
Runtime Analysis of Success-Based Parameter

Control Mechanisms for Evolutionary

Algorithms on Multimodal Problems

Mario Alejandro Hevia Fajardo

The University of Sheffield
Faculty of Engineering

Department of Computer Science

This dissertation is submitted for the degree of

Doctor of Philosophy

April 2023

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in col-
laboration with others, except as specified in the text and Acknowledgements. Some pieces
of this dissertation are based on articles that have been published elsewhere as specified in
Section 1.4.

Mario Alejandro Hevia Fajardo
April 2023

Acknowledgements

Completing a PhD is a long and challenging journey that requires determination, hard work,
and support from many people. It is my pleasure to express my gratitude and appreciation
to those who have helped me along the way.

I am fortunate to have had Dirk Sudholt as my supervisor throughout my PhD studies.
I am grateful for his guidance, encouragement, and patience. His expertise, insights, and
feedback were invaluable to my research, and I am grateful for the opportunity to work
with him.

I would like to express my deep gratitude to Pietro Oliveto, whose insightful discussions
were instrumental in shaping my ideas and research direction. His guidance and support
were crucial to my success, and I am grateful for the time and effort he invested in my work.

I would also like to express my sincere appreciation to John Clark and Benjamin Doerr
for taking the time to read my thesis and serving as my examiners. I am grateful for their
dedication and commitment to ensuring that my thesis met the highest academic standards,
and I am honored to have had them examine me on my work.

I am also grateful to Donya Yazdani and George T. Hall for their help and friendship
throughout my studies. Their support and encouragement helped me overcome many ob-
stacles, and their friendship made the journey more enjoyable.

I thank my fiancée Jagoda Karpowicz for her unwavering support throughout my PhD
studies, especially during the long periods of isolation. Her encouragement, advice, and love
were invaluable, and I am grateful for the time we spent together.

Last but not least, I would like to express my heartfelt gratitude to my family. Their
love, support, and encouragement were the driving force behind my success, and I would
not have been able to pursue my dreams without them. I am grateful for their sacrifices,
their unwavering support, and their belief in me.

Each and every one of you played a crucial role, in one way or another, in the completion
of this thesis.

Abstract

Evolutionary algorithms are simple general-purpose optimisers often used to solve complex
engineering and design problems. They mimic the process of natural evolution: they use
a population of possible solutions to a problem that evolves by mutating and recombining
solutions, identifying increasingly better solutions over time. Evolutionary algorithms have
been applied to a broad range of problems in various disciplines with remarkable success.
However, the reasons behind their success are often elusive: their performance often depends
crucially, and unpredictably, on their parameter settings. It is, furthermore, well known that
there are no globally good parameters, that is, the correct parameters for one problem may
differ substantially to the parameters needed for another, making it harder to translate pre-
vious successfully implemented parameters to new problems. Therefore, understanding how
to properly select the parameters is an important but challenging task. This is commonly
known as the parameter selection problem.

A promising solution to this problem is the use of automated dynamic parameter selection
schemes (parameter control) that allow evolutionary algorithms to identify and continuously
track optimal parameters throughout the course of evolution without human intervention.
In recent years the study of parameter control mechanisms in evolutionary algorithms has
emerged as a very fruitful research area. However, most existing runtime analyses focus on
simple problems with benign characteristics, for which fixed parameter settings already run
efficiently and only moderate performance gains were shown. The aim of this thesis is to
understand how parameter control mechanisms can be used on more complex and challenging
problems with many local optima (multimodal problems) to speed up optimisation.

We use advanced methods from the analysis of algorithms and probability theory to
evaluate the performance of evolutionary algorithms, estimating the expected time until an
algorithm finds satisfactory solutions for illustrative and relevant optimisation problems as
a vital stepping stone towards designing more efficient evolutionary algorithms. We first
analyse current parameter control mechanisms on multimodal problems to understand their
strengths and weaknesses. Subsequently we use this knowledge to design parameter control
mechanisms that mitigate the weaknesses of current mechanisms while maintaining their
strengths. Finally, we show with theoretical and empirical analyses that these enhanced
parameter control mechanisms are able to outperform the best fixed parameter settings on
multimodal optimisation.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 3
1.3 Main Contributions . 5
1.4 Underlying Publications . 6

2 Background 7
2.1 Evolutionary Algorithms . 7
2.2 Computational Complexity of EAs . 11
2.3 Benchmark Functions . 12

2.3.1 Unimodal Functions . 13
2.3.2 Multimodal Functions . 14

2.4 Runtime Analysis of Evolutionary Algorithms 15
2.4.1 Useful Estimates . 16
2.4.2 Tools from Probability Theory . 17
2.4.3 Standard Tools and Methods . 19

2.5 Parameter Settings . 21
2.5.1 Taxonomy of Parameter Settings . 27

3 State of the Art in Parameter Control 30
3.1 Dynamic Mutation Rate for the (µ+ λ) EA 30
3.2 Dynamic Offspring Population Size for the (1 + λ) EA 33
3.3 Self-Adaptive Mutation Rate . 34
3.4 Self-Adjusting (1 + (λ, λ)) GA . 35
3.5 Dynamic Parameters on RLSk . 36
3.6 Conclusions . 37

4 Is Success-Based Parameter Control Efficient on Multimodal Problems? 38
4.1 Introduction . 38

4.1.1 Contributions . 39
4.1.2 Related Work . 40

4.2 The Vanilla Self-adjusting (1 + (λ, λ)) GA 41
4.2.1 Fitness-Level Upper Bounds for the Self-Adjusting (1 + (λ, λ)) GA . 42
4.2.2 Crossover does not Benefit the Self-Adjusting (1 + (λ, λ)) GA on

Jumpk . 46
4.3 Mending the Success-Based Rules . 49

4.3.1 Restricting the Parameters . 50
4.3.2 Parameter Landscape on Jumpk . 54
4.3.3 Resetting the Parameters . 58
4.3.4 Self-Adjusting (1+(λ, λ) GA Resetting λ 58

4.4 Experimental Analysis . 60

VIII

4.4.1 Empirical Analyses on Jump Functions 62
4.4.2 Empirical Analyses on OneMax . 63
4.4.3 Empirical Analyses on Other Benchmark Functions 64
4.4.4 Discussion . 67

4.5 Conclusions . 68

5 Do Success-Based Rules Work for Non-elitist Algorithms? 70
5.1 Introduction . 70

5.1.1 Contibutions . 71
5.2 Preliminaries . 72

5.2.1 Notation . 72
5.2.2 Drift Analysis and Potential Functions 74

5.3 Success Rates Matter . 75
5.3.1 Small Success Rates are Efficient . 79
5.3.2 Large Success Rates Fail . 92

5.4 Hard Problems are Easier for Success-Based Parameter Control 98
5.4.1 Bounding the Number of Generations 99
5.4.2 Bounding the Number of Evaluations 104
5.4.3 Bounds on Unimodal Functions . 105
5.4.4 Very Small Mutation Rates Make All Functions Everywhere Hard . . 107

5.5 Experimental Analysis . 108
5.5.1 Empirical Analyses on OneMax . 108
5.5.2 Empirical Analyses on Other Benchmark Functions 111

5.6 Discussion and Conclusions . 113

6 Benefits of Using Success-Based Rules for Non-elitist Algorithms on Mul-
timodal Problems 114
6.1 Introduction . 114

6.1.1 Contributions . 114
6.2 Preliminaries . 116

6.2.1 Transition Probabilities . 116
6.3 Non-elitist Algorithms with Static Parameters 119
6.4 Provable Performance Gains applying Success-Based Rules 126

6.4.1 Reaching the Cliff . 126
6.4.2 Jumping Down the Cliff . 128
6.4.3 After Jumping Down the Cliff . 132
6.4.4 Finding the Global Optimum . 138
6.4.5 Putting Things Together . 139

6.5 Experimental Analysis . 140
6.5.1 Cliff . 140
6.5.2 Varying λmax . 142
6.5.3 Other Problems . 143

6.6 Conclusions . 145

7 Conclusions 147
7.1 Future work . 148

Nomenclature

Acronyms / Abbreviations

EA Evolutionary Algorithm

GA Genetic Algorithm

RLS Randomised Local Search

RSH Randomised Search Heuristics

Mathematical Symbols

λ Offspring population size

ln(x) Natural logarithm of x

log(x) Logarithm base 2 of x

µ Parent population size

e Euler’s number e = exp(1) = 2.7182 . . .

n Problem size, number of bits of a solution

p Mutation probability or mutation rate

r Mutation parameter

Sets

S The set of search points in a given search space

N The set of the natural numbers

R The set of the real numbers

N0 The set of the natural numbers including 0

XI

Chapter 1

Introduction

Optimisation is the selection of a best option from a set of available or feasible alternatives.
More specifically, the optimisation problem is to systematically search for an input, in order
to obtain a desired output from a model or function, while satisfying certain constraints.
The term optimisation is also used to describe the minimisation or maximisation of a certain
function f : S → R, where S is a given search space [145].

Optimisation is ubiquitous in science, industry and life [168]. Tasks such as product and
process design, maximising profit of an organisation while minimising the economic risks
and buying the best product with a limited budget are examples of optimisation problems.
These and many other problems we encounter can be considered as optimisation tasks, hence
it is one of the most important topics in engineering, mathematics, computer science and
several other disciplines [77].

Given the wide range of optimisation problems, they are often subdivided into different
classes according to their characteristics. It is difficult to provide a comprehensive list
of all different optimisation classes. This thesis focuses on pseudo-Boolean optimisation
problems of the form f : {0, 1}n → R, that is, optimisation problems where the search
space S is defined over n binary variables. The study of pseudo-Boolean optimisation is
extremely useful because pseudo-Boolean functions can be used to model a wide variety of
problems, including constraint satisfaction problems (e. g. N -Queens, map coloring, SAT),
graph theory problems (e. g. minimum vertex cover, minimum spanning tree) and many
other combinatorial optimisation problems (e. g. knapsack problem, makespan scheduling
problem).

1.1 Motivation

Throughout the years computer scientists have developed techniques and algorithms to solve
optimisation problems. If we have an explicit representation of the underlying function f
of the optimisation problem, including its derivatives, we can apply classical mathematical
optimisation techniques. Even without such explicit representations, under the best of
circumstances algorithms can be tailored towards a given optimisation problem to obtain
an exact solution or a good approximation efficiently. However, this is a difficult task that
requires good understanding of the problem and often there is a lack of resources, time or
expertise to design such tailored algorithms. For such cases, a set of general-purpose iterative
optimisation heuristics that use the help of stochastic decisions have been proposed and are
widely used. These algorithms are called Randomised Search Heuristics (RSH). One of the
most common types of RSH used for this purpose are Evolutionary Algorithms (EAs) [145].

Broadly speaking, evolutionary algorithms are RSH inspired by natural evolution, and
they are studied by the research area of Evolutionary Computation. An evolutionary algo-

1

rithm uses a population of candidate solutions and “evolves” the population by applying
operators such as mutation, recombination and selection. Evolutionary algorithms have
been applied to a wide range of problems. The popularity of these algorithms can be at-
tributed to their ease of implementation and their effectiveness in problems with little a
priori knowledge. Evolutionary algorithms can be used even in extreme cases where the
optimisation problem is in a so-called black-box scenario, that is, the algorithm does not
have direct access to its objective function, therefore treats the optimisation problem as a
black-box where it can only probe the search space by evaluating candidate solutions [70].

Even though evolutionary algorithms can be applied to a wide range of problems, it
is well known that the efficiency of the optimisation process may depend drastically on
its parameters and the problem in hand [51, 140]. Therefore, an important aspect of us-
ing evolutionary algorithms is an understanding of how changes in its parameters affect
their performance. An approach for parameter selection is to theoretically analyse the op-
timisation time (runtime analysis) of evolutionary algorithms to understand how different
parameter settings affect their performance on different fitness landscapes. This approach
tends to be highly specific for the problem and instance studied, nonetheless it has given us
a better understanding of how to properly set the parameters of evolutionary algorithms.
Moreover, it has shown that during the optimisation process the optimal parameter values
may change, making any static parameter choice have sub-optimal performance [51].

In order to overcome these difficulties, several strategies to adapt the parameter values
during the run have been proposed. These dynamic parameter setting strategies are called
parameter control mechanisms; they aim to automatically find the optimal parameters at
every stage of the optimisation process. In continuous optimisation, parameter control
is indispensable to ensure convergence to the optimum, therefore, non-static parameter
choices have been standard for several decades [45]. In contrast, in the discrete domain
parameter control has only become more common in recent years. In particular, there has
been an increasing interest in the theoretical study of parameter control mechanisms in
order to understand how they work and when they perform better than static parameter
settings. The growing interest can be attributed in part to theoretical studies demonstrating
that fitness-dependent parameter control mechanisms can provably outperform the best
static parameter settings [15, 21, 60, 67]. Despite the proven advantages, fitness-dependent
mechanisms have an important drawback: to have an optimal performance they generally
need to be tailored to a specific problem which needs a substantial knowledge of the problem
in hand [51].

To overcome this constraint, several parameter control mechanisms that update the pa-
rameters using simple rules based on the success of the previous iteration have been proposed.
These are called success-based parameter control mechanisms (also called self-adjusting).
Theoretical studies have proven that in spite of their simplicity, these mechanisms are able
to use good parameter values throughout the optimisation, obtaining the same or better per-
formance than any static parameter choice. In fact, it has been shown in several theoretical
studies that they can be faster than any static parameter choice on simple problems with
only one (local or global) optimum (see the survey by Doerr and Doerr [51]).

The problem is that up until now, we do not have a good understanding of how self-
adjusting parameter control mechanisms behave in complex problems with more than one
local optimum (multimodal problems), even though they are widely used to solve them.
Aggravating the situation, most real-world problems tend to be multimodal in nature.

The purpose of this thesis is to extend the fruitful research of success-based parameter
control mechanisms for evolutionary algorithms towards the study of multimodal problems.
In the literature when solving multimodal problems, sometimes the optimisation algorithms
aim to locate multiple optimal (or near-optimal) solutions in a single run [155]. This thesis
focus on optimisation algorithms that seek a single global optimum on a multimodal fitness
landscape.

2

More specifically, the main aim of this thesis is to understand how success-based pa-
rameter control mechanisms for evolutionary algorithms can be efficiently implemented for
multimodal optimisation. Multimodal optimisation is a challenging scenario for success-
based parameter control mechanisms because once a local optimum is reached, the success
of previous iterations does not give a good indication of what parameters are needed to es-
cape the local optimum. Additionally, the information obtained from unsuccessful iterations
may diverge the parameters towards too small or too large values that might not be the best
choice to leave the local optimum.

A natural question that arises is whether current success-based parameter control mech-
anisms already have a good performance on multimodal problems. There is some empirical
evidence that success-based parameter control mechanisms struggle on these problems (e.g.
[74, 82, 99]), but there is little to none theoretical evidence. This thesis addresses this
question by theoretical means shedding light on the strengths and weaknesses of current
success-based parameter control mechanisms when applied on multimodal problems.

Another crucial question addressed by this thesis is how to mitigate the weaknesses of
current success-based parameter control mechanisms while maintaining their strengths. We
aim for “balanced” parameter control mechanisms that can hill-climb and deal with local
optima efficiently. As mentioned before, current success-based parameter control mecha-
nisms have a good performance on simple unimodal problems. It is especially important
to maintain this behaviour because many multimodal problems have easy parts with sim-
ilar characteristics as simple problems. Hence, any modifications to current success-based
parameter control mechanisms need to take into account both easy and hard parts of the
optimisation and not be over-tailored towards local optima or rugged fitness landscapes.

1.2 Thesis Outline

This thesis contains 7 chapters. The first 3 chapters give the necessary background of the
subject including a literature review of the state of the art in parameter control mechanisms
and the mathematical methods commonly used for their runtime analyses. Afterwards the
next 3 chapters contain our main theoretical contributions. The last chapter contains a
summary and conclusions of our work.

Chapter 2 introduces evolutionary algorithms and explains how the computational com-
plexity of evolutionary algorithms is commonly analysed. In Section 2.1 evolutionary algo-
rithms are introduced, explaining their main components and introducing the most com-
monly studied evolutionary algorithms in the theoretical field. Section 2.2 explains what is
computational complexity in the context of evolutionary algorithms and details the most
common approach to analysing the computational complexity of evolutionary algorithms.
Section 2.3 covers common benchmark functions that are used in the analysis of evolution-
ary algorithms because they showcase common characteristics of real-world problems. In
Section 2.4 we describe common methods used for the runtime analysis of evolutionary al-
gorithms. The chapter ends with Section 2.5 where we give an overview of the parameter
settings and how the theoretical field has helped to improve our understanding of the impact
parameter settings have in the performance of evolutionary algorithms.

In Chapter 3 we present the state of the art in parameter control mechanisms. Given
that this thesis is theory-driven the chapter focuses on theoretical studies, but also contains
empirical studies because it is common for parameter control mechanisms implemented in
empirical studies to be later analysed by theoretical means. The chapter follows five lines
of studies that focus on how to adjust a specific parameter of an algorithm. Sections 3.1
and 3.2 showcase studies related to dynamic mutation rates and offspring population sizes
for the (1 + λ) EA. In Section 3.4 one of the most successful implementations of parameter
control mechanisms is presented, that is, the self-adjusting (1 + (λ, λ)) GA [50]. This was
the first success-based parameter control mechanism proven to reduce the optimisation time

3

of an algorithm by more than a constant factor, compared to optimal static parameter
settings. Section 3.3 reviews works analysing self-adaptive mutation rates. In Section 3.5
we describe runtime analyses of RLSk with dynamic parameters, including recent studies of
hyper-heuristics.

We start presenting our main contributions in Chapter 4. Here, we ask whether current
parameter control mechanisms are able to find and maintain suitable parameter values on
multimodal problems. To answer this question in Section 4.2 we analyse the well-known
self-adjusting (1 + (λ, λ)) GA. We show that for the standard multimodal benchmark func-
tion Jumpk the self-adjusting (1 + (λ, λ)) GA is less efficient than other crossover-based
algorithms using static parameter settings. In Section 4.3 we study variants proposed in the
literature showing that restricting the possible parameter values that the control mechanism
can use is beneficial and resetting the parameters can improve the performance significantly
on Jumpk functions. In Section 4.4 we implement an experimental analysis of the algo-
rithms studied via theoretical means in previous sections. We show that our theoretical
results extend to common optimisation problems, that is, we confirm empirically that the
original self-adjusting (1 + (λ, λ)) GA is inefficient on common multimodal problems and
the variations studied can improve its performance for multimodal optimisation whilst not
(or slightly) affecting its performance on simple problems.

Most success-based evolutionary algorithms that have been theoretically analysed are
elitist algorithms. Hence, the performance of parameter control mechanisms in non-elitist
algorithms is not well understood. Despite this, there are many applications of non-elitist
evolutionary algorithms for which an improved theoretical understanding of parameter con-
trol mechanisms could bring performance improvements similar to the ones seen for elitist
algorithms. To tackle this research gap in the literature, in Chapter 5 we analyse the
behaviour of success-based rules for non-elitist algorithms. This chapter highlights the im-
portance of selecting the correct success-based rules in non-elitist algorithms. We consider
a self-adjusting version of the (1, λ) EA that adjusts the offspring population size with the
use of success-based rules. In Section 5.3 we demonstrate that for a sufficiently small con-
stant success rate the algorithm achieves the optimal asymptotic runtime on OneMax for
all unary unbiased black-box algorithms. However, we also show that if the success rate
is a sufficiently large constant the algorithm takes exponential time to solve OneMax and
other common benchmark functions. In contrast, in Section 5.4 we show that the non-elitist
self-adjusting (1, λ) EA is not affected by the choice of the success rate (from positive con-
stants) if the problem in hand is everywhere hard, that is, improvements are always hard to
find. We finish this chapter with an experimental analysis of the self-adjusting (1, λ) EA in
Section 5.5. The experiments performed in this section helps us enhance our understand-
ing of the parameter control mechanism used, showing in detail how the behaviour of the
mechanism is affected by its hyper-parameters and the problem in hand.

In Chapter 6 we explore how success-based rules for non-elitist algorithms behave on
multimodal problems. Our understanding of the behaviour of simple non-elitist algorithms
such as the (1, λ) EA on multimodal problems is limited. Therefore, we start in Section 6.3
by studying the (1, λ) EA with static parameters on Cliff, improving previous upper bounds
and showing a lower bound for all static offspring population sizes. Afterwards, in Section 6.4
we compare these bounds with the performance of the (1, λ) EA with self adjusting offspring
population size and show a polynomial performance improvement compared to any static
offspring population size. Finally, in Section 6.5 we extend our theoretical analysis with
an empirical analysis on common multimodal problems, showing promising results for all
problems tested.

We end this thesis with a summary and conclusion of our results in Chapter 7. We also
discuss promising directions for future work.

4

1.3 Main Contributions

In this thesis, we substantially advance our understanding of how success-based parameter
control mechanisms for evolutionary algorithms can be efficiently implemented for multi-
modal optimisation. Our main contributions are summarised as follows:

1. We provide a rigorous runtime analysis of the self-adjusting (1 + (λ, λ)) GA for general
function classes by presenting a new general method to find upper bounds for the
self-adjusting (1 + (λ, λ)) GA that is easy to use and enables a transfer of runtime
bounds from the (1 + 1) EA to the self-adjusting (1 + (λ, λ)) GA. With the help of
our new general method we prove tight upper and lower bounds, up to lower-order
terms, for the runtime of the self-adjusting (1 + (λ, λ)) GA on Jumpk.

2. We prove that the parameter control mechanism of the self-adjusting (1 + (λ, λ)) GA
rapidly increases λ to its maximum value when encountering a local optima. This is
ineffective for problems where large jumps are required. Capping λ at smaller values
is beneficial for such problems. Finally, resetting λ to 1 allows the parameter to cycle
through the parameter space. We show that resets are effective for all Jumpk problems:
the self-adjusting (1 + (λ, λ)) GA performs as well as the (1 + 1) EA with the optimal
mutation rate and evolutionary algorithms with heavy-tailed mutation, apart from a
small polynomial overhead.

3. We show that the self-adjusting (1 + (λ, λ)) GA presents a bimodal parameter land-
scape with respect to λ on Jumpk. For appropriate problem size n and jump size k, the
landscape features a local optimum in a wide basin of attraction and a global optimum
in a narrow basin of attraction. To our knowledge this is the first proof of a bimodal
parameter landscape for the runtime of an evolutionary algorithm on a multimodal
problem.

4. We give a rigorous runtime analysis of the non-elitist self-adjusting (1, λ) EA adjusting
λ using a one-(s+1)-th success rule. We prove that, if the success rate is appropriately
small, the self-adjusting (1, λ) EA optimises OneMax in O(n) expected generations
and O(n log n) expected evaluations, the best possible runtime for any unary unbiased
black-box algorithm. A small success rate is crucial: we also show that if the success
rate is too large, the algorithm has an exponential runtime on OneMax and other
functions with similar characteristics. Large success rates stagnate the optimisation
on “easy” parts of the optimisation.

5. We demonstrate that the self-adjusting (1, λ) EA is robust with respect to the choice
of the success rate in the absence of easy slopes. We define a class of everywhere hard
fitness functions, where for all search points the probability of finding an improvement
is small. We present a simple and easy to use general upper bound on the expected
number of evaluations using the fitness-level method that asymptotically matches the
bound obtained for the (1 + 1) EA. For the expected number of generations, we show
an upper bound of O(d + log(1/p+

min)) where d is the number of non-optimal fitness
values and p+

min is the smallest probability of finding an improvement from any non-
optimal search point. As a byproduct of our analysis, we also show an upper bound for
the expected number of evaluations of the elitist self-adjusting (1 + λ) EA on arbitrary
fitness functions.

6. We refine results from [106] for the optimisation time of the (1, λ) EA on Cliff. We
prove that the expected runtime is Ω(λξλ) and O(λξλ log n) for a base of ξ ≈ 6.196878,
for reasonable values of λ. For the best fixed λ, we show that the expected runtime
is O(nη log2 n) for a constant η ≈ 3.976770136, and that it grows faster than any
polynomial of degree less than η.

5

7. We provide an example of significant performance improvements through parameter
control for a multimodal problem. We enhance the self-adjusting (1, λ) EA with a
resetting mechanism and prove that it is able to optimise Cliff in O(n) expected gen-
erations and O(n log n) expected evaluations. This is faster than any static parameter
choice by a factor of Ω(n2.9767) and it is asymptotically the best possible runtime for
any unary unbiased black-box algorithm.

1.4 Underlying Publications

The contents of this thesis are based on the following publications. The authors are ordered
alphabetically.

Chapter 4 is based on the following paper:

1. Mario Alejandro Hevia Fajardo and Dirk Sudholt. On the choice of the parameter
control mechanism in the (1 + (λ, λ)) Genetic Algorithm. Submitted to: ACM
Transactions on Evolutionary Learning and Optimization, 2022

A preliminary version was published in:

Mario Alejandro Hevia Fajardo and Dirk Sudholt. On the choice of the pa-
rameter control mechanism in the (1 + (λ, λ)) genetic algorithm. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO’ 20, page 832–840.
ACM, 2020

Chapter 5 is based on the following papers:

2. Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting population sizes for
non-elitist Evolutionary Algorithms. Submitted to: Algorithmica, 2022

A preliminary version was published in:

Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting population
sizes for non-elitist Evolutionary Algorithms: Why success rates matter. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO ’21, page
1151–1159. ACM, 2021

3. Mario Alejandro Hevia Fajardo and Dirk Sudholt. Hard problems are easier for success-
based parameter control. Submitted to: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’22, ACM, 2022

Chapter 6 is based on the following paper:

4. Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting offspring population
sizes outperform fixed parameters on the Cliff function. In Proceedings of the 16th
Workshop on Foundations of Genetic Algorithms, FOGA ’21, pages 5:1–5:15. ACM,
2021

6

Chapter 2

Background

Evolutionary computation as its name hints, is inspired by natural evolutionary processes.
It mainly draws inspiration from Darwinian Evolution and genetics [77]. From Darwinian
Evolution it takes the concept of natural selection, where individuals that are adapted to
or fit the environmental conditions best, have a higher chance to create offspring. Another
insight drawn from Darwin’s theory is that, through random variations (mutation) new traits
appear in the populations, which in turn help to create fitter individuals, driving evolution.

From genetics it uses the concept of genes. Each individual contains genes that describe
or encode their behaviours and traits, therefore when mutations occur in such genes the
individual changes its fitness to the environment. Also, during sexual reproduction a combi-
nation of the genes of both parents is made, generally creating a variation in the offspring’s
genes (and behaviours) different from each of the parents’ genes.

The field of evolutionary computation uses these concepts to design automated optimi-
sation algorithms called evolutionary algorithms.

2.1 Evolutionary Algorithms

All evolutionary algorithms follow the same general idea. Given an optimisation problem, a
population of individuals (also called search points or solutions) is initialised. Using a fitness
function, they assign fitness values to each of the individuals. Based on the fitness values
or other indicators, evolutionary algorithms select a set of individuals (parents) to seed the
next generation. An offspring population is created by applying variation operators to the
parents, and later calculate their fitness values. Finally, the new generation is selected from
the existing individuals, following certain criteria. This process is repeated until an optimal
solution is found or another stopping criteria is met. Owing to the combination of variation
operators and selection during the process, the population tends to increase in fitness.

A diagram from the scheme described before is shown in Figure 2.1. To design an evo-
lutionary algorithm instance you need to define several components of this scheme, such as
representation, initialisation, fitness function, population, parent selection, variation opera-
tors, survivor selection and stopping criteria.

Representation The first step to design an evolutionary algorithm is to define a mapping
from a possible solution into a representation that the algorithm will use. The action of
translating the solution into such representation is called encoding. An important caveat
is that this mapping should be reversible, in order to be able to evaluate the new solutions
created by the algorithm.

7

Figure 2.1: General scheme of an Evolutionary Algorithm. Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer, Introduction to Evolutionary
Computing by A. E. Eiben, J. E. Smith © 2003

Initialisation The initialisation of an evolutionary algorithm in general is done by ran-
domly sampling solutions from the search space. However, there is no restriction not to
use previously known answers, as long as we take into account that this might affect the
performance of the algorithm, guiding it to a local optimum.

Fitness Function The fitness function is a function that is used to represent the quality
of a solution. It is used by the selection mechanisms to identify what solutions are helpful
to the optimisation process. A common approach when using an evolutionary algorithm to
solve an optimisation problem is to directly use the objective function as a fitness function.

Population The term population in an evolutionary algorithm refers to a multiset of
individuals in a step of the optimisation process that an algorithm uses as solutions to the
problem. A population can be defined by the amount of individuals, but it can also have
more complex characteristics such as a spatial structure.

Parent Selection Parent selection is used in evolutionary algorithms to decide which
individuals become parents of the next generation. The parent or parents selected create
new individuals using the variation operators. An example is the use of random parent
selection, which selects the parents uniformly at random.

Variation Operators Variation operators are used to create new individuals. Usually
these operators make use of stochastic decisions. The most common operators are mutation
and crossover (also called recombination). Mutation is a random modification of a single
individual into a new one, while crossover combines two or more individuals by randomly
selecting one or more parts from each parent to create offspring.

Survivor Selection The role of survivor selection is similar to parent selection, but in
this case the selection decides which individuals will stay in the population.

8

Stopping Criteria The aim of evolutionary algorithms is to optimise a given problem,
therefore a natural stopping criteria is when an individual with an optimal fitness is found.
However, the fitness of an optimal solution is not always known for the given problem,
and even if we have such information, there is no guarantee that the algorithm will find
a solution in a reasonable time lapse. Other common stopping criteria are: maximum
number of evaluations performed, maximum real time elapsed, stagnation of fitness values
and population diversity. For the thoeretical analysis of evolutionary algorithms we can
allow the algorithm run forever, since we analyse the expected time to find the optimum.

(1 + 1) EA Now we will define one of the most simple evolutionary algorithms using the
scheme explained before. This algorithm is used for the optimisation of pseudo-Boolean
functions f : {0, 1}n → R, therefore the representation of its individuals is also pseudo-
Boolean. As most evolutionary algorithms it is initialised by sampling random solutions
x ∈ {0, 1}n from the search space with n dimensions. The algorithm consists of a parent
population of size µ = 1, and in each iteration an offspring population is created with
size λ = 1. The offspring population is created from the only parent through standard
bit mutation, that is, flipping each bit independently at random with mutation probability
p = r/n (also called mutation rate) where r is the mutation parameter. The next generation
is selected from both the offspring and the parent population with elitist selection, that is,
always selecting the individual with best fitness. In case of ties the offspring is always chosen
to favor exploration. The pseudocode of this algorithm is shown in Algorithm 1.

Algorithm 1: The (1 + 1) EA with mutation probability p.

1 Initialisation: Choose x ∈ {0, 1}n uniformly at random.
2 Optimisation: for t ∈ {1, 2, . . . } do
3 Mutation: Create y ∈ {0, 1}n by flipping each bit in x independently with

probability p.
4 Selection: if f(y) ≥ f(x) then x← y;

As mentioned before this is one of the most simple algorithms and also one of the most
studied algorithms in the theoretical field.

(µ + λ) EA From the previous algorithm we can derive a more general version. Using
the same process but allowing the population to be any positive integer value µ > 0 and
using random parent selection. Following the same process we can allow the offspring pop-
ulation size to be any positive integer value λ > 0. The resulting algorithm is shown in
Algorithm 2. The theoretical study of this algorithm has an increased complexity, compared
to the algorithms shown before, hence, it has been less studied. Other simpler versions are
more commonly studied, such as the (µ + 1) EA and the (1 + λ) EA where the offspring
population size is λ = 1 and the parent population size is µ = 1, respectively.

(µ, λ) EA There are other common variations in the literature from the (µ+λ) EA. The
(µ, λ) EA differs in the type of survival selection used; the algorithm only uses the offspring
population in the new generation, therefore λ ≥ µ and in general it requires λ� µ.

(µ+ λ) GA Up until now all the evolutionary algorithms discussed only use mutation as
a variation operator. The other variation from the algorithm is the use of recombination and
mutation. To emphasise this they are called Genetic Algorithms (GAs). One of the most
common crossover operators is uniform crossover where the offspring is formed selecting
each bit independently at random from either parent with probability 1/2. Similarly to the

9

Algorithm 2: The (µ+ λ) EA with population size µ, offspring population size λ
and mutation probability p.

1 Initialisation: Initialise Pt with µ individuals x ∈ {0, 1}n uniformly at random.
2 Optimisation: for t ∈ {1, 2, . . . } do
3 P ′t := ∅
4 Mutation: for each i ∈ {1, . . . , λ} do
5 Choose x ∈ Pt uniformly at random.
6 Create y ∈ {0, 1}n by copying x and, independently for each bit, flip this bit

with probability p.
7 P ′t := P ′t ∪ {y}
8 Selection: Let Pt+1 contain µ individuals from Pt ∪ P ′t with maximal f -value

(µ+λ) EA there are simpler common versions such as the (µ+ 1) GA. In general GAs need
a population of at least two (µ ≥ 2) in order to be able to use recombination.

(1+(λ, λ)) GA An exemption to the rule above is a genetic algorithm recently proposed
by Doerr, Doerr, and Ebel [60], that only uses a parent population of size µ = 1. Like other
evolutionary algorithms it is initialised uniformly at random. Later it uses two phases per
iteration. The first phase mutates the parent λ times using a mutation operator called mut`.
The mutation operator first chooses ` different positions in [n] uniformly at random and then
it flips the values in those bits in the original bit string to create the mutated bit string. The
variable ` is sampled from a binomial distribution B (n, p), where p denotes the mutation
probability. In this algorithm ` is only sampled once per generation, making all offspring
from this phase have the same distance to the parent. The second phase uses a biased
uniform crossover λ times between the parent and the fittest mutated offspring. The biased
uniform crossover operator called crossc selects each bit independently at random from the
fittest mutated offspring with probability c and from the parent with probability 1 − c. In
the end it performs an elitist selection only considering the parent and the λ offspring from
the crossover phase. The pseudocode for this algorithm is shown in Algorithm 3.

Algorithm 3: The (1 + (λ, λ)) GA with offspring population size λ, mutation
probability p, and crossover probability c.

1 Initialisation: Sample x ∈ 0, 1n uniformly at random and query f(x);
2 Optimisation: for t = 1, 2, . . . do
3 Sample ` from B(n, p);
4 Mutation phase: for i = 1, . . . , λ do
5 Sample x(i) ← mut`(x) and query f(x(i));

6 Choose x′ ∈ {x(1), . . . , x(λ)} with f(x′) = max{f(x(1)), . . . , f(x(λ))} u.a.r.;
7 Crossover phase: for i = 1, . . . , λ do
8 Sample y(i) ← crossc(x, x

′) and query f(y(i));

9 If {x′, y(1), . . . , y(λ)}\{x} 6= ∅, choose y ∈ {x′, y(1), . . . , y(λ)}\{x} with

f(y) = max{f(x′), f(y(1)), . . . , f(y(λ))} u.a.r.;
10 otherwise, set y := x;
11 Selection step: if f(y) ≥ f(x) then x← y;

RLSk Random Local Search (RLS) is a RSH similar to the (1 + 1) EA, therefore in this
thesis we consider RLS as a part of evolutionary computation. RLS is commonly initialised

10

with a solution x ∈ {0, 1}n sampled uniformly at random from the solution space. It creates
a new solution y by flipping a single bit chosen uniformly at random. The new solution
replaces the current solution if f(y) ≥ f(x).

Even though RLS only flips 1 bit per iteration, it has been shown that, for the minimum
spanning tree problem, iterations with 2-bit flips are necessary [144]. In other studies even
more bit flips are considered, therefore here we use a generalised version RLSk with k-bit
flips shown in Algorithm 4. The RLSk algorithm has also been called (1 + 1) EA [51], but
here we decided to use the name of RLSk to emphasise that it only creates new solutions in
a bounded distance from the current solution.

Algorithm 4: The RLSk with mutation strength k.

1 Initialisation: Choose x ∈ {0, 1}n uniformly at random.
2 optimisation: for t ∈ {1, 2, . . . } do
3 Mutation: Create y ∈ {0, 1}n by flipping k distinct bits in x chosen uniformly

at random.
4 Selection: if f(y) ≥ f(x) then x← y;

2.2 Computational Complexity of EAs

When analysing the computational complexity of an algorithm, we aim to predict the com-
putational effort that the algorithm requires to solve an optimisation problem. In the case
of evolutionary algorithms the number of fitness function evaluations T (or T eval) required
by the algorithm to query for the first time an optimal solution is commonly used as a proxy
for the computational effort to solve an optimisation problem [107]. Here we denote T as
optimisation time, sequential optimisation time, running time or runtime. In addition, we
often accompany the optimisation time with the number of generations T gen also denoted as
parallel optimisation time. The former reflects the total computational effort, whereas the
latter is more relevant when the execution and the generation of offspring can be parallelised
efficiently.

Given that evolutionary algorithms are randomised algorithms, the optimisation time
of an algorithm is not always the same, even when using the same input. Hence, the field
of evolutionary computation uses the expectation of the random number of fitness function
evaluations, i. e. E(T) [107]. Sometimes the expected optimisation time can be deceiving,
because the algorithm can have a constant probability of deviating from E(T). For this
reason, often alongside the expected optimisation time the success probability (Pr (T ≤ t))
is given, i. e. the probability that given t number of fitness function evaluations the algorithm
have found the optimum.

Similar to the analyses of deterministic algorithms, in the study of evolutionary algo-
rithms, bounds on the (expected) optimisation time are usually given on their growth rate
with the use of asymptotic notation, also known as Landau notation or “Big-O” nota-
tion [107]. This notation is commonly used to classify algorithms according to how their
runtime grow as the problem size n grows, typically omitting constant factors and lower
order terms. Additionally it can be used to show how the probability of an event or the
runtime of an algorithm grows according to some characteristic of the problem or parameter
setting used in the algorithm.

Definition 2.2.1 (Asymptotic notation). For any two functions f, g : N0 → R. We write:

• f(n) = O(g(n)) if and only if there exist constants c > 0 and n0 such that
0 ≤ f(n) ≤ cg(n) for all n ≥ n0.

• f(n) = Ω(g(n)) if and only if g(n) = O(f(n)).

11

• f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)) if and only if lim
n→∞

f(n)

g(n)
= 0.

• f(n) = ω(g(n)) if and only if g(n) = o(f(n)).

In the following we give a list of classes of functions that we will encounter in this work
when analysing the running time of an algorithm.

Definition 2.2.2 (Function classes). Let c > 0 be a constant and f : N0 → R. Then f is:

• logarithmic if f = O(log n)

• polylogarithmic (polylog (n)) if f = O((log n)c)

• polynomial (poly (n)) if f = O(nc)

• superpolynomial if f = ω(nc)

• exponential if f = 2Ω(nc)

When dealing with probability of events we are particularly interested in typical events,
that is, events that have a probability that tends to 1 as n tends to infinity. We say that an
event A happens with high probability (w. h. p.) if 1−Pr (A) = O(n−c) and with overwhelming
probability (w. o. p.) if 1− Pr (A) = 2−Ω(nc) for some constant c > 0.

2.3 Benchmark Functions

Throughout the history of the theoretical analysis of evolutionary algorithms several test
functions have been proposed in order to compare the suitability of algorithms for different
applications. These benchmark functions capture abstract ideas or characteristics from
real-world applications inside their fitness landscape and are designed to aid the theoretical
analysis of such characteristics. Most of these characteristics are described using the concept
of distance between search points. A common distance metric in pseudo-Boolean functions
is the Hamming distance, which corresponds to the number of bits that are different between
two bit strings.

Definition 2.3.1 (Hamming distance). For two bit strings x, y ∈ {0, 1}n with bit values
x = x1, . . . , xn and y = y1, . . . , yn, then the Hamming distance between x and y is

H (x, y) :=

n∑
i=1

|xi − yi| .

For the purpose of this thesis there are two main function classes: unimodal and multi-
modal functions. A function f is considered a unimodal function if all non-optimal search
points x have at least one search point y with Hamming distance H (x, y) = 1 (Hamming
neighbors) where f(y) > f(x) and considered multimodal otherwise [70]. In other words, all
local optima in unimodal functions are also global optima. We are more interested in multi-
modal benchmark functions because they capture a larger variety of features than unimodal
functions.

In the context of evolutionary computation, the features of a fitness function (fitness
landscape) can be described using a metaphor of natural landscapes. In the following we
informally describe common features in a fitness landscape using this metaphor:

• Peak - Search point where all of its Hamming neighbors have lower fitness value, that
is, a local optimum.

• Basin of attraction - Region of the search space where the fitness points towards a
peak.

• Hill - Search region comprised by a peak and its basin of attraction, that is, Hamming
neighbors with similar fitness values that guide towards the local optimum.

12

• Valley - Search region surrounded by points with higher fitness values.
• Plateau - Search region where all of its search points have the same fitness value.
• Ridge - Path of search points of high fitness sorrounded by search points of lower

fitness.
We will now present the benchmark functions used in this thesis for theoretical analyses.

If known we give as reference the asymptotic runtime for the (1 + 1) EA with mutation
probability p = 1/n and the optimal static mutation probability.

2.3.1 Unimodal Functions

We first present unimodal functions because they are often used as a base to construct the
more complicated multimodal functions. In the following and in the remaining of this thesis,
we denote the number of 1-bits and 0-bits in a bit string x as |x|1 and |x|0 respectively.

Definition 2.3.2 (OneMax). Let x ∈ {0, 1}n for all n ∈ N, then OneMax: {0, 1}n → N

is

OneMax(x) := |x|1 =

n∑
i=1

xi.

The optimum of the function is a bit string with only 1-bits (1n), and the fitness function
counts the number of ones in the bit string.

It was designed as a simple benchmark function, in particular is known as the easiest
function with a unique optimum for the (1 + 1) EA [58]. It has been studied profoundly and
traditionally it is one of the first benchmark problems studied on any evolutionary algorithm.
For the (1 + 1) EA the optimal mutation probability is p = 1/n and the expected runtime
is en lnn−Θ(n) [57].

Definition 2.3.3 (ZeroMax). Let x ∈ {0, 1}n for all n ∈ N, then ZeroMax: {0, 1}n → N

is

ZeroMax(x) := |x|0 =

n∑
i=1

(1− xi) .

This fitness function counts the number of zeroes in the bit string. Hence, its global
optimum is a bit string with only zeroes.

Most evolutionary algorithms use variation and selection operators that are unbiased
towards bit-values their behaviour and expected runtime is the same as in OneMax, this
includes the (1 + 1) EA.

Definition 2.3.4 (LeadingOnes). Let x ∈ {0, 1}n for all n ∈ N, then
LeadingOnes: {0, 1}n → N is

LeadingOnes(x) :=

n∑
i=1

i∏
j=1

xj .

The LeadingOnes function has the same optimum as OneMax but the fitness function
is different. To calculate the fitness of an individual, the number of consecutive 1-bits are
counted starting from the left and we stop whenever a 0-bit is found.

For the (1 + 1) EA the expected runtime with mutation probability p = 1/n is approx-
imately 0.85914n2 [21]. The optimal mutation probability is p ≈ 1.5936/n and with this
parameter choice the expected runtime is approximately 0.77201n2 [21].

Definition 2.3.5 (Ridge). Let x ∈ {0, 1}n for all n ∈ N, then Ridge: {0, 1}n → N is

Ridge(x) :=

{
n+ |x|1 if x = 1i0n−i, i ∈ {0, 1, . . . , n},
|x|0 otherwise.

13

The function directs the search towards the beginning of a ridge that starts at 0n. Once
a search point on the ridge is found the search is directed along the ridge towards the global
optimum 1n.

The expected optimisation time of the (1 + 1) EA with p = 1/n on Ridge is Θ(n2) [107].

Definition 2.3.6 (OneMaxBlocks). Let x ∈ {0, 1}n for all n ∈ N, then
OneMaxBlocks: {0, 1}n → N is

OneMaxBlocks(x) :=

bn/kc∑
j=1

(j−1)k∏
i=1

xi

 · jk∑
i=(j−1)k+1

xi.

This function is comprised of blocks of k bits. A block is complete if it only contains 1-bits
and incomplete otherwise. The function returns the number of 1-bits in the longest prefix
of completed blocks plus the number of 1-bits in the first incomplete block. Evolutionary
algorithms typically optimise this function by optimising each OneMax-like block of size k
from left to right until the global optimum 1n is reached.

This is a new benchmark function proposed in this thesis, therefore there are no previous
runtime analyses for the (1 + 1) EA on OneMaxBlocks.

2.3.2 Multimodal Functions

Multimodal functions tend to be more complex and difficult to optimise. We start by defining
one of the most simple multimodal functions.

Definition 2.3.7 (TwoMax). Let x ∈ {0, 1}n for all n ∈ N, then TwoMax: {0, 1}n → N

is
TwoMax(x) := max {|x|1 , |x|0} .

The TwoMax function can be considered as a bimodal version of OneMax. The fitness
landscape is comprised of two symmetrical slopes resembling OneMax and ZeroMax that
guide the search towards the global optima 1n and 0n respectively.

This function is often studied in the context of diversity of populations, hence analyses
tend to calculate the expected time for the algorithm to have found both optima. In this
context the (1 + 1) EA optimises TwoMax in Ω(nn) expected function evaluations [84]. In
our context we are only interested in the expected time for an algorithm to find either one
of the optima, therefore it is not hard to see that the (1 + 1) EA would typically behave as
on either OneMax or ZeroMax depending on the initialisation.

Definition 2.3.8 (Trap). Let x ∈ {0, 1}n for all n ∈ N, then Trap: {0, 1}n → N is

Trap(x) :=

{
|x|1 if |x|1 6= 0

n+ 1 otherwise

The Trap function has a similar behaviour as OneMax, it counts the number of 1-bits
in the bit string, but it contains the global optimum in the maximum Hamming distance
from the OneMax optimum, that is, in the 0n bit string.

This function has a deceiving fitness landscape that guides hill-climbing algorithms to-
wards its local optimum, making it increasingly harder for them to find the global optimum.
It has been proven to be an example of the worst running time possible for the (1 + 1) EA
with an expected Θ(nn) evaluations needed in order to find the optimum [76].

Definition 2.3.9 (Jumpk). Let x ∈ {0, 1}n for all n ∈ N, then Jumpk: {0, 1}n → N is

Jumpk(x) :=

{
n− |x|1 if n− k < |x|1 < n

k + |x|1 otherwise

14

The Jumpk function has a construction similar to the Trap function, but allows to
adjust the difficulty with the parameter k. The function increases its fitness value with the
first n − k 1-bits in the bit string, leading to a set of local optima. After reaching a local
optimum, increasing the number of 1-bits leads to a valley that contains the lowest fitness
values in all the function. The fitness value in the valley decreases when adding 1-bits, with
the minimum fitness neighboring the global optimum. The optimum is the bit string 1n.

The expected optimisation time of the (1 + 1) EA with p = 1/n is Θ(nk + n log n) [76],
while for the optimal mutation probability of p = k/n the expected optimisation time is

O

(
nk

kk

(
n

n−k

)n−k)
[62].

The Jumpk function has been of great importance in the analysis of evolutionary algo-
rithms and has been extensively used to study other random search heuristics such as esti-
mation of distribution algorithms [49, 97], memetic algorithms [179], hyper-heuristics [137],
artificial immune systems [32, 34], ant colony optimisers [19] and voting algorithms [165].

Definition 2.3.10 (Cliffd). Let x ∈ {0, 1}n for all n ∈ N, then Cliffd: {0, 1}n → N is

Cliffd(x) :=

{
|x|1 if |x|1 ≤ n− d
|x|1 − d+ 1/2 otherwise

The Cliffd is comprised of two slopes similar to OneMax. Following Lissovoi et al.
[137], we say that all search points x with |x|1 ≤ n − d form the first slope and all other
search points form the second slope. The first slope is a slope that guides the search towards
a local optimum with fitness n− d, which is the cliff of the function. The second slope has
size d and starts when |x|1 = n− d+ 1, with a fitness n− 2d+ 3/2. The slope increases in
a OneMax fashion ending at the global optimum with fitness n− d+ 1/2.

The Cliffd function was first proposed by Jägersküpper and Storch [106] with d =
n/3. We write Cliff to refer to Cliffd with the default value d = n/3. Cliff was later
generalised by Paixão, Pérez Heredia, Sudholt, and Trubenová [153]. Our definition, taken
from [153], differs from [106] in that the cliff is located at n− d 1-bits instead of n− d− 1.
We choose the definition from [153] because it resembles the definition of the Jumpk class
functions.

This function is similar to the Jumpk function, but once you jump down the cliff, the
function has a slope guiding evolutionary algorithms towards the global optimum, which
favours evolutionary algorithms with non-elitist selection. The (1 + 1) EA with p = 1/n,
have similar behaviour as on the Jumpk function, in fact, the expected optimisation time is
also Θ(nd) for any 2 ≤ d ≤ n/2 [153].

The Cliff function was used as a benchmark in several works, including studies of
the Strong Selection Weak Mutation (SSWM) model of evolution [153], artificial immune
systems [36] and hyper-heuristics [137].

2.4 Runtime Analysis of Evolutionary Algorithms

The theoretical analysis of evolutionary algorithms is a relatively young research area that
has developed a range of powerful methods. These methods have helped researchers find
more efficient parameter choices and design different variation and selection operators. In
this section we describe some of the commonly used methods that will be employed in our
upcoming analyses. We start with well-known identities, taken from [16, 48, 119] that are
helpful in the analysis of evolutionary algorithms. Later, we continue with tools from proba-
bility theory based on the collection made by Doerr [48], and finish with other mathematical
techniques used in the runtime analysis of evolutionary algorithms that have appeared in
the book chapters [125, 131, 150].

15

2.4.1 Useful Estimates

Common expressions that arise in the study of evolutionary algorithms, can be difficult to
work with, making convenient to estimate their value with more simple expressions. The first
group of identities shown here use the exponential function to bound other more complex
expressions.

Lemma 2.4.1.

(a) For all x ∈ R, 1 + x ≤ ex.

(b) For all r ≥ 1 and 0 ≤ x ≤ r,
(
1− x

r

)r ≤ e−x ≤ (1− x
r

)r−x
.

(c) For all |x| ≤ r and r > 1, ex
(

1− x2

r

)
≤
(
1 + x

r

)r
.

(d) For all 0 ≤ x ≤ 1 and r ∈ N, xr
1+xr ≤ 1− (1− x)

r
.

Similar to the estimates of the exponential functions, the Bernoulli’s inequality, and its
derivatives are extremely useful.

Lemma 2.4.2.

(a) For all x ≥ −1 and r ∈ R \ (0, 1), 1 + rx ≤ (1 + x)r.

(b) For all x ∈ [−1, 0] and r ∈ N, (1 + x)r ≤ 1
1−rx .

Lemma 2.4.2 (a) is well known as Bernoulli’s inequality. We give a short proof for Lemma
2.4.2 (b) for the sake of completeness. A simpler proof without the use of the Bernoulli’s
inequality is shown by Rowe and Sudholt [166, Lemma 8].

Proof of Lemma 2.4.2 (b). For the case where x = −1 and x = 0 it is trivial to show
that (1 + x)r ≤ 1

1−rx holds. Let φ(x) = −x
1+x , where x 6= −1, then φ(φ(x)) = x. Moreover,

for all x ∈ (0,∞) we have φ(x) ∈ (−1, 0) and for all x ∈ (−1, 0) we have φ(x) ∈ (0,∞). Let
x = φ(y), then y = φ(x) and

(1 + x)r =

(
1− y

1 + y

)r
=

(
1

1 + y

)r
=

1

(1 + y)r
.

Using Lemma 2.4.2 (a) with y ∈ (0,∞) we get,

1

(1 + y)r
≤ 1

1 + ry
=

1

1− rx
1+x

≤ 1

1− rx
.

Hence (1 + x)r ≤ 1
1−rx for all x ∈ (−1, 0).

We often encounter the binomial coefficients while studying evolutionary algorithms.

Definition 2.4.3 (Binomial Coefficients). For 0 ≤ k ≤ n, the binomial coefficients are
defined by (

n

k

)
:=

n!

k!(n− k)!

It is sometimes useful to estimate the binomial coefficient. Some useful inequalities are
shown in Lemma 2.4.4.

Lemma 2.4.4. For all n ∈ N and 0 ≤ k ≤ n,(
n

k

)
≤ 2n (2.1)

nk

kk
≤
(
n

k

)
≤ nk

k!
≤
(en
k

)k
(2.2)

16

At last, frequently in the analysis of evolutionary algorithms, we come across the har-
monic number Hn.

Definition 2.4.5 (Harmonic number Hn). For all n ∈ N the n-th harmonic number is
defined by Hn :=

∑n
k=1

1
k .

We can approximate Hn as,

lnn ≤ Hn ≤ 1 + lnn. (2.3)

2.4.2 Tools from Probability Theory

Evolutionary algorithms are a type of randomised algorithms. Therefore, the theory of evolu-
tionary computation shares many tools with classical randomised algorithms and probability
theory. Here we will introduce some of these tools.

The expectation is a key characteristic for any random variable. An important property
of the expectation is its linearity.

Lemma 2.4.6 (Linearity of expectation). Let X1, . . . , Xn be arbitrary random variables and
a1, . . . , an ∈ R. Then

E

(
n∑
i=1

aiXi

)
=

n∑
i=1

aiE(Xi)

This property can be used to simplify the calculation of complicated random variables.
For example, we can use this fact to calculate the expected value of a binomial random
variable, with probability Pr (X = k) =

(
n
k

)
pk(1−p)n−k. We just need to divide the variable

into n binary random variables with probability p and calculate E(X) = E(
∑n
i=1Xi) =∑n

i=1 E(Xi) = np.

Lemma 2.4.7 (Expectation of binomial random variables). Let X be a binomial random
variable describing n trials with success probability p. Then E(X) = pn.

An example of binomial random variable encountered in evolutionary algorithms is during
the initialisation. When using random sampling, the number of ones in the bit string of size n
is a binomial random variable with p = 1/2, therefore, in expectation the bit string contains
n
2 ones and n

2 zeros.
With the same arguments as before we can obtain the expectation of geometric random

variables.

Lemma 2.4.8 (Expectation of geometric random variables). Let X be a geometric random
variable with probability p, that is a probability distribution Pr (X = k) = (1− p)k−1p. Then
E(X) = 1/p.

This expectation is often referred as the waiting time argument. This elementary fact,
is helpful when studying the waiting time for a variation operator to find an improvement.
For example, in the study of the (1 + 1) EA with mutation probability 1/n on Jumpk, if
we want to know how many evaluations are needed to jump from the local optimum to
the global optimum, we first calculate the probability of flipping the correct bits and not
flipping the incorrect ones, which is bounded by n−k(1− 1/n)n−k ≤ n−k. Given the success
probability p ≤ n−k, using the waiting time argument, we obtain that the expected number
of evaluations to jump is at least nk.

It is often the case that we need to compute the expected value of the sum of a random
number of identically distributed random variables. Wald’s equation (Lemma 2.4.9) is used
for this purpose.

17

Lemma 2.4.9 (Wald’s equation [177]). Let the X1, . . . , XN be a sequence of real-valued,
independent and identically distributed random variables with N ∈ N being a random vari-
able that is independent of the sequence. If XN and N have finite expectations, then
E(X1 + · · ·+XN) = E(N)E(X1).

When computing probabilities, some of the most common tools are the law of total
probability and the union bound. We show them in the following lemmas.

Lemma 2.4.10 (Law of total probability). For an event A and a partition of the probability
space B1, . . . , Bk.

Pr (A) =

k∑
i=1

Pr (A | Bi) Pr (Bi) .

Lemma 2.4.11 (Union bound). Let A1, . . . , An be arbitrary events in some probability
space. Then,

Pr

(
n⋃
i=1

Ai

)
≤

n∑
i=1

Pr (Ai) .

We sometimes tacitly use the following argument. If in an iterative process there is an
event that happens independently in each step with probability at most p, the probability
that the event happens during a phase of T steps, T a random variable with E(T) <∞, is
at most ∑

t

Pr (T = t) · tp = p · E(T). (2.4)

Considering that the runtime T is a random variable, it is also useful to understand the
deviations from the expected value, and their probabilities. For this purpose there are tail
bounds, that given an expected value, can help us compute the probability that the random
variable exceeds the expectation by a certain amount.

Markov’s inequality is a general tail bound, for all non-negative random variables.

Lemma 2.4.12 (Markov’s inequality). Let X be a non-negative random variable. Then for
all a > 0,

Pr (X ≥ a) ≤ E(X)

a

This inequality is quite useful when there is small amount of information. For example,
using the previously calculated expected number of ones in a bit string sampled at random,
we can also calculate the probability that the number of ones exceeds 2n/3.

Pr (X ≥ 2n/3) ≤ n/2

2n/3
=

3

4

Although useful, Markov’s inequality gives a “weak” bound on the probability that does
not change when n increases. “Stronger” bounds can be achieved using Chernoff Bounds.
Chernoff Bounds is a family of bounds concerning the sum of independent random variables.
Here we only show two versions of the upper bounds. The reader can find a more thorough
review on Chernoff Bounds in the book chapter by Doerr [48].

Lemma 2.4.13 (Chernoff Bounds). Let Xi, . . . , Xn be independent random variables taking
values in [0, 1]. Let X =

∑n
i=1Xi. Let δ ≥ 0. Then,

Pr (X ≥ (1 + δ)E(X)) ≤
(

eδ

(1 + δ)1+δ

)E(X)

= exp(−((1 + δ) ln(1 + δ)− δ)E(X)) (2.5)

≤ exp

(
−δ

2E(X)

2 + 2
3δ

)
. (2.6)

18

Following the same example as before, with Chernoff bounds we can bound the proba-
bility that the number of ones exceeds 2n/3 by

Pr (X ≥ 2n/3) = Pr (X ≥ (1 + 1/3)n/2) ≤ exp

(
−n/18

20/9

)
= e−n/40

As we have seen Chernoff bounds give a bound on the probability that tends to 0 expo-
nentially fast when n grows.

2.4.3 Standard Tools and Methods

In this section we illustrate the most common methods used in the runtime analysis of EAs.

Artificial Fitness Levels

The fitness-level method [178] is a general analysis method for upper bounds on the expected
optimisation time for evolutionary algorithms where the fitness of the best individual cannot
decrease. We describe it in the context of the (1+1) EA. The method uses so-called f -based
partitions, which is a partition of the search space {0, 1}n into sets A1, . . . , Am+1 for some
m ∈ N where all search points Ai are strictly worse than all search points in Ai+1, and
Am+1 exclusively contains all global optima. Each of these sets needs to be left at most
once. Suppose that we know that for every search point x ∈ Ai, the probability of creating
a search point in a higher fitness-level set is at least si, for some expression si > 0. Then
the expected time for leaving set Ai is at most 1/si. Since every fitness level has to be left
at most once before reaching Am+1 and once Am+1 is reached a global optima is found due
to its definition, the expected optimisation time of the (1 + 1) EA is at most

∑m
i=1 1/si.

The fitness-level method is a simple and versatile method in its own right, and it allows
researchers to translate bounds on the runtime of the simple (1 + 1) EA to other elitist
algorithms. This has been achieved for parallel evolutionary algorithms [121], ant colony
optimisation [92, 146], particle swarm optimisation [175], and artificial immune systems [32].
It further gives rise to tail bounds [183] and lower bounds [53, 171], and the principles extend
to non-elitist algorithms as well [33, 54].

Fitness levels may contain search points of different fitness. In the special case where each
set Ai contains search points with only one fitness value the partition is called a canonical
partition.

Typical Run Investigations

The typical run investigations [151] is used under the assumption that we can predict more
easily the typical “global” behaviour of a process than a particular “local” behaviour of such
process. An example of this is the random initialisation of a bit string of size n. When n
is large, we can easily predict the proportion of bits that are one or zero with probability
bounds as we did in Section 2.4.2, but it is hard to predict if a particular bit is 1 or 0.

Taking this idea, we can divide the optimisation process in k sufficiently long “phases”
with each phase having a specified goal. Then we can more easily compute the expected
optimisation time of phase i and bound the probability of an anomalous event happening
during phase i by 1− pi. We can add the time the algorithm takes to optimise each phase,
and this time will hold with a probability 1−

∑k
i=1 pi. Generally, Chernoff bounds are used

to obtain the failure probabilities pi, but here we often use Equation (2.4) for that purpose.
If the goals of each phase are properly set, this phase division is helpful to separate the

analysis in smaller sub-analysis that can give stronger results and clearer proofs; owing to
this, typical run investigations are widely used in the analysis of evolutionary algorithms,
especially on problems that have clear separations of behaviours such as the Trap, Jumpk
and Cliffd functions.

19

Accounting Method

The accounting method [29, Chapter 17] is a method of amortized analysis, based on ac-
counting. It is used to calculate the total cost of a sequence of operations. It is especially
useful when expensive operations exist in the sequence, but the cost of such operations
decrease when other cheaper operations also occur in the sequence. The method uses op-
erations with certain costs assigned, and all operations need to pay for their cost. Some
operations can pay extra cost to a fictional bank account, that can be later used by other
(expensive) operations. Provided that no fictional account gets overdrawn, the total amount
of money paid bounds the total cost of all operations.

The accounting method has not been widely used in the analysis of evolutionary algo-
rithms, but in combination with the fitness level method it has a lot of potential for the
study of parameter control mechanisms. In fact, Lässig and Sudholt [120] used it for the
first time in the field to analyse the optimisation time of the (1 + 2λ, λ/2) EA which adjusts
the offspring population size, giving an upper bound on any function with m fitness values.

Family trees

The use of family trees in the analysis of evolutionary algorithms was first introduced by Witt
[180]. A family tree is a directed acyclic graph where the nodes are individuals created by
an evolutionary algorithm and the edges represent a direct parent-child connection between
individuals. During initialisation, for each initial individual a family tree is created and in
each generation the new offspring are added as leaves. Some of these trees or parts of them
might become extinct if all nodes of the tree are not in the population.

Family trees can be used to prove lower bounds by showing that after a certain number
of generations the tree depth is not too large and the leaves of the tree are not too different
from the root. Then, if all global optima are far from the root, the probability that the
leaves are located in a global optimum is small.

A different version of this approach was given by Lehre and Yao [129] called non-selective
family trees where each generation all the nodes create offspring. This result in a faster
growing family tree that grows independently from the fitness function, but the real family
tree is a sub-tree of the non-selective family tree. Hence, if an event does not happen in the
non-selective family tree it also does not happen in the real family tree.

Drift Analysis

Drift analysis is one of the most useful tools to analyse evolutionary algorithms [131]. It uses
the intuitive idea that for a given stochastic process, if we can bound the expected progress
towards a target in a single step and the current state of the process is at a given distance
according to a distance metric, then we can derive a bound on the expected time to reach
the target by analysing the expected decrease in distance in each step. Hence, a general
approach for the use of drift analysis is to identify a potential function that adequately
captures the progress of the algorithm and the distance from a desired target state (e. g.
having found a global optimum). Then we analyse the expected changes in the potential
function at every step of the optimisation (drift of the potential) and finally translate this
knowledge about the drift into information about the runtime of the algorithm.

Several powerful drift theorems have been developed throughout the years that help
with the last step of the above approach, requiring as little information as possible about
the potential and its drift. Here we state the drift theorems used in our work.

Theorem 2.4.14 (Additive Drift [98]). Let (Xt)t≥0 be a sequence of non-negative random
variables over a finite state space S ⊆ R+. Let T be the random variable that denotes the
earliest point in time t ≥ 0 such that Xt = 0. If there exists δ > 0 such that, for all t < T ,

E(Xt −Xt+1 | Xt) ≥ δ,

20

then

E(T | X0) ≤ X0

δ
.

The following theorem is an extension to Theorem 2.4.14 for an unbounded state space.

Theorem 2.4.15 (Additive Drift, unbounded [117]). Let α ≤ 0, let (Xt)t∈N be random
variables over R, and let T = inf{t | Xt ≤ 0}. Furthermore, suppose that,

(a) for all t ≤ T , it holds that Xt ≥ α, and that

(b) there is some value δ > 0 such that, for all t < T , it holds that Xt −
E(Xt+1 | X0 . . . Xt) ≥ δ.

Then

E(T | X0) ≤ X0 − α
δ

.

The following two theorems both deal with the case that the drift is pointing away from
the target, that is, the expected progress is negative in an interval of the state space.

Theorem 2.4.16 (Negative drift theorem [147, 148]). Let Xt, t ≥ 0, be real-valued random
variables describing a stochastic process over some state space. Suppose there exists an
interval [a, b] ⊆ R, two constants δ, ε > 0 and, possibly depending on ` := b − a, a function
ρ(`) satisfying 1 ≤ ρ(`) = o(`/ log(`)) such that for all t ≥ 0 the following two conditions
hold:

1. E(Xt+1 −Xt | X0, . . . , Xt; a < Xt < b) ≥ ε.
2. Pr (|Xt+1 −Xt| ≥ j | X0, . . . , Xt; a < Xt) ≤ ρ(`)

(1+δ)j for j ∈ N0.

Then there exists a constant c∗ > 0 such that for T ∗ := min{t ≥ 0: Xt < a |
X0, . . . , Xt;X0 ≥ b} it holds Pr

(
T ∗ ≤ 2c

∗`/ρ(`)
)

= 2−Ω(`/ρ(`)).

The following theorem is a variation of Theorem 2.4.16 in which the second condition on
large jumps is relaxed.

Theorem 2.4.17 (Negative drift theorem with scaling [149]). Let Xt, t > 0 be real-valued
random variables describing a stochastic process over some state space. Suppose there exists
an interval [a, b] ⊆ R and, possibly depending on ` := b − a, a drift bound ε := ε(`) > 0 as
well as a scaling factor ρ := ρ(`) such that for all t ≥ 0 the following three conditions hold:

1. E(Xt+1 −Xt | X0, . . . , Xt; a < Xt < b) ≥ ε.
2. Pr (|Xt+1 −Xt| ≥ jρ | X0, . . . , Xt; a < Xt) ≤ e−j for j ∈ N0.

3. 1 ≤ ρ2 ≤ ε`/(132 log(ρ/ε)).

Then for the first hitting time T ∗ := min{t ≥ 0: Xt < a | X0, . . . , Xt;X0 ≥ b} it holds that

Pr
(
T ∗ ≤ eε`/(132ρ2)

)
= O(e−ε`/(132ρ2)).

2.5 Parameter Settings

Evolutionary algorithms come with a range of parameters, such as the size of the parent
population, the size of the offspring population or the mutation rate. This means that the
behaviour of the algorithms can be modified by adjusting the value of the parameters. It is
well known that the optimisation time of an evolutionary algorithm may depend drastically
and often unpredictably on their parameters and the problem in hand [51, 140]. Hence,
parameter selection is an important and growing field of study.

Early in the history of evolutionary computation, the selection of parameters (parameter
tuning) became an important field of study. At first researchers used manual parameter
tuning, that is, experiment with different parameter values and select the ones that helped
the performance of the algorithm. Given the number of possible parameters and their

21

interactions between each other, it is practically impossible to try all the combinations.
Because of this, tuning by hand could give suboptimal choices.

Another common practice was (and still is) to choose parameter settings similar to
previous parameter settings that have been proved useful for problems similar to the one in
hand. One example of this is the mutation probability of p = 1/n for problems of length n
which have worked well in a broad range of problems and it was commonly used even before
Witt [182] formally proved to be the optimal choice for any linear function.

The problem with this is that even for similar problems the optimal parameter values
can be very different. Nowadays there are automated parameter tuning tools [79] that help
identify reasonable parameter values for the problem in hand.

Even though parameter tuning (manual or automated) can obtain good parameters, it
has two main problems. Firstly, there is a lack of rigorous understanding of how and when
parameter tuning gives good parameter values for the problem in hand, the only theoretical
studies investigating this are made by Hall, Oliveto, and Sudholt [93, 94, 95, 96], secondly,
even optimal static parameters may still result in a suboptimal performance in different
steps of the optimisation. For example, it can be beneficial to use larger mutation rates
at the beginning of the optimisation process to favour exploration, and decrease it later to
benefit exploitation.

Throughout the years, theoretical investigations have helped to find optimal static pa-
rameters for benchmark problems (see Section 2.3) that have characteristics of real-world
problems.

Mutation probability

Early in the study of evolutionary algorithms, empirical studies suggested that the small
mutation probability p = 1/n was a good choice and it was often recommended [14]. One of
the first theoretical studies to back this choice was made by Garnier, Kallel, and Schoenauer
[87], where the authors showed that p = 1/n is asymptotically optimal for OneMax. But,
soon after it was shown that this was not always the case: Jansen and Wegener [109],
showed that for an artificially constructed function, small values of the mutation probability
yield superpolynomial runtime while larger values can find the optimum in polynomal time.
Following the result on OneMax, Droste, Jansen, and Wegener [76] proved that all mutation
probabilities p = Θ(1/n) obtain an asymptotically optimal expected optimisation time of
O(n log n) on linear functions.1

After a long hiatus, several theoretical results on the importance of the mutation prob-
ability where published. The first result to prove an optimal parameter value different
from p = 1/n was shown by Böttcher, Doerr, and Neumann [21], where the authors prove
that the standard mutation probability of p = 1/n was not optimal for the (1 + 1) EA on
LeadingOnes, and p ≈ 1.59/n was the optimal static choice.

Following the results in [52, 76], Witt [182] proved a tight (up to lower order terms)
bound of (1 ± o(1)) e

r

r n lnn for the (1 + 1) EA using a mutation probability p = r/n (with

r constant) on all linear functions. Given that this bound has the factor er

r that depends
on the mutation parameter r, it can be derived that the mutation probability p = r/n with
r = 1 is optimal to minimise the specified bound.

This result was later generalised for the (1 +λ) EA on the OneMax function by Gießen
and Witt [89] were they found that the expected parallel optimisation time (i.e. number of
generations) for a mutation rate p = r/n with r constant, is equal to

(1± o(1))

(
er

r
· n lnn

λ
+

1

2
· n ln lnλ

lnλ

)
1Doerr and Goldberg [52] simplified the proof of Droste et al. [76] using Drift Analysis.

22

From this we can infer that if the value of λ = o(ln(n) ln(ln(n))/ ln(ln(ln(n)))), the first part
of the function is predominant and the optimal mutation rate is still p = 1/n, and after that
threshold any mutation probability p = r/n with a constant value of r does not change the
expected runtime, up to lower order terms. More precise results have shown that the optimal
mutation probabilities have small variations with changes in λ and n on OneMax [28, 90]
and LeadingOnes [73].

It has also been shown that too large mutation probabilities of order p = Θ(1/n) can
be detrimental. Doerr, Jansen, Sudholt, Winzen, and Zarges [56, 59] showed that for some
monotone functions large constant mutation rates can drastically affect the performance of
the (1 + 1) EA. In particular the authors present a monotone function where a mutation
probability of p > 16/n does not find the optimum within 2Ω(n) iterations. In a similar man-
ner, Lengler and Steger [133] showed that for a monotone function any mutation probability
p > 2.1369/n lead to exponential runtimes for the (1 + 1) EA. Later, Lengler [130] extended
this result for the (1 + λ) EA, the (µ+ 1) EA, the (µ+ 1) GA and the (1 + (λ, λ)) GA.

Although the mutation probability p = 1/n seems to be a good first choice, it is clear
that it does not always result in the most efficient optimisation. Doerr, Le, Makhmara,
and Nguyen [62], showed that for the (1 + 1) EA on the Jumpk functions the mutation
probability affects the performance greatly. The authors showed that for any mutation
probability p ∈ [2/n, k/n] there is a speedup of at least 2k evaluations, compared to the
standard p = 1/n. The authors also showed that the optimal mutation probability is
p = k/n, and any small deviation ε from the optimal mutation rate, is slower than the
optimal choice by a factor at least 1

6 exp (kε2/5). Bambury, Bultel, and Doerr [17] showed
similar results for a generalised version of the Jumpk functions with the valley of low fitness
farther away from the optimum.

Offspring population size

The offspring population size has been less studied than the mutation rate. Most of the
theoretical studies that are focused on the behaviour of the offspring population size, have
been done on the (1 + λ) EA. Jansen, De Jong, and Wegener [114] made a broad study of
the impact of λ; they found that for simple landscapes setting λ in the range of 1 ≤ λ ≤ log n
grant asymptotically equivalent sequential optimisation times (number of evaluations), and
specifically for OneMax and LeadingOnes there is no benefit in increasing λ beyond λ = 1.
In contrast with these landscapes the authors also showed that for more complex problems
there is a benefit on using large values for λ. In particular, an example function was presented
that contain a single narrow steep path to the optimum and several branches guiding to local
optima with a more gradual uphill path. This function was called SufSamp and benefitted
greatly when λ� 1.

In the study above the focus was made on sequential optimisation time but for paral-
lel optimisation time (number of generations) Jansen et al. [114] showed that the parallel
optimisation time is reduced on OneMax and LeadingOnes when increasing λ up to a
cut-off value of λ = Θ(ln(n) ln(ln(n))/ ln(ln(ln(n)))) and λ = Θ(n) respectively. Later Doerr
and Künnemann [55] showed that the (1 + λ) EA finds the optimum in an expected par-
allel optimisation time of O(n logn

λ + n) on any linear function. A more general result was
given by Lehre and Sudholt [127], showing that the λ-parallel (unary) unbiased black-box
complexity for any function with a unique optimum is at least Ω(λn

max{1,log λ} + n log n).

The parallel optimisation time is important when we can create and evaluate offspring
independently in parallel, but parallel evolutionary algorithms can use more complex models
such as island models that can make the optimisation more efficient. Island models divide
the population into subpopulations called islands that migrate their best individual(s) at
a certain migration interval between neighbouring islands. The islands have a migration
topology that determines what islands are neighbouring. Lässig and Sudholt [121] showed
that for certain number of islands λ, different migration topologies can obtain speedups

23

in parallel optimisation time without increasing the sequential optimisation time by more
than a constant on unimodal functions and Jumpk functions. Similar results were shown
by Lässig and Sudholt [122] on combinatorial problems. The results from [121, 122] include
the (1 + λ) EA as a special case of the island models. Sudholt [172] gives a thorough review
on parallel evolutionary algorithms.

Another interesting theoretical study was made by Jägersküpper and Storch [106], where
the authors study the relation between the parameter λ and the different selection strategies.
They show the importance of a correct choice of the selection strategy depending on the
offspring population size. And in particular for the (1, λ) EA they show that with any
λ ≤ lnn/14, it fails to optimise any function with a unique global optimum when using the
mutation probability p = 1/n.

Following this study, Rowe and Sudholt [166] extended the results showing that there is a
sharp threshold at λ = log e

e−1
n ≈ 5 log10 n between exponential and polynomial runtimes on

OneMax. Additionally, they showed that any smaller λ value (by a constant factor) results
in exponential time for the (1, λ) EA on all functions with one unique optimum. Furthermore,
the threshold can shift towards larger values of λ depending on the characteristics of the
functions (e. g. in LeadingOnes the threshold is at λ = 2 log e

e−1
n) or shift towards smaller

values if the mutation probability is reduced. The threshold for OneMax was refined
by Bossek and Sudholt [20] towards λ = log e

e−1

(
cn
λ

)
for some constant c > e2.

When considering a parent population µ, Lehre [123] showed that the (µ, λ) EA with
λ ≤ (1−ε)eµ for some constant ε > 0 needs an exponential runtime to optimise any function
with at most a polynomial number of optima. Follow up studies [33, 47, 124] showed that
the (µ, λ) EA with λ = (1 + ε)eµ for some constant ε > 0 and at least logarithmic in
the envisaged runtime can optimise many classic benchmark functions in asymptotically
the same time as the (µ+ λ) EA. We note that it is often the case that results showing
that non-elitist algorithms2 are efficient need at least a logarithmic offspring population
size λ [25, 42, 43, 69].

At last, the optimal parameters for the (1 + (λ, λ)) GA have also been studied. This
algorithm has three parameters λ, p and c. Doerr et al. [60] suggested to use p = λ/n and
c = 1/λ, reducing to only one parameter. In the same work, they gave an asymptotic bound
for the expected optimisation time that is minimised with λ = Θ(

√
log n). Later Doerr and

Doerr [50] improved the aforementioned bound, the new bound suggests that the optimal
performance can be achieved with the value λ = Θ(

√
log(n) log log(n)/ log log log(n)). The

same coupling of parameters to the offspring population size λ has also been shown to be
efficient on LeadingOnes [6] and on certain instances of MAX-3SAT [22], but a different
parameter selection is preferred for Jumpk functions [9].

Parent population size

The parent population size µ has mostly been studied separately from the offspring popula-
tion size in order to understand precisely the effects of this parameter. The first studies were
made by Jansen and Wegener [110] and Witt [181], where the authors studied the (µ+ 1) EA
with fitness proportional selection for reproduction, and inversely proportional selection for
deletion, that is, the better individuals are more likely to stay in the population. They show
that for a scaled version of the Jumpk function and a tailored function this algorithm was
asymptotically faster than the (1 + 1) EA. Both of these results where highly dependent
on the selection methods, which for the general understanding of the effects of the parent
population size is not that informative.

The first to study the parent population size in “isolation” was Witt [180]. The
(µ+ 1) EA studied used uniform parent selection and truncation selection for replacement.
It was proven that, in expectation, this evolutionary algorithm was slower compared against

2with tournament, linear ranking, comma and other selection mechanisms

24

the (1 + 1) EA on OneMax, LeadingOnes and Plateau. Nonetheless, the author also
showed that large parent population sizes can be beneficial on functions where exploring the
search space is important. Gießen and Kötzing [88] showed that large parent population
sizes can be useful when encountering noise.

As other parameters, an incorrect selection of the parent population size can sometimes
hinder the performance drastically. Lengler and Zou [134] determined that for every choice
of mutation probability p = r/n with r > 0 being constant, there is a µ0 such that if
µ0 ≤ µ ≤ n then the (µ+ 1) EA needs a superpolynomial time to optimise some monotone
functions. This is caused by a lower selection pressure in some parts of the population
allowing them to maintain harmful mutations.

Considering parent and offspring populations in conjunction increases the complexity
of the runtime analyses. Chen, He, Sun, Chen, and Yao [27] conducted a study of an
elitist (N + N) EA with truncation selection and two tournament selection on unimodal
functions. They show that for LeadingOnes and OneMax with N = O(n/ lnn) and
N = O(lnn/ ln lnn) respectively, both (N + N) EA have asymptotically the same upper
bound in expected optimisation time as the (1 + 1) EA. Antipov and Doerr [4] extended
the results on OneMax for all population sizes µ ≥ 1 and λ ≥ 1 on the (µ+ λ) EA.
The authors show that for a parent population size at most max{log n, λ}, the (µ+ λ) EA
needs asymptotically the same number of iterations as the (1 + 1) EA on OneMax and for
µ, λ = O(log n) it takes the same number of evaluations.

For the (µ, λ) EA we have already discussed that small offspring population sizes
λ ≤ (1− ε)eµ can result in exponential runtimes. Antipov, Doerr, and Yang [7] showed
that the relationships between the parent and offspring populations are more complex, espe-
cially in the threshold λ = (1±ε)eµ. The authors tighten the threshold for λ on OneMax as
follows. If µ ≤ n1/2−c for any constant c > 0 then any λ ≤ eµ result in a super-polynomial
runtime. On the other hand if µ ≥ n2/3+c for any constant c > 0, then for any λ ≥ eµ, the
runtime is polynomial.

An important thing to notice is that evolutionary algorithms are prone to have premature
convergence, where all the solutions of the population are the same or very similar to each
other. When this happens, the population is no longer useful for global exploration and
can affect the performance of the algorithm from maintaining an homogeneous population.
Traditionally, to deal with this problem, many mechanisms to diversify the population have
been used and studied. Some examples of diversity mechanisms are: avoiding duplicates
during the selection process [170], enforcing fitness diversity [83], deterministic crowding [84],
etc. Due to the scope of this thesis, we do not expand on the diversity mechanisms, but
refer the reader to a recent survey by Squillero and Tonda [169] and the book chapter by
Sudholt [174] for more information. We remark that recently Corus, Lissovoi, Oliveto, and
Witt [37] proved that reducing the parent selection pressure can address this issue without
additional diversity mechanisms.

Crossover probability.

Understanding crossover as a search operator, has been a difficult task. Most of the runtime
analyses have been focused on proving the benefits of using crossover. An early study
by Jansen and Wegener [111], showed that the (µ+ 1) GA with and without diversity
mechanisms on Jumpk, has a considerably faster expected optimisation time compared to the
(1 + 1) EA. This proof relied on a unrealistically small crossover probability of pc ≤ 1/Ckn
for a large constant C. This parameter value is not normally used in practice. Later, for
the same function the analysis was improved by Kötzing, Sudholt, and Theile [118] using a
diversity mechanism to allow a crossover probability of pc ≤ k/n, which still is unrealistically
small. Recently, an analysis by Dang, Friedrich, Kötzing, Krejca, Lehre, Oliveto, Sudholt,
and Sutton [40] was able to prove the benefits of crossover on the Jumpk function using
constant crossover probabilities. This study proved faster runtimes than mutation only

25

evolutionary algorithms, using several diversity mechanisms. The same authors later showed
that without the need of diversity mechanisms the (µ+ 1) GA is faster than the (1 + 1) EA
on Jumpk [41], although not as fast as when using the diversity mechanisms from [40]. An
important point is that the authors also showed that for mutation probabilities p = (1+δ)/n,
for a constant δ, the (µ+ 1) GA had an asymptotically better optimisation time.

Other randomised search heuristics have also demonstrate the effectiveness of crossover
on the multimodal function class Jumpk. Friedrich, Kötzing, Krejca, Nallaperuma, Neu-
mann, and Schirneck [85] showed a O(n log n) bound on the runtime of an island model
with majority vote. Whitley et al. [179] proved that tailored hybrid genetic algorithms us-
ing a voting mechanism can optimise Jumpk in expected time Θ(n) and Buzdalov, Kever,
and Doerr [24] designed a tailored black-box algorithm using a voting mechanism that can
provably optimise (a slight variation of) Jumpk in expected time Θ(n/ log n).

The previous examples show the benefits of crossover for functions with local optima,
for simple hill-climbing tasks, there have also been several results with [173] and without
diversity mechanisms [30, 31] showing improved performance compared to evolutionary al-
gorithms without crossover. Since our focus is on parameter setting the importance of these
studies is that they show that when using crossover, the optimal mutation probability and
parent population size tend to be larger than without crossover. This shows the compli-
cated interplay between these parameters, making optimal parameter tuning on real-world
problems an almost impossible task.

Heavy-tailed parameters and other distributions

In an attempt to create a mutation operator that could hill-climb and escape local optima
efficiently, Doerr et al. [62] proposed the mutation operator fmutβ that use standard bit
mutation with a mutation probability p = r/n where the mutation parameter r is sampled
each generation from a power law distribution with exponent β > 1. Doerr et al. [62]
showed that the (1 + 1) EA using this mutation operator can optimise Jumpk functions

in O
(
kβ−0.5

(
en
k

)k)
which is only a small polynomial factor O(kβ−0.5) slower than the

(1 + 1) EA with best choice of mutation probability using standard bit mutation.
Motivated by this result, Antipov, Buzdalov, and Doerr [8], Antipov, Doerr, and Kar-

avaev [9], Antipov, Buzdalov, and Doerr [10] chose the parameters of the (1 + (λ, λ)) GA
from power law distributions. For different parameters in the power law distributions it was
shown that the (1 + (λ, λ)) GA is asymptotically faster than any static parameter choice
on OneMax [8] and only a small polynomial factor slower than the (1 + (λ, λ)) GA with
optimal static parameter choice on Jumpk functions [9, 10].

Other mutation operators that change the distribution of the parameters (mainly the
mutation probability) have been proposed. Friedrich, Quinzan, and Wagner [86] proposed
a mutation operator cmutP that with probability P flips one bit and with probability 1−P
flips r bits with r chosen uniformly at random from [2 . . . n]. This mutation operator is slower
by a linear or constant factor than fmutβ on most Jumpk functions but it is faster on Jumpk
functions when n − k is constant. Similarly Quinzan, Göbel, Wagner, and Friedrich [159]
modified the fmutβ operator to flip r bits chosen uniformly at random instead of flipping
each bit with probability r/n. This modification was shown to have a similar performance
than the original fmutβ on Jumpk and OneMax and additionally it was shown to find
(1/3) approximations on any non-negative submodular functions and symmetric submodular
functions under a single matroid constraint in polynomial time. Corus, Oliveto, and Yazdani
[38] proposed a hyper mutation operator for AIS using a symmetric power-law distribution
that performs better than classic hyper mutation operator and at least as good or better
than the other mutation operators in a wide range of benchmark problems.

The use of different parameter distributions is not limited to increasing the ability of
an evolutionary algorithm to escape local optima. Doerr, Doerr, and Kötzing [63] studied

26

how sampling the mutation strength from different distributions affects the performance of
RLS on a generalisation of the OneMax problem to a larger alphabet than {0, 1}. Doerr,
Doerr, and Kötzing [65] showed that there is a distribution from which, if the mutation
probability is sampled from it every generation, the (1 + 1) EA is able to optimise OneMax
and LeadingOnes with unknown solution length at almost no extra cost. Ye, Doerr, and
Bäck [184] change the distribution of number of bit-flips of standard bit mutation from a
binomial distribution towards a normal distribution allowing an easy way to control the
variance, and hence the degree of randomness of mutations.

In a first attempt to understand what are the optimal distributions to sample parameters,
Buzdalov and Doerr [23] studied the (1 + λ) EA and found that for different values of λ the
optimal distributions change in unexpected ways.

Parameter tuning vs parameter control

As we have seen, the correct parameter selection of evolutionary algorithms is a complicated
task that depends on the interplay of the parameters and the problem in hand. Addition-
ally, even with the best static parameters the algorithms can have suboptimal performance
due to changes during the optimisation process. An obvious alternative is to use dynamic
parameters, we call these parameter settings parameter control mechanisms. Parameter con-
trol aims to adjust the parameters during the run in order to identify parameter values that
are optimal for the current state of the optimisation process. Dynamic parameter settings
allow evolutionary algorithms to adjust to the fitness landscape during different stages of
the optimisation process.

In continuous optimisation, parameter control is indispensable to ensure convergence to
the optimum, therefore, non-static parameter choices have been standard for several decades.
In sharp contrast to this, in the discrete domain parameter control has only become more
common in recent years. This is in part owing to theoretical studies demonstrating that
parameter control mechanisms can provably outperform the best static parameter settings.

Even though parameter control has shown promising results, there is still a lack of under-
standing of how and when parameter control mechanisms are better than static parameter
settings. The theoretical study of parameter control in evolutionary algorithms is still rela-
tively new compared to the study of static parameter settings.

2.5.1 Taxonomy of Parameter Settings

As mentioned before evolutionary algorithms come with a range of parameters, and it is well
known that the optimal parameter settings differ between different optimisation problems
and can even change throughout the optimisation process [51].

There are different types of parameter settings. One of the first attempts to classify them
was by Eiben, Hinterding, and Michalewicz [78], where the authors proposed a taxonomy
scheme that was widely accepted. More recently an updated version was proposed by Doerr
and Doerr [51]. Here we use a variation of this classification scheme, shown in Figure 2.2.
In contrast to the one proposed in [51], we classify hyper-heuristics as learning-inspired and
success-based parameter control mechanisms, because hyper-heuristics that adjust parame-
ters settings have the same behaviour as these parameter control mechanisms.

From Figure 2.2 we can see that the parameter settings are divided in two, parameter
tuning, where static parameters are chosen before the run either manually or automatically,
and parameter control, where non-static parameters are chosen each generation following
certain rules. Parameter control is further divided in several types according to the heuristics
used to choose the parameter values. Here we will explain these different types of parameter
control. Afterwards, in Chapter 3 we will give a thorough review of theoretical analyses of
parameter control mechanisms.

27

Figure 2.2: Classification of Parameter Control Mechanisms. Adapted from [51].

State-Dependent Parameter Control

State-dependent parameter control mechanisms are the ones that depend directly on the
current state of the search process. It can be a value directly related to the search process (eg.
fitness value), characteristics of the current population (eg. homogeneity), or other values
(eg. iterations). The main characteristic of these mechanisms is that the parameter values
are determined by a predefined function that maps the state of the optimisation process to
a parameter setting. An important constraint for this type of mechanisms is that, to have
an optimal performance they generally need to be tailored to a specific problem which needs
a substantial knowledge of the problem in hand [51].

State-dependent parameter control mechanisms have been further subdivided according
to the type of information used to adjust the parameters, common subdivisions are [51]:

• Time-Dependent Parameter Control
• Rank-Dependent Parameter Control
• Fitness-Dependent Parameter Control

Success-based parameter control

Success-based parameter control (also called self-adjusting parameter control) mechanisms
adjust the parameter settings from one iteration to the other. The manner in which the
parameters are adjusted is determined by the previous parameter value used and the suc-
cess of the previous iteration. In contrast to state-dependent mechanisms, success-based
mechanisms are not tailored to any specific problem and therefore do not need a deep un-
derstanding of the problem in hand for their application.

A common success-based mechanism is the use of multiplicative rules, where the pa-
rameters are adjusted using update factors depending on the improvement of fitness in the
previous iteration. A well known example of a multiplicative rule is the one-fifth success
rule, that suggests to adjust the parameter values so that we obtain an iteration where there
is a fitness improvement every five iterations. This rule was first conceived independently
by Devroye [46], Rechenberg [163], Schumer and Steiglitz [167]. At first it used several it-
erations to adjust the parameter but was later simplified by Kern, Müller, Hansen, Büche,
Ocenasek, and Koumoutsakos [116] for continuous evolutionary strategies and later applied
in discrete optimisation by Doerr et al. [60]. In [60], the rule updates the offspring popula-
tion size, multiplying its value by a factor F 1/4 in an unsuccessful iteration and dividing by
F otherwise.

28

Learning-inspired parameter control

Learning-inspired parameter control mechanisms are characterised by learning the param-
eter values using information from previous iterations. This is a similar approach as the
success-based parameter control mechanisms, but without limiting to only the last itera-
tion. Intuitively, during the learning process, a common approach is to give more weight to
recent iterations than older ones.

Self-adaptive parameter control

Self-adaptive parameter control considers the parameter control as part of the same optimi-
sation problem, i.e. encodes the parameter values inside the individuals and optimises them
together with the problem in hand. The motivation behind this type of parameter control
is that each individual contains its own parameter value and the selection mechanisms will
ensure that good parameter values are maintained in the population. In general, first the
encoded mutation rate is mutated and later this new mutation rate is used to mutate the
individual. This is necessary for the selection to see the effect of the new mutation rate and
hopefully select the most profitable mutation rate.

It has been suggested to not use self-adaptive mechanisms in elitist evolutionary algo-
rithms [51], because they are prone to get stuck with individuals that have a high fitness, but
also have a destructive or unprofitable mutation rate. This is because elitist evolutionary
algorithms only accept individuals with better or equal fitness, and a destructive mutation
rate would not enable the algorithm to accept a new individual nor a better mutation rate.
Although elitist algorithms can get stuck in this way, there is no extensive study on the
probability of this event happening and in which fitness landscapes this probability increase
or decrease.

29

Chapter 3

State of the Art in Parameter
Control

In this section we will give a thorough review of theoretical studies of parameter control
mechanisms. Even though our research focus is on the theoretical analyses the review
will also contain empirical studies, because some algorithmic concepts that have been first
proposed in empirical studies have later been studied by theoretical means, but some others
have not, and there can be promising results by studying them.

In the following rather than following the taxonomy defined before (Section 2.5.1), we
divide the literature by the underlying algorithms were the parameter control mechanisms
are applied or parameter adjusted to be able to compare more easily the results presented.

3.1 Dynamic Mutation Rate for the (µ+ λ) EA

In this section we review the history of dynamic mutation rates for the (µ+ λ) EA. During
this section, we purposely avoid mentioning self-adaptive mechanisms since we will review
them in Section 3.3.

One of the first empirical studies showing an improved performance of dynamic muta-
tion rates over static ones was a time-dependent exponentially decreasing mutation rate
p = 0.11375

240 · 2−t by Fogarty [81], but the experimental setup was highly tailored. Later,
a fitness-dependent mutation rate for the (1 + λ) EA on OneMax was proposed by Bäck
[12] which also decrease rapidly when the fitness is increased, from p = 1 when the fitness
of an individual x is f(x) ≤ n/2 to p = 1/n when f(x) = n − 1. This fitness-dependent
mutation rate showed an improved performance compared to static mutation rates on One-
Max. In an attempt to generalise the results from [12], Bäck and Schütz [13] proposed a
time-dependent mechanism that used the maximum number of generations T to adjust the

mutation probability using the formula pt =
(

2 + n−2
T−1 · t

)−1

, with t ∈ {0, 1, . . . , T − 1} be-

ing the actual generation. This time-dependent mechanism showed improved performance
against static parameter values for the knapsack, maximum cut and maximum independent
set problems.

A similar concept to these fast decreasing mutation rates is called inversely proportional
hypermutations (IPH) and is used in artificial immune systems (AIS). IPH mutates more
aggressively search points far away from the optimum and search points near the optimum
are only subject to small mutation probabilities. AIS using IPH have been studied on One-
Max [185], Cliff and TwoMax [35] showing disappointing results. Corus, Oliveto, and
Yazdani [35] proposed an alternative implementation of IPH that is efficient on OneMax,

30

LeadingOnes, and combined with an ageing mechanism it is also efficient on Cliff and
TwoMax.

Jansen and Wegener [109] and Droste, Jansen, and Wegener [75] performed the first
theoretical studies on runtime analysis of parameter control mechanisms. In these studies a
time-dependent mutation rate for the (1 + 1) EA was studied, the mechanism selected from
a set of mutation probabilities pt ∈ {2t−1/n | t = 0, 1, . . . , dlog ne}. The studies showed a
faster asymptotic runtime (by a small polynomial factor) than the static (1 + 1) EA with
any value of p on a highly tailored benchmark function but slower asymptotic runtime on
the more common problems OneMax and LeadingOnes. The study only showed upper
bounds for the runtimes, therefore we cannot confirm that the parameter control mechanism
studied is faster. This work was later extended by Jansen and Wegener [112] showing an
example function where the dynamic (1 + 1) EA has a polynomial expected runtime while
the static (1 + 1) EA with any value of p needs superpolynomial expected runtime w. o. p.

Cervantes and Stephens [26] proposed a (µ+ 1) EA with rank-based mutation rate and
showed promising performance empirically. The intuition behind this mechanism was to
exploit and explore the search space simultaneously, mutating the best solutions with small
mutation rates and at the same time, mutating the individuals with worse fitness more
aggressively. Inspired by this work, Oliveto, Lehre, and Neumann [152] theoretically showed
that the rank-based (µ+ 1) EA has an improved performance on a constructed function,
but they also showed another constructed function where the static (µ+ 1) EA performs
better.

The first dynamic optimal parameter setting was studied on the LeadingOnes problem
by Böttcher et al. [21]. The algorithm proposed was the (1 + 1) EA with fitness-dependent
mutation rate. This algorithm was the first to show a significant advantage over the optimal
static parameter settings and no other fitness-dependent mutation rate can achieve a better
expected optimisation time on LeadingOnes. Similar to the previous study, Badkobeh
et al. [15] and Lehre and Sudholt [127] proposed a (1 + λ) EA with fitness-dependent mu-
tation rate for the OneMax problem that has an asymptotically optimal runtime amongst
all λ-parallel mutation-based unbiased black-box algorithms. In a similar manner Doerr,
Doerr, and Yang [67] proposed a (1 + 1) EA with fitness-dependent mutation rate for the
OneMax problem that approaches the optimal runtime for all mutation-based unbiased
black-box algorithms by an additive εn term, for an arbitrarily small constant ε.

Following the work from [15] a success-based mutation rate was proposed by Doerr,
Gießen, Witt, and Yang [66], called 2-Rate (1 + λ) EA or self-adjusting (1 + λ) EA{2r,r/2}.
This algorithm finds the optimum in the same asymptotic expected runtime than the
(1 + λ) EA with optimal fitness-dependent mutation rate on OneMax [15, 127]. The mech-
anism consists of creating two subpopulations, with half of the offspring each. One of them
with a mutation rate half of the current mutation rate and the other with twice the current
rate. After an iteration the mutation rate is updated either by randomly choosing one of the
two mutation rates used or to the mutation rate used by the subpopulation with the best
offspring. They also proposed a version without the random choice and another with three
subpopulations, the third population using the actual mutation rate. This 3-Rate (1+λ) EA
was also proposed earlier by Thierens [176] where the author empirically showed an improved
performance over static parameter values on OneMax and the knapsack problem.

Another (1 + 1) EA with success-based mutation rate mechanism was proposed by Doerr
and Wagner [71], where the authors empirically compared the algorithm against the best
possible fitness-dependent mutation rates on OneMax and LeadingOnes. The mechanism
used a multiplicative update rule for the mutation rate, that is, the mutation rate was
multiplied by a factor A ≥ 1 if the offspring has better or equal fitness than the parent and
multiplied by a factor b ≤ 1 otherwise. Based on this, Doerr, Doerr, and Lengler [68] made a
theoretical study of the success-based mechanism. In this study the authors made a relation
between the factors A and b in [71] and a generalised version of the one-fifth success rule

31

where the mutation rate is multiplied by F s in a successful generation and divided by F in
an unsuccessful generation, with F being the update strength and s the success rate. The
update rule p = pA and p = pb with values A = 1.11, b = 0.66 is equivalent to p = pF s and
p = p/F with F = 1.5 and s = 4 (the one-fifth success rule). Using this analogy they found
that the success rule with values F = 1+o(1) and s = e−1 achieves asymptotically optimal
running time on LeadingOnes.

Later three new success-based mutation rate mechanisms were proposed by Ye et al. [184],
the (1 + λ) EAnorm, the (1 + λ) EAvar, and the (1 + λ) EAhalf . The first two algorithms
use a normal distribution N(r, r(1 − r/n)) to sample the number of bit-flips in a mutation
instead of the binomial distribution B (n, r/n) that the standard bit mutation would sample.
The authors argue that the distributions are equivalent because by the central limit theorem
the binomial distribution converges to the normal distribution. The algorithms self-adjust
the mutation parameter r every iteration by assigning the number of bit-flips that the best
offspring did in the last iteration to r. The difference between both algorithms is that the
(1+λ) EAvar also reduces the variance of the normal distribution by a factor if the previous r
is equal to the number of bit flips of the best offspring. The (1+λ) EAhalf creates half of the
offspring population by flipping exactly r bits from the parent and samples the number of
bit-flips from a uniform distribution U(0, 2r/n) for the other half of the offspring population.
The value r is adjusted each generation to the number of bit-flips of the best offspring of the
last generation. In the study the authors did experiments on OneMax and LeadingOnes
comparing their algorithms against the 2-Rate (1 + λ) EA and RLS showing an improved
performance for the problem sizes tested even against RLS.

When tackling an optimisation problem, it can be useful to use a biased mutation oper-
ator, that is, a mutation operator that treats 1-bits different than 0-bits. For example for
most of the benchmark problems studied here we can see that flipping 0-bits to 1-bits is more
profitable than the other way around. Obviously this is not the case for all optimisation prob-
lems and choosing between a biased and an unbiased mutation operator still needs a certain
domain knowledge. In an attempt to automate this choice Rajabi and Witt [160] proposed a
learning-inspired (1 + 1) EA with asymmetric mutation that uses an independent mutation
probability for 1-bits and 0-bits, and adjusts these probabilities after an observation length
N . This learning-inspired (1 + 1) EA with asymmetric mutation was shown to have a run-
time of O(n) on OneMax which is a logarithmic factor faster than an unbiased mutation
operator and a constant factor faster than the previously best known static asymmetric mu-
tation [108]. Despite using an asymmetric mutation the learning-inspired (1 + 1) EA still
optimises a generalised OneMaxa function describing the number of matching bits with a
fixed target a ∈ {0, 1}n in O(n log n) expected number of evaluations.

For multimodal optimisation Rajabi and Witt [161] proposed a learning-inspired mecha-
nism called stagnation detection that increases the mutation probability after a set amount
of iterations without a fitness improvement. The number of iterations employed ensures
w. h. p. that the neighbourhood has already been searched, allowing the algorithm to ex-
plore a larger radius. The stagnation detection mechanism applied to the (1 + 1) EA is able
to optimise the Jumpk function with the same asymptotic runtime as the (1 + 1) EA with
optimal static mutation rate p = k/n without previous knowledge of the jump size k.

Given that there is an increased number of parameter control mechanisms, it is hard
to decide which algorithm to use just by looking at each study by itself. In order to help
practitioners decide, a number of empirical studies have been made comparing these algo-
rithms. Rodionova, Antonov, Buzdalova, and Doerr [164] did an empirical analysis of the
2-Rate (1 + λ) EA, 3-Rate (1 + λ) EA from [66] and the (1 + λ) EA with success-based
mutation rate from [68] with focus on the influence of offspring population size and problem
size on performance. Comparisons between the 2-Rate (1 + λ) EA and other evolutionary
algorithms with self-adjusting offspring population size were made by Doerr, Ye, van Rijn,
Wang, and Bäck [73] and Hevia Fajardo [99]. The most complete empirical study, in the

32

sense that compares most of the algorithms showed here was done by Doerr, Ye, Horesh,
Wang, Shir, and Bäck [74] using the new benchmarking platform IOHProfiler [72].

3.2 Dynamic Offspring Population Size for the
(1 + λ) EA

For the (1 + λ) EA there have been a limited amount of parameter control mechanisms
proposed that adjust the offspring population size. Jansen et al. [114] proposed an evolu-
tionary algorithm adjusting the offspring population size with a multiplicative success-based
rule, that is, the offspring population size is multiplied if there is no improvement in fitness
and divided otherwise. The update rule is to multiply by 2 in an unsuccessful genera-
tion (i. e. no fitness improvement) and divided by s otherwise, with s being the number
of successful offspring. The reasoning given in their work was to set λ to roughly the re-
ciprocal of the success probability, minimising the total expected optimisation time. The
mechanism obtained promising results in empirical tests on OneMax, LeadingOnes and
SufSamp. This algorithm has been called (1 + {2λ, λ/s}) EA in [51, 73] and generalised to
the (1 + {Fλ, λ/s}) EA in [99] with an update factor F ≥ 1.

Afterwards Lässig and Sudholt [120] proposed two similar success-based parameter con-
trol mechanisms. The update rule used was to double the offspring population size in an
unsuccessful generation to help finding improvements. In order to reduce the offspring popu-
lation size on a successful generation and maintain a ”healthy” size they used two approaches.
The first approach is to set the offspring population size to 1, this might help if it becomes
easier to find an improvement after a success, but if the landscape does not change, it also
makes sense to have a similar offspring population size, therefore in the second approach
they only halve the offspring population size after a successful generation. Following the
same naming conventions from [51, 73] these algorithms are called (1 + {2λ, λ/2}) EA and
(1 + {2λ, 1}) EA. In this work Lässig and Sudholt proved that there is an improvement in
asymptotic parallel optimisation time (number of generations) without affecting the asymp-
totic sequential optimisation time (number of evaluations) on OneMax, LeadingOnes and
Jumpk. These results can be extended to the (1 + {Fλ, λ/s}) EA and other multiplicative
rules.

Later Hevia Fajardo [99] proposed another mechanism using the one-fifth rule. The pro-
posed (1 + {F 1/4λ, λ/F}) EA and the other success-based mechanisms proposed in [114, 120]
were empirically tested on OneMax, LeadingOnes, SufSamp and Makespan Scheduling.
All of the mechanisms showed similar performance. In general the (1 + {Fλ, λ/s}) EA
performed slightly better than the other mechanisms for the problems tested.

For parallel (1 + 1) EAs using λ subpopulations with spatial structures called islands,
Mambrini and Sudholt [141] proposed two schemes to self-adjust the interval at which indi-
viduals migrate between neighbouring islands, that is, a self-adjusting migration interval τ .
In their parallel evolutionary algorithms every island has its own migration interval τi, af-
ter every migration interval, each island broadcast its best solution to its neighbours. The
migration interval τi is updated in each island using the following two sets of rules:

• When an improvement is found set τi = 1. If τi generations have passed migrate and
set τ ′i = 2τi

• When an improvement is found set τ ′i = τi/2. If τi generations have passed migrate
and set τ ′i = 2τi

In their work they analysed the parallel runtime and the total number of migrants sent
called communication effort of these mechanisms compared against a fixed scheme for τ
with Complete, Ring, Torus and Hypercube spatial structures. All the schemes had the same
parallel runtime bound, and the adaptive schemes reduced or maintained the communication
effort for LeadingOnes, unimodal functions and three of the four structures on Jumpk. For

33

three of the four structures on OneMax and one structure on Jumpk the communication
effort was increased.

3.3 Self-Adaptive Mutation Rate

Evolutionary algorithms with self-adaptive mutation rate encode the mutation rate in the
genomes of the individuals letting the algorithm optimise its own parameters in parallel to
the optimisation task. One of the first empirical studies on evolutionary algorithms with
self-adaptive mutation rate was made by Bäck [11]. In this study Bäck compared three
(µ+λ) GA with two-point crossover to solve continuous problems of l dimensions, encoding
the solutions into a pseudo-Boolean bitstring of size n = 32l using Gray code. One of the
genetic algorithms had a static mutation rate with p < 1/n, the second used a self-adaptive
approach that would encode the mutation rate into 20 bits at the end of every individual
and the third genetic algorithm used a self-adaptive mechanism that encoded one mutation
rate for every dimension l into the end of every individual. The results found that the self-
adaptive algorithm with one mutation rate was better than the static choice on all problems
and the self-adaptive algorithm with l mutation rates was only better on one multimodal
problem.

Later Bäck [12] tested the same self-adaptive mutation rate as before on OneMax, using
a (µ, λ) GA. Bäck showed that at every stage of the optimisation process the algorithm
contained similar values of mutation rate as a fitness-dependent mutation rate proposed in
the same work (which we now know is not the optimal fitness-dependent mutation rate).
Judging from the graphs presented, the minimum mutation rates present in the population
drop to p ≈ 1/n in the end of the optimisation process, which is the optimal static choice.

Following this, Bäck and Schütz [13] empirically investigated the effect of different encod-
ings for the mutation rate of a ”Steady State” genetic algorithm with self-adaptive mutation
rate. The results were then compared with static mutation rates; the self-adaptive mech-
anisms show an improvement against them on highly multimodal problem instances. An
important point is that the self-adaptive mechanisms use a log-normal distribution to mutate
the mutation rate. This mechanism has been recently empirically compared against other
self-adjusting mutation rates by Doerr et al. [74] showing poor performance on most of the
problems tested. We need to take into account that in this comparison Doerr et al. used a
(1 + 10) EA that uses an elitist selection which is different from the selection mechanisms
used by Bäck and Schütz [13].

The first rigorous runtime analysis on self-adaptation was made by Dang and Lehre
[39]. Using a highly tailored problem Dang and Lehre [39] demonstrate that a self-adaptive
mutation rate (that only uses a finite set of mutation rates M) with a non-elitist selection
is able to optimise the function in polynomial time. Not only that, but any static mutation
rate fromM, or randomly changing the mutation rate fromM at each iteration would take
exponential expected optimisation time.

In contrast to Dang and Lehre [39], more recently, Doerr et al. [69] did a runtime analysis
of a self-adaptive mutation rate on a more common function, OneMax. Their mechanism
also used only a discrete selection of mutation probabilities with a mutation parameter
r ∈ {1, F, F 2, . . . , F blogF (n/(2F))c} for all F > 1. During an iteration the mutation parameter
of an individual r (with mutation probability p = r/n) is changed uniformly at random either
to r/F or rF , and then the individual is mutated with the new mutation rate. In the end
of the iteration the best offspring is used as parent for the next iteration; in case of ties the
individual with smaller mutation rate is preferred. During the analysis the authors used
F = 32 to ease the analysis, but they suggest to use smaller values of F in practice. Doerr
et al. [69] showed that the self-adaptive (1, λ) EA with λ ≥ C log n with a sufficiently large
constant C has the same asymptotic expected runtime as the optimal fitness-dependent
choice from [15, 127].

34

A self-adaptive (µ, λ) EA was proposed and studied by Case and Lehre [25]. In this anal-
ysis the self-adaptive mechanism selects mutation probabilities over a continuous interval.
In the self-adaptive (µ, λ) EA the mutation rate of each parent is multiplied by either A > 1
with probability pinc or b ∈ (0, 1) with probability 1 − pinc before creating an offspring via
standard bit mutation with the new mutation rate. For a non-trivial selection of parame-
ters A, b, pinc, µ, λ the self-adaptive (µ, λ) EA showed an expected runtime of O(k2) on the
LeadingOnesk problem with unknown solution length k and problem size n. This is faster
than the best known runtime for this problem shown by Doerr et al. [65].

3.4 Self-Adjusting (1 + (λ, λ)) GA

The (1 + (λ, λ)) GA was proposed by Doerr et al. [60] and studied on OneMax. It was
shown that for λ ∈ [ω(1), o(log n)] it leads to expected optimization times o(n log n) breaking
the Θ(n log n) barrier that applies to all mutation-only algorithms [128]. Additionally, it was

proved that a fitness-dependent choice of the offspring population size λ =
⌈√

n/(n− f(x))
⌉
,

with p = λ/n and c = 1/λ could yield an expected optimisation time Θ(n) on OneMax
which is asymptotically faster than any static parameter values.

To aid the complicated task of finding an optimal fitness-dependent choice, Doerr et al.
[60] proposed the self-adjusting (1 + (λ, λ)) GA that uses the one-fifth success rule to ad-
just λ. The self-adjusting (1 + (λ, λ)) GA showed promising empirical results on OneMax,
RoyalRoads5 and linear functions. Doerr and Doerr [50] proved that the self-adjusting
(1 + (λ, λ)) GA only needs O(n) expected function evaluations on OneMax. This was the
first success-based parameter control mechanism proven to reduce the optimisation time of
an algorithm by more than a constant factor, compared to optimal static parameter settings.

Following these theoretical results, several empirical studies have been conducted. Gold-
man and Punch [91] tested the self-adjusting (1 + (λ, λ)) GA on combinatorial problems
using a restart mechanism when the offspring population size increased to λ = n re-
porting excellent performance on random instances of the maximum satisfiability prob-
lem. Without restarts and a limited budget Foster et al. [82] reported opposite results:
the self-adjusting (1 + (λ, λ)) GA with limited budget found worse solutions than all other
evolutionary algorithms tested on the same instances of the maximum satisfiability prob-
lem from [91]. Hevia Fajardo [99] compared the self-adjusting (1 + (λ, λ)) GA against
other success-based evolutionary algorithms showing a poor performance on Leading-
Ones, SufSamp and Makespan Scheduling and proposed a new version of the self-adjusting
(1 + (λ, λ)) GA using Optimal Stopping Selection that showed a 20% improvement on One-
Max. Dang and Doerr [44] investigated empirically the influence of the hyper-parameters
on its performance. From the hyper-parameter tuning the authors obtain an improvement
of 16% over the original parameters from [50] self-adjusting (1 + (λ, λ)) GA on OneMax.

Inspired by the results shown by Goldman and Punch [91], Buzdalov and Doerr [22]
made a runtime analysis on random satisfiability instances showing that the self-adjusting
(1 + (λ, λ)) GA is effective on instances with good fitness-distance correlation but for weak
fitness-distance correlation the algorithm might increase λ to a value that affects its per-
formance. Bassin and Buzdalov [18] proposed a roll-back mechanism for the parameter λ
that slows down the growth of λ and experimentally showed an improved performance on
random satisfiability instances. Antipov et al. [6] analysed the (1 + (λ, λ)) GA on Leading-
Ones to better understand the behaviour on functions with low fitness-distance correlation.
They showed that the self-adjusting (1 + (λ, λ)) GA has the same asymptotic runtime as
the (1 + 1) EA on LeadingOnes, but the hidden constants seem to be very large.

Antipov et al. [8], Antipov and Doerr [3] and Antipov et al. [10] exchanged the
self-adjusting choice of parameters of the (1 + (λ, λ)) GA for heavy-tailed distributions ob-
taining the same asymptotic runtime of O(n) on OneMax [8] and a good performance

35

on Jumpk functions [3, 10]. Since we are interested in understanding parameter control
mechanisms we refrain from expanding on these studies in this section.

3.5 Dynamic Parameters on RLSk

The first runtime analysis on RLSk (with k 6= 1) was made by Neumann and Wegener [144]
on minimum spanning trees. The authors used a version RLS1,2 that can only make either
1-bit flips or 2-bit flips. For the RLS1,2 they show that it computes the minimum spanning
tree in an expected number of iterations O(m2(log n + logwmax)) with n vertices and m
edges. The same RLS1,2 was also studied by Qian, Tang, and Zhou [158] showing that
for a constructed multi-objective problem the algorithm needs both 1-bit and 2-bit flips.
A related study by Antipov and Doerr [5] showed that the (1 + 1) EA with any unbiased
mutation operator1, having a constant probability of exactly flipping one bit (this includes
any RLSk that uses 1-bit flips with constant probability), has an expected runtime of Θ(nk)
on Plateauk with k ≥ 2 constant (k is the size of the plateau).

The previous results were made with a static probability of selecting any mu-
tation strength k. The first study on varying these probabilities was made by
Lehre and Özcan [126]. In this work, the authors first studied the behaviour
of the RLS1,2 with different static probabilities pk of performing k-bits flip on
OneMax and GapPath (an improved result on OneMax was given by Doerr and Doerr
[51]). Later they propose the use of the hyper-heuristic selection mechanism permutation to
vary the probabilities pk and showing that the runtime for GapPath is finite compared to
an infinite runtime using either 1-bit flips or 2-bit flips alone.

Afterwards Alanazi and Lehre [2] studied several hyper-heuristic selection mechanisms
on LeadingOnes showing that the asymptotic runtime of all the selection mechanisms is
similar. They also proposed an improvement to random gradient letting the successful low-
level heuristic run for a constant number of iterations regardless of its success. Following
this result Lissovoi, Oliveto, and Warwicker [136, 139] show a more precise result proving
that the four selection mechanisms have the same expected runtime. The authors also study
a similar selection mechanism to the one proposed in [2] called generalised random gradient
and a new selection mechanism proposed there, called generalised greedy. The generalised
random gradient lets a successful heuristic run for τ iterations; if an improvement is found
during the τ iterations the heuristic is still used for the next τ iterations. The generalised
greedy uses all low-level heuristics until an improvement is found and the corresponding
heuristic that found the improvement is used the next τ iterations. From these two new
selection mechanisms the generalised random gradient has the best possible optimisation
time for any RLSk on LeadingOnes, making it faster than the (1 + 1) EA and RLS1.

The results in Lissovoi et al. [136, 139] required the correct selection of the learning
period τ ; this was later solved by Doerr, Lissovoi, Oliveto, and Warwicker [64] using a
success-based mechanism in order to self-adjust the value of τ during the run of the algo-
rithm. This mechanism is able to obtain the same optimal asymptotic expected runtime on
LeadingOnes without the need to tune the learning period τ . The mechanism counted
the number of improvements in a period of time τ , if it exceeded the limit σ, the period
was updated to τ = τF−1/σ2

and τ = τF 1/σ otherwise. They show that this mechanism
has the best runtime achievable using RLS1 and RLS2, up to lower order terms. Similarly,
Lissovoi, Oliveto, and Warwicker [138] showed that the same mechanism is able to find suit-
able learning periods of time τ on OneMax and Ridge, allowing RLSk to have an optimal
asymptotic expected runtime on both problems.

In parallel to the previous study using hyper-heuristics, Doerr et al. [67] showed an
optimal fitness-dependent RLSk on OneMax that maximises the approximated expected

1That is, a mutation operator that does not differentiate between 1-bits and 0-bits.

36

fitness increase. Inspired by this result, Doerr, Doerr, and Yang [61] proposed a learning-
inspired mutation strength for RLSk. This mechanism estimates the future progress of
a parameter value using learning iterations. This mechanism was theoretically proven to
track the optimal values on OneMax and experiments on LeadingOnes and the minimum
spanning tree problem show that it outperforms other classical algorithms.

Rajabi and Witt [162] proposed to adapt the mutation strength k of RLSk using the
stagnation detection mechanism from [161] which is able to use all mutation strengths k ∈
[1, n]. Rajabi and Witt [162] showed that RLSk using this mechanism is able to optimise
Jumpk functions faster than the (1 + 1) EA with the same stagnation detection mechanism
by a constant factor.

One of the main reasons to use RLSk with k 6= 1 is to be able to escape local optima,
but this is not the only approach one may use to do so. Lissovoi et al. [137] proposed a
hyper-heuristic that chooses between elitist and non-elitist selection heuristics for RLS1 that
is able to escape local optima with small basins of attraction. This algorithm achieves an
expected runtime of O(n log n+ n3/d2) on the problem class Cliffd. When d = Θ(n) this
matches the optimal expected runtime for any unary unbiased black-box algorithm [128].

Doerr et al. [63] presented a success-based choice of the mutation strength for an RLSk
variant, proving that it is very efficient for a generalisation of the OneMax problem to a
larger alphabet than {0, 1}.

3.6 Conclusions

In this chapter we have seen that the theoretical study of parameter control mechanisms
in evolutionary algorithms is a very fruitful research area, with many results showing
that they can outperform the best static parameter values. We gave an overview of pa-
rameter control mechanisms adapting mutation rates and offspring populations sizes for
the (µ+ λ) EA. We then presented state-of-the-art self-adaptive mechanisms for the
(µ+ λ) EA and (µ, λ) EA. Finally, we gave an overview of dynamic parameter values
for the self-adjusting (1 + (λ, λ)) GA and RLSk.

Despite the large body of research in parameter control mechanisms, there is a lack of
understanding of how they behave in complex multimodal problems. Most existing runtime
analyses focus on simple problems with benign characteristics, for which fixed parameter
settings already run efficiently and only moderate performance gains were shown. In this
thesis we will use runtime analysis methods to improve our understanding of how success-
based parameter control mechanisms can be used to speed up optimisation on multimodal
problems.

37

Chapter 4

Is Success-Based Parameter
Control Efficient on Multimodal
Problems?

4.1 Introduction

There has been an increasing interest in the theoretical study of success-based parameter
control mechanisms in the latest years in order to understand how they work and when they
perform better than static parameter settings. Nonetheless, we have a limited understanding
of how success-based parameter control mechanisms perform for multimodal optimisation.
In this chapter, we aim to understand whether common success-based parameter control
mechanisms are efficient when applied on multimodal problems.

We will focus on one of the most successful implementations of success-based param-
eter control mechanisms: the self-adjusting (1 + (λ, λ)) GA [50, 60]. The self-adjusting
(1 + (λ, λ)) GA is the fastest known unbiased genetic algorithm on the popular test func-
tion OneMax(x) :=

∑n
i=1 xi and has shown excellent performance on NP-hard problems

like MaxSat in both empirical [91] and theoretical studies [22]. Despite its success on these
problems it has been shown via theoretical [6, 22] and empirical studies [74, 82, 99] that the
self-adjusting (1 + (λ, λ)) GA does not behave well on instances with low fitness-distance
correlation, that is, instances where the distance of search points to the optimum has a low
correlation to their fitness values.

Several of the above works identified that the issue lies in the parameter control mecha-
nism used to control the main parameter of the algorithm: the offspring population size λ.
On functions with low fitness-distance correlation, the algorithm can get stuck in situations
where λ diverges to its maximum value λ = n, and then performance deteriorates.

Goldman and Punch [91] suggested to restart the parameter λ to 1 when λ = n but also
restart the search from a random individual. Buzdalov and Doerr [22] proposed capping
the value of λ depending on the fitness-distance correlation of the problem in hand. Lastly,
Bassin and Buzdalov [18] proposed a modification where the growth of λ is slowed down for
long unsuccessful runs, while still letting the algorithm increase the parameter indefinitely.
It achieves this by resetting λ to the parameters of its last successful generation after a
certain number of unsuccessful generations and letting the algorithm increase λ a bit more
every time it is reset.

At the moment, it is not clear which of these modifications is the best choice. Previ-
ous research is fragmented and most of the modifications proposed have only been studied
empirically.

38

In this chapter, we make a step towards understanding the effects that different ap-
proaches for parameter control in the self-adjusting (1 + (λ, λ)) GA have, by providing a
comprehensive theoretical analysis on the standard Jumpk and Trap benchmark functions
(formally defined in Section 2.3). Our main contribution is a comprehensive analysis of three
variations of the original parameter control mechanism on the self-adjusting (1 + (λ, λ)) GA
showing theoretically and empirically that all the variations studied can improve the perfor-
mance of the original mechanism on multimodal problems whilst not (or slightly) affecting
its performance on simple problems such as OneMax.

4.1.1 Contributions

We consider the standard Jumpk benchmark problem class, a class of multimodal problems
on which evolutionary algorithms typically have to make a jump to the optimum at a
Hamming distance of k. The parameter k means that Jumpk has an adjustable difficulty and
thus represents a whole range from easy to difficult multimodal and even deceptive problems.
It was also the first problem for which a drastic advantage from using crossover could be
proven with mathematical rigour [111]. More recent analyses have shown that crossover
can reduce the runtime to O(nk−1 log n) [41], O(n log n + 4k) using additional diversity
mechanisms [40] and O(n log n) using an island model and majority vote [85]. Tailored
hybrid genetic algorithms using a voting mechanism can optimise Jumpk in expected time
Θ(n) [179] and tailored black-box algorithms using a voting mechanism can even optimise
(a slight variation of) Jumpk in expected time Θ(n/ log n) [24].

We first present a general method for obtaining upper bounds on the expected optimi-
sation time (the expected number of fitness evaluations to find a global optimum) of the
original self-adjusting (1 + (λ, λ)) GA, based on the fitness-level method, in Section 4.2.1.
With it we obtain novel bounds including bounds for unimodal functions and the Jumpk
function class. Despite its simplicity, we show that it gives tight bounds, up to lower-order
terms, on Jumpk functions. Tightness is established through lower bounds in Section 4.2.2.
We show that the original self-adjusting (1 + (λ, λ)) GA does not benefit from crossover
on Jumpk functions given that it has the same asymptotic runtime as the (1 + 1) EA with
standard parameters p = 1/n.

Subsequently, in Section 4.3.1 we analyse the performance change when λ is capped to a
value less than n. We suggest a generic choice for λmax := n/2 that can be advantageous on
very hard and deceptive functions without affecting its performance on simple problems. We
also show that capping λ can improve the performance of the algorithm on Jumpk, but its
behaviour is highly dependent on the choice of λmax defying the point of using a parameter
control mechanism. Additionally, with the generic choice of λmax := n/2 the self-adjusting
(1 + (λ, λ)) GA is faster than the original self-adjusting (1 + (λ, λ)) GA and the (1 + 1) EA
with standard parameters for jump sizes k ≤ log n and k > n/ log n.

Our analysis in Section 4.3.2 also provides insights into the parameter landscape, which
describes how parameter values relate to performance and which has recently emerged as a
hot topic. The celebrated work by Pushak and Hoos [156] provided evidence that param-
eter landscapes of prominent algorithms on well-known NP-hard problems like SAT, MIP,
and TSP, are surprisingly benign, and parameters often have a unimodal response. Hall
et al. [93, 95, 96] rigorously proved that parameters of simple evolutionary algorithms on
pseudo-Boolean test problems exhibit a unimodal landscape. These works led to algorithm
configurators that exploit unimodal structures [94, 157]. In sharp contrast to the above,
we show that the parameter landscape concerning the choice of λmax in the self-adjusting
(1 + (λ, λ)) GA on Jumpk is bimodal. More precisely, we regard the time to reach the global
optimum from a local optimum with λ at its maximum value as this setting dominates the
optimisation time. We give a rigorous but complex formula for this expected time and use
semi-rigorous arguments to identify optimal parameters. For appropriate choices of n and
k, the landscape features a local optimum located in a wide basin of attraction and a global

39

optimum hidden in a narrow basin of attraction. To the best of our knowledge this is the
first proof of a bimodal parameter landscape for the runtime of an evolutionary algorithm
on a multimodal benchmark problem. The closest related work and only other such proof
we are aware of is for a unimodal problem: Lengler, Sudholt, and Witt [135] showed that
the parameter landscape for the compact Genetic Algorithm on OneMax has a bimodal
structure.

In addition, our analysis in Section 4.3.2 shows that for most jump sizes of k considering
the mutation offspring in the selection phase can significantly improve the performance of
the self-adjusting (1 + (λ, λ)) GA thanks to the high mutation rates used by the algorithm
during the mutation phase.

We also analyse the benefits of resetting λ in Section 4.3.3. With this strategy the
algorithm is able to traverse the parameter space, instead of getting stuck with a certain
parameter, benefiting the algorithm’s behaviour when encountering local optima. In partic-
ular, with a clever selection of the update factor F we show that for Jumpk the runtime of
the algorithm is only by a factor of O(n2/k) slower than the runtime of the (1 + 1) EA with
optimal parameter choice of O((en/k)k) [62].

Finally, in Section 4.4 we provide an experimental analysis to test how our theoretical
results translate to other fitness landscapes. The experimental results agree with our the-
oretical results on Jumpk and show that the original self-adjusting (1 + (λ, λ)) GA (from
[50]) has a poor performance on most problems tested compared against the other parameter
control variations. This demonstrates that our results translate to other common problem
settings.

4.1.2 Related Work

We give a brief review of existing theoretical studies on the standard Jumpk benchmark
problem class including studies of the (1 + (λ, λ)) GA with non-standard parameter settings
previously mentioned in Section 2.5.

The Jumpk function (formally defined in Section 2.3) was designed as a multimodal
benchmark function with adjustable difficulty [76] allowing to test the ability of an algorithm
to jump over a fitness valley of size k. Crossing this valley can be difficult for evolutionary
algorithms. For the (1 + 1) EA using standard bit mutation with the default mutation rate
of p = 1/n it takes in expectation Θ(nk) evaluations, for k ≤ n/2. Because of this it has been
commonly used in the theory of randomised search heuristics to evaluate their performance
on multimodal problems.

For the (1 + 1) EA Doerr et al. [62] showed that for Jumpk with jump size k any mutation
rate of p ∈ [2/n, k/n] is exponentially faster (in k) than the standard choice of p = 1/n,
with p = k/n being the optimal choice. This showed that the traditional choice of mutation
probability is not ideal and as an alternative the authors proposed the mutation operator
fmutβ that chooses the mutation rate at random from a heavy-tailed distribution with
exponent β > 1. This new algorithm achieved an asymptotic runtime that is only a factor
kβ−1 larger than the optimal mutation rate. A similar mutation operator has been proposed
in [86] that can outperform the fmutβ on Jumpk, but only for large jump sizes.

The Jumpk function has also been used as an example where crossover can be beneficial.
The first work showing a benefit was [111] showing that a (µ + 1) GA applying uniform
crossover only with an unnaturally small crossover probability of pc = 1/(kn) optimises
Jumpk in expected time O(µn2k3 + 4k/pc). For more natural crossover probabilities, Dang
et al. [41] showed a runtime bound of O(nk−1 log n). This can be improved to O(n log n+4k)
using additional diversity mechanisms [40] and to O(n log n) using an island model with
majority vote [85].

Recently, for the (1 + (λ, λ)) GA Antipov et al. [9] proved that a non-standard parameter

setting of λ = 1
n

√
n
k

k
and p = c =

√
k
n can be useful on the multimodal function Jumpk,

40

achieving a runtime of O(n(k+1)/2eO(k)k−k/2). However, this result can only be achieved by
knowing the jump size k beforehand. To overcome this, Antipov and Doerr [3] and Antipov
et al. [10] proposed parameter settings that sample the parameters λ, p and c from power-law
distributions. With a non-trivial selection of the distributions these instance-independent
algorithms can obtain expected optimisation times that are only a small polynomial factor
worse than the aforementioned bound. Note that the (1 + (λ, λ)) GA with non-standard pa-
rameters from [3, 10] does not use self-adjustment. Since we are interested in understanding
self-adjusting mechanisms, in our theoretical work we restrict our attention to the standard
parameterisation of the (1 + (λ, λ)) GA, that is, we fix the relationship p = λ

n and c = 1
λ

and aim to self-adjust λ.

4.2 The Vanilla Self-adjusting (1 + (λ, λ)) GA

We recall from Section 2.1 that the (1 + (λ, λ)) GA (Algorithm 3) is a crossover-based
evolutionary algorithm that uses a mutation phase with a mutation rate higher than usual
to assist exploration and a crossover phase as a repair mechanism. The (1 + (λ, λ)) GA
using the recommended parameters from [50] first creates λ ≤ n mutants by a process
similar to a standard bit mutation with mutation rate λ/n (the only difference to standard
GAs being that all mutants flip the same number of bits). Then it picks the best mutant
and performs λ crossovers with the original parent. A biased uniform crossover is used that
independently picks each bit from the mutant with probability 1/λ. After the crossover
phase, the algorithm performs an elitist selection using only the offspring from the crossover
phase and the parent.

The self-adjusting (1 + (λ, λ)) GA (Algorithm 5) adjusts λ every generation with a mul-
tiplicative update rule, where λ is multiplied by a factor F 1/4 if there is no improvement
in fitness and divided by F otherwise. We consider F > 1 as a constant independent of n
unless mentioned otherwise. The parameter λ has an upper limit λmax which is commonly
set to n. We note that in lines 5 and 8 of Algorithm 5, following [50], we round λ to its
closest integer (bλe); that is, λ = bλc if the decimal part of λ is less than 1/2 and λ = dλe
otherwise.

In this work we use a small variation of the algorithm, shown in Line 10 of Algorithm 5,
where during the selection step the best offspring from the mutation phase is also considered.
This modification has been suggested before in [91, 154] as a way to improve the performance
of the (1 + (λ, λ)) GA. We believe (and tacitly take for granted) that this change does not
invalidate previous theoretical runtime guarantees on problems such as OneMax [50] and
LeadingOnes [6]. For OneMax, Doerr and Doerr [50] confirm this fact without proof.
Analyses on OneMax and LeadingOnes were based on drift analysis, and the drift can
only increase if additional opportunities for improvements are considered. It is less clear how
this affects the self-adjusting mechanism; however, previous analyses have shown that the
(1 + (λ, λ)) GA is very robust in tracking the best parameter setting for these easy unimodal
functions and we believe this will still be the case with the modification.

Pinto and Doerr [154] presented additional refinements of the (1 + (λ, λ)) GA that they
call implementation-aware; these can save unnecessary evaluations and decrease some run-
time results by constant factors. We only consider the aforementioned change with respect to
the selection step for simplicity, and since we are interested in larger performance differences.

Considering the best offspring from the mutation phase is particularly helpful when the
algorithm needs to make large jumps, as when encountering local optima. In fact, in Section
4.2.2 and 4.3.2 we show that for large jumps the crossover phase is not very helpful for
reaching a higher fitness level, because the crossover phase tends to search near the current
parent while the large mutations during the mutation phase can more easily jump out of
local optima.

41

Algorithm 5: The self-adjusting (1 + (λ, λ)) GA with maximum offspring popu-
lation size λmax ≤ n.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random (u.a.r.);
2 Initialize λ← 1, p← λ/n, c← 1/λ;
3 Optimization: for t = 1, 2, . . . do
4 Sample ` from B(n, p);

Mutation phase:
5 for i = 1, . . . , bλe do
6 Sample x(i) ← mut`(x) and query f(x(i));

7 Choose x′ ∈ {x(1), . . . , x(λ)} with f(x′) = max{f(x(1)), . . . , f(x(λ))} u.a.r.;
Crossover phase:

8 for i = 1, . . . , bλe do
9 Sample y(i) ← crossc(x, x

′) and query f(y(i));

10 If {x′, y(1), . . . , y(λ)}\{x} 6= ∅, choose y ∈ {x′, y(1), . . . , y(λ)}\{x} with

f(y) = max{f(x′), f(y(1)), . . . , f(y(λ))} u.a.r.;
11 otherwise, set y := x;

Selection and update step:
12 if f(y) > f(x) then x← y; λ← max{λ/F, 1};
13 if f(y) = f(x) then x← y; λ← min{λF 1/4, λmax};
14 if f(y) < f(x) then λ← min{λF 1/4, λmax};

4.2.1 Fitness-Level Upper Bounds for the Self-Adjusting
(1 + (λ, λ)) GA

The self-adjusting (1 + (λ, λ)) GA has only been analysed theoretically on easy unimodal
functions like OneMax [50] and LeadingOnes [6] as well as random satisfiability instances
[22].1 Despite these analyses we do not have a clear understanding of its behaviour on other
problem settings, especially when it encounters local optima.

In this section we give a new general method to find upper bounds for the runtime of the
self-adjusting (1 + (λ, λ)) GA using previously known runtime bounds from the (1 + 1) EA.
It is based on the observation that, when λ hits its maximum value of λ = n, the algo-
rithm temporarily performs n standard bit mutations and thus simulates a generation of a
(1+n) EA.

The following theorem gives a fitness-level upper bound tailored to the self-adjusting
(1 + (λ, λ)) GA.

Theorem 4.2.1. Given an arbitrary f -based partition A1, . . . , Am+1. Let d be the number
of non-optimal fitness values, F > 1 constant, and si be a lower bound for the probability that
the (1 + 1) EA with mutation probability 1/n creates a search point in a higher fitness-level
set from any search point in fitness level Ai. Then for the self-adjusting (1 + (λ, λ)) GA we
have

E
(
T eval

)
≤ O(dn) + 2

m∑
i=1

1

si
;

E(T gen) ≤ d4 logF (n)e+ 6d+
1

n

m∑
i=1

1

si
.

1The (1 + (λ, λ)) GA with static parameter choices has also been studied on multimodal functions but
only using non-standard parameter choices that do not translate to the self-adjusting mechanism.

42

To prove Theorem 4.2.1, we analyse the time the algorithm spends in generations with
λ < n and those in generations with λ = n.

In the following, we refer to a generation that improves the current best fitness as suc-
cessful and otherwise as unsuccessful. We show that a logarithmic number of unsuccessful
generations is sufficient to reach the maximum λ value.

Lemma 4.2.2. Let x and y be the parent and offspring, respectively, as in Algorithm 5.
For all values of F := F (n) > 1, initial λ value λinit ≥ 1 and target value λnew ≤ λmax,
the following holds. If in every generation f(y) ≤ f(x), the self-adjusting (1 + (λ, λ)) GA

needs at most
⌈
4 logF

(
λnew

λinit

)⌉
generations to grow λ from λinit to at least λnew. During

these generations the algorithm makes at most 4F 1/4

F 1/4−1
· λnew evaluations.

For constant F > 1 the number of generations is O(log λnew) and the number of evalua-
tions is O(λnew).

Proof. Starting with an offspring population size of λinit, after i unsuccessful generations

the offspring population size is λinit · F i/4. For i :=
⌈
4 logF

(
λnew

λinit

)⌉
, we get an offspring

population size of

λinit · F
⌈
4 logF

(
λnew
λinit

)⌉
/4 ≥ λinit · F

logF

(
λnew
λinit

)
= λnew.

The number of unsuccessful generations needed is thus at most⌈
4 logF

(
λnew

λinit

)⌉
.

Using dλinit · F i/4e ≤ 2λinit · F i/4, during these generations, the number of evaluations is at
most

d4 logF (λnew/λinit)e−1∑
i=0

2
⌈
λinit · F i/4

⌉
≤ 4λinit

d4 logF (λnew/λinit)e−1∑
i=0

(
F 1/4

)i
= 4λinit ·

(F 1/4)d4 logF (λnew/λinit)e − 1

F 1/4 − 1

≤ 4λinit ·
(F 1/4)4 logF (λnew/λinit)+1

F 1/4 − 1

= 4λinit ·
F 1/4 · λnew/λinit

F 1/4 − 1
=

4F 1/4

F 1/4 − 1
· λnew.

For constant F > 1, the number of generations simplifies to d4 logF (λnew/λinit)e ≤
d4 logF λnewe = d4 log(λnew)/ log(F)e = O(log λnew) and the number of evaluations sim-

plifies to 4F 1/4

F 1/4−1
· λnew = O(λnew).

Now we bound the number of generations in which the self-adjusting (1 + (λ, λ)) GA
operates with λ < n. To do so, we take into account that the algorithm does not need to
increase from λinit every time since we only decrease λ by a factor F each time we find an
improvement.

Lemma 4.2.3. Let F := F (n) > 1, λmax ≤ n, and d be the number of non-optimal
fitness values of an arbitrary fitness function. The maximum number of generations in which
the self-adjusting (1 + (λ, λ)) GA uses λ < λmax is at most d4 logF (λmax)e+ 5d. These

generations lead to at most 2dλmax + 4F 1/4λmax

F 1/4−1
evaluations. For constant F > 1 the number

of evaluations is O (dλmax).

43

Proof. In every successful generation, λ is decreased to max{1, λ/F} and otherwise it is
increased to min{λmax, λ · F i/4}.

We use the accounting method (Section 2.4.3) to account for all generations with
λ < λmax. The basic idea is to create a fictional bank account to which operations are
being charged. Some operations are allowed to pay excess amounts, while others can take
money from such accounts to pay for their costs. Provided that no fictional account gets
overdrawn the total amount of money paid bounds the total cost of all operations.

We start with a fictional bank account and pay costs of d4 logF (λmax)e, since that is
the maximum number of consecutive unsuccessful generations before reaching λ = λmax

(Lemma 4.2.2).
In a successful generation, we pay costs of 1 to cover the cost of the generation, and

deposit an additional amount of 4 to the fictional bank account, which will be used to
pay for 4 unsuccessful generations needed to increase λ to its original value. Unsuccessful
generations that increase λ may withdraw 1 from the fictional account and pay for the cost
of this generation. Unsuccessful generations where λ = λmax are not charged since they are
not counted.

We now need to prove that the fictional bank account is never overdrawn. For any point
in time, the number of generations where λ increases is bounded by T inc ≤ d4 logF (λmax)e+
4T dec where T inc and T dec are the number of generations increasing and decreasing λ,
respectively. This holds by Lemma 4.2.2 and the fact that one successful generation that
decreases λ compensates for 4 unsuccessful generations that may increase λ. Considering the
initial payment of d4 logF (λmax)e and transactions for each generation, the current balance
is

d4 logF (λmax)e − T inc + 4T dec ≥ 0,

that is, the account is never overdrawn. The number of generations with λ < λmax is thus
bounded by the sum of all payments. There can only be d successful generations, hence the
sum of payments is at most d4 logF (λmax)e+ 5d.

It remains to bound the number of evaluations. Since we initialise with λ = 1, there must
be d4 logF (λmax)e generations t1, t2, . . . such that during generation ti, we have λ ≤

⌈
F i/4

⌉
.

From Lemma 4.2.2, we know that during these d4 logF (λmax)e generations, the algorithm

uses at most 4F 1/4

F 1/4−1
· λmax evaluations. Additionally, in the other at most 5d possible

generations, the maximum number of evaluations per generation is bounded by 2λmax.

Therefore the algorithm uses at most 2dλmax + 4F 1/4λmax

F 1/4−1
evaluations with an offspring

population size λ < λmax. For constant F > 1, the number of evaluations simplifies to

2dλmax + 4F 1/4λmax

F 1/4−1
= O(dλmax).

With Lemma 4.2.3 now we have the tools necessary to analyse the runtime of Algorithm 5.

Proof of Theorem 4.2.1. Owing to Lemma 4.2.3, we can focus on bounding the time
spent in generations with λ = n. In these generations, the mutation rate is p = λ/n = 1 and
thus all bits are flipped during mutation. When the current search point is x, mutation thus
produces its binary complement, x. The crossover phase uses a crossover bias of c = 1/λ,
which means that each bit is independently taken from the mutant x with probability 1/λ
and otherwise it is taken from x. This is equivalent to a standard bit mutation with mutation
probability of 1/λ. Given that λ = n, during the crossover phase the algorithm creates n
independent offspring using standard bit mutation. The crossover phase is then equivalent
to the output of a (1+n) EA.

For each fitness level we calculate the number of generations the self-adjusting
(1 + (λ, λ)) GA spends on this level while λ = n and the self-adjusting (1 + (λ, λ)) GA
essentially simulates a (1+n) EA. (We pessimistically ignore the fact that such a situation
may not be reached at all; especially on easy problems, λ may not hit the maximum value
before the optimum is found.)

44

We argue as in Lässig and Sudholt [122, Theorem 1] to derive a fitness-level bound for
the (1+n) EA. The probability that there is one of n offspring that finds a better fitness
level is at least

1− (1− si)n ≥ 1−
(

1

1 + sin

)
=

sin

1 + sin
,

where the inequality holds by Lemma 2.4.2 (b). The expected number of generations to
leave Ai using λ = n is at most 1+sin

sin
. Adding the generations with λ = n over all fitness

levels and the generations spent with λ < n, we get

E(T gen) ≤ d4 logF (n)e+ 5d+

m∑
i=1

(
1 +

1

sin

)
≤ d4 logF (n)e+ 6d+

1

n

m∑
i=1

1

si
,

where the last step used m ≤ d, that is, the number of fitness levels is bounded by the
number of fitness values.

By Lemma 4.2.3, the number of evaluations used with λ < n is O(dn) when F > 1 is a
constant. Since with λ = n each generation leads to 2n evaluations, multiplying the above
bound yields the claimed bound on the number of evaluations.

We show how to apply Theorem 4.2.1 to obtain novel bounds on the expected optimisa-
tion time of the self-adjusting (1 + (λ, λ)) GA, including the Jumpk function class.

Theorem 4.2.4. The expected optimisation time E
(
T eval

)
of the self-adjusting

(1 + (λ, λ)) GA with F > 1 constant is at most

(a) E
(
T eval

)
= O(nn/|OPT|) and E(T gen) = O(nn−1/|OPT|) on any function with a set

OPT of global optima,

(b) E
(
T eval

)
= O(dn) and E(T gen) = O(d+log n) on unimodal functions with d+1 fitness

values,

(c) E
(
T eval

)
≤ (1+o(1))·2nk (1− 1/n)

−n+k
and E(T gen) ≤ (1+o(1))·2nk−1 (1− 1/n)

−n+k

on Jumpk with k ≥ 3.

Proof. For the general upper bound, we use a fitness level partition with A1 containing all
non-optimal fitness values and A2 containing the set OPT, then the number of fitness levels
is m + 1 = 2. We use the corresponding success probability si ≥ |OPT|/nn. With this we
bound

∑m
i=1

1
si

= O(nn/|OPT|). All functions have d < 2n non-optimal fitness values and
nn/|OPT| ≥ (n/2)n, therefore the term O(dn) can be absorbed.

For unimodal functions, we use a canonical f -based partition and success probabilities
of si ≥ 1/n · (1 − 1/n)n−1 ≥ 1/(en) where the last inequality holds by Lemma 2.4.1. This

yields E
(
T eval

)
≤ O(dn) + 2

∑d
i=1 en = O(dn). For the expected number of generations, we

get E(T gen) ≤ d4 logF (n)e+ 6d+ 1
n

∑d
i=1 en = O(d+ log n).

For Jumpk functions with k ≥ 3 any individual that is not a local or global optimum can
find an improvement by increasing or decreasing the number of 1-bits. This yields success
probabilities of at least (n− i)/(en) for all search points with 0 ≤ i < n− k ones and of at
least i/(en) for all search points with n− k < i < n ones. For search points with n− k ones,
a standard bit mutation can jump to the optimum by flipping the correct k 0-bits and not
flipping any other bit. This has a probability of sn−k = (1/n)

k
(1− 1/n)

n−k
. Hence,

E
(
T eval

)
≤ O(n2) + 2

n−k−1∑
i=0

en

n− i
+ 2

n−1∑
i=n−k+1

en

i
+ 2nk

(
1− 1

n

)−n+k

= O(n2) + 2nk
(

1− 1

n

)−n+k

.

45

Given that k ≥ 3 the second term is Ω(n3) and the first term can be absorbed, yielding

E
(
T eval

)
= (1 + o(1)) · 2nk

(
1− 1

n

)−n+k

.

In Theorem 4.2.1 as in most of the theoretical bounds proven in other studies for the
(1 + (λ, λ)) GA, we focus only on the offspring from the crossover phase. But as mentioned
before we argue that considering also the offspring from the mutation phase can improve the
performance of the (1 + (λ, λ)) GA. To exemplify this we consider the Trap function which
is the most difficult problem for the standard (1 + 1) EA having an expected optimisation
time of Θ(nn) [76]. In contrast, when considering the offspring from the mutation phase,
the self-adjusting (1 + (λ, λ)) GA is able to optimise the Trap function using only O(n)
evaluations.

Theorem 4.2.5. Let F > 1 be a constant. The expected optimisation time of the self-
adjusting (1 + (λ, λ)) GA on the Trap function is O(n).

Proof. We divide the proof in two parts, the OneMax phase, and the trap phase. While
in the OneMax phase, if the optimum is not found the algorithm behaves as on OneMax.
From Theorem 9 in [50], we know that the OneMax phase takes O(n) evaluations.

Once it reaches the local optimum (trap phase), within at most d4 logF (n)e unsuccessful
generations λ has increased to λ = n. This then implies p = 1 and the algorithm will create
the global optimum during the mutation phase with probability 1. Therefore, the trap phase
is solved in O(log n) generations with probability 1. During these generations, the algorithm
uses O(n) evaluations, as shown in Lemma 4.2.2.

Adding the optimisation times of both phases we have shown that in expectation the self-
adjusting (1 + (λ, λ)) GA takes O(n) evaluations to find the global optimum on Trap.

We want to point out that in this example the algorithm benefits from the global optimum
being exactly at Hamming distance n from the local optimum. Its purpose is to illustrate
the possible benefits of considering the offspring from the mutation phase during selection.
This inspired us to consider the strategies in the following sections, where we show more
extensively the improvements that considering the offspring from the mutation phase during
selection can give to the algorithm.

4.2.2 Crossover does not Benefit the Self-Adjusting (1 + (λ, λ)) GA
on Jumpk

We now show that the bound for the self-adjusting (1 + (λ, λ)) GA with standard parameter
settings on Jumpk from Theorem 4.2.4 (c) is asymptotically tight. This implies that unless
k is very small the self-adjusting (1 + (λ, λ)) GA is no more efficient on Jumpk than the
(1 + 1) EA and less efficient than other GAs using crossover [40, 41, 111].

Theorem 4.2.6. Let F > 1 be a constant. The expected optimisation time (in terms
of fitness evaluations) of the self-adjusting (1 + (λ, λ)) GA on the Jumpk function with
4 ≤ k ≤ (1− ε)n/2, for any constant ε > 0, is at least

(1− o(1)) · 2nk
(

1− 1

n

)−n+k

.

We first show the following upper and lower bounds on the probability that the
(1 + (λ, λ)) GA finds any particular target search point x∗ during one mutation phase.
Even though we only need the upper bounds in this section, the lower bounds on transition
probabilities will be useful later on.

46

Lemma 4.2.7. For every current search point x, every target search point x∗ and every
current parameter λ, let pλmut(x, x

∗) be the probability that the (1 + (λ, λ)) GA creates x∗

during the mutation phase of one generation.
If x∗ = x and λ = n, pλmut(x, x

∗) = 1.
If x∗ 6= x and λ = n, pλmut(x, x

∗) = 0.
If x∗ ∈ {x, x} and λ < n,

pλmut(x, x
∗) = (λ/n)H(x,x∗)(1− λ/n)n−H(x,x∗).

Otherwise,

bλc
2

(λ/n)H(x,x∗)(1− λ/n)n−H(x,x∗) ≤ pλmut(x, x
∗) ≤ dλe(λ/n)H(x,x∗)(1− λ/n)n−H(x,x∗).

From the transition probabilities, the term (λ/n)H(x,x∗)(1 − λ/n)n−H(x,x∗) equals the
probability of a standard bit mutation with mutation probability λ/n creating x∗ from x.
If x∗ /∈ {x, x}, the offspring population of λ amplifies this probability by a factor within
[bλc/2, dλe]. If x∗ ∈ {x, x}, the (1 + (λ, λ)) GA does not benefit from its offspring population
at all.

Proof of Lemma 4.2.7. The algorithm needs to sample ` = H(x, x∗), in order to find x∗

during the mutation phase. The probability of this event is

Pr (` = H(x, x∗)) =

(
n

H(x, x∗)

)
(λ/n)H(x,x∗) (1− λ/n)

n−H(x,x∗)
. (4.1)

In the special case where λ = n then the mutation probability p = 1 and ` = n, hence if
x = x the target search point is created with probability 1 and if x∗ 6= x the target search
point is created with probability 0. If λ < n and x∗ ∈ {x, x},

(
n

H(x,x∗)

)
= 1 and the claim

for this case follows as all λ mutants will create x∗ for the right choice of `.
Otherwise, the (1 + (λ, λ)) GA also needs to flip the correct bits during the mutation

phase. Since there are
(

n
H(x,x∗)

)
possible ways to flip the bits the probability that one

offspring flips the correct bits is
(

n
H(x,x∗)

)−1
. This gives us the following probability of finding

x∗ during bλe mutations (the algorithm creates bλe offspring), conditional on ` = H(x, x∗):

Pr (x∗ | ` = H(x, x∗)) = 1−
(

1− 1/

(
n

H(x, x∗)

))bλe
.

Using the estimate from Lemma 2.4.2 (a) and bλe ≤ dλe this is bounded from above by

dλe/
(

n

H(x, x∗)

)
and bounded from below using Lemma 2.4.2 (b) and bλe ≥ bλc by

bλc/
(

n
H(x,x∗)

)
1 + bλc/

(
n

H(x,x∗)

) ≥ bλc/(n
H(x,x∗)

)
2

,

where the last inequality follows from x∗ /∈ {x, x} yielding
(

n
H(x,x∗)

)
≥ n and thus

1 + bλc/n ≤ 2. Since

pλmut(x, x
∗) = Pr (x∗ | ` = H(x, x∗)) Pr (` = H(x, x∗)) ,

multiplying (4.1) with the above bounds on Pr (x∗ | ` = H(x, x∗)) and observing that the
binomial coefficients cancel completes the proof.

47

The following lemma gives an upper bound on the probability of hitting any specific
target search point x∗ during one crossover phase of the (1 + (λ, λ)) GA. Note that, for the
original (1 + (λ, λ)) GA that does not consider mutants for selection, Lemma 4.2.8 gives an
upper bound for hitting x∗ in one generation.

Lemma 4.2.8. For every current search point x, every target search point x∗ and every
current parameter λ, the probability that the (1 + (λ, λ)) GA creates x∗ during the crossover
phase of one generation is at most

bλe2
(

1

n

)H(x,x∗)(
1− 1

n

)n−H(x,x∗)

.

Before diving into the proof, we give the main idea here. Recall that in every generation,
the (1 + (λ, λ)) GA performs bλe mutations with a radius of ` (drawn from a binomial
distribution with parameters λ/n and n) and bλe crossover operations with the best mutant.
All mutants are chosen uniformly at random from the Hamming ball of radius ` around x.
However, the following selection of the best mutant does not preserve uniformity as some
offspring on said Hamming ball may have a higher fitness than others. Hence the crossover
operations will affect particular regions of the search space more than others. While this is a
helpful algorithmic concept (in a sense that this makes the (1 + (λ, λ)) GA solve OneMax
in expected time O(n) [60]), it makes it hard to analyse what search points will be generated
during crossover as it depends on the fitness function in hand.

As a solution, we borrow an idea similar to non-selective family trees by Witt [180]
and Lehre and Yao [129] (see Section 2.4.3) that was also used in previous analyses of the
(1 + (λ, λ)) GA [50, Proof of Proposition 1]. We consider a variant of the (1 + (λ, λ)) GA
that we call non-selective (1 + (λ, λ)) GA: instead of performing bλe crossovers with the

best mutant, it performs bλe crossovers for all of the bλe mutants. This results in bλe2
offspring generated from crossover, in addition to bλe mutants. Since the offspring created
by the original (1 + (λ, λ)) GA form a subset of the offspring generated by the non-selective
(1 + (λ, λ)) GA, the probability of the original (1 + (λ, λ)) GA creating x∗ in one crossover
phase is bounded by the probability of the non-selective (1 + (λ, λ)) GA creating x∗ during

crossover. Owing to the absence of selection, the output of the bλe2 crossover operations
is independent of the fitness and we obtain a probability bound that only depends on the
Hamming distance H(x, x∗).

Proof of Lemma 4.2.8. We argue similarly as the proof of Proposition 1 in [50]. Fix an
offspring y created by the non-selective (1 + (λ, λ)) GA. The process for creating y can be
described as follows. The algorithm first picks a random value of ` according to a binomial
distribution with parameters n and λ/n, and then flips ` bits chosen at random to create
a mutant x′. The creation of x′ can alternatively be regarded as a standard bit mutation
with a mutation rate of λ/n. To create y, each bit is independently taken from x′ with
probability 1/λ. Hence, each bit yi in y attains the value 1 − xi with probability 1/n, and
it attains value xi with probability 1 − 1/n, independently from all other bits. Hence the
creation of y can be described as a standard bit mutation with mutation rate 1/n.

The probability of y = x∗ is thus (1/n)H(x,x∗)(1 − 1/n)n−H(x,x∗). Note that different
offspring are not independent as they use the same random value of `, and every batch of
bλe crossover operations is derived from the same mutant. Taking a union bound over all

bλe2 offspring allows us to conclude, despite these dependencies, that the probability of one
offspring generating x∗ is at most

bλe2
(

1

n

)H(x,x∗)(
1− 1

n

)n−H(x,x∗)

.

Now we are in a position to prove Theorem 4.2.6.

48

Proof of Theorem 4.2.6. By standard Chernoff bounds, the probability that the initial
search point has at most (1 + ε)n/2 ones is 1− 2−Ω(n). We assume this to happen and note
that then the algorithm will never accept a search point in the fitness valley of n−k < i < n
ones.

Let T local be the random number of generations until any search point in the local opti-
mum with n−k ones or the global optimum is reached for the first time. We bound E

(
T local

)
from above as follows2. This can be done using Theorem 4.2.1 as in Theorem 4.2.4 (c), but
with a non-canonical f -based partition where the best fitness level includes the local opti-
mum and the global optimum. This yields E

(
T local

)
= O(n) generations.

By Lemmas 4.2.8 and 4.2.7, before we reach the local optimum a generation with pa-
rameter λ reaches the optimum with probability at most

dλe(λ/n)k(1− λ/n)n−k + bλe2 n−k ≤ n(k/n)k(1− k/n)n−k + n2−k = O(1/n2) := p,

since the current search point has Hamming distance at least k from the optimum and k ≥ 4.
By a union bound the probability that the global optimum is found in t steps is at most
tp. Then the probability that the global optimum is found during the first T local steps is at
most

∞∑
t=0

Pr
(
T local = t

)
· tp = p · E

(
T local

)
= O(1/n).

Now assume that the local optimum has been reached and λ < λmax = n. Since the optimum
is the only search point with a strictly larger fitness, λ will be increased in every generation
unless the optimum is found. By Lemma 4.2.2, there are at most d4 logF (n)e generations
before λ has increased to λmax. By the same arguments as above, the probability that the
optimum is found during this time is O((log n)/n2).

Once λ = λmax = n has been reached, mutation always creates search points with k
ones (i. e. mutation will never find the optimum) and crossover boils down to a standard
bit mutation with mutation rate 1/n. Then the probability of one crossover creating the
optimum is (1/n)k(1−1/n)n−k and the expected number of crossover operations for hitting
the optimum is thus

nk ·
(

1− 1

n

)−n+k

.

Since every batch of λ crossover operations is preceded by λ (useless) fitness evaluations
during mutation, this adds a factor of 2 to the above lower bound. The proof is completed
by noting that, after adding up all failure probabilities, this case is reached with probability
at least 1−O(1/n) and E(T) ≥ E(T | A)Pr (A) , where A is the event that we do not reach
the global optimum before reaching the local one.

4.3 Mending the Success-Based Rules

In the previous section, we have analysed the original self-adjusting (1 + (λ, λ)) GA and
confirmed the previous empirical observations [74, 82, 99] that the parameter λ can easily
diverge to its maximum value deteriorating the performance of the algorithm. In this section
we will analyse alternative solutions to this problem. We start analysing the performance
of capping the value of λ to a value λmax smaller than n in Section 4.3.1. Afterwards, in
Section 4.3.2 we study the parameter landscape of λmax on Jumpk showing that unlike most

2The (1 + (λ, λ)) GA optimises OneMax in expected time O(n), but it is not immediately obvious how
to translate the analysis to the OneMax-like parts of Jumpk. Note that the (1 + (λ, λ)) GA may overshoot
the local optimum and then the analysis on OneMax breaks down. We suspect this can be fixed with small
modifications, but for now we show a more obvious bound as this is sufficient for our purposes.

49

previously analysed parameter landscapes, it has a bimodal structure, making parameter
selection more difficult. Finally, in Section 4.3.3 we explore the benefits of resetting λ
to 1 whenever it reaches its maximum. This approach does not have the same issues with
parameter selection as capping λ since it is able to cycle through the parameter space
instead of settling down into an specific value that might not be appropriate for the rest of
the optimisation.

4.3.1 Restricting the Parameters

In previous sections we have shown that the self-adjusting (1 + (λ, λ)) GA can increase λ
to its maximum in only a logarithmic amount of steps. This indicates that the algorithm
may increase the parameter in a difficult part of the optimisation and afterwards it could
end up with a too high population size affecting the performance. In Algorithm 5 the
hyper-parameter λmax prevents such a problem by capping the value of λ to some value
λmax ∈ [1, n], allowing the user to prevent the algorithm from increasing λ towards possible
sub-optimal parameters.

Buzdalov and Doerr [22] first suggested this strategy, showing that it benefits the algo-
rithm when optimising instances of the maximum satisfiability problem with weak fitness-
distance correlation. Similarly Bassin and Buzdalov [18] showed empirically that capping
λ at log n can improve the performance on linear functions with random weights. Antipov
et al. [6] capped λ to n/2, arguing that since p = λ/n larger values of λ would use mutation
probabilities larger than 1/2 which are considered ill-natured because mutation would create
offspring that on average are further away from the parent than the average search point.
In this section we explore the benefits of capping λ.

Generic Choice for λmax

Since the first time the self-adjusting (1 + (λ, λ)) GA was proposed, the algorithm had a
limit on the value of λ of n. This was imposed in order to prevent the mutation probability
from exceeding 1. As a secondary effect it gives the algorithm a safety net, allowing it to fall
back to the behaviour of the (1+n) EA in case λ reaches its maximum value, as we explored
on Section 4.2.

We argue that, if the problem is not known, a good generic strategy is to set λmax = n/2.
This means that, in a situation where no improvements are found quickly and λ increases, the
self-adjusting (1 + (λ, λ)) GA is able to simulate random search during the mutation phase
whenever λmax is reached. This is a potential advantage when the algorithm is stuck in a very
hard local optimum, or on deceptive functions where random search is a viable technique
(e. g. Jumpk with large k such as k > n/ log n). Note that the self-adjusting (1 + (λ, λ)) GA
still retains its exploitation capability even with λ = n/2 because the offspring from the
crossover phase would still have on average only 1 bit different from the parent. Hence, the
algorithm performs wide exploration and exploitation at the same time, in different phases of
the same generation. In addition, the algorithm is still able to optimise OneMax efficiently;
the cap on λ only kicks in when regular exploitation fails.

To justify our choice of λmax = n/2 we present a general bound for the self-adjusting
(1 + (λ, λ)) GA with this parameter choice in Theorem 4.3.1. This theorem shows that

λmax = n/2 only have a worst-case runtime of O(dn)+ 2n+4

|OPT| that applies for most functions

as opposed to the worst-case expected runtime of nΘ(n) for the (1 + 1) EA. Note that this
theorem does not include Trap functions which we consider later on.

Theorem 4.3.1. Let f be any function with d non-optimal fitness values and a set OPT
of global optima such that either |OPT | ≥ 2 or OPT = {x∗} and its complement x∗ does
not have the second-best fitness value. Then for the self-adjusting (1 + (λ, λ)) GA with

50

λmax := n/2 and F > 1 constant we have

E
(
T eval

)
≤ O(dn) +

2n+4

|OPT|
;

E(T gen) ≤ O(d+ log n) +
2n+3

n|OPT|
.

Proof. By Lemma 4.2.3, the algorithm spends O(dn) evaluations and O(d + log n) gener-
ations in settings with λ < λmax. Hence we can focus on improvement probabilities when
λ = λmax.

If |OPT | ≥ 2, by Lemma 4.2.7, the probability of one generation hitting any search
point in OPT that is not the binary complement of the current search point is at least
λmax · 2−n−1 = n · 2−n−2. Since there are at least |OPT | − 1 ≥ |OPT |/2 such search
points and the probabilities for hitting these are disjoint events, the probability for finding
the optimum is at least n · 2−n−3 · |OPT |. Taking the reciprocal gives an upper bound on
E(T gen), and multiplying by 2λmax = n yields a bound on E

(
T eval

)
.

If OPT = {x∗}, we use the same argument to show that within 2n+3

n|OPT| generations we

either hit an optimum or a second-best search point. From the latter, the probability of
hitting the optimum is bounded in the same way, since by assumption the current search
point is different from x∗. Then we proceed as before.

Trap Functions

The conditions from Theorem 4.3.1 require a fitness function to either contain at least two
global optima, or that the complement of the unique global optimum does not have the
second-best fitness. Most fitness functions meet this condition. Notable exceptions are
Trap functions (defined in Section 2.3) as there the local optimum 1n with the second-best
fitness is precisely the complement of the unique global optimum 0n. We show that Trap
functions were excluded from Theorem 4.3.1 for a good reason since for Trap functions the
runtime is higher than the bound from Theorem 4.3.1 by a factor of order Ω(n).

Theorem 4.3.2. Let F > 1 be a constant and λmax = n/2. The expected optimisation time
(in terms of fitness evaluations) of the self-adjusting (1 + (λ, λ)) GA on the Trap function
is Ω(n2n).

Proof. We divide the proof in three parts, the initialisation phase, the OneMax phase and
the trap phase.

The expected number of zero bits in the initial individual is n/2. By applying Chernoff
bounds we can see that, w. o. p. the initial individual has at least n/3 one bits. Therefore,
with at least the same probability the algorithm does not find the optimum during the
initialisation phase.

From Theorem 9 in [50], we know that the OneMax phase takes in expectation
E
(
TOneMax

)
= O(n) generations.3 We now prove that during these generations the al-

gorithm does not find the optimum w. o. p.
By Lemma 4.2.7 the probability to find the optimum during the mutation phase at a

Hamming distance of at least n/3 is:

Pr (x′ = x∗) ≤ dλe
(
λ

n

)n/3(
1− λ

n

)2n/3

≤ n · 3−n3
(

3

2

)− 2n
3

. (4.2)

3As long as λmax is bigger than C0

√
n/(n−OneMax(x)) for a constant C0 large enough to satisfy

Lemma 16 in [50] the bound of O(n) from Theorem 9 in [50] holds.

51

The second inequality comes from bounding dλe ≤ n and using the parameter λ = n/3

everywhere else, which maximises the term
(
λ
n

)n/3 (
1− λ

n

)2n/3
[62, Corollary 2]. For the

crossover phase, to find the global optimum we use Lemma 4.2.8, obtaining,

Pr (y = x∗) ≤ bλe2
(

1

n

)n/3(
1− 1

n

)2n/3

≤ n−n3 +2 · e−2/3. (4.3)

Adding Equation (4.2) and (4.3) we get a probability of finding the optimum in one
iteration of p = O(n ·3−n ·22n/3). Then the probability to find the optimum during TOneMax

iterations is at most

∞∑
t=0

Pr
(
TOneMax = t

)
· tp = p · E

(
TOneMax

)
= O(n2 · 3−n · 22n/3).

Finally, during the trap phase since x = x∗ from Lemma 4.2.7 we get

Pr (y = x∗) =

(
λ

n

)n
≤ 2−n.

We know from Lemma 4.2.2 that the algorithm spends at most d4 logF (n/2)e generations
to get to the parameter λ = n/2. The probability of finding the optimum during these
iterations is 1−(1−2−n)d4 logF (n/2)e ≤ 22−n logF n. Once the maximum parameter value has
been reached, the probability of sampling ` = n and thus find the optimum is Pr (y = x∗) =
2−n. Hence, in expectation 2n further iterations are needed to find the optimum and each
one of these iterations will use n evaluations. Since this situation is reached w. o. p., the
expected number of evaluations is Ω(n · 2n).

Jump Functions

In this section we explore in detail how capping λ affects the performance of the algorithm
on Jumpk functions. In the following theorem, we only consider the mutation phase and
assume for simplicity to start in the local optimum.

Theorem 4.3.3. After reaching the local optimum, the expected number of function evalu-
ations for the self-adjusting (1 + (λ, λ)) GA with F > 1 constant and λ capped at λmax < n
is at most

O(λmax) + 4

(
n

λmax

)k (
1− λmax

n

)−n+k

.

Proof. By Lemma 4.2.2, λ reaches λmax or the algorithm finds the global optimum within
O(λmax) evaluations. Then the probability of jumping to the optimum in one generation
is at least λmax/2 · (λmax/n)k(1 − λmax/n)n−k by Lemma 4.2.7. Taking the reciprocal and
multiplying by 2λmax yields the claim.

Note that for λmax := k, Theorem 4.3.3 yields an upper bound of

O(k) + 4
(n
k

)k (
1− k

n

)−n+k

.

For k ≥ 3, these bounds match the expected time for the (1 + 1) EA with the optimal
mutation rate of k/n up to constant factors [62]. However, we would need to know k in
advance, which defies the goal of parameter control. As mentioned before, an alternative
strategy is to set λmax := n/2.

52

Theorem 4.3.4. Let k < n
4 . After reaching the local optimum, the expected number of func-

tion evaluations for the self-adjusting (1 + (λ, λ)) GA with F > 1 constant and λmax := n/2
on Jumpk is

E
(
T eval

)
≤

{
O
((

n
2

)k)
if k ≤ log(n/2)

2 ,

O
(
min{(2n)k−1, 2n}

)
otherwise.

E(T gen) ≤

{
O
((

n
2

)k−1
)

if k ≤ log(n/2)
2 ,

O
(
min{(2n)k−2, 2n/n}

)
otherwise.

Note that these upper bounds prove that the self-adjusting (1 + (λ, λ)) GA with
λmax := n/2 is faster than the (1 + 1) EA with the default mutation rate 1/n for all k ≤ log n
and k > n/ log n as the latter needs expected time Θ(nk) [76].

Before proving Theorem 4.3.4 we need to understand how the crossover phase might
help the optimisation process. For the crossover phase to be able to find the optimum, the
selected offspring from the mutation phase must flip all 0-bits from the parent. Afterwards
the crossover phase is able to repair such offspring to find the global optimum. This was
studied by Antipov et al. [9] for any static parameter choice.

Theorem 4.3.5 (Theorem 3.3 in [9]). Let k ≤ n
4 . Assume that p ≥ 2k

n and q` ≥ 0.1 is the
probability that the number of bits flipped ` ∈ [pn, 2pn]. After reaching the local optimum,
the expected runtime of the (1 + (λ, λ)) GA with static parameters on Jumpk is

E
(
T eval

)
≤ 8λ

q` min{1, λ
(
p
2

)k}min{1, λck(1− c)2pn−k}
;

E(T gen) ≤ 4

q` min{1, λ
(
p
2

)k}min{1, λck(1− c)2pn−k}
.

An extension of this theorem to the self-adjusting (1 + (λ, λ)) GA can be easily shown
as follows.

Lemma 4.3.6. Let k ≤ n
4 . After reaching the local optimum the expected runtime of the

self-adjusting (1 + (λ, λ)) GA with p = λ/n, c = 1/λ, λmax ≥ 2k and F > 1 constant on
Jumpk is

E
(
T eval

)
≤ O(n) +

8

q` min
{

1, λmax

(
λmax

2n

)k}(1
λmax

)k (
1− 1

λmax

)2λmax−k .

E(T gen) ≤ O(log n) +
4

q` min
{

1, λmax

(
λmax

2n

)k}(1
λmax

)k−1 (
1− 1

λmax

)2λmax−k

Proof. By Lemma 4.2.2, λ reaches λmax or the algorithm finds the global optimum within
O(log n) generations and O(n) evaluations. Then the algorithm will always use λ = λmax,
therefore the probability of jumping to the optimum during the crossover phase is given by
Theorem 4.3.5.

We now have the necessary tools to prove Theorem 4.3.4.

Proof of Theorem 4.3.4. For the proof we use Lemma 4.3.6 as follows:

E
(
T eval

)
≤ O(n) +

8

q` min{1, n2
(

1
4

)k}(2
n)k(1− 2

n)n−k
.

53

Note that k ≤ log(n/2)
2 is equivalent to n

2

(
1
4

)k ≥ 1 and this implies that min{1, n2
(

1
4

)k} = 1.
Hence,

E
(
T eval

)
≤ O(n) +

8

q`(
2
n)k(1− 2

n)n−k
= O

((n
2

)k)
.

If log(n/2)
2 < k then min{1, n2

(
1
4

)k} = n
2

(
1
4

)k
and

E
(
T eval

)
≤ O(n) +

8

q`
n
2

(
1
4

)k
(2
n)k(1− 2

n)n−k
≤ O(n) +

32

q`(
1

2n)k−1(1− 2
n)n−k

= O
(
(2n)k−1

)
.

Following the same arguments we obtain the bound for the number of generations. In ad-
dition, we also consider the upper bounds from Theorem 4.3.1, obtaining E

(
T eval

)
= O(2n)

and E(T gen) = O(2n/n).

4.3.2 Parameter Landscape on Jumpk

In Section 4.3.1 it was shown that choosing λmax = k gives an expected runtime only
a constant factor worse than the (1 + 1) EA with optimal mutation probability of k/n.
However, this runtime guarantee only takes into account the mutation phase of the algorithm.
Here we analyse the parameter landscape of the self-adjusting (1 + (λ, λ)) GA with p = λ/n,
c = 1/λ and λmax ∈ [1, n]. To analyse the effects of the parameter λmax we use the precise
expression of the probability sλmax

k of the (1 + (λ, λ)) GA with λ = λmax to jump from the
local optimum to the global optimum in one iteration. Hereby we ignore the initial time to
climb up to the local optimum and the time for λ to increase to λmax. Our previous analyses
have shown that these times are negligible anyway. Antipov and Doerr [3] computed the
probability of this event but only considered the offspring from the crossover phase for
selection. The probability of jumping from the local optimum to the global optimum is

sλmax

k =

n∑
j=0

Pr (` = j | λ = λmax) · Pr (y = x∗ | ` = j ∧ λ = λmax) .

Since ` ∼ B(n, p) the probability of sampling ` = j is given by

Pr (` = j | λ = λmax) =

(
n

j

)(
λmax

n

)j (
1− λmax

n

)n−j
.

The probability of finding the optimum depends on the number of bits flipped, `. For the
algorithm to find the optimum, ` needs to be at least the size of the jump k in order to be
able to flip all the 0-bits, meaning that, for any ` < k, Pr (y = x∗ | ` = j ∧ λ = λmax) = 0.
When ` = k, if the mutation phase flips all the 0-bits, the optimum is found and the crossover
phase is not needed. This has a probability of

Pr (y = x∗ | ` = k ∧ λ = λmax) = 1−

(
1− 1(

n
k

))λmax

.

Following Antipov and Doerr [3], for ` > k the global optimum can only be found during the
crossover phase because the mutation phase flips more than k bits. In order for the crossover
to be able to find the optimum, first the algorithm needs to select a good offspring during
the mutation phase, that is, an offspring from the set of all possible offspring that flip all the
k 0-bits from the parent that we call X(∗). Hence, we can calculate the probability of finding
the optimum during the crossover phase by taking the probability of selecting an offspring

54

during the mutation phase inX(∗) and multiplying it by the conditional probability of finding
the optimum given that x′ ∈ X(∗). That is, Pr (y = x∗ | ` = j ∧ λ = λmax) is equivalent to

Pr
(
x′ ∈ X(∗) | ` = j ∧ λ = λmax

)
· Pr

(
y = x∗ | x′ ∈ X(∗) ∧ ` = j ∧ λ = λmax

)
.

The probability of the mutation operator flipping all the 0-bits from the parent is
(
n−k
`−k
)
/
(
n
`

)
.

If ` ∈ [k + 1, 2k − 1] any offspring from the mutation phase that flips all 0-bits has more
than n − k ones and hence falls into the valley of search points with a fitness less than k.
This is worse than any offspring that does not flip all 0-bits. Therefore, in order to select an
offspring with all 0-bits flipped the algorithm needs to create all offspring with all k 0-bits
flipped, that is,

Pr
(
x′ ∈ X(∗) | ` = j ∧ λ = λmax

)
=

((
n−k
j−k
)(

n
j

))λmax

.

In contrast, for ` ≥ 2k the algorithm always selects an offspring with all k 0-bits flipped if
one is created. This is because the algorithm flips at least k 1-bits in all mutants, hence
the number of 1-bits in each mutant is at most n− k, making an offspring with the k 0-bits
flipped have the greatest fitness value. Therefore, the probability of this event is

Pr
(
x′ ∈ X(∗) | ` = j ∧ λ = λmax

)
= 1−

(
1−

(
n−k
j−k
)(

n
j

))λmax

.

After selecting an offspring x′ ∈ X(∗) during the mutation phase, to generate the global
optimum in the crossover phase the algorithm needs to take the k bits which are zero in x
from x′ and take all the ` − k bits which are zero in x′ from x. This has a probability of
ck(1 − c)`−k for one offspring, and it needs to happen for at least one of the λ offspring.
This yields

Pr
(
y = x∗ | x′ ∈ X(∗) ∧ ` = j ∧ λ = λmax

)
= 1−

(
1−

(
1

λmax

)k (
1− 1

λmax

)j−k)λmax

.

Putting all together and using λ′ := λmax to improve readability we have shown the following
result.

Theorem 4.3.7. Consider the self-adjusting (1 + (λ, λ)) GA capping λ at λ′ = λmax on
Jumpk. When the algorithm has reached the local optimum and λ = λ′, the probability of
creating the optimum in one generation is

sλ
′
k =

(n
k

)(λ′
n

)k (
1−

λ′

n

)n−k1−
(

1−
1(n
k

))λ′

+

2k−1∑
j=k+1

(n
j

)(λ′
n

)j (
1−

λ′

n

)n−j (n−kj−k
)(n

j

)
λ′·

1−
(

1−
(

1

λ′

)k (
1−

1

λ′

)j−k)λ′

+
n∑

j=2k

(n
j

)(λ′
n

)j (
1−

λ′

n

)n−j 1−

1−

(n−k
j−k

)(n
j

)
λ′

 ·
1−

(
1−

(
1

λ′

)k (
1−

1

λ′

)j−k)λ′

and the expected number of fitness evaluations to find the global optimum is 2λmax/s
λmax

k .

Note that the first line is precisely the probability pλ
′

mut(x, x
∗) that the optimum is found

during the mutation phase. We have already bounded this in Lemma 4.2.7 from above and
below. For k ≥ 2, the upper bound is tighter, hence the first line is close to λ′(λ′/n)k(1 −

55

λ′/n)n−k. The term (λ′/n)k(1− λ′/n)n−k (without the leading factor λ′) is maximised for
λ′ := k [62, Corollary 2]. Hence the first line attains its maximum around λ′ = k.

In the first summation, the term

(
(n−kj−k)
(nj)

)λ′
simplifies to

(
j(j−1)·...·(j−k+1)
n(n−1)·...·(n−k+1)

)λ′
, which is

bounded from above by (2k/(n − k))kλ
′
. For k = o(n), these summands are all negligibly

small, compared to the other terms from Theorem 4.3.7.
The last summation was bounded from below by Antipov et al. [9] for all λ ≥ 2k as:

1

40
min

{
1, λ

(
λ

2n

)k}
λ

(
1

λ

)k (
1− 1

λ

)2λ−k

.

Since
(
1− 1

λ

)2λ−k
= Θ(1) for λ ≥ 2k and it converges to e−2 as λ grows, we ignore this

factor, and the constant 1/40, for the time being, and focus on the term

min

{
1, λ

(
λ

2n

)k}
λ

(
1

λ

)k
= min

{
λ

(
1

λ

)k
, λ2

(
1

2n

)k}

instead. For λ
(
λ
2n

)k ≤ 1 the minimum simplifies to λ2
(

1
2n

)k
, which is non-decreasing in λ.

For larger λ, the minimum simplifies to λ
(

1
λ

)k
, which is non-increasing in λ. Hence, the

above expression is maximised for λ
(
λ
2n

)k
= 1 or, equivalently, λ = (2n)k/(k+1).

This suggests that the probability of finding the global optimum from the local op-
timum, sλmax

k , as stated in Theorem 4.3.7 is maximal around λmax = k and around

λmax = (2n)k/(k+1). Since the expected time to find the optimum, 2λmax/s
λmax

k , is propor-
tional to the reciprocal of the improvement probability (with an additional factor of 2λmax),
this would imply that the expected optimisation time is locally minimal around these val-
ues. Note that, while Theorem 4.3.7 is rigorous, the above discussion about the possible
location of minima is only semi-rigorous and partly based on upper and lower bounds of
probabilities. Therefore, to analyse the parameter landscape we compute 2λmax/s

λmax

k ex-
actly for n ∈ {125, 250, 500}, k ∈ {3, 4, 5, 6} and λ ∈ {1, . . . , n} using the exact formula from
Theorem 4.3.7. Figure 4.1 shows these computations.

As seen in Figure 4.1, the parameter landscape is a bimodal function for k ≥ 4 with
one minimum at or around λmax = k, as predicted by the discussion above. There is
another local optimum for much larger values of λmax. Our above semi-rigorous arguments
predicted a minimum around λmax = (2n)k/(k+1). The real minimum is attained for slightly
smaller values of λmax. Recall that our prediction was based on a bound of the improvement
probability, and we suspect that the bound is not precise enough to predict the exact location
of the minimum.

The two local optima are surrounded by a basin of attraction, one narrow and one wide,
that changes according to the relation between n and k. For small values of k the wider basin
of attraction contains the optimal parameter value and if k is small enough (k ≤ 3) both
basin of attractions merge, transforming the parameter landscape into a unimodal function.
For larger k values the narrower basin of attraction contains the optimal parameter and it
gets narrower for bigger problem sizes. We note that in this case the optimal parameter
maximises the probability of finding the optimum during the mutation phase, hence we
obtain much better performance when considering the offspring from both phases versus
only the crossover phase. This fluctuating parameter landscape shows that it can be hard
to predict the correct parameter values to use for a given problem, especially if the problem
is not well understood.

Additionally, since the parameter landscape is bimodal, if gradient descent was used for
parameter tuning, it would easily get stuck far away from the optimal parameter value. This
is particularly true for values of k = o(n) large enough for λ = k to be the best parameter

56

Figure 4.1: E
(
T eval

)
of the self-adjusting (1 + (λ, λ)) GA on Jumpk with n ∈ {125, 250, 500}

and k ∈ {3, 4, 5, 6} varying λmax.

(as seen in Figure 4.1 when k = 6) because we believe the basin of attraction around λ = k
has a size of Θ(k), while the other basin of attraction seems to have a size of Θ(n). Hence it
seems plausible that gradient descent would start in the wrong basin of attraction and only
be able to find a locally optimal parameter.

Finally, to complement our runtime predictions, we executed experiments varying λmax

with n = 60 and k = 4 and compared them against the computed E
(
T eval

)
. The results

of the experiments are shown in Figure 4.2. We note that although the average function
evaluations follow closely our predictions, the standard deviation was in the same order of
magnitude as the mean, meaning that there was a large variation from run to run.

Figure 4.2: E
(
T eval

)
, mean and median number of evaluations and 10%, 25%, 75%, 90%

quantiles of the self-adjusting (1 + (λ, λ)) GA on Jumpk with n = 60 and k = 4 varying
λmax over 1000 runs.

57

4.3.3 Resetting the Parameters

Any generic choice of a maximum λmax bears the risk that the self-adjusting (1 + (λ, λ)) GA
might get stuck with sub-optimal parameters. A solution to avoid this is to reset λ to 1
if λ = λmax and there is another unsuccessful generation. This makes the algorithm cycle
through the parameter space in unsuccessful generations. A similar modification was made
in [91], where the authors restart the parameter to λ = 1, but also restart the search from a
random individual. We do not restart the search because for functions like Jumpk, restarts
would run into the same set of local optima w.o.p. In [18], the authors reset λ, but instead
of resetting to 1, they reset to the last successful parameter. We argue that, if the next step
of the optimisation needs a lower value of λ than the used in the last successful generation,
since λ only increases in unsuccessful generations the algorithm will never use the correct
parameter.

4.3.4 Self-Adjusting (1+(λ, λ) GA Resetting λ

In the following, we will analyse the simple strategy of resetting λ to 1 after an unsuccessful
generation at λmax = n. This strategy takes advantage of two different behaviours. When
hill-climbing, the algorithm uses self-adjustment to regulate λ and maintain its value in a
good parameter range. Because of this, its optimisation time is not affected for problems
like OneMax. However, when the algorithm encounters a local optimum, its behaviour is
similar to the dynamic (1 + 1) EA [112] that cycles through different parameter regions, like
λ ∼ n/2, λ = n. This helps the algorithm to simulate random search and the (1+n) EA
in one cycle. Furthermore, it is not affected by the modality of the parameter landscape.
In addition, during every generation the crossover phase is still focusing on exploitation,
generating offspring concentrated around the parent.

This strategy is similar to the stagnation detection described in [161, 162] in the sense
that when λ = n the algorithm is likely to be in a local optimum and the behaviour of
the algorithm changes to explore different parameters. Once λ = n, different approaches
could be used, such as sampling λ from a power-law distribution as in [8] or sampling λ
from a distribution where λ = i with probability 1/(i ln(n)), obtaining similar results as
the cycling behaviour. If a large jump is expected we could even use the non-standard
parameters from [3] and come back to the self-adjusting behaviour once an improvement is
found. Although these can be viable solutions we acknowledge that the parameter λ could
increase to n without being in a local optima, for example while optimising a function with
low fitness-distance correlation or by choosing F as a large constant as explored in [50] where
the authors warn that λ can diverge even on simple problems if F ≥ 2.25. Because of this
we decide to study the algorithm without changing its behaviour drastically.

General Method

We show that the fitness-level method can be applied here as well. In contrast to Theo-
rem 4.2.1, here improvement probabilities refer to the transitions of the (1 + (λ, λ)) GA, and
we consider improvement probabilities across a whole cycle of parameter values.

Theorem 4.3.8. Given a canonical f -based partition A1, . . . , Am+1, and scycle
i a lower

bound on the probability of finding an improvement on level i during a cycle. Then for the
self-adjusting (1 + (λ, λ)) GA resetting λ to 1, using F > 1 which may depend on n, we have

E
(
T eval

)
≤ O

(
F 1/4n

F 1/4 − 1

) m∑
i=1

1

scycle
i

;

E(T gen) ≤ O(dlogF (n)e)
m∑
i=1

1

scycle
i

.

58

Algorithm 6: The self-adjusting (1 + (λ, λ)) GA resetting λ.

1 Initialization: Sample x ∈ {0, 1}n uniformly at random;
2 Initialize λ← 1, p← λ/n, c← 1/λ;
3 Optimization: for t = 1, 2, . . . do
4 Sample ` from B(n, p);

Mutation phase:
5 for i = 1, . . . , bλe do
6 Sample x(i) ← flip`(x) and query f(x(i));

7 Choose x′ ∈ {x(1), . . . , x(λ)} with f(x′) = max{f(x(1)), . . . , f(x(λ))} u.a.r.;
Crossover phase:

8 for i = 1, . . . , bλe do
9 Sample y(i) ← crossc(x, x

′) and query f(y(i));

10 If {x′, y(1), . . . , y(λ)}\{x} 6= ∅, choose y ∈ {x′, y(1), . . . , y(λ)}\{x} with

f(y) = max{f(x′), f(y(1)), . . . , f(y(λ))} u.a.r.;
11 otherwise, set y := x;

Selection and update step:
12 if f(y) ≥ f(x) then x← y;
13 if f(y) > f(x) then λ← max{λ/F, 1};
14 if f(y) ≤ f(x) ∧ λ = n then λ← 1;

15 if f(y) ≤ f(x) ∧ λ 6= n then λ← min{λF 1/4, n};

Proof. Since the f -based partition is canonical, the current fitness level is left as soon as
we encounter a successful generation. Until this happens, the self-adjusting (1 + (λ, λ)) GA
cycles through all parameters for λ. We use Lemma 4.2.2 to show that for every time
the algorithm cycles through all the parameters once, it uses O(dlogF (n)e) generations and

O
(
F 1/4n
F 1/4−1

)
evaluations. The probability of leaving the current fitness level during a cycle

is at least scycle
i by assumption. Hence the expected number of cycles is at most 1/scycle

i .
Together, this proves the claimed bounds.

Upper Bounds on Jump

To showcase how this bound can be used we show an upper bound for Jumpk. Note that,
when applying Theorem 4.3.8, we may bound scycle

i from below by only considering the best
parameter settings the algorithm can use for the current fitness level, making it easy to use.
In our case we focus on values of λ close to k since in Section 4.3.2 we showed that for large
k it gives the best performance. In addition, we also consider λ = n because for small k
and steps outside the local optimum this gives a better runtime, decreasing the complexity
of the proof.

Theorem 4.3.9. Let F = F (n) > 1 and k ≥ 2. Then for the self-adjusting (1 + (λ, λ)) GA
resetting λ to 1 on Jump we have

E
(
T eval

)
= min

{
O

(
F 1/4nk

F 1/4 − 1

)
, O

((
F (k+2)/4

F 1/4 − 1

)(en
k

)k+1
)}

;

E(T gen) = min

{
O
(
nk−1 log n

)
, O

((
enF 1/4

k

)k+1(
log n

n

))}
.

Proof. For the fitness levels A1 . . . Am−1 any individual can leave the current fitness level
by increasing or decreasing the number of 1-bits. For these fitness levels we bound scycle

i by

59

only considering generations with λ = n, therefore similar to Theorem 4.2.1 scycle
i ≥ sin

1+sin
,

where si is a lower bound for the probability that the (1 + 1) EA with p = 1/n creates an
offspring in Ai+1 . . . Am+1 from a search point in Ai. Using the crude estimate si ≥ 1/(en),

gives us an expected number of generations of 1/scycle
i ≤ e+ 1 to leave any of these fitness

levels.
For the local optimum in fitness level Am, we use scycle

m ≥ max{sk∗m , snm} with sk
∗

m and
snm being the probability of leaving Am in one generation with λ ∈

[
k

F 1/4 , k
]

and λ = n,
respectively, and bound them separately. To compute snm, as before, we use the probability

that the (1 + 1) EA with p = 1/n finds an improvement, that is, sm = (1/n)
k

(1− 1/n)
n−k ≥

1/(enk) to obtain

snm ≥
smn

1 + smn
≥ 1/(enk−1)

1 + 1/(enk−1)
≥ 1

enk−1 + 1
.

For sk
∗

m we use Lemma 4.2.7 and the range λ ∈
[

k
F 1/4 , k

]
as follows,

sk
∗

m ≥
bλc
2

(λ/n)k(1− λ/n)n−k

≥ λ

4
(λ/n)k(1− λ/n)n−k

≥ k

4F 1/4

(
k

F 1/4n

)k (
1− k

n

)n−k
≥ k

4F 1/4

(
k

F 1/4en

)k
,

where the last inequality holds by Lemma 2.4.1. Applying Theorem 4.3.8 with scycle
m ≥

max{sk∗m , snm} and absorbing the expected times for fitness levels i < m in the asymptotic
notation proves the claimed bounds.

Similar to Bassin and Buzdalov [18], we can slow down the growth of λ. We accomplish
this by cleverly choosing F in such a way that the algorithm is able to use every λ ≤ n,
ensuring that the algorithm uses the best parameter value. Choosing F = (1 + 1/n)4 in
Theorem 4.3.9 implies that F (k+2)/4 = (1 + 1/n)k+2 ≤ (1 + 1/n)n+2 = O(1), hence this
factor can be dropped. Also note that 1

F 1/4−1
= 1

(1+1/n)−1 = n. Together, we obtain the

following.

Corollary 4.3.10. Let F = (1+1/n)4 and k ≥ 2. The expected optimisation time (in terms
of fitness evaluations) of the modified self-adjusting (1 + (λ, λ)) GA on the Jumpk function
is

min

{
O
(
nk+1

)
, O

(
n
(en
k

)k+1
)}

.

Comparing the bound of Corollary 4.3.10 against the expected optimisation time of the

(1 + 1) EA with optimal mutation rate of k/n, which is Topt = O
((

en
k

)k)
[62], our bound

is larger than Topt by a factor of O
(
n2/k

)
without the need to know the jump size k in ad-

vance. Our bound is only by a factor of O(n2/k2) larger than the bound for the (1 + 1) EA
with the heavy-tailed (“fast”) mutation operators from [62] with the recommended param-
eter β = 1.5.

4.4 Experimental Analysis

In the previous sections we performed asymptotic analyses focusing mainly on Jumpk func-
tions (summarised in Table 4.1). In this section, we conduct an experimental analysis that

60

Mechanism
Bounds

General bound Jump

Expected number of evaluations

Vanilla O(dn) + 2
∑m
i=1

1
si

(1± o(1)) · 2nk
(
1− 1

n

)−n+k
Capping λ
at λmax = k

– O(k) + 4
(
n
k

)k (
1− k

n

)−n+k
Capping λ
at λmax = n/2

O(dn) + 2n+4

|OPT|

{
O
((

n
2

)k)
if k ≤ log(n/2)

2
,

O
(
min{(2n)k−1, 2n}

)
otherwise.

Resetting λ O
(
F1/4n
F1/4−1

)∑m
i=1

1

s
cycle
i

min
{
O
(
F1/4nk

F1/4−1

)
, O
((

F (k+2)/4

F1/4−1

) (
en
k

)k+1
)}

Resetting λ
F = (1 + 1/n)4

– min
{
O
(
nk+1

)
, O
(
n
(
en
k

)k+1
)}

Expected number of generations

Vanilla d4 logF (n)e+ 6d+ 1
n

∑m
i=1

1
si

(1 + o(1)) · 2nk−1
(
1− 1

n

)−n+k
Capping λ
at λmax = n/2

O(d+ logn) + 2n+3

n|OPT|

{
O
((

n
2

)k−1
)

if k ≤ log(n/2)
2

,

O
(
min{(2n)k−2, 2n/n}

)
otherwise.

Resetting λ O(dlogF (n)e)
∑m
i=1

1

s
cycle
i

min

{
O
(
nk−1 logn

)
, O

((
enF1/4

k

)k+1 (
logn
n

))}

Table 4.1: Example of runtime bounds we obtain for the self-adjusting (1 + (λ, λ)) GA with
different self-adjusting mechanisms. Note that some of the results are subject to further
conditions, e. g. 4 ≤ k ≤ (1− ε)n/2.

aims to accomplish the following goals: 1) to complement our theoretical results with precise
runtime results for concrete problem instances and jump sizes, 2) to compare the runtime
of all the proposed versions of the self-adjusting (1 + (λ, λ)) GA against related algorithms,
and 3) to test how the mathematical results obtained translate to other fitness landscapes.

In the experiments of this section, we ran an implementation4 of all the different modifica-
tions of the self-adjusting (1 + (λ, λ)) GA studied in previous sections on different problems
and compared them against:

• The (1 + 1) EA with the standard mutation rate p = 1/n.
• The (1 + 1) EA with the optimal choice of p = k/n (on Jump).
• The “fast” (1+1) fEA [62] with a heavy-tailed mutation rate: p = r/n and
r ∼ pow(1.5, n).

• The (1 + (λ, λ)) GA with a heavy-tailed choice of λ ∼ pow(2.5, n/2) [8] that we call
the heavy-tailed (1 + (λ, λ)) GA.

• The (1 + (λ, λ)) GA with non-standard parameters and a heavy-tailed choice of
λ ∼ pow(2,min{5n/10, 106}), p = c =

√
s/n and s ∼ pow(1, n) [3].

The parameter selection for the heavy-tailed algorithms was made following the recommen-
dations of each study. In particular, for the (1 + (λ, λ)) GA with non-standard parameters,
the upper bound for λ in the distribution is suggested to be exponential in n but because
of memory demand from storing the probabilities in the power-law distribution, during
implementation we impose a limit of 106 independent of n.

All experiments comprise of 500 runs for each algorithm-problem pair, recording the
number of fitness evaluations to reach the optimum and the average is reported unless
otherwise stated.

4The complete implementation and results can be found on GitHub (https://github.com/mariohevia/
Parameter-Control-Mechanisms-Genetic-Algorithm)

61

https://github.com/mariohevia/Parameter-Control-Mechanisms-Genetic-Algorithm
https://github.com/mariohevia/Parameter-Control-Mechanisms-Genetic-Algorithm

In the following we report on results of statistical tests executed as follows. We performed
Mann-Whitney U Test for all pairs of algorithms compared in the text. We performed two-
sided tests to check whether the two input distributions differ or not, followed by one-sided
tests both ways to confirm which algorithm is stochastically faster than the other. We report
a comparison as statistically significant if the p-values of the two-sided test and that of the
respective one-sided test both satisfied p ≤ 0.01, that is, a confidence level of 0.01. When
comparing one algorithm against several others, we performed a pairwise comparison for
each pair as explained before and applied the Bonferroni correction.

Figure 4.3: Box plot of the number of fitness evaluations on Jumpk with k = 4 and
n = {20, 40, 60, . . . , 160} over 500 runs.

4.4.1 Empirical Analyses on Jump Functions

For the class of Jumpk functions we performed two experiments focused on the effects of
the problem size and the jump size separately.

In the first experiment, we used a jump size k = 4 and n varying from 20 to 160
shown in Figure 4.3. The first thing to notice is that the (1 + (λ, λ)) GA with non-standard
parameters has the best performance for n ≥ 40; all comparisons are statistically significant.
This is expected because the selection of parameters λ, c and p are tailored towards Jumpk
functions. We can also appreciate that the heavy-tailed (1 + (λ, λ)) GA is able to use better
λ values than the vanilla self-adjusting (1 + (λ, λ)) GA, performing statistically significantly
better for all n although it performs statistically significantly worse than both resetting
strategies and capping λ to n/2 for n ≥ 80. It is worth pointing out that the self-adjusting
(1 + (λ, λ)) GA capping λ to n/2 and both versions resetting λ scale better with n than
the (1 + 1) fEA. The self-adjusting (1 + (λ, λ)) GA variants are statistically slower than the
(1 + 1) fEA for n = 20 but for n ≥ 80 they are statistically faster. This is most likely
because the parameter landscape for instances with large n resemble the ones shown in the
second column of Figure 4.1 in Section 4.3.2, where using values of λ that are linear in n
help the crossover phase find the optimum even faster than the mutation phase with λ = k
and by extension faster than any mutation rate for the (1 + 1) EA. Despite this possible
advantage, these algorithms perform statistically significantly worse than the (1 + 1) EA
with p = k/n on these Jumpk instances because they waste some evaluations with non-

62

optimal parameters. To inquire further, we performed additional experiments on Jumpk with
n = 160 and k = 2 that are not shown in the figures where the self-adjusting (1 + (λ, λ)) GA
resetting λ with F = (1 + 1/n)4 is statistically significantly faster than the (1 + 1) EA with
optimal parameter values showing that for some instances of Jumpk the (1 + (λ, λ)) GA with
standard parameter settings can be faster than the (1 + 1) EA with the optimal mutation
rate.

Figure 4.4: Box plot of the number of fitness evaluations on Jumpk with n = 20 and
k = {2, 3, 4, 5, 6, 7} over 500 runs.

For the second experiment, we aimed to explore the effects of the jump size k. We used
a small problem size of n = 20, varying the jump size from 2 to 7 shown in Figure 4.4. In
this case we see that for larger values of k the self-adjusting (1 + (λ, λ)) GA capping λ to
n/2 and resetting λ do not excel but they are still competitive with the (1 + 1) fEA. This in
conjunction with the good performance of the self-adjusting (1 + (λ, λ)) GA capping λ to k
indicates that the mutation phase is much better at finding the optimum for large k. This
is in agreement with our analysis of the parameter landscape from Section 4.3.2. Lastly in
this experiment the non-standard (1 + (λ, λ)) GA does not excel. We suspect that this is
caused by the small problem size n = 20.

In both plots shown in Figures 4.3 and 4.4 the average number of fitness evaluations for
the self-adjusting (1 + (λ, λ)) GA with standard parameters and with λmax = k is around
twice the average for the (1 + 1) EA with p = 1/n and p = k/n, respectively, as predicted
by our theoretical results.

4.4.2 Empirical Analyses on OneMax

In this section we study the algorithms on OneMax. We consider this problem because
the self-adjusting (1 + (λ, λ)) GA is the fastest known unbiased genetic algorithm on One-
Max (with an expected number of O(n) fitness evaluations, whereas the (1 + 1) EA needs
Θ(n log n) expected fitness evaluations) and we want to illustrate the effects of the different
parameter control strategies on the performance on OneMax.

Figure 4.5 shows the average number of fitness evaluations, normalised by the problem
size n with the x-axis (problem size) being log-scaled. Figure 4.5 gives us the following
three insights. First, the (1 + (λ, λ)) GA with non-standard parameters stands out as

63

the algorithm with the worst performance by far; all comparisons with the non-standard
(1 + (λ, λ)) GA are statistically significant. This can be attributed to the choice of param-
eters, mainly the larger offspring population size. Secondly, all the other variants of the
(1 + (λ, λ)) GA have a good performance and the fact that the normalised time seems to
increase slower than the (1 + 1) EA suggests that they have an asymptotic runtime faster
than n log n. Lastly, resetting and capping λ to n/2 does not affect the performance of the
algorithm on OneMax, compared to the vanilla version.

Figure 4.5: Average number of fitness evaluations and standard deviation on OneMax with
varying n over 500 runs of all tested algorithms on the left plot and a more detailed view of
the best performing algorithms on the right plot.

4.4.3 Empirical Analyses on Other Benchmark Functions

In order to see whether the theoretical results extend to other fitness landscapes we study
the algorithms with generic parameter choices on five different functions. During these
experiments we put a limit of 2.1 billion evaluations which is close to the upper limit of the
variable int in C++ (231 − 1). The mean is computed by assigning the limit of 2.1 billion
evaluations to all incomplete runs.

We consider the multimodal functions NearestPeak (NP) and WeightedNearestPeak
(WNP) proposed by Jansen and Zarges [113]. These functions are characterised by a set of
peaks that define a fitness landscape. The characteristics of their landscape depends on the
number, position, slope and height of these peaks. Let pi be the bit string representing peak
i, then the weight Wi of peak i is Wi = (n−H (x, pi))ai + bi where x is the current solution,
ai is the slope and bi is the height of the peak. The difference between NP and WNP is that
for NP the fitness is the weight of the nearest peak (in Hamming distance), while for WNP
the fitness is the biggest weight with respect to the current search point. Both problems
have a basin of attraction around the peaks, creating local and global optima.

The other three functions are well known NP-hard problems: Partition, Ising Spin Glass
(ISG) and MAX-3SAT. The Partition optimisation problem is to divide a set of positive
weights into two disjoint subsets such that the largest subset sum is minimised. The ISG

64

problem is a problem derived from physics. The Ising model consists of discrete variables
that represent magnetic dipole moments of atomic “spins” that can be in one of two states
(+1 or −1). The spins are arranged in a graph describing the interactions strengths (edges)
between spins (vertices), here a two-dimensional torus lattice is used. Neighbouring spins
with the same state have a lower interaction than those with a different state. The ISG
problem is to set the signs of all spins to minimise interactions. The MAX-3SAT problem is
related to the more common 3-SAT problem. A MAX-3SAT instance is a Boolean formula
in conjunctive normal form, that is, a logical conjunction of one or more clauses, where
a clause is a logical disjunction of three binary variables, some of which can be negated.
The search space S = {0, 1}n encodes the choice of truth values of the binary variables in
the Boolean formula and the optimisation problem is to find a solution that satisfies the
maximum number of clauses. Since the clauses are disjunctive, they are satisfied if at least
one of its literals is satisfied.

For all problems we used the same set of instances (one run per instance) across all
algorithms because some instances might be more difficult than others. The instances were
generated at random. The NP and WNP instances were generated with a problem size of 50
and different number of peaks with one global optimum at 1n. The peaks were defined by
[|pi|1 , ai, bi] where the values correspond to the number of ones, slope and height of peak i.
Every peak was generated by sampling uniformly at random a search point with the number
of ones specified in pi. The following peaks (including the global optimum) were used:

• NearestPeak:

1. [50, 5, 0], [42, 2, 0], [41, 4, 0], [42, 2, 10]

2. [50, 5, 0], [40, 3, 0], [42, 2, 0], [44, 1, 0], [42, 2, 10]

3. [50, 10, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0]

• WeightedNearestPeak:

1. [50, 10, 0], [40, 9, 0], [41, 9, 0]

2. [50, 10, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0], [40, 9, 0]

For Partition the problem size is 500, with weights selected uniformly at random in the range
[0, 1]. Given that Partition is NP-hard we use a deterministic approximation algorithm called
Longest Processing Time [145] to set a fitness goal. If an algorithm finds a solution with the
same or higher fitness we consider the problem solved. In the case of ISG and MAX-3SAT
we use the same 100 instances per problem size used by Goldman and Punch [91] that were
also generated at random in their work. Following Goldman and Punch [91], we executed
one run per instance, resulting in 100 runs per problem size.

In Figure 4.6 we see the results on NP, WNP and Partition instances. For these problems
all algorithms found the optimum on all instances within the time budget, but given that
there are a high number of outliers we present the data in box plot form. In Figure 4.6 the
number of peaks is mentioned after the problem, where 5p means five peaks i.e. four local
optima and one global optimum. For these problems we see a common trend: the original
self-adjusting (1 + (λ, λ)) GA has the largest outliers in five of the six sets of experiments.
This might be caused by the algorithm increasing λ to its maximum when the algorithm
gets stuck. The modifications studied in this paper and the heavy-tailed (1 + (λ, λ)) GA
seem to reduce the runtime of the outliers while maintaining a similar median, with the
capping strategy having a smaller impact in the runtime of the outliers than the other
algorithms. We would like to note that for all the (1 + (λ, λ)) GA versions excluding the
(1 + (λ, λ)) GA with non-standard parameters the median number of evaluations is similar
because the algorithms behave similarly when they do not get stuck in a local optimum as
seen in the experiments on OneMax and this happens in most of the runs. In addition,
we can see that the (1 + (λ, λ)) GA with non-standard parameters tends to have a slightly
larger median runtime in most cases (statistically significantly larger for all comparisons on
all problems except for NP 6p). This is most likely because when an easy instance is found

65

Figure 4.6: Box plot of the number of fitness evaluations on NearestPeak (NP), Weighted-
NearestPeak (WNP) with n = 50 and Partition with n = 500 over 500 runs.

the algorithm spends more time, similar to OneMax. On the other hand, the outliers for
the (1 + (λ, λ)) GA with non-standard parameters tend to have a smaller runtime compared
with the outliers for other algorithms. We attribute this to the ability of the algorithm to
perform large jumps when stuck in a local optima on these hard instances.

The next set of experiments were made on the Ising Spin Glass problem. In this case we
show in Figure 4.7 a box plot of the number of fitness evaluations, the mean and number of
failures. We include the box plot because the mean can be disturbed by failed runs capped
at the limit, but the boxplot shows the median that is unaffected by this as long as half
of the runs are able to find the optimum. The mean is still useful because it shows the
effectiveness of an algorithm to escape local optima. A prime example is the (1 + (λ, λ)) GA
with non-standard parameters, which has the smallest mean for most problem sizes, but its
median is almost an order of magnitude larger than the smallest median.

Similar to other problems, on ISG the original self-adjusting (1 + (λ, λ)) GA tends to
have larger outliers than all other algorithms, which is reflected in the larger mean and higher
number of failures. This is attenuated by the variations studied here and the heavy-tailed
(1+(λ, λ)) GA. An interesting point is that the (1 + 1) EA is statistically significantly faster
than all the (1 + (λ, λ)) GA variations with and without standard parameters (excluding
the heavy-tailed (1 + (λ, λ)) GA and the resetting mechanism with F = (1 + 1/n)4) in at
least 3 of the problem sizes (n = 49, 64, 81), which might indicate that there is a bad fitness-
distance correlation for these instances. The results of the heavy-tailed (1 + (λ, λ)) GA and
the resetting mechanism with F = (1 + 1/n)4 can be explained by the λ values used by
these algorithms. The heavy-tailed (1 + (λ, λ)) GA samples λ = 1 in most generations and
F = (1 + 1/n)4 maintains the value of bλe = 1 for longer, making both algorithms behave
exactly as the (1 + 1) EA in these generations therefore they show a similar performance.

The results for the final test problem, MAX-3SAT, are shown in Figure 4.8. In this
case there are no statistically significant differences between all the algorithms, but still
there are some observations we can obtain. Similar to the ISG problem for MAX-3SAT we

66

Figure 4.7: Box plot of the number of fitness evaluations (top), average number of fitness
evaluations (middle), and percentage of failed runs (bottom) on the Ising Spin Glass problem
varying the problem size over 200 runs.

show the median, mean and number of failed runs. For this problem it is clear that both
the (1 + 1) EA and the original self-adjusting (1 + (λ, λ)) GA run into local optima and
it is hard for them to escape, making the number of outliers, mean and number of failures
increase. In contrast, all the self-adjusting (1 + (λ, λ)) GA variants have a smaller mean and
smaller number of failures. Once again the (1 + (λ, λ)) GA with non-standard parameters
has the smallest mean and number of failures; we attribute this to its capacity to jump out
of local optima faster than all the other algorithms.

4.4.4 Discussion

Overall we have seen that the original self-adjusting (1 + (λ, λ)) GA has a poor performance
compared to all algorithms studied, on most problems. This shows that, as we expected
from our theoretical results in Section 4.2 and 4.2.2, the self-adjusting (1 + (λ, λ)) GA easily
increases λ to its maximum on difficult parts of the optimisation, degrading the performance
of the algorithm. Both resetting and capping λ improved the performance on almost all dif-
ficult problems and instances without affecting the performance on easy problems. Slowing
down the increase of λ with small values of F can be helpful on difficult problems but as a
trade-off it can slightly increase the runtime on easy problems.

On difficult problems both the (1 + 1) fEA and the (1 + (λ, λ)) GA with non-standard
parameters tend to have fewer outliers and fewer failures than all the versions of the self-
adjusting (1 + (λ, λ)) GA. This is largely because both algorithms are tailored to perform
large jumps with high probability when stuck in local optima. Because of this, both al-
gorithms have a worse performance on easy problems with the (1 + (λ, λ)) GA, with non-

67

Figure 4.8: Box plot of the number of fitness evaluations (top), average number of fitness
evaluations (middle), and percentage of failed runs (bottom) on the MAX-3SAT problem
varying the problem size over 100 runs.

standard parameters being the worst algorithm when easy problems (OneMax, WNP and
some instances of NP) are encountered.

4.5 Conclusions

We have provided a rigorous runtime analysis of the self-adjusting (1 + (λ, λ)) GA (con-
sidering the best offspring from the mutation phase during the selection step) for general
function classes by presenting a fitness-level theorem for the self-adjusting (1 + (λ, λ)) GA
that is easy to use and enables a transfer of runtime bounds from the (1 + 1) EA to the
self-adjusting (1 + (λ, λ)) GA.

The parameter control mechanism in the original self-adjusting (1 + (λ, λ)) GA tends to
diverge λ to its maximum on multimodal problems. Then the algorithm effectively simulates
a (1+n) EA with the default mutation rate of 1/n. For the multimodal benchmark problem
class Jumpk, we proved upper and lower runtime bounds that are tight up to lower-order
terms, showing that, despite using crossover, the self-adjusting (1 + (λ, λ)) GA is not as
efficient as other crossover-based algorithms.

Imposing a maximum value λmax can improve performance, however then the problem
remains of how to set λmax if no problem-specific knowledge is available. The generic choice
λmax = n/2 makes the self-adjusting (1 + (λ, λ)) GA perform random search steps during
the mutation phase in case the algorithm gets stuck. This guards against deceptive problems
and the algorithm still retains its original exploitation capabilities in the crossover phase.

We showed that the parameter landscape with respect to the impact of λmax on the
runtime of the self-adjusting (1 + (λ, λ)) GA on Jumpk is bimodal for appropriate n and k,

68

and the optimal parameter changes drastically depending on the problem size n and the
jump size k. The parameter landscape features two optima, one located in a wide basin
of attraction that maximises the probability of finding the global optimum in the crossover
phase and the other hidden in a narrow basin of attraction that maximises the probability
of finding the global optimum during the mutation phase. For small k the wider basin of
attraction leads to the optimal parameter value, but for larger k the optimal parameter value
changes to the narrow basin of attraction. For large k considering the mutation offspring
in the selection phase gives a large performance improvement to the (1 + (λ, λ)) GA. This
fluctuating parameter landscape combined with it being bimodal makes parameter selection
difficult.

Additionally, we investigated resetting λ to 1 after an unsuccessful generation at the
maximum value. This makes the self-adjusting (1 + (λ, λ)) GA cycle through the parameter
space, approaching optimal or near-optimal parameter values in every cycle in spite of the
parameter landscape. We recommend to choose F = (1 + 1/n)4 if a slow growth of λ is
desired. For Jumpk, this strategy gives the same expected runtime as that of the (1 + 1) EA
with the optimal mutation rate and fast mutation operators, up to small polynomial factors.

Finally, the empirical results show that the original self-adjusting (1 + (λ, λ)) GA tends
to increase λ to its maximum, and this yields the worst performance on most multimodal
problems tested, while the modifications of the parameter control mechanism improved its
performance. Additionally, these modifications do not significantly affect the algorithm’s
performance on easy problems. This suggests that for common optimisation problems it is
better to use the parameter control variants (capping or resetting λ) studied here than the
original self-adjusting (1 + (λ, λ)) GA.

69

Chapter 5

Do Success-Based Rules Work
for Non-elitist Algorithms?

5.1 Introduction

Non-elitist evolutionary algorithms are evolutionary algorithms that use non-elitist selection
for survival. The non-elitist selection mechanism is able to pick new search points that in
the short-term are less favorable for the optimisation than current best solutions. This
short-term loss is taken in the hope that these search points lead to better solutions in
the long-term. Despite the fact that non-elitist evolutionary algorithms are often better
at escaping from local optima [42, 43, 106] and widely applied in optimisation, non-elitist
evolutionary algorithms are rarely theoretically analysed.

This is exacerbated for parameter control mechanisms where most theoretical analyses of
parameter control mechanisms focus on so-called elitist evolutionary algorithms that always
reject worsening moves (with notable exceptions that study self-adaptive mutation rates
in the (1, λ) EA [69] and the (µ, λ) EA [25], and hyper-heuristics that choose between
elitist and non-elitist selection mechanisms [137]). The performance of parameter control
mechanisms and especially success-based parameter control in non-elitist algorithms is not
well understood. There are many applications of non-elitist evolutionary algorithms for
which an improved theoretical understanding of parameter control mechanisms could bring
performance improvements matching or exceeding the ones seen for elitist algorithms.

In this chapter we consider the (1, λ) EA that in every generation creates λ offspring
and selects the best one for survival. The offspring population size λ plays an important
role in the performance of the (1, λ) EA. The seminal paper by Jägersküpper and Storch
[106] showed that the (1, λ) EA with small λ-values is inefficient on all functions with one
unique optimum, whilst for large λ-values the algorithm behaves as its elitist counterpart
the (1 + λ) EA with high probability. Rowe and Sudholt [166] showed that there is a sharp
threshold at λ = log e

e−1
n between exponential and polynomial runtimes on OneMax using

standard bit mutation with mutation probability p = 1
n . A value λ ≥ log e

e−1
n (relaxed to

λ ≥
⌈
log e

e−1
(cn/λ)

⌉
for any constant c > e2 in [20]) ensures that the offspring population

size is sufficiently large to ensure that improvements in fitness are made often enough and
more importantly fitness losses are avoided resulting in a positive drift (expected progress)
towards the optimum even on the most challenging fitness levels. For easier fitness levels,
smaller values of λ are sufficient.

This is a challenging scenario for self-adjusting the offspring population size λ since too
small values of λ can easily make the algorithm decrease its current fitness, moving away from
the optimum. For static values of λ ≤ (1− ε) log e

e−1
n, for any constant ε > 0, we know that

70

the optimisation time is exponential with high probability for all functions with one unique
optimum [166]. Furthermore, this threshold can shift towards larger values of λ depending on
the characteristics of the functions (e. g. in LeadingOnes the threshold is at λ = 2 log e

e−1
n)

or shift towards smaller values if the mutation probability is reduced [166]. Moreover, too
large values for λ can waste function evaluations and blow up the optimisation time.

5.1.1 Contibutions

We consider a self-adjusting version of the (1, λ) EA called (1, {F 1/sλ, λ/F}) EA
(self-adjusting (1, λ) EA) that uses a success-based rule similar to the one used by the
self-adjusting (1 + (λ, λ)) GA from Chapter 4. For an update strength F and a success
rate s, in a generation where no improvement in fitness is found, λ is increased by a factor of
F 1/s and in a successful generation, λ is divided by a factor F . If one out of s+1 generations
is successful, the value of λ is maintained. The case s = 4 is the famous one-fifth success
rule [116, 163].

We ask whether the self-adjusting (1, λ) EA is able to find and maintain suitable param-
eter values of λ throughout the run, despite the lack of elitism and without knowledge of
the problem in hand.

In Section 5.3.1 we answer this question in the affirmative for the simple OneMax
function if the success rate s is chosen correctly. We show that, if s is a constant with
0 < s < 1, then the self-adjusting (1, λ) EA optimises OneMax inO(n) expected generations
and O(n log n) expected fitness evaluations. The bound on evaluations is optimal for all
unary unbiased black-box algorithms [67, 128]. However, if s is a sufficiently large constant,
s ≥ 18, the runtime on OneMax becomes exponential with overwhelming probability (see
Section 5.3.2). The reason is that then unsuccessful generations increase λ only slowly,
whereas successful generations decrease λ significantly. This effect is more pronounced
during early stages of a run when the current search point is still far away from the optimum
and successful generations are common. We show that then the algorithm gets stuck in a
non-stable equilibrium with small λ-values and frequent fallbacks (fitness decreases) at a
linear Hamming distance to the optimum. This effect is not limited to OneMax; we show
that this negative result easily translates to other functions for which it is easy to find
improvements during early stages of a run.

The last remark leaves open whether large success rates are inefficient on all functions.
In Section 5.4 we show that the self-adjusting (1, λ) EA is robust with respect to the choice
of the success rate if the fitness function is sufficiently hard. We define a class of everywhere
hard fitness functions, where for all search points the probability of finding an improvement
is bounded by O(n−ε), for a constant ε > 0. A well-known example is the function Leading-

Ones(x) :=
∑n
i=1

∏i
j=1 xj that counts the length of the longest prefix of bits set to 1: for

every non-optimal search point, an improvement requires the first 0-bit to be flipped.
We show that on all everywhere hard functions λ quickly reaches a sufficiently large value

such that fitness decreases become unlikely and the self-adjusting (1, λ) EA typically behaves
like an elitist algorithm. We then present simple and easy to use general upper bounds for
the runtime of the self-adjusting (1, λ) EA on everywhere hard functions that apply for all
constant success rates s and update strengths F > 1. More specifically, we show a general
upper bound on the expected number of evaluations using the fitness-level method that
asymptotically matches the bound obtained for the (1 + 1) EA. For the expected number
of generations, we show an upper bound of O(d + log(1/p+

min)) where d is the number of
non-optimal fitness values and p+

min is the smallest probability of finding an improvement
from any non-optimal search point.

Using our general upper bound, we obtain novel bounds of O(d) expected generations
and O(dn) expected evaluations for all everywhere hard unimodal functions with d + 1 ≥
log n fitness levels. This is O(n) expected generations and O(n2) expected evaluations for

71

LeadingOnes. We then introduce a problem class called OneMaxBlocks that allows
us to tune the difficulty of the fitness levels with a parameter k. Varying this parameter
changes the behaviour of the function from a LeadingOnes-like behaviour to a OneMax-
like behaviour, allowing us to explore how the difficulty of the function affects the runtime
of the self-adjusting (1, λ) EA.

In Section 5.5 we complement our runtime analyses with experiments. First, we compare
the runtime of the self-adjusting (1, λ) EA, the self-adjusting (1 + λ) EA and the (1, λ) EA
with the best known fixed λ on OneMax for different problem sizes. Then, we show a
sharp threshold for the success rate at s ≈ 3.4 where the runtime changes from polynomial
to exponential. This indicates that the widely used one-fifth rule (s = 4) is inefficient
here, but other success rules achieve optimal asymptotic runtime. Next, we show how
different values of s affect the fixed target running times, the growth of λ over time and
the time spent in each fitness value, shedding light on the non-optimal equilibrium states
in the self-adjusting (1, λ) EA. Afterwards, we show how reducing the mutation probability
allows the self-adjusting (1, λ) EA to optimise OneMax with any constant success rate s.
Finally, we study the self-adjusting (1, λ) EA on LeadingOnes and OneMaxBlocks. The
OneMaxBlocks functions allows us to understand better how the difficulty of the fitness
levels affect the performance of the self-adjusting (1, λ) EA.

5.2 Preliminaries

Using the naming convention from [51] we call the algorithm self-adjusting
(1, {F 1/sλ, λ/F}) EA or self-adjusting (1, λ) EA for short (Algorithm 7). Several mutation
operators can be plugged into Line 4 to instantiate a particular self-adjusting (1, λ) EA.
We will consider two operators. Standard bit mutations flip each bit independently with a
mutation probability p. The other mutation operator, that has gain popularity recently, is
the heavy-tailed mutation operator proposed by Doerr et al. [62]. It performs a standard bit
mutation with a mutation probability of p = r/n and r is chosen randomly in each iteration
according to a discrete power-law distribution on [1..n/2] with exponent β > 1.

The self-adjusting (1, λ) EA behaves as the conventional (1, λ) EA (with the correspond-
ing mutation operator), but in every generation it adjusts the offspring population size
depending on the success of the generation. If the fittest offspring y is better than the par-
ent x, the offspring population size is divided by the update strength F , and multiplied by
F 1/s otherwise, with s being the success rate.

The idea of the parameter control mechanism is based on the interpretation of the one-
fifth success rule from [116]. The parameter λ remains constant if the algorithm has a
success every s + 1 generations as then its new value is λ · (F 1/s)s · 1/F = λ. In pseudo-
Boolean optimisation, the one-fifth success rule was first implemented by Doerr et al. [60],
and proved to track the optimal offspring population size on the (1 + (λ, λ)) GA in [50]. Our
implementation is closer to the one used in [68], where the authors generalise the success
rule, implementing the success rate s as a hyper-parameter.

Note that as in Chapter 4 we regard λ to be a real value, so that changes by factors of
1/F or F 1/s happen on a continuous scale. Following Doerr and Doerr [50] and Chapter 4,
we assume that, whenever an integer value of λ is required, λ is rounded to a nearest integer.
For the sake of readability, we often write λ as a real value even when an integer is required.
Where appropriate, we use the notation bλe to denote the integer nearest to λ (that is,
rounding up if the fractional value is at least 0.5 and rounding down otherwise).

5.2.1 Notation

We now give notation for all (1, λ) EA algorithms that will be used in the remaining of this
chapter.

72

Algorithm 7: Self-adjusting (1, {F 1/sλ, λ/F}) EA.

1 Initialization: Choose x ∈ {0, 1}n uniformly at random (u.a.r.) and λ := 1;
2 Optimization: for t ∈ {1, 2, . . . } do
3 Mutation: for i ∈ {1, . . . , λ} do
4 y′i ∈ {0, 1}n ← mutate(x);

5 Selection: Choose y ∈ {y′1, . . . , y′λ} with f(y) = max{f(y′1), . . . , f(y′λ)} u.a.r.;
6 Update:
7 if f(y) > f(x) then x← y; λ← max{1, λ/F};
8 else x← y; λ← F 1/sλ;

We define X0, X1, . . . as the sequence of states of the algorithm, where Xt = (xt, λt)
describes the current search point xt and the offspring population size λt at generation t.
We often omit the subscripts t when the context is obvious.

Since in all (1, λ) EA algorithms selection is performed through comparisons of search
points and hence ranks of search points, the absolute fitness values are not relevant. Without
loss of generality we may therefore assume that the domain of any fitness function is taken
as integers {0, 1, . . . , d} where d + 1 > 1 is the number of different fitness values and all
search points with fitness d are global optima. We exclude constant functions with d = 0,
as these are trivial. We shall refer to all search points with fitness i, for 0 ≤ i ≤ d as fitness
level i.

We will use the following notation for all (1, λ) EA algorithms.

Definition 5.2.1. In the context of the self-adjusting (1, λ) EA with λt = λ for all 0 ≤ i < d
and all search points x with f(x) < d we define:

p−x,λ = Pr (f(xt+1) < f(xt) | xt = x)

p0
x,λ = Pr (f(xt+1) = f(xt) | xt = x)

p+
x,λ = Pr (f(xt+1) > f(xt) | xt = x)

∆−x,λ = E(f(xt)− f(xt+1) | xt = x and f(xt+1) < f(xt))

∆+
x,λ = E(f(xt+1)− f(xt) | xt = x and f(xt+1) > f(xt))

si = min
x
{p+
x,1 | xt = x and f(x) = i}

Here si is a lower bound on the probability of one offspring finding an improvement from
any search point in fitness level i. For functions where all search points x in every fitness
level i have the same probabilities p+

x,λ, p0
x,λ and p−x,λ and the same ∆+

x,λ and ∆−x,λ then
instead we use the following notation.

Definition 5.2.2. In the context of the self-adjusting (1, λ) EA with λt = λ for all 0 ≤ i < d
where all search points {x(1), x(2), . . . } in fitness level i satisfy p+

x(1),λ
= p+

x(2),λ
= . . . ,

p−
x(1),λ

= p−
x(2),λ

= . . . , ∆+
x(1),λ

= ∆+
x(2),λ

= . . . and ∆−
x(1),λ

= ∆−
x(2),λ

= . . . we define:

p−i,λ = Pr (f(xt+1) < i | f(xt) = i)

p0
i,λ = Pr (f(xt+1) = i | f(xt) = i)

p+
i,λ = Pr (f(xt+1) > i | f(xt) = i)

∆−i,λ = E(i− f(xt+1) | f(xt) = i and f(xt+1) < i)

∆+
i,λ = E(f(xt+1)− i | f(xt) = i and f(xt+1) > i)

73

We note that if the conditions in Definition 5.2.2 are met, then si = p+
i,1. We often

refer to the probability p+
x,1 of one offspring improving the current fitness and abbreviate

p+
x := p+

x,1 (and likewise p+
i := p+

i,1, p−x := p−x,1, p−i := p−i,1, etc.).

As in [166], we call ∆+
x,λ and ∆+

i,λ forward drift, and ∆−x,λ and ∆−i,λ backward drift. Note

that the forward and backward drift are at least 1 by definition. Now, p+
x is the probability

of one offspring finding a better fitness value and p+
x,λ = 1− (1− p+

x)λ since it is sufficient

that one offspring improves the fitness. The probability of a fallback is p−x,λ = (p−x)λ since

all offspring must have worse fitness than their parent. These relationships also hold for p+
i,λ

and p−i,λ with p+
i and p−i , respectively.

We write p+
min := min

x
{p+
x | f(x) < d} and p+

max := max
x
{p+
x | f(x) < d} to denote the

minimum and maximum value for the probability p+
x among all non-optimal search points x.

5.2.2 Drift Analysis and Potential Functions

Throughout this chapter we will use drift analysis to obtain bounds for the expected op-
timisation time of the self-adjusting (1, λ) EA on different benchmark functions. As we
have discussed in Section 2.4.3, in order to apply drift analysis we need to identify a poten-
tial function that adequately captures the progress of the algorithm and the distance from
a desired target state. A natural candidate for a potential function is the fitness of the
current individual f(xt). However, the self-adjusting (1, λ) EA adjusts λ throughout the
optimisation, and the expected change in fitness crucially depends on the current value of λ.
Therefore, we also need to take into account the current offspring population size λ and
capture both fitness and λ in our potential function. Since we study different behaviours
of the algorithm depending on the problem in hand and the success rate s we consider an
abstract function h(λt) of the current offspring population sizes. The function h(λt) will be
chosen differently for different contexts, such as proving a positive result for small success
rates s and proving a negative result for large success rates.

Definition 5.2.3. Given a function h : R→ R, we define the potential function g(Xt) as

g(Xt) = f(xt) + h(λt).

We do not make any assumptions on h(λt) at this stage, but we will choose h(λt) in the
following sections as functions of λt that reward increases of λt, for small values of λt. We
believe that this approach should be more widespread and that it could be useful for the
analysis of a wide range of success-based parameter control mechanisms. Similar approaches
have been used before for analysing self-adjusting mutation rates [63, 69] and for continuous
domains in [1, 142, 143]. In addition we believe it might be able to simplify previous analysis
such as [50, 68].

For every function h(λt), we can compute the drift in the potential as shown in the
following lemma.

Lemma 5.2.4. Consider the self-adjusting (1, λ) EA. Then for every function h : R→ R+
0

and every generation t with f(xt) < n and λt > F , E(g(Xt+1)− g(Xt) | Xt = X) is(
∆+
x,λ + h(λ/F)− h(λF 1/s)

)
p+
x,λ + h(λF 1/s)− h(λ)−∆−x,λp

−
x,λ.

If λt ≤ F then, E(g(Xt+1)− g(Xt) | Xt = X) is(
∆+
x,λ + h(1)− h(λF 1/s)

)
p+
x,λ + h(λF 1/s)− h(λ)−∆−x,λp

−
x,λ.

We note that if all search points in fitness level i have the same probabilities p+
x,λ, p0

x,λ

and p−x,λ and the same ∆+
x,λ and ∆−x,λ, then we can replace all subscripts referring to the

current search point x by the current fitness level i in Lemma 5.2.4.

74

Proof of Lemma 5.2.4. When an improvement is found, the fitness increases in expec-
tation by ∆+

x,λ and since λt+1 = λ/F , the λ term changes by h(λ/F) − h(λ). When the

fitness does not change, the λ term changes by h(λF 1/s)−h(λ). When the fitness decreases
the expected decrease is ∆−x,λ and the λ term changes by h(λF 1/s) − h(λ). Together with
λ > F , E(g(Xt+1)− g(Xt) | Xt = X) is(

∆+
x,λ + h(λ/F)− h(λ)

)
p+
x,λ +

(
h(λF 1/s)− h(λ)

)
p0
x,λ +

(
h(λF 1/s)− h(λ)−∆−x,λ

)
p−x,λ

=
(

∆+
x,λ + h(λ/F)− h(λ)

)
p+
x,λ +

(
h(λF 1/s)− h(λ)

)
(p0
x,λ + p−x,λ)−∆−x,λp

−
x,λ

=
(

∆+
x,λ + h(λ/F)− h(λ)

)
p+
x,λ +

(
h(λF 1/s)− h(λ)

)
(1− p+

x,λ)−∆−x,λp
−
x,λ

=
(

∆+
x,λ + h(λ/F)− h(λF 1/s)

)
p+
x,λ + h(λF 1/s)− h(λ)−∆−x,λp

−
x,λ

Line 7 in Algorithm 7 updates λ to max{1, λ/F}, hence, if λ ≤ F then h(λ/F) needs to be
replaced by h(λ/λ) = h(1).

5.3 Success Rates Matter

We begin our study of the self-adjusting (1, λ) EA using standard bit mutation with a mu-
tation probability p = 1/n on the well-known fitness function OneMax(x) :=

∑n
i=1 xi. We

recall from Section 2.3 that OneMax is one of the simplest benchmark functions and be-
cause of this it is traditionally the first function studied on new evolutionary algorithms. We
use OneMax to understand better the parameter dynamics of the self-adjusting (1, λ) EA
and how different values for update strength F and the success rate s affect the performance
of the algorithm.

We show that, for all constant s with 0 < s < 1 the self-adjusting (1, λ) EA optimises
OneMax in O(n) expected generations and O(n log n) expected function evaluations. How-
ever, this success is only possible when the success rate s is chosen appropriately small, the
algorithm requires exponential time with high probability if s ≥ 18.

To bound the expected number of generations for small success rates on OneMax, we
apply drift analysis to a potential function that trades off increases in fitness against a
penalty term for small λ-values. In generations where the fitness decreases, λ increases and
the penalty is reduced, allowing us to show a positive drift in the potential for all fitness
levels and all λ.

To bound the expected number of evaluations, we further use the potential to construct
a novel “ratchet argument”: we show that, even when the fitness decreases, it does not
decrease much below the best fitness seen so far. More precisely, with high probability, if
f(xt) is the current fitness at time t and f∗t = max{f(xt′) | t′ ≤ t} is the best fitness seen
so far, then, with high probability, f(xt) ≥ f∗t − ρ log n for an appropriate constant ρ. Then
we show that there is a constant probability that the best-so far fitness is increased by log n
in a sequence of generations without fallbacks. We are hopeful that these arguments will
prove useful in the analysis of other non-elitist algorithms as well.

We start the analysis with useful bounds for the transition probabilities of the (1, λ) EA
on OneMax. Using common bounds and standard arguments, we obtain the following
lemma.

75

Lemma 5.3.1. For any (1, λ) EA on OneMax, the quantities from Definition 5.2.2 are
bounded as follows.

1− en

en+ λ(n− i)
≤ 1−

(
1− n− i

en

)λ
≤ p+

i,λ (5.1)

p+
i,λ ≤ 1−

(
1− 1.14

(
n− i
n

)(
1− 1

n

)n−1
)λ
≤ 1−

(
1− n− i

n

)λ
(5.2)

If 0.84n ≤ i ≤ 0.85n and n ≥ 163, then p+
i ≤ 0.069.(

i

n
− 1

e

)λ
≤ p−i,λ ≤

(
1− n− i

en
−
(

1− 1

n

)n)λ
≤
(
e− 1

e

)λ
(5.3)

1 ≤ ∆−i,λ ≤
e

e− 1
(5.4)

1 ≤ ∆+
i,λ ≤

∞∑
j=1

(
1−

(
1− 1

j!

)λ)
(5.5)

If λ ≥ 5, then ∆+
i,λ ≤ dlog λe+ 0.413.

Proof. We start by bounding the probability of one offspring being better than the parent x.
For the lower bound a sufficient condition for the offspring to be better than the parent is
that only one 0-bit is flipped. Therefore,

p+
i ≥

n− i
n

(
1− 1

n

)n−1

≥ n− i
en

. (5.6)

Along with p+
i,λ = 1 − (1 − p+

i)λ, this proves one of the lower bounds in Equation (5.1)

in Lemma 5.3.1. Additionally, using (1 + x)r ≤ 1
1−rx for all x ∈ [−1, 0] and r ∈ N

p+
i,λ ≥ 1−

(
1− n− i

en

)λ
≥ 1− 1

1 + λ(n−i)
en

= 1− en

en+ λ(n− i)
.

For the upper bound a necessary condition for the offspring to be better than the parent
is that at least one 0-bit is flipped, hence

p+
i ≤

n− i
n

.

Additionally, we use the following upper bound shown in [153]:

p+
i ≤ 1.14

(
n− i
n

)(
1− 1

n

)n−1

.

Along with p+
i,λ = 1 − (1 − p+

i)λ, this proves the upper bounds in Equation (5.2) in
Lemma 5.3.1.

The additional upper bound for p+
i when 0.84n ≤ i ≤ 0.85n uses a precise bound for

which we will give a complete proof in Section 6.3 of:

p+
i ≤

(
1− 1

n

)n−2 ∞∑
a=0

∞∑
b=a+1

(
i

n

)a(
n− i
n

)b
1

a!b!

≤ 1

e

(
1− 1

n

)−2 ∞∑
a=0

∞∑
b=a+1

(0.85)
a

(0.16)
b 1

a!b!

≤
(

1− 1

n

)−2

0.068152.

76

This implies that, for every n ≥ 163 and 0.84n ≤ i ≤ 0.85n, p+
i ≤ 0.069.

We now calculate p−i . For the upper bound we use

p−i = 1− p+
i − p

0
i .

Using Equation (5.6) and bounding p0
i from below by the probability of no bit flipping, that

is,

p0
i ≥

(
1− 1

n

)n
,

we get

p−i ≤ 1− n− i
en
−
(

1− 1

n

)n
. (5.7)

Finally, for the lower bound we note that for an offspring to have less fitness than the
parent it is sufficient that one of the i 1-bits and none of the 0-bits is flipped. Therefore,

p−i ≥

(
1−

(
1− 1

n

)i)(
1− 1

n

)n−i
=

(
1− 1

n

)n−i
−
(

1− 1

n

)n
≥ 1− n− i

n
− 1

e
=

i

n
− 1

e
. (5.8)

Using p−i,λ = (p−i)λ with Equations (5.7) and (5.8) we obtain

(
i

n
− 1

e

)λ
≤ p−i,λ ≤

(
1− n− i

en
−
(

1− 1

n

)n)λ
.

The upper bound is simplified as follows:

p−i,λ ≤
(

1− n− i
en
−
(

1− 1

n

)n)λ
≤
(

1− 1

en
−
(

1− 1

n

)n)λ
≤
(

1− 1

en
− 1

e

(
1− 1

n

))λ
=

(
1− 1

e

)λ
=

(
e− 1

e

)λ
.

To prove the bounds on the backward drift from Equation (5.4), note that the drift is
conditional on a decrease in fitness, hence the lower bound of 1 is trivial.

The backward drift of a generation with λ offspring can be upper bounded by a generation
with only one offspring.

We pessimistically bound the backward drift by the expected number of flipping bits in
a standard bit mutation. Under this pessimistic assumption, the condition f(xt+1) < i is
equivalent to at least one bit flipping. Let B denote the random number of flipping bits
in a standard bit mutation with mutation probability 1/n, then E(B) = 1, Pr (B ≥ 1) =

77

1− (1− 1/n)n ≥ 1− 1/e = (e− 1)/e and

∆−i,λ ≤ E(B | B ≥ 1) =

∞∑
x=1

Pr (B = x | B ≥ 1) · x

=

∞∑
x=1

Pr (B = x)

Pr (B ≥ 1)
· x =

E(B)

Pr (B ≥ 1)
≤ e

e− 1
.

The lower bound on the forward drift, Equation (5.5), is again trivial since the forward
drift is conditional on an increase in fitness.

To find the upper bound of ∆+
i,λ we pessimistically assume that all bit flips improve the

fitness. Then we use the expected number of bit flips to bound ∆+
i,λ. Let B again denote

the random number of flipping bits in a standard bit mutation with mutation probability
1/n, then

Pr (B ≥ j) =

(
n

j

)(
1

n

)j
≤ 1

j!
.

To compute ∆+
i,λ we use the probability that any of the λ offspring flip at least j bits as

follows:

∆+
i,λ ≤

∞∑
j=1

(
1−

(
1− 1

j!

)λ)
.

For λ ≥ 5 we bound the first dlog λe summands by 1 and apply Bernoulli’s inequality:

∆+
i,λ ≤ dlog λe+

∞∑
j=dlog λe+1

(
1−

(
1− 1

j!

)λ)

≤ dlog λe+ λ

∞∑
j=dlog λe+1

1

j!

≤ dlog λe+ 2dlog λe
∞∑

j=dlog λe+1

1

j!
.

The function f : N → R with f(x) := 2x
∑∞
j=x+1

1
j! is decreasing with x and thus for all

λ ≥ 5 we get ∆+
i,λ ≤ dlog λe+ f(3) = dlog λe+ 8

3 (3e− 8) < dlog λe+ 0.413.

We now show the following lemma that establishes a natural limit to the value of λ.

Lemma 5.3.2. Consider the self-adjusting (1, λ) EA on any unimodal function with an
initial offspring population size of λ0 ≤ eF 1/sn3. The probability that, during a run, the off-
spring population size exceeds eF 1/sn3 before the optimum is found is at most exp(−Ω(n2)).

Proof. In order to have λt+1 ≥ eF 1/sn3, a generation with λt ≥ en3 must be unsuccessful.
Since there is always a one-bit flip that improves the fitness and the probability that an

offspring flips only one bit is 1
n

(
1− 1

n

)n−1 ≥ 1
en , then the probability of an unsuccessful

generation with λ ≥ en3 is at most(
1− 1

en

)en3

≤ exp(−n2)

78

The probability of finding the optimum in one generation with any λ and any current
fitness is at least n−n = exp(−n lnn). Hence the probability of exceeding λ = eF 1/sn3

before finding the optimum is at most

exp(−n2)

exp(−n lnn) + exp(−n2)
≤ exp(−n2)

exp(−n lnn)
= exp(−Ω(n2)).

5.3.1 Small Success Rates are Efficient

We show that, for suitable choices of the success rate s and constant update strength F , the
self-adjusting (1, λ) EA optimises OneMax in O(n) expected generations and O(n log n)
expected evaluations.

Bounding the Number of Generations

We first only focus on the expected number of generations as the number of function evalua-
tions depends on the dynamics of the offspring population size over time and is considerably
harder to analyse. The following theorem states the main result of this section.

Theorem 5.3.3. Let the update strength F > 1 and the success rate 0 < s < 1 be constants.
Then for any initial search point and any initial λ the expected number of generations of the
self-adjusting (1, λ) EA on OneMax is O(n).

We make use of the potential function from Definition 5.2.3 and define h(λ) to obtain
the potential function used in this section as follows.

Definition 5.3.4. We define the potential function g1(Xt) as

g1(Xt) = f(xt)−
2s

s+ 1
logF

(
max

(
enF 1/s

λt
, 1

))
.

The definition of h(λ) in this case is used as a penalty term that grows linearly in logF λ

(since − logF

(
enF 1/s

λt

)
= − logF (enF 1/s)+logF (λt)). That is, when λ increases the penalty

decreases and vice-versa. The idea behind this definition is that small values of λ may lead
to decreases in fitness, but these are compensated by an increase in λ and a reduction of the
penalty term.

Since the range of the penalty term is limited, the potential is always close to the current
fitness as shown in the following lemma.

Lemma 5.3.5. For all generations t, the fitness and the potential are related as follows:
f(xt)− 2s

s+1 logF (enF 1/s) ≤ g1(Xt) ≤ f(xt). In particular, g1(Xt) = n implies f(xt) = n.

Proof. The penalty term 2s
s+1 logF

(
max

(
enF 1/s

λt
, 1
))

is a non-increasing function in λt with

its minimum being 0 for λ ≥ enF 1/s and its maximum being 2s
s+1 logF

(
enF 1/s

)
when λ = 1.

Hence, f(xt)− 2s
s+1 logF (enF 1/s) ≤ g1(Xt) ≤ f(xt).

Now we proceed to show that with the correct choice of hyper-parameters the drift in
potential is at least a positive constant during all parts of the optimisation.

Lemma 5.3.6. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.3. Then for every
generation t with f(xt) < n,

E(g1(Xt+1)− g1(Xt) | Xt) ≥
1− s

2e
.

for large enough n. This also holds when only considering improvements that increase the
fitness by 1.

79

Proof. Given that h(λt) = − 2s
s+1 logF

(
max

(
enF 1/s

λt
, 1
))

is a non-decreasing function, if

λ ≤ F then h(1) ≥ h(λ/F). Hence, by Lemma 5.2.4, for all λ, E(g1(Xt+1)− g1(Xt) | Xt) is
equal to (

∆+
i,λ + h(λ/F)− h(λF 1/s)

)
p+
i,λ + h(λF 1/s)− h(λ)−∆−i,λp

−
i,λ. (5.9)

We first consider the case λt ≤ en as then λt+1 ≤ enF 1/s and h(λt+1) =
− 2s
s+1 (logF (enF 1/s) − logF (λt+1)) < 0. Hence, E(g1(Xt+1)− g1(Xt) | Xt, λt ≤ en) is at

least

=

(
∆+
i,λ +

2s

s+ 1
logF

(
λ

F

)
− 2s

s+ 1
logF

(
λF 1/s

))
p+
i,λ +

2s

s+ 1
logF

(
λF 1/s

)
− 2s

s+ 1
logF (λ)−∆−i,λp

−
i,λ

=

(
∆+
i,λ −

2s

s+ 1

(
s+ 1

s

))
p+
i,λ +

2s

s+ 1

(
1

s

)
−∆−i,λp

−
i,λ

=
2

s+ 1
+
(

∆+
i,λ − 2

)
p+
i,λ −∆−i,λp

−
i,λ.

By Lemma 5.3.1 ∆+
i,λ ≥ 1, hence E(g1(Xt+1)− g1(Xt) | Xt, λt ≤ en) ≥ 2

s+1−p
+
i,λ−∆−i,λp

−
i,λ.

Using 2
s+1 = s+1+1−s

s+1 = 1 + 1−s
s+1 yields

E(g1(Xt+1)− g1(Xt) | Xt, λt ≤ en) ≥ 1 +
1− s
s+ 1

− p+
i,λ −∆−i,λp

−
i,λ

By Lemma 5.3.1 this is at least

1− s
s+ 1

+

(
1− 1.14

(
n− i
n

)(
1− 1

n

)n−1
)bλe
−
(

e

e− 1

)(
1− n− i

en
−
(

1− 1

n

)n)bλe

≥ 1− s
s+ 1

+

(
1− 1.14

e
(
1− 1

n

) (n− i
n

))bλe
−
(

e

e− 1

)(
1− n− i

en
− 1

e

(
1− 1

n

))bλe
=

1− s
s+ 1

+

(
1− 1.14

e

(
n− i
n− 1

))bλe
−
(

e

e− 1

)(
e− 1

e
− n− i− 1

en

)bλe
. (5.10)

We start taking into account only bλe ≥ 2, that is, λ ≥ 1.5 and later on we will deal with
bλe = 1. For bλe ≥ 2, E(g1(Xt+1)− g1(Xt) | Xt, 1.5 ≤ λt ≤ en) is at least

1− s
s+ 1

+

(
1− 1.14

e

(
n− i
n− 1

))bλe
−
(

e

e− 1

)bλe/2(
e− 1

e
− n− i− 1

en

)bλe
=

1− s
s+ 1

+

(
1− 1.14

e

(
n− i
n− 1

))
︸ ︷︷ ︸

y1

bλe

−

((
e− 1

e

)1/2

− n− i− 1

(e2 − e)1/2n

)
︸ ︷︷ ︸

y2

bλe

Let y1 and y2 be the respective bases of the terms raised to bλe as indicated
above. We will now prove that y1 ≥ y2 for all 0 ≤ i < n which implies that
E(g1(Xt+1)− g1(Xt) | Xt, 1.5 ≤ λt ≤ en) ≥ 1−s

s+1 ≥
1−s
2e .

The terms y1 and y2 can be described by linear equations y1 = m1(n− i) + b1 and

y2 = m2(n− i) + b2 with m1 = − 1.14
e(n−1) , b1 = 1, m2 = − 1

n
√
e2−e and b2 =

√
e−1
e + 1

n
√
e2−e .

Since m2 < m1 for all n ≥ 11, the difference y1 − y2 is minimised for n − i = 1. When

80

n − i = 1, then y1 = 1 − 1.14
e(n−1) >

(
e−1
e

)1/2
= y2 for all n > 3, therefore y1 > y2 for all

0 ≤ i < n.
When bλe = 1, from Equation (5.10) E(g1(Xt+1)− g1(Xt) | Xt, λt ≤ 1.5) ≥ 1−s

s+1 −
1.14
e

(
n−i
n−1

)
+ n−i−1

(e−1)n which is monotonically decreasing for 0 < i < n − 1 when

n > e/(1.14− 0.14e) ≈ 3.58, hence E(g1(Xt+1)− g1(Xt) | Xt, λt ≤ 1.5) ≥ 1−s
s+1 −

1.14
e(n−1)

which is bounded by 1−s
2e for large enough n.

Finally, for the case λt > en, in an unsuccessful generation the penalty term is capped,
hence h(λF 1/s) = h(λ). Then by Equation (5.9), E(g1(Xt+1)− g1(Xt) | Xt, λt > en) is at
least (

∆+
i,λ + h(λ/F)− h(λ)

)
p+
i,λ −∆−i,λp

−
i,λ

=

(
∆+
i,λ +

2s

s+ 1
logF

(
λ

F

)
− 2s

s+ 1
logF (λ)

)
p+
i,λ −∆−i,λp

−
i,λ

=

(
∆+
i,λ −

2s

s+ 1

)
p+
i,λ −∆−i,λp

−
i,λ

By Lemma 5.3.1, λt > en implies p+
i,λ ≥ 1−

(
1− 1

en

)en ≥ 1− 1
e and p−i,λ∆−i,λ ≤

(
e−1
e

)en e
e−1 =(

e−1
e

)en−1
. Together,

E(g1(Xt+1)− g1(Xt) | Xt, λt > en)

≥
(

∆+
i,λ −

2s

s+ 1

)
p+
i,λ −∆−i,λp

−
i,λ

≥
(

1− 1

e

)(
1− 2s

s+ 1

)
−
(
e− 1

e

)en−1

.

Since
(
1− 1

e

)
= 1

e +
(
1− 2

e

)
and

(
1− 2

e

) (
1− 2s

s+1

)
is a positive constant, for large enough n

this is larger than
(
e−1
e

)en−1
and

E(g1(Xt+1)− g1(Xt) | Xt, λt > en) ≥ 1

e

(
1− 2s

s+ 1

)
=

1

e

(
1− s
s+ 1

)
≥ 1− s

2e
.

Since s < 1, this is a strictly positive constant.

With this constant lower bound on the drift of the potential, the proof of Theorem 5.3.3
is now quite straightforward.

Proof of Theorem 5.3.3. We bound the time to get to the optimum using the potential
function g1(Xt). Lemma 5.3.6 shows that the potential has a positive constant drift whenever
the optimum has not been found, and by Lemma 5.3.5 if g1(Xt) = n then the optimum has
been found. Therefore, we can bound the number of generations by the time it takes for
g1(Xt) to reach n.

To fit the perspective of the additive drift theorem (Theorem 2.4.14) we switch to the
function g1(Xt) := n− g1(Xt) and note that g1(Xt) = 0 implies that g1(Xt) = f(xt) = n.
The initial value g1(X0) is at most n + 2s

s+1 logF
(
enF 1/s

)
by Lemma 5.3.5. Using

Lemma 5.3.6 and the additive drift theorem, the expected number of generations is at
most

n+ 2s
s+1 logF

(
enF 1/s

)
1−s
2e

= O(n).

81

Bounding the Number of Evaluations

A bound on the number of generations, by itself, is not sufficient to claim that the
self-adjusting (1, λ) EA is efficient in terms of the number of evaluations. Obviously, the
number of evaluations in generation t equals λt and this quantity is being self-adjusting over
time. So we have to study the dynamics of λt more carefully. Since λ grows exponentially in
unsuccessful generations, it could quickly attain very large values. However, we show that
this is not the case and only O(n log n) evaluations are sufficient, in expectation.

Theorem 5.3.7. Let the update strength F > 1 and the success rate 0 < s < 1 be constants.
The expected number of function evaluations of the self-adjusting (1, λ) EA on OneMax is
O(n log n).

Bounding the number of evaluations is more challenging than bounding the number of
generations as we need to keep track of the offspring population size λ and how it develops
over time. Large values of λ lead to a large number of evaluations made in one generation.
Small values of λ can lead to a fallback.

If our algorithm was elitist, small values of λ would not be an issue since there would
be no fallbacks. We will show later on (Theorem 5.3.12) that then the algorithm will spend
O(n log n) evaluations, refining the amortised analysis from Lässig and Sudholt [120]. This
analysis relies on every fitness level being visited at most once. In our non-elitist algorithm,
this is not guaranteed. Small values of λ can lead to decreases in fitness, and then the same
fitness level can be visited multiple times.

The reader may think that small values of λ only incur few evaluations and that the
additional cost for a fallback is easily accounted for. However, it is not that simple. Imagine
a fitness level i and a large value of λ such that a fallback is unlikely. But it is possible for
λ to decrease in a sequence of improving steps. Then we would have a small value of λ and
possibly a sequence of fitness-decreasing steps. Suppose the fitness decreases to a value at
most i, then if λ returns to a large value, we may have visited fitness level i multiple times,
with large (and costly) values of λ.

It is possible to show that, for sufficiently challenging fitness levels, λ moves towards an
equilibrium state, i. e. when λ is too small, it tends to increase. However, this is generally
not enough to exclude drops in λ. Since λ is multiplied or divided by a constant factor in
each step, a sequence of k improving steps decreases λ by a factor of F k, which is exponential
in k. For instance, a value of λ = logO(1) n can decrease to λ = Θ(1) in only O(log log n)
generations. We found that standard techniques such as the negative drift theorem, applied
to logF (λt), are not strong enough to exclude drops in λ.

We solve this problem as follows. We consider the best-so-far fitness f∗t = max{f(xt′) |
0 ≤ t′ ≤ t} at time t (as a theoretical concept, as the self-adjusting (1, λ) EA is non-elitist
and unaware of the best-so-far fitness) and use drift arguments from Section 5.3.1, and the
negative drift theorem (Theorem 2.4.16) to show that, with high probability, the current
fitness never drops far below f∗t , that is, f(xt) ≥ f∗t −ρ log n for a constant ρ > 0. This yields
what we call a ratchet argument1: if the best-so-far fitness increases, the lower bound on
the current fitness increases as well. The lower bound thus works like a ratchet mechanism
that can only move in one direction.

It remains to show that the best-so-far fitness increases efficiently. We divide the run
into fitness intervals of size log n that we call blocks, and bound the time for the best-so-far
fitness to reach a better block. This task is easier than bounding the time to go all the way
to the optimum since it is sufficient to have a sequence of generations in which λ maintains
large enough values (i. e. λ ≥ 4 log n) such that with high probability the fitness does not
decrease and the self-adjusting (1, λ) EA temporarily behaves like an elitist algorithm. We

1This name is inspired by the term “Muller’s ratchet” from biology [80] that considers a ratchet mechanism
in asexual evolution, albeit in a different context.

82

show that, starting from an arbitrary λ-value, the probability of having such a period of
generations with temporary elitism is Ω(1) and that the expected time to reach the next
block is only by at most a constant factor larger than that of an elitist algorithm. Adding
up expected times for each block then yields the claimed O(n log n) bound.

Understanding Search Dynamics in the Self-Adjusting (1, λ) EA

As a first step, we need to gain a better understanding of the search dynamics and the
development of λ over time. We first re-use the potential drift arguments from the proof of
Theorem 5.3.3 to show that the number of generations to increase the current fitness to a
new block is bounded as follows. For b = a+ log n, this bound is O(log n).

Lemma 5.3.8. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.7. For every a, b ∈
{0, . . . , n}, the expected number of generations to increase the current fitness from a value
at least a to at least b is at most

b− a+ 2s
s+1 logF

(
enF 1/s

)
1−s
2e

= O(b− a+ log n).

Proof. We use the proof of Theorem 5.3.3 with a revised potential function of
g1
′(Xt) := max(g1(Xt)− (n− b), 0) and stopping when g1

′(Xt) = 0 (which implies that a
fitness of at least b is reached) or a fitness of at least b is reached beforehand. Note that the
maximum caps the effect of fitness improvements that jump to fitness values larger than b.
As remarked in Lemma 5.3.6, the drift bound for g1(Xt) still holds when only considering
fitness improvements by 1. Hence, it also holds for g1

′(Xt) and the analysis goes through as
before.

Now we show our ratchet argument and that with high probability the fitness does not
decrease when λ ≥ 4 log n.

Lemma 5.3.9. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.7. Let
f∗t := maxt′≤t f(xt′) be its best-so-far fitness at generation t and let T be the first generation
in which the optimum is found. Then with probability 1 − O(1/n) the following statements
hold for a large enough constant ρ > 0 (that may depend on s).

1. For all t ≤ T in which λt ≥ 4 log n, we have f(xt+1) ≥ f(xt).

2. For all t ≤ T , the fitness is at least: f(xt) ≥ f∗t − ρ log n.

Proof. Let Et1 denote the event that λt < 4 log n or f(xt+1) ≥ f(xt). Hence we only need
to consider λt-values of λt ≥ 4 log n ≥ 2 log e

e−1
n and by Lemma 5.3.1 we have

Pr
(
Et1

)
≤
(
e− 1

e

)λt
≤
(
e− 1

e

)2 log e
e−1

n

=
1

n2
.

By a union bound, the probability that this happens in the first T generations is at most∑∞
t=1 Pr (T = t)·t/n2 = E(T)/n2 = O(1/n). For the second statement, let t∗ be a generation

in which the best-so-far fitness was attained: f(xt∗) = f∗t . By Lemma 5.3.5, abbreviating
α := 2s

s+1 logF (enF 1/s), the condition f(xt∗) ≥ f(xt)+ρ log n implies g1(Xt∗) ≥ f(xt∗)−α ≥
f(xt)− α+ ρ log n ≥ g1(Xt)− α+ ρ log n.

Now define events Et2 = (∀t′ ∈ [t + 1, n2] : g1(Xt′) ≥ g1(Xt) + α − ρ log(n)). We apply

the negative drift theorem (Theorem 2.4.16) to bound Pr
(
Et2

)
from above. For any t < n2

let a := g1(Xt) − ρ log n + α and b := g1(Xt) < n, where ρ > α will be chosen later
on. We pessimistically assume that the fitness component of g1 can only increase by at
most 1. Lemma 5.3.6 has already shown that, even under this assumption, the drift is
at least a positive constant. This implies the first condition of Theorem 2.4.16. For the

83

second condition, we need to bound transition probabilities for the potential. Owing to our
pessimistic assumption, the current fitness can only increase by at most 1. The fitness only
decreases by j if all offspring are worse than their parent by at least j. Hence, for all λ, the
decrease in fitness is bounded by the decrease in fitness of the first offspring. The probability
of the first offspring decreasing fitness by at least j is bounded by the probability that j bits
flip, which is in turn bounded by 1/(j!) ≤ 2/2j . The possible penalty in the definition of g1

changes by at most max
(
se
e−1 ,

se
e−1 ·

1
s

)
= e

e−1 < 1. Hence, for all t,

Pr (|g1(Xt−1)− g1(Xt)| ≥ j + 1 | g1(Xt) > a) ≤ 4

2j+1
,

which meets the second condition of Theorem 2.4.16. It then states that there is a constant
c∗ such that the probability that within 2c

∗(a−b)/4 generations a potential of at most a is
reached, starting from a value of at least b, is 2−Ω(a−b). By choosing the constant ρ large
enough, we can scale up a− b and thus make 2c

∗(a−b)/4 ≥ n2 and 2−Ω(a−b) = O(1/n2). This

yields Pr
(
Et2

)
= O(1/n2).

Arguing as before, the probability that Et2 happens during O(n) expected generations is
O(1/n). By Markov’s inequality, the probability of not finding the optimum in n2 generations
is O(1/n) as well. Adding up all failure probabilities completes the proof.

The following lemma bounds the probability of increasing a small λ value to a desired
one from below.

Lemma 5.3.10. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.7 and assume that
the typical events stated in Lemma 5.3.9 occur. Let i := f(xt) and ρ be the constant from
Lemma 5.3.9. Then for all λnew ≥ λinit ≥ 1 the probability that λ is increased from λinit to
λnew in a sequence of s logF (λnew/λinit) non-improving generations is at least

1−
λnewp

+
i−ρ logn

F 1/s − 1
.

Proof. While no improvement is found, λ is multiplied by F 1/s in every iteration.
Then λ reaches a value of λnew from λinit in γ := s logF (λnew/λinit) iterations (since
λinit · F s logF (λnew/λinit)/s = λnew). The number of evaluations made during this time is
at most

γ−1∑
j=0

λinit · F j/s = λinit ·
γ−1∑
j=0

(F 1/s)j = λinit ·
(F 1/s)γ − 1

F 1/s − 1

= λinit ·
λnew/λinit − 1

F 1/s − 1
≤ λnew

F 1/s − 1
.

Since, owing to Lemma 5.3.9, the fitness is always at least i−ρ log n and p+
i is non-increasing

in i, the probability of an improvement during any offspring creation is at most p+
i−r logn.

By a union bound, the probability of having an improvement during λnew

F 1/s−1
mutations of a

search point with fitness i is at most
λnewp

+
i−ρ logn

F 1/s−1
.

Now we bound the probability of returning to a small value of λ.

Lemma 5.3.11. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.7 and assume that
the typical events stated in Lemma 5.3.9 occur. If the current fitness is f(xt) ≥ n− n/ log3 n
and λt ≥ 4 log3 n, then, for every constant C > 0, the probability that within C log n itera-
tions a λ-value of at most 4 log n is reached is at most (log n)−ω(1).

84

Proof. We assume that λt < 4F log3 n as otherwise we can wait until λ drops below
4F log3 n (or C log n generations have passed).

By Lemma 5.3.9, while λ ≥ 4 log n the current fitness does not decrease. Consequently,
the probability of an offspring finding an improvement is always bounded from above by
p+
i ≤ 1

log3 n
.

For k := 2 logF (log n) we have 4 log3(n)/F k = 4 log n. A necessary condition to decrease
λ from a value at least 4 log3 n to a value below 4 log n is that for every j ∈ {0, . . . , k − 1}
there exist generations in which an improvement is found while λ ≤ 4 log3(n)/F j . Then, by
a union bound, the probability of finding an improvement is at most 4 log3(n)/F j ·p+

i . There

are
(
C logn
k

)
ways to choose these generations. Once these are fixed, the joint probability of

having improvements in all these iterations is at most

k−1∏
j=0

(
4F log3 n

F j
· p+
i

)
≤
(
4F log3(n)p+

i

)k
F−

∑k−1
j=0 j

≤ (4F)
k
F−k(k−1)/2.

Along with a factor of
(
C logn
k

)
≤ (eC log(n)/k)k we bound the sought probability as(

λtp
+
i eC log n

kF (k−1)/2

)k
≤
(

4F log3(n) · 1/(log3 n) · eC log n

kF−1/2 log n

)k
=

(
4eCF 3/2

k

)k
= (log log n)−Ω(log logn) = (log n)−Ω(log log logn).

Analysing the Elitist Self-Adjusting (1 + λ) EA

While the fitness does not decrease, the self-adjusting (1, λ) EA behaves like an elitist
algorithm, i. e. a self-adjusting (1 + λ) EA. We now consider this elitist algorithm bound its
expected time to increase the fitness from a to b.

Theorem 5.3.12. Consider the elitist self-adjusting (1 + λ) EA on any function with d+ 1
fitness values, starting with a fitness of f(x0) ≥ a. Let si be a lower bound on the probability
of one offspring finding an improvement from any search point in fitness level i. For every
integer b ≤ d, the expected number of evaluations to reach a fitness of at least b is at most

λ0 ·
F

1− F
+

(
1

e
+

1− F−1/s

ln(F 1/s)

)
· F

s+1
s − 1

F − 1

b−1∑
i=a

1

si
.

For OneMax this is at most,

λinit ·
F

1− F
+

(
1

e
+

1− F−1/s

ln(F 1/s)

)
· F

s+1
s − 1

F − 1

b−1∑
i=a

en

n− i
.

Note that the term
∑b−1
i=a

1
si

represents an upper bound for the expected time for the
(1+1) EA on any function with d + 1 fitness values, starting with a fitness of a, to reach
a fitness of at least b obtained via the fitness-level method (where the highest fitness level
contains all search points with fitness at least b). The bound from Theorem 5.3.12 is thus
only by a constant factor and an additive term of λinit · F

1−F larger.
We further remark that Theorem 5.3.12 immediately implies the following.

85

Corollary 5.3.13. The expected number of function evaluations of the elitist
self-adjusting (1 + λ) EA using any constant parameters s > 0, F > 1 and λ0 = O(n log n)
on OneMax is O(n log n).

To prove Theorem 5.3.12, we argue that the analysis can be boiled down to the number of
evaluations made in unsuccessful generations. This is made precise in the following lemma.

Lemma 5.3.14. Consider the elitist self-adjusting (1 + λ) EA on every fitness function with
f(x0) ≥ a and λ0 = λinit. Fix an integer b ≤ d and, for all 0 ≤ i ≤ d− 1, let Ui denote the
number of function evaluations made during all unsuccessful generations on fitness level i.
Then the number of evaluations to reach a fitness of at least b is at most

λinit ·
F

1− F
+
F
s+1
s − 1

F − 1

b−1∑
i=a

Ui.

A bound on the expected number of evaluations is obtained by replacing Ui with E(Ui).

Proof. We refine the accounting method used in the analysis of the (1 + {2λ, λ/2}) EA
in [166]. The main idea is: if some fitness level i increases λ to a large value, we charge
the costs for increasing λ to that fitness level. In addition, we charge costs that pay for
decreasing λ down to 1 in future successful generations. Hence, a successful generation
comes for free, at the expense of a constant factor for the cost of unsuccessful generations.

Let φ(λt) := F
F−1λt and imagine a fictional bank account. We make an initial payment

of φ(λinit) to that bank account. If a generation t is unsuccessful, we pay λt for the current
generation and deposit an additional amount of φ(λtF

1/s) − φ(λt). If an improvement is
found, we withdraw an amount of λt to pay for generation t.

We show by induction: for every generation t, the account’s balance is φ(λt). This is
true for the initial generation owing to the initial payment of φ(λinit). Assume the statement
holds for time t. If generation t is unsuccessful, the new balance is

φ(λt) + (φ(λtF
1/s)− φ(λt)) = φ(λtF

1/s) = φ(λt+1).

If generation t is successful, λt+1 = λt/F and the new balance is

φ(λt)− λt =

(
F

F − 1
− 1

)
λt =

1

F − 1
· λt =

F

F − 1
· λt+1 = φ(λt+1).

Now the costs of an unsuccessful generation t are

λt + φ(λtF
1/s)− φ(λt) = λt

(
1 +

F
s+1
s

F − 1
− F

F − 1

)
= λt ·

F
s+1
s − 1

F − 1
,

that is, by a factor of F
s+1
s −1
F−1 larger than the number of evaluations in that generation.

Recall that successful generations incur no costs as the additional factor in unsuccessful
generation has already paid for these evaluations. This implies that, if Ui denotes the
number of evaluations during all unsuccessful generations on fitness level i, the costs incurred

on fitness level i are Ui · F
s+1
s −1
F−1 . Summing up over all non-optimal i and adding costs

φ(λinit) = λinit · F
F−1 to account for the initial value of λ yields the claimed bound.

The final statement on the expected number of evaluations follows from taking expecta-
tions and exploiting linearity of expectations.

The next step is to bound E(Ui), that is, the expected number of evaluations in unsuc-
cessful generations on an arbitrary but fixed fitness level i.

86

Lemma 5.3.15. Consider the self-adjusting (1 + λ) EA on every fitness function starting on
fitness level i with an offspring population size of λ. For every initial λ, the expected number
of evaluations in unsuccessful generations for the self-adjusting (1 + λ) EA on fitness level i
is at most

E(Ui) ≤
1

si
·
(

1

e
+

1− F−1/s

ln(F 1/s)

)
.

Note that the bound from Lemma 5.3.15 does not depend on the initial value of λ.
Roughly speaking, for small values of λ, the algorithm will typically increase λ to a value
where improvements become likely, and then the number of evaluations essentially depends
on the difficulty of the fitness level, expressed through the factor of 1

si
from the lemma’s

statement. If λ is larger than required, with high probability the first generation is successful
and then there are no evaluations in an unsuccessful generation on fitness level i.

In order to prove Lemma 5.3.15, we first need two technical lemmas.

Lemma 5.3.16. Let f : R+
0 → R+

0 be an integrable function with a unique maximum at α.
Then

∞∑
i=0

f(i) ≤ f(α) +

∫ ∞
0

f(i) di.

Proof. We assume that
∫∞

0
f(i) di < ∞ as otherwise the claim is trivial. Since f is non-

decreasing in [0, bαc], for all i = 0, . . . , bαc − 1 we have f(i) ≤
∫ i+1

i
f(i) di. This yields

bαc∑
i=0

f(i) ≤
∫ bαc

0

f(i) di+ f(bαc).

Likewise, since f is non-increasing in [bαc + 1,∞), for all i = bαc + 2, . . . we have f(i) ≤∫ i
i−1

f(i) di. This yields

∞∑
i=bαc+1

f(i) ≤
∫ ∞
bαc+1

f(i) di+ f(bαc).

Assume f(bαc) ≤ f(bαc+ 1), then f(i) ≥ f(bαc) for all i ∈ [bαc, bαc+ 1] and thus f(bαc) ≤∫ bαc+1

bαc f(i) di. This implies

f(bαc) + f(bαc+ 1) ≤ f(α) +

∫ bαc+1

bαc
f(i) di.

The case f(bαc) > f(bαc+ 1) is symmetric and leads to the same statement. Together, this
implies the claim.

We will also need a closed form for the following integral.

Lemma 5.3.17. ∫ ∞
j=0

αj · exp
(
−β · αj

)
dj =

e−β

β ln(α)
.

Proof. The integral can be written as

1

ln(α)

∫ ∞
j=0

αj ln(α) · exp
(
−β · αj

)
di.

For f(x) := exp(−βx) and ϕ(x) = αx, along with ϕ′(x) = αx ln(α), this is

1

ln(α)

∫ ∞
j=0

ϕ′(x) · f(ϕ(x)) dx.

87

The rule of integration by substitution states that
∫ b
a
ϕ′(x) · f(ϕ(x)) dx =

∫ ϕ(b)

ϕ(a)
f(u) du.

Using
∫

exp(−βu) du = − e
−βu

β , the above is

1

ln(α)
· lim
b→∞

∫ ϕ(b)

ϕ(0)

f(u) du =
1

ln(α)
· lim
u→∞

e−β − e−βu

β
=

1

ln(α)
· e
−β

β
.

Now we use these technical lemmas to prove Lemma 5.3.15.

Proof of Lemma 5.3.15. Since we are considering an elitist algorithm, fitness level i is
left for good once we have a success from a current search point on level i. Starting with an
offspring population size of λ, if generations 0, . . . , j are unsuccessful, the j-th unsuccessful
generation has an offspring population size of λF j/s. However, it is only counted in the
expectation we are aiming to bound if there is no success in generations 0, . . . , j. There is

no success in generations 0, . . . , j if and only if the algorithm makes λ
∑j
`=0 F

`/s = λF
j+1
s −1

F 1/s−1
evaluations without generating an improvement. Hence the expected number of evaluations
in unsuccessful generations is equal to

∞∑
j=0

λF j/s · Pr

(
no success in λ · F

j+1
s − 1

F 1/s − 1
evaluations

)

=

∞∑
j=0

λF j/s · (1− si)
λ·F

j+1
s −1

F1/s−1

≤
∞∑
j=0

λF j/s · exp

(
−siλ ·

F
j+1
s − 1

F 1/s − 1

)
.

We will use Lemma 5.3.16 to bound the above sum by an integral and the maximum of the

function λF j/s · exp

(
−siλ · F

j+1
s −1

F 1/s−1

)
.

We define the (simpler) function ξ(x) := x · exp(−six) and note that its maximum value

is 1/(esi). This value is an upper bound for the sought maximum since
∑j
`=0 F

`/s = F
j+1
s −1

F 1/s−1

implies F
j+1
s −1

F 1/s−1
≥ F j/s and thus

λF j/s · exp

(
−siλ ·

F
j+1
s − 1

F 1/s − 1

)
≤ λF j/s · exp

(
−siλF j/s

)
= ξ(λF j/s) ≤ 1

esi
.

Plugging this into the bound obtained by invoking Lemma 5.3.16, the sum is thus at most

1

esi
+

∫ ∞
j=0

λF j/s · exp

(
−siλ ·

F
j+1
s − 1

F 1/s − 1

)
di

=
1

esi
+ exp

(
siλ

F 1/s − 1

)∫ ∞
j=0

λF j/s · exp

(
−siλ ·

F
j+1
s

F 1/s − 1

)
di (5.11)

Let α := F 1/s and β := siλ · F 1/s

F 1/s−1
, then we can write

∫ ∞
j=0

λF j/s · exp

(
−siλ ·

F
j+1
s

F 1/s − 1

)
di = λ

∫ ∞
j=0

αj · exp(−β · αj).

88

By Lemma 5.3.17, this equals

λ · e−β

β ln(α)
=

exp
(
−siλ · F 1/s

F 1/s−1

)
si · F 1/s

F 1/s−1
ln
(
F 1/s

) =
exp

(
−siλ · F 1/s

F 1/s−1

)
(F 1/s − 1)

si · F 1/s ln
(
F 1/s

) .

Plugging this back into (5.11) yields

1

esi
+ exp

(
siλ

F 1/s − 1

)
·

exp
(
−siλ · F 1/s

F 1/s−1

)
(F 1/s − 1)

si · F 1/s ln
(
F 1/s

)
=

1

esi
+ exp

(
siλ

F 1/s − 1
· (1− F 1/s)

)
· F 1/s − 1

si · F 1/s ln
(
F 1/s

)
=

1

esi
+ exp (−siλ) · F 1/s − 1

si · F 1/s ln
(
F 1/s

) .
In this upper bound, we can see that the worst value for λ is λ = 1. Using siλ ≥ 0 for all λ
and thus bounding exp(−siλ) ≤ 1, we get an upper bound of

1

esi
+

F 1/s − 1

siF 1/s ln(F 1/s)
=

1

esi
+

1− F−1/s

si ln(F 1/s)
=

1

si
·
(

1

e
+

1− F−1/s

ln(F 1/s)

)
.

Now proving Theorem 5.3.12 is quite straightforward.

Proof of Theorem 5.3.12. Combining Lemma 5.3.14 with Lemma 5.3.15 yields an upper
bound of

λinit ·
F

1− F
+

(
1

e
+

1− F−1/s

ln(F 1/s)

)
· F

s+1
s − 1

F − 1

b−1∑
i=a

1

si
.

Plugging in si = p+
i ≥ (n− i)/(en) yields the claimed bound for OneMax.

Analysing Periods of Temporary Elitism in the Self-Adjusting (1, λ) EA

Now we return to the non-elitist self-adjusting (1, λ) EA and show how the bound for the
elitist algorithm can be incorporated. We first bound the expected number of evaluations
to raise the best-so-far fitness value by at least log n.

Lemma 5.3.18. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.7 and assume that
the typical events stated in Lemma 5.3.9 occur. Let f∗t be the best-so-far fitness at time t.
If f∗t ≥ n− n/ log3 n and f∗t ≤ n− log n, the expected number of evaluations made until the
best-so-far fitness increases to at least f∗t + log n is at most

β ·

λt + log3(n) log log(n) +

f∗t +logn∑
i=f∗t −ρ logn

n

n− i

for some constant β > 0 (that depends on s and F).

Proof. We first show that the expected number of evaluations until either a fitness of at
least f∗t + log n is reached or λ ≥ 4 log3 n is reached is bounded by O(log3(n) log log n).

By Lemma 5.3.10, the probability that in a sequence of O(log log n) generations a λ-value
of at least 4 log3 n is reached is at least

1−
4 log3(n)p+

i−ρ logn

F 1/s − 1
≥ 1− 4 log3(n)

F 1/s − 1
· n/ log3 n+ ρ log n

en
= Ω(1).

89

Hence, the expected number of phases of O(log log n) generations for this to happen is
O(1). As every generation makes at most 4F 1/s log3 n evaluations, the expected number of
evaluations is O(log3(n) log log n).

Now assume λ ≥ 4 log3 n. We say that a failure occurs if λ drops below 4 log n before
the fitness is increased to at least f∗t + log n. By Lemma 5.3.8, the expected number of
generations to increase the fitness from f∗t to at least f∗t + log n is at most cgen log n, for a
constant cgen. By Markov’s inequality, the probability that more than 2cgen log n generations
are needed is at most 1/2. By Lemma 5.3.11, the probability of decreasing λ to less than
4 log n in the next 2cgen log n generations is (log n)−ω(1). By a union bound, the probability
of a failure is at most 1/2 + (log n)−ω(1).

While no failure occurs, the algorithm displays temporary elitism and behaves like a
(1 + {F 1/sλ, λ/F}) EA. Applying Theorem 5.3.12 with parameters a := f∗t − ρ log n and
b := f∗t + log n, the expected number of evaluations until a fitness of at least f∗t + log n is
found or a fallback occurs is at most

λinit ·
F

1− F
+

(
1

e
+

1− F−1/s

ln(F 1/s)

)
· F

s+1
s − 1

F − 1

f∗t +logn−1∑
i=f∗t −ρ logn

en

n− i
.

In case of a failure we iterate the above arguments; this increases the expected number
of evaluations only by a factor 2 + o(1). Choosing an appropriately large constant β > 0
completes the proof.

Since the bound from Lemma 5.3.18 contains an additive term of O(λt), we also provide
a lemma that bounds the expectation of λt.

Lemma 5.3.19. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.7. If the best-so-
far fitness at time t is at most i then

E(λt | λ0) ≤ bλ0/F
tc+

en

n− i
·
(
F 1/s +

F 1/s

lnF

)
.

Proof. Since the fitness in all generations t′ ≤ t is at most i, the probability of one offspring
finding an improvement at time t′ is at least n−i

en . We have

E(λt | λ0) =

∞∑
x=1

Pr (λt ≥ x | λ0)

and bound the latter probabilities from above. If λ0 ≥ x·F t then λt ≥ x with probability 1. If
λ0 < x·F t, λt ≥ x only holds if there has been at least one generation where λ was increased.
Let t− k > 0 be the last such generation, that is, λt−k = λt−k−1F

1/s. Since all generations
t− k, . . . , t− 1 are successful, λt ≥ x implies λt−k ≥ xF k and hence λt−k−1 ≥ xF k−1/s.

Hence, for all x > λ0/F
t,

Pr (λt ≥ x | λ0) ≤
∞∑
k=1

Pr
(

no success with xF k/F 1/s offspring
)

≤
∞∑
k=1

(
1− n− i

en

)xFk/F 1/s

.

Using F k = ek lnF ≥ 1 + k lnF , this is at most(
1− n− i

en

)x/F 1/s ∞∑
k=1

((
1− n− i

en

)x ln(F)/F 1/s)k

=

(
1− n− i

en

)x/F 1/s (
1− n−i

en

)x ln(F)/F 1/s

1−
(
1− n−i

en

)x ln(F)/F 1/s

90

For x > λ0/F
t and x ≥ en

n−i ·
F 1/s

lnF , the last fraction is at most 1/e
1−1/e < 1, thus for all such x

Pr (λt ≥ x | λ0) ≤
(

1− n− i
en

)x/F 1/s

.

Bounding the first α := max
(
bλ0/F

tc,
⌊
en
n−i ·

F 1/s

lnF

⌋)
terms trivially by 1, we obtain

∞∑
x=1

Pr (λt ≥ x | λ0) ≤ α+

∞∑
x=α+1

Pr (λt ≥ x | λ0)

≤ α+

∞∑
x=α+1

(
1− n− i

en

)x/F 1/s

≤ α+

∞∑
x=0

((
1− n− i

en

)1/F 1/s)x
= α+

1

1−
(
1− n−i

en

)1/F 1/s
.

By Lemma 2.4.2 (a), (1 + x)r ≤ 1 + rx for every 0 ≤ r ≤ 1 and x ≥ −1, then this is at most

α+
1

1−
(
1− F−1/s · n−ien

) = α+ F 1/s · en

n− i
.

Plugging in α implies the claim.

Now we are in a position to prove Theorem 5.3.7.

Proof of Theorem 5.3.7. We divide the optimisation in several phases. Phase 1 ends
when the distance to the optimum is at most n/ log n. By Lemma 5.3.8 the expected
number of generations spent in Phase 1, called T1, is E(T1) = O(n).

The expected number of function evaluations during this time is
E(λ0 + λ1 + · · ·+ λT1−1) =

∑T1−1
t=0 E(λt | λ0). We bound all summands by Lemma 5.3.19,

applied with a worst case fitness of i := n− n/ log n. This yields a random variable λ∗ with

E(λ∗) ≤ en

n/ log n
·
(
F 1/s +

F 1/s

lnF

)
= e log n ·

(
F 1/s +

F 1/s

lnF

)
and E(λ∗) ≥ E(λt | λ0) for all t < T1. Thus, the expected time in Phase 1 can be bounded
by T1 iid variables λ∗. Since T1 is itself a random variable, we apply Wald’s equation
(Lemma 2.4.9) to conclude that

T1−1∑
t=0

E(λ∗) = E(T1) · E(λ∗) = O(n log n).

Phase 2 ends when the distance to the optimum is at most n/ log2 n. Again, by
Lemma 5.3.8 the expected number of generations is T2 with E(T2) = O(n/ log n) and the ex-

pected number of evaluations in one generation is bounded by e log2 n ·
(
F 1/s + F 1/s

lnF

)
using

Lemma 5.3.19 with a worst-case fitness of i := n−n/ log2 n. Wald’s equation (Lemma 2.4.9)
then yields a bound of O(n/ log n) ·O(log2 n) = O(n log n).

Phase 3 ends with the distance to the optimum is at most n/ log3 n and we obtain another
bound of O(n log n) in the same way.

91

Phase 4 ends when the optimum is found. We divide the distance to the optimum in
blocks of length log n. Let Ti be the random number of evaluations to increase the best fitness
from at least n−n/ log3(n) + (i− 1) log n to a fitness of at least n−n/ log3(n) + i log n. Let
λ∗i be the λ-value in the first generation where this block i is reached. Then the expected
number of evaluations to find the optimum from a best fitness of at least n− n/ log3 n is at
most

E

n/ log4 n∑
i=1

Ti

 =

n/ log4 n∑
i=1

E(Ti) =

n/ log4 n∑
i=1

E(E(Ti | λ∗i))

By Lemma 5.3.18, this is at most

n/ log4 n∑
i=1

E

β
λ∗i + log3(n) log log(n) +

n−n/ log3(n)+i log(n)−1∑
j=n−n/ log3(n)+(i−1−ρ) logn

1

n− j

.
The terms β log3(n) log log n sum up to O(n log log n). Note that

β

n/ log4 n∑
i=1

n−n/ log3(n)+i log(n)−1∑
j=n−n/ log3(n)+(i−1−ρ) logn

1

n− j
≤ β

n−1∑
i=0

ρ+ 1

n− j
= O(n log n)

since every summand 1
n−j appears in at most ρ + 1 blocks. Finally, by Lemma 5.3.19,∑n/ log4 n

i=1 E(λ∗i) = O(n log n) with room to spare.
In case a failure occurs, we repeat the above arguments. Note that then we start the

analysis with λ0 being the λ-value at the time of the failure. A large λ-value may incur
additional costs. However, applying Lemma 5.3.19 with a fitness of i = n shows that then
the expected λ-value is at most O(n). And, since the bλ0/F

tc term in Lemma 5.3.19 decays
exponentially in t, a value λ0 = O(n) only incurs additional costs of at most

∑∞
t=0 λ0/F

t =
λ0 · F

F−1 in subsequent generations. Since failures have a probability of O(1/n), the expected
number of repetitions is 1+O(1/n) and all additional costs can be absorbed in the O(n log n)
bound.

5.3.2 Large Success Rates Fail

In this section, we show that the choice of the success rate is crucial as when s is a large
constant, the runtime becomes exponential.

Theorem 5.3.20. Let the update strength F ≤ 1.5 and the success rate s ≥ 18 be constants.
With probability 1− e−Ω(n/ log4 n) the self-adjusting (1, λ) EA needs at least eΩ(n/ log4 n) eval-
uations to optimise OneMax.

The reason why the algorithm takes exponential time is that now F 1/s is small (F 1/s

converges to 1 as s grows) and λ only increases slowly in unsuccessful generations, whereas
successful generations decrease λ by a much larger factor of F . This is detrimental dur-
ing early parts of the run where it is easy to find improvements and there are frequent
improvements that decrease λ. When λ is small, there are frequent fallbacks, hence the
algorithm stays in a region with small values of λ, where it finds improvements with con-
stant probability, but also has fallbacks with constant probability. We show, using another
potential function based on Definition 5.2.3, that it takes exponential time to escape from
this equilibrium.

Definition 5.3.21. We define the potential function g2(Xt) as

g2(Xt) := f(xt) + 2.2 log2
F λt.

92

While g1(Xt) used a (capped) linear contribution of logF (λt) for h(λt), here we use the
function log2

F (λt) that is convex in logF (λt), so that changes in λt have a larger impact on
the potential. We show that, in a given fitness interval, the potential g2(Xt) has a negative
drift.

Lemma 5.3.22. Consider the self-adjusting (1, λ) EA as in Theorem 5.3.20. Then there is
a constant δ > 0 such that for every 0.84n+ 2.2 log2(4.5) < g2(Xt) < 0.85n,

E(g2(Xt+1)− g2(Xt) | Xt) ≤ −δ.

Proof of Lemma 5.3.22. We abbreviate ∆g2 := E(g2(Xt+1)− g2(Xt) | Xt). Given that
for all λ ≥ 1

h(λ/F) = 2.2 log2
F (λ/F) = 2.2 (logF (λ)− 1)

2 ≥ 0 = h(1)

then by Lemma 5.2.4, for all λ, ∆g2 is at most(
∆+
i,λ + h(λ/F)− h(λF 1/s)

)
p+
i,λ + h(λF 1/s)− h(λ)−∆−i,λp

−
i,λ

=
(

∆+
i,λ + 2.2 log2

F (λ/F)− 2.2 log2
F (λF 1/s)

)
p+
i,λ+

2.2 log2
F (λF 1/s)− 2.2 log2

F (λ)−∆−i,λp
−
i,λ

=
(

∆+
i,λ + 2.2(logF (λ)− 1)2 − 2.2(logF (λ) + 1/s)2

)
p+
i,λ+

2.2(logF (λ) + 1/s)2 − 2.2 log2
F (λ)−∆−i,λp

−
i,λ

=

(
∆+
i,λ −

s+ 1

s
· 4.4 logF (λ) + 2.2− 2.2

s2

)
p+
i,λ +

4.4 logF λ

s
+

2.2

s2
−∆−i,λp

−
i,λ

≤
(

∆+
i,λ −

19

18
· 4.4 logF λ+ 2.2− 2.2

324

)
p+
i,λ +

4.4 logF λ

18
+

2.2

324
−∆−i,λp

−
i,λ. (5.12)

We note that in Equation (5.12), λ ∈ R≥1 but since the algorithm creates bλe offspring,
the forward drift and the probabilities are calculated using bλe. In the following in all the
computations the last digit is rounded up if the value was positive and down otherwise to
ensure the inequalities hold. We start taking into account only bλe ≥ 5, that is, λ ≥ 4.5 and
later on we will deal with smaller values of λ. With this constraint on λ we use the simple
bound p−i,λ ≥ 0. Bounding ∆+

i,λ ≤ dlog λe+ 0.413 using Lemma 5.3.1,

∆g2 ≤
(

2.613 + dlog λe − 19

18
· 4.4 logF λ −

2.2

324

)
p+
i,λ +

4.4 logF λ

18
+

2.2

324
.

For all λ ≥ 1, f(xt) ≥ 0.85n implies g2(Xt) ≥ 0.85n. By contraposition, our precondition
g2(Xt) < 0.85n implies f(xt) < 0.85n. Therefore, using Lemma 5.3.1 with the worst case
f(xt) = 0.85n and bλe = 5 we get p+

i,λ ≥ 1− e
e+0.15bλe ≥ 1− e

e+5·0.15 > 0.216. Substituting

these bounds we obtain

∆g2 ≤
(

2.613 + dlog λe − 19

18
· 4.4 logF λ−

2.2

324

)
0.216 +

4.4 logF λ

18
+

2.2

324

≤ 0.5562 + 0.216dlog λe − 0.7587 logF λ

Given that logF λ ≥ log λ for all F ≤ 2 and dlog λe ≤ log(λ) + 1,

∆g2 ≤ 0.5562 + 0.216(log(λ) + 1)− 0.7587 log λ

= 0.7722− 0.5427 log λ

≤ 0.7722− 0.5427 log 4.5 ≤ −0.4054.

93

Up until now we have proved that ∆g2 ≤ −0.4058 for all f(xt) < 0.85n and bλe ≥ 5.
Now we need to consider bλe < 5. For bλe < 5, that is, λ < 4.5, the precondition
g2(Xt) > 0.84n+ 2.2 log2(4.5) implies that f(xt) > 0.84n. Therefore, the last part of this
proof focuses only on 0.84n < f(xt) < 0.85n and bλe < 5. For this region we use Equa-

tion (5.12). By Lemma 5.3.1, p−i,λ ≥
(
f(xt)
n − 1

e

)bλe
≥
(
0.84− 1

e

)bλe
and bounding ∆+

i,λ and

∆−i,λ using Lemma 5.3.1 yields:

∆g2 ≤

 ∞∑
j=1

(
1−

(
1− 1

j!

)bλe)
− 19

18
· 4.4 logF λ+ 2.2− 2.2

324

︸ ︷︷ ︸

α

p+
i,λ

+
4.4 logF λ

18
+

2.2

324
−
(

0.84− 1

e

)bλe
. (5.13)

We did not bound p+
i,λ in the first term yet because the factor α in brackets preceding it

can be positive or negative. We now calculate precise values for
∑∞
j=1

(
1−

(
1− 1

j!

)bλe)
giving e − 1, 2.157, 2.4458 and 2.6511 for bλe = 1, 2, 3, 4, respectively. Given that F ≤ 1.5
the factor α is negative for all 1.5 ≤ λ < 4.5, because ∞∑

j=1

(
1−

(
1− 1

j!

)bλe)
− 19

18
· 4.4 logF λ+ 2.2− 2.2

324

≤

 ∞∑
j=1

(
1−

(
1− 1

j!

)bλe)
− 4.4 logF (λ) + 2.2

≤

4.8511− 4.4 log1.5(3.5) = −8.74 3.5 ≤ λ < 4.5

4.6458− 4.4 log1.5(2.5) = −5.29 2.5 ≤ λ < 3.5

4.357− 4.4 log1.5(1.5) = −0.043 1.5 ≤ λ < 2.5

On the other hand, for λ < 1.5 and bλe = 1, α is positive when λ < F γ for
γ = 1933

7524 + 45e
209 ≈ 0.8422 and negative otherwise. With this we evaluate different ranges

of λ separately using Equation (5.13). For 1 ≤ λ < F γ , we get bλe = 1 and by Lemma 5.3.1
if 0.84n ≤ i ≤ 0.85n and n ≥ 163 then p+

i,λ ≤ 0.069, thus

∆g2 ≤
(
e+ 1.2− 19

18
· 4.4 logF (λ)− 2.2

324

)
0.069 +

4.4

18
logF (λ) +

2.2

324
−
(

0.84− 1

e

)
≤ −0.076 logF (λ)− 0.195 ≤ −0.195.

For F γ ≤ λ < 1.5, by Lemma 5.3.1 we bound p+
i,λ ≥

n−f(xt)
en ≥ 0.0551:

∆g2 ≤
(
e+ 1.2− 19

18
· 4.4 logF (λ)− 2.2

324

)
0.0551 +

4.4

18
logF (λ) +

2.2

324
−
(

0.84− 1

e

)
≤ −0.0114 logF (λ)− 0.2498 ≤ −0.2498.

For 1.5 ≤ λ < 2.5, by Lemma 5.3.1 we bound p+
i,λ ≥ 1− e

e+0.3 ≥ 0.0993

∆g2 ≤
(

4.357− 19

18
· 4.4 logF (λ)− 2.2

324

)
0.0993 +

4.4

18
logF (λ) +

2.2

324
−
(

0.84− 1

e

)2

≤ 0.2159− 0.2167 logF (λ)

≤ 0.2159− 0.2167 log1.5(1.5) ≤ −0.0008.

94

For 2.5 ≤ λ < 3.5 we use p+
i,λ ≥ 1− e

e+0.45 = 0.142,

∆g2 ≤
(

4.6458− 19

18
· 4.4 logF (λ)− 2.2

324

)
0.142 +

4.4

18
logF (λ) +

2.2

324
−
(

0.84− 1

e

)3

≤ 0.5612− 0.415 logF (λ)

≤ 0.5612− 0.415 log1.5(2.5) ≤ −0.376.

Finally for 3.5 ≤ λ < 4.5 we use p+
i,λ ≥ 1− e

e+0.6 = 0.1808,

∆g2 ≤
(

4.8511− 19

18
· 4.4 logF (λ)− 2.2

324

)
0.1808 +

4.4

18
logF (λ) +

2.2

324
−
(

0.84− 1

e

)4

≤ 0.832− 0.5952 logF (λ)

≤ 0.832− 0.5952 log1.5(3.5) ≤ −1.006.

With these results we can see that the potential is negative with λ ∈ [1, 4.5) and 0.84n <
f(xt) < 0.85n. Hence, for every 0.84n + log2(4.5) < g2(Xt) < 0.85n, and δ = 0.0008,
∆g2 ≤ −δ.

Figure 5.1: Bounds on ∆g2 with a maximum of −0.0008 for λ = 1.5.

Finally, with Lemmas 5.3.22 and 5.3.2, we now prove Theorem 5.3.20.

Proof of Theorem 5.3.20. We apply the negative drift theorem with scaling (Theo-
rem 2.4.17). We switch to the potential function h(Xt) := max{0, n − g2(Xt)} in order
to fit the perspective of the negative drift theorem. In this case we can pessimistically
assume that if h(Xt) = 0 the optimum has been found.

The first condition of the negative drift theorem with scaling (Theorem 2.4.17) can be
established with Lemma 5.3.22 for a = 0.15n and b = 0.16n − 2.2 log2(4.5). Furthermore,
with Chernoff bounds we can prove that at initialization h(Xt) ≥ b with probability 1 −
2−Ω(n).

To prove the second condition we need to show that the probability of large
jumps is small. Starting with the contribution that λ makes to the change
in h(Xt), we use Lemma 5.3.2 to show that this contribution is at most
2.2 log2(eF 1/sn3) ≤ 4.79 + 19.8 log2 n ≤ 20 log2 n with probability exp(−Ω(n2)), where the
last inequality holds for large enough n.

The only other contributor is the change in fitness. The probability of a jump in fitness
away from the optimum maximised when there is only one offspring. On the other hand
the bigger the offspring population the higher the probability of a large jump towards the
optimum. Taking this into account and considering that every bit flip either decreases the
fitness in the first case or increases the fitness in the latter we get the following probabilities.

Pr (f(xt)− f(xt+1) ≥ κ) ≤ 1

κ!

95

Pr (f(xt+1)− f(xt) ≥ κ) ≤ 1−
(

1− 1

κ!

)λ
Given that 1

κ! ≤ 1−
(
1− 1

κ!

)λ
, and that λ ≤ eF 1/sn3.

Pr (|f(xt+1)− f(xt)| ≥ κ) ≤ 1−
(

1− 1

κ!

)eF 1/sn3

≤ eF 1/sn3

κ!

≤ eκ+1F 1/sn3

κκ

Joining both contributions, we get

Pr
(
|g2(Xt+1)− g2(Xt)| ≥ κ+ 20 log2 n

)
≤ eκ+1F 1/sn3

κκ
. (5.14)

To satisfy the second condition of the negative drift theorem with scaling (Theorem 2.4.17)
we use ρ = 21 log2 n and κ = j log2 n in order to have κ + 20 log2 n ≤ jρ for j ∈ N. For
j = 0 the condition Pr (|g2(Xt+1)− g2(Xt)| ≥ jρ) ≤ e0 is trivial. From Equation (5.14), we
obtain

Pr (|g2(Xt+1)− g2(Xt)| ≥ jρ) ≤ eF 1/se(j log2 n)n3

(j log2 n)j log2 n

We simplify the numerator using

e(j log2 n)n3 = e(j log(n) ln(n)/ ln(2))n3 = n(3+j log(n)/ ln(2))

and bound the denominator as

(j log2 n)j log2 n ≥ (log n)2j log2 n = n2j log(n) log log(n),

yielding

Pr (|g2(Xt+1)− g2(Xt)| ≥ jr) ≤ eF 1/sn(3+j log(n)/ ln(2)−2j(logn) log logn)

= eF 1/sn(3+j(log(n)/ ln(2)−2(logn) log logn)),

which for large enough n is bounded by e−j as desired.
The third condition is met with ρ = 21 log2 n given that δ`/(132 log((21 log2 n)/δ)) =

Θ(n/ log log n), which is larger than ρ2 = Θ(log4 n) for large enough n.

With this we have proved that the algorithm needs at least eΩ(n/ log4 n) generations with
probability 1− e−Ω(n/ log4 n). Since each generation uses at least one fitness evaluation, the
claim is proved.

We note that although Theorem 5.3.20 is applied for OneMax specifically, the conditions
used in the proof of Theorem 5.3.20 and Lemma 5.3.22 apply for several other benchmark
functions. This is because our result only depends on some fitness levels of OneMax and
other functions have fitness levels that are symmetrical or resemble these fitness levels. We
show this in the following theorem. To improve readability we use |x|1 :=

∑n
i=1 xi and

|x|0 :=
∑n
i=1(1− xi).

Theorem 5.3.23. Let the update strength F ≤ 1.5 and the success rate s ≥ 18 be constants.
With probability 1− e−Ω(n/ log4 n) the self-adjusting (1, λ) EA needs at least eΩ(n/ log4 n) eval-
uations to optimise:

96

• Jumpk(x) :=

{
n− |x|1 if n− k < |x|1 < n,

k + |x|1 otherwise,

with k = o(n),

• Cliffd(x) :=

{
|x|1 if |x|1 ≤ d,
|x|1 − d+ 1/2 otherwise,

with d = o(n),

• ZeroMax(x) := |x|0,

• TwoMax(x) := max {|x|1 , |x|0},

• Ridge(x) :=

{
n+ |x|1 if x = 1i0n−i, i ∈ {0, 1, . . . , n},
|x|0 otherwise.

Proof. For Jumpk and Cliffd, given that k and d are o(n) the algorithm needs to optimise
a OneMax-like slope with the same transition probabilities as in Lemma 5.3.22 before the
algorithm reaches the local optima. Hence, we can apply the negative drift theorem with
scaling (Theorem 2.4.17) as in Theorem 5.3.20 to prove the statement.

For ZeroMax the algorithm will behave exactly as in OneMax, because it is unbiased
towards bit-values. Similarly, for TwoMax, independently of the slope the algorithm is
optimising, it needs to traverse through a OneMax-like slope needing at least the same
number of function evaluations as in OneMax.

Finally, for Ridge, unless the algorithm finds a search point on the ridge (x ∈ 1i0n−i

with i ∈ {0, 1, . . . , n}) beforehand, the first part of the optimisation behaves as ZeroMax
and similar to Theorem 5.3.20 by Lemma 5.3.22 and the negative drift theorem with scaling
(Theorem 2.4.17) it will need at least eCn/ log4 n generations with probability e−Cn/ log4 n to
reach a point with |x|1 ≤ 0.15n for some constant C > 0.

It remains to show that the ridge is not reached during this time, with high probability.
We first imagine the algorithm optimising ZeroMax and note that the behaviour on Ridge
and ZeroMax is identical as long as no point on the ridge is discovered. Let x0, x1, . . .
be the search points created by the algorithm on ZeroMax in order of creation. Since
ZeroMax is symmetric with respect to bit positions, for any arbitrary but fixed t we may
assume that the search point xt with d = |xt|1 is chosen uniformly at random from the

(
n
d

)
search points that have exactly d 1-bits. There is only one search point 1d0n−d that on the
function Ridge would be part of the ridge. Thus, for d ≥ 0.15n the probability that xt lies
on the ridge is at most(

n

d

)−1

≤
(

n

0.15n

)−1

≤
(n

0.15n

)−0.15n

=

(
20

3

)−0.15n

.

(Note that these events for t and t′ are not independent; we will resort to a union bound to
deal with such dependencies.) By Lemma 5.3.2, during the optimisation of any unimodal
function every generation uses λ ≤ eF 1/sn3 with probability 1− exp (−Ω(n2)). By a union

bound over eCn/ log4 n generations, for an arbitrary constant C > 0, each generation creating
at most eF 1/sn3 offspring, the probability that a point on the ridge is reached during this
time is at most

eCn/ log4 n · eF 1/sn3 ·
(

20

3

)−0.15n

= e−Ω(n).

Adding up all failure probabilities, the algorithm will not create a point on the ridge before
eCn/ log4 n generations have passed with probability 1− e−Ω(n/ log4 n), and the algorithm
needs at least eΩ(n/ log4 n) evaluations to solve Ridge with probability 1− e−Ω(n/ log4 n).

97

5.4 Hard Problems are Easier for Success-Based Param-
eter Control

In Section 5.3 we studied the self-adjusting (1, λ) EA using standard bit mutation with
mutation probability 1/n on OneMax. We showed that if the success rate s is chosen ap-
propriately small constant s < 1 the self-adjusting (1, λ) EA optimises OneMax efficiently,
but for a large constant s > 18 it needs exponential time w. o. p. This behaviour is not
limited to OneMax; it holds for other common benchmark functions that have easy slopes.

In this section, we extend our analysis to the self-adjusting (1, λ) EA using either standard
bit mutation with mutation probability p = r/n with p = O(1/n) and p = n−O(1), or the
heavy-tailed mutation operator with constant β > 1. We study a class of functions that are
characterised by not having easy fitness levels throughout the optimisation. We now define
this class of functions.

Definition 5.4.1. We say that a function f is everywhere hard with respect to a black-box
algorithm A if and only if p+

max = O (n−ε) for some constant 0 < ε < 1.

Owing to non-elitism, the (1, λ) EA may decrease its current fitness if all offspring are
worse. This is often a desired characteristic that allows the algorithm to escape local optima,
but if this happens too frequently as seen in Section 5.3.2, then the algorithm may not be able
to converge to good solutions. Hence, it is important that the probability of an offspring
having a lower fitness than its parent is sufficiently small. The probability of this event
depends on the mutation operator used. The following lemma shows general bounds on
transition probabilities for standard bit mutation and heavy-tailed mutations.

Lemma 5.4.2. For all (1, λ) EA algorithms using standard bit mutation with a mutation
probability in O(1/n) and n−O(1) or heavy-tailed mutation operators with a constant β > 1,
there is a constant γ > 1 such that p−x ≤ γ−1 for all non-optimal search points x.

In addition, for all 0 ≤ i ≤ d− 1, p+
x ≥ n−O(n).

Proof. Let C denote the event that an offspring is the exact copy of a parent. When
using standard bit mutation, if r denotes the implicit constant in the bound O(1/n) on the
mutation probability,

Pr (C) ≥
(

1− r

n

)n
=
(

1− r

n

)n−r (
1− r

n

)r
≥ e−r ·

(
1− r2

n

)
where the inequality follows from Lemma 2.4.1 and Lemma 2.4.2 (a). Since C implies that in
this generation the current search point cannot worsen, we have p−x ≤ 1− Pr (C), therefore
there is a constant γ > 1 for which p−x ≤ γ−1.

The probability of the heavy-tailed mutation operator choosing a mutation rate of 1/n
is n/2∑

i=1

i−β

−1

≥

(∞∑
i=1

i−β

)−1

= Θ(1).

Therefore the probability of creating an exact copy of the parent using a heavy-tailed mu-
tation operator is at least Θ(1) ·

(
1− 1

n

)n
= Θ(1) and there is a constant γ > 1 for which

p−x ≤ γ−1.
For the second statement, note that the probability of generating a global optimum in

one standard bit mutation is at least
(
n−O(1)

)n
= n−O(n). For heavy-tailed mutations,

the probability of choosing a mutation rate of 1/n is Θ(1) as shown above, and then the
probability of generating an optimum is at least n−n.

98

We now give a helpful definition for specific λ-values as follows.

Definition 5.4.3. Consider a function f with d fitness values that is everywhere hard for
a self-adjusting (1, λ) EA with success rate s that meets the conditions from Lemma 5.4.2.
Let γ and ε be the parameters from Lemma 5.4.2 and Definition 5.4.1, respectively. Then
we define λsafe := 4 max

(
logγ(2d(s+ 1)), logγ(n log n)

)
and λinc := nε/2.

We consider λsafe as a threshold for λ such that λ-values larger than λsafe are considered
“safe” because the probability of a fitness loss is small. We aim to show that the algorithm
will typically use values larger than λsafe throughout the optimisation. The value λinc is a
threshold for λ such that any λ-value with λ ≤ λinc has a relatively small success probability.
We will show that λ has a tendency to increase whenever λ ≤ λinc.

5.4.1 Bounding the Number of Generations

We first focus on bounding the expected number of generations as this bound will be used to
bound the expected number of function evaluations later on. The main result of this section
is as follows.

Theorem 5.4.4. Consider a self-adjusting (1, λ) EA using either standard bit mutation with
mutation probability p ∈ O(1/n)∩n−O(1) or a heavy-tailed mutation operator with a constant
β > 1, a constant update strength F > 1 and a constant success rate s > 0. For all every-
where hard functions f with d+ 1 = no(logn) function values the following holds. For every
initial search point and every initial offspring population size λ0 the self-adjusting (1, λ) EA
optimises f in an expected number of generations bounded by

O
(
d+ log

(
1/p+

min

))
.

This result is related to Theorem 3 in [120] which shows the same asymptotic upper
bound for the elitist (1+{2λ, λ/2}) EA (i. e. fixing F = 2 and s = 1) on functions on which
fitness levels can only become harder as fitness increases. Our Theorem 5.4.4 applies to
everywhere hard functions on which easy and hard fitness levels are mixed in arbitrary
ways. And, quite surprisingly, the upper bound only depends on the hardest fitness level.

To bound the number of generations we first need to study how the offspring population
size behaves throughout the run. We start by showing that in the beginning of the run λ
grows fast.

Lemma 5.4.5. Consider the self-adjusting (1, λ) EA as in Theorem 5.4.4. Let τ be first
generation where λτ ≥ λinc (cf. Definition 5.4.3). Then E(τ) = O(log λinc). During these
τ generations the algorithm only makes λ0 + O(λinc log λinc) function evaluations in expec-
tation.

Proof. If the initial offspring population size λ0 is at least λinc then τ = 1 and λ0 evaluations
are made. Hence we assume λ0 < λinc.

The parameter λ is multiplied in each unsuccessful generation by F 1/s and divided by

F otherwise. The probability of an unsuccessful generation is at most (1− p+
x)
λ

and the

probability of a successful generation is at least 1− (1− p+
x)
λ
.

99

Hence the expected drift of logF (λ) is at least

E(logF (λt+1)− logF (λt) | λt = λ, λt ≤ λinc, xt = x)

= logF

(
λF 1/s

) (
1− p+

x

)λ
+ logF

(
λ

F

)(
1−

(
1− p+

x

)λ)− logF (λ)

=

(
logF (λ) +

1

s

)(
1− p+

x

)λ
+ (logF (λ)− 1)

(
1−

(
1− p+

x

)λ)− logF (λ)

=
s+ 1

s

(
1− p+

x

)λ − 1 ≥ s+ 1

s

(
1− λp+

x

)
− 1

=
1− (s+ 1)λp+

x

s
≥ 1− (s+ 1)λincp

+
x

s
=

1

s
−O

(
n−ε/2

)
≥ 1

2s
(5.15)

where the last inequality holds for sufficiently large n, since s is constant.
We apply additive drift as stated in Theorem 2.4.15 as it allows for an unbounded state

space. We use the potential function

q(λt) = logF (λinc)− log(λt),

which implies that when q(λt) ≤ 0, λt is at least λinc. By Equation (5.15), the drift of q(λt)
is

E(q(λt)− q(λt+1) | λt = λ, λt ≤ λinc)

= E(log(λt+1)− log(λt) | λt = λ, λt ≤ λinc) ≥ 1

2s
.

The initial value q(λ0) is at most logF (λinc) since we assumed λ0 ≤ λinc. Now τ denotes
the expected number of generations to reach q(λt) ≤ 0 for the first time, and q(λt) ≥ − 1

s

for all t ≤ τ since q(λt−1) > 0 and q(λt−1) − q(λt) ≤ − logF (λt−1) + logF (F 1/sλt−1) = 1
s .

Applying Theorem 2.4.15 with α := − 1
s , we obtain

E(τ) ≤
logF (λinc) + 1

s

1/(2s)
= 2s logF (λinc) + 2 = O(log λinc).

Given that all generations use λ ≤ λinc, the expected number of evaluations during the
O(log λinc) expected generations is O(λinc log λinc).

Now we show that, once λ reaches a value of at least λinc, the algorithm maintains a
large λ with high probability.

Lemma 5.4.6. Consider the self-adjusting (1, λ) EA as in Theorem 5.4.4 at some point of
time t∗. For every offspring population size λt∗ ≥ λinc the probability that within the next
no(logn) generations the offspring population size drops below λsafe is at most n−Ω(logn).

Proof. We first note that λt ≥ Fλinc implies λt+1 ≥ λinc with probability 1. Thus, the
interval [λsafe, λinc) can only be reached if λt < Fλinc. We may assume that λt∗ < Fλinc as
otherwise we can simply wait for the first point in time t∗∗ where λt∗∗ < Fλinc and redefine
t∗ := t∗∗. If no such point in time t∗∗ exists, or if t∗∗ − t∗ ≥ no(logn), there is nothing to
show.

Assuming λt∗ < Fλinc, we show that an improbably large number of successes are needed
for the population size to drop below λsafe before returning to a population size of at least
Fλinc. We define a trial as the random time period starting at time t∗ and ending when
either λt < λsafe or λt ≥ λt∗ for some t > t∗. The length of a trial is given by

α := inf{t− t∗ | λt < λsafe ∨ λt ≥ λt∗ , t > t∗}

100

and at the end of the trial, either λt∗+α < λsafe or λt∗+α ≥ λt∗ holds.
An important characteristic of the self-adjusting mechanism is that if there are 1 or 0

successful generations every ds+ 1e generations, λ will either grow or maintain its previous
value, because λ · (F 1/s)dse · 1/F ≥ λ. Hence, if from the start of a trial there are at most
κ successful generations during ds+ 1eκ generations for every κ ∈ N then λt+ds+1eκ ≥ λt,
implying that the trail has ended with an offspring population size of at least λt∗ and
α ≤ ds+ 1eκ.

We now consider κ∗ :=
⌈
logF

(
λinc

λsafe

)⌉
−1 and show that, to end a trial with λt+α ≤ λsafe,

more than κ∗ successful generations are needed. For every λt∗ ≥ λinc, after κ∗ consecutive
successful generations the offspring population size is

λt∗+κ∗ =
λt∗

Fκ∗
=

λt∗

F

⌈
logF

(
λinc
λsafe

)⌉
−1

>
λinc

F
logF

(
λinc
λsafe

) = λsafe.

If the successful generations are not consecutive, then the number of successful generations
needed to reduce the λ value can only increase. Therefore, to reach λ ≤ λsafe there must be
more than κ∗ successful generations.

Now, we know that if there are less than κ∗ successful generations within the first
ds+ 1eκ∗ generations of the trial then λt∗+ds+1eκ∗ ≥ λt∗ and we end the trial without
dropping below λsafe. In every generation of a trial, at most Fλinc offspring are created,
thus by a union bound, the probability of a successful generation is at most Fλincp

+
x .

Let X be the number of successful generations within the first ds+ 1eκ∗ generations of a

trial, then 0 < E(X) ≤ ds+ 1eFλincp
+
x κ
∗. Using δ := κ∗E(X)

−1 − 1 and Chernoff bounds
(Lemma 2.4.13),

Pr (X ≥ κ∗) = Pr (X ≥ E(X)(1 + δ))

≤ exp
(
−
(
κ∗E(X)

−1
ln
(
κ∗E(X)

−1
)
− κ∗E(X)

−1
+ 1
)

E(X)
)

= exp
(
−
(
κ∗ ln

(
κ∗E(X)

−1
)
− κ∗ + E(X)

))
= e−E(X)

(
eE(X)

κ∗

)κ∗
≤ e0

(
eE(X)

κ∗

)κ∗
≤
(
e ds+ 1eFλincp

+
x

)⌈logF

(
λinc
λsafe

)⌉
−1

= n−Ω(logn)

where the last equation uses that the base is Θ(λincp
+
x) = O(nε/2 · n−ε) = O(n−Ω(1)) and

simplifying the exponent using

logF (λinc/λsafe) = logF (nε/2)− logF (λsafe) = ε/2 · logF (n)− o(log n)) = Ω(logn).

Hence, with probability n−Ω(logn) a trial ends with an offspring population size of λt∗+α ≥
λt∗ and without dropping below λsafe. Each trial uses at least one generation. By a union
bound over no(logn) possible number of trials, the probability of reaching λ ≤ λsafe within
no(logn) generations is still n−Ω(logn).

We now define a potential function g3(Xt) using Definition 5.2.3. We recall that the
potential function is a sum of the current search point’s fitness and another function h(λt)
that takes into account the current offspring population size: g3(Xt) = f(xt) + h(λt).

Definition 5.4.7. We define the potential function g3(Xt) as

g3(Xt) = f(xt)−
s

s+ 1
logF

(
max

(
F 1/s

p+
minλt

, 1

))
.

101

The function h(λt) = s
s+1 logF

(
max

(
F 1/s

p+minλt
, 1
))

is a straightforward generalisation of

our approach in Section 5.3.1 in which the specific value p+
min = 1/(en) was used in the

context of OneMax.
Similar to the potential function g1(Xt) used in Section 5.3.1 the potential g3(Xt) is

always close to the current fitness.

Lemma 5.4.8. For all generations t, the fitness and the potential are related as follows:

f(xt)− s
s+1 logF

(
F 1/s

p+min

)
≤ g3(Xt) ≤ f(xt). In particular, g3(Xt) = d implies f(xt) = d.

Proof. The term s
s+1 logF

(
max

(
F 1/s

p+minλt
, 1
))

is a non-increasing function in λt with its

minimum being 0 for λt ≥ F 1/s/p+
min and its maximum being s

s+1 logF

(
F 1/s

p+min

)
when λt = 1.

Hence, f(xt)− s
s+1 logF

(
F 1/s

p+min

)
≤ g3(Xt) ≤ f(xt).

Given that we have shown that λ grows fast and stays at a large value, we now show
that the expected drift of the potential g3(Xt) is a positive constant whenever λ is at least
λsafe.

Lemma 5.4.9. Consider the self-adjusting (1, λ) EA as in Theorem 5.4.4. Then for every
generation t with f(xt) < d and λt ≥ λsafe,

E(g3(Xt+1)− g3(Xt) | Xt) ≥
1

2(s+ 1)

for large enough n. This also holds when only considering improvements that increase the
fitness by 1.

Proof. We consider only λ ≥ λsafe > F , hence, by Lemma 5.2.4, for all λ ≥ λsafe,
E(g3(Xt+1)− g3(Xt) | Xt) is at least(

∆+
x,λ + h(λ/F)− h(λF 1/s)

)
p+
x,λ + h(λF 1/s)− h(λ)−∆−x,λp

−
x,λ. (5.16)

We first consider the case λt ≤ 1/p+
min as then λt+1 ≤ F 1/s/p+

min and the first term in the
maximum of h(λt+1) is at least 1, yielding

h(λt+1) = − s

s+ 1

(
logF

(
F 1/s

p+
min

)
− logF (λt+1)

)
< 0.

Hence, E
(
g3(Xt+1)− g3(Xt) | Xt, λt ≤ 1/p+

min

)
is at least(

∆+
x,λ −

s

s+ 1

(
s+ 1

s

))
p+
x,λ +

s

s+ 1

(
1

s

)
−∆−x,λp

−
x,λ

=
1

s+ 1
+
(

∆+
x,λ − 1

)
p+
x,λ −∆−x,λp

−
x,λ.

By definition ∆+
x,λ ≥ 1, hence

E
(
g3(Xt+1)− g3(Xt) | Xt, λt ≤ 1/p+

min

)
≥ 1

s+ 1
−∆−x,λp

−
x,λ.

By Lemma 5.4.2, p−x,λt = (p−x)λt ≤ γ−λt . Along with the trivial bound ∆−x,λ ≤ d, the
right-hand side of the previous inequality is at least

1

s+ 1
− dγ−λ.

102

Since λt ≥ λsafe ≥ logγ(2d(s + 1)) the second term is at most 1
2(s+1) , thus

E
(
g3(Xt+1)− g3(Xt) | Xt, λt ≤ 1/p+

min

)
≥ 1

2(s+1) .

Finally, for the case λt > 1/p+
min, in an unsuccessful generation the penalty term is

capped, hence we only know that h(λF 1/s) ≥ h(λ) (which holds with equality if λt ≥
F 1/s/p+

min). By Equation (5.16),

E
(
g3(Xt+1)− g3(Xt) | Xt, λt > 1/p+

min

)
≥
(

∆+
x,λ + h(λ/F)− h(λ)

)
p+
x,λ −∆−x,λp

−
x,λ

=

(
∆+
x,λ −

s

s+ 1

)
p+
x,λ −∆−x,λp

−
x,λ.

By definition ∆+
x,λ ≥ 1, hence

E
(
g3(Xt+1)− g3(Xt) | Xt, λt ≤ 1/p+

min

)
≥
(

1

s+ 1

)
p+
x,λ −∆−x,λp

−
x,λ.

λt > 1/p+
min implies p+

x,λ ≥ 1 − (1− p+
x)

1/p+min ≥ 1 − 1
e and by Definition 5.4.1, p−x,λ∆−x,λ ≤

dγ−1/p+min . Together,

E
(
g3(Xt+1)− g3(Xt) | Xt, λt ≤ 1/p+

min

)
≥
(

1

s+ 1

)(
1− 1

e

)
− dγ−1/p+min

=

(
1

s+ 1

)(
1− 1

e

)
− o (1) ≥ 1

2(s+ 1)

where the penultimate step follows from d ≤ no(logn) and p+
min ≤ p+

max ≤ n−ε/2, which

implies γ−1/p+min ≤ γ−n
ε/2

= n−Ω(nε/2/ logn). The last inequality holds if n is large enough.

With the previous lemmas we are now able to prove Theorem 5.4.4.

Proof of Theorem 5.4.4. If λ0 < λinc then by Lemma 5.4.5 in expected O(log λinc) gen-
erations λ will grow to λ ≥ λinc. Afterwards, by Lemma 5.4.6, with probability 1−n−Ω(logn),
the offspring population size will be λ ≥ λsafe in the next no(logn) generations. Assuming in
the following that this happens, we note that then the drift bound from Lemma 5.4.9 is in
force.

Now, similar to Theorem 5.3.3 in Section 5.3.1 we bound the number of generations to
reach the global optimum using the potential g3(Xt). Lemma 5.4.9 shows that the potential
has a positive constant drift whenever the optimum has not been found, and by Lemma 5.4.8
if g3(Xt) = d then the optimum has been found. Therefore, we can bound the number of
generations to find a global optimum by the time it takes for g3(Xt) to reach d.

To fit the perspective of the additive drift theorem (Theorem 2.4.14) we switch to the
function g3(Xt) := d− g3(Xt) and note that g3(Xt) = 0 implies that g3(Xt) = f(xt) = d.

The initial value g3(X0) is at most d+ s
s+1 logF

(
F 1/s

p+min

)
by Lemma 5.4.8. Using Lemma 5.4.9

and the additive drift theorem, the expected number of generations, assuming no failure
occurs, is at most

E(T) ≤
d+ s

s+1 logF

(
F 1/s

p+min

)
1

2(s+1)

= 2(s+ 1) · d+O
(
log
(
1/p+

min

))
.

Finally, by Lemma 5.4.2 we have p+
min ≥ n−O(n) and thus E(T) = O(d + n log n) in case

of no failures. Since failures have a probability of n−Ω(logn) over no(logn) generations and
O(d+n log n) = no(logn) using the assumption d+ 1 = no(logn), if we restart the proof every
time a failure happens, the expected number of repetitions is 1+n−Ω(logn) and all additional
costs can be absorbed in the previous bounds.

103

5.4.2 Bounding the Number of Evaluations

Now we consider the expected number of fitness evaluations and give the following general
result.

Theorem 5.4.10. Consider the self-adjusting (1, λ) EA using any mutation operator that
ensures p+

x > 0 for all non-optimal search points x. Let the update strength F > 1 and
the success rate s > 0 be constants. Consider an arbitrary everywhere hard function f
with d + 1 = no(logn) function values. Then for every initial search point and every initial

offspring population size λ0 = O
(∑d−1

i=0
1
si

)
the expected number of evaluations to optimise

f is at most

O

(
d−1∑
i=0

1

si

)
.

The condition p+
x > 0 is met by standard bit mutation and heavy-tailed mutations. The

term
∑d−1
i=0

1
si

equals the fitness-level upper bound for the (1+1) EA using the same mutation
operator as the considered self-adjusting (1, λ) EA. A similar result to Theorem 5.4.10 was
shown for the (elitist) self-adjusting (1+{2λ, λ/2}) EA from [120]. Our result shows that the
same bound also applies in the context of non-elitism, if the fitness function is everywhere
hard.

The main proof idea is that given that λ maintains a large value with high probabil-
ity throughout the optimisation, the algorithm with high probability behaves as an elitist
algorithm. This is shown in the next lemma, adapted from Lemma 5.3.9 in Section 5.3.1.

Lemma 5.4.11. Consider the self-adjusting (1, λ) EA as in Theorem 5.4.10. Let T be the
first generation in which the optimum is found. Then for all t ≤ T in which λt ≥ λsafe, we
have f(xt+1) ≥ f(xt) with probability 1−O(1/(n log n)).

Proof. Let Et denote the event that λt < λsafe or f(xt+1) ≥ f(xt). Hence we only need to
consider λt-values of λt ≥ λsafe. We note that

λsafe = 4 max
(
logγ(2d(s+ 1)), logγ(n log n)

)
≥ 2

(
logγ(2d(s+ 1)) + logγ(n log n)

)
.

Then by Lemma 5.4.2 we have

Pr
(
Et
)
≤ γ−λt ≤ γ−2(logγ(2d(s+1))+logγ(n logn)) =

1

(2d(s+ 1)n log n)2
.

By a union bound, the probability that this happens in the first T generations is at most∑∞
t=1 Pr (T = t) · t

(2d(s+ 1)n log n)2
=

E(T)

(2d(s+ 1)n log n)2
.

By Theorem 5.4.4, this is

O

(
d+ n log n

(dn log n)2

)
= O

(
1

d(n log n)2
+

1

d2n log n

)
= O

(
1

n log n

)
.

If the algorithm behaves as an elitist algorithm with high probability, we can bound its
expected optimisation time by the expected optimisation time of its elitist version, i. e. a
self-adjusting (1 + λ) EA. We have already used this argument in Section 5.3.1 for the func-
tion OneMax, and the expected optimisation time of the elitist self-adjusting (1 + λ) EA
was bounded from above in Theorem 5.3.12. Note that the bound in Theorem 5.3.12 is
O
(
λ0 +

∑b−1
i=a

1
si

)
.

104

The following lemma bounds the expectation of λ at each step t in order to deal with the
case where the self-adjusting (1, λ) EA does not behave as an elitist algorithm. It generalises
Lemma 5.3.19 for all functions. It follows from the proof of Lemma 5.3.19 for OneMax
when replacing the specific lower bound of n−i

en on the success probability on OneMax by

the general lower bound p+
min.

Lemma 5.4.12. Consider the self-adjusting (1, λ) EA as in Theorem 5.4.10. The expected
value of λ at time t is

E(λt | λ0) ≤ bλ0/F
tc+

1

p+
min

·
(
F 1/s +

F 1/s

lnF

)
.

Now we are in a position to prove Theorem 5.4.10.

Proof of Theorem 5.4.10. By Lemma 5.4.5, λ will grow to λinc using O(λinc log λinc) =
o(
√
n log(n)) expected evaluations. Afterwards, by Lemma 5.4.6 the offspring population

size will maintain a value of at least λsafe with probability 1 − n−Ω(logn) throughout the
optimisation and by Lemma 5.4.11 with probability 1 − O(1/(n log n)) the algorithm will
behave as an elitist algorithm until the optimum is found. Considering the above rare,
undesired events as failures, we define E(T ∗) be the expected time of a run with λ0 =

O
(∑d−1

i=0
1
si

)
until either a global optimum is found or a failure occurs. As long as no

failure occurs, Theorem 5.3.12 can be applied with a := 0 and thus we obtain E(T ∗) =

O
(∑d−1

i=0
1
si

)
.

Since failures have a probability of O(1/(n log n)), we can restart our arguments whenever
a failure happens and in expectation there would be at most 1 + O(1/(n log n)) attempts.
Arguing as in Theorem 5.3.7, in each restart of the analysis λ0 would take the λ-value at
the time of a failure, denoted as λfail. By Lemma 5.4.12,

E(λfail) ≤ λ0 +O

(
1

p+
min

)
≤ O

(
d−1∑
i=0

1

si

)

and this term, multiplied by O(1/(n log n)), can easily be absorbed in our claimed upper
bound.

5.4.3 Bounds on Unimodal Functions

We now show how to apply Theorems 5.4.4 and 5.4.10 to obtain novel bounds on the expected
optimisation time of the self-adjusting (1, λ) EA on everywhere hard unimodal functions and
give specific bounds for the benchmark function LeadingOnes and a new function class
that we call OneMaxBlocks that allows us to vary the difficulty of the easiest fitness levels
(see Section 2.3 for their definitions).

Recall that LeadingOnes returns the number of 1-bits in the longest prefix that only
contains ones. The proposed function class, OneMaxBlocks, has a similar structure. It is
comprised of blocks of k bits. A block is complete if it only contains 1-bits and incomplete
otherwise. The function returns the number of 1-bits in the longest prefix of completed
blocks plus the number of 1-bits in the first incomplete block. Evolutionary algorithms
typically optimise this function by optimising each OneMax-like block of size k from left to
right until the global optimum 1n is reached. We can tune the maximum success probability
p+

max by assigning different values to k. If k = 1 the function equals LeadingOnes where
p+

max = Θ(1/n). Increasing k increases the maximum success probability. If k = n the
function equals OneMax and p+

max = Θ(1).

105

Theorem 5.4.13. Let s > 0 and F > 1 be constants. The expected number of generations
and evaluations of the self-adjusting (1, λ) EA using standard bit mutation with mutation
probability r/n, r = Θ(1), or heavy-tailed mutations with constant β > 1 is at most

1. O(d) expected generations and O(dn) expected evaluations on all unimodal functions
with log n ≤ d+ 1 = no(logn) fitness values that are everywhere hard for the considered
algorithm,

2. O(n) expected generations and O(n2) expected evaluations on LeadingOnes , and

3. O(n) expected generations and O
(
n2 log k

k

)
expected evaluations on OneMaxBlocks

with 1 < k ≤ n1−ε for some constant 0 < ε < 1 and, additionally, k ≤ nβ−1−ε if
heavy-tailed mutations are used.

Proof. The set of everywhere hard unimodal functions by definition meet the conditions in
Definition 5.4.1, therefore we can apply Theorems 5.4.4 and 5.4.10 directly. We only need
to bound p+

min. Given that every search point has a strictly better Hamming neighbour, the
success probability of all fitness levels is at least as large as the probability of flipping only
one specific bit. For standard bit mutations with mutation probability r/n, this is at least

p+
min ≥

r

n

(
1− r

n

)n−1

≥ r

ern
·
(

1− r

n

)1−r
= Ω(1/n).

For heavy-tailed mutations we also have p+
min = Ω(1/n) as there is a constant probability of

choosing a mutation rate of 1/n. Applying Theorems 5.4.4 and 5.4.10 yields O(d+ log n) =
O(d) generations and O(dn) evaluations in expectation.

For the statement on LeadingOnes we need to show that the function is everywhere
hard for the considered algorithms. A necessary condition for an offspring to be better
than the parent is to flip the leftmost 0-bit, hence the success probability of standard bit
mutation on all fitness levels is bounded by p+

x ≤ r
n and LeadingOnes meets the conditions

of an everywhere hard unimodal function. Thus, it is covered by the previous statement
with d := n. For heavy-tailed mutations, a much larger mutation rate might be used, hence
we need to be more careful. Heavy-tailed mutation chooses a mutation probability r∗/n
according to a power-law distribution with parameter β, truncated at n/2. The probability
of choosing a certain mutation rate r/n is

Pr (r∗ = r) =
r−β∑n/2
j=1 j

−β
≤ r−β

ζ(β)− ρ
,

where the inequality is taken from [62] and ζ(β) is the Riemann zeta function ζ evaluated

at β and ρ = β
β−1

(
n
2

)−β+1
= o(1). Given a mutation probability of r/n (where r is no

longer restricted to a constant), the probability of flipping the first 0-bit is r/n. Hence, we
have

p+ ≤
n/2∑
r=1

r−β

ζ(β)− ρ
· r
n

=

∑n/2
r=1 r

1−β

n(ζ(β)− ρ)
= Θ

(
1

n

)
·
n/2∑
r=1

r1−β .

Since β > 1, r1−β is strictly decreasing with r and, using r1−β ≤
∫ r
r−1

x1−β dx, we can
bound the sum by an integral:

n/2∑
r=1

r1−β ≤
∫ n/2

0

r1−β dr =
(n/2)2−β

2− β
.

Together, we get

p+ ≤ Θ

(
1

n

)
· (n/2)2−β

2− β
= O(n1−β)

106

which, recalling β > 1, meets the definition of everywhere hardness for ε := β − 1 > 0.
For OneMaxBlocks, a search point of fitness i < n has i mod k 1-bits in its first

incomplete block. All non-optimal search points can only be improved by flipping at least
one 0-bit in the first incomplete block. Hence, a necessary condition for an offspring to be
better than the parent is to flip one of the k − (i mod k) ≤ k 0-bits in the first incomplete
block. Hence, all success probabilities can be bounded by k times the bound on the success
probability for LeadingOnes. Thus, for all non-optimal x, p+

x ≤ r·k/n ≤ rn−ε for standard
bit mutations using the assumption k ≤ n1−ε and p+

x ≤ O(k · n1−β) = O(n−ε) for heavy-
tailed mutation using the assumption k ≤ nβ−1−ε. For both operators, OneMaxBlocks
meets the conditions of an everywhere hard unimodal function.

A sufficient condition for an offspring to be better than its parent of fitness i is to flip only
one of the k − (i mod k) 0-bits in the first incomplete block, yielding a success probability
for standard bit mutations of

si ≥
r(k − (i mod k))

n

(
1− r

n

)n−1

.

By Theorem 5.4.4, the self-adjusting (1, λ) EA optimises OneMaxBlocks with k ≤ n1−ε

in O(n) generations. By Theorem 5.4.10 the expected number of evaluations is at most

O

(
d−1∑
i=1

1

si

)
= O

(
n∑
i=1

(
1− r

n

)−n+1
n

r(k − (i mod k))

)

=O

n
k
·
(

1− r

n

)−n+1 k∑
j=1

n

rj

 = O

(
n2 log k

k

)
.

If k = 1 OneMaxBlocks is equivalent to LeadingOnes and the expected number of
evaluations is O(n2). For heavy-tailed mutations we again use that a mutation rate of 1/n
is used with constant probability, hence the above asymptotic probability bounds apply as
well.

5.4.4 Very Small Mutation Rates Make All Functions Everywhere
Hard

In this short section we remark that, if the self-adjusting (1, λ) EA uses standard bit mutation
with mutation rate 1/n1+ε for some constant 0 < ε then all functions are everywhere hard
since any mutation will create a copy of the parent with probability at least 1 − n−ε and
thus the probability of an offspring improving the fitness is at most p+

max ≤ n−ε. This
means that functions like OneMax, where large constant values of s result in exponential
runtimes (Theorem 5.3.20 and 5.3.23 in Section 5.3.2), can be solved in polynomial expected
time for arbitrary constant values of s. For example, the self-adjusting (1, λ) EA with every
constant s > 1 can solve OneMax in O(n) expected generations and O(n1+ε log n) expected
evaluations. In the following corollary we make this explicit.

Corollary 5.4.14. Let 0 < ε < 1, the update strength F > 1 and the success rate
s > 0 be constants. For every function f with d + 1 = no(logn) fitness levels, the
self-adjusting (1, λ) EA using standard bit mutation with mutation rate 1/n1+ε optimises

f in O
(
d+ log

(
1/p+

min

))
expected generations and O

(∑d−1
i=1

1
si

)
expected evaluations.

The conclusion is that making an algorithm less efficient (in the sense of introducing large
self-loops) can improve performance as the algorithm shows a more stable search behaviour.
Similar observations were made before for the (1, λ) EA with fixed λ [166] and, in a wider
sense, in evolution with partial information [40].

107

5.5 Experimental Analysis

Due to the complex nature of our analyses there are still open questions about the behaviour
of the self-adjusting (1, λ) EA. In this section we show some elementary experiments to
enhance our understanding of the parameter control mechanism and address these unknowns.
All the experiments were performed using the IOHProfiler [74].

5.5.1 Empirical Analyses on OneMax

In Section 5.3.1 we have shown that both the self-adjusting (1, λ) EA and the self-adjusting
(1 + λ) EA have an asymptotic runtime of O(n log n) evaluations on OneMax. This is

the same asymptotic runtime as the static parameters λ =
⌈
log e

e−1
(n)
⌉

for the (1, λ) EA

[166]. Unfortunately the asymptotic notation may hide large constants, therefore, our first
experiments focus on the comparison of these three algorithms on OneMax. We remark
that very recently the conditions for efficient offspring population sizes have been relaxed

to λ ≥
⌈
log e

e−1
(cn/λ)

⌉
for any constant c > e2 in [20]. However, this only reduces the

best known value of λ by 1 or 2 for the considered problem sizes, and so we stick to the

simpler formula of λ =
⌈
log e

e−1
(n)
⌉
, i. e. the best static parameter value reported in [166].

Following Rowe and Sudholt [166] we consider an algorithm inefficient on OneMax if it
does not find the optimum within 500n generations, hence, all runs in this section were
stopped once the optimum was found or after 500n generations were reached, unless stated
otherwise.

Figure 5.2: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA, the
self-adjusting (1+λ) EA with s = 1, F = 1.5 and the (1, λ) EA over 1000 runs for different n
on OneMax. The number of evaluations is normalised by n log n.

Figure 5.2 displays box plots of the number of evaluations over 1000 runs for different
problem sizes on OneMax. From Figure 5.2 we observe that the difference between both
self-adjusting algorithms is relatively small. This indicates that there are only a small
number of fallbacks in fitness and such fallbacks are also small. We also observe that the

108

best static parameter choice λ =
⌈
log e

e−1
(n)
⌉

from [166] is only a small constant factor

faster than the self-adjusting algorithms.
In the results of Sections 5.3.1 and 5.3.2 there is a gap between s < 1 and s ≥ 18 where

we do not know how the algorithm behaves on OneMax. In our second experiment, we
explore how the algorithm behaves in this region by running the self-adjusting (1, λ) EA on
OneMax using different values for s shown in Figure 5.3. We found a sharp threshold at
s ≈ 3.4, indicating that the widely used one-fifth rule (s = 4) is inefficient here, but other
success rules achieve optimal asymptotic runtime.

Figure 5.3: Average number of generations with 99% bootstrapped confidence interval of
the self-adjusting (1, λ) EA with F = 1.5 in 100 runs for different n, normalised and capped
at 500n generations.

Figure 5.4: Fixed target results for the self-adjusting (1, λ) EA on OneMax with n = 1000
(100 runs).

Additionally, in Figure 5.4 we plot fixed target results, that is, the average time to reach
a certain fitness, for n = 1000 for different s. No points are graphed for fitness values that
were not reached during the allocated time (500n generations). We note that the plots do

109

not start exactly at n/2 = 500; this is due to the random effects of initialisation. From
here we found that the range of fitness values with negative drift is wider than what we
where able to prove in Section 5.3.2. Already for s = 3.4, there is an interval on the scale of
number of ones around 0.7n where the algorithm spends a large amount of evaluations to
traverse this interval. Interestingly, as s increases the algorithm takes longer to reach points
farther away from the optimum.

We also explored how the parameter λ behaves throughout the optimisation depending
on the value of s. In Figure 5.5 we can see the average λ at every fitness value for n = 1000.
As expected, on average λ is larger when s is smaller. For s ≥ 3 we can appreciate that on
average λ < 2 until fitness values around 0.7n are reached. This behaviour is what creates
the non-stable equilibrium slowing down the algorithm.

Figure 5.5: Average λ values for each fitness level of the self-adjusting (1, λ) EA on OneMax
with n = 1000 (100 runs).

To identify the area of attraction of the non-stable equilibrium we implemented a set
of experiments (100 runs) with n = 100 and plotted (Figure 5.6) the percentage of time
spent in each fitness level for different s values near the transition between polynomial and
exponential. Runs were stopped when the optimum was found or when 1,500,000 function
evaluations were made. The first thing to notice is that for s = 20 the algorithm is attracted
and spends most of the time near n/2 ones, which suggests that it behaves similar to a
random walk. When s decreases, the area of attraction moves towards the optimum but
stays at a linear distance from it. For s ≤ 3.4 most of the evaluations are spent near the
optimum on the harder fitness levels where λ tends to have linear values.

We now explore how small mutation rates help the self-adjusting (1, λ) EA optimise
OneMax with any constant success rate s > 0 as suggested by Corollary 5.4.14. We use
a mutation probability p = 1/n1.3 and success rates s ∈ {2, 4, . . . , 20}. In Figure 5.7 we
see that independent of the value of s chosen the algorithm spends a similar number of
evaluations. In addition we also plot the number of evaluations without evaluating clones
(offspring that is an exact copy of the parent). This is a simple way to save unnecessary
evaluations caused by the small mutation rates used. With this simple change the runtime
of the self-adjusting (1, λ) EA with mutation probability p = 1/n1.3 is competitive with its

110

Figure 5.6: Percentage of fitness function evaluations used per fitness value for the
self-adjusting (1, λ) EA on OneMax with n = 100 over 100 runs (runs were stopped when
the optimum was found or when 1,500,000 function evaluations were made).

elitist counterpart using the standard mutation rate p = 1/n independently of the success
rate chosen.

Figure 5.7: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA
with F = 1.5 and p = 1/n1.3 over 100 runs for different success rates s on OneMax with
n = 1000. The number of evaluations is normalised by n log n.

5.5.2 Empirical Analyses on Other Benchmark Functions

Figure 5.8 displays box plots of the number of evaluations over 1000 runs for different
problem sizes on LeadingOnes. From Figure 5.8 we observe that the difference between
both self-adjusting algorithms is relatively small. This last observation was expected from
our analysis, because λ grows to at least a sublinear value before finding an improvement and
stays large during the optimisation behaving as an elitist algorithm with high probability.

We also observe that the best known static parameter of λ =
⌈
2 log e

e−1
(n)
⌉

[166] is only a

small constant factor faster than the self-adjusting algorithms.

111

Figure 5.8: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA, the
self-adjusting (1+λ) EA with s = 1, F = 1.5 and the (1, λ) EA over 1000 runs for different n
on LeadingOnes. The number of evaluations is normalised by n2.

From Theorem 5.4.13 we can see that for OneMaxBlocks if k is sufficiently small
then the self-adjusting (1, λ) EA with any constant s > 0 solves the function in polyno-
mial time. But if k = n then OneMaxBlocks is equivalent to OneMax and then the
self-adjusting (1, λ) EA using a large constant s needs exponential time to solve the function
(Theorem 5.3.20). Therefore, there must be phase transition for k between polynomial and
exponential runtime when a large constant s is used. In Figure 5.9 we show the number of
evaluations over 100 runs of the self-adjusting (1, λ) EA and the self-adjusting (1 + λ) EA
with s = 10 and F = 1.5 on OneMaxBlocks for n = 212 and different values of k, where
large k represent “easy” functions. All runs that did not find the optimum before 10 · 224

evaluations are not shown.
We can see that for all k ≤

√
n (“hard” functions) both algorithms have a similar runtime,

but for larger k-values the runtime of the self-adjusting (1, λ) EA increases rapidly. This
agrees with our theoretical results and follows the behaviour that we expected.

Figure 5.9: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA,
the self-adjusting (1 + λ) EA with s = 10, F = 1.5 over 100 runs for different k on One-
MaxBlocks with n = 212. The number of evaluations is normalised by (n2 log k)/k.

112

5.6 Discussion and Conclusions

We have shown that simple success-based rules, embedded in a (1, λ) EA, are able to optimise
OneMax in O(n) generations and O(n log n) evaluations. The latter is best possible for
any unary unbiased black-box algorithm [67, 128].

However, this result depends crucially on the correct selection of the success rate s. The
above holds for constant 0 < s < 1 and, in sharp contrast, the runtime on OneMax (and
other common benchmark problems) becomes exponential with overwhelming probability if
s ≥ 18. Then the algorithm stagnates in an equilibrium state at a linear distance to the
optimum where successes are common. Simulations showed that, once λ grows large enough
to escape from the equilibrium, the algorithm is able to maintain large values of λ until the
optimum is found. Hence, we observe the counterintuitive effect that for too large values
of s, optimisation is harder when the algorithm is far away from the optimum and becomes
easier when approaching the optimum. (To our knowledge, such an effect was only reported
before on HotTopic functions [134] and Dynamic BinVal functions [132].)

There is a gap between the conditions s < 1 and s ≥ 18. Further work is needed to close
this gap. In our experiments we found a sharp threshold at s ≈ 3.4, indicating that the
widely used one-fifth rule (s = 4) is inefficient here, but other success rules achieve optimal
asymptotic runtime.

Additionally, we showed that when s is large the self-adjusting (1, λ) EA has an expo-
nential runtime with overwhelming probability on Jumpk, Cliffd, ZeroMax, TwoMax
and Ridge. We believe that these results can be extended for many other functions: we
conjecture that for any function that has a large number of contiguous fitness levels that
are easy, that is, that the probability of a successful generation with λ = 1 is constant, then
there is a (large) constant success rate s for which the self-adjusting (1, λ) EA would have
an exponential runtime. We suspect that many combinatorial problem instances are easy
somewhere, for example problems like minimum spanning trees, graph colouring, knapsack
and MaxSat tend to be easy in the beginning of the optimisation. Furthermore, given
that for large values of s the algorithm gets stuck on easy parts of the optimisation and
that OneMax is the easiest function with a unique optimum for the (1 + 1) EA [58], we
conjecture that any s that is efficient on OneMax would also be a good choice for any other
problem.

In stark contrast, we have also shown that the non-elitist self-adjusting (1, λ) EA is not
affected by the choice of the success rate (from positive constants) if the problem in hand is
everywhere hard, that is, improvements are always found with a probability of at most n−ε.

This last results apply to both standard bit mutation as well as heavy-tailed mutations.
The expected number of evaluations is bounded by the same fitness-level upper bound as
known for the (1 + 1) EA using the same mutation operator. Self-adjusting the offspring
population size drastically reduces the number of generations to just O(d+log(1/p+

min)), that
is, roughly to the number of fitness values, improving and generalising previous results [120].

As a byproduct of our analysis, we have also shown an upper bound for the expected
number of evaluations of the elitist self-adjusting (1 + λ) EA on arbitrary fitness functions.

113

Chapter 6

Benefits of Using Success-Based
Rules for Non-elitist Algorithms
on Multimodal Problems

6.1 Introduction

In Chapter 4 we have analysed how the one-fifth rule, a common success-based param-
eter control mechanism, embedded in the elitist (1 + (λ, λ)) GA behaves on multimodal
problems. We have shown that the parameter control mechanism tends to diverge its
parameters whenever a local optimum is reached, deteriorating the algorithm’s perfor-
mance. We proved that a simple reset mechanism is able to improve the performance of
the self-adjusting (1 + (λ, λ)) GA, by allowing the algorithm to cycle through the parameter
space whenever a local optima is reached. In each cycle the algorithm is able to use optimal
or near-optimal parameters, enhancing its ability to escape local optima.

We have argued in Chapter 5 that analysing the runtime of parameter control mechanisms
for non-elitist evolutionary algorithms is an important direction for research. One reason is
that non-elitist algorithms are frequently used in practice and understanding the dynamics
of non-elitist evolutionary algorithms is vital to narrow the gap between theory and practice.
In Chapter 5 we contributed to this effort by analysing a generalisation of the one-fifth rule
(the one-(s + 1)-th rule) adjusting λ for the non-elitist (1, λ) EA. We have shown that for
a sufficiently small constant success rate s the self-adjusting (1, λ) EA is able to optimise
OneMax efficiently. In addition we have shown that if the problem in hand is sufficiently
hard, any constant success rate s allows the self-adjusting (1, λ) EA to optimise the problem
in at most the same asymptotic time as its elitist counterpart, the self-adjusting (1 + λ) EA.

In this chapter we will bring everything together by using the lessons learned in Chapter 4
on how to efficiently apply success-based parameter control mechanisms for multimodal
optimisation and draw on the insights from our analysis in Chapter 5 to analyse a non-
elitist evolutionary algorithm on a multimodal problem where the potential for performance
improvements is much greater.

6.1.1 Contributions

We provide an example of significant performance improvements through parameter control
for a multimodal problem. We study the (1, λ) EA on the multimodal problem Cliff (see
Section 2.3) with a mechanism to self-adjust the choice of the offspring population size λ.
The function Cliff typically requires evolutionary algorithms to jump down a “cliff” by

114

accepting a huge loss in fitness, and then to climb up a slope towards the global optimum.
Elitist evolutionary algorithms are unable to accept this fitness loss and typically need
to jump directly to the global optimum (Theorem 8 in [153] gives a tight bound for the
(1+1) EA). The (1, λ) EA is able to jump down the cliff if and only if all offspring are
generated at the bottom of the cliff. Hence, the smaller the population size, the higher
the probability of jumping down the cliff. However, the (1, λ) EA also needs to be able
to climb up a OneMax-like slope towards the cliff and towards the global optimum. The
offspring population size λ must be large enough to enable hill climbing. Rowe and Sudholt
[166] showed that there is a phase transition on OneMax at log e

e−1
n. More specifically,

λ ≥ log e
e−1

n is sufficient to optimise OneMax efficiently (relaxed to λ ≥
⌈
log e

e−1
(cn/λ)

⌉
for any constant c > e2 in [20]), in expected O(n log(n) + λn) evaluations, but all λ ≤
(1 − ε) log e

e−1
n lead to exponential optimisation times. Every fixed value of λ must strike

a delicate balance to enable jumps down the cliff and at the same time being able to hill
climb. Jägersküpper and Storch [106] showed a bound of O(e5λ) for λ ≥ 5 lnn, which gives
an upper bound of O(n25) for λ = 5 lnn. To our knowledge, this is the best known upper
bound for the runtime of the (1, λ) EA to date. A lower bound of min{nn/4, eλ/4}/3 for
all λ was shown in [106]. Comparing the term eλ/4 ≈ 1.284λ to the upper bound of order
e5λ ≈ 148.413λ, the exponents (to the base of e) differ by a factor of 20 and the bases to the
power of λ differ by a factor larger than 115. This leaves a large polynomial gap between
upper and lower bounds for λ = Θ(log n).

We refine results from [106] and show that the runtime is Ω(λξλ) and O(λξλ log n) for
a base of ξ ≈ 6.196878, for reasonable values of λ. For the recommended fixed λ, we show
that the expected runtime is O(nη log2 n) for a constant η ≈ 3.976770136, and that it grows
faster than any polynomial of degree less than η.

More importantly, we then show that parameter control is highly beneficial in this sce-
nario. We present a self-adjusting (1, λ) EA that self-adjusts λ and prove that it is able to
optimise Cliff in O(n) expected generations and O(n log n) expected evaluations. This is
faster than any static parameter choice by a factor of Ω(n2.9767) and it is asymptotically the
best possible runtime for any unary unbiased black-box algorithm [128].

We remark that this is the first bound of O(n log n) for a standard evolutionary algorithm
on Cliff; previously, O(n log n) bounds were only achieved by using additional mechanisms
such as ageing [36] and hyper-heuristics [137].

Our analysis builds on our previous work in Chapter 5 that analysed a similar algorithm
on OneMax. The considered algorithm works using a variant of the famous one-fifth success
rule: in a generation in which the current fitness is increased (a success), λ is decreased by
a factor of F , where F is a parameter. In an unsuccessful generation, λ is increased by a
factor of F 1/s. The parameter s is called the success rate and it implies that, if on average
one in s+ 1 generations is successful, the current value of λ is maintained (as we have one
success and s unsuccessful generations and so λt+s+1 = λt · (F 1/s)s · 1/F = λt).

To make the self-adjusting (1, λ) EA work in multimodal optimisation, we need to tackle
an important challenge that requires a redesign of the self-adjusting (1, λ) EA from Chap-
ter 5. Success-based parameter control mechanisms can be problematic on multimodal
problems because once a local optimum is reached the success of previous generations
does not give a good indication of what parameters are needed to escape the local opti-
mum. In Chapter 4 we have explored two strategies to solve this problem for the elitist
self-adjusting (1 + (λ, λ)) GA: capping the value of the parameter and resetting the param-
eter once it has reached a certain value, allowing the algorithm to cycle through the possible
parameter values.

Here, we enhance the self-adjusting (1, λ) EA studied in Chapter 5 with a resetting
mechanism: whenever λ exceeds a predefined maximum of λmax, it is reset to λ = 1. When

115

such a reset happens at the top of the cliff, there is a good probability of jumping down the
cliff.

Note that the resetting mechanism may have unwanted side effects: resets may happen
in difficult fitness levels, for instance on Cliff resets may happen when climbing up the
slope to the global optimum and successes become rare. Hence we need to choose λmax

sufficiently large to mitigate this risk and enhance the analysis of the self-adjusting (1, λ) EA
on OneMax with additional arguments.

6.2 Preliminaries

We present a runtime analysis of the self-adjusting (1, λ) EA using standard bit mutation
with mutation probability p = 1/n on the n-dimensional pseudo-Boolean benchmark func-
tion Cliff.

The Cliff benchmark function (defined in Section 2.3) was first proposed by
Jägersküpper and Storch [106] as an example where non-elitism helps the optimisation pro-
cess. The function is designed to guide hill-climbing algorithms towards a local optimum
(cliff) where the global optimum is the only other search point with a higher fitness value
but it is at a linear distance from the local optimum. An elitist algorithm then needs to per-
form a large jump to find the global optimum; a non-elitist algorithm instead can escape the
local optimum by performing a fitness-decreasing step that leads to another slope guiding
to the global optimum.

Throughout the analysis we assume n is divisible by 3. Also following [137], we say that
all search points x with |x|1 ≤ 2n/3 form the first slope and all other search points form the
second slope.

The Cliff function was used as a benchmark in several other works, including studies
of the Strong Selection Weak Mutation (SSWM) model of evolution [153], artificial immune
systems [36] and hyper-heuristics [137].

The self-adjusting (1, λ) EA uses the generalised success based rule (one-(s+1)-th success
rule) to adjust the offspring population size λ. If the fittest offspring y is better than the
parent x, the offspring population size is divided by the update strength F , and multiplied
by F 1/s otherwise, with s being the success rate.

In this chapter we consider a variation of the self-adjusting (1, λ) EA with a resetting
mechanism for λ (see Algorithm 8) where λ is reset to 1 if λ = λmax and there is an
unsuccessful generation. This strategy has also been successfully applied to the self-adjusting
mechanism of the (1 + (λ, λ)) GA in Chapter 4. In addition, the strategy is similar to the
stagnation detection from [161, 162] in that if λmax is set appropriately when λ = λmax the
algorithm is likely to be in a local optimum and the behaviour of the algorithm changes. In
this case when λ is large enough the algorithm maintains its fitness with high probability,
but when λ is reset to 1 the behaviour changes to a pure random walk allowing the algorithm
to escape local optima.

As in previous chapters we regard λ to be a real value, so that changes by factors of 1/F
or F 1/s happen on a continuous scale. Following Doerr and Doerr [50], we assume that,
whenever an integer value of λ is required, λ is rounded to a nearest integer. For the sake
of readability, we often write λ as a real value even when an integer is required.

6.2.1 Transition Probabilities

We now define and estimate transition probabilities that apply to all (1, λ) EA variants
(with or without self-adjustment) using standard bit mutation in the context of OneMax
and Cliff.

116

Algorithm 8: Self-adjusting (1, {F 1/sλ, λ/F}) EA resetting λ.

1 Initialization: Choose x ∈ {0, 1}n uniformly at random (u.a.r.) and set λ := 1;
2 Optimization: for t ∈ {1, 2, . . . } do
3 Mutation: for i ∈ {1, . . . , bλe} do
4 y′i ∈ {0, 1}n ← standard bit mutation(x);

5 Selection: Choose y ∈ {y′1, . . . , y′bλe} with f(y)=max{f(y′1), . . . , f(y′bλe)} u.a.r.;

6 Update: x← y;
7 if f(y) > f(x) then λ← max{λ/F, 1};
8 if f(y) ≤ f(x) ∧ λ = λmax then λ← 1;

9 if f(y) ≤ f(x) ∧ λ 6= λmax then λ← min{λF 1/s, λmax};

Definition 6.2.1. For all λ ∈ N we state the following definitions from Chapter 5 in the
context of OneMax:

p+
i,λ = Pr (|xt+1|1 > i | |xt|1 = i)

p−i,λ = Pr (|xt+1|1 < i | |xt|1 = i)

∆−i,λ = E(i− |xt+1|1 | |xt|1 = i and |xt+1|1 < i)

The following probabilities and expectations are tailored to the Cliff function. This
includes probabilities for jumping down the cliff (p↓i,λ), that is, jumping from the first slope to

the second slope, jumping back up the cliff (p↑i,λ), that is, jumping from the second slope to
the first slope, increasing the fitness without jumping back up the cliff (p→i,λ), and decreasing
the fitness without jumping down the cliff (p←i,λ).

Definition 6.2.2. For all λ ∈ N we define:

p↓i,λ =

{
Pr (|xt+1|1 > 2n/3 | 2n/3 ≥ |xt|1 = i) if i ≤ 2n/3

0 otherwise.

p↑i,λ =

{
Pr (|xt+1|1 ≤ 2n/3 | 2n/3 < |xt|1 = i) if i > 2n/3

0 otherwise.

p→i,λ =

{
Pr (i < |xt+1|1 ≤ 2n/3 | |xt|1 = i) if i ≤ 2n/3,

Pr (i < |xt+1|1 | |xt|1 = i) otherwise.

p←i,λ =

{
Pr (|xt+1|1 < i | |xt|1 = i) if i ≤ 2n/3,

Pr (2n/3 < |xt+1|1 < i | |xt|1 = i) otherwise.

∆←i,λ =

{
E(i− |xt+1|1 | |xt|1 = i, |xt+1|1 < i) if i ≤ 2n/3,

E(i− |xt+1|1 | |xt|1 = i, 2n/3 < |xt+1|1 < i) otherwise.

∆→i,λ =

{
E(|xt+1|1 − i | |xt|1 = i, i < |xt+1|1 ≤ 2n/3) if i ≤ 2n/3,

E(|xt+1|1 − i | |xt|1 = i, i < |xt+1|1) otherwise.

Finally, for i > 2n/3,

∆↑i,λ = E(i− |xt+1|1 | 2n/3 < |xt|1 = i and |xt+1|1 ≤ 2n/3).

The events underlying the probabilities from Definition 6.2.2 are mutually disjoint. They
relate to the probabilities defined for OneMax in Chapter 5 as follows:

p+
i,λ = p→i,λ + p↓i,λ (6.1)

p−i,λ = p←i,λ + p↑i,λ (6.2)

117

The following lemma collects bounds on the above transition probabilities that will be
used throughout the remainder of this chapter.

Lemma 6.2.3. For any (1, λ) EA on Cliff, the quantities from Definition 6.2.2 are
bounded as follows:

For all i ∈ {1, . . . , n},

p←i,λ ≤ p−i,λ ≤
(
e− 1

e

)λ
(6.3)

∆←i,λ ≤ ∆−i,λ ≤
e

e− 1
. (6.4)

For all i ∈ {2n/3, . . . , n}, letting d := i− 2n/3,

p↑i,λ ≤
λ(i/n)d

d!
(6.5)

∆↑i,λ ≤ d+ 1. (6.6)

Finally,

p→i,λ ≥

{
1−

(
1− 1

3e

)λ
if i < 2n/3,

1−
(
1− n−i

en

)λ − p↑i,λ if i > 2n/3.
(6.7)

Proof. The first inequality in (6.3), p←i,λ ≤ p
−
i,λ, follows from (6.2). The stated upper bound

on p−i,λ was shown in Chapter 5 (Lemma 5.3.1).

We have ∆←i,λ ≤ ∆−i,λ since for i ≤ 2n/3, ∆←i,λ = ∆−i,λ by definition of ∆←i,λ and otherwise
∆←i,λ is capped as only target search points with more than 2n/3 ones are considered. The
second inequality in (6.4) was shown in Chapter 5 (Lemma 5.3.1).

To bound p↑i,λ, we argue that a necessary requirement for creating an offspring with at

most 2n/3 ones is that d one-bits flip. There are
(
i
d

)
ways for choosing d one-bits and the

probability that d specific bits are flipped is (1/n)d. Thus,

p↑i,1 ≤
(
i

d

)(
1

n

)d
≤ id

d!
·
(

1

n

)d
≤ (i/n)d

d!
.

Using the union bound over all offspring, we get

p↑i,λ ≤
λ(i/n)d

d!
.

To bound ∆↑i,λ we bound the number of one-bits flipped by the number of bit-flips during
a generation conditional on flipping d bits. Let B denote the random number of flipping bits
in a standard bit mutation with mutation probability 1/n, then using Lemma 1.7.3 from [48]
we get E(B | B ≥ d) ≤ d+ E(B) = d+ 1. Increasing the offspring population size does not

increase ∆↑i,λ because if multiple offspring jump up the cliff, the algorithm will transition to
an offspring with a maximum number of ones on the first slope.

To bound p→i,λ we argue that, for all i < 2n/3, if there is an offspring with i+1 ones then
the number of ones increases. For |xt|1 < 2n/3 the probability that an offspring flips only
one 0-bit is

p+
i,1 ≥

n− i
n

(
1− 1

n

)n−1

≥ n− i
en

. (6.8)

118

The probability that any of the λ offspring flips only one 0-bit is

1−
(
1− p+

i,1

)λ ≥ 1−
(

1− n− i
en

)λ
≥ 1−

(
1− 1

3e

)λ
.

This proves the claimed lower bound on p→i,λ if |xt|1 < 2n/3. If |xt|1 > 2n/3 then there is
an offspring with i+ 1 ones with probability

1−
(

1− n− i
en

)λ
.

In this case either the number of ones increases or the algorithm goes back up the cliff.
Hence,

p→i,λ ≥ 1−
(

1− n− i
en

)λ
− p↑i,λ.

We also give a lower bound for a mutation creating an offspring from the top of the cliff
(that is, a parent with 2n/3 ones) that increases the number of ones by at least c log logn

log log logn ,
for an arbitrary constant c > 0.

Lemma 6.2.4. For every constant c > 0 and all n ≥ 2223c

the probability that a standard bit
mutation of a search point with 2n/3 ones yields an offspring with at least 2n/3 + c log logn

log log logn

ones is at least (log n)−c.

Proof. Let κ := c log logn
log log logn , then a sufficient condition for the sought event is that κ 0-bits

flip. Since there are
(
n/3
κ

)
ways to choose these flipping bits, the probability is at least(

n/3

κ

)(
1

n

)κ
≥
(
n/3

κ

)κ(
1

n

)κ
=

(
1

3κ

)κ
= (3κ)

−κ
.

Plugging in κ, we get

(3κ)
−κ

=

(
3c log log n

log log log n

)− c log logn
log log logn

= 2−
c log logn

log log logn ·log(3c log logn
log log logn).

By assumption on n, we have log log log n ≥ 3c, thus 3c log logn
log log logn ≤ log log n and we bound

the sought probability by

2−
c log logn

log log logn ·log log logn = 2−c log logn = (log n)−c.

6.3 Non-elitist Algorithms with Static Parameters

We first consider the performance of the (1, λ) EA with a static choice of λ. The main result
in this section is the following theorem that gives upper and lower bounds for the expected
optimisation time of the (1, λ) EA on Cliff.

Theorem 6.3.1. The expected optimisation time E(T) of the (1, λ) EA with static λ on
Cliff is

E(T) = Ω
(
λξλ

)
if λ = O(n) and

E(T) = O
(
λξλ · log n

)
if log e

e−1
n ≤ λ = O(log n),

where ξ−1 := 1
e

∑∞
a=0

∑∞
b=a+1

(
2
3

)a (1
3

)b 1
a!b! ≈ 0.1613715804 and thus ξ ≈ 6.196878.

119

The lower bound is exponential in λ for all λ = O(n). The constant ξ−1 roughly repre-
sents the probability of increasing the number of ones in a mutation of a parent at the top
of the cliff, i. e. a parent with 2n/3 ones. For λ ≤ (1 − ε) log e

e−1
n, that is, if the offspring

population size is too small to allow for hill climbing on OneMax, a much stronger lower

bound of 2cn
ε/2

, for some constant c > 0, was shown in [166] for all functions with a unique
optimum. In the (arguably more interesting) parameter regime λ > (1− ε) log e

e−1
n our re-

sult improves upon the only other lower bound we are aware of: [106] showed a lower bound
for all λ of min{nn/4, eλ/4}/3. The term eλ/4 is roughly 1.284λ and hence considerably lower
than our lower bound of λ ·6.196λ. In this parameter regime our lower bound is nearly tight:
for the recommended values of λ for OneMax [166], the upper bounds only differ from the
lower bound by a logarithmic factor.

To prove Theorem 6.3.1, we first show that, for all search points with at most 3n/4
ones, improvements are found easily if λ ≥ log e

e−1
n. Note that the considered set of search

points includes search points on the first slope as well as search points on the second slope
at a linear distance past the top of the cliff. We will see that, once a search point with at
least 3n/4 ones has been reached, the algorithm will not jump back up the cliff, with high
probability. The choice of the constant 3/4 is somewhat arbitrary; we could have chosen
any other constant in (2/3, 1).

Lemma 6.3.2. Consider the (1, λ) EA with log e
e−1

n ≤ λ = O(log n) and a current search

point xt with |xt|1 ≤ 3n/4. Then the following statements hold.

1. The probability of creating an offspring with |xt|1 + 1 ones is at least 1− n−0.2.

2. For all xt with |xt|1 ∈ [0, 3n/4] \ [2n/3, 2n/3 + log n], the drift in the number of ones
is E(|xt+1|1 − |xt|1 | xt) ≥ 1− o(1).

3. For every κ ∈ [0, n/12], the expected number of generations until a search point with
exactly 2n/3 ones or at least 2n/3 + κ ones is reached is O(n).

Proof. The probability that one fixed offspring has more than |x|1 ones is at least
(n/4)/(en) = 1/(4e). The probability that there is an offspring that increases the num-
ber of ones is at least

1−
(

1− 1

4e

)log e
e−1

n

≥ 1−
(

4e

4e− 1

)− log 4e
4e−1

(n)/ log 4e
4e−1

(e
e−1)

= 1− n
−1/ log 4e

4e−1
(e
e−1)
≥ 1− n−0.2.

For the second statement, let A+1 denote the event from the first statement, that is, creating
an offspring with |xt|1 +1 ones and let A↑ be the event that |xt|1 > 2n/3 and |xt+1|1 ≤ 2n/3.
By the law of total probability, abbreviating ∆ := (|xt+1|1 − |xt|1 | xt),

E(∆) = E
(

∆ | A+1, A↑
)
· Pr

(
A+1, A↑

)
+ E

(
∆ | A+1, A↑

)
· Pr

(
A+1, A↑

)
+ E

(
∆ | A↑

)
· Pr

(
A↑
)
.

The first term is at least 1·
(

1− Pr
(
A+1

)
− Pr

(
A↑
))
≥ 1−n−0.2−p↑i,λ by the first statement

and a union bound. The second term is at least −(log(n)+n−ω(1) ·n)n−0.2 = −o(1), since the

probability of flipping at least log n bits is n−ω(1), also under conditions A+1, A↑, and using
the trivial bound n if this happens nevertheless. The third term is −∆↑i,λp

↑
i,λ by definition.

Plugging this together, we get

E(∆) ≥ 1− n−0.2 − p↑i,λ − o(1)−∆↑i,λp
↑
i,λ

= 1− n−0.2 − (∆↑i,λ + 1)p↑i,λ − o(1).

120

For |xt|1 < 2n/3, p↑i,λ = 0 and the claim follows. For |xt|1 > 2n/3 + log n, by Lemma 6.2.3
with d ≥ log n,

(∆↑i,λ + 1)p↑i,λ ≤
λ(d+ 2)

d!
≤ λ(log(n) + 2)

(log n)!
= n−ω(1).

This implies the second statement.
For the third statement, we first note that the second statement also holds for the drift

on the function OneMax, for all xt with |xt|1 ≤ 3n/4, as the negative terms involving p↑i,λ
disappear. Let us first consider the case that the current search point has at most 2n/3 ones.
Then, by the additive drift theorem (Theorem 2.4.14), the expected time until a search point
with at least 2n/3 ones is reached is O(n). Note that is it possible (though unlikely) that the
top of the cliff is skipped and the algorithm jumps down the cliff from a search point with
at most 2n/3 − 1 ones. By the first statement of this lemma, the conditional probability
of this happening, conditional on increasing the number of ones, is O(n−0.2). If it happens
regardless, we consider the following case of having more than 2n/3 ones.

If the current search point has more than 2n/3 ones, we argue that on OneMax, by
the same drift arguments as above, the expected time to reach a search point with at least
2n/3 +κ ones is O(κ) = O(n). We only see a difference to OneMax if the algorithm jumps
back up the cliff. Then we are left with a search point of at most 2n/3 ones and we apply
the above arguments.

If T (n) denotes the worst-case time with respect to the initial number of ones i < 2n/3+κ,
we have shown the recurrence: T (n) ≤ O(n) + O(n−0.2) · T (n). It is easy to see that
T (n) = O(n).

Another important step for proving Theorem 6.3.1 is estimating the probability of a
standard bit mutation of a parent at the top of the cliff increasing the number of ones,
p+

2n/3,1. This is because in order to jump down the cliff, all offspring must increase the

number of ones, which has a probability of (p+
2n/3,1)λ. To prove the claimed upper and lower

bounds in Theorem 6.3.1 we need precise estimations of p+
2n/3,1 as it appears in the base of

an expression exponential in λ; the commonly used inequalities n−2n/3
en ≤ p+

2n/3,1 ≤
n−2n/3

n

(that is, 1
3e ≤ p

+
2n/3,1 ≤

1
3) are too loose. The following lemma gives precise upper and lower

bounds on p+
i,1 for almost all values of i as this generality is achieved quite easily and the

lemma may be of independent interest.

Lemma 6.3.3. For all i ∈ {0, . . . , n− 1},

p+
i,1 ≤

(
1− 1

n

)n−2 ∞∑
a=0

∞∑
b=a+1

(
i

n

)a(
n− i
n

)b
1

a!b!
. (6.9)

For all i ∈ {dlog ne, . . . , n− dlog ne},

p+
i,1 ≥

(
1− 1

n

)n−2 ∞∑
a=0

∞∑
b=a+1

(
i

n

)a(
n− i
n

)b
1

a!b!

(
1− 2 log2 n

min{i, n− i}

)
. (6.10)

Proof. Let f `k denote the probability of flipping k bits out of a set of ` bits. We have an
increase in the number of ones if more zeros flip than ones. Since mutation treats ones and
zeros independently,

p+
i,1 =

∞∑
a=0

∞∑
b=a+1

f ia · fn−ib . (6.11)

(We let these sums run to ∞ to ease notation, but only finitely many terms with a ≤ i and
b ≤ n− i are non-zero.)

121

We bound f `k from above and below to show the claim. For all 1 ≤ k ≤ ` ≤ n,

f `k =

(
`

k

)(
1

n

)k (
1− 1

n

)`−k
=
`(`− 1) · . . . · (`− k + 1)

k!

(
1

n

)k (
1− 1

n

)`−k
≤ `(`− `/n)k−1

k!

(
1

n

)k (
1− 1

n

)`−k
=

1

k!

(
`

n

)k (
1− 1

n

)`−1

.

For k = 0 we have f `k =
(
1− 1

n

)` ≤ 1
k!

(
`
n

)k (
1− 1

n

)`−1
as well. Plugging this into (6.11)

establishes the claimed upper bound.
To bound p+

i,1 from below, we note that the probability of flipping at least log n bits is

at most 1/((log n)!) ≤ (e/ log n)logn = n−Ω(log logn). Thus,

p+
i,1 −

logn∑
a=0

logn∑
b=a+1

f ia · fn−ib = n−Ω(log logn).

Now, for 1 ≤ k ≤ log n and k ≤ ` ≤ n,

f `k =

(
`

k

)(
1

n

)k (
1− 1

n

)`−k
=
`(`− 1) · . . . · (`− k + 1)

k!

(
1

n

)k (
1− 1

n

)`−k
≥ (`− log n)k

k!

(
1

n

)k (
1− 1

n

)`−1

=
1

k!

(
`

n

)k (
1− 1

n

)`−1(
1− log n

`

)k
≥ 1

k!

(
`

n

)k (
1− 1

n

)`−1(
1− k log n

`

)
≥ 1

k!

(
`

n

)k (
1− 1

n

)`−1(
1− log2 n

`

)
.

For k = 0 we have f `k =
(
1− 1

n

)`
= 1

k!

(
`
n

)k (
1− 1

n

)`−1 (
1− 1

n

)
≥

1
k!

(
`
n

)k (
1− 1

n

)`−1
(

1− log2 n
`

)
as well. Plugging this into (6.11), the product of er-

ror terms for ` = i and ` = n− i becomes(
1− log2 n

i

)(
1− log2 n

n− i

)
≥ 1− 2 log2 n

min{i, n− i}
+

log4 n

i(n− i)
.

Since p+
i,1 ≥ Ω(1/n), we drop the log4 n

i(n−i) term to compensate for the error term n−Ω(log logn)

that accounts for flipping at least log n bits. This establishes the claimed lower bound.

For the specific value i = 2n/3, we obtain the following special case. Along with
1
e ≤

(
1− 1

n

)n−2 ≤ 1
e · (1 +O(1/n)), Equations (6.9) and (6.10) in Lemma 6.2.3 imply

the following.

122

Corollary 6.3.4.

p+
2n/3,1 =

1

e

∞∑
a=0

∞∑
b=a+1

(
2

3

)a(
1

3

)b
1

a!b!
±O

(
log2 n

n

)
which is approximately 0.1613715804±O(log2(n)/n).

Now we are ready to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. By Chernoff bounds, with probability 1− e−Ω(n), the initial search
point has at most 2n/3 ones. In the following, we assume that in the first Θ(ξλ) expected
generations, no mutation ever flips at least n/3 bits. The probability of flipping at least n/3
bits in one mutation is at most 1/((n/3)!) = n−Ω(n) and a union bound over λ offspring and
Θ(ξλ) expected generations (cf. (2.4)) still yields a probability of n−Ω(n).

Under this assumption, a necessary condition for finding the optimum is that a transition
from a search point with at most 2n/3 ones to a search point with more than 2n/3 ones is
made (i.e. a jump down the cliff). By Lemma 1 in [182], the probability of this event is
maximised if the parent has exactly 2n/3 ones; then it is (p+

2n/3,1)λ. By Equation (6.9) in

Lemma 6.2.3, along with (1− 1/n)n−2 ≤ 1/e · (1− 1/n)−2 ≤ 1/e · (1 + 2/n),

(p+
2n/3,1)λ ≤

(
ξ−1

(
1 +

2

n

))λ
≤ ξ−λ · e2λ/n = O(ξ−λ).

The expected waiting time for this transition to happen is at least Ω(ξλ). This establishes
a lower bound for the number of generations of (1 − e−Ω(n) − n−Ω(n)) · Ω(ξλ) = Ω(ξλ).
Multiplying the expected number of generations by λ yields the claimed lower bound for the
number of evaluations.

Now we show the upper bound. We consider the number of generations Tκ until a search
point with at least 2n/3 + κ ones is found, for κ := 2 log logn

log log logn , assuming that the current

search point is at the top of the cliff, that is, the current search point has 2n/3 ones.
The expected number of generations to return to the top of the cliff, or to find a search

point with at least 2n/3 + κ ones, is bounded by O(n) by Lemma 6.3.2.
Let p− denote the probability of accepting a search point with less than 2n/3 ones from

the top of the cliff and let p+ = (p+
2n/3,1)λ denote the probability of accepting a search point

with more than 2n/3 ones from the top of the cliff.
By Lemma 6.2.4 with c := 2, the probability of creating an offspring at distance at

least κ := 2 log logn
log log logn from the cliff is at least 1/ log2 n. This clearly also holds under the

condition of the event underlying p+, that is, that all offspring have more than 2n/3 ones.
The probability that there is one such offspring is at least

1−
(

1− 1

log2 n

)λ
≥ λ/ log2 n

1 + λ/ log2 n
≥ λ

2 log2 n
≥ 1

4 log n
,

where the first inequality follows from Lemma 2.4.1 (d) and the last inequality follows from
λ ≥ log e

e−1
n ≥ 1

2 log2 n.

Together, we have established a recurrence for E(Tκ):

E(Tκ) ≤ 1 + p−(O(n) + E(Tκ))

+ p+

(
O(n) +

(
1− 1

4 log n

)
E(Tκ)

)
+ (1− p+ − p−)E(Tκ).

This is equivalent to

p+

4 log n
· E(Tκ) ≤ 1 + p−O(n) + p+O(n). (6.12)

123

We argue that, at the top of the cliff, the probability of moving to a search point with a
different number of ones is p−+p+ = O(1/n). This is because if there is a mutation that does
not flip any bits, the next search point will be at the top of the cliff again. Hence, in order
to move to a search point with a different number of ones, all offspring must flip at least one
bit. The probability of this event is at most, using (1− 1/n)n = (1− 1/n) · (1− 1/n)n−1 ≥
1/e− 1/(en),

p− + p+ ≤
(

1−
(

1− 1

n

)n)λ
≤
(

1− 1

e
+

1

en

)λ
=

(
1− 1

e

)λ(
1 +

1

(e− 1)n

)λ
=

(
e− 1

e

)log e
e−1

n(
1 +

1

(e− 1)n

)λ
≤ 1

n
· eλ/((e−1)n) = O(1/n)

using λ = O(n) in the last step. Plugging this in to (6.12) and multiplying both sides by
4 log(n)/p+, we get

E(Tκ) ≤ O
(

log n

p+

)
.

Now assume that a search point with 2n/3+d ones has been reached, where κ ≤ d ≤ log n.
By Lemma 6.3.2 and Lemma 6.2.3, the probability that in one generation the number of
ones is increased (i.e. the algorithm does not jump up the cliff again) is at least

1− n−0.2 − λ(3/4)d

d!
.

By a union bound, the probability that this happens for all d = κ . . . n0.1 is at least

1− n0.1

n0.2
− λ

n0.1∑
d=κ

(3/4)d

d!
.

The sum is bounded from above, using d! ≥ (d/e)e, as

n0.1∑
d=κ

(3/4)d

d!
≤

n0.1∑
d=κ

(
3e

4d

)d
≤
∞∑
d=κ

(
3e

4κ

)d
=

(
3e

4κ

)κ
·
∞∑
d=0

(
3e

4κ

)d
=

(
3e

4κ

)κ
· 1

1− 3e
4κ

≤ 2

(
3e

4κ

)κ
.

Plugging in κ, we get

2

(
3e log log log n

4 log log n

) 2 log logn
log log logn

≤ 2 · 2
2 log logn

log log logn ·log(3e log log logn
4 log logn)

= 2 · 2−
2 log logn

log log logn ·log(4 log logn
3e log log logn).

For large enough n, we have

4 log log n

3e log log log n
≥ 2(log log n)1/2

124

and then

log

(
4 log log n

3e log log log n

)
≤ 1 +

1

2
log log log n.

Plugging this in, we bound the sum by

2 · 2−
2 log logn

log log logn ·(1+ 1
2 log log logn) ≤ 2 · 2− log logn− 2 log logn

log log logn = o

(
1

log n

)
.

Thus, the probability of reaching a search point with at least 2n/3 + n0.1 ones before going
back up the cliff is at least

1− n0.1

n0.2
− λ

logn∑
d=κ

(3/4)d

d!
≥ 1− o(1).

From that point on, for any search point with at least 2n/3 + n0.1/2 ones, we can use
arguments from the analysis of the (1, λ) EA on OneMax in [166] since the (1, λ) EA must
flip at least n0.1/2 bits to return to the cliff, and this has exponentially small probability.
It is not difficult to show using the negative drift theorem (Theorem 2.4.16) and the second
statement of Lemma 6.3.2, that, once we have reached a distance of at least n0.1 from the cliff,
reducing that distance to at most n0.1/2 has an exponentially small probability. Assuming
we never go back up the cliff, the remaining expected optimisation time is O(n log n) [166].

In total, the expected optimisation time (number of evaluations) is

O(1) · λE(Tκ) = O

(
λ log n

p+

)
= O

(
λ log n

(p+
2n/3,1)λ

)
.

This implies the claim since p+
2n/3,1 = ξ−1 −O((log2 n)/n) by Corollary 6.3.4 and

(
p+

2n/3,1

)λ
=

(
ξ−1 − O(log2 n)

n

)λ
= ξ−λ

(
1− O(log2 n)

n

)λ
≥ ξ−λ

(
1− O(λ log2 n)

n

)
= Ω(ξ−λ).

Along with the exponential lower bound from [166] for small λ-values, Theorem 6.3.1
shows that the expected optimisation time for any λ grows faster than any polynomial with
degree less than η ≈ 3.976770136.

Theorem 6.3.5. Let η := 1/ logξ

(
e
e−1

)
≈ 3.976770136. The expected optimisation time

of the (1, λ) EA with static λ is ω(nη−ε log n) for every constant ε > 0 and every λ and
O(nη log2 n) for λ = dlog e

e−1
ne.

Proof. By Theorem 6.3.1, the expected optimisation time for λ = dlog e
e−1

ne is O(ξλ log2 n).

Using

ξλ ≤ ξlog1+ e
e−1

n
= ξ1+logξ(n)/ logξ(

e
e−1) = ξn1/ logξ(

e
e−1) = ξnη

establishes the claimed upper bound.
For the lower bound, we exploit that for every constant ε′ > 0, for all λ ≤ (1−ε′) log e

e−1
n

the expected optimisation time of the (1, λ) EA on every function with a unique optimum

is at least 2cn
ε′/2

, for some constant c > 0, by Theorem 10 in [166]. This is clearly in
ω(nη log n). For λ = ω(n) the lower bound min{nn/4, eλ/4}/3 from Theorem 8 in [106]
is exponential. It thus suffices to consider λ > (1 − ε′) log e

e−1
n and λ = O(n). The

lower bound from Theorem 6.3.1 then becomes Ω(ξ
(1−ε′) log e

e−1
n

log n) = Ω(n(1−ε′)η log n).
Choosing ε′ := ε/(2η), this is Ω(nη−ε/2 log n) = ω(nη−ε log n) as claimed.

125

6.4 Provable Performance Gains applying Success-
Based Rules

In this section we show that the self-adjusting (1, λ) EA is faster than the (1, λ) EA with
static parameter choice by a polynomial factor of Θ(n2.9767), achieving the best possible
asymptotic runtime for any unary unbiased black-box algorithm of O(n log n) [128]. The
main result of this section is shown in Theorem 6.4.1.

Theorem 6.4.1. Let the update strength F > 1 and the success rate 0 < s < 1 be constants
and enF 1/s ≤ λmax = poly (n). Then for any initial search point and any initial λ0 ≤ λmax

the self-adjusting (1, λ) EA resetting λ optimises Cliff in O(n) expected generations and
O(λmax log n) expected function evaluations.

For λmax = denF 1/se we get O(n log n) evaluations in expectation.

The proof of our result is divided in four phases: reaching the cliff, jumping down the
cliff, climbing away from the cliff and finding the global optimum.

6.4.1 Reaching the Cliff

We note that the algorithm studied here is the same as the algorithm studied in Chapter 5 as
long as all generations that use λ = λmax are successful. Here we show that before reaching
the cliff the probability of an unsuccessful generation with λ = λmax is sufficiently small to
not affect the optimisation. Additionally, the results from Chapter 5 on OneMax can be
applied when only considering improvements that increase the fitness by 1. Hence, they can
be translated to the Cliff function to calculate the time the algorithm takes to reach the
cliff, giving the following bounds.

Lemma 6.4.2 (Adapted from Theorem 5.3.7). Consider the self-adjusting (1, λ) EA as
in Theorem 6.4.1. For every initial offspring population size λ0 ≤ λmax and every initial
search point x0 with |x0|1 = 2n/3 − a for a ≥ 1 the algorithm evaluates a solution xt with
|xt|1 ≥ 2n/3 using in expectation O(a+log n) generations and O(a+log n+λ0) evaluations.

We translate the results from Chapter 5 on OneMax to the first slope of Cliff,
therefore, before giving a proof for Lemma 6.4.2 we first show that w. o. p. the
self-adjusting (1, λ) EA does not reset λ in this region and consequently it behaves as the
algorithm studied in Chapter 5. By (2.4) this holds for any random time period of polyno-
mial expected length. The following lemma concerns a larger region of search points with
up to 3n/4 ones as this will be useful later on.

Lemma 6.4.3. Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1. The probability
that in a generation t with |xt|1 ≤ 3n/4 and |xt|1 6= 2n/3 the self-adjusting (1, λ) EA resets
λ is at most e−Ω(n).

Proof. In order to reset λ a generation using λ = λmax must not increase the fitness. By
Lemma 6.2.3 with λ = λmax ≥ enF 1/s the probability of this event is at most

1− p→λmax
≤
(

1− 1

3e

)enF 1/s

≤ exp

(
−nF

1/s

3

)
= e−Ω(n).

We now show the relevant definitions and lemmas adapted from Chapter 5 including the
necessary modifications to the proofs to translate them to Cliff. We start by defining a
potential function g4(Xt) using Definition 5.2.3.

Definition 6.4.4. We define the potential function g4(Xt) as:

g4(Xt) = |xt|1 −
2s

s+ 1
logF

(
max

(
enF 1/s

λt
, 1

))
.

126

Using Definition 6.4.4 we can see that given that λmax ≥ enF 1/s the drift of the potential
does not change as long as λ does not reset to 1. Hence the following lemma still holds.

Lemma 6.4.5 (Adapted from Lemma 5.3.6). Consider the self-adjusting (1, λ) EA reset-
ting λ as in Theorem 6.4.1 and assume that the event stated in Lemma 6.4.3 does not occur.
Then for every generation t with |xt|1 < 2n/3,

E(g4(Xt+1)− g4(Xt) | Xt) ≥
1− s

2e
> 0

for large enough n.

Again, as long as λ does not reset, the following lemma from Chapter 5 that describes
the expected value of λ holds.

Lemma 6.4.6 (Lemma 5.3.19). Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1
and assume that the event stated in Lemma 6.4.3 does not occur. If the best-so-far fitness
at time t is at most i then

E(λt | λ0) ≤ bλ0/F
tc+

en

n− i
·
(
F 1/s +

F 1/s

lnF

)
.

For completeness we state the following lemma taken from Chapter 5.

Lemma 6.4.7 (Lemma 5.3.5). For all generations t, |x|1 and the potential are related as:
|x|1 −

2s
s+1 logF (enF 1/s) ≤ g4(Xt) ≤ |x|1.

With the previous lemmas we can now prove Lemma 6.4.2.

Proof of Lemma 6.4.2. Following the arguments of the proof of Theorem 5.3.7 to bound the
number of generations to reach |xt|1 ≥ 2n/3 we use the potential function g4(Xt). To fit
the perspective of the additive drift theorem (Theorem 2.4.14) we switch to the potential
function g4(Xt) := max(2n/3− g4(Xt), 0) and stop when g4(Xt) = 0 (which implies that
|xt|1 is least 2n/3) or |xt|1 of at least 2n/3 is reached beforehand. Note that the maximum
caps the effect of generations that jump down the cliff. Lemma 6.4.5 shows that the potential
g4(Xt) has a positive constant drift whenever |xt|1 < 2n/3, and given that the drift bound
for g4(Xt) still holds when only considering fitness improvements by 1 it also holds for
g4(Xt).

The initial value g4(X0) is at most a + 2s
s+1 logF

(
enF 1/s

)
by

Lemma 6.4.7. Using Lemma 6.4.5 and the additive drift theorem (Theorem 2.4.14),
the expected number of generations is

E(T1) ≤
a+ 2s

s+1 logF
(
enF 1/s

)
1−s
2e

= O(a+ log n).

The expected number of function evaluations during this time is

E(λ0 + λ1 + · · ·+ λT1−1) = E
(∑T1−1

t=0 λt | λ0

)
. We bound all summands by Lemma 6.4.6,

applied with a worst case fitness of i := 2n/3. This yields a random variable λ∗ with

E(λ∗) ≤ en

n/3
·
(
F 1/s +

F 1/s

lnF

)
= e/3 ·

(
F 1/s +

F 1/s

lnF

)
and E(λ∗) ≥ E(λt | λ0) − bλ0/F

tc for all t < T1. Thus, the expected time can be bounded
by T1 i.i.d. variables λ∗ and

∑∞
t=0bλ0/F

tc ≤ Fλ0

F−1 = O(λ0). Since T1 is itself a random
variable, we apply Wald’s equation (Lemma 2.4.9) to conclude that

O(λ0) + E

(
T1−1∑
t=0

λ∗

)
= O(λ0) + E(T1) · E(λ∗) = O(a+ log n+ λ0).

127

Finally, if the failure from Lemma 6.4.3 occurs we restart the analysis with a worst-case
value of n for a. Since the failure has an exponentially small probability, this does not affect
the claimed expectations.

6.4.2 Jumping Down the Cliff

After reaching the cliff, the algorithm needs to jump down the cliff. This requires a gen-
eration in which all offspring lie on the second slope. We have seen in Section 6.3 that
this probability is exponentially small in λt. The resetting mechanism implies that when
λ reaches its maximum value λmax and the following generation is unsuccessful, we reach
small values of λt and jumps down the cliff become likely.

We also know from Section 6.3 that we need a sufficiently large jump to prevent the
algorithm from jumping straight back up the cliff. This probability decreases with the
distance to the cliff (that is, |xt|1 − 2n/3) and it increases with λt as many offspring can
amplify the probability of a jump back up the cliff. The following definition captures states
from which the probability of jumping up the cliff is sufficiently small.

Definition 6.4.8. Given some even value κ ∈ N, a state (xt, λt) is called κ-safe if |xt|1 ≥
2n/3 + κ and λt ≤ 2−κ/2 · (κ/2)!.

Note that 2−κ/2 · (κ/2)! is non-decreasing in κ.
In this subsection we give upper bounds on the expected number of generations and

the expected number of function evaluations to reach a κ-safe state for the specific value
κ := log logn

log log logn . We also consider search points with at least 3n/4 ones as safe, regardless
of the value of λt; reaching such a search point will be the goal of the following phase.

Lemma 6.4.9. Consider the self-adjusting (1, λ) EA with resetting λ as in Theorem 6.4.1.
Let κ := log logn

log log logn . For every initial λ0 ≤ λmax and every initial search point x0 with

|x0|1 ≥ 2n/3 the algorithm reaches a κ-safe state, or a search point with at least 3n/4 ones,
in O(log(λmax) log n) expected generations and O(λmax log n) expected evaluations.

The main idea of the proof of Lemma 6.4.9 is that, once the algorithm reaches a local
optimum with 2n/3 ones, λ will increase until it resets to 1 and this is repeated until the
algorithm leaves its local optimum. Every time λ = 1 the algorithm will accept any offspring,
then we can wait until a lucky mutation step can directly jump to a search point with at
least 2n/3 + log logn

log log logn ones. Finally, we account for the time that the algorithm takes to
reset λ to 1, including the time spent outside of local optima in states that are not safe.

One such set of non-safe states is that of states with at least 2n/3 +κ ones but violating
the upper bound for λt from Definition 6.4.8. For these states we cannot exclude that the
algorithm will return to the first slope before it reaches a safe state, but we can bound the
time the algorithm spends before either event happens and later on account for this time.
This is done in the following lemma.

Lemma 6.4.10. Consider the self-adjusting (1, λ) EA with resetting λ as in Theorem 6.4.1.
Let κ := log logn

log log logn . From any state (x0, λ0) with |x0|1 ≥ 2n/3 + κ in expectation the

algorithm needs at most O(log λmax) generations and O(λmax) evaluations to reach a κ-safe
state, to return to the first slope or to find a search point xt with |xt|1 ≥ 3n/4.

The main proof idea is to show that with a large value of λ, with high probability all
generations are successful and λ is quickly reduced to a safe value, unless any of the other
two events happens.

Proof of Lemma 6.4.10. In every successful generation the algorithm will decrease λ and
either increase the number of ones or go back to the first slope. In the latter case, we are
done. In the first case, the algorithm moves towards a κ-safe state as λt is decreased.

128

If the algorithm only has successful generations it will reach a κ-safe state once λ has
decreased below the threshold of 2−κ/2 ·(κ/2)!. Assuming that every generation is successful,
after i generations the algorithm will reduce the offspring population size to λ = λ0

F i . For

i = α :=
⌈
logF

(
λ0

2−κ/2·(κ/2)!

)⌉
, we get an offspring population size of

λ0

F

⌈
logF

(
λ0

2−κ/2·(dt/2)!

)⌉ ≤ λ0

F
logF

(
λ0

2−κ/2·(κ/2)!

) = 2−κ/2 · (κ/2)!.

Hence the algorithm needs at most α consecutive successful generations to obtain λ ≤
2−κ/2 · (κ/2)!. During these generations, the number of evaluations is at most

α−1∑
i=0

⌈
λ0

F i

⌉
≤

α−1∑
i=0

(
λ0

F i
+ 1

)
≤ α+ λ0

∞∑
i=0

(
1

F

)i
= α+ λ0

(
1

1− 1/F

)
= α+ λ0

(
F

F − 1

)
= O(λ0) = O(λmax).

We now show that the algorithm finds an improvement in every generation with probability
1 − o(1). The algorithm will increase λ in all generations that are unsuccessful. Since we
only consider |xt|1 ≤ 3n/4 the probability of an offspring being better than the parent is

at least 1/(4e) and the probability of an unsuccessful generation is at most
(
1− 1

4e

)λ
. By

the union bound the probability that there is at least one unsuccessful generation during α
generations is at most

α−1∑
j=0

(
1− 1

4e

) λ0
Fj

≤
α−1∑
j=0

e−
λ0

4eFj .

We now show by induction that for every α ≥ 1 the inequality
∑α−1
j=0 e

− λ0
4eFj ≤ 2e−

λ0
4eFα−1

holds. Starting with the base case α = 1 the statement is clearly true:

0∑
j=0

e−
λ0

4eFj = e−
λ0
4e ≤ 2e−

λ0
4e .

We now show that if the statement holds for α − 1 then it also holds for α. First we note
that, since 2−κ/2 · (κ/2)! = ω(1), the following holds for large enough n:

2 ≤ exp

(
F − 1

4e
· 2−κ/2 · (κ/2)!

F

)

= exp

F − 1

4e
· λ0

F
logF

(
λ0

2−κ/2·(κ/2)!

)
+1

≤ exp

F − 1

4e
· λ0

F

⌈
logF

(
λ0

2−κ/2·(κ/2)!

)⌉
 = exp

(
F − 1

4e
· λ0

Fα

)
Hence, using the inductive hypothesis the following statement holds:

α−1∑
j=0

e−
λ0

4eFj ≤ 2e−
λ0

4eFα−1 ≤ e
(F−1)λ0

4eFα · e−
λ0

4eFα−1

= e

(
(F−1)λ0

4eFα − λ0
4eFα−1

)
= e

(
(F−1)λ0−Fλ0

4eFα

)
= e−

λ0
4eFα .

129

Now adding e−
λ0

4eFα to the first and last term we obtain

α∑
j=0

e−
λ0

4eFj ≤ 2e−
λ0

4eFα ,

proving the hypothesis.
Therefore, the probability that there are α consecutive successful generations yielding

λ ≤ 2−κ/2 · (κ/2)! is at least

1− 2e−
λ0

4eFα−1 ≥ 1− 2e

− λ0

4e

(
λ0

2−κ/2·(κ/2)!

)

= 1− 2e−
2−κ/2·(κ/2)!

4e = 1− o(1).

With the same probability the algorithm will reduce λ to a value λt ≤ 2−κ/2 · (κ/2)! in⌈
logF

(
λ0

2−κ/2 · (κ/2)!

)⌉
= O(log(λ0)) = O(log λmax)

generations and O(λmax) evaluations. If there is an unsuccessful generation we can restart
the arguments. Since there are no unsuccessful generations with probability 1−o(1), we need
to restart the arguments at most 1 + o(1) times and obtain the same asymptotic expected
number of generations and evaluations.

With Lemma 6.4.10 we are able to prove Lemma 6.4.9.

Proof of Lemma 6.4.9. We define a cycle as a sequence of generations that begins after
λ is reset to 1 and |xt|1 = 2n/3. Since |x0|1 ≥ 2n/3 and there is no assumption on λ0 we
need to take into a account the time taken to start the first cycle; this will be accounted
later on.

By Lemma 6.2.4 with c := 1 in the first generation of every cycle (with λ = 1) there is a
probability of at least 1/ log n to create and accept an offspring with at least 2n/3+ log logn

log log logn

ones. The next generation will have λ = F 1/s, which for a sufficiently large n satisfies
λ ≤ 2−κ/2 · (κ/2)!. Hence, in expected log n cycles the sought event will happen. Now it
remains to bound the expected number of generations and evaluations in each cycle.

If during a cycle all generations maintain the current fitness value, after j generations
the offspring population size is F j/s. For j := ds logF λmaxe, we get an offspring population
size of

F ds logF λmaxe/s ≥ F logF λmax = λmax.

Therefore, the number of generations needed to reset λ is at most ds logF λmaxe+ 1. Using
dF j/se ≤ 2F j/s, during these generations, the number of evaluations is at most

ds logF λmaxe∑
j=0

⌈
F j/s

⌉
≤ 2

ds logF λmaxe∑
j=0

(
F 1/s

)j
= 2 · (F 1/s)ds logF (λmax)e+1 − 1

F 1/s − 1

≤ 2 · (F 1/s)s logF (λmax)+2

F 1/s − 1

=
2F 2/s

F 1/s − 1
· λmax = O(λmax).

130

We now show that when the algorithm is in a local optimum, with constant probability
all following generations will maintain the current fitness value until λ is reset to 1. When
|xt|1 = 2n/3, in order for a generation to maintain the number of one-bits, it is sufficient to
create at least one copy of the parent. Hence, the probability of the event is at least

1−
(

1−
(

1− 1

n

)n)λ
≥

λ
(
1− 1

n

)n
1 + λ

(
1− 1

n

)n =
1

1 + 1

λ(1− 1
n)

n

≥ 1

exp

(
1

λ(1− 1
n)

n

) = exp

(
− 1

λ
(
1− 1

n

)n
)
.

The probability that a cycle is comprised only of generations that maintain the fitness value
is at least

ds logF λmaxe∏
j=0

exp

(
− 1

F j
(
1− 1

n

)n
)
≥
∞∏
j=0

exp

(
− 1

F j
(
1− 1

n

)n
)

= exp

− 1(
1− 1

n

)n ∞∑
j=0

F−j

 = exp

(
− 1(

1− 1
n

)n · F

F − 1

)
= Ω(1). (6.13)

Therefore, in each cycle the algorithm will directly increase λ to λmax and then reset to
1 with constant probability using O(log λmax) generations and O(λmax) evaluations.

Since the self-adjusting (1, λ) EA is non-elitist, there is still a possibility for the algorithm
to either jump down the cliff (but not to the desired κ-safe state) or to reduce the number
of ones. We consider the total time Tc until a cycle finishes, that is, λ resets to 1 with the
current search point has 2n/3 ones. We use as superscript gen and eval to denote that we
are considering number of generations or evaluations respectively. Similar to the proof of
Theorem 6.3.1, let p− denote the probability of accepting a search point with less than 2n/3
ones from the top of the cliff and let p+ denote the probability of accepting a search point
with more than 2n/3 ones from the top of the cliff. According to (6.13) p+ + p− = 1−Ω(1).

Now, let T gen
1 denote the number of generations and T eval

1 denote the number of eval-
uations to return to the top of the cliff after accepting a search point with less than 2n/3
ones. If the number of one-bits is reduced, by Lemma 5.3.9 with probability 1−O(1/n) the
number of one-bits will never drop below 2n/3−O(log n) ones before reaching a point with
2n/3 ones. By Lemma 6.4.2, it will take O(log n) generations and O(log n+ λ0) = O(λmax)
evaluations in expectation to return to a local optimum. With probability O(1/n) the num-
ber of one-bits will drop below 2n/3−O(log n) and again by Lemma 6.4.2 in expectation it
will take at most O(n) generations and O(n+ λ0) = O(λmax) to return to a local optimum.
Hence,

E(T gen
1) = (1−O(1/n))O(log n) +O(1/n)O(n) = O(log n),

E
(
T eval

1

)
= (1−O(1/n))O(λmax) +O(1/n)O(λmax) = O(λmax).

Let T gen
2 and T eval

2 denote the number of generations and evaluations to return to the
first slope or finding κ-safe state from a search point in the second slope that is not in a
κ-safe state. Using the same arguments as in Lemma 6.4.2 we can see that the algorithm
will use O(log n) generations and O(λmax) evaluations to either find a solution with at least
2n/3 + log logn

log log logn ones or jump back to the first slope. If the algorithm finds a solution with

at least 2n/3 + log logn
log log logn ones but with λ > 2−κ/2 · (κ/2)! then by Lemma 6.4.10 it will

take O(log λmax) generations and O(λmax) evaluations in expectation to either reduce λ to

131

λ ≤ 2−κ/2 · (κ/2)! or to return to the first slope. Hence, we obtain

E(T gen
2) = O(log n) +O(log λmax) = O(log λmax),

E
(
T eval

2

)
= O(λmax) +O(λmax) = O(λmax).

Finally, when jumping back to the first slope, by Lemma 6.2.3, in expectation the number
of ones is reduced by ∆↑i,λ ≤ d + 1, that is, in expectation the algorithm jumps to a point

that has a ≤ 1 less ones than the local optimum. Let T eval
3 be the time to go back to

|x|1 = 2n/3 from |x|1 = 2n/3 − a. By the law of total expectation and Lemma 6.4.2,
E
(
T eval

3

)
= E(E(T | a)) ≤ E(O(a+ log n+ λ0)) = O(E(a)) + O(log n + λ0). Given that

E(a) ≤ 1 we obtain E
(
T eval

3

)
= O(log n + λ0) = O(λmax) evaluations. For the number of

generations T gen
3 we use the same arguments and obtain O(log n) generations.

Therefore, if the algorithm moves out of the local optimum it will return to it in

E(T gen
c) = O(log λmax)Ω(1) + p−E(T gen

1) + p+(E(T gen
2) + E(T gen

3)) = O(log λmax),

E
(
T eval

c

)
= O(λmax)Ω(1) + p−E

(
T eval

1

)
+ p+(E

(
T eval

2

)
+ E

(
T eval

3

)
) = O(λmax).

It remains to account for the time before the first cycle. Using the same arguments as
before for any λ0 ≤ λmax and |x0|1 ≥ 2n/3 the algorithm will spend O(log λmax) generations
and O(λmax) evaluations to start the first cycle or reach the desired state. Noting that the
expected number of cycles is log n proves the claim.

6.4.3 After Jumping Down the Cliff

Now we show that, with probability Ω(1), we reach a search point with at least 3n/4 ones
when starting from a κ-safe state with κ := log logn

log log logn . As in Section 6.3, the target of reach-

ing 3n/4 ones is chosen such that the probability of an improving mutation is always Ω(1).
Proving this claim is not straightforward for several reasons. It is always possible to

have a mutation jumping back up the cliff. This probability decreases with the distance to
the cliff (that is, |xt|1 − 2n/3) and it increases with λt as many offspring can amplify the
probability of a jump back up the cliff (cf. Lemma 6.2.3). Fortunately, the notion of κ-safe
states implies that we start with a distance of at least κ to the cliff and a small λt, so that
initially this probability amplification does not pose a huge risk.

But small values of λ are risky for another reason. Since the number of ones is larger
than 2n/3 and hence significantly larger than n/2, the expected number of ones in any
offspring is smaller than that of its parent. With λt ≈ 1 there is a constant negative drift
towards decreasing the number of zeros and “slipping down” the second slope. Fortunately,
λt will increase during unsuccessful generations and we will see that this effect prevents the
algorithm from slipping down the second slope.

In Chapter 5 we showed that, on OneMax, for the potential function from Defini-
tion 6.4.4 there is a positive drift in the potential throughout the run: on OneMax,
Lemma 6.4.5 holds for all non-optimal search points. We further constructed a so-called
“ratchet argument”, arguing that significant decreases in the potential are unlikely. In
our approach, the potential and the fitness only differ by a term of Θ(log n), as stated
in Lemma 6.4.7. Hence we concluded that, with high probability, the best fitness never
decreases by a term of r log n, for some constant r > 0.

Unfortunately, this ratchet argument is not directly applicable here, since we can only
guarantee a distance of κ := log logn

log log logn � r log n to the cliff. Hence the ratchet argument
from Chapter 5 has far too much slack.

The proof of the ratchet argument in Chapter 5 applies the negative drift theorem (The-
orem 2.4.16) to an interval on the potential scale of size Θ(log n), in order to obtain failure
probabilities that are polynomially small (that is, exponentially small in the interval length).

132

We refine the ratchet argument here by defining a revised potential function tailored to a
fitness range up to 3n/4 ones, where the fitness and the potential only differ by an additive
term of Θ(1). Then we apply the negative drift theorem (Theorem 2.4.16) to an interval
of size κ/2 − O(1) = log logn

2 log log logn − O(1) on the potential scale to show that the number of

ones does not drop below 2n/3 + κ/2 in a time that is exponential in the interval length.
More specifically, the time period will be determined as γκ, for some constant γ > 1. During
this time, the potential has a positive drift and with good probability the algorithm moves
sufficiently far away from the cliff, that is, to a distance of Θ(γκ).

Since γ
log logn

log log logn = o(log n), we can only guarantee a sub-logarithmic increase in the
distance and the failure probability from the negative drift theorem is ω(1/ log n). Thus, we
iterate this argument three times, with exponentially increasing values for κ, until we reach
a search point with at least 3n/4 ones (or we return to the first slope).

Throughout these arguments, we also show that λt is bounded from above as λt ≤
2−κ/2 · (κ/2)! as in the definition of κ-safe states. This definition requires a distance of at
least κ from the top of the cliff, however we can only guarantee a distance of at least κ/2.
We call such states weakly κ-safe.

Definition 6.4.11. A state (xt, λt) is called weakly κ-safe if |xt|1 ≥ 2n/3 + κ/2 and λt ≤
2−κ/2 · (κ/2)!.

We start by revising the potential function as follows.

Definition 6.4.12. Let ε :=
(
e−1
e

) (
1−s
s+1

)
. We define the potential function g5(Xt) as

g5(Xt) = |xt|1 −
2s

s+ 1
logF

(
max

(
8e+ log e

e−1
(2/ε)F 1/s

λt
, 1

))
.

Lemma 6.4.13. Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1. For all states
(xt, λt) with d := |xt|1 − 2n/3 = ω(1), |xt|1 ≤ 3/4 and λt ≤ 2−d/2 · (d/2)!,

E(g5(Xt+1)− g5(Xt) | Xt) ≥
1− s

4e
> 0

for large enough n. This also holds when only considering improvements that increase the
fitness by 1.

Proof. The proof follows the proof of Lemma 5.3.6, using additional arguments to consider
jumps up the cliff and the possibility that λ is reset when λt = λmax. In this proof, we use
p0
i,λ := 1− p→i,λ− p←i,λ− p

↑
i,λ to denote the probability of not changing the current number of

ones. We first assume that λmax > 2−d/2 · (d/2)!, which implies that resets are impossible
under the assumption λt ≤ 2−d/2 · (d/2)!.

We first consider the case λt ≤ 8e + log e
e−1

(2/ε) as then λt+1 ≤ 8e + log e
e−1

(2/ε)F 1/s

and g5(Xt+1) = |xt+1|1−
2s
s+1 (logF (8e+ log e

e−1
(2/ε)F 1/s)− logF (λt+1)). When the number

of ones increases, in expectation they do so by ∆→i,λ and since λt+1 = λt/F , the penalty

term 2s
s+1 (logF (8e + log e

e−1
(2/ε)F 1/s) − logF (λt)) increases by 2s

s+1 (unless λt+1 = 1 is

reached, in which case the increase might be lower). When the number of ones does not
change, the penalty decreases by 2

s+1 . When the number of ones decreases, conditional on

|xt+1|1 > 2n/3, the expected decrease is at most ∆←i,λ and the penalty decreases by 2
s+1 .

Finally, then when the algorithm creates an offspring up the cliff the expected decrease in

133

the number of ones is ∆↑i,λ and the penalty increases by 2s
s+1 . Together,

E
(
g5(Xt+1)− g5(Xt) | Xt, λt ≤ 8e+ log e

e−1
(2/ε)

)
≥ p→i,λ

(
∆→i,λ −

2s

s+ 1

)
+ p0

i,λ ·
2

s+ 1
+ p←i,λ

(
−∆←i,λ +

2

s+ 1

)
+ p↑i,λ

(
−∆↑i,λ −

2s

s+ 1

)
= p→i,λ

(
∆→i,λ −

2s

s+ 1

)
+
(
p0
i,λ + p←i,λ

) 2

s+ 1
−∆←i,λp

←
i,λ − p

↑
i,λ

(
∆↑i,λ +

2s

s+ 1

)
= p→i,λ

(
∆→i,λ −

2s

s+ 1

)
+
(

1− p→i,λ − p
↑
i,λ

) 2

s+ 1
−∆←i,λp

←
i,λ − p

↑
i,λ

(
∆↑i,λ +

2s

s+ 1

)
= p→i,λ

(
∆→i,λ − 2

)
+

2

s+ 1
−∆←i,λp

←
i,λ − p

↑
i,λ

(
∆↑i,λ + 2

)
.

Using ∆→i,λ ≥ 1 (which also holds when only considering fitness increases by 1), ∆←i,λ ≤
e
e−1 and ∆↑i,λ ≤ d+ 1 by Lemma 6.2.3, this is at least

1 +
1− s
s+ 1

− p→i,λ + p←i,λ∆←i,λ − p
↑
i,λ (d+ 3) .

Following the calculations from Lemma 5.3.6 1 + 1−s
s+1 − p→i,λ + p←i,λ∆←i,λ is at least 1−s

2e .

Lemma 6.2.3 shows that p↑i,λ ≤
λ(3/4)d

d! , if λ = O(1) and d = ω(1) then p↑i,λ(d + 3) = o(1),
hence for a sufficiently large n,

E
(
g5(Xt+1)− g5(Xt) | Xt, λt ≤ 8e+ log e

e−1
(2/ε)

)
≥ 1− s

2e
− o(1) ≥ 1− s

4e
.

For the case 8e + log e
e−1

(2/ε) < λt ≤ 2−d/2 · (d/2)!, in an unsuccessful generation the

penalty term is capped at its maximum and we pessimistically bound the positive effect on
the potential from below by 0. However, the probability of increasing the number of ones is
large enough to show a positive drift.

By assumption λt ≤ 2−d/2 · (d/2)!. Along with (6.5) from Lemma 6.2.3,

p↑i,λ ≤
λ(3/4)d

d!
≤
(

3

8

)d
.

We also have λt > 8e + log e
e−1

(2/ε) > 8e since 1/ε ≥ e
e−1 . Then, by Lemma 6.2.3, 8e +

log e
e−1

(2/ε) < λt ≤ 2−d/2 · (d/2)! implies the following two statements.

p→i,λ ≥ 1−
(

1− 1

4e

)8e

−
(

3

8

)d
≥ 1− 1

2e
−
(

3

8

)d
p←i,λ∆←i,λ ≤

(
e− 1

e

)8e+log e
e−1

(2/ε)

· e

e− 1

=

(
e− 1

e

)8e−1+log e
e−1

(2/ε)

≥
(
e− 1

e

)log e
e−1

(2/ε)

=
ε

2
.

Together,

E
(
g5(Xt+1)− g5(Xt) | Xt, 8e+ log e

e−1
(2/ε) < λt < 2−d/2 · (d/2)!

)
≥ p→i,λ

(
1− 2s

s+ 1

)
+ p←i,λ

(
−∆←i,λ

)
− p↑i,λ

(
d+ 1 +

2s

s+ 1

)
≥

(
1− 1

2e
−
(

3

8

)d)(
1− 2s

s+ 1

)
− ε

2
−
(

3

8

)d
(d+ 2)

134

given that d = ω(1),

≥
(

1− 1

e

)(
1− 2s

s+ 1

)
− ε

2
− o(1) =

(
e− 1

e

)(
1− s
s+ 1

)
− ε

2
− o(1)

using the definition ε :=
(
e−1
e

) (
1−s
s+1

)
,

=

(
e− 1

2e

)(
1− s
s+ 1

)
− o(1).

Since
(
e−1
2e

)
= 1

2e +
(
e−2
2e

)
and

(
e−2
2e

) (
1− 2s

s+1

)
is a positive constant, for large enough n

this is larger than o(1) and

E
(
g5(Xt+1)− g5(Xt) | Xt, λt ≤ 8e+ log e

e−1
(2/ε)

)
≥ 1

2e

(
1− s
s+ 1

)
≥ 1− s

4e
.

Since s < 1, this is a strictly positive constant.
Now, if λmax ≤ 2−d/2 · (d/2)! then resets may happen if λt = λmax. A reset decreases the

potential by at most n+O(1) as this is the range of the potential scale. The probability of
a reset is at most e−Ω(n) by Lemma 6.4.3. Hence, this only affects the drift by an additive
term −O(n) · e−Ω(n) = −o(1), which can easily be absorbed in the −o(1) terms from the
above calculations.

The following lemma shows that λ typically does not grow beyond the threshold 2−κ/2 ·
(κ/2)! from the definition of weakly κ-safe states.

Lemma 6.4.14. Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1. Then for all
κ ≥ 324F 1/s the following holds. If the current state (xt, λt) has λt ≤ 2−κ/2 · (κ/2)! and
2n/3 < |xt|1 < 3n/4, then with probability at least 1− 2−2κ we have λt+1 ≤ 2−κ/2 · (κ/2)!.

Proof. Since λt ≤ 2−κ/2 · (κ/2)!, a necessary condition for λt+1 > 2−κ/2 · (κ/2)! is that
generation t is unsuccessful. Since |xt|1 < 3n/4, the probability of finding an improvement
in any mutation is at least 1/(4e) and the probability of an unsuccessful generation is at
most (

1− 1

4e

)F−1/s2−κ/2(κ/2)!

≤
(

4e

4e− 1

)−F−1/s(2e)−κ/2(κ/2)κ/2

= 2−F
−1/s(κ/(4e))κ/2 log(4e

4e−1). (6.14)

The condition κ ≥ 324F 1/s implies

κ

4e
≥

1 +
4

log
(

4e
4e−1

)
F 1/s ≥

1 +
4F 1/s

log
(

4e
4e−1

)
 .

We bound the absolute value of the exponent in (6.14) using (1 + y)x ≥ xy for x ∈ N0,
y ≥ 0, as follows.

F−1/s(κ/(4e))κ/2 log

(
4e

4e− 1

)

≥ F−1/s

1 +
4F 1/s

log
(

4e
4e−1

)
κ/2

log

(
4e

4e− 1

)

≥ F−1/s 4F 1/s

log
(

4e
4e−1

) · κ/2 · log

(
4e

4e− 1

)
= 2κ.

Hence the probability of an unsuccessful generation is at most 2−2κ.

135

The following lemma now generalises and refines the “ratchet argument” from Chapter 5.

Lemma 6.4.15. Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1. Let T3n/4 =
inf{t | |xt|1 ≥ 3n/4} be the number of generations until a search point with at least 3n/4
ones is reached.

There are constants γ := γ(s, F) ∈ (1, 2] and κ0 := κ0(s, F, γ) ≥ 2 such that for all
κ ≥ κ0 the following holds. If the initial state (x0, λ0) is κ-safe with |x0|1 < 3n/4 then
with probability at least 1− γ−Ω(κ) all states during the next min{γκ, T3n/4} generations are
weakly κ-safe.

Proof. Let (x0, λ0) denote the initial state of the self-adjusting (1, λ) EA. If |x0|1 ≥ 3n/4
the statement is trivial, hence we assume |x0|1 < 3n/4. As in the proof of Lemma 5.3.9, we
are setting up to apply the negative drift theorem (Theorem 2.4.16).

The value of γ will be determined later on, ensuring 1 < γ ≤ 2. Choosing κ0 ≥ 324F 1/s

and recalling that the initial state is κ-safe, Lemma 6.4.14 states that, with probability at
least 1 − 2−2κ, λ1 ≤ 2−κ/2 · (κ/2)! as long as the number of ones is smaller than 3n/4.
By induction and a union bound, this holds for the first min{γκ, T3n/4} generations with

probability at least 1− 2−2κ ·min{γκ, T3n/4} ≥ 1− 2−2κ · γκ ≥ 1− γ−k as γ ≤ 2, unless the
algorithm jumps back to the first slope. We assume in the following that the bound on λt
always applies, while the algorithm remains on the second slope (and has not found a search
point with at least 3n/4 ones yet).

Let α := se
e−1 logF

(
8e+ log e

e−1
(2/ε)F 1/s

)
= O(1) abbreviate the maximum difference

between the potential g5 and the number of ones, then we start with a potential of at
least 2n/3 + κ − α. We apply the negative drift theorem (Theorem 2.4.16) to an interval
[a, b] := [2n/3 + κ/2, 2n/3 + κ − α] with respect to the current potential. By choosing
κ0 ≥ 6α, we can ensure that b− a = κ− α− κ/2 = κ/3 + κ/6− α ≥ κ/3.

We pessimistically assume that the number-of-ones component of g5 can only increase
by at most 1. Lemma 6.4.13 has already shown that, even under this assumption, the drift
is at least a positive constant. This implies the first condition of Theorem 2.4.16. For the
second condition, we need to bound transition probabilities for the potential. Owing to our
pessimistic assumption, the number of ones can only increase by at most 1.

For jumps decreasing the number of ones, we need to argue more carefully. Let i =
|xt|1 ≥ a be the current number of ones and let pi,j be the probability that |xt+1|1 = i− j.
Note that a jump back to the first slope it is sufficient that one offspring has at most 2n/3
ones. A necessary requirement is that j bits flip, which has probability at most 1/(j!). By a
union bound over λ offspring, pi,j ≤ λ/(j!) ≤ 2−κ/2 · (κ/2)!/(j!) using our bound on λ. For
j ≥ κ/2 (as κ ≥ 2), we have j! ≥ (κ/2)! · 2j−κ/2 and pi,j ≤ 2−j . This implies for all i ≥ a
and all j with i− j ≤ 2n/3:

Pr (|xt|1 − |xt+1|1 ≥ j) ≤
∑
j′≥j

2−j
′
≤ 2 · 2−j .

In particular, p↑i,λ ≤
∑n−i
j=κ/2 pi,j ≤

∑∞
j=κ/2 2 · 2−j = 4 · 2−κ/2.

For i − j > 2n/3 the number of ones only decreases by j if all offspring decrease their
number of ones by at least j, or if there is one offspring on the first slope. The probability
of all offspring decreasing their number of ones by j is bounded by the probability that the
first offspring decreases its number of ones by j. This is bounded by the probability of j
bits flipping, which is at most 1/(j!) ≤ 2/2j . Hence,

∀i− j > 2n/3: Pr (|xt|1 − |xt+1|1 ≥ j) ≤ 2 · 2−j + p↑i,λ ≤ 6 · 2−j .

136

The possible penalty in the definition of g5 changes by at most max
(

2s
s+1 ,

2s
s+1 ·

1
s

)
= 2

s+1 <

2. Hence, for all t,

Pr (|g5(Xt−1)− g5(Xt)| ≥ j + 2 | g5(Xt) > a) ≤ 24

2j+2
,

which meets the second condition of Theorem 2.4.16 when choosing δ := 1 and ρ(`) := 24.
The negative drift theorem (Theorem 2.4.16) now implies that there exists a constant c∗

such that the probability of the number of ones dropping below a in 2c
∗(b−a)/24 ≥ 2c

∗κ/72

generations (or reaching a search point with at least 3n/4 ones) is 2−Ω((b−a)/24) = 2−Ω(κ).
Choosing γ := min{2c∗/72, 2}, this is at least γκ generations and a probability of γ−Ω(κ) as
claimed. Taking a union bound over this failure probability and that from Lemma 6.4.14
proves the claim.

Now we show that with probability Ω(1) a search point with at least 3n/4 ones is reached,
without returning to the first slope and without resetting λ. Thus, with the claimed probabil-
ity the algorithm behaves as the self-adjusting (1, λ) EA from [101] on OneMax throughout
this part of the run.

Lemma 6.4.16. Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1. Assume the
conditions from Lemma 6.4.15 hold for constants γ and κ := log logn

log log logn . Then with proba-

bility Ω(1) a search point with at least 3n/4 ones is reached within O(n) generations.
Moreover, with the claimed probability the algorithm does not go back to the first slope

and does not reset λ before a search point with at least 3n/4 ones is reached.

Proof. The statement of Lemma 6.4.15 satisfies the preconditions of Lemma 6.4.13 for
d = κ. Then Lemma 6.4.13 implies a positive drift

E(g5(Xt+1)− g5(Xt) | Xt) ≥
1− s

4e
=: δ

for the next γκ generations, unless a search point with at least 3n/4 ones has been reached.
In the latter case we are done, hence we assume that the drift is bounded from below as
stated through the next tκ := min{γκ, n/δ} generations. By the additive drift theorem
(Theorem 2.4.14), the expected time to increase the potential by δ/12 ·min{γκ, n/δ}, while

the drift bound holds, is at most δ/12·min{γκ,n/δ}
δ = min{γκ/12, n/(12δ)}. By Markov’s

inequality, the probability that after tκ steps the potential has not increased by δ/12 ·
min{γκ, n/δ} = min{δ/12 · γκ, n/12} is at most 1/12.

Assuming that the potential has increased by min{δ/12 · γκ, n/12}, by Definition 6.4.13
the number of ones has increased by min{δ/12 · γκ, n/12} − O(1). Since we start with at
least 2n/3 + κ = 2n/3 + ω(1) ones, there is a generation amongst the next γκ generations
in which the number of ones is at least min{2n/3 + δ/12 · γκ, 3n/4}.

Let κ0 := κ = log logn
log log logn and define κi := δ/12 · γκi−1 for i > 0. Note that we have just

showed that we have found a search point with at least min{κ1, 3n/4} ones. If the number
of ones is less than 3n/4, the current state (xt, λt) is κ1-safe as it is weakly κ0-safe and so
λt ≤ 2−κ0/2 · (κ0/2)! ≤ 2−κ1/2 · (κ1/2)!.

Iterating the above argument with κ1 instead of κ0, we find a search point with at least
min{2n/3 + κ2, 3n/4} ones within the next min{γκ1 , n/δ} generations, with probability at
least 1 − 1/12 − γ−Ω(κ1). We again iterate the argument with κ2 and once again with κ3.
We claim that tκ2

:= min{γκ2 , n/δ} = n/δ and show this by bounding κ1, κ2 and κ3 from
below.

κ1 =
δ

12
γ

log logn
log log logn = 2log(γ)· log logn

log log logn+log(δ/12)

≥ 2log(2
log(γ)

log logn) =
2

log(γ)
log log n.

137

Now, κ2 is at least

κ2 =
δ

12
γκ1 ≥ δ

12
γ

2
log(γ)

log logn =
δ

12
log2 n ≥ 2

log(γ)
log n

for n large enough. Likewise,

κ3 =
δ

12
γκ2 ≥ δ

12
· γ

2
log(γ)

logn =
δ

12
· n2.

Together, we have that within min{γκ0 , n/δ} + min{γκ1 , n/δ} + min{γκ2 , n/δ} = O(n)
generations, with probability at least 1− 3

12 −γ
−Ω(κ0)−γ−Ω(κ1)−γ−Ω(κ2) ≥ 3

4 −3γ−Ω(κ0) =
Ω(1) we have reached a search point with at least 3n/4 ones, without going back to the
first slope. The probability of a reset during O(n) expected generations is exponentially
small by Lemma 6.4.3 and (2.4), hence this failure probability can be absorbed in the Ω(1)
probability bound. This completes the proof.

6.4.4 Finding the Global Optimum

Once the self-adjusting (1, λ) EA moves far away from the cliff, the probability of jumping
back up the cliff is reduced, and the next part of the optimisation resembles OneMax.
The algorithm still can reset λ to 1. Such a steep decrease of λ would typically make the
algorithm slip down the second slope until λ recovers to large enough values that support
hill climbing. Hence, resets would break the runtime analysis made in Chapter 5. We show
in Lemma 6.4.17 that, with probability Ω(1), the algorithm neither jumps back up the cliff
nor resets λ during the last part of the optimisation. This allows us to apply the previous
analysis from Chapter 5 on OneMax.

Lemma 6.4.17. Consider the self-adjusting (1, λ) EA as in Theorem 6.4.1. For any initial
λ0 ≤ λmax with λ0 = O(n log n) and any initial search point x0 with |x0|1 ≥ 3n/4 the
probability that the self-adjusting (1, λ) EA creates the optimum without jumping back up

the cliff or resetting λ to 1 is at least 1− 1
e−1 −O

(
log3(n)
n

)
.

Proof. As long as the self-adjusting (1, λ) EA does not jump back up the cliff, the
self-adjusting (1, λ) EA behaves as the self-adjusting (1, λ) EA on OneMax. Addition-
ally, if it does not have an unsuccessful generation with λ = λmax it will never reset to 1,
behaving as the self-adjusting (1, λ) EA studied in Chapter 5.

From Theorems 5.3.3 and 5.3.7 we know that the self-adjusting (1, λ) EA solves OneMax
in expected O(n) generations and O(n log n) evaluations. Therefore, within these expected
times our algorithm either finds the global optimum, jumps back up the cliff or resets 1. We
show that the with probability Ω(1), a global optimum is reached.

In order for λ to reset at the same time as there is a jump back up the cliff, at least one
offspring must flip n/3 one-bits and all other offspring must not increase their fitness. The
probability of flipping n/3 bits is n−Ω(n), hence the probability of both events happening at
the same time is at most n−Ω(n).

By Lemma 5.3.9 if the initial search point x0 has |x0|1 ≥ 3n/4, with probability 1−O(1/n)
the number of one-bits will never drop below 3n/4 − O(log n) before finding the optimum.
This means that, for the algorithm to jump back up the cliff at least one offspring must flip
a linear amount of bits. The probability that one offspring flips a linear amount of bits is
n−Ω(n). By (2.4), the probability that this happens during O(n log n) expected evaluations
is still n−Ω(n). In the following we assume that we never return to the first slope.

To show that there is never an unsuccessful generation with λ = λmax (i.e. λ never resets
to 1) we divide the optimisation in two phases. The first phase ends the first time a state
(xt, λt) is found with λt ≥ 4 log n and |xt|1 ≥ n − 3 lnn or the optimum is found, and the
second phase ends when the optimum is found.

138

During the first phase, since λmax > 4 log n, we can only reach λ = λmax if |x|1 < n−3 lnn
otherwise we would start phase two. In order to reach λ = λmax at least one generation with
λ ≥ en must be unsuccessful. The probability of an unsuccessful generation with λ ≥ en is
at most

1− p→i,λ + p↑i,λ ≤
(

1− n− i
en

)en
≤
(

1− 3 lnn

en

)en
≤ e−3 lnn = n−3.

Given that the optimum is found after O(n) expected generations, by (2.4) the probability
of reaching λ = λmax during the first phase is O(1/n2).

For the second phase we first argue that the current fitness does not decrease, with high
probability. The second phase starts with λ ≥ 4 log n and by Lemma 5.3.9 while λt ≥ 4 log n
the fitness is not reduced before reaching the optimum with probability 1 − O(1/n). We
now show that λ ≥ 4 log n throughout the remainder of the run with high probability.

By Lemma 5.3.8 from |x|1 ≥ n − 3 lnn in expectation the optimum will be reached
in O(log n) generations. To reduce λ to a value smaller than 4 log n, a generation with
λ < 4F log n must be successful. This event has a probability of at most

1−
(
i

n

)λ
≤ 1−

(
1− 3 lnn

n

)4F logn

≤ 12F log2 n

n log e
= O

(
log2(n)

n

)
.

By (2.4) the probability that λ is reduced to a value less than 4 log n during the next O(log n)

generations is O
(

log3(n)
n

)
. Accounting for both failures with probability 1−O

(
log3(n)
n

)
each

fitness value is left at most once.
Now we can calculate the probability of resetting λ by considering at most one generation

with λ = λmax per fitness value. We only have a reset of λ if one such generation is
unsuccessful. Thus, the probability of resetting λ during the second phase is at most

n−1∑
i=n−3 lnn

(
1− p+

i,λmax

)
≤

n−1∑
i=n−3 lnn

(
1− n− i

en

)enF 1/s

≤
n−1∑

i=n−3 lnn

e−F
1/s(n−i) =

3 lnn∑
j=1

e−F
1/sj ≤

∞∑
j=1

e−F
1/sj

=
1

1− e−F 1/s
− 1 =

1

exp(F 1/s)− 1
≤ 1

e− 1
.

Adding up all failure probabilities completes the proof.

6.4.5 Putting Things Together

Now we are able to prove the claimed bounds of O(n) expected generations and O(n log n)
expected evaluations from Theorem 6.4.1.

Proof of Theorem 6.4.1. From any initial state, by Lemma 6.4.2 we reach a solution xt
with |xt|1 ≥ 2n/3 in expected O(n) generations and O(n+ λmax) evaluations.

Then, by Lemma 6.4.9, the algorithm reaches a κ-safe state (for κ := log logn
log log logn) or

a search point with at least 3n/4 ones in O(log(λmax) log n) expected generations and
O(λmax log n) expected evaluations.

Together, along with λmax = Ω(n) and λmax = poly (n), the total time to reach a
κ-safe state or a search point with at least 3n/4 ones from an arbitrary initial state is
O(log(λmax) log n+ n) = O(n) generations and O(λmax log n) evaluations.

By Lemma 6.4.16 with probability Ω(1) we reach a search point with at least 3n/4 ones
within O(n) generations, without going back to the first slope or resetting λ. During this

139

time, the algorithm behaves like the self-adjusting (1, λ) EA without resetting on OneMax
and we obtain an upper bound of O(n log n) evaluations from Theorem 5.3.7. Hence, the
expected number of evaluations until we return to the first slope, reset λ or reach a search
point with 3n/4 ones is O(n log n). In expectation, a constant number of trials suffices to
find a search point with at least 3n/4 ones.

Hence, from any initial state, in expectation in O(n) generations and O(λmax log n)
evaluations we reach a search point with at least 3n/4 ones.

Likewise, from a search point with at least 3n/4 ones, by Lemma 6.4.17 with probability
Ω(1) we find the optimum without resetting λ or returning to the first slope, and hence the
analysis from Theorem 5.3.7 still applies. Thus, in expected O(n) generations and O(n log n)
evaluations we either reach the global optimum, return to the first slope or reset λ, and the
probability of reaching the optimum is Ω(1). Iterating this argument an expected constant
number of times proves the claimed bound.

6.5 Experimental Analysis

In this section we conduct an experimental analysis to improve our understanding of the
(1, λ) EA with static λ and the self-adjusting (1, λ) EA resetting λ on Cliff and other
functions. All the experiments were performed using the IOHProfiler [72].

For algorithm comparisons we performed Mann-Whitney U Test for all pairs of algo-
rithms compared in the text. We performed two-sided tests to check whether the two input
distributions differ or not, followed by one-sided tests both ways to confirm which algorithm
is stochastically faster than the other. We report a comparison as statistically significant
if the p-values of the two-sided test and that of the respective one-sided test both satisfied
p ≤ 0.01, that is, a confidence level of 0.01.

6.5.1 Cliff

We begin our analysis with a runtime comparison between the self-adjusting (1, λ) EA
resetting λ and the (1, λ) EA with static λ on Cliff. For the (1, λ) EA with static λ we

use two values of λ. The first one is λ =
⌈
log e

e−1
(e2n/λ)

⌉
which is the smallest λ-value

that theoretically guarantees an efficient runtime on OneMax [20]. The second value of
λ used was manually tuned to the λ-value that yielded the best performance in terms of
number of evaluations for each problem size n. For the self-adjusting (1, λ) EA we used
as parameters s = 1, F = 1.5 and λmax = enF 1/s. Figure 6.1 displays box plots of the
number of evaluations used by the three algorithms over 100 runs for different problem sizes
on Cliff.

There are two main things we can appreciate from Figure 6.1. Our first observation is
that for the (1, λ) EA with static λ, there are smaller λ-values than the theoretical best
parameter values which perform better for the problem sizes tested here. This is because
the exponential lower bound (from [166, Theorem 10]) for the runtime of the (1, λ) EA when
using λ ≤ (1 − ε) log e

e−1
n only becomes important for large values of n. This observation

was also made by Rowe and Sudholt [166] for OneMax with n = 10000. Our second
observation is that even with the best (tuned) static λ-value the self-adjusting (1, λ) EA
shows a slightly better performance, although the self-adjusting (1, λ) EA is statistically
faster only for n ≥ 87.

Because of this last observation we ran more experiments for larger problem sizes com-
paring only the (1, λ) EA with tuned λ and the self-adjusting (1, λ) EA. The results of these
experiments, shown in Figure 6.2, demonstrate that for larger values of n the (1, λ) EA with
static λ is statistically slower than the self-adjusting (1, λ) EA for all n ≥ 120. In addition
since the number of evaluations is normalised by n log n we can clearly see that the number

140

Figure 6.1: Box plots of the number of evaluations used by the (1, λ) EA with

λ =
⌈
log e

e−1
(e2n/λ)

⌉
and the best λ (manually tuned), and the self-adjusting (1, λ) EA

with s = 1, F = 1.5, λmax = enF 1/s on Cliff with n ∈ {18, 21, . . . , 99} over 100 runs. The
y-axis (number of evaluations) is log-scaled.

of evaluations of the (1, λ) EA grows faster than n log n. This means that the larger the
problem size n, the worse the performance of the (1, λ) EA with static λ is, compared to
the self-adjusting (1, λ) EA.

Figure 6.2: Box plots of the number of evaluations used by the (1, λ) EA with the best λ
(manually tuned), and the self-adjusting (1, λ) EA with s = 1, F = 1.5, λmax = enF 1/s

on Cliff over 100 runs. The y-axis (number of evaluations) is normalised by n log n and
log-scaled.

In Figure 6.3 we explore how the (1, λ) EA and self-adjusting (1, λ) EA behave on Cliff
with n = 30 and different distance d from the cliff to the optimum. For the (1, λ) EA we use

λ =
⌈
log e

e−1
(e2n/λ)

⌉
and λ = 3 which is the best λ found for the standard Cliff function.

Both plots in Figure 6.3 show the same experiments, but the number of evaluations in the

141

top box plots of Figure 6.3 is normalised by nd(1 − 1/n)d−n, which is the runtime of the
(1 + 1) EA on Cliff with distance d from the cliff to the optimum [153].

From Figure 6.3 we can see that when the distance d from the cliff to the optimum
is reduced, the problem becomes harder for all algorithms up to a maximum from which
reducing d more reduces their runtime. We also see that for small d the algorithms’ runtime
seem to grow at almost Θ(nd(1 − 1/n)n−d). Because of this, we conjecture that for small
distances d from the cliff to the optimum most of the time the algorithms find the global
optimum without jumping down the cliff, therefore the algorithms do not benefit from their
non-elitist selection in these cases. On the other hand for larger values of d the algorithms
benefit greatly from their non-elitist selection because they are able to jump down the cliff
more easily. This leaves a goldilocks d-value in the middle for which both jumping directly
to the optimum and jumping down the cliff is difficult.

Figure 6.3: Box plots of the number of evaluations used by the (1, λ) EA with

λ =
⌈
log e

e−1
(e2n/λ)

⌉
and λ = 3 (best λ for the standard Cliff function), and the

self-adjusting (1, λ) EA with s = 1, F = 1.5, λmax = enF 1/s on Cliff with n = 30,
varying the distance d of the cliff from the optimum over 100 runs. The y-axis (number of
evaluations) is log-scaled and in the top box plots also normalised by nd(1− 1/n)d−n.

6.5.2 Varying λmax

We now explore how the hyper-parameter λmax affects the performance of the
self-adjusting (1, λ) EA. Our theoretical analysis suggests that increasing the value of λmax

will increase the runtime of the algorithm because the algorithm spends more evaluations on
the local optimum before resetting λ and therefore on jumping down the cliff. On the other
hand decreasing the value of λmax can decrease the runtime of the algorithm until a point
were resets in λ does not allow the algorithm to optimise the second slope. In our theoretical
analysis we used a value of λmax = enF 1/s that allows the algorithm to reset relatively fast
when encountering a local optima but also allows the algorithm to optimise the second slope
with a small number of resets. We acknowledge that the factor eF 1/s in our theoretical
analysis was used to ease calculations; a smaller factor could improve performance but only
by a constant factor.

In Figure 6.4 we show box plots of the number of evaluations used by the
self-adjusting (1, λ) EA with s = 1, F = 1.5 over 100 runs for different λmax on Cliff
with n = 1500. As expected larger values of λmax increase the runtime of the algorithm.

142

We can also see that there are smaller values than λmax = enF 1/s ≈ 4.08n that are better
on Cliff. Values between n

√
2

4 and n
√

2
2 obtain the best performance and reducing λmax

further than this deteriorates the performance of the algorithm substantially.

Figure 6.4: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA with
s = 1, F = 1.5 over 100 runs for different λmax on Cliff with n = 1500. The y-axis (number
of evaluations) is log-scaled.

To explore further in Figure 6.5 we show box plots of the number of evaluations used
by the self-adjusting (1, λ) EA with s = 1, F = 1.5 over 100 runs for λmax ∈ {enF 1/s, n/2}
on Cliff and OneMax. On top of the plot we give the average number of resets per
run rounded to the nearest integer. We can see that for all problem sizes n tested using
λmax = n/2 gives an advantage to the self-adjusting (1, λ) EA on Cliff but a disadvantage
on OneMax. This is because for λmax = n/2 the algorithm jumps down the cliff faster
but there tends to be an increased number of resets on average. Since this happens in both
OneMax and Cliff, we attribute this to resets near the optimum where λ grows fast.
An interesting observation is that using λ = enF 1/s for OneMax allows the algorithm to
find the optimum with almost no resets. Out of the 500 runs for all n there were only 5
resets and 3 of them were with n = 300. This suggests that our theoretical analysis was too
unforgiving, since we bounded the number of resets near the optimum in a typical run by a
constant.

In Figure 6.6 we show a detailed view of four example runs. Here we can see that on
Cliff both values of λmax reset λ and jump down the cliff several times before starting to
optimise the second slope. But, when using λmax = n/2 the fitness stagnates during the
final generations before reaching the global optimum in both OneMax and Cliff. This is
because λ resets and then there are fallbacks in fitness. It is important to note that these
fallbacks are small and the algorithm is able to recover fast from them. In our theoretical
analysis we assumed a much worse case were a reset near the optimum would cause the
algorithm to go back to the first slope.

6.5.3 Other Problems

We finish our empirical analysis with a comparison between the self-adjusting (1, λ) EA
and the (1, λ) EA with static λ for different problems. We select four problems from the
Pseudo-Boolean Optimization (PBO) problem set proposed by [74].

143

Figure 6.5: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA
with s = 1, F = 1.5 over 100 runs for λmax ∈ {enF 1/s, n/2} on Cliff and OneMax. The
rounded average number of resets per run is shown on the top. The y-axis (number of
evaluations) is normalised by n log n and log-scaled.

Figure 6.6: Current fitness per generation of four example runs of the self-adjusting (1, λ) EA
with λmax = enF 1/s (top) and λmax = n/2 (down) on OneMax (left) and Cliff (right)
with n = 1500.

• Low Autocorrelation Binary Sequences (LABS): A non-linear combinatorial problem.
The problem is to maximise the merit factor of a binary sequence. The merit factor
is proportional to the reciprocal of the sequence’s autocorrelation (also called serial
correlation). Its equivalent pseudo-Boolean function is:

LABS (x) =
n2

2
n−1∑
k=1

(
n−k∑
i=1

x′i · x′i+k

)2 where x′i = 2xi − 1.

• Ising Model problem: consists of discrete variables that represent magnetic dipole
moments of atomic “spins” that can be in one of two states (+1 or -1). The spins

144

are arranged in a graph describing the interactions strengths (edges) between spins
(vertices), here we use a two-dimensional torus lattice. Neighboring spins with the
same state have a lower interaction than those with a different state. The ISG problem
is to set the signs of all spins to minimise interactions.

• Maximum Independent Vertex Set (MIS): An independent vertex set is a subset of
vertices where no vertex in the subset is adjacent to any other vertex within the
subset. The MIS problem is to find the largest independent vertex set for a given
graph.

• N -Queens problem: Is the task to place N queens in a chess board of size N ×N in
such a way that the N queens cannot “attack” each other.

For more information on the problems we refer the reader to [74] and the IOHProfiler
project [72]. We performed 100 runs of the self-adjusting (1, λ) EA with λmax ∈ {enF 1/s, n}
and the (1, λ) EA with λ = dlog e

e−1
(n)e across the four problems with different problem

sizes. Figure 6.7 shows the results of these runs. We included the self-adjusting (1, λ) EA
with λmax = n because the results from Section 6.5.2 suggest that the factor eF 1/s used in
our theoretical analysis is not needed, but a smaller value of λmax = n/2 already results in
a substantial number of resets.

Overall we can see that the self-adjusting (1, λ) EA with λmax = n performs slightly
better than its counterpart with λmax = enF 1/s for all problems and most problem sizes
tested. When comparing the self-adjusting (1, λ) EA with λmax = n and the (1, λ) EA
with static λ we found that the self-adjusting (1, λ) EA is statistically significantly faster
than the (1, λ) EA for most problem sizes on LABS, MIS and the N -Queens problem, but
statistically significantly slower on Ising models. The main conclusion that we draw from
Figure 6.7 is that the self-adjusting (1, λ) EA is able to perform better or similar to the
(1, λ) EA on common multimodal benchmark problems with the added advantage of easier
parameter selection.

6.6 Conclusions

The usefulness of parameter control has so far mainly been demonstrated for elitist evolu-
tionary algorithms on relatively easy problems. For the more difficult multimodal problem
Cliff we showed that the self-adjusting (1, λ) EA using success-based rules and a reset
mechanism can find the global optimum in O(n) expected generations and O(n log n) ex-
pected evaluations. This is a speedup of order Ω(n2.9767) over the expected optimisation
time with the best fixed value of λ.

The latter conclusion was obtained by refining the previous bounds on the expected
optimisation time of the (1, λ) EA on Cliff from [106], O(e5λ) = O(148.413λ) and
min{nn/4, eλ/4}/3 = min{nn/4, 1.284λ}/3, towards bounds of Ω(ξλ) and O(ξλ log n), for
ξ ≈ 6.196878, revealing the degree of the polynomial in the expected runtime of the (1, λ) EA
with the best fixed λ as η ≈ 3.976770136.

Our theoretical results demonstrate the power of parameter control for the multimodal
Cliff problem and that drastic performance improvement can be obtained. We extended
our theoretical results with an extensive empirical analysis. We showed how the (1, λ) EA
and the self-adjusting (1, λ) EA behave on Cliff with realistic problem sizes and Cliff
functions where the position of the cliff is chosen differently from 2n/3 ones. We also analysed
how the hyper-parameter λmax affects the performance of the algorithm, showing that too
small values of λmax can deteriorate the performance of the algorithm but λmax = n and
λmax = enF 1/s achieve a good performance on all problems tested. Finally we considered
other problems and showed that the self-adjusting (1, λ) EA performs better or similar to
the (1, λ) EA with the added advantage of easier parameter selection.

145

Figure 6.7: Box plots of the number of evaluations used by the self-adjusting (1, λ) EA with
s = 1, F = 1.5 over 100 runs for λmax ∈ {enF 1/s, n} on LABS, Ising, MIS and N -Queens
problems. The y-axis (number of evaluations) is log-scaled.

For the (1, λ) EA the parameter λ has a huge impact in performance. If λ is too small
we obtain exponential runtimes in the problem size n [166] and λ needs to be Ω(log n) to
have efficient runtimes. But the probability of accepting a worsening in fitness and leaving
a local optima is related exponentially to the parameter λ, which means that increases in λ
by a constant factor can increase the runtime by a polynomial factor in the problem size n,
making parameter tuning a hard task. On the other hand for the self-adjusting (1, λ) EA
the parameter λmax is less critical. Although small λmax can deteriorate the performance of
the algorithm, our theoretical and empirical analyses suggest that the time to escape a local
optima depends only linearly on λmax (instead of exponentially), therefore a wide range of
λmax-values obtain the same asymptotic runtime. This eases the task of parameter tuning
for the self-adjusting (1, λ) EA.

146

Chapter 7

Conclusions

The analysis of parameter control mechanisms is a relatively new but very fruitful research
area. We have seen a staggering amount of progress in the last decade, with a plethora of
studies showing the advantages of parameter control mechanisms. In spite of this progress
there are still plenty of open questions regarding the use of parameter control mechanisms
for multimodal optimisation. In this thesis we have contributed to answer some of these
questions for success-based parameter control mechanisms. More specifically, we improved
our understanding of how success-based parameter control mechanisms for evolutionary
algorithms can be efficiently implemented for multimodal optimisation.

We began by analysing one of the most successful implementations of success-based
parameter control mechanisms: the self-adjusting (1 + (λ, λ)) GA [50, 60]. We showed
that parameter control mechanism in the original self-adjusting (1 + (λ, λ)) GA tends
to diverge λ to its maximum value λmax = n on multimodal problems. Then the
self-adjusting (1 + (λ, λ)) GA behaves as the (1+n) EA with mutation probability p = 1/n.
Using this insight we gave an easy to use general method for obtaining upper bounds on the
expected number of fitness evaluations to find a global optimum of the original self-adjusting
(1 + (λ, λ)) GA, based on the fitness-level method. With it we showed novel runtime upper
bounds for unimodal functions and the multimodal benchmark problem class Jumpk. The
latter bound is asymptotically the same as the runtime of the (1 + 1) EA. Afterwards, we
show that this bound is tight up to lower-order terms by giving a matching lower bound.
This demonstrates that the self-adjusting (1 + (λ, λ)) GA does not benefit from the use of
crossover on Jumpk.

Capping λ to a value λmax different than n can be beneficial, but choosing an appro-
priate value for λmax requires problem-specific knowledge. As a generic choice we sug-
gest using λmax = n/2. In this case, when λ reaches its maximum it performs random
search steps during the mutation phase. This not only guards the algorithm against hard
and deceptive problems it can also improve the ability of the algorithm to escape “small”
local optima. The self-adjusting (1 + (λ, λ)) GA with λmax = n/2 is faster than the
self-adjusting (1 + (λ, λ)) GA with λmax = n and the (1 + 1) EA with the default mu-
tation rate 1/n for all Jumpk functions with k ≤ log n and k > n/ log n. Furthermore, the
algorithm still retains its original exploitation capabilities in the crossover phase.

Our analysis also provided insights into the parameter landscape, which describes how
parameter values relate to performance. We showed that the parameter landscape with
respect to the impact of λmax on the runtime of the self-adjusting (1 + (λ, λ)) GA on the
multimodal benchmark problem class Jumpk is bimodal for appropriate problem sizes n
and jump sizes k. For most common values of n and k the two local optima in the bimodal
landscape are far apart from each other. Additionally, for different values of n and k the
optimal parameter choice for λmax switches between the two local optima. This fluctuating
parameter landscape combined with it being bimodal makes parameter selection difficult.

147

If instead of capping λ to λmax we reset the parameter to 1 whenever there is an un-
successful generation at the maximum value, we avoid the parameter selection problem
for λmax. This makes the self-adjusting (1 + (λ, λ)) GA cycle through the parameter space
whenever a local optima is encountered, approaching optimal or near-optimal parameter
values in every cycle in spite of the parameter landscape. For Jumpk, this strategy gives
the same expected runtime as that of the (1 + 1) EA with the optimal mutation rate and
fast mutation operators, up to small polynomial factors.

After analysing the elitist self-adjusting (1 + (λ, λ)) GA, we then presented in Chapter 5
the first runtime analysis of a success-based parameter control mechanism adjusting λ on
a non-elitist algorithm. We proved that a success-based parameter control mechanism ad-
justing the parameter λ in a (1, λ) EA, is able to optimise OneMax in O(n) generations
and O(n log n) evaluations. The latter is best possible for any unary unbiased black-box
algorithm [67, 128]. This result required the correct selection of the success rate s. The
above holds for constant 0 < s < 1, however the runtime on OneMax (and other common
benchmark problems) becomes exponential with overwhelming probability if s ≥ 18.

In sharp contrast, the self-adjusting (1, λ) EA is not affected by the choice of the success
rate (from positive constants) if the problem in hand is everywhere hard, that is, improve-
ments are always found with a probability of at most n−ε for a constant ε > 0. In this
case self-adjusting the offspring population size drastically reduces the number of genera-
tions to just O(d+ log(1/p+

min)), that is, roughly to the number of fitness values, improving
and generalising previous results [120]. Nevertheless, we show that the expected number of
evaluations is bounded by the same fitness-level upper bound as known for the (1 + 1) EA.

As a byproduct of our analysis, we have also shown an upper bound for the expected
number of evaluations of the elitist self-adjusting (1 + λ) EA on arbitrary fitness functions.

We brought everything together in Chapter 6 by analysing the self-adjusting (1, λ) EA
studied in Chapter 5 on the multimodal benchmark problem Cliff. Based on our results
from Chapter 4 we implemented a reset mechanism for the adjustment of the offspring
population size to help the self-adjusting (1, λ) EA cope with local optima. We showed that
the self-adjusting (1, λ) EA using success-based rules and a reset mechanism can find the
global optimum in O(n) expected generations and O(n log n) expected evaluations. This is
a speedup of order Ω(n2.9767) over the expected optimisation time with the best fixed value
of λ.

The latter conclusion was obtained by refining the previous bounds on the expected
optimisation time of the (1, λ) EA on Cliff from [106], O(e5λ) = O(148.413λ) and
min{nn/4, eλ/4}/3 = min{nn/4, 1.284λ}/3, towards bounds of Ω(ξλ) and O(ξλ log n), for
ξ ≈ 6.196878, revealing the degree of the polynomial in the expected runtime of the (1, λ) EA
with the best fixed λ as η ≈ 3.976770136.

Throughout this thesis we have implemented extensive empirical analyses complement-
ing our theoretical results. Our empirical analyses show precise runtime results for the
algorithms studied on concrete problem instances, detailed investigation of how the hyper-
parameters introduced by the parameter control mechanisms affect the runtime of the algo-
rithms and showcase how the mathematical results obtained translate to other more complex
optimisation problems.

7.1 Future work

In this thesis, we have focused on the analysis of two algorithms that self-adjust the off-
spring population size: the self-adjusting (1 + (λ, λ)) GA and the self-adjusting (1, λ) EA.
Although this has resulted in a substantial amount of knowledge of how self-adjusting mech-
anisms work for multimodal optimisation, we study a limited number of algorithms. A pos-
sible target for future work would be analysing other algorithms using a parameter control
mechanism to adjust the offspring population size λ. The perfect candidates are so-called

148

population-based non-elitist EAs, because similar to the (1, λ) EA, they require large values
of offspring population size [33, 47, 123]. This requirement comes from the need to avoid
losing fitness during hard parts of the optimisation, but is not always needed in easy parts of
the optimisation. Therefore using a self-adjusting mechanism to adjust λ could make these
algorithms more efficient.

From all population-based non-elitist EAs a natural extension to our work would be to
study the self-adjusting (µ, λ) EA with µ > 1. In this case we hypothesise that using a parent
population might allow the algorithm to retain good solutions in the parent population
resulting in an algorithm that is more robust with respect to the hyper-parameters of the
self-adjusting mechanism. Although the final goal would be to theoretically analyse this
algorithm, we believe that an exploratory experimental analysis beforehand would be helpful
to guide such theoretical studies.

Another open problem is to find ways to make the self-adjusting (1, λ) EA more robust
with respect to to its hyper-parameters. In this thesis we have already shown a possible
solution: using a mutation probability small enough to make every optimisation problem an
every-where hard problem with respect to the self-adjusting (1, λ) EA. Although this solves
the issue, it also results in a loss of performance with respect to the standard mutation
probability 1/n (with a proper selection of the hyper-parameters). As discussed above,
using a parent population could also result in a more robust algorithm. Another possible
solution related to this is to impose a minimum λ. This would prevent the algorithm from
reducing the offspring population size to harmful values. In particular, we conjecture that
for OneMax, a minimum λ > 1 (but constant with respect to the problem size n) would
allow the algorithm to find a solution at a distance εn from the optimum and then the
self-adjusting (1, λ) EA would be able to optimise OneMax efficiently, for any constant
value of its hyper-parameters.

This thesis has helped to narrow the gap between theory and practice. An important
direction for future work that can further shrink this gap, is to study parameter control
mechanisms on functions beyond the ones analysed here. Kaufmann, Larcher, Lengler, and
Zou [115] have already expanded our analyses of the self-adjusting (1, λ) EA to the class
of monotone functions. Due to the range and importance of their associated applications,
classical combinatorial optimisation problems are another interesting class of problems to
study. Additionally, experimental studies could be implemented on real-world applications
comparing the performance of the algorithms studied here against other commonly used
randomised search heuristics.

Further down the line, we would like to explore the possibility of combining multiple
parameter control mechanisms into one algorithm. For example, our promising results for
the (1, λ) EA self-adjusting λ can be combined with a self-adaptive mutation rate, which by
itself has been shown to be helpful for non-elitist algorithms [25, 69]. Although analysing a
combination of parameter control mechanisms is significantly more difficult, it is a promising
direction for research, and we believe that more research effort should be put into this.

149

Bibliography

[1] Youhei Akimoto, Anne Auger, and Tobias Glasmachers. Drift theory in continuous
search spaces: Expected hitting time of the (1 + 1)-ES with 1/5 success rule. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18,
page 801–808. ACM, 2018.

[2] Fawaz Alanazi and Per Kristian Lehre. Runtime analysis of selection hyper-heuristics
with classical learning mechanisms. In Proceedings of Congress on Evolutionary Com-
putation, CEC ’14, pages 2515–2523. IEEE, 2014.

[3] Denis Antipov and Benjamin Doerr. Runtime analysis of a heavy-tailed (1 + (λ, λ))
genetic algorithm on Jump functions. In Proceedings of Parallel Problem Solving from
Nature – PPSN XVI, pages 545–559. Springer, 2020.

[4] Denis Antipov and Benjamin Doerr. A tight runtime analysis for the (µ + λ) EA.
Algorithmica, 83(4):1054–1095, 2021.

[5] Denis Antipov and Benjamin Doerr. Precise runtime analysis for plateau functions.
ACM Trans. Evol. Learn. Optim., 1(4), oct 2021.

[6] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. A tight runtime analysis for
the (1 + (λ, λ)) GA on LeadingOnes. In Proceedings of the 15th ACM/SIGEVO
Conference on Foundations of Genetic Algorithms, FOGA ’19, page 169–182. ACM,
2019.

[7] Denis Antipov, Benjamin Doerr, and Quentin Yang. The efficiency threshold for
the offspring population size of the (µ, λ) EA. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’19, page 1461–1469. ACM, 2019.

[8] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Fast mutation in crossover-
based algorithms. In Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO ’20, page 1268–1276. ACM, 2020.

[9] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. The (1 + (λ, λ)) GA is even
faster on multimodal problems. In Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO ’20, page 1259–1267. ACM, 2020.

[10] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Lazy parameter tuning and
control: Choosing all parameters randomly from a power-law distribution. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21, page
1115–1123. ACM, 2021.

[11] Thomas Bäck. Self-adaptation in genetic algorithms. In Proceedings of the First
European Conference on Artificial Life, pages 263–271, 1991.

150

[12] Thomas Bäck. The interaction of mutation rate, selection, and self-adaptation within
a genetic algorithm. In Proceedings of Parallel Problem Solving from Nature – PPSN
II, pages 85–94, 1992.

[13] Thomas Bäck and Martin Schütz. Intelligent mutation rate control in canonical genetic
algorithms. In International Symposium on Foundations of Intelligent Systems, pages
158–167. Springer, 1996.

[14] Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of Evolutionary
Computation. IOP Publishing Ltd., 1st edition, 1997.

[15] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-box com-
plexity of parallel search. In Proceedings of Parallel Problem Solving from Nature –
PPSN XIII, pages 892–901. Springer, 2014.

[16] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Black-box complexity of
parallel search with distributed populations. In Proc. of FOGA, pages 3–15. ACM,
2015.

[17] Henry Bambury, Antoine Bultel, and Benjamin Doerr. Generalized jump functions. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21,
page 1124–1132. ACM, 2021.

[18] Anton Bassin and Maxim Buzdalov. The 1/5-th rule with rollbacks: On self-
adjustment of the population size in the (1 + (λ, λ)) GA. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, GECCO ’19, page
277–278. ACM, 2019.

[19] Riade Benbaki, Ziyad Benomar, and Benjamin Doerr. A rigorous runtime analysis
of the 2-mmasib on jump functions: Ant colony optimizers can cope well with local
optima. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’21, page 4–13. ACM, 2021.

[20] Jakob Bossek and Dirk Sudholt. Do additional optima speed up evolutionary algo-
rithms? In Proceedings of the 16th ACM/SIGEVO Conference on Foundations of
Genetic Algorithms, FOGA ’21. ACM, 2021.

[21] Süntje Böttcher, Benjamin Doerr, and Frank Neumann. Optimal fixed and adap-
tive mutation rates for the LeadingOnes problem. In Proceedings of Parallel Problem
Solving from Nature – PPSN XI, volume 6238, pages 1–10. Springer, 2010.

[22] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (λ, λ)) genetic
algorithm on random satisfiable 3-CNF formulas. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’17, page 1343–1350. ACM, 2017.

[23] Maxim Buzdalov and Carola Doerr. Optimal static mutation strength distributions
for the (1 + λ) evolutionary algorithm on OneMax. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’21, page 660–668. ACM, 2021.

[24] Maxim Buzdalov, Mikhail Kever, and Benjamin Doerr. Upper and lower bounds
on unrestricted black-box complexity of Jumpn,`. In Evolutionary Computation in
Combinatorial Optimization, pages 209–221. Springer, 2015.

[25] Brendan Case and Per Kristian Lehre. Self-adaptation in nonelitist evolutionary al-
gorithms on discrete problems with unknown structure. IEEE Transactions on Evo-
lutionary Computation, 24(4):650–663, 2020.

151

[26] J. Cervantes and Christopher R. Stephens. Limitations of existing mutation rate
heuristics and how a rank GA overcomes them. IEEE Transactions on Evolutionary
Computation, 13(2):369–397, 2009.

[27] T. Chen, J. He, G. Sun, G. Chen, and X. Yao. A new approach for analyzing average
time complexity of population-based evolutionary algorithms on unimodal problems.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(5):
1092–1106, 2009.

[28] Francisco Chicano, Andrew M. Sutton, L. Darrell Whitley, and Enrique Alba. Fitness
Probability Distribution of Bit-Flip Mutation. Evolutionary Computation, 23(2):217–
248, 06 2015.

[29] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to algorithms. The MIT Press, 3rd edition, 2009.

[30] Dogan Corus and Pietro S. Oliveto. Standard steady state genetic algorithms can
hillclimb faster than mutation-only evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 22(5):720–732, 2018.

[31] Dogan Corus and Pietro S. Oliveto. On the benefits of populations for the exploitation
speed of standard steady-state genetic algorithms. Algorithmica, 82(12):3676–3706,
2020.

[32] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. On the runtime analysis of
the Opt-IA artificial immune system. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’17, page 83–90. ACM, 2017.

[33] Dogan Corus, Duc-Cuong Dang, Anton V. Eremeev, and Per Kristian Lehre. Level-
based analysis of genetic algorithms and other search processes. IEEE Transactions
on Evolutionary Computation, 22(5):707–719, 2018.

[34] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Fast artificial immune systems.
In Parallel Problem Solving from Nature – PPSN XV, pages 67–78. Springer, 2018.

[35] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. On inversely proportional hyper-
mutations with mutation potential. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’19, page 215–223. ACM, 2019.

[36] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. When hypermutations and ageing
enable artificial immune systems to outperform evolutionary algorithms. Theoretical
Computer Science, 832:166–185, 2020.

[37] Dogan Corus, Andrei Lissovoi, Pietro S. Oliveto, and Carsten Witt. On steady-state
evolutionary algorithms and selective pressure: Why inverse rank-based allocation of
reproductive trials is best. ACM Trans. Evol. Learn. Optim., 1(1), apr 2021.

[38] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Fast immune system-inspired
hypermutation operators for combinatorial optimization. IEEE Transactions on Evo-
lutionary Computation, 25(5):956–970, 2021.

[39] Duc-Cuong Dang and Per Kristian Lehre. Self-adaptation of mutation rates in non-
elitist populations. In Proceedings of Parallel Problem Solving from Nature – PPSN
XIV, pages 803–813. Springer, 2016.

[40] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. Escaping local op-
tima with diversity mechanisms and crossover. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO’ 16, pages 645–652. ACM, 2016.

152

[41] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kristian
Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. Escaping local op-
tima using crossover with emergent diversity. IEEE Transactions on Evolutionary
Computation, 22(3):484–497, 2018.

[42] Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre. Escaping local optima
with non-elitist evolutionary algorithms. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 12275–12283, 2021.

[43] Duc-Cuong Dang, Anton Eremeev, and Per Kristian Lehre. Non-elitist evolutionary
algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21,
page 1133–1141. ACM, 2021.

[44] Nguyen Dang and Carola Doerr. Hyper-parameter tuning for the (1 + (λ, λ)) GA. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’19.
ACM, 2019.

[45] Kenneth De Jong. Parameter setting in EAs: a 30 year perspective. In Fernando G.
Lobo, Cláudio F. Lima, and Zbigniew Michalewicz, editors, Parameter Setting in
Evolutionary Algorithms, volume 54 of Studies in Computational Intelligence, pages
1–18. Springer, 2007.

[46] Luc Devroye. The compound random search. PhD thesis, Purdue University, 1972.

[47] Benjamin Doerr. Does comma selection help to cope with local optima? In Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’20, page
1304–1313. ACM, 2020.

[48] Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization heuris-
tics. In Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Com-
putation: Recent Developments in Discrete Optimization, Natural Computing Series,
pages 1–87. Springer, 2020.

[49] Benjamin Doerr. The runtime of the compact genetic algorithm on jump functions.
Algorithmica, 83(10):3059–3107, 2021.

[50] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting parameter choices
for the (1+(λ,λ)) Genetic Algorithm. Algorithmica, 80(5):1658–1709, 2018.

[51] Benjamin Doerr and Carola Doerr. Theory of parameter control for discrete black-
box optimization: Provable performance gains through dynamic parameter choices. In
Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization, Natural Computing Series, pages 271–
321. Springer, 2020.

[52] Benjamin Doerr and Leslie Ann Goldberg. Adaptive drift analysis. Algorithmica, 65
(1):224–250, 2013.

[53] Benjamin Doerr and Timo Kötzing. Lower bounds from fitness levels made easy. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’21,
page 1142–1150. ACM, 2021.

[54] Benjamin Doerr and Timo Kötzing. Multiplicative up-drift. Algorithmica, 83(10):
3017–3058, 2021.

153

[55] Benjamin Doerr and Marvin Künnemann. Optimizing linear functions with the (1+λ)
evolutionary algorithm–different asymptotic runtimes for different instances. Theoret-
ical Computer Science, 561:3–23, 2015.

[56] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges.
Optimizing monotone functions can be difficult. In Proceedings of Parallel Problem
Solving from Nature – PPSN XI, pages 42–51. Springer, 2010.

[57] Benjamin Doerr, Mahmoud Fouz, and Carsten Witt. Sharp bounds by probability-
generating functions and variable drift. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’11, pages 2083–2090. ACM, 2011.

[58] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift analysis.
Algorithmica, 64(4):673–697, 2012.

[59] Benjamin Doerr, Thomas Jansen, Dirk Sudholt, Carola Winzen, and Christine Zarges.
Mutation Rate Matters Even When Optimizing Monotonic Functions. Evolutionary
Computation, 21(1):1–27, 03 2013.

[60] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box complexity to
designing new genetic algorithms. Theoretical Computer Science, 567:87–104, 2015.

[61] Benjamin Doerr, Carola Doerr, and Jing Yang. k-bit mutation with self-adjusting k
outperforms standard bit mutation. In Proceedings of Parallel Problem Solving from
Nature – PPSN XIV, pages 824–834. Springer, 2016.

[62] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast genetic
algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’17, pages 777–784. ACM, 2017.

[63] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting mutation
strengths for multi-valued decision variables. Algorithmica, 80(5):1732–1768, 2018.

[64] Benjamin Doerr, Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On
the runtime analysis of selection Hyper-Heuristics with adaptive learning periods. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18,
page 1015–1022. ACM, 2018.

[65] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Solving problems with unknown
solution length at almost no extra cost. Algorithmica, 81(2):703–748, 2019.

[66] Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang. The (1+ λ) Evo-
lutionary Algorithm with self-adjusting mutation rate. Algorithmica, 81(2):593–631,
2019.

[67] Benjamin Doerr, Carola Doerr, and Jing Yang. Optimal parameter choices via precise
black-box analysis. Theoretical Computer Science, 801:1–34, 2020.

[68] Benjamin Doerr, Carola Doerr, and Johannes Lengler. Self-adjusting mutation rates
with provably optimal success rules. Algorithmica, 83(10):3108–3147, 2021.

[69] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-adaptive
mutation rates. Algorithmica, 83(4):1012–1053, 2021.

[70] Carola Doerr. Complexity theory for discrete black-box optimization heuristics. In
Benjamin Doerr and Frank Neumann, editors, Theory of Evolutionary Computation:
Recent Developments in Discrete Optimization, Natural Computing Series, pages 271–
321. Springer, 2020.

154

[71] Carola Doerr and Markus Wagner. On the effectiveness of simple success-based param-
eter selection mechanisms for two classical discrete black-box optimization benchmark
problems. CoRR, abs/1803.01425, 2018. URL http://arxiv.org/abs/1803.01425.

[72] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. IOHpro-
filer: A benchmarking and profiling tool for iterative optimization heuristics. CoRR,
abs/1810.05281, 2018. URL http://arxiv.org/abs/1810.05281.

[73] Carola Doerr, Furong Ye, Sander van Rijn, Hao Wang, and Thomas Bäck. Towards a
theory-guided benchmarking suite for discrete black-box optimization heuristics: Pro-
filing (1 + λ) EA variants on OneMax and LeadingOnes. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO ’18, pages 951–958. ACM, 2018.

[74] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas
Bäck. Benchmarking discrete optimization heuristics with IOHprofiler. Applied Soft
Computing, 88:106027, 2020.

[75] Stefan Droste, Thomas Jansen, and Ingo Wegener. Dynamic parameter control in
simple evolutionary algorithms. In Proceedings of the 6th ACM/SIGEVO Workshop
on Foundations of Genetic Algorithms, pages 275–294. Morgan Kaufmann, 2000.

[76] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1):51–81, 2002.

[77] A. E. Eiben and J. Smith. Introduction to evolutionary computing. Springer, 2nd
edition, 2015.

[78] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124–141, 1999.

[79] A.E. Eiben and S.K. Smit. Parameter tuning for configuring and analyzing evolution-
ary algorithms. Swarm and Evolutionary Computation, 1(1):19–31, 2011.

[80] Joseph Felsenstein. The evolutionary advantage of recombination. Genetics, 78:737–
756, 1974.

[81] Terence C. Fogarty. Varying the probability of mutation in the genetic algorithm. In
ICGA, 1989.

[82] Michael Foster, Matthew Hughes, George O’Brien, Pietro S. Oliveto, James Pyle,
Dirk Sudholt, and James Williams. Do sophisticated evolutionary algorithms perform
better than simple ones? In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’20, pages 184–192. ACM, 2020.

[83] Tobias Friedrich, Nils Hebbinghaus, and Frank Neumann. Comparison of simple di-
versity mechanisms on plateau functions. Theoretical Computer Science, 410(26):
2455–2462, 2009.

[84] Tobias Friedrich, Pietro S. Oliveto, Dirk Sudholt, and Carsten Witt. Analysis of
diversity-preserving mechanisms for global exploration. Evol. Comput., 17(4):455–476,
2009.

[85] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma, Frank Neu-
mann, and Martin Schirneck. Fast building block assembly by majority vote crossover.
In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’16,
page 661–668. ACM, 2016.

155

http://arxiv.org/abs/1803.01425
http://arxiv.org/abs/1810.05281

[86] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Escaping large deceptive
basins of attraction with heavy-tailed mutation operators. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, GECCO ’18, page 293–300. ACM,
2018.

[87] Josselin Garnier, Leila Kallel, and Marc Schoenauer. Rigorous Hitting Times for
Binary Mutations. Evolutionary Computation, 7(2):173–203, 06 1999.

[88] Christian Gießen and Timo Kötzing. Robustness of populations in stochastic environ-
ments. Algorithmica, 75(3):462–489, 2016.

[89] Christian Gießen and Carsten Witt. The interplay of population size and mutation
probability in the (1 + λ) EA on OneMax. Algorithmica, 78(2):587–609, 2017.

[90] Christian Gießen and Carsten Witt. Optimal mutation rates for the (1+λ) EA on
OneMax through asymptotically tight drift analysis. Algorithmica, 80(5):1710–1731,
2018.

[91] Brian W. Goldman and William F. Punch. Fast and efficient black box optimization
using the parameter-less population pyramid. Evolutionary Computation, 23(3):451–
479, 2015.

[92] Walter J. Gutjahr. First steps to the runtime complexity analysis of ant colony opti-
mization. Computers and Operations Research, 35(9):2711–2727, 2008.

[93] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. On the impact of the cutoff
time on the performance of algorithm configurators. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’19, pages 907–915. ACM, 2019.

[94] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. Fast perturbative algorithm
configurators. In Proceedings of Parallel Problem Solving from Nature – PPSN XVI,
volume 12269, pages 19–32. Springer, 2020.

[95] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. Analysis of the performance
of algorithm configurators for search heuristics with global mutation operators. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’20,
pages 823–831. ACM, 2020.

[96] George T. Hall, Pietro S. Oliveto, and Dirk Sudholt. On the impact of the performance
metric on efficient algorithm configuration. Artificial Intelligence, 303:103629, 2022.

[97] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dynamics of the compact
genetic algorithm on Jump functions. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’18, page 967–974. ACM, 2018.

[98] Jun He and Xin Yao. A study of drift analysis for estimating computation time of
evolutionary algorithms. Natural Computing, 3(1):21–35, 2004.

[99] Mario A. Hevia Fajardo. An empirical evaluation of success-based parameter control
mechanisms for evolutionary algorithms. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO’ 19, pages 787–795. ACM, 2019.

[100] Mario Alejandro Hevia Fajardo and Dirk Sudholt. On the choice of the parameter
control mechanism in the (1 + (λ, λ)) genetic algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO’ 20, page 832–840. ACM, 2020.

156

[101] Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting population sizes for
non-elitist Evolutionary Algorithms: Why success rates matter. In Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO ’21, page 1151–1159.
ACM, 2021.

[102] Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting offspring population
sizes outperform fixed parameters on the Cliff function. In Proceedings of the 16th
Workshop on Foundations of Genetic Algorithms, FOGA ’21, pages 5:1–5:15. ACM,
2021.

[103] Mario Alejandro Hevia Fajardo and Dirk Sudholt. Hard problems are easier for success-
based parameter control. Submitted to: Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’22, ACM, 2022.

[104] Mario Alejandro Hevia Fajardo and Dirk Sudholt. On the choice of the parameter
control mechanism in the (1 + (λ, λ)) Genetic Algorithm. Submitted to: ACM Trans-
actions on Evolutionary Learning and Optimization, 2022.

[105] Mario Alejandro Hevia Fajardo and Dirk Sudholt. Self-adjusting population sizes for
non-elitist Evolutionary Algorithms. Submitted to: Algorithmica, 2022.

[106] Jens Jägersküpper and Tobias Storch. When the plus strategy outperforms the comma
strategy and when not. In Proceedings of the IEEE Symposium on Foundations of
Computational Intelligence, FOCI 2007, pages 25–32. IEEE, 2007.

[107] Thomas Jansen. Analyzing evolutionary algorithms: the computer science perspective.
Natural computing series. Springer, 2013.

[108] Thomas Jansen and Dirk Sudholt. Analysis of an asymmetric mutation operator.
Evolutionary Computation, 18(1):1–26, 2010.

[109] Thomas Jansen and Ingo Wegener. On the choice of the mutation probability for the
(1+1) EA. In Proceedings of Parallel Problem Solving from Nature – PPSN VI, pages
89–98. Springer, 2000.

[110] Thomas Jansen and Ingo Wegener. On the utility of populations in evolutionary
algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’01), pages 1034–1041. Morgan Kaufmann Publishers Inc., 2001.

[111] Thomas Jansen and Ingo Wegener. The analysis of evolutionary algorithms—a proof
that crossover really can help. Algorithmica, 34(1):47–66, 2002.

[112] Thomas Jansen and Ingo Wegener. On the analysis of a dynamic evolutionary algo-
rithm. Journal of Discrete Algorithms, 4(1):181–199, 2006.

[113] Thomas Jansen and Christine Zarges. Example landscapes to support analysis of
multimodal optimisation. In Proceedings of Parallel Problem Solving from Nature –
PPSN XIV, pages 792–802. Springer, 2016.

[114] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice of the offspring
population size in evolutionary algorithms. Evolutionary Computation, 13(4):413–440,
2005.

[115] Marc Kaufmann, Maxime Larcher, Johannes Lengler, and Xun Zou. Self-adjusting
population sizes for the (1, (λ)-EA on monotone functions. In Günter Rudolph,
Anna V. Kononova, Hernán E. Aguirre, Pascal Kerschke, Gabriela Ochoa, and Tea
Tusar, editors, Proceedings of Parallel Problem Solving from Nature – PPSN XVII,
volume 13399 of Lecture Notes in Computer Science, pages 569–585. Springer, 2022.

157

[116] Stefan Kern, Sibylle D. Müller, Nikolaus Hansen, Dirk Büche, Jiri Ocenasek, and
Petros Koumoutsakos. Learning probability distributions in continuous evolutionary
algorithms – a comparative review. Natural Computing, 3(1):77–112, 2004.

[117] Timo Kötzing and Martin S. Krejca. First-hitting times under drift. Theoretical
Computer Science, 796:51–69, 2019.

[118] Timo Kötzing, Dirk Sudholt, and Madeleine Theile. How crossover helps in pseudo-
boolean optimization. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’11, pages 989–996. ACM, 2011.

[119] Lázló Kozma. Useful inequalities, 2019. http://www.lkozma.net/inequalities_

cheat_sheet/.

[120] Jörg Lässig and Dirk Sudholt. Adaptive population models for offspring populations
and parallel evolutionary algorithms. In Proceedings of the 11th ACM/SIGEVO Work-
shop on Foundations of Genetic Algorithms, FOGA ’11, pages 181–192. ACM, 2011.

[121] Jörg Lässig and Dirk Sudholt. General upper bounds on the running time of parallel
evolutionary algorithms. Evolutionary Computation, 22(3):405–437, 2014.

[122] Jörg Lässig and Dirk Sudholt. Analysis of speedups in parallel evolutionary algorithms
and (1+λ) EAs for combinatorial optimization. Theoretical Computer Science, 551:
66–83, 2014.

[123] Per Kristian Lehre. Negative drift in populations. In Parallel Problem Solving from
Nature – PPSN XI, pages 244–253. Springer, 2010.

[124] Per Kristian Lehre. Fitness-levels for non-elitist populations. In Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’11, page 2075–2082.
ACM, 2011.

[125] Per Kristian Lehre and Pietro S. Oliveto. Theoretical analysis of stochastic search
algorithms. In Rafael Mart́ı, Pardalos Panos, and Mauricio G. C. Resende, editors,
Handbook of Heuristics, pages 1–36. Springer, 2018.

[126] Per Kristian Lehre and Ender Özcan. A runtime analysis of simple hyper-heuristics:
To mix or not to mix operators. In Proceedings of the 12th ACM/SIGEVO Workshop
on Foundations of Genetic Algorithms, FOGA ’13, pages 97–104. ACM, 2013.

[127] Per Kristian Lehre and Dirk Sudholt. Parallel black-box complexity with tail bounds.
IEEE Transactions on Evolutionary Computation, 24(6):1010–1024, 2020.

[128] Per Kristian Lehre and Carsten Witt. Black-box search by unbiased variation. Algo-
rithmica, 64(4):623–642, 2012.

[129] Per Kristian Lehre and Xin Yao. On the impact of the mutation-selection balance
on the runtime of evolutionary algorithms. In Proceedings of the 10th ACM/SIGEVO
Workshop on Foundations of Genetic Algorithms, FOGA ’09, pages 47–58. ACM, 2009.

[130] Johannes Lengler. A general dichotomy of evolutionary algorithms on monotone func-
tions. IEEE Transactions on Evolutionary Computation, 24(6):995–1009, 2020.

[131] Johannes Lengler. Drift analysis. In Benjamin Doerr and Frank Neumann, editors,
Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
Natural Computing Series, pages 89–131. Springer, 2020.

158

http://www.lkozma.net/inequalities_cheat_sheet/
http://www.lkozma.net/inequalities_cheat_sheet/

[132] Johannes Lengler and Simone Riedi. Runtime analysis of the (µ+1)-EA on the dynamic
BinVal function. In Evolutionary Computation in Combinatorial Optimization, pages
84–99, Cham, 2021. Springer.

[133] Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms
revisited. Combinatorics, Probability and Computing, 27(4):643–666, 2018.

[134] Johannes Lengler and Xun Zou. Exponential slowdown for larger populations: The
(µ+1)-EA on monotone functions. Theoretical Computer Science, 875:28–51, 2021.

[135] Johannes Lengler, Dirk Sudholt, and Carsten Witt. The complex parameter landscape
of the compact genetic algorithm. Algorithmica, 83(4):1096–1137, 2021.

[136] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the runtime
analysis of generalised selection hyper-heuristics for pseudo-boolean optimisation. In
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,
pages 849–856. ACM, 2017.

[137] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the time complex-
ity of algorithm selection hyper-heuristics for multimodal optimisation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 2322–2329, 2019.

[138] Andrei Lissovoi, Pietro Oliveto, and John Alasdair Warwicker. How the duration of the
learning period affects the performance of random gradient selection hyper-heuristics.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
2376–2383, Apr. 2020.

[139] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. Simple hyper-
heuristics control the neighbourhood size of randomised local search optimally for
LeadingOnes. Evolutionary Computation, 28(3):437–461, 2020.

[140] Fernando G. Lobo, Cláudio F. Lima, and Zbigniew Michalewicz, editors. Parameter
Setting in Evolutionary Algorithms, volume 54 of Studies in Computational Intelli-
gence. Springer, 2007.

[141] Andrea Mambrini and Dirk Sudholt. Design and analysis of schemes for adapting
migration intervals in parallel evolutionary algorithms. Evolutionary Computation, 23
(4):559–582, 2015.

[142] Daiki Morinaga and Youhei Akimoto. Generalized drift analysis in continuous domain:
Linear convergence of (1+1)-ES on strongly convex functions with lipschitz continuous
gradients. In Proceedings of the 15th ACM/SIGEVO Conference on Foundations of
Genetic Algorithms, FOGA ’19, page 13–24. ACM, 2019.

[143] Daiki Morinaga, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto. Convergence
rate of the (1+1)-evolution strategy with success-based step-size adaptation on convex
quadratic functions. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’21, page 1169–1177. ACM, 2021.

[144] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary algorithms,
and the minimum spanning tree problem. In Proceedings of the Genetic and Evolu-
tionary Computation Conference, GECCO ’04, pages 713–724. Springer, 2004.

[145] Frank Neumann and Carsten Witt. Bioinspired Computation in Combinatorial Opti-
mization. Natural Computing Series. Springer, 2010.

[146] Frank Neumann, Dirk Sudholt, and Carsten Witt. Analysis of different MMAS ACO
algorithms on unimodal functions and plateaus. Swarm Intelligence, 3(1):35–68, 2009.

159

[147] Pietro S. Oliveto and C. Witt. Erratum: Simplified drift analysis for proving lower
bounds in evolutionary computation. CoRR, abs/1211.7184, 2012. URL http://

arxiv.org/abs/1211.7184.

[148] Pietro S. Oliveto and Carsten Witt. Simplified drift analysis for proving lower bounds
in evolutionary computation. Algorithmica, 59(3):369–386, 2011.

[149] Pietro S. Oliveto and Carsten Witt. Improved time complexity analysis of the simple
genetic algorithm. Theoretical Computer Science, 605:21–41, 2015.

[150] Pietro S. Oliveto and Xin Yao. Runtime analysis of evolutionary algorithms for discrete
optimization. In Anne Auger and Benjamin Doerr, editors, Theory of Randomized
Search Heuristics, volume 1 of Theoretical Computer Science, pages 21–52. World
Scientific, 2011.

[151] Pietro S. Oliveto, Jun He, and Xin Yao. Time complexity of evolutionary algorithms for
combinatorial optimization: A decade of results. International Journal of Automation
and Computing, 4(3):281–293, 2007.

[152] Pietro S. Oliveto, Per Kristian Lehre, and Frank Neumann. Theoretical analysis of
rank-based mutation - combining exploration and exploitation. In Proceedings of the
Congress on Evolutionary Computation, CEC ’09, pages 1455–1462. IEEE, 2009.

[153] Tiago Paixão, Jorge Pérez Heredia, Dirk Sudholt, and Barbora Trubenová. Towards
a runtime comparison of natural and artificial evolution. Algorithmica, 78(2):681–713,
2017.

[154] Eduardo Carvalho Pinto and Carola Doerr. Towards a more practice-aware runtime
analysis of evolutionary algorithms. CoRR, abs/1812.00493, 2018.

[155] Mike Preuss. Multimodal Optimization by Means of Evolutionary Algorithms. Natural
Computing Series. Springer, 2015.

[156] Yasha Pushak and Holger Hoos. Algorithm configuration landscapes: More benign
than expected? In Parallel Problem Solving from Nature – PPSN XV, pages 271–283.
Springer, 2018.

[157] Yasha Pushak and Holger H. Hoos. Golden parameter search: Exploiting structure to
quickly configure parameters in parallel. In Proceedings of the Genetic and Evolution-
ary Computation Conference, GECCO ’20, page 245–253. ACM, 2020.

[158] Chao Qian, Ke Tang, and Zhi-Hua Zhou. Selection hyper-heuristics can provably
be helpful in evolutionary multi-objective optimization. In Proceedings of Parallel
Problem Solving from Nature – PPSN XIV, pages 835–846. Springer, 2016.

[159] Francesco Quinzan, Andreas Göbel, Markus Wagner, and Tobias Friedrich. Evolution-
ary algorithms and submodular functions: benefits of heavy-tailed mutations. Natural
Computing, 20(3):561–575, 2021.

[160] Amirhossein Rajabi and Carsten Witt. Evolutionary algorithms with self-adjusting
asymmetric mutation. In Proceedings of Parallel Problem Solving from Nature – PPSN
XVI, pages 664–677. Springer, 2020.

[161] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolutionary algorithms for
multimodal optimization. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’20, page 1314–1322. ACM, 2020.

160

http://arxiv.org/abs/1211.7184
http://arxiv.org/abs/1211.7184

[162] Amirhossein Rajabi and Carsten Witt. Stagnation detection with randomized local
search. In Evolutionary Computation in Combinatorial Optimization, pages 152–168.
Springer, 2021.

[163] Ingo Rechenberg. Evolutionsstrategie. Frommann-Holzboog-Verlag, 1973.

[164] Anna Rodionova, Kirill Antonov, Arina Buzdalova, and Carola Doerr. Offspring pop-
ulation size matters when comparing evolutionary algorithms with self-adjusting mu-
tation rates. In Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’19, page 855–863. ACM, 2019.

[165] Jonathan E. Rowe and Aishwaryaprajna. The benefits and limitations of voting mech-
anisms in evolutionary optimisation. In Proceedings of the 15th ACM/SIGEVO Con-
ference on Foundations of Genetic Algorithms, FOGA ’19, page 34–42. ACM, 2019.

[166] Jonathan E. Rowe and Dirk Sudholt. The choice of the offspring population size in
the (1, λ) evolutionary algorithm. Theoretical Computer Science, 545:20–38, 2014.

[167] M. Schumer and K. Steiglitz. Adaptive step size random search. IEEE Transactions
on Automatic Control, 13(3):270–276, 1968.

[168] Ramteen Sioshansi and Antonio J. Conejo. Optimization is ubiquitous. In Optimiza-
tion in Engineering: Models and Algorithms, pages 1–16. Springer, 2017.

[169] Giovanni Squillero and Alberto Tonda. Divergence of character and premature conver-
gence: A survey of methodologies for promoting diversity in evolutionary optimization.
Information Sciences, 329:782–799, 2016. Special issue on Discovery Science.

[170] Tobias Storch and Ingo Wegener. Real royal road functions for constant population
size. Theoretical Computer Science, 320(1):123–134, 2004.

[171] Dirk Sudholt. A new method for lower bounds on the running time of evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 17(3):418–435, 2013.

[172] Dirk Sudholt. Parallel evolutionary algorithms. In Janusz Kacprzyk and Witold
Pedrycz, editors, Springer Handbook of Computational Intelligence, pages 929–959.
Springer, 2015.

[173] Dirk Sudholt. How crossover speeds up building block assembly in genetic algorithms.
Evolutionary Computation, 25(2):237–274, 2017.

[174] Dirk Sudholt. The benefits of population diversity in evolutionary algorithms: A
survey of rigorous runtime analyses. In Benjamin Doerr and Frank Neumann, editors,
Theory of Evolutionary Computation: Recent Developments in Discrete Optimization,
Natural Computing Series, pages 359–404. Springer, 2020.

[175] Dirk Sudholt and Carsten Witt. Runtime analysis of a binary particle swarm optimizer.
Theoretical Computer Science, 411(21):2084–2100, 2010.

[176] Dirk Thierens. Adaptive mutation rate control schemes in genetic algorithms. In
Proceedings of the Congress on Evolutionary Computation, volume 1 of CEC ’02,
pages 980–985 vol.1. IEEE, 2002.

[177] Abraham Wald. On cumulative sums of random variables. The Annals of Mathematical
Statistics, 15(3):283 – 296, 1944.

[178] Ingo Wegener. Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In Evolutionary Optimization, pages 349–369. Kluwer, 2002.

161

[179] Darrell Whitley, Swetha Varadarajan, Rachel Hirsch, and Anirban Mukhopadhyay.
Exploration and exploitation without mutation: Solving the jump function in θ(n)
time. In Parallel Problem Solving from Nature – PPSN XV, pages 55–66. Springer,
2018.

[180] Carsten Witt. Runtime analysis of the (µ+1) EA on simple pseudo-boolean functions.
Evolutionary Computation, 14(1):65–86, 2006.

[181] Carsten Witt. Population size versus runtime of a simple evolutionary algorithm.
Theoretical Computer Science, 403(1):104–120, 2008.

[182] Carsten Witt. Tight bounds on the optimization time of a randomized search heuristic
on linear functions. Combinatorics, Probability and Computing, 22(2):294–318, 2013.

[183] Carsten Witt. Fitness levels with tail bounds for the analysis of randomized search
heuristics. Information Processing Letters, 114(1–2):38–41, 2014.

[184] Furong Ye, Carola Doerr, and Thomas Bäck. Interpolating local and global search by
controlling the variance of standard bit mutation. In Proceedings of the Congress on
Evolutionary Computation, CEC ’19, pages 2292–2299. IEEE, 2019.

[185] Christine Zarges. Rigorous runtime analysis of inversely fitness proportional mutation
rates. In Günter Rudolph, Thomas Jansen, Nicola Beume, Simon Lucas, and Carlo
Poloni, editors, Parallel Problem Solving from Nature – PPSN X, pages 112–122.
Springer, 2008.

162

	Introduction
	Motivation
	Thesis Outline
	Main Contributions
	Underlying Publications

	Background
	Evolutionary Algorithms
	Computational Complexity of EAs
	Benchmark Functions
	Unimodal Functions
	Multimodal Functions

	Runtime Analysis of Evolutionary Algorithms
	Useful Estimates
	Tools from Probability Theory
	Standard Tools and Methods

	Parameter Settings
	Taxonomy of Parameter Settings

	State of the Art in Parameter Control
	Dynamic Mutation Rate for the (m+L) EA
	Dynamic Offspring Population Size for the (1+L) EA
	Self-Adaptive Mutation Rate
	Self-Adjusting (1+(L,L)) GA
	Dynamic Parameters on RLS_k
	Conclusions

	Is Success-Based Parameter Control Efficient on Multimodal Problems?
	Introduction
	Contributions
	Related Work

	The Vanilla Self-adjusting (1 + (L,L))GA
	Fitness-Level Upper Bounds for the Self-Adjusting (1+L,L) GA
	Crossover does not Benefit the Self-Adjusting (1+(L,L))GA on Jump

	Mending the Success-Based Rules
	Restricting the Parameters
	Parameter Landscape on Jump
	Resetting the Parameters
	Self-Adjusting (1+(,)) GA Resetting

	Experimental Analysis
	Empirical Analyses on Jump Functions
	Empirical Analyses on OneMax
	Empirical Analyses on Other Benchmark Functions
	Discussion

	Conclusions

	Do Success-Based Rules Work for Non-elitist Algorithms?
	Introduction
	Contibutions

	Preliminaries
	Notation
	Drift Analysis and Potential Functions

	Success Rates Matter
	Small Success Rates are Efficient
	Large Success Rates Fail

	Hard Problems are Easier for Success-Based Parameter Control
	Bounding the Number of Generations
	Bounding the Number of Evaluations
	Bounds on Unimodal Functions
	Very Small Mutation Rates Make All Functions Everywhere Hard

	Experimental Analysis
	Empirical Analyses on OneMax
	Empirical Analyses on Other Benchmark Functions

	Discussion and Conclusions

	Benefits of Using Success-Based Rules for Non-elitist Algorithms on Multimodal Problems
	Introduction
	Contributions

	Preliminaries
	Transition Probabilities

	Non-elitist Algorithms with Static Parameters
	Provable Performance Gains applying Success-Based Rules
	Reaching the Cliff
	Jumping Down the Cliff
	After Jumping Down the Cliff
	Finding the Global Optimum
	Putting Things Together

	Experimental Analysis
	Cliff
	Varying L_max
	Other Problems

	Conclusions

	Conclusions
	Future work

