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Molecular Autism

Identifying the neurodevelopmental 
and psychiatric signatures of genomic disorders 
associated with intellectual disability: a machine 
learning approach
Nicholas Donnelly1,2  , Adam Cunningham3  , Sergio Marco Salas3  , Matthew Bracher‑Smith3  , 

Samuel Chawner3  , Jan Stochl4,5  , Tamsin Ford4  , F. Lucy Raymond6  , Valentina Escott‑Price3   and 

Marianne B. M. van den Bree3*   

Abstract 

Background Genomic conditions can be associated with developmental delay, intellectual disability, autism spec‑

trum disorder, and physical and mental health symptoms. They are individually rare and highly variable in presen‑

tation, which limits the use of standard clinical guidelines for diagnosis and treatment. A simple screening tool to 

identify young people with genomic conditions associated with neurodevelopmental disorders (ND‑GCs) who could 

benefit from further support would be of considerable value. We used machine learning approaches to address this 

question.

Method A total of 493 individuals were included: 389 with a ND‑GC, mean age = 9.01, 66% male) and 104 siblings 

without known genomic conditions (controls, mean age = 10.23, 53% male). Primary carers completed assessments of 

behavioural, neurodevelopmental and psychiatric symptoms and physical health and development. Machine learning 

techniques (penalised logistic regression, random forests, support vector machines and artificial neural networks) 

were used to develop classifiers of ND‑GC status and identified limited sets of variables that gave the best classifica‑

tion performance. Exploratory graph analysis was used to understand associations within the final variable set.

Results All machine learning methods identified variable sets giving high classification accuracy (AUROC between 

0.883 and 0.915). We identified a subset of 30 variables best discriminating between individuals with ND‑GCs and 

controls which formed 5 dimensions: conduct, separation anxiety, situational anxiety, communication and motor 

development.

Limitations This study used cross‑sectional data from a cohort study which was imbalanced with respect to ND‑GC 

status. Our model requires validation in independent datasets and with longitudinal follow‑up data for validation 

before clinical application.

Conclusions In this study, we developed models that identified a compact set of psychiatric and physical health 

measures that differentiate individuals with a ND‑GC from controls and highlight higher‑order structure within these 
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measures. This work is a step towards developing a screening instrument to identify young people with ND‑GCs who 

might benefit from further specialist assessment.

Keywords Intellectual disability, Genetic syndromes, Machine learning, Behavioural phenotypes

Background
Up to 20% of individuals with a neurodevelopmen-

tal disorder have an identifiable genomic condition 

[1–4]. Such conditions include copy number variants, 

single nucleotide variants and aneuploidies, which we 

collectively call neurodevelopmental genomic condi-

tions (ND-GCs). ND-GCs have been associated with 

schizophrenia [5], attention deficit hyperactivity disor-

der (ADHD), autism spectrum disorder (ASD) [6], and 

intellectual disability (ID) [7].

The clinical presentation of ND-GCs is variable and 

complex. For example, children with 22q11.2 deletion 

syndrome, a disorder caused by a deletion in the q11 

region of chromosome 22, have a high risk of devel-

opmental delay and intellectual disability [8], seizures 

(57%) [9], motor coordination problems (81%) [10], 

sleep disturbances (60%) [11] and psychiatric disor-

ders [12]. Such complex presentation is not unique to 

22q11.2 deletion but is typical for many ND-GCs [13], 

as is incomplete and variable penetrance [14, 15].

It is therefore extremely important for families of a 

child with an ND-GC to be informed about the impact 

that the variant may have on their child’s development, 

so that they can obtain the best possible support. Addi-

tionally, clinicians, such as psychiatrists in child and 

adolescent mental health, or community learning dis-

ability services, who care for affected children after 

they have received a genetic diagnosis are challenged 

by complex presentations where symptoms which may 

require input from multiple clinical specialities are 

present.

This problem can be exacerbated by variability in the 

conditions that present in children with a ND-GCs, 

which may not follow the expected symptom patterns 

based on research from non-genotyped populations. 

For example, we have observed that children with 

22q11.2 deletion and ADHD are much more likely to be 

affected with an inattentive subtype than the children 

with idiopathic ADHD [16]. A clinician who is unaware 

of this may be less likely to diagnose ADHD, meaning 

that the child misses beneficial treatment. Diagnostic 

overshadowing may also take place, a well-recognised 

phenomenon where difficulties that are experienced 

by a child with a genomic disorder are interpreted as 

wholly due to ID [17–19]. This can reduce the chance 

for referral to appropriate services and access to appro-

priate treatment [20, 21].

One solution to these problems would be to identify 

patterns of neurodevelopmental and physical health 

symptoms that are most associated with ND-GCs, to 

develop a screening tool to stratify affected patients for 

graded approaches to investigation and treatment. Such 

a tool would need to be quick and simple to use either by 

a primary carer before consultations, or as part of a con-

sultation, in a busy clinical setting, and focus on the most 

salient symptoms that could indicate future difficulties.

In the present study, we used a relatively large sample 

combining young people with a range of ND-GCs and 

siblings with no ND-GC (controls) in all of whom deep 

physical and mental health phenotyping had been con-

ducted. We identify those symptoms that most robustly 

differentiate between young people with ND-GCs and 

controls and subsequently analysed whether these symp-

toms form broader symptom domains.

Method
Participants

We defined ND-GCs as conditions associated with 

increased risk of neurodevelopmental symptoms [22] 

and caused by a genetic variant which was either patho-

genic or likely pathogenic, according to American Col-

lege of Medical Genetics and Genomics guidance [23]. 

We aimed to recruit a population of participants with a 

range of ND-GCs that represented a “snapshot” of pres-

entations to UK Child and Adolescent Mental Health 

Services, Intellectual Disability, Clinical Genetics or 

Community Paediatrics clinics.

Families of children with a confirmed ND-GC, aged 

over 4 years, were recruited through UK Medical Genet-

ics clinics, word of mouth and the charities UNIQUE 

(https:// rarec hromo. org) and Max Appeal (https:// www. 

maxap peal. org. uk), as part of ongoing cohort studies at 

Cardiff University including the ECHO study (https:// 

www. cardi ff. ac. uk/ cy/ centre- neuro psych iatric- genet ics- 

genom ics/ resea rch/ themes/ devel opmen tal- psych iatry/ 

copy- number- varia nt- resea rch- group) and the IMAG-

INE study (https:// imagi ne- id. org) [22, 24]. Detailed 

information regarding the cohort inclusion criteria is 

available in the IMAGINE study protocol https:// imagi 

ne- id. org/ healt hcare- profe ssion als/ study- docum ents- 

downl oads- page/.

Siblings closest in age to individuals with a ND-GC, 

who did not have a known ND-GC themselves, were 

recruited to the study as controls; siblings were not 

https://rarechromo.org
https://www.maxappeal.org.uk
https://www.maxappeal.org.uk
https://www.cardiff.ac.uk/cy/centre-neuropsychiatric-genetics-genomics/research/themes/developmental-psychiatry/copy-number-variant-research-group
https://www.cardiff.ac.uk/cy/centre-neuropsychiatric-genetics-genomics/research/themes/developmental-psychiatry/copy-number-variant-research-group
https://www.cardiff.ac.uk/cy/centre-neuropsychiatric-genetics-genomics/research/themes/developmental-psychiatry/copy-number-variant-research-group
https://www.cardiff.ac.uk/cy/centre-neuropsychiatric-genetics-genomics/research/themes/developmental-psychiatry/copy-number-variant-research-group
https://imagine-id.org
https://imagine-id.org/healthcare-professionals/study-documents-downloads-page/
https://imagine-id.org/healthcare-professionals/study-documents-downloads-page/
https://imagine-id.org/healthcare-professionals/study-documents-downloads-page/
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excluded if they had any neurodevelopmental or physical 

health-related conditions.

In total, 589 individuals (441 individuals with a ND-GC 

and 148 siblings) were included in the study, from whom 

data from 493 individuals were included in our machine 

learning analysis after initial data preparation (Additional 

file 1: Methods). Participant demographic characteristics 

are shown in Table 1. Our sample size was the maximum 

number of participants in our dataset who had all the 

required variables.

Informed, written consent was obtained prior to 

recruitment from the carers of participants and recruit-

ment was carried out in agreement with protocols 

approved by relevant NHS and university research ethics 

committees. Individual ND-GC genotypes were estab-

lished from medical records and in-house genotyping 

at the Cardiff University Centre for Neuropsychiatric 

Genetics and Genomics using microarray analysis. The 

ND-GCs of participants are shown in Table 2.

Assessments

Primary carers of participants completed a battery of 

assessments to collect comprehensive information on 

physical and mental health problems through semi-

structured interviews with trained research staff and 

questionnaires. Assessments were carried out between 

January 2011 and December 2019.

Our goal was to generate a set of discriminating items 

that could be quickly, easily and conveniently completed 

by a carer or community clinician either on paper or 

online, and which could serve as the basis for the devel-

opment of an instrument screening for the most likely 

domains in which young people with ND-GCs can expe-

rience difficulties. Therefore, measures which involved 

complex or prolonged assessments, such as IQ or motor 

co-ordination, or potentially intrusive testing, such as 

blood tests, although important for a full and in-depth 

assessment of phenotype in some settings, were not 

included in the current analysis.

Psychiatric symptoms were measured using the Child 

and Adolescent Psychiatric Assessment (CAPA, [25]), 

Strengths and Difficulties Questionnaire (SDQ, [26]) 

and the Social Communication Questionnaire (SCQ, 

[27]). The CAPA assesses a broad set of psychopatho-

logical domains including ADHD, anxiety disorders, 

oppositional defiant disorder, obsessive compulsive 

disorder, psychosis and psychotic experiences, tic dis-

orders, mood disorders, and substance abuse. The SDQ 

is a dimensional measure of psychopathology that 

includes measures of hyperactivity, emotional prob-

lems, peer problems, and prosocial behaviour. The SCQ 

Table 1 Demographic information about the sample of children affected by a ND‑GC and sibling controls

a Median (IQR); n (%)

Variable Group

Overall, N =  493a ND-GC, N =  389a Sibling, N =  104a

Age 9.26 (7.27, 12.21) 9.01 (7.16, 11.82) 10.23 (8.12, 13.00)

Gender

 Female 182 (37%) 133 (34%) 49 (47%)

 Male 311 (63%) 256 (66%) 55 (53%)

Highest educational level

 No school leaving exams 32 (6.5%) 29 (7.5%) 3 (2.9%)

 Low 104 (21%) 86 (22%) 18 (17%)

 Middle 175 (35%) 140 (36%) 35 (34%)

 High 129 (26%) 105 (27%) 24 (23%)

 Unknown 53 (11%) 29 (7.5%) 24 (23%)

Income

 ≤ £19,999 123 (25%) 105 (27%) 18 (17%)

 £20,000–£39,999 166 (34%) 134 (34%) 32 (31%)

 £40,000–£59,999 74 (15%) 62 (16%) 12 (12%)

 £60,000+ 71 (14%) 52 (13%) 19 (18%)

 Unknown 59 (12%) 36 (9.3%) 23 (22%)

Ethnicity

 European 439 (89%) 356 (92%) 83 (80%)

 Other 31 (6.3%) 26 (6.7%) 5 (4.8%)

 Unknown 23 (4.7%) 7 (1.8%) 16 (15%)
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measures ASD-associated symptoms and was used as 

the CAPA and SDQ lack of coverage of ASD symptoms.

Difficulties with coordinated movement are also an 

important symptom in individuals with ND-GCs [10, 

24, 28, 29]; therefore, we assessed motor coordination 

using the developmental coordination questionnaire 

(DCDQ, [30]).

Information about physical health problems and 

development was collected through a detailed ques-

tionnaire covering developmental history including 

pregnancy and birth and health problems in all major 

organ systems. A full list of all gathered variables is 

available on the IMAGINE ID study website https:// 

imagi ne- id. org/ wp- conte nt/ uploa ds/ 2019/ 04/ Online- 

Data- dicti onary- 16. 04. 19- v2. pdf.

Included items were selected to cover a wide set of 

domains, including neurodevelopmental disorders, 

psychopathology more broadly, general health and 

development, motor development, social and commu-

nication skills and areas of strength and prosocial skills.

After variable filtering for excessive similar responses 

and missing data, all but one variable (birth weight in 

kg) was either binary or ordinal. We therefore did not 

perform any transformation on our variables.

Statistical analysis and data availability

All statistical analyses were carried out in R version 4.2.1 

[31]. An overview of the analysis workflow is presented in 

Fig. 1. Code used in the project is provided in a GitHub 

repository: https:// github. com/ NADon nelly/ nd_ cnv_ ml 

and fitted models are presented as an interactive Shiny 

app: https:// nadon nelly. shiny apps. io/ cnv_ ml_ app/. Data 

from the IMAGINE study are available via the IMAGINE 

ID study website: https:// imagi ne- id. org/ healt hcare- profe 

ssion als/ datas haring/. Analysis is reported in line with 

the TRIPOD guidelines, Additional file 1: Table S1 [32]. 

An early version of this manuscript was deposited as a 

preprint: https:// doi. org/ 10. 1101/ 2022. 12. 16. 22283 581.

Dimensional structure assessment

We applied principal components analysis (PCA) fol-

lowed by partial least squares discriminant analysis 

(PLSDA, where the outcome was ND-GC status) to 

explore the dimensional structure of our dataset, using 

the mixOmics package [33]. A cross-validation process 

was used find the optimal number of components and 

variables for the PLSDA (Additional file 1: Methods).

Machine learning model fitting

We prepared our data for machine learning (ML) model 

fitting by splitting participants into a training dataset of 

393 (80% of the dataset) and a test set of 100 (20% of the 

dataset), stratifying by ND-GC status, sex and age (cat-

egorised into quintiles). The distribution of demographic 

characteristics in the test and training sets was reason-

ably balanced (Additional file 1: Table S2).

Our outcome was binary classification of ND-GC sta-

tus (with ND-GC vs control), and we evaluated model 

performance using the area under the receiver operator 

characteristic curve (AUROC) and Brier Score (mean 

squared error between predicted probability and true 

ND-GC status, where controls were scored as 0 and indi-

viduals with an ND-GC as 1).

We used penalised logistic (elastic net) regression 

(using the glmnet package [34]), random forests (using 

the Ranger package [35]), radial basis function support 

vector machines (SVMs, using the kernlab package [36]) 

and single layer artificial neural networks (using the nnet 

package [37]) to create models capable of capturing lin-

ear and nonlinear relationships.

Models were fit using nested cross-validation (CV), 

with 20 outer folds and 20 inner folds. Outer folds were 

generated by splitting the data into 5 folds, repeated 4 

times. Inner folds were generated from the outer fold 

analysis set using bootstrapping with replacement.

Table 2 Counts of the genotypes of all study participants

a To preserve the confidentiality of individuals who had ND-GCs with a total 

count of < 5 participants with the same ND-GC in the study, we have grouped 

all such low frequency ND-GCs into a single group. This group contained 

32 deletions and 25 duplications, with 15 other conditions being related to 

mixed deletions and duplications, single nucleotide variants, triplications, 

translocation, chromosomal trisomy, or imprinting. Chromosomal regions 

affected by ND-GCs in this group were: 1p21, 1p33, 1p36, 1q21, 1q42, 1q44, 

2p12, 2p16, 2q11-q21, 2q13, 2q33, 2q34, 2q37, 3q28-29, 4p15, 4q28-31, 

5p15, 5q23, 6p25, 6q27, 7p22, 7q11, 8q21, 8q24, 9p24, 9q34, 11q23, 12p13, 

15pter-q13, 15q11, 15q11-q13, 15q13, 16p11, 16p12, 16p13, 16p21, 16q23, 

17p11, 17p13, 17q12, 17q23, 17q25, 18p11, 20q13, 22q11, 22q12-q13, 22q13, 

Xp21, Xp22, Xp28

Genomic condition N

Controls 104

Othera 81

16p11.2 deletion 45

15q11.2 deletion 39

22q11.2 deletion 30

1q21.1 duplication 28

16p11.2 duplication 25

15q13.3 deletion 24

22q11.2 duplication 23

15q13.3 duplication 20

1q21.1 deletion 18

NRXN1 16

TAR duplication 13

16p11.2 distal deletion 11

Kleefstra 11

15q11.2 duplication 5

https://imagine-id.org/wp-content/uploads/2019/04/Online-Data-dictionary-16.04.19-v2.pdf
https://imagine-id.org/wp-content/uploads/2019/04/Online-Data-dictionary-16.04.19-v2.pdf
https://imagine-id.org/wp-content/uploads/2019/04/Online-Data-dictionary-16.04.19-v2.pdf
https://github.com/NADonnelly/nd_cnv_ml
https://nadonnelly.shinyapps.io/cnv_ml_app/
https://imagine-id.org/healthcare-professionals/datasharing/
https://imagine-id.org/healthcare-professionals/datasharing/
https://doi.org/10.1101/2022.12.16.22283581
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Fig. 1 Flowchart of analysis workflow including variable and participant selection and machine learning model fitting. CV: cross‑validation; ML: 

machine learning; PCA: principal components analysis; PLSDA: partial least squares discriminant analysis
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Within each outer fold missing data were imputed 

using bagged tree models [38], and the same model was 

used to impute missing data in the analysis set.

Grid search (30 elements) was used to optimise hyper-

parameters for ML models across inner folds. Model 

performance was evaluated by fitting the model with the 

best performing set of hyperparameters in the inner fold 

data to the (previously unseen) outer fold assessment 

dataset. This process was then repeated for all outer folds 

(Additional file 1: Methods).

As an additional analysis, as our dataset was imbal-

anced with regard to ND-GC status, we also trained and 

evaluated machine learning models after either down-

sampling the number of individuals with ND-GCs to be 

equal in number of controls; or upsampling control indi-

viduals to be equal in number to those with ND-GCs, 

using random resampling with replacement.

Following nested CV, we selected models with the 

highest AUROC, and evaluated the importance of all 

included variables for model prediction using permuta-

tion testing [39]. We selected the top 30 variables for all 

ML models and generated two further variable sets: all 

variables which were included in the top 30 most impor-

tant for more than one ML model, and those variables 

included in the top 30 for at least 3 models, to give a total 

of 6 sets of variables.

We extracted 30 variables for each model because we 

wanted to achieve a balance between accurate predic-

tion, including a wide set of variables for exploration of 

dimensional structure and limiting the number of items 

to that which could be realistically completed by young 

people’s carers and/or clinicians as a brief screening tool 

to be used in a clinical setting.

We repeated our nested CV process using the same ML 

models using the 6 sets of most-predictive variables, giv-

ing a total of 24 combinations of models and predictor 

variables, selecting the best performing combinations of 

variables and ML model, based on AUROC.

We evaluated the performance of the final models 

using the held-out training data. Missing data in the test 

dataset was imputed using a model fit to the full training 

dataset, and the ND-GC status of each participant in the 

test dataset was predicted using the best ML models.

Model performance was evaluated by drawing 2000 

bootstrap samples from the test dataset and estimating 

performance (AUROC and Brier Score) for the boot-

strap sample. This produced a distribution of values from 

which a median value and a 95% confidence interval were 

calculated.

Model calibration, i.e. the relationship between true 

and model-predicted probability of ND-GC status, was 

estimated by binning model predictions by predicted 

probability of ND-GC status and plotting this against 

true ND-GC status. Model performance was also esti-

mated for male and female participants separately, and 

after binning participants by age quintile.

The importance of each variable in the best fit-

ting model was evaluated using a permutation-based 

approach, as above.

The optimal threshold for converting model predicted 

probability of ND-GC status into a binary classification 

was estimated by finding the threshold which maximised 

the j-index (sensitivity + specificity – 1, [40]).

Exploratory graph analysis

Bootstrap exploratory graph analysis (EGA) was used 

to investigate the dimensional structure of the best per-

forming variable set. EGA has been shown to be as 

accurate or more accurate than traditional factor ana-

lytic methods such as parallel analysis [41]. Bootstrap 

EGA estimates and evaluates dimensional structure in 

a set of variables by first applying a network estimation 

method (EBICglasso as applied using the qgraph package 

[42]), followed by a community detection algorithm for 

weighted networks (Walktrap community detection algo-

rithm [43]). Nonparametric bootstrapping is then used 

to generate bootstrap samples (n = 9999) from the input 

dataset, and EGA was applied to each replicate sample 

to form a sampling distribution from which the median 

value of each edge across the replicate networks, result-

ing in a single network. The stability of the network can 

be assessed by measuring the proportion of bootstrapped 

networks where a given variable is included in each puta-

tive dimension [44], and the number of variables included 

can be adjusted to improve the stability of dimension rep-

resentations. We therefore fit an EGA model to a full set 

of variables, then repeated the analysis with the variables 

with the most consistent relationship to our dimensions 

(item stability > 0.75; this left 19 variables), generating a 

stable and consistent EGA model.

To provide an additional assessment of the fit of the 

proposed dimensional structure to the data, confirma-

tory factor analysis was carried out on the typical dimen-

sion structure identified by bootstrap EGA, with fit 

assessed using the comparative fit index (CFI) and root 

mean square error of approximation (RMSEA).

Finally, we repeated the above model fitting process-

ing using the most important variables in each of the five 

dimensions identified by EGA.

Results
Study participant characteristics

A total of 493 participants contributed to our dataset, 

including 389 young people with a ND-GC and 104 con-

trols. Demographic characteristics of study participants 

are given in Table 1 and genotypes in Table 2. Individuals 
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with an ND-GC were approximately a year younger than 

controls and there was a higher proportion of males in 

the ND-GC group. Compared to families where both 

a control and a young person with a ND-GC took part, 

families where only a young person with a ND-GC took 

part had lower parental educational level and income, 

and there were fewer participants of European ancestry; 

the discrepancy between individuals with ND-GCs and 

control individuals was due to most young people with a 

ND-GC not having a sibling included in the study (58%).

Partial least squares analysis

We applied principal components analysis (PCA) and 

partial least squares discriminant analysis (PLSDA) to 

our full set of 176 variables for the 389 participants in our 

training dataset to describe the dimensional structure of 

our variables. PLSDA is a supervised dimension reduc-

tion method which focusses on discrimination between 

groups. We found that 2 components provided optimal 

discrimination between groups, with 50 and 40 variables 

selected for the two components, respectively. This anal-

ysis indicated the two components explained 14.8% and 

5.4% of the variance in our dataset (Additional file 1: Fig. 

S1). This analysis indicated that it was possible to iden-

tify young people with ND-GCs using our dataset; young 

people with ND-GCs had lower scores on component 

1. Some individuals with a ND-GC showed similar pro-

files to controls and likely represent participants with a 

ND-GC that are relatively mildly affected; some controls 

showed profiles more like those with ND-GCs, reflecting 

individuals in the control sample with elevated difficul-

ties across the measured domains.

However, this analysis still selected large numbers 

of variables. We therefore applied machine learning 

approaches to develop classification models that identi-

fied an optimally predictive subset of variables.

Developing machine learning models

We developed machine learning models (artificial neu-

ral networks [ANN], radial basis function support vector 

machines [SVM], penalised logistic regression [LR] and 

random forests [RF]) to classify individuals by ND-GC 

status, using our full training set of 176 variables and 393 

participants using nested cross-validation (CV). After 

nested CV, all models performed well at distinguish-

ing between individuals in the training data set with a 

ND-GC and controls, with median AUROCs ≥ 0.9 in all 

cases (Additional file  1: Table  S3). The RBF SVM per-

formed best, with an overall median AUROC of 0.934 

95% credible interval [0.914, 0.953]. The random forest 

and penalised logistic regression models did not perform 

significantly worse than the SVM, but the performance of 

the ANN was poorer (AUROC difference = − 0.02, 95% 

credible interval of difference [− 0.031, − 0.009]).

Predictive performance with optimised variable sets

We repeated model fitting using nested cross-validation 

using the sets of variables selected as being most impor-

tant to the models fit to the full set of variables (deter-

mined using permutation testing). Results were similar 

across multiple models and variable sets (median training 

performance ranged from 0.914 to 0.961, Fig. 2A, Addi-

tional file 1: Table S4). We selected the “RF” variable set 

for further analysis as this set appeared to produce both 

the best classification performance across multiple model 

types.

We assessed whether model performance was altered 

by up- or down-sampling our training datasets such that 

the training data was balanced for status ND-GC. This 

analysis indicated that there were only minor changes in 

performance after up or downsampling (Additional file 1: 

Table  S5). We therefore carried out all further analyses 

with the original training dataset.

We then fit the best performing models to our held-out 

test set of data from 100 participants (Fig. 2B, Table 3). 

The best performing model was a RF, achieving an 

AUROC of 0.915 (95% bootstrapped CI [0.838, 0.980]) 

with a Brier Score of 0.188 (95% bootstrapped CI [0.121, 

0.243]).

Performance of other models was not significantly 

poorer than the RF. The optimal probability for classify-

ing a participant as having an ND-GC, the point at which 

the j-index is maximised, was 0.835 (Fig.  2C). Using 

this point as the cut off for classification, the RF model 

correctly classified 65/72 young people with ND-GCs 

(90.3%) and 24/28 controls (85.7%).

We investigated whether classification performance 

varied over participant age or between genders. Perfor-

mance of the final RF model appeared to be higher in 

male than female participants, but there did not appear 

to be consistent differences in performance across par-

ticipant ages, although our sample was mostly of younger 

participants (Additional file 1: Table S6).

Analysis of model calibration demonstrated miscalibra-

tion between predicted and actual probabilities, with the 

model having some tendency to given lower-than-opti-

mal predicted probabilities of ND-GC status (Fig. 2D).

We investigated variable importance in our best per-

forming model (Fig. 2E). This demonstrated that a subset 

of variables appeared to have a particularly large impor-

tance to the model. We next investigated whether there 

was a dimensional structure within our variable set that 

could be used to understand the predictors of ND-GC 

status.
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Fig. 2 Performance of final models on test data. A Plot of performance (AUROC) of four ML models (ANN = artificial neural network, penalised 

LR = penalised logistic regression, random forest, RBF SVM = radial basis function support vector machine) fit to 7 variable sets (all variables = all 

176 variables; ANN = 30 most important variables in an ANN fit to all variables; penalized LR = 30 most important variables in a penalized logistic 

regression fit to all variables; random forest = 30 most important variables in a random forest model fit to all variables; > 1 Model = variables 

identified as being in the 30 most important variables by more than one ML model; > 2 Models = variables identified as being in the 30 most 

important variables by more than two ML models; SVM = the 30 most important variables in a Radial Basis Function SVM fit to all variables. Points 

show the median posterior AUROC, error bars show the 95% credible interval of the AUROC. B Receiver‑operator characteristic curves for the 4 

machine learning models, using the 30 variables from the random forest dataset. C Top—histogram of predicted probability of ND‑GC status 

in the 100 participants in our testing dataset using the best performing random forest model; bottom—plots of sensitivity, specificity of model 

classification performance at different thresholds for categorising a predicted probability. D Calibration plot for the best performing RF model. 

Points are performance in each decile, vertical lines show 95% confidence intervals, thick diagonal line shows a linear model fit to the data, with 

the shade area showing the 95% confidence interval of the linear model. A perfectly performing model would follow the diagonal dashed line. E 

Variable importance for the best fitting model. Mean dropout loss is the mean change in model AUROC after a given variable is permuted (repeated 

500 times). Horizontal line indicates (1—AUROC) of the full model; therefore, variables with mean values above this line have a negative impact on 

model fit when permuted. Variable definitions are provided in Additional file 1: Table S7
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Underlying dimensional structure of selected variables

We next investigated an underlying structure of the 

variables included using an exploratory graph analysis 

(EGA). The 30 variables used were the optimised variable 

set of the best performing RF model, determined using 

permutation testing. These variables included items 

from the Developmental Coordination Disorder Ques-

tionnaire, Social Communication Questionnaire, Social 

Communication Questionnaire, Child and Adolescent 

Psychiatric Assessment and the Health and Development 

Questionnaire.

EGA fit to the most stable set of variables (19 variables 

were included in the final EGA model) revealed that the 

variables formed a structure consisting of 5 dimensions: 

1: conduct; 2: separation anxiety; 3: situational anxiety 

and insomnia, 4: communication; and 5: co-ordination 

(Fig. 3, Additional file 1: Table S7).

Confirmatory factor analysis based on this four-dimen-

sion structure demonstrated that the 4-factor structure 

fit with RMSEA of 0.046 and CFI of 0.980, indicating sat-

isfactory fit to the data.

Finally, we investigated if the variable domains identi-

fied through EGA could be used to develop a further 

reduced set of variables for use in a ML model; although 

a 30-item scale could be realistically used in a clinical 

setting, a shorter screener could be useful in busy clini-

cal environments. We therefore selected the variable in 

each dimension with the highest variable importance and 

fit ML models to our training data, using these variables 

(AGO [agoraphobia intensity], ANT [anticipatory dis-

tress intensity], BLT [blurting out answers to questions], 

SP2 [talking by age 2], CGM [participating in sports or 

games]).

The best performing model was a penalised logistic 

regression model with AUROC = 0.859 (bootstrapped 

95% CI [0761, 0.955]) and Brier Score = 0.247 [0.203, 

0.292]. Sensitivity and specificity were maximised at 

a threshold of 0.763; with 64/72 participants with an 

Table 3 Final model performance on held‑out test dataset

Values shown are bootstrapped performance and the 95% confidence interval of the measure (AUROC and Brier Score), and difference in AUROC between the random 

forest and other ML models, with its 95% confidence interval, and the probability of direction for the AUROC difference

Model Brier score AUC ROC AUC ROC difference Probability 
of direction

Random forest 0.188 [0.121, 0.243] 0.915 [0.838, 0.98] – –

Penalised LR 0.183 [0.121, 0.251] 0.904 [0.82, 0.981] 0.011 [− 0.099, 0.122] 0.843

ANN 0.186 [0.152, 0.225] 0.883 [0.787, 0.963] 0.031 [− 0.087, 0.151] 0.619

RBF SVM 0.21 [0.137, 0.284] 0.897 [0.814, 0.968] 0.018 [− 0.089, 0.124] 0.757

Fig. 3 Exploratory graph analysis. The graph shows correlations between variables (notes) as lines, where line thickness represents correlation 

strength (range 0–1). Nodes are coloured by the putative dimensions they are assigned to by the bootstrapped EGA algorithm. Variable definitions 

are given in Additional file 1: Table S7.
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ND-GC being correctly classified (88.9%), and 19/28 con-

trol participants classified correctly (67.9%). This perfor-

mance was lower than the full 30 variable model, but still 

indicative of reasonable classification performance.

Discussion
Main findings

In this study, we demonstrate the potential of using 

machine learning to identify key variables where individ-

uals with genomic conditions associated with intellectual 

disability and neurodevelopmental disorders differ from 

control individuals, based on a limited set of psychiatric, 

behavioural and physical health related variables, in the 

absence of biochemical, genetic or neurocognitive data. 

Using a random forest classifier, we were able to classify 

individuals with an ND-GC with excellent performance, 

achieving an AUROC of 0.915. We identified 5 dimen-

sions in our variable set that appeared to be most rele-

vant to identifying individuals with an ND-GC, namely 

conduct, separation and situational anxiety, communica-

tion and motor co-ordination.

Relationship to previous studies

Previous studies have described the high rates, and com-

plex presentations, of psychiatric and neurodevelop-

mental difficulties in young people with ND-GCs [8, 12, 

22, 24, 45]. ND-GCs are associated with a wide range of 

health outcomes [15], along with multi-morbidity later in 

life [46], and are highly enriched in the population with 

developmental delay/intellectual disability [1, 3, 4, 47]. 

However, not all individuals with a ND-GC will meet 

diagnostic criteria for specific psychiatric disorders [48]. 

We attempted to address this by not including diagnostic 

status in our classification models, only symptom scores; 

the highly accurate classification we were able to achieve 

supports the idea that profiles of symptoms are most 

informative when identifying areas of relative difficulty or 

strength in individuals with ND-GCs.

We identified 5 underlying dimensions in our final set 

of variables. These dimensions identify potential key phe-

notypic areas where individuals with ND-GCs differ from 

controls: anxiety (particularly separation anxiety) and 

insomnia, motor co-ordination, communication skills 

and conduct, as well as suggesting that other domains, 

such as difficulties with hyperactivity, may be less dis-

criminating. The identified dimensions map onto areas of 

difficulty elucidated in previous studies [11, 28, 48–51], 

and highlight that specific symptoms may be particularly 

informative about ND-GC status, including symptoms of 

separation anxiety and difficulties with speech.

Clinical care pathways may be enhanced by focusing 

more on the areas identified as key dimensions by our 

analysis if further research demonstrates that they are 

areas that predict longer term difficulties for children 

with ND-GCs. It will also be important to take the items 

identified and work with parents and clinicians to opti-

mise the wording and content of any items that could 

be used in a screening test derived from our analysis. 

For example, two highly predictive items refer to a his-

tory of speech and language therapy or having an educa-

tion statement of needs from a school. As young people 

with ND-GCs can struggle to access therapies in a timely 

fashion, this item might miss individuals who might have 

needed speech and language therapy, but not been able to 

access it; similarly, there may be delays to accessing sup-

port in schools; therefore, asking about relative difficul-

ties with speech and language may be more informative.

Strength and limitations

This is the largest study of its kind to investigate the 

possibility of identifying domains of differences in pres-

entation in individuals with a broad range of ND-GCs 

based solely on psychiatric and health phenotypes using 

machine learning models. We were able to produce a 

model with high AUROC, which performed well across 

a range of relevant ages, and in both males and females.

However, while including a very broad range of 

genomic disorders provided a more representative sam-

ple of those variants which may be seen by clinical ser-

vices, it may have increased the noise and variability in 

symptom profiles. This requires empirical testing.

Similarly, we included siblings as controls based on 

genetic testing confirming the absence of an ND-GC, 

rather than based on phenotype. Our sample was also 

unbalanced, in that there were a larger number of individ-

uals with a ND-GC than controls, because not all families 

with a child with an ND-GC had an sibling of a similar 

age at recruitment, and our dataset is derived from a 

cohort study that specifically aims to recruit individu-

als with ND-GCs. This can affect model performance, 

as most techniques perform best in balanced samples. 

Although we performed additional sensitivity analysis 

demonstrating that model performance remained similar 

when either upsampling controls or downsampling indi-

viduals with ND-GCs, future studies that include larger 

sets of controls, in both siblings and unrelated typically 

developing individuals, will be important for validating 

our models.

Our initial partial least squares discriminant analysis 

indicated that young people with an ND-GC and con-

trol individuals lie on a spectrum of presentations; while 

it is possible to distinguish between the two groups 

based on psychiatric, behavioural and health informa-

tion, there remain some individuals with a ND-GC who 

have profiles that are very similar to control individuals. 

This highlights the wide variety of phenotypic expression 
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that is seen within individuals with ND-GCs, which will 

impose limits on the performance of any classification 

algorithm.

Additionally, ascertainment bias may affect our results. 

Developmental delay is a major reason for referral for 

genetic testing in the UK, and it is likely that our sam-

ple has a preponderance to include those individuals with 

ND-GCs who are on the more severe end of the pheno-

typic presentation, and as such it may be the case that 

the dimensional structure we identify as being associated 

with ND-GC carriage may be applicable only to relatively 

more severe difficulties, rather than the phenotype of the 

entire population of young people with ND-GCs.

We considered the role of decision curve analysis in 

our study, as this approach has been recommended in 

studies of prediction models [52]. However, such calcu-

lations rely on samples being drawn from a population 

comparable to the clinical population. Our study sample 

was drawn from a cohort explicitly recruited based on a 

positive test for a ND-GC (or sibling controls). Therefore, 

such an analysis is not applicable to our study. However, 

it should be performed in a future study validating our 

model in a broader population.

Our machine learning models and EGA would be 

strengthened by measuring performance and performing 

confirmatory factor analysis using an independent sam-

ple. Future studies which combine measurement of most 

differentiating variables and longer-term follow-up of 

psychiatric and health outcomes would allow the predic-

tive accuracy of our model to be evaluated.

We included only items that were reported by par-

ticipant’s parents or carers, rather than from participant 

self-report, or from other sources of information such as 

teacher report or clinical observation. Although multi-

informant and multi-modal assessment would be the 

gold standard for accurate diagnosis, parental report is 

more likely to be available in many clinics as a starting 

point to identify individuals who require more detailed 

assessment.

The symptom domains identified could be explored in 

future work by, as suggested, the development of self-

reporting tasks, or the use of novel technology such as 

analysis of video recordings using machine learning algo-

rithms (for example given our finding that communica-

tion and motor co-ordination are important domains) or 

ecological momentary assessment methods.

Despite these limitations, it is important to better 

understand the difficulties faced by this group of indi-

viduals as they make up a significant proportion of those 

presenting to intellectual disability services and clini-

cians often lack complete information on prognosis for 

patients with ND-GCs. This study highlights areas of dif-

ficulties for those children who may most need further 

support, which may warrant further research and may be 

targets for individualised interventions.

Conclusions
We develop a set of questionnaire variables associated 

with neurodevelopmental disorders and intellectual dis-

ability symptoms in ND-GCs which could form the basis 

for clinical screening instruments. We highlight that con-

duct, separation and situational anxiety, communication 

and motor skills and conduct are important areas where 

children with ND-GCs differ from control individuals. 

Future research should investigate the prognostic asso-

ciations of difficulties in these domains.
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