: the case where 40% of tasks (variants) are critical (number of
critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 3 (40%)

Percentage of
Resource Types
facing variability

Number of Resource Types
facing and not facing
variability

Critical
Tasks
(variants)

Critical Task
Requests

20%

Not facing variability:

7 depletable and 2 reusable
3 75

Facing variability:

3 depletable and 1 reusable
3 62

40%

Not facing variability:

5 depletable and 2 reusable
3 52

Facing variability:

5 depletable and 1 reusable
3 85

60%

Not facing variability:

4 depletable and 1 reusable
3 47

Facing variability:

6 depletable and 2 reusable
3 90

80%

Not facing variability:

2 depletable and 1 reusable
3 30

Facing variability:

8 depletable and 2 reusable
3 107

216 B.2 Case Study 2: Manufacturing System

Table B.5 – Case Study 2: the case where 60% of tasks (variants) are critical (number of

critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 4 (60%)

Percentage of
Resource Types
facing variability

Number of Resource Types
facing and not facing
variability

Critical
Tasks
(variants)

Critical Task
Requests

20%

Not facing variability:

6 depletable and 2 reusable
4 115

Facing variability:

3 depletable and 1 reusable
4 88

40%

Not facing variability:

6 depletable and 2 reusable
4 82

Facing variability:

6 depletable and 1 reusable
4 121

60%

Not facing variability:

4 depletable and 1 reusable
4 57

Facing variability:

8 depletable and 2 reusable
4 146

80%

Not facing variability:

2 depletable and 1 reusable
4 40

Facing variability:

10 depletable and 2 reusable
4 163

Table B.6 – Case Study 2: the case where 80% of tasks (variants) are critical (number of
critical task requests and their corresponding number of resource types)

Critical Tasks (variants) = 6 (80%)

Percentage of
Resource Types
facing variability

Number of Resource Types
facing and not facing
variability

Critical
Tasks
(variants)

Critical Task
Requests

20%

Not facing variability:

10 depletable and 2 reusable
6 126

Facing variability:

3 depletable and 1 reusable
4 88

40%

Not facing variability:

7 depletable and 2 reusable
6 93

Facing variability:

6 depletable and 1 reusable
4 121

60%

Not facing variability:

5 depletable and 1 reusable
6 68

Facing variability:

8 depletable and 2 reusable
4 146

80%

Not facing variability:

2 depletable and 1 reusable
5 45

Facing variability:

11 depletable and 2 reusable
6 169

