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Abstract 

Background: Health economic evaluation has a crucial role to play in the allocation of scarce societal 

resources. Economic models used in these evaluations must have a high degree of external validity but 

must also be usable in order to effectively inform policy. However, there is sometimes a trade-off 

between the realism of models (external validity) and the ease with which stakeholders can understand 

and interact with them (usability). This trade-off is particularly relevant in the field of physical activity 

where modelling is complicated and data availability is limited. The aim of this thesis is to investigate 

the balance between the external-validity and usability of models used in health economic evaluations 

of physical activity interventions and develop ways to build models that are more externally valid and 

usable. 

Methods: The study begins by identifying limitations in the external-validity and usability of published 

physical activity models, with a particular focus on models used to inform National Institute for Health 

and Care Excellence (NICE) guidance. Three case studies of adaptations to improve external validity 

are provided, with a discussion of their implications for usability. Additionally, ways to improve the 

usability of models are examined, with methods proposed to make models more accessible, 

transparent, secure, and efficient to construct and maintain. 

Results: The results of this thesis demonstrate that models can be improved in terms of both external-

validity and/or usability. The case studies provided show that methodological developments to physical 

activity models are feasible given new modelling methods and advancements in computing power, but 

despite improving external validity may reduce usability. Additionally, this thesis outlines methods by 

which health economic models can be made more accessible, transparent, secure, and efficient to 

construct and maintain, thereby improving their usability. 

Discussion: The overall conclusion of this thesis is that economic evaluation models should be as 

externally valid and usable as possible. However, a trade-off sometimes exists between the two. With 

a fixed budget for evaluation, attempts to improve external validity can have an opportunity cost in terms 

of resources allocated to making models easy to use and understand. The incorporation of methods 

from computing and data science can help mitigate this trade-off.  
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Overview of Thesis 

This thesis investigates the balance between the realism of models used for health economic 

evaluations (external validity) and the ease with which stakeholders can understand and interact with 

them (usability). The content begins by identifying limitations of published physical activity models and 

provides three case studies of adaptations to improve external-validity. It then examines ways to 

improve the usability of models in public health and health economics through the incorporation of 

modern data science techniques that make the models more accessible, transparent, secure, and 

efficient to construct and maintain. The aim throughout is to investigate the balance between the 

external-validity and usability of models used in health economic evaluations of physical activity 

interventions and develop ways to improve their external validity and usability to maximise the public 

health benefits of health economic evaluations. 

This thesis is split into several parts: 

Part 1 Defining the problem 

Part 1 provides the context for the thesis and reviews the existing literature to identify how the cost-

effectiveness of physical activity interventions has been estimated in the past. It contains two chapters: 

Chapter 1. Background. This chapter introduces the topic, defining physical activity and why it is a public 

health issue, identifies interventions from the literature and discusses the need for the application of 

health economic methods to aid decision makers. 

Chapter 2. Scoping review. This chapter reviews the literature to identify health economic analyses of 

physical activity interventions, trying to understand how physical activity has previously been modelled? 

What are the limitations of the current methods and what possible improvements could be made to 

improve the external validity and usability of models and therefore  better inform decision makers? 

Part 2 Adapting an existing model - case study of the WHO HEAT model 

Part 2 describes the effect of two adaptations to a widely used tool, developed on behalf of the World 

Health Organisation, which aims to estimate the benefits of walking and cycling. The adaptations aim 

to improve model validity. Part 2 contains three chapters: 

Chapter 3. The Value of the Statistical Life Year. A comparison of the HEAT walking and cycling model 

physical activity module results using the Value of a Statistical Life and Value of a Statistical Life Year 

methodologies.   

Chapter 4. Incorporating the Dose Response Function into HEAT. A comparison of the HEAT walking 

and cycling model when using a linear and non-linear dose response function.  
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Chapter 5. HEAT Model - Discussion. Discussion of the differences using the Value of a Statistical Life 

Year (vs VSL) and non-linear dose response functions (vs linear DRF) and trade-off between model 

usability and external validity.  

Part 3 Developing a new model: case study in modelling the long run cost effectiveness effect 
of school based physical activity interventions. 

In part three I describe the methods used, and results of, a bespoke microsimulation model which 

estimates the cost-effectiveness of interventions which aim to increase childhood physical activity. The 

model was built to improve the external validity of physical activity models, but also to better understand 

the impact on model results of some of the structural assumptions identified as limitations in Chapter 2. 

Chapter 6. PACEM model - Chapter 6 describes the methodology used to create a microsimulation 

model of Health-Related Quality of Life and healthcare costs. The results of the probabilistic model are 

reported with sensitivity analysis and a discussion of the significance of the findings for policy and 

comparison to other studies in the economic analysis of physical activity interventions in childhood. 

Part 4 Improving usability, efficiency, and transparency of  health economic models. 

Part 4 contains a discussion of the use of web-based user interfaces for health economic models, 

demonstrating the value of these tools in improving the usability of models and explaining the method 

used to create such tools. It also describes the benefits of methods to semi-automate updates to health 

economic evaluations and provides a tutorial on how to achieve this using open-source software. 

Chapter 7. On the creation of web application user interfaces for health economic and public health 

models. This chapter discusses the benefits of user-interfaces for health economic models, using a 

project undertaken with parkrun to highlight the benefits and limitations of these methods for public 

health economics. This chapter goes on to provide a tutorial on R-shiny for health economics more 

generally.  

Chapter 8. Living HTA: Automating Health Economic Evaluation with R. This chapter provides a tutorial 

on automating updates to health economic evaluation reports using open-source software. The tutorial 

uses the teaching model as described in the previous chapter to show how the model can be automated 

to be re-run, and a new health economic evaluation report generated any time the underlying data used 

to populate the model is updated. Furthermore, it is demonstrated how this can be achieved without 

sensitive data being shared with the health economic modeller or any third parties. 

Part 5 Concluding 

The last part of the thesis discusses the trade-off between external validity and usability of models in 

the context of the work contained in parts 2-4, providing a conclusion to the thesis. It contains one 

chapter. 
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Chapter 9. Discussion and conclusion. This chapter starts with a discussion of the main findings of the 

thesis. It outlines the contribution of the work described in this thesis in identifying methods of improving 

the external validity and usability of health economic models, with a focus on models used to evaluate 

physical activity interventions. The chapter goes on to discuss the implication of these findings for 

policymakers and health economists. It then identifies the strengths and limitations of the thesis, before 

concluding.  
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Table showing summary of thesis structure 

Chapter Research Objectives Intermediate Aim Overarching Aim 

Chapter 2 
Review of limitations in existing 
PA models 

Identify the limitations and key structural assumptions made 
in existing health economic evaluation models for physical 
activity 

Improve the external validity of 
health economic models of 

physical activity interventions, 
while investigating the potential 

impact on usability. 

Encourage the 
development of models 
that are the optimal 
combination externally 
valid and usable with a 
particular focus on health 
economic evaluations of 
physical activity 
interventions. 

Chapter 3  
Adaptation of the HEAT - Value 
of a Statistical Life Year 

Understand the effect of adapting the HEAT to incorporate 
consideration of duration of life lost and weigh this against 
implications for model usability. 

Chapter 4  
Adaptation of the HEAT - Dose 
Response Function 

Understand the effect of adapting the HEAT to incorporate a 
non-linear dose-response function for mortality and weigh 
this against implications for model usability. 

Chapter 6  
Development of PACEM - 
evaluating structural uncertainty 

Understand the effect of adapting several structural 
assumptions and test the feasibility of a microsimulation 
model which models long-term PA trajectories. 

Chapter 7  
Web-based user-interfaces for 
health economic models 

Develop methods to allow health economists to build and 
deploy user-interfaces for script-based health economic 
models online to improve model usability and transparency. 

Improve the usability of health 
economic decision models via 

new methods from data-science, 
with case studies and a 

consideration of the application 
of the methods to physical 

activity models. 

Chapter 8  
Automating health economic 
evaluation model updates 

Create a prototype open-source application to allow updates 
to Health Economic Evaluation reports to be automated as 
new information becomes available. 
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Development of work over the course of the PhD 

The methods and publications presented in this thesis were developed from September 2017 to May 

2023. Through various projects, my perspectives evolved and influenced the work. 

In 2018, I undertook a research visit with the WHO-Europe collaborating centre for physical activity at 

the University of Zurich. I worked with the Health Economic Assessment Tool modelling team to better 

understand the tool. Through this experience, I learned the significance of creating models that are easy 

to use and understand, even if it means sacrificing some level of external validity. This understanding 

greatly influenced the development of Chapter 3 and Chapter 4. 

In 2019, I collaborated closely with a Wellcome Trust doctoral candidate, Paul Schneider, as well as 

academics from Sheffield Hallam University and staff from parkrunUK to inform decisions on the 

location of new parkrun events. Through this work, I gained a valuable understanding of the potential 

of these tools, in particular the use of web-apps to host models. Paul and I have since been asked to 

help build models with web-apps for several teams at the World Health Organization, who wanted to 

build and deploy models for a large number of geographical areas at once and required that these 

models be both transparent and usable by stakeholders worldwide. These experiences helped to inform 

and shape the development of Chapter 7 and to improve the content of Chapter 6. 

Then the pandemic happened. 

In 2020, I was approached by the Joint Biosecurity Centre (JBC) and invited to join their Advanced 

Analytics team to assist in informing the government's response to the COVID-19 pandemic. During my 

two years working with colleagues at the JBC (now United Kingdom Health Security Agency), I gained 

insight into the fast-paced nature of decision making in times of crisis, and the crucial importance of 

developing clear, easy-to-understand outputs. I saw first-hand the value of allowing decision-makers to 

interact with and experiment with models, and the tremendous impact it had on their decision-making 

abilities. I also developed an appreciation for the power of automating analysis and modelling updates 

to improve reporting efficiency, and the importance of data security. These experiences greatly 

influenced the development of Chapter 8.  
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Part 1 - Introduction 
This part of the thesis is made up of two chapters. Chapter 1 contains a short justification for the focus 

on physical activity (PA), defining what it is and discussing the effect of PA on different health and non-

health outcomes and how risk from low levels of PA is accumulated. It then goes on to outline how PA 

is measured and common surveillance methods and what is happening to PA levels worldwide and in 

the United Kingdom (UK). Finally, it summarises the literature on the determinants of physical activity 

and government PA strategies and common interventions. 

Chapter 2 includes a scoping review of the literature on the methods used in economic evaluations of 

interventions to increase population physical activity. It focuses on models submitted to the National 

Institute for Health and Care Excellence (NICE), before reviewing systematic reviews of other models 

contained in the peer reviewed literature. 

Chapter 1. Introduction 

Non-communicable diseases (NCDs) have risen in overall prevalence over the past century, such that 

in 2019 they are estimated to account for 74% of deaths worldwide and over 60% of deaths in every 

WHO region except Africa (Vos et al., 2020). The shift from communicable diseases to non-

communicable diseases occurred first in developed countries but is well under way in developing 

countries (Yang et al. 2008). 

Most NCDs have been shown to be strongly correlated if not causally linked with four risky behaviours: 

tobacco use, physical inactivity, unhealthy diet, and harmful use of alcohol (WHO, 2013). Insufficient 

physical activity is estimated to account for 21.5% of ischaemic heart disease, 11% of ischaemic stroke, 

14% of diabetes, 16% of colon cancer and 10% of breast cancer as well as several other conditions 

worldwide (Bull et al., 2004), amounting to around 2 million premature deaths annually (WHO, 2004). 

Increasing physical activity levels has the potential to reduce the prevalence of these conditions, thereby 

improving quality of life and reducing pressure on healthcare systems worldwide (Ding et al., 2016). 

Defining Physical Activity 

Physical activity  is defined by the World Health Organisation (WHO) as “any bodily movement produced 

by skeletal muscles that requires energy expenditure” (WHO, 2023). PA may take many forms, the 

NICE states that “Physical activity includes everyday activity such as walking and cycling to get from A 

to B, work-related activity, housework, DIY and gardening. It also includes recreational activities such 

as working out in a gym, dancing, or playing active games, as well as organised and competitive sport” 

(NICE, 2018). Exercise is a subset of PA, defined by Casperson et al. (1985) as “physical activity that 
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is planned, structured, repetitive, and purposive in the sense that improvement or maintenance of one 

or more components of physical fitness is an objective”. Physical fitness is used to describe a set of 

attributes of an individual. It has multiple components; cardiovascular fitness differs from muscular 

strength, flexibility, body composition and bone density. There is ongoing debate as to the relative 

importance of PA and physical fitness (Blair et al., 2001). However, PA correlates strongly with fitness 

and so there is agreement that physical activity is both a direct and indirect means of improving health 

(Ekelund et al., 2007). 

Since PA includes a variety of bodily movements, it became necessary to categorise different activities 

along a single dimension. Intensity provides that single dimension, allowing a gentle stroll to be 

distinguished from a vigorous swim, and a vigorous swim to be equated to a hard run. While there are 

other facets of PA, for example strengthening of the muscles and bones (Kohurt et al. 2004), and 

psychological routines (Penedo & Dahn, 2005), the bulk of the benefits accrue in cardiovascular and 

metabolic conditioning from aerobic activity (WHO, 2021) and can therefore be approximated by a 

measure of duration and intensity. 

Duration is typically measured using minutes or hours, but there are numerous measures of intensity of 

PA, ranging from perceived exertion (e.g., the Borg Scale), % of maximal heart rate, accelerometers 

and more sophisticated techniques including doubly labelled water methods. Metabolic Equivalent of 

Task (MET) is becoming one of the most used by researchers focused on the epidemiology of physical 

activity related diseases (Ainsworth et al., 2000). A MET is a continuous unit of intensity of PA, 

measured relative to the basal metabolic rate (1 MET). Ainsworth et al. (2000) provide a compendium 

for adults, in which a typical healthy adult sitting using a computer is at approximately 1.5 METs, a 

normal walking pace is around 3 METs, a fast walk (4.5mi/hr) is 7 METs and running (6mi/hr) is around 

10 METs. Similar values are available for children (Ridley et al. 2008). Weekly MET-mins or MET-hrs 

are easily calculated by multiplying intensity (METs) by duration (mins/hours). 

This chapter has several aims, 1) to provide the reader with some background information around the 

benefits of physical activity and the health implications of low population levels of physical activity 2) to 

provide the reader with a sense of the scale of the problem, the extent to which the population is 

insufficiently active and the heterogeneity in activity levels between groups including ecological models 

of the determinants of physical activity, 3) to provide an overview of the role of the state in population 

physical activity levels, in surveillance, guidance and interventions. 

Effect of Physical Activity on Health Outcomes 

Physical activity has been linked to good health as far back as the philosophers of ancient Greece. A 

quote attributed to Plato (424–348 BC) states that a “Lack of activity destroys the good condition of 

every human being, while movement and methodical physical exercise save it and preserve it”  

(attributed to Plato). Despite this, the first epidemiological study of the effect of physical activity on 
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health is generally credited to Jeremy Morris in 1953 (Morris et al. 1953). Morris’ study compared the 

rates of coronary heart disease (CHD) between drivers (inactive) and conductors (active) working for 

the London Transport Executive. Using data from around 50,000 person-years, the authors found that 

the more active conductors had a relative risk for CHD of approximately 0.7 compared to their inactive 

bus driving colleagues. 

Since 1953 there has been substantial progress in physical activity epidemiology, to the extent that the 

literature is overwhelming, with many studies focused on different health outcomes, types of physical 

activity, on different populations, controlling for various confounding factors. Fortunately, several 

systematic reviews of the literature have previously been conducted to provide an indication of 

conditions for which the evidence base is strong. (Warburton et al., 2017; Kyu et al., 2016; Reiner et 

al., 2013). Table 1 below lists, in order of publishing date, the seven reviews identified by a non-

exhaustive scoping review, and the conditions identified by the reviews as being strongly related to PA. 

Four of the reviews investigate the role of PA in all-cause mortality, all seven include diabetes, six 

cardiovascular diseases, three obesity, six breast cancer, six colon cancer and four mental health. 

Table 1 Six Systematic Reviews of the Health Benefits of Physical Activity 

Systematic review ACM T2D CVD Ob BC CC MH Other 

Warburton et al. (2006) X X     X X   Falls 

PAGACR (2008) X X X X X X X Falls 

Warburton et al. (2010) X X X   X X X Osteoporosis 

Lee et al. (2013)   X X   X X     

Reiner et al. (2013)   X X X     X   

Warburton et al. (2017) X X X X X X X Gallstone Disease, 
SRH 

Number 3 6 5 3 5 5 4   

SRH= Self-Reported Health; CVD = Cardiovascular diseases; T2D = Type 2 Diabetes; BC = Breast Cancer; 
CC = Colorectal Cancer; MH = mental health; Ob = Obesity; ACM = All-cause mortality 

  

The most recent, published by Warburton et al. in September 2017, is a systematic review of systematic 

reviews of the relationship between PA and health outcomes. This is the most comprehensive summary 

of the evidence surrounding the benefits of physical activity. Within the 16 systematic reviews studied, 

the conditions found to be related to PA were: All-Cause Mortality, Diabetes T2, All-Cancer Mortality, 

Hypertension, Breast Cancer, Colon Cancer, Obesity, Gestational Diabetes, Gallstone Disease, 

Ischemic Heart Disease, Ischemic Stroke and potentially also Self-Reported Health. For most of the 
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aforementioned conditions there is a consensus in the literature that there exists a strong inverse dose 

response relationship between PA and risk (Davies et al., 2011). This relationship is thought to be 

curvilinear, with the greatest health benefits generated from increasing the physical activity levels of the 

least active (Kyu et al. 2016), although there is some disagreement as to the extent to which returns 

diminish (Bull et al. 2010, p.24). In fact, Warburton et al. suggest that the use of thresholds in public-

health messaging is not supported by the literature, which suggests a clear dose-response relationship 

with no obvious threshold point. 

It is important to recognise that while the benefits are large, there are also some health risks associated 

with physical activity, in particular cancer of the skin and musculoskeletal injuries. Moore et al. (2016) 

found that in their meta-analysis of 12 studies of the relationship between PA and malignant melanoma, 

including 12,438 cases, those who were at the 90th percentile of PA had a 27% increased risk relative 

to their inactive counterparts. The association was stronger in studies conducted in high UV areas, and 

in European subjects, suggesting that PA increases time spent outside and therefore sun exposure. 

This finding may be important for advising the public on when and where to exercise, and about the 

importance of adequate UV protection. Melzer et al. (2004) highlight several potential risks identified by 

the literature, including musculoskeletal injury, dehydration and heat stroke. They posit that the most 

common risks are musculoskeletal in nature, particularly of the knee, foot and back. While these injuries 

are not insignificant to those affected, the relative health and financial burden is limited in comparison 

to that of the non-communicable diseases described above. It is also unclear as to whether increasing 

PA at earlier ages increases or reduces the risk of PA over the life course (Janssen & LeBlanc, 2010) 

since increases in exposure may be mitigated with improvements in bone density and flexibility.  

There is very little evidence of how the risk of the chronic diseases associated with lower PA levels are 

accumulated over the life-course. While some models of diseases have estimated trajectories of certain 

markers in relation to multiple risk factors (e.g. Breeze et al., 2016), a scoping review of the literature 

has not revealed any studies which analyse the relationship between PA level and risk over the life 

course for multiple diseases. The most basic studies simply include variables in a multivariable model 

which represents PA level at multiple points over the life-course, generally baseline and follow-up (Politt 

et al., 2005). Since the early 2000s some models have developed to consider critical periods within the 

life-course, such as childhood, and the modifiers of this effect, e.g. adulthood PA may attenuate the 

effect of childhood PA (Ben-Shlomo et al., 2002). Other epidemiological studies have aimed to better 

understand accumulation of risk, including risk clustering, which describes the clustering of risk factors 

such as smoking and alcohol use, and chains of risk in which a person has a higher probability of 

developing a new risk factor if they have one already, e.g. if a person becomes unemployed they may 

have a higher risk of inactivity, which results in higher later risks of diabetes or depression. Perhaps the 

most developed examples come from studies of inequalities, which measure socioeconomic status at 

different periods of the life-course, usually childhood and adulthood, to determine how childhood SES 

influences adult health, and whether the effect is attenuated by adult SES (Poulton et al., 2002).  

However, this approach is still very crude, and ideally a model would be generated in which risk of 
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diseases was a continuously measured variable, and risk increased or decreased in each period 

depending on health behaviours. Risk could increase every year a person was insufficiently active and 

decrease in later years if an individual was more active, and certain years could be weighted during 

certain parts of the life course to reflect critical periods. Creating these complicated models for PA would 

necessitate data from large and representative longitudinal studies which gathered information on PA, 

amongst other comorbidities, on a regular basis over the entire life course (Ben-Shlomo et al., 2002). It 

may be that over the coming decades the data from newer studies provide this necessary information, 

for example the Millennium Cohort Study (Griffiths et al., 2013) and the Physical Activity Longitudinal 

study (Craig et al., 2005). 

Physical Activity Surveillance 

Public health surveillance, as defined by WHO (2017), is the systematic collection, analysis and 

interpretation of health-related data to inform public health practice. In the case of non-communicable 

diseases, surveillance is used to monitor progress and allocate resources. Physical activity surveillance 

is a recent development and is used to monitor physical activity levels in the population. There is a 

significant gap in physical activity surveillance compared to other chronic disease risk factors (Bauman 

et al., 2009). However, as the prevalence of diseases for which physical activity is a risk factor has 

increased, national and international bodies have started to invest more resources in monitoring 

physical activity. 

The UK has two main surveys that monitor physical activity levels: the Health Survey for England (HSE) 

and the Active Lives Survey (ALS). The HSE is an annual survey of 20,000 individuals in England, 

measuring lifestyle factors and health status, including some objective measurements by nurses (Craig 

et al. 2013). The 2015 version contains a detailed focus on physical activity in adults and children. The 

ALS, which took over from the Active People Survey (APS) in 2015 and surveys 200,000 individuals 

per year, focuses on adolescents and adults and provides more accurate geographical differences. 

However, data from the ALS is not directly comparable to either the HSE or the APS (2005-2015). The 

general physical activity question in the ALS asks about frequency, time spent, and effort level, but 

previous comparisons with the HSE's International Physical Activity Questionnaire (IPAQ) showed poor 

agreement (Zwolinsky et al., 2015), making it difficult to monitor trends from periods prior to 2015. 

Measurements of physical activity can be broadly categorised into subjective and objective. Subjective 

measurements rely on self-reported information, while objective measurements are collected using 

devices or technology. Subjective measurements, including questionnaires, activity logs, and diaries, 

have several benefits. They are cheap to administer, include all types of physical activity, and have 

good test-retest validity (Herrman et al. 2013) and therefore remain the predominant method used for 

physical activity surveillance. However, they also have limitations, including recall bias, interpretation of 

what constitutes moderate or vigorous activity, and overestimation of physical activity levels (Drystad 

et al., 2014). The IPAQ is one widely used PA questionnaire with two versions: a 39-question long form 
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and a 9-question short form (Hallal et al., 2012). While the IPAQ was originally validated in 12 countries 

and exhibits high test-retest reliability, it tends to overestimate PA levels and is weakly correlated with 

objective measures (Craig et al., 2003). The IPAQ has since been translated and tested in over 100 

countries (Hallal et al., 2012).  Using a simple equation, it is possible to convert responses to the IPAQ 

into an estimate of the number of active METs undertaken by an individual over a normal week period, 

providing a single figure describing total physical activity undertaken. The limitations of the IPAQ include 

structure and framing of questions, low sensitivity compared to objective measures, and the requirement 

for PA to occur in bouts of 10 minutes or more (Rutten et al., 2002; Loyen et al., 2016).  

However, objective physical activity measurement has become more common with the decline in 

monitoring cost and rise in subject convenience (Troiano et al., 2014). The most commonly used 

objective measurement is accelerometery, with accelerometers used to measure PA in humans since 

the 1980s and 1990s (Plasqui et al., 2013). These devices have become smaller and lighter, causing 

minimal inconvenience to subjects. Accelerometers capture acceleration from a single point on the body 

(usually the waist or wrist) and convert it into electrical signals, called counts, which reflect the amount 

of force generated by the subject. Counts are summed over a specified time-period to provide a 

measure of activity intensity. Cut points can be specified to distinguish levels of activity (light, moderate, 

vigorous), however, there is no consensus on exactly what these cut-points should be (Lee & Shiroma, 

2014). 

There are several challenges in using accelerometery to measure PA, including limited ability to capture 

movements at the extremities, poor measurement of weight carrying, and limitations in measuring 

activities such as cycling (Lee & Shiroma, 2014). Pragmatic limitations also exist, such as subjects 

losing or breaking their accelerometers or forgetting to wear them. Use of accompanying surveys can 

mitigate these risks. Large datasets, such as the UK Biobank Study (Doherty et al., 2017), are now 

available for cross-disciplinary research, however, the relationship between PA and health outcomes is 

generally based on subjective measurements and applying risk ratios from these studies to changes in 

objectively measured PA is unlikely to be reliable. 

The gold standard for measuring energy expenditure is the Doubly Labelled Water (DLW) technique, 

which uses labelled isotopes to estimate average daily metabolic rate (Westerterp et al.,1986). 

However, it is an indirect measure of PA and does not distinguish between intensity, mode, or duration 

of physical activity. It is often used to validate other PA measurement methods (Maddison et al., 2007; 

Plasqui & Westerterp, 2007). 

To standardise physical activity measurement, physical activity is typically categorised in terms of three 

levels of intensity: Light, Moderate, and Vigorous. The definitions of these levels vary slightly between 

organisations but generally involve faster breathing, increased heart rate, and difficulty speaking. There 

is no agreed standard mapping of these categories to METs, which makes meta-analyses and 

systematic reviews difficult (Daskalopoulou et al., 2017). However, there is a tendency to use 3-4 METs 
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for moderate intensity and 6-7 METs for vigorous intensity (Ainsworth et al., 2000; Haskell et al., 2007; 

Katzmarzyk et al., 2017). 

Physical Activity Levels 

Pooled analysis of surveys from over 122 countries with over a million participants find that around a 

quarter (27.5% and 22% respectively) of the world's population is physically inactive (Guthold et al., 

2018; Dumith et al. 2011b), regardless of whether defined as “not doing at least 150 min of moderate-

intensity, or 75 min of vigorous-intensity physical activity per week” (Guthold et al., p.1077) or  “engaged 

in less than 20 min/day of vigorous-intensity physical activity on at least 3 days/week, or less than 30 

min/day of moderate intensity physical activity on at least 5 days/week, or less than 600 MET-min” 

(Dumith et al. 2011b, p25), as shown in Table 2. There is significant variation across countries and 

WHO regions, with physical inactivity being higher in more developed regions (e.g. Western Pacific & 

Europe) than in less developed regions (e.g. South-East Asia and Africa). Dumith et al. (2011) which 

found a positive correlation between the Human Development Index (HDI) and physical inactivity in 76 

countries. Both studies found that females were more likely to be inactive than males, an effect 

consistent in most countries (Guthold et al., 2018; Dumith et al. 2011b).  

Table 2 Prevalence of insufficient physical activity among adults aged 18+ from the World Health 
Organisation Global Data Observatory, 2016, with 95% CI in brackets. 

WHO region Overall Male Female 

Global 27.5 [25.0-32.2] 23.4 [21.1-30.7] 31.7 [28.6-39.0] 

Africa 22.1 [19.9-24.0] 18.4 [15.8-20.9] 25.6 [22.8-28.2] 

Americas 39.3 [37.4-40.9] 33.1 [30.8-34.0] 45.2 [42.9-48.6] 

South-East Asia 30.5 [21.6-46.8] 22.9 [15.1-49.8] 38.3 [27.0-64.0] 

Europe 29.4 [27.9-32.1] 26.2 [23.9-29.5] 32.4 [30.5-37.0] 

Eastern Mediterranean 34.9 [32.1-39.2] 26.9 [25.4-30.6] 43.5 [41.4-46.6] 

Western Pacific 18.6 [16.5-23.5] 18.8 [16.3-25.1] 18.5 [15.5-27.3] 

 Source: WHO GDO https://apps.who.int/gho/data/view.main.2482?lang=en  

The IPAQ questionnaire is prone to overestimating physical activity (PA), and therefore the figures 

above are likely to underestimate physical inactivity (Craig et al. 2003). To address this, Loyen et al. 

(2016) analysed objective PA data from 5 European studies of 4 countries, finding that 72% of 

respondents did not meet WHO PA recommendations (not so different from the estimates above). 

England had the lowest level of PA among the 4 countries studied and the highest sedentary time. The 

https://apps.who.int/gho/data/view.main.2482?lang=en
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2008 Health Survey for England showed only 39% of men and 29% of women met the CMO’s PA 

guidelines, and 6% of men and 4% of women met them based on objective measurements (Craig et 

al., 2009). Children were found to be less likely to meet the higher levels of PA guidelines for children, 

with only 7% of boys meeting PA guidelines, and 0% of girls in the sample meeting guidelines of 60 

minutes of PA per day in segments of 10-minutes or more. 

Analysis of the trends of PA have been limited by the lack of comparable data (Hallal et al., 2012). 

Nevertheless, several findings have emerged from analysis of large datasets. Firstly, occupational 

physical activity has fallen substantially since the late 20th Century (Stamatakis et al., 2007; Church et 

al., 2011), and secondly leisure time physical activity has increased since 2004, especially in groups 

with the lowest PA levels (Gu et al., 2016; Craig et al., 2004). In a study of Swedish and Estonian 

children, Ortega et al. found that Swedish cohorts were less active at age 15 in 2004 than the first 

Swedish cohort were at age 15 in 1998. Finally, objective measures of physical fitness have generally 

been found to have fallen in most studies (Santtila et al. 2006; Peters et al. 2014; Eberhardt et al. 2020). 

Determinants and Correlates of Physical Activity 

The sub-field of public health aimed at understanding the determinants of risk factors such as smoking, 

alcohol consumption, and physical inactivity is relatively well established. However, physical activity 

behaviour differs from most other risk factors such as smoking and alcohol consumption since it requires 

an initiation of an action rather than ceasing it, for example stopping smoking or excessive alcohol 

consumption (Rhodes & Nigg, 2011). In the case of PA, the path of least resistance or inertia is the 

absence of the desired behaviour; it is not a variation on a necessary behaviour for survival (e.g. healthy 

eating); it requires a significant time commitment (vs tooth brushing, flossing, and sun-protective 

behaviour); and it is not a temporary one-time decision (vs cancer screening and radon testing); and it 

must be performed above the metabolic equivalent of rest sometimes with associated mild discomfort. 

However, it is similar to other risk factors in that there exist complex interplays between different 

determinants and the possibility of reverse causality and feedback loops at individual and population 

levels (Spence & Lee, 2003). The effects of some components are also temporal, making it difficult to 

determine cause and effect. Despite these difficulties, conceptual models have been developed to 

explain and predict PA levels for individuals and populations. 

This section provides a review of sociological and ecological models of the correlates and determinants 

of physical activity. The terms ‘correlates’ and ‘determinants’ are used intentionally and have separate 

definitions. Correlates of physical activity are variables which have been shown to vary with changes in 

PA, generally in cross-sectional studies, while determinants of physical activity are variables which have 

been shown to have a causal relationship, generally in cohort or longitudinal studies. A weakness of 

the early physical activity literature has been the failure to distinguish between the two (Bauman et al., 
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2002). Bauman et al. recommend that “the term “determinant” be used with greater precision and not 

be used to describe correlates of physical activity” (p.6). 

There have been several systematic reviews undertaken over the past 20 years. Salis & Owen 

published the seminal comprehensive review in 2000, followed by Trost et al. who updated this in 2002. 

A more recent review, that of Bauman et al. (2012) builds upon the two previous works, using an 

adapted ecological model of the determinants of PA to structure a systematic review of the literature 

from 2000. This review paper was used to inform this review of the literature. 

Gender and age are two significant predictors of physical activity levels, according to Bauman et al. 

(2012). Males are generally more active than females (Salis & Owen, 2000; Trost et al., 2002; Craig et 

al., 2009), with cultural differences affecting activity levels (Hovsepian et al., 2016). Physical activity 

levels typically fall with age in adulthood (Bauman et al., 2012; Craig et al., 2009; Grzywacz & Marks 

2001). Dumith et al. (2011b) reviewed 26 cohort studies from developed countries and found a 5.9% 

annual decrease in PA levels from childhood to adolescence, with no significant gender difference in 

the rate of decrease. It is less clear whether there are differences in physical activity between ethnic 

groups, since investigation of these effects are generally confounded by the level of economic 

development in a country, socioeconomic inequality, and cultural practices. 

Self-efficacy (SE) was reported as a correlate or determinant of PA levels in most of the systematic 

reviews included in Bauman et al. (2012). In the context of PA, an individual with high self-efficacy may 

be optimistic about their ability to achieve their target of 10,000 steps a day. Many systematic reviews 

of PA have shown self-efficacy to be a correlate of PA behaviour (Trost et al., 2002). One study, that of 

Ishii et al. (2010) used structural equation modelling of the Japanese version of the IPAQ to create a 

model of the influence of non-biological factors on moderate PA. They show that non-biological factors 

influence PA through self-efficacy, such that self-efficacy is the mediator of the effect of every other 

variable on moderate physical activity. The role of self-efficacy as a mediator of other determinants of 

PA has been validated in numerous studies (Lewis et al., 2002), and suggests that investments in other 

factors, for example the environment, may be poor value for money if self-efficacy is not also addressed. 

People with higher education and income are more likely to meet PA guidelines (Loyen et al., 2015; 

Farrell et al., 2014; Gu et al., 2016). Education predicts physical activity levels independently of income, 

according to Cerin & Leslie (2008). Grzywacz & Marks (2001) found that less educated men tend to 

have a faster decline in activity levels over time. Higher socioeconomic status positively correlates with 

physical activity levels in developed countries (Trost et al., 2002). Although lower socioeconomic 

individuals face unfavourable PA environments due to less amenities, higher crime and lower 

walkability, the authors find that self-efficacy and social support account for most of the PA differences 

between the groups. There is some indication that this is in part hereditary, with adolescents whose 

parents reported being physically active throughout life being 6 times more likely to be physically active 

currently compared to those whose parents were not physically active (Christofaro et al., 2018). 
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Farrell et al. (2014) analysed the correlates of PA in a sample of over a million respondents in the UK. 

The authors showed that PA increases monotonically with income and education, and the 

socioeconomic gradient of physical activity is not fully explained by differences in environment or access 

to resources. In the United States Gu et al. (2016) found that professional and technical staff are most 

likely to meet leisure time PA guidelines, while those in primary industries are least likely, using data 

from the National Health Interview Survey (NHIS). 

In the Bauman et al. review several environmental factors are identified as being potentially important, 

although for all of them the evidence is mixed. Findings from their review suggest that objectively 

measured variables such as walkability, traffic speed and volume, proximity to green space, and access 

to recreational facilities are the most important environmental variables for children. A finding validated 

by Sallis et al. (2016) who assessed objectively measured (using GIS) environmental correlates of 

objectively measured physical activity in their study of 14 cities. This suggests an urban/rural divide with 

those in more rural areas with less walkability more likely to be inactive. 

Giles-Corti & Donovan (2002) compares the relative importance of distinct types of determinants 

(individual, social environmental and physical environmental) of physical activity. When assessing 

relative importance of individual vs environmental factors, it appeared that physical environmental 

factors were the least important.  

Physical Activity over the life-course. 

Physical activity decreases and sedentary behaviour increases with age, as shown by cross-sectional 

and longitudinal studies (Bauman et al., 2012). Critical points in the life-course, related to life events, 

may exacerbate these declines (Varma et al., 2017). Examples include biological and sociocultural 

changes in adolescence (Craggs et al., 2011), pressures of work and childcare in early adulthood 

(Allender et al., 2008), mid-life caring responsibilities and then later-life health limitations (Sun et al., 

2013). Minimising reductions at these critical points is important for public health. 

Physical activity tends to decrease particularly rapidly in childhood and adolescence in both boys and 

girls in developed countries, regardless of whether measured objectively or subjectively (Ortega et al., 

2013; Dumith et al. 2011a; Craggs et al. 2011). Dumith et al. (2011a) conducted a systematic review of 

26 studies on PA change from childhood to adolescence in developed countries, finding a mean annual 

decrease of 5.9%, with only one study reporting an increase in PA level for boys. The authors observed 

no significant difference in results between genders but noticed higher declines in PA for girls in recent 

studies, as confirmed by Craggs et al. (2011). The fall in PA in adolescence is particularly important 

because many behaviours become habits in adolescence and these habits are more stable in adulthood 

(Lounassalo et al., 2019). 
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National Physical Activity Strategies & Targets 

International organisations such as the World Health Organization (WHO) provide global guidance on 

physical activity strategy and recommendations. The WHO's Global Strategy on Diet, Physical Activity 

and Health was adopted in 2004, providing a framework for developing a "good" national strategy for 

physical activity (PA). The framework includes areas such as national leadership, supportive 

environments, policies, programs and monitoring. The Global Recommendations on Physical Activity 

for Health was included in the 2008-2013 Global Strategy for the Prevention and Control of Non-

communicable Diseases (WHO, 2013). They were created to provide a simple set of guidelines which 

could be marketed at a global level or used to inform national guidelines, as has occurred in the UK. 

These recommendations are currently being updated, but the latest recommendations by age category 

can be found in Bull et al. 2020. 

Devolved authorities within the UK have made numerous efforts to increase physical activity (PA) 

through various public health strategies. In 2014, Public Health England (PHE) published "Everybody 

Active, Every Day" which reported that the UK population was 20% less active than in 1961. The report 

suggested ways to improve activity levels by changing the culture, environment, and scaling up effective 

interventions. In response, the UK government committed to funding inactivity prevention through Sport 

England's "Towards an Active Nation" strategy, dedicating 25% of resources to tackle inactivity and 

setting targets for inactive people to benefit. However, a 2017 report by PHE found no objective 

improvement in PA levels. Scotland has set a more objective target of 50% of adults and 80% of children 

meeting minimum PA levels by 2022. The Scottish government has also published "A More Active 

Scotland" to build on the legacy of the 2014 Commonwealth Games and improve PA through changes 

in physical environments and investments in sport and recreation.  

The UK's physical activity guidelines, as well as giving a definition for inactivity, are themselves an 

intervention - aiming to advise the population on healthy behaviours. First introduced in 1996, they 

recommended a minimum of 30 minutes of moderate to vigorous PA on at least five days a week. The 

latest guidelines from 2019 recommend that children aged 5-18 should “engage in moderate-to-

vigorous intensity physical activity for an average of at least 60 minutes per day across the week” and 

that adults aged 19-64 should “accumulate at least 150 minutes (2 1/2 hours) of moderate intensity 

activity (such as brisk walking or cycling); or 75 minutes of vigorous intensity activity (such as running)” 

or combinations thereof (Department of Health and Social Care, 2019).  

Despite social marketing campaigns like Change 4 Life, public knowledge of physical activity guidelines 

remains limited. Surveys in 2007 and 2013 showed only 11-18% of respondents had accurate 

knowledge of the guidelines (Knox et al., 2013). There is a social gradient in awareness, with older men 

and those with lower education being less likely to know the guidelines. The authors suggest that 

inconsistent messages from various campaigns may have led to confusion and misinformation. 
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Health Economic Evaluation 

A health economic evaluation refers to a study that estimates the incremental costs and health 

outcomes of one or more interventions relative to another, often the current strategy (Drummond et al. 

2015; Briggs et al. 2006). There are several different types of economic evaluations, the most used 

being cost-effectiveness analysis (CEA), cost-utility analysis (CUA), and cost-benefit analysis (CBA). A 

CEA compares the incremental costs and health effects of an intervention in a common unit, for 

example: hospital admissions avoided, symptom free days, or cases of a disease avoided. A CUA is a 

subset of CEA, using a generic outcome measure, such as quality-adjusted life years (QALYs) or 

disability-adjusted life years (DALYs) which combine duration and health-related quality of life (utility) 

into a single index. While this allows for direct comparison across outcomes, the indices are typically 

more difficult to estimate than the simple common unit. In both cases, an intervention’s incremental cost 

per outcome metric, the additional cost per unit of the outcome relative to the next best intervention, is 

compared to the willingness to pay (WTP) threshold of the decision-maker. Where an intervention 

provides incremental health outcomes at a cost below an acceptable threshold, which in theory is 

determined by the opportunity cost in terms of activities displaced by making additional funding available 

for the intervention, the intervention will be determined to be ‘cost-effective’.  

CBA is an extension of CEA and CUA, which converts both incremental costs and health outcomes into 

monetary values, enabling a direct comparison between the incremental costs and benefits of health-

related interventions with other  interventions (e.g., in education or transport). However, this creates an 

additional challenge of explicitly determining an appropriate monetary value for health outcomes, 

including the duration and quality of human life, at the modelling stage, rather than at the decision stage 

as with threshold analysis used for CEA and CUA. 

Since data is often limited and many costs and outcomes accrue in the future, health economic 

evaluations often require the development of a decision model. A health economic decision model is a 

computational abstraction of the real world designed to provide an estimate of the outcomes achieved 

by different courses of action. This computational model, typically created using computer software, is 

generally a simplification of a conceptual model, a qualitative summary of human understanding of real-

world systems. Its primary purpose is typically to predict the outcome from different courses of action 

and/or to incorporate preference weights or valuations for different trade-offs, to inform decision-making 

processes relating to health.  

The extent to which a model attempts to capture the nuances of the real world can vary significantly.  A 

simple computational model might involve a trade-off between two courses of action, each of which 

have a probability of success and failure and a corresponding one-time payoff, for which the expected 

values could be calculated with simple mental arithmetic. A sophisticated computational model might 

capture the dynamic transmission of an infectious disease, incorporating factors such as contact 

patterns, spatial distribution, and the effects of vaccination and mitigation measures and may 
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summarise the costs and benefits of different interventions using elicited societal preferences for 

different outcomes.   

However, using models to inform policy has many potential limitations. Firstly, a model is limited by the 

extent to which its parameter and data inputs accurately reflect the real world. Many inputs to a model 

will be uncertain, which when combined can result in considerable uncertainty in its predictions. 

Sensitivity analysis can help identify the potential impact of uncertainty in parameters for which the 

modeller is conscious of this uncertainty (known unknowns), but it cannot eliminate it. Moreover, the 

implications of overconfidence in the presence of unknown unknowns can be substantial, for example 

where data used to inform the model indicates relative certainty because of biases in the wider literature.  

By their nature, models simplify the real world, meaning that their structure may not fully capture the 

intricacies of the system that they are trying to better understand, for example a healthcare system or 

population. This can limit their ability to provide reliable estimates of the effect of interventions on health 

outcomes and costs. This is often the case in systems which involve complex interactions, nonlinear 

relationships, and feedback loops (Breeze et al., 2023). These systems are characterized by a high 

degree of uncertainty, dynamic changes, and interconnected factors that can be challenging to model 

accurately. Consequently, the limitations in the model's structure may lead to incomplete or even 

misleading insights and make it difficult to understand the external validity of the model, resulting in 

limited external validity in other contexts outside of the primary decision, for example when applied in 

different countries of for different groups within society.  

Finally, there are many cases that computational models cannot, in themselves, provide decision-

makers with a dominant decision, one in which one course of action results in the most positive outcome 

for every consideration. As a result, decision-makers still need to weigh the trade-offs between different 

outcomes or, provide a quantitative value for the trade-off to be incorporated explicitly in the model. 

This is often very difficult to elicit explicitly from decision-makers, as was particularly marked in decisions 

by governments worldwide on how best to respond to the COVID-19 pandemic. 

Nevertheless, models can provide valuable insights to inform policy decisions, so long as all 

assumptions, structural motivations, and outcome uncertainties are clearly communicated, and results 

are interpreted with caution. At very least, they can provide a transparent means by which decision 

makers can clearly articulate the logic behind specific courses of action. 

The application of health economic evaluations (and models) to public health, however, is still relatively 

new and many challenges exist, including a less formal modelling framework compared to the 

evaluation of pharmaceutical products and the absence of randomised controlled trials (Squires et al. 

2016b). As a result, health economic modellers working on economic evaluations of physical activity 

interventions have considerable flexibility in model design and must make a series of structural 

assumptions that carefully balance the external validity of the model with its ease of use and ability to 

inform decision-making (usability). Understanding the impact of these structural assumptions is crucial 
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for promoting good practice in health economic evaluations of physical activity models and for effective 

resource allocation in the long term.  

What is external validity? 

A model’s validity refers to the extent to which it accurately reflects the real world, or phenomenon it is 

intended to simulate . A ‘valid’ model should produce reliable predictions about the real-world system it 

is trying to simplify. To achieve this, it will generally have a structure, set of assumptions and parameter 

inputs based upon the best available understanding of the world (Drummond et al., 2015; Briggs et al. 

2006). 

There are different aspects of model validity, but the most often considered include face validity, internal 

validity, and external validity. Face validity typically refers to a subjective assessment of whether a 

model accurately captures the important components of the system it is trying to simplify. Internal validity 

describes the extent to which a model ‘makes sense’ in and of itself, matching the understanding and 

intentions of its creator. For example, a model of disease progression would not be internally valid if it 

did not closely match that observed during the clinical trial from which it was informed. External validity 

refers to the model's generalizability and applicability to different populations or settings beyond the 

specific conditions for which it was initially developed. For example, a model may accurately predict 

health outcomes during the clinical trial for those included in the trial but not in the years following a trial 

or for a different group of people. It is external validity that is generally of greatest concern for decision-

makers, and that is the focus of much of this thesis. 

Assessing validity is important to ensure that the model produces results that can be relied upon to help 

inform decisions (McCabe & Dixon, 2000). However, since health economic models are typically 

necessary due to limitations in observed data, it can be challenging to assess their external validity 

quantitatively. However, it is possible to assess the credibility of both the internal mechanics of models 

against the research community’s conceptual understanding of relationships observed in the real world 

(face validity). It is possible to review the model for error in calculations and internal logic (model code 

review). It is also possible to compare the results of the model to the results of other models trying to 

solve the same decision problem and understanding reasons for differences (double coding or 

benchmarking). In some cases, for example in retrospective studies, or for parts of the model for which 

there is good data, the performance of the model can be assessed quantitatively against observed 

outcomes (cross-validation). The thesis discusses the external validity of existing health economic 

evaluations of physical activity interventions in Chapter 2, while Chapters 3-6 focus on methods for 

improving external validity. 

Establishing model validity is crucial for building confidence in the model's results. As a result, the 

impact of a model on decision-making is highly dependent on its perceived external validity. However, 

another characteristic of models which effect their impact on decision-making is their usability. 
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What is usability? 

In the context of this thesis, usability refers to the extent to which the model improves the understanding 

of the decision problem to effectively inform a decision. Usability is important to ensure that decision 

makers can understand the implications of their resource allocation decisions. A model is more usable 

if it is accessible, transparent, up to date, flexible, and able to accommodate different scenarios and 

assumptions, well documented, simple to understand, and provides the information required by the 

decision maker. Chapters 7 and 8 focus on ways to improve the usability of health economic models, 

including strategies for making models more accessible, transparent, and adaptable. 

The following chapter reviews the methods used in health economic evaluations, and subsequent 

chapters of this thesis test the effects of some of these assumptions on key outcomes, while considering 

the trade-off between external validity and the usability of the model. 
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Chapter 2. Scoping review of health economic 

evaluations of physical activity interventions 

Introduction 

The aim of this scoping review is to assess the methods typically used in economic evaluations of 

physical activity interventions and to identify limitations and key assumptions to inform the development 

of a new model with greater external validity. In this context the external validity of a model is the extent 

to which the model captures our best understanding of the mechanics of the decision problem in the 

real world.  

The review was originally undertaken in August 2017, but an additional section at the end of the chapter 

provides an update for the period from August 2017 to January 2023. 

This review is divided into two parts. The first part focuses on economic evaluations that were conducted 

to inform the guidance issued by the National Institute for Health and Care Excellence (NICE) in 

England. NICE guidance is widely used by the National Health Service, Public Health, and local 

authorities to make decisions, and it is also referenced by other countries. Economic evidence plays a 

crucial role in the NICE decision-making process (Dakin et al., 2015; Tappenden et al., 2007), therefore, 

the methodology employed in these economic evaluations is expected to significantly influence NICE 

guidance and subsequent decision-making. 

The second part of this review expands to examine economic evaluations published in peer-reviewed 

journals to determine if there are any advancements in the literature that have not yet been incorporated 

into NICE submissions. Throughout the review, there is a specific emphasis on evaluations that 

primarily focus on children and adolescents, to determine if there are any challenges unique to 

evaluating the economic impact of physical activity interventions for this population. 

This review focuses on published economic evaluations and should not be considered an exhaustive 

critique of all evaluations that have been conducted. Many economic evaluations remain unpublished, 

particularly those carried out by consultancy firms that are not affiliated with a university. 

NICE Physical Activity Models 

Methods 

The focus of this section of the review is restricted to NICE public health physical activity models 

published in the last 10 years (2007 to 2017). To identify relevant NICE guidance, two searches were 
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conducted. The first search was within NICE's online Physical Activity Pathway directory  

(https://www.nice.org.uk/guidance/lifestyle-and-wellbeing/physical-activity), and the second search was 

in the NICE full Guidance and Advice list (https://www.nice.org.uk/guidance/published) using the key 

terms "physical activity", "exercise", and "active travel". For each physical activity guidance identified, 

the evidence section was examined, and the related economic report was retrieved. During the review 

of each economic report, any references to other NICE guidance were followed up using a snowball 

approach to ensure that no guidance was missed. Any relevant reviews discovered during the snowball 

approach were added to the review of the published literature (Part 2). A figure of the search strategy 

can be seen below. 

Figure 1 NICE Physical Activity Model Search Strategy Flow Diagram 

 

For each economic report a data extraction form (see supplementary material for form row titles) was 

used to ensure consistency in the review. The data extraction form was based on a combination of the 

Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist (Husereau et al., 

2013), a review of public health models (Squires et al., 2016a), and several items which emerged from 

the economic reports. After all economic reports were reviewed, the reports were reviewed again in 

reverse order to ensure no bias emerged from ordering. 
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Results 

There were 65 Public Health guidelines published by NICE as of 11/10/2017. Of those guidelines, 6 

were included within NICE’s ‘Physical Activity Pathway’ and 7 included the words ‘Physical Activity’, 

‘Exercise’ or ‘Active Travel’. Six of the guidelines were duplicates, the additional guideline in the second 

search compared many interventions targeted at improving mental health of over 65s, many of which 

were not related to physical activity, and as such was excluded from the review (Windle et al. 2007). 

The remaining 6 guidelines relate directly to physical activity (Table 3 below), covering different areas 

and populations. 

Table 3 NICE Public Health Guidance for Physical Activity Interventions 

ID # Name Author 

PH13 Physical Activity in the Workplace Bending et al. (2008) 

PH17 Physical Activity for Children and Young People    Fordham & Barton (2009) 

PH44 Physical Activity: Brief Advice for Adults in Primary Care Anokye et al. (2012) 

PH41 Physical Activity: Walking and Cycling Brennan et al. (2012) 

PH54 Physical Activity: Exercise Referral Schemes Campbell et al. (2013) 

PH8 Physical Activity and the Environment   Love-Koh & Taylor (2017) 

Model topics included: individual level interventions (PH44, PH54), community interventions (PH17, 

PH41, PH8) and workplace-based interventions (PH13). At the time of the review, there was no NICE 

model that evaluated school-based interventions. The published guidelines were developed by a 

committee at NICE, which analysed the results of an economic model for each decision problem. This 

section describes each model, and the discussion section that follows analyses the key similarities and 

differences among them. 

Bending et al. (2008)  

In their paper, Bending et al. performed an economic analysis of four workplace interventions aimed at 

promoting physical activity among sedentary adults. These interventions included: light-touch 

counselling, more extensive counselling, a walking programme and a fitness programme. The authors 

calculated the incremental cost-effectiveness ratios (ICERs) by comparing the cost and benefits of each 

intervention to a "do-nothing" scenario with zero costs and benefits. No incremental analysis was 

performed to compare the interventions. 

The authors estimated the ICERs using parameters from four separate studies by Østerås et al. (2006), 

Aittasalo et al. (2004), Chyou et al. (2006), and Purath et al. (2004). They used a cohort model based 

on data from the Health Survey for England 2004 (HSE, 2004) to simulate the risk reductions of three 

conditions: CHD, stroke, and type 2 diabetes, based on being in one of five physical activity categories. 
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The model does not consider changing levels of physical activity over the life course or the decay of 

intervention effects, instead assuming that “physical activity levels are maintained over a period 

sufficient to ensure that the health benefits associated with that level of activity are attained” (p.6). There 

is no consideration of sub-group effects or of impact on inequalities in health outcomes. 

The authors also included the impact of physical activity on absenteeism in their analysis, informed by 

a single study evaluating a different fitness program over a decade earlier, leading to highly uncertain 

results. The ICERs for the workplace interventions ranged from £495.50 to £1,234.11 per Quality 

Adjusted Life Years (QALY) gained. 

Fordham & Barton (2008)  

Fordham and Barton evaluated the cost-effectiveness of four interventions aimed at enhancing physical 

activity among young people: walking buses, free swimming, dance classes, and community sports. 

The cost-effectiveness of each intervention was assessed using the incremental cost-effectiveness ratio 

(ICER), which compared the costs and benefits of each intervention to a "do-nothing" scenario with no 

costs or benefits. No incremental analysis was undertaken. 

The authors relied on the evidence of effectiveness from a NICE review for the walking bus intervention 

(NICE, 2007). For the other three interventions, the absence of sufficient effectiveness evidence 

necessitated relying on several assumptions. As a result, the estimates of increased physical activity 

are based on assumptions about displacement of other physical activity and drop-out rates derived from 

studies performed in various settings, which may not be relevant to the UK (Kingham et al. 2005). The 

costs for each intervention were estimated using policy documents.  

The evaluation employs a simplified decision tree type model, where the quality-adjusted life years 

(QALYs) improvements for each participant in an intervention are calculated by multiplying the 

additional minutes of physical activity by an estimate of "Gain of PA per minute" (approximately 0.0001 

QALYs) from Beale et al. (2012). This eliminates the requirement for a baseline population for 

comparison. Consequently, although physical activity is treated as a continuous variable in the model, 

it does not account for the non-linearity of physical activity benefits, effects on specific health conditions, 

subgroup analysis, or considerations of inequalities. The model does not include any non-health 

benefits. 

The authors acknowledge the limitations of the data and the model's reliance on numerous 

assumptions. They state that "due to the limitations of the available evidence, our analysis did not seek 

to estimate the long-term cost-effectiveness of these interventions" (p.28) and that "there is a large 

amount of uncertainty associated with these results as, due to the limitations of the evidence, it was 

necessary to make a number of unverified assumptions within the analyses" (p.2). 

The ICER for the interventions varied from £4,007.63 for the walking bus intervention to £71,456 for the 

community sports intervention, as compared to the "do nothing" scenario. However, the model failed to 
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furnish decision-makers with confidence. In issuing the final guidance for PH17, NICE noted that "There 

is virtually no evidence on the cost-effectiveness of interventions to increase children and young 

people's physical activity levels" (NICE, 2009). 

Anokye, Lord & Fox-Rushby (2012)   

Anokye, Lord & Fox-Rushby model the cost-effectiveness of brief advice to inactive adults in a 

primary care setting relative to usual care with no active intervention, from the perspective of the 

National Health Service (NHS). They use parameters from a meta-analysis of the effectiveness of 

brief advice (Pavey et al. 2011), relative risks for coronary heart disease (CHD), stroke, and Type 2 

Diabetes (Hu et al. 2007, 2005, and 2003, respectively), and costs from Boehler et al (2011). The 

study distinguishes itself from others by incorporating short-term mental health benefits of physical 

activity into the model. 

The structure of the model is based on Anokye et al. (2011). A cohort of 100,000 inactive individuals, 

not meeting the Chief Medical Officer’s guidelines, aged 33 either become active or remain inactive 

after one year. For the remaining 48 years until their death, they maintain the risks associated with this 

dichotomous physical activity status. The authors argue that modelling changes in physical activity over 

the lifetime is not necessary because epidemiological evidence is based on cohort studies that span 

long periods of time, during which physical activity status may be transient. The authors do not consider 

that individuals who become active for one year are more likely to revert to an inactive status than those 

who have been consistently active. The model does not take into account non-health benefits or equity 

considerations. 

The authors of the study make several recommendations for future research including a particular focus 

on “the nature of mental health gains (size and duration) from physical activity participation, and when 

and how they can be measured” (p44). Other recommendations include the need for better quality 

evidence of the effectiveness of physical activity interventions for subgroups and in particular on the 

decline of effectiveness over time. 

The base case estimate for the ICER was £1,730. However, the ICER was highly sensitive to the 

inclusion of short-term mental health gains. Excluding these gains increased the ICER to £27,000. 

Brennan et al. (2012) 

Brennan et al. evaluated the cost-effectiveness, measured in terms of pounds per quality-adjusted life 

year (QALY), of four interventions aimed at promoting walking and cycling in adults for transportation 

or recreation purposes. The interventions included two programs that aimed to increase the use of 

active transport, a pedometer-based program, and community-led walks (Sloman, 2009; Cobiac, 2009; 

Fordham & Barton, 2009). The primary focus was on “health economic” outcomes (Brennan et al., 2012, 

p.142), supplemented by additional analysis of the environmental and economic benefits of the 

interventions.  
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The model is an individual simulation model, CD2 in Brennan’s taxonomy (see Brennan et al., 2006), 

which treats physical activity as a continuous variable, combining estimates of increased minutes of PA 

in the population with a non-linear dose-response function between minutes of activity and all-cause 

mortality derived from ordinal estimates from Anderson (2000). The baseline population of the model 

was informed by the population aged over 16 in the Health Survey for England (HSE, 2008), and was 

used to estimate risk reductions from small increases in physical activity. The model is also the first 

NICE model to incorporate the effect of increases in one type of PA (e.g. cycling) on another (e.g. 

walking) which allows for consideration of displacement effects. 

The authors acknowledge several limitations of the model, including the assumption that risks change 

immediately (next cycle) following changes in PA behaviours. Also, while decay of effect is varied in 

sensitivity analysis (and found to be very important) over the entire range, from 0% to 100%, there is 

no sensitivity analysis of the proportion of individuals developing long-term habits independent of this 

decay. No subgroup analysis or distributional analysis was reported. A further limitation is that no 

diseases are included, only all-cause mortality is modelled, a similar limitation to other transport models 

such as the HEAT (Kahlmeier et al. 2017). 

The estimated ICERs relative to doing nothing ranged from £300 per QALY gained for Travel Smart to 

£5,000 per QALY gained for the Cycling Demonstration Towns intervention. 

Campbell et al. (2013) 

Campbell et al. conducted an economic evaluation of exercise referral programs aimed at inactive but 

healthy individuals in primary care, compared to no intervention. The evaluation built on the NICE model 

from Anokye et al. (2012) discussed above which considered the effects of exercise referral schemes 

on CHD, Stroke, and Type 2 Diabetes. The evaluation incorporates estimates of the efficacy of exercise 

referral programs estimated from a review by the same authors and incorporates updated healthcare 

costs (Campbell et al., 2013). 

The model is structured as Anokye et al. (2012). It follows a cohort of 100,000 individuals who are 

inactive at age 50 and can become active after one year if the intervention is effective. Once they adopt 

a physical activity status, they maintain the corresponding risks for the rest of their life. The model 

includes subgroup analyses for individuals with hypertension, obesity, or depression, but does not 

account for health outcome inequalities. 

The authors highlight several limitations of the model, including the assumption that the efficacy of 

physical activity interventions is uniform across the population, excluding those with depression, which 

is unlikely to be accurate. Additionally, the model treats conditions as mutually exclusive and limited to 

three, likely resulting in an underestimation of overall QALY gains. Despite its limitations, the model 

makes an important contribution to the literature by considering comorbidities and different risk ratios 
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for specific subgroups, such as those with depression and obesity. This approach has the potential to 

be expanded to a larger number of comorbidities, enhancing the validity of future models. 

However, an important contribution of the model to the development of the literature is the consideration 

of comorbidities and differences in risk ratios for specific subgroups within the model, most notably by 

depression and obesity. This method could be further developed for a substantial number of 

comorbidities to improve the validity of future models. 

The ICER for exercise referral schemes, for inactive but otherwise healthy individuals, versus ‘do 

nothing’ is estimated to be £76,276. 

Love-Koh & Taylor (2017) 

Love-Koh and Taylor undertook an economic evaluation of eight interventions aimed at improving the 

physical activity environment for the general population - evaluating each against a do-nothing scenario. 

They calculate baseline PA distributions for each age-group measured in units of metabolic-equivalent 

time (MET) from the Health Survey for England (HSE,  2014). The model employed non-linear dose-

response functions for five conditions (CHD, Stroke, Diabetes T2, Colon Cancer, and Breast Cancer) 

from Kyu et al. (2016). However, the rationale for choosing these specific conditions is not fully 

explained. The authors acknowledge the limited scope as a limitation and included mortality risk 

reduction data from Anderson et al. (2000) to provide a more comprehensive measure of health. 

The model structure was innovative and solves many of the limitations of the previous NICE models. It 

is closest to Brennan et al. (2012) in approach. After establishing a baseline distribution of PA, 

measured in METs, derived from HSE 2014, the increase in PA estimated from the eight studies were 

applied either equally across the PA distribution or unequally using a technique developed by Minton et 

al. (2013). While gender and age are included to improve the external validity of the model there is no 

separate subgroup analysis by individual characteristics other than whether individuals had limited 

mobility. Similarly, although the effect of changes in the distribution of PA increases across the PA 

spectrum on overall cost-effectiveness are modelled, there is no consideration of outcome inequity.   

The authors acknowledge multiple limitations of the model. The use of effectiveness evidence only 

allowed for estimation of the average impact of the interventions on PA, precluding subgroup analysis 

for groups other than those with limited mobility. The biggest limitation, however, is the challenge in 

estimating the decay in the effect of the interventions. The base case assumes no decay, and a 

sensitivity run was conducted where a portion of the population experienced a fixed decrease in the 

intervention effect in the first period with no further decay. Finally, the sensitivity analysis is run on a 

deterministic model rather than on the probabilistic model. 

The ICERs, compared to a do-nothing scenario, are shown to range between £1,397 for the Active 

Living Programme to £215,989 for park renovations. 
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Discussion 

Several recurring themes emerged from the review of the NICE models including: (1) heterogeneity in 

measurement/categorisation of physical activity levels, (2) lack of focus on population heterogeneity, 

(3) limited scope of models to health and narrow outcomes within health, (4) limited consideration of 

health inequalities, and (5) limited or no modelling of intervention effect decay or tracking of physical 

activity over the life course. These themes generally stem from limitations in the quality of effectiveness 

studies and data, and limitations of existing modelling structures. However, recent advancements in the 

evidence base and in computing power may result in models based on more granular data with more 

externally valid modelling structures and a better incorporation of parametric and structural uncertainty 

analysis. A discussion of the quality of effectiveness evidence, the specific limitations of the NICE 

studies, and potential solutions is included in the following sections, with recommendations shown in 

bold text.  

Limitations in the quality of effectiveness evidence, i.e. studies which measure the effect of an 

intervention on activity levels, is a recurring theme in the six physical activity models submitted to NICE. 

The effectiveness evidence for PA interventions is often based on small scale pilots which are evaluated 

with limited resources. However, even in larger scale studies in the published literature there are 

multiple limitations, including a lack of consistency in the measurement of physical activity, a lack of 

reporting differing effectiveness by subgroup, and short follow-up periods. This was highlighted explicitly 

in many of the modelling reports for example by Brennan et al. (2012) which highlights the need for 

“better quality evidence on effectiveness of physical activity”, and Love-Koh & Taylor (2017) which had 

no alternative to using four effectiveness studies which had been given a minus score by the team at 

NICE. 

Another common problem is that the definitions of physical activity (PA) used in studies evaluating the 

effects of an intervention effectiveness often differ from the definitions used in epidemiological studies. 

This mismatch makes it challenging for health economists to link intervention effectiveness to disease 

and mortality risk reduction. The use of METs obtained from questionnaires like the IPAQ Short Form 

may become the common yardstick that solves this problem. Shifts towards objective measurement of 

PA also provides a chance for researchers to standardise on a single measure or more easily convert 

between different measures. 

The available evidence often lacks consideration of confounding variables or subgroup analysis, which 

would provide insights into the cost-effectiveness for different populations and the impact of physical 

activity (PA) interventions on inequalities. As noted by Bending et al. (2008), "there is a lack of available 

evidence in the form of long-term natural history studies of PA interventions to understand how 

compliance may be influenced by factors such as age, lifestyle, profession, etc." (p.16). Campbell et al. 

(2013) aimed to analyse more subgroups, but "subgroup-specific effectiveness data were only available 

for the depression subgroup" (p.118). They also highlighted "limitations in the clinical effectiveness 

evidence base" (p.10). 
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Additionally, the limited follow-up periods in effectiveness studies result in the need to estimate long-

term projections from brief periods, often no longer than 1 year. This leads to either significant 

uncertainty in the model results or to model assumptions that significantly impact the results but are 

based on limited evidence. 

Effectiveness studies could be of better use to economic modellers if they: used standardised 
measurements of physical activity, increased sample size and included subgroups and equity 
effects, and increased follow up periods to provide more certainty in projecting long term 
effects.  Modellers could provide more detail as to appropriate subgroups, length of studies, run 
sensitivities around intervention effect decays, and apply pressure on the community to 
standardise measurements. 

Theme 1. Heterogeneity in measurement/categorisation of physical activity levels. 

Table 4 summarises the form and units of measurement for the physical activity (PA) variable in the six 

NICE models. Three models (Bending et al., Anokye et al., and Campbell et al.) use a binary variable 

to describe PA, while the remaining three (Fordham & Barton, Brennan et al., Love-Koh & Taylor) treat 

PA as a continuous variable. Only the most recent model by Love-Koh & Taylor uses METs to measure 

PA, whereas earlier continuous models (Brennan et al. and Fordham & Barton) used a simpler measure 

of minutes of PA to calculate QALYs. 

Table 4 Choice of units in six NICE commissioned cost-effectiveness models, 2008-2017 

Model Type of Model Type of variable Units 

Fordham & Barton (2008) Decision Tree Continuous Minutes of PA 

Bending et al. (2008) Cohort Categorical Active/Sedentary 

Brennan et al. (2012) Individual Continuous Minutes of PA 

Anokye et al. (2012) Cohort Dichotomous Active/Inactive 

Campbell et al. (2013) Cohort Dichotomous Active/Inactive 

Love-Koh & Taylor (2017) Cohort Continuous METs 

Anokye et al. (2012) stated that “in agreement with NICE, the binary outcome had to be used because 

of a lack of effectiveness data on people exercising below or above the threshold” (p.14). Their model 

uses a binary physical activity variable whereby individuals are described as either inactive or active, 

where being active is defined by the authors as meeting or exceeding the government target of 150 

minutes of at least moderate intensive physical activity or 75 minutes of vigorous activity. Bending et al. 

(2008) treat PA as a simple dichotomous variable, with individuals being described as either sedentary 

or active. All individuals enter the model as sedentary and become active with some probability P(a). 

Once categorised as ‘active’, individuals have an immediate reduction in their risk of CHD, Stoke and 

Diabetes compared to sedentary individuals. Campbell et al. (2013) treat physical activity as a 
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dichotomous variable, with individuals described as either active or inactive and are assigned risks for 

CHD, Stroke and Diabetes upon this basis. The authors argue that since large scale cohort studies 

have been undertaken linking activity level at baseline to long term risks, changes in PA levels over the 

life-course are already accounted for. 

Fordham & Barton (2008) use the findings of Beale et al. (2012) linking PA to health benefit to estimate 

the QALY gain associated with an increase in physical activity. Beale et al. calculated that 6 hours of 

additional PA per year equates to a QALY gain of 0.0026692. Fordham & Barton make several 

assumptions, 1) that the distribution of this additional QALY gain across the year does not matter, 2) 

that the health benefit from additional PA is homogenous between groups, 3) that the health benefit is 

independent of baseline activity levels, 4) that intensity of PA does not matter 5) That the benefits from 

PA are homogenous over the life-course. Also, by linking PA directly to QALYs, ignoring specific 

conditions, the authors are unable to estimate cost savings associated with treating various diseases 

or describe the mechanisms via which their benefit estimate is derived.  

Brennan et al. (2012) treat physical activity as a continuous variable, using a simple measure of minutes 

of PA per week derived from the HSE (2008). The authors estimated the effect of various interventions 

on the quantity of walking, cycling and driving given an individual’s access to vehicles and their working 

status. This generated an increase in overall minutes of PA which was combined with a modelled 

continuous risk function from Anderson (2000), to generate a health benefit in life expectancy, deaths 

and QALYs. Love-Koh & Taylor (2017) is the first to treat PA as a continuous variable measured in 

METs. This is important because it ensures that intensity of PA is considered, consistent with the 

findings of the literature. This was made possible by a meta-analysis published by Kyu et al. in 2016 

which estimated the relationship between METs/week and the relative risk of five different PA related 

diseases: Type 2 Diabetes, Stroke, CHD, Colon Cancer and Breast Cancer. This creates a far more 

detailed picture of the health benefits of physical activity for these diseases, although future models 

could improve upon this by including other diseases such as mental health conditions which are 

increasingly prevalent and have been linked to PA. The primary limitation with this method is that many 

effectiveness studies do not yet provide this granularity of data, and therefore increases in PA are 

provided as a simple average MET increase for the entire population, which means that the 

methodological improvement yields very little increase in the overall quality of the model. 

Physical activity should ideally be modelled as a continuous variable in models, ideally in METs, 
to align with the epidemiological evidence indicating that health benefits of physical activity 
experience non-linear diminishing returns and that “some is good, more is better” (Department 
of Health and Social Care, 2019). 

Theme 2. Lack of focus on population heterogeneity. 

The six NICE models had diverse structures, resulting in varying base populations. Table 5 lists the 

model type, base population, and population charactersitics in each model. Four models (Bending et 
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al., Anokye et al., Campbell et al., Love-Koh & Taylor) were cohort models, one was a basic decision 

tree (Fordham & Barton), and one was an individual simulation model (Brennan et al.). 

Table 5 Base Population used in the 6 NICE Physical Activity Models 

Model Type Base Population Variables Subgroups Source 

Fordham & 
Barton (2008) 

Decision 
Tree 

Simply number in 
each intervention. 

None. None N/A 

Bending et al. 
(2008) 

Cohort 1,000 sedentary 
individuals aged 40-
65. 

Age, prevalence of 
smoking, systolic blood 
pressure, cholesterol,  
BMI, waist 
circumference. 

None HSE 
(2004) 

Brennan et al. 
(2012) 

Individual HSE (2008) 
population of 22,623 
people. 

HSE:  Age, sex, work 
status, car access, 
minutes active. 
NTS: Trips, Cycling, 
Walking, driving (by 
purpose). 

None HSE 
(2008) 
NTS 
(2002-
2008) 

Anokye et al. 
(2012) 

Cohort 100,000 inactive but 
healthy individuals 
aged 33. 

Active / Inactive. None N/A 

Campbell et al. 
(2013) 

Cohort 100,000 inactive but 
healthy individuals 
aged 50. 

Active / Inactive Depression, 
Obesity, 
Hypertensive 

N/A 

Love-Koh & 
Taylor (2017) 

Cohort (# unspecified) based 
on HSE (2014) PA 
and age distribution. 

Age, Gender, METs. Limited Mobility HSE 
(2014) 

 

Cohort Models 

The base populations in the cohort models vary. For example, Anokye et al. (2012) and Campbell et al. 

(2013) start with 100,000 inactive individuals aged 33, and 50 respectively whereas the Bending et al. 

and Love-Koh & Taylor models start with a population of mixed age. Some models include additional 

variables besides age and physical activity status to estimate risk more accurately. Bending et al. 

includes sex, smoking prevalence, blood pressure, cholesterol, Body Mass Index, waist circumference, 

and blood pressure medication usage, while Love-Koh & Taylor only includes gender. Anokye et al. and 

Campbell et al. do not include any other variables. Anokye et al. recommends that future research 

should develop a “population model that accounts for a range of patient (and potential provider) 

characteristics and is able to consider, more directly, information from infrastructure-based interventions 

that influence access to services” (p.44). 

There was also variation in the subgroups analysed. The Anokye et al. and Bending et al. models do 

not include any analysis of subgroups. Campbell et al. obtained different risk ratios from the literature 
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for those with hypertension, obesity and depression, and distinguished between effectiveness for those 

with depression, and undertook subgroup analysis for the three sub-groups. Love-Koh & Taylor 

undertakes subgroup analysis for those with limited mobility. 

The Fordham & Barton study was the simplest. The base population used is simply the number of 

children who undertook the intervention. There were no other variables incorporated other than the 

number of participants, since the benefit of the intervention was assumed to be homogenous for all 

individuals. There is also no consideration of subgroups or heterogeneity of effect in the population. 

Individual/Decision Tree Models 

Brennan et al. (year) used data from the Health Survey for England (HSE) 2008 to create a 

representative sample of the general population aged over 16. They utilised a zero-inflated binomial 

regression model that incorporated variables from HSE (such as sex, work status, and car access) and 

information from the National Travel Survey (NTS) to estimate the impact of changes in walking or 

cycling on physical activity levels. This approach allowed for the consideration of activity displacement 

and provided more accurate net PA gain estimations. However, the model was limited by the lack of 

subgroup data from the four effectiveness studies and could not perform subgroup analysis. If future 

effectiveness studies produce better data, the model's flexibility to measure heterogeneity could 

improve as the base population is nationally representative and includes multiple subgroups (such as 

ethnicity). In conclusion, the individual level model offers more flexibility in measurement of 

heterogeneity compared to Markovian cohort models. 

Economic evaluations should include a consideration of why the baseline population was 
chosen, and whether it is representative of the population that is likely to be affected by the 
intervention. Using a nationally representative survey, or a subset of one, to determine the 
characteristics of the base population of an individual level model is a simple way of doing this 
for national policy questions. Individual level models (such as microsimulations and discrete 
event simulations) make it easier to make probabilities of future events differ by individual 
characteristics and therefore undertake subgroup analysis. 

Theme 3. Limited scope of models to health and narrow outcomes within health 

Setting the scope of a model is an important decision which can dramatically change the cost-

effectiveness of any intervention (Squires et al., 2016b; Smith & Petticrew, 2010). Setting too narrow a 

scope risks the creation of a model naïve to the broader implications of the decision, while setting too 

broad a scope can risk over-complicating the decision problem and allowing un-important factors to 

influence the decision process. Several recent review papers have recommended the inclusion of non-

health benefits of public health interventions within models (Squires et al., 2016a; Smith & Petticrew, 

2010; Weatherly et al. 2009). 
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Table 6 shows the health benefits and non-health benefits included in the six models. The models 

differed in the health conditions they included: Fordham & Barton use a simple QALY health gain 

estimate, while Brennan et al. include only all-cause mortality benefits and Bending et al., Anokye et 

al., and Campbell et al. focus on the same three core conditions (CHD, Stroke and Type 2 Diabetes), 

although Anokye et al. supplement this with short-term mental health gains. Love-Koh & Taylor extends 

the three core conditions to five, by adding breast & colon cancer, and include all-cause mortality similar 

to Brennan et al. The limited number of conditions included within the models is, to some extent, a 

symptom of the limited quality of the epidemiological evidence base. However, this evidence base is 

developing rapidly with more research being conducted into the health effects of physical activity, with 

a particular focus on mental health and a variety of cancers (Rebar et al. 2015; Mammen & Faulkner, 

2013; Moore et al., 2016). Utilising this evidence base, particularly for mental health which has higher 

incidence rates in young people compared to the other PA related conditions, may change the estimates 

of cost-effectiveness. None of the models included a consideration of the negative health effects 

positively associated with increased physical activity (e.g. injuries), although Bending et al. (2008) state 

that including injuries is “unlikely to significantly impact on model output” while Anokye, Lord & Fox-

Rushby (2012) conclude that “the evidence on injuries suggests that they are rare (Munro et al. 2004) 

and not expected to significantly affect results when considered at a population level”.  

Table 6 Health and non-health benefits included in each NICE physical activity model. 

Model Health Benefits Non-Health Benefits 

Fordham & Barton (2008) All-cause health gain None 

Bending et al. (2008) CHD, Stroke, Diabetes Reduced absenteeism 

Brennan et al. (2012) All-cause mortality Pollution, Congestion, 
Environment. 

Anokye et al. (2012) CHD, Stroke, Diabetes + ST MH Gain. None 

Campbell et al. (2013) CHD, Stroke, Diabetes None 

Love-Koh & Taylor (2017) CHD, Stroke, Diabetes, Breast & Colon 
Cancer, All-cause mortality 

None 

Whether or not the models included non-health effects of interventions was largely dependent on the 

topic and perspective taken. For example, Brennan et al.'s walking and cycling model include estimates 

of the effect of interventions on pollution, congestion, and the environment, while Bending et al.’s 

workplace intervention model includes estimates of the effect of PA interventions on labour market 

absenteeism. Given that the scope of the two models was ‘Local measures to promote walking and 

cycling as forms of travel or recreation’ and ‘An Economic Analysis of Workplace Interventions that 

Promote Physical Activity’ the inclusion of these variables is not surprising. However, none of the other 

four models attempted to estimate any non-health benefits: Anokye et al. and Campbell et al. do not 

include any mention of non-health benefits, Love-Koh & Taylor recognise that there may be additional 

benefits to reducing illness in productive members of society but don’t include this in the model, and 
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Fordham & Barton (2008) state that there is some evidence of “long-term educational gain or class-

room performance of increased physical activity” but it is not included. 

The inclusion of non-health benefits may be increasingly important for public health decision makers 

who are now more closely aligned to local authorities which have constrained resources and many non-

health related objectives (Marks et al. 2013). The development of models which demonstrate effects on 

other sectors may demonstrate the increased efficiency associated with the reallocation or sharing of 

resources between sectors. For example, a model of physical activity interventions in schools which 

demonstrated academic benefits may justify shared funding by Public Health England and the 

Department of Education. Alternatively, if the benefits of an intervention to one sector (i.e. Health to the 

Department of Health) outweigh the costs to another sector (i.e. Department of Education) there may 

be efficiency gains achieved via compensation between departments (Claxton et al., 2007) 

Physical activity models should consider including a broad range of conditions, including 
mental health conditions. Negative consequences of interventions on health should be 
considered, even if not required. Physical activity models should attempt, when appropriate, to 
consider the effect of interventions on sectors other than health, especially where inter-
departmental transfers could lead to efficient reallocation of resources. 

Theme 4. Limited consideration of health inequalities 

The Health and Social Care Act of 2012 requires the Secretary of State in England to “have regard to 

the need to reduce inequalities between the people of England with respect to the benefits that they 

can obtain from the health service”. The NHS and PHE typically focus on health outcome disparities, 

but other organisations such as Sport England may also be concerned with disparities in physical 

activity. Informed decision making is made possible by presenting decision makers with information 

regarding the balance between efficiency and equity (Cookson et al., 2017; Johri & Norheim, 2012). 

However, economic evaluations of public health interventions do not always include analysis of the 

effect of interventions on health inequities. It has been argued that this is because many of the methods 

used to model public health interventions have been borrowed from models of health technologies, in 

which ‘a QALY is a QALY is a QALY’ (Weatherly et al. 2009, Cookson et al., 2009; Squires et al. 2016b). 

None of the six PA models included within this review model the effect of PA interventions on health 

inequities (as shown in Table 7). In each case limitations in model inputs meant that this was not 

feasible; Bending et al. because the effectiveness studies did not include information on the 

characteristics of individuals who accessed the services, Fordham & Barton (2008) because their initial 

population is assumed homogeneous, and Anokye et al. and Campbell et al. don’t have a base 

population with the necessary variables. Brennan et al. (2012) briefly consider the effect of the 

intervention on inequalities, suggesting that walking and cycling interventions have the potential to 

reduce inequalities since car ownership is positively correlated with socioeconomic status and therefore 
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improved walking, cycling and public transport reduces inequalities in mobility. However, the authors 

included no quantitative analysis of intervention effectiveness at reducing inequalities. Love-Koh & 

Taylor (2017) uses a method developed by Minton et al. (2013) to vary the distribution of PA increases 

in the population, thereby considering the effect of the distribution of PA increases on overall cost 

effectiveness. However, they provide no analysis of how the interventions change existing inequities in 

health outcomes within the population studied. 

Table 7 Consideration of inequality in the NICE Physical Activity models 

Model Inequality in Physical Activity 
Levels 

Inequality in Health or 
non-Health Outcomes 

Fordham & Barton (2008) No No 

Bending et al. (2008) No No 

Brennan et al. (2012) Partial No 

Anokye et al. (2012) No No 

Campbell et al. (2013) No No 

Love-Koh & Taylor (2017) Yes No 

A recent systematic review of the equity effects of physical activity interventions targeted at children 

found that only 12% of studies considered differences in intervention effect by socioeconomic status 

(Love et al. 2017). Given that methods have recently been developed to report the effect of interventions 

on health equity quantitatively, such as distributional cost-effectiveness analysis (Asaria et al., 2016), it 

seems timely for such methods to be applied to a physical activity intervention. 

When evaluating physical activity interventions, modellers should consider whether to take into 
account disparities in health outcomes. If trade-offs between efficiency and equity exist, a more 
in-depth analysis such as distributional cost-effectiveness analysis may be necessary. Some 
decision makers may also be concerned with inequalities in physical activity for its own sake. 
By providing such information, decision making can be made more informed. 

 

Theme 5. Limited or no modelling of intervention effect decay or tracking of physical activity 

over the life course. 

The long-term cost-effectiveness of physical activity interventions is almost always dependent on the 

sustainability of behaviour change over time. This raises two important questions: 1) How is physical 

activity expected to change over the life-course, both relative to others and absolutely, in the absence 

of the intervention? And 2) How does the impact of the intervention fade over time? If physical activity 
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is expected to remain stable without the intervention and the impact of the intervention doesn't diminish, 

then evaluating the intervention's effect is more straightforward. 

Although Love-Koh and Taylor considered changes in physical activity distributions for different age-

groups, they did not take individual level variation into account. None of the other five physical activity 

models considered this aspect, instead assuming that physical activity remains relatively constant 

throughout a person's life. As such, the sensitivity of the results to this assumption has not been tested. 

Changes in PA as people age has the potential to impact both efficiency and equity of interventions. 

Interventions targeted towards groups with more stable PA trajectories may result in greater efficiency. 

Different levels of stability in PA over the life course for different sub-groups may also predict 

intervention effectiveness and influence equity of effect. Incorporating this into a model is hard, both 

from a statistical perspective but also when explaining to stakeholders but understanding it may help 

identify the optimal ages for delivering interventions. 

The treatment of the decay in intervention effectiveness is also undeveloped in the models. Bending et 

al. (2008) simply state that “In all cases it is assumed that the resulting increase in physical activity is 

maintained long enough to obtain the health benefits associated with that level of physical activity” 

(p.19) while Anokye et al. (2011) introduce the first consideration of decay of effect into a NICE PA cost 

effectiveness model, varying the length of effect between lifetime, 10 years and 1 year, a method 

replicated by Campbell et al. While the authors argue that the longitudinal evidence base incorporates 

natural decay over the life-course there is likely to be a decay of the effect of the intervention itself 

independent of PA decay over the life-course. Brennan et al. (2012) improve upon this methodology, 

creating decay rates, in percent per annum, for their continuous measure of PA. They find that the ICER 

is very sensitive to decay of effect, and therefore that “it would be sensible to monitor these factors 

during the lifetime of any intervention” (p.20). Love-Koh & Taylor (2013) applies a decay in the first year 

after the intervention for a fixed proportion of the cohort, though it is unclear what happens after this 

year. In all cases decay is assumed to be homogenous. Applying different rates of decay for subgroups 

may help improve the external validity of models and may help to better describe the distribution of 

outcomes to decision-makers who want to consider both efficiency and equity. 

Models evaluating physical activity interventions should take into account the decay of the 
intervention's impact over time alongside the changes in physical activity levels that would 
occur over time in its absence. It would be ideal if the models could account for variability in the 
decay rate among different individuals in the population. If actual data on decay rates is not 
available, effectiveness evidence should aim to provide an estimate of expected decay that can 
be used in the models. 

Conclusion 

Physical activity models developed for NICE improved between 2008 and 2017 as the intervention 

effectiveness and epidemiological evidence improved. The movement away from PA as a binary 
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variable, towards continuous measures of physical activity, has increased the precision with which 

models can estimate gains in population health from interventions which have small but significant 

impacts on the distribution of activity in the population. The models have developed over time to  

account for a broader range of diseases alongside all-cause mortality. However, there is relatively little 

consideration of effects on mental health despite a rapidly growing epidemiological evidence base in 

this area.  

The models differed a lot in their approach to decaying intervention effects, with some models ignoring 

the problem completely. Two of the models included a consideration of the non-health benefits and 

costs of PA interventions in sectors including: labour markets, transport, and education. While some of 

the models included subgroup analysis, there was a limited consideration of inequities in health and 

physical activity.  

The findings of this review have several implications for the development of future physical activity 

models. Firstly, models can develop the methods of Brennan et al. by treating physical activity as a 

continuous variable and incorporating displacement effects between PA physical activity types, and 

Love-Koh & Taylor by using METs as the continuous measure linking directly to specific diseases and 

all-cause mortality. Models could be developed which consider more than just the ‘big three’ physical 

activity conditions, including others such as breast and colon cancer, and crucially, mental health 

conditions. Finally, models can do more to provide decision makers with useful information on 

inequities, both in health and physical activity. 

There are several limitations of this review. Firstly, this review focused on the model structure and 

techniques, and was not concerned with accompanying evidence which may have been significant in 

the NICE decision-making process. The focus is also only on physical activity models, and many of the 

methodological limitations discussed may have been overcome by other public health risk factor 

models. There may therefore be scope for learning from economic evaluation in other areas of public 

health, for example tobacco or alcohol models. Lastly, this review only considers the six NICE 

commissioned physical activity models, and therefore the findings may not apply to economic 

evaluations undertaken in academic institutions or for other decision makers, which is the focus of the 

next section. 
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Physical Activity Models in the Academic Literature 

Background 

This section of the review focuses on a wide range of cost-effectiveness analyses of interventions aimed 

at promoting physical activity as a preventative measure. The studies were mostly conducted in western 

countries, and most of them have been published in peer-reviewed journals or via government or 

regulator reports. While a full examination of the methods used in every economic evaluation of physical 

activity is beyond the scope of this thesis, several systematic reviews have already been conducted on 

the topic. This section highlights the strengths and limitations identified in these reviews and compares 

key themes to the findings of the review of 6 economic evaluations produced for NICE. 

In August 2017, Abu-Omar et al. published a systematic review-of-reviews on the cost-effectiveness of 

physical activity interventions. The authors searched ten databases and conducted a manual search of 

grey literature sources between January 2000 and October 2015 for articles which either directly 

modelled or summarised the results of other health economic evaluations of interventions targeted at 

increasing physical activity in healthy children, adults, or older people. A total of 18 reviews met the 

inclusion criteria. While Abu-Omar et al. provided a very brief summary of the modelling method 

limitations identified in the 18 reviews, this review provides a more in-depth examination of these 

limitations. This review was originally conducted in 2017-2018 and later updated to include materials 

published from 2018 to 2023. 

Methods 

All 18 papers identified by Abu-Omar were downloaded and reviewed in the order shown in Omar-Abu 

et al., 2017, p.75. Upon second reading, data was extracted including: search strategy, 

inclusion/exclusion criteria, number of studies, methodology used (e.g. cost-effectiveness, cost-utility). 

Also extracted were any comments in the text which specified methodological weaknesses or 

methodological strengths of the economic studies. These could be specific to a single study or more 

general. These were compiled, and key themes were identified. 

Results 

The 18 reviews, as identified by Abu-Omar et al. 2017, are summarised in Table 8 below. 
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Table 8 Studies Included in the review of the academic literature 

# Author, year Type  Timeframe N
o. 

Method 

1 Laine et al. (2014) Multiple to June 2013 14 Cost effectiveness 

2 Cavill et al. (2008) Cycling and 
Walking Models 

to December 2006 16 Multiple 

3 Wolfenstetter and 
Wenig (2010) 

Physical Activity 
for Adults. 

to December 2009 15 Cost-utility & Cost-
effectiveness 

4 GC et al. (2015) Brief 
Interventions 

to August 2014 13 Multiple 

5 Campbell et al. (2015) Exercise Referral 
Schemes 

October 2009 to 
May 2013 

2 Cost-utility 

6 Pavey et al. (2011) Exercise Referral 
Schemes 

1990 to October 
2009 

7 Cost-utility & Cost-
effectiveness 

7 Williams et al. (2007) Exercise Referral 
Schemes 

to March 2007 4 Cost-utility & Cost-
effectiveness 

8 Foster et al. (2013) Remote and Web 
Interventions 

to October 2012 3 Cost-effectiveness 

9 Gorden et al. (2007) Multiple 1995 to 2005 13 Not explicitly stated 

10 Windle et al. (2010) Mental Wellbeing 
in Old Age 

1993 to February 
2007 

1 Cost-utility analysis 

11 Davis et al. (2009) Falls Prevention 1945 to July 2008 9 Cost Benefit, Cost-
Effectiveness, Cost-
Utility 

12 Balzer et al. (2012) Falls Prevention 2003 to January 
2010 

21 Multiple 

13 Wu et al. (2011) Multiple 2000 to June 2008 91 Not explicitly stated 

14 Lewis et al. (2010) Multiple 1995 to 
September 2010 

53 Multiple 

15 Muller-
Riemenschneider et al. 
(2009) 

All August 2001 to  
June 2008 

8 Multiple 

16 Garrett et al. (2011) Primary Care 
Interventions 

2002 to 2009 13 Cost-utility & Cost-
effectiveness 

17 Lehnert et al. (2012) All to June 2011 3 Cost-utility analysis 

18 Van Dongen et al. 
(2011) 

Worksite 
interventions 

to January 2011 2 Cost Benefit 
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The 18 reviews included in Abu-Omar et al.'s published study varied in terms of the number of physical 

activity studies analysed, ranging from 2 to 90, and the type of economic analysis methods used. Some 

reviews only analysed cost-effectiveness studies while others used a variety of methods. The reviews 

also differed in their scope, with some focusing on the general population while others targeted specific 

subgroups or localities. Almost all the reviews highlighted the diversity in the methods used in economic 

evaluations, which indicate a tailoring of methods for specific decisions but may also indicate a lack of 

consensus on the best methodological  approach. Despite this diversity, several common 

methodological challenges and limitations emerged from the reviews including  inconsistent outcome 

measures, lack of one way and/or probabilistic sensitivity analysis, lack of consideration of long-term 

effectiveness, and a narrow perspective. These are each outlined in more detail below.  

Differing Outcome Measures 

The use of different outcome measures in economic evaluations make comparison between findings 

difficult. Four of the reviews explicitly refer to the lack of use of QALYs as a problem (Wolfenstetter and 

Wenig, 2010; Pavey et al., 2011; Vijay CG et al., 2015; Garrett et al., 2011). Wolfenstetter and Wenig 

(2010) find that of the fifteen studies included in their review “only three studies used QALYs as an 

outcome variable, the other studies could not be compared regarding their outcomes” (p.1638). A similar 

finding is made by Garrett et al. (2011) who found that due to differences in “outcome variables between 

the studies reviewed, it is difficult to draw firm conclusions about which types of interventions are most 

cost-effective”. It is unclear why cost-utility models with QALYs as the outcome variable is not the 

standard approach, although Pavey et al. (2011) found that in one case the main limitation of a particular 

study was “the inability to convert the findings presented in the form of SF-36 scores into utility scores 

that might allow for the derivation of QALYs” (p.55). In response to this heterogeneity Vijay CG et al. 

(2015) state that what is needed is a single framework, or decision analytic model to identify the most 

cost-effective interventions. 

Lack of sensitivity analysis 

The sparsity of sensitivity analysis on uncertain variables is another regular theme, especially in reviews 

of earlier studies, many of which undertook no formal parametric or structural sensitivity analysis. Van-

Dongen et al. (2011) found that “few studies conducted a sensitivity analysis and hardly any of the 

studies reported on the uncertainty around their financial return estimates” (p.1046). However, there 

has been a general improvement over time, with more recent reviews being less likely to suggest that 

insufficient sensitivity analysis has been conducted. Lehnert (2010), for example, found that studies 

included in the review all conducted sensitivity analysis, with most including probabilistic sensitivity 

analysis. 
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Lack of long-term effectiveness data 

There is a recognition of a lack of long-term effectiveness data, with studies often being too short to 

reliably estimate long run effects of interventions (Foster et al., 2013; Garrett et al., 11; Pavey et al., 

2011). The lack of long-term effectiveness data has led to a variety of strategies used to predict long-

term effects, with the most common being a simple assumption about continued effectiveness after 1 

year accompanied with sensitivity analysis (Windle et al., 2010). The overreliance on assumptions 

spurred Pavey et al. (2011) to ask whether the simple decision-analytic approach to modelling is the 

best method. “Given that individuals’ behaviours may change over time, it may be that a more dynamic 

approach to modelling the cost-effectiveness of PA is warranted, although once again this may be 

limited by the available evidence” (p.57). 

Perspective Taken 

While few reviews mentioned the perspectives taken by studies as a weakness, it was noted in more 

than one review and is therefore mentioned here. Muller Riemenschneider et al. (2009) and Garrett et 

al. (2011) note the many different perspectives. Lehnert et al. (2012) note that many studies did not 

take a full societal perspective and missed many potential spillover effects, particularly in the education 

sector.  Van Dorgen et al. (2011) found that absenteeism was included in some cases, although 

presenteeism was harder to include in the models. While it is important to recognise that economic 

models are created for very different purposes and the use of a different perspective is not necessarily 

a limitation, the heterogeneity of the perspectives taken does limit comparison between evaluations of 

interventions. Encouraging future cost-effectiveness studies to report results from a consistent set of 

perspectives, such as a full societal perspective or an NHS perspective only, could enhance future 

comparisons. 

Discussion & Conclusion 

The 2017 review by Abu-Omar et al. identified several limitations in physical activity (PA) models. Most 

of these limitations were also noted in this review-of-reviews. One limitation identified by Abu-Omar et 

al. of the literature in aggregate, but not identified in this review of individual studies, was that individual-

level interventions are more frequently evaluated compared to population-level interventions.  

Since this review aimed to provide a more detailed analysis of the methodological limitations and 

challenges identified by the reviews, there were several limitations which were identified which were 

not included in the Abu-Omar paper or were not discussed in depth. Firstly, several reviews, including 

Laine et al. (2014) estimated the cost per unit increase in physical activity, generally measured in METs 

or minutes. This is a simpler task than attempting to estimate a cost per QALY, but this approach is 

fundamentally flawed in public health models, as explained in the steps below: 



 

50 

1)     There is a widely accepted curvilinear relationship between physical activity and health 

outcomes (Kyu et al. 2016). Therefore, the benefits of additional physical activity differ 

substantially between individuals depending on baseline activity. 

2)      There are complex biological, psychological, social, environmental, and regional 

(Bauman et al., 2012) reasons why some people are more-or-less active than others. 

Increasing the physical activity levels of those who are least active is often the most 

difficult. 

3)     Cost-effectiveness models of physical activity which evaluate average gains in physical 

activity in a population may result in allocation of resources away from interventions 

which generate the largest health gain, towards those which have the largest physical 

activity gain. 

If the aim of the decision-maker is to maximise health outcomes from physical activity, models should 

adopt a cost per QALY approach, or should attempt to report how interventions may change physical 

activity inequality. 

Decision makers who want to compare the cost-effectiveness of physical activity (PA) interventions with 

other types of interventions, such as weight loss, dietary interventions, or pharmacological interventions, 

would benefit from high-quality models that report cost per QALY as an outcome - such as those of 

Roux et al. (2008) and highlighted in the Lehnert et al. review. These central estimates should 

incorporate uncertainty and be accompanied by one way sensitivity analysis for key parameters and 

structural assumptions. It is crucial that modellers find ways to overcome the limitations of short RCTs, 

potentially through increased use of expert elicitation, a method that is currently underutilised in PA 

models. Ultimately, reaching a consensus on the most appropriate methods of modelling the long-term 

effects of PA interventions would enhance transparency and confidence in the models. 

Update of review from 2018 to 2023 

Methods 

The same process described in the review of NICE guidance in 2018 was undertaken in February 2023. 

No further economic modelling studies were identified. 

To identify whether other systematic reviews of the strengths and limitations of evaluations of physical 

activity models had been undertaken since 2018 the following approach was taken: (1) All 116 papers 

citing Abu-Omar to 1st Jan 2023 were assessed for suitability. (2) A Google Scholar search was 

undertaken using the combined combinations of key terms ‘cost-effectiveness’, ‘physical activity’ 

‘modelling’. Paper titles and abstracts were scanned with the requirement that the papers were written 

in English, and the focus of the paper was on the modelling methods used to estimate the cost-
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effectiveness of interventions which aim to increase physical activity. The references of all papers 

identified were scanned in a snowball approach. Papers were read in chronological order. 

Results 

No papers from the 116 papers citing Abu-Omar et al. 2017 met the criteria. Three papers were 

identified by the Google Scholar search (Hazel et al. 2021; Candio et al., 2020; Cochrane et al. 2019). 

The references of these papers and the papers citing them were reviewed, but none were deemed to 

match the criteria. 

Cochrane et al. (2019) finds several challenges for health economic models of physical activity 

interventions: attributing effects given short follow up, inconsistencies in types of measured outcomes, 

inconsistent perspectives chosen and a lack of consideration of equity. They find that overall, the lack 

of long-term follow up and limitations in methods used to estimate long-term effects of interventions 

mean that “Curative interventions that rescue people from very poor health to better health [in the short 

term] will continue to be favoured, even if they are less cost-effective overall.” (p163) since “Any future 

reduction in incidence of NCD and premature mortality, attributable to physical activity and sedentary 

behaviour interventions, is unlikely to manifest until decades after the intervention has taken place”. 

The authors argue that while the incorporation of long-term effects is hampered by availability of data, 

it is the modeller’s “time and skills” that are more often the limiting factor, encouraging the development 

of “novel modelling skills” and citing modelling studies that have included estimates of long-term costs 

and benefits as best practice (Campbell et al. 2015; Anokye et al. 2012). Like the review described 

above, the authors also identify that the diverse range of perspectives, outcomes, and intersectoral 

effects make comparisons between studies difficult. 

Candio et al. (2020) aimed to “provide an overview and critique of modelling approaches and key 

structural assumptions used in applied studies to estimate the impact of physical activity on population 

health.” (p. 1155) and come to similar conclusions to my review above conducted to 2018.  The authors 

highlight two core limitations of models as being particularly important: (1) “assumption of no decay of 

intervention effect over time is unrealistic”, (2) “health equity concerns have not been incorporated into 

the models” and suggest that (3) “development of a reference model could help reduce variability in 

modelling approaches”. 

The first of these has been discussed above, the authors found that “The majority of models (15/25) 

assumed implicitly or explicitly that the intervention effect would not decay after the intervention ended 

(i.e. beyond follow-up assessment period)” and that “only a minority of models explored the impact of 

variations to these base-case structural assumptions” (p. 1157). Baseline PA was also assumed to be 

stable in 15 of 25 studies with horizons > 30 years, meaning long term trajectories of PA had not been 

considered.  
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For the second, while many studies did run sensitivity analysis for specific groups in society, “None of 

the reviewed economic models incorporated concerns relating to the distributional impact of the 

intervention formally into the economic evaluation” (p. 1158). 

The third issue is not a limitation of any given model, but a reflection that heterogeneity in modelling 

methods may indicate that suboptimal modelling techniques are being used. The authors state that: 

“While acknowledging that the trade-off between simplicity and internal validity still represents an 

unresolved challenge for modellers, this literature is predominantly characterised by modelling 

approaches that may not adequately address the complexities associated with the PA behaviour – 

population health process they were intended to represent.” (p1158). 

The author suggests five minimum modelling standards, summarised here: 

1) Modelling of downstream disease risks based on epidemiological evidence. 

2) Accommodating for the dynamics of PA, using natural trends as the baseline for comparison. 

3) Making explicit assumptions around lags and decay of intervention effect and including scenario 

analysis. 

4) Accounting for differences in effects, risks and outcomes due to the characteristics of 

individuals. 

5) Better incorporation of uncertainty with a more structured assessment of structural 

assumptions. 

These standards serve as a useful checklist for future model development, and also help to develop 

novel modelling skills as recommended by Cochrane et al. (2019).  

The most recent paper, by Hazel et al. (2021), reviewed the methods used to estimate the cost-

effectiveness of behaviour change communication apps. The review was limited by a small number of 

studies (n = 6), and the limited methods utilised by those studies. One challenge flowed from a short 

follow up of trials, meaning that it was hard to identify any impact in terms of QALYs (the predominant 

outcome measure). As a result, there were some attempts to either value intermediate outcomes or to 

use intermediate outcomes as links to long term outcomes which can be measured using QALYs (as 

recommended by Candio et al. 2020). The former results in a plethora of outcomes that make 

comparison between studies hard (as identified by Cochrane et al. 2019), whereas the latter results in 

considerable uncertainty and methodological challenges in long term extrapolation. 

Discussion & Conclusion 

Many of the limitations identified in the review of NICE studies and the previous literature remain 

limitations in the three studies identified in this update. In particular, Candio et al. 2020 find many of the 

same limitations and make many of the same recommendations, albeit with less focus specifically on 

models developed for NICE and with access to some newer publications.  
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Implications and main findings of review 

The review of NICE guidelines and related literature revealed several shortcomings in current models 

for increasing population physical activity. The most significant limitations are: 

1) The need for a single measure of physical activity to better align surveillance, epidemiological, 

and health economic modelling studies. 

2) The need to consider physical activity as a continuous variable to reflect non-linear benefits 

and small changes in physical activity distributions at a population level. 

3) The need to model a broader range of diseases. 

4) The need for modelling methods to estimate the long-term costs and benefits of interventions, 

and therefore to include estimates of long-term physical activity trajectories in the absence of 

intervention. 

5) The importance of estimating the decay in the effect of interventions over time. 

6) The need to consider differences in outcomes among subgroups, and distributional effects 

across society. 

7) The need for probabilistic and sensitivity analysis of key parameters and structural assumptions 

in models. 

8) The importance of fluctuations in physical activity over the lifespan due to seasonality and key 

life events. 

9) The need to better incorporate competing risks and feedback loops in models, using calibration 

methods to account for disease dependencies. 

All evaluations took the form of a written report, with varying levels of sensitivity analysis, and none 

referred to a user-interface or modelling tool which could be used by decision makers (although this 

does not discount the probability of there being one). In addition, none of the models described were 

made open source, and therefore it was difficult to assess the overall usability of the models. 

The next sections of this thesis aim to further investigate how to adapt existing models and build new 

ones to improve usability and external validity and navigate trade-offs where they exist.  
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Part 2 - Adapting an existing model - 

case study of the WHO HEAT model 
The aphorism 'All models are wrong, but some are useful,' commonly attributed to George Box, is 

accepted in the field of health economics. However, there is often a trade-off between usability and 

external validity in health economic models.  On the one hand, a model with high external validity may 

be more reliable for making decisions and predicting outcomes, but it may also be more complex and 

difficult to use, requiring specialised training or expertise to understand and apply. On the other hand, 

a model with high usability may be easier to understand and apply, but it may also have lower external 

validity, leading to potentially flawed or misleading conclusions. Striking the right balance between 

usability and external validity is an important consideration in the development and application of health 

economic models. As noted in a review of the scientific response to the pandemic, “A model that focuses 

on the key parameters is a lot more useful than a more complicated one that tries to bring in everything” 

(House of Commons, 2021;  p.43). 

This section of the thesis uses the Health Economic Assessment Tool (HEAT) for walking and cycling  

as an example of a model which is particularly simple but has proven to be incredibly useful (Kahlmeier 

et al., 2020). The HEAT is a tool developed by the World Health Organization (WHO) to estimate the 

health and economic benefits of promoting active transportation, such as walking and cycling. HEAT 

has been used in a number of countries around the world to assess the potential benefits of investing 

in infrastructure and programs to promote walking and cycling (Brown et al., 2016; Gao et al. 2017; 

Genter et al. 2018). In the UK, HEAT has been used to assess the potential benefits of investing in 

walking and cycling infrastructure in England, Scotland and Ireland (Deenihan & Caulfield, 2014; 

Sustrans, 2014). 

The tool allows policymakers and planners to calculate the potential cost-effectiveness of investments 

in infrastructure and programs to promote active transportation. The HEAT uses a mathematical model, 

programmed in the R software environment and with a web-based user-interface (since Version 4.0), 

to estimate the number of deaths that could be prevented, and the economic value of those lives saved 

based on the amount of walking and cycling that is expected to result from a particular intervention. The 

tool also estimates the reduction in greenhouse gas emissions and air pollution, and increased crash 

risk associated with active transportation.  

The focus of this work has been on the physical activity module of the HEAT. To use the physical activity 

module, users input data about their population, including information about age, gender, and current 

levels of physical activity (active/inactive). Users also need to input data about the intervention, including 

information about the expected increase in physical activity that it is likely to produce (in minutes of 

walking/cycling). The tool uses this data to estimate the potential deaths averted, assuming a linear 
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relationship between physical activity and all-cause mortality with a maximum relative risk reduction 

(Kahlmeier et al. 2017). It then calculates the associated societal value of averted deaths using the 

Value of a Statistical Life (VSL) (Viscusi & Aldy, 2003). 

The three chapters in this section of the thesis focus on improving the external-validity of the HEAT for 

walking and cycling, while also considering the trade-offs between usability and external-validity. The 

first chapter, published as Smith et al. 2021a, investigates the effect on net monetary benefit estimates 

of using "life-years" gained as a measure, rather than "deaths averted". The results suggest that this 

approach may improve the external validity of estimates when the intervention population age 

distribution differs from that of the general population but may also make it more difficult to explain to 

users. In the second chapter, published as Smith et al. 2022c, the current linear dose-response 

relationship between physical activity and mortality is compared to a non-linear relationship. The study 

finds that the use of a non-linear relationship leads to significantly different estimates for populations 

that are particularly inactive or active. The third chapter explores the broader implications and trade-

offs between the usability and external validity of health economic models. 

These studies were conducted during my research placement with the University of Zurich's World 

Health Organization Physical Activity Unit, and the findings and views expressed are my own and do 

not reflect those of the unit or the WHO-Europe HEAT team. 
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Chapter 3. HEAT - The Value of the Statistical Life 

Year 

This chapter contains a publication which reports the results of the first case study using the HEAT in 

which the net monetary benefit associated with reductions in mortality rates are compared with a 

valuation method which uses the value of a statistical life (current approach) and the value of a statistical 

life year (VSLY) (proposed approach). 

This article was published open access (CC BY-NC-ND 4.0) in Public Health following the requirement 

of the Wellcome Trust who financially supported this work. The conditions of the open access publishing 

allow use of the final published PDF, original submission, or accepted manuscript in this thesis 

(including in any electronic institutional repository or database). The original content has not been 

edited. All code and data has been provided open source. 

https://www.sciencedirect.com/science/article/pii/S0033350621001256  

The paper in the chapter was written with 5 co-authors: Chloe Thomas, Hazel Squires, Thomas Götschi, 

Sonja Kahlmeier and Elizabeth Goyder. Robert Smith was first author and corresponding author, 

leading the conceptualization, data curation, formal analysis, investigation, methodology, project 

administration, software, visualisation, and writing, reviewing, and editing the article. Chloe Thomas, 

Hazel Squires and Elizabeth Goyder contributed to supervision and project administration. Thomas 

Gotschi and Sonja Kahlmeier contributed to data and code provision for the current methodology. All 

authors contributed to the review and editing of the final manuscript. This work, or variations thereof, 

does not form a part of any other PhD thesis. 

https://www.sciencedirect.com/science/article/pii/S0033350621001256
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Objectives: The widely used World Health Organization (WHO) Health Economic Assessment Tool
(HEAT) for walking and cycling quantifies health impacts in terms of premature deaths avoided or caused
as a result of changes in active transport. This article attempts to assess the effect of incorporating ‘life-
years’ as an impact measure to increase the precision of the model and assess the effect on the tool's
usability.
Study design: This article is a methods paper, using simulation to estimate the effect of a methodological
change to the HEAT 4.2 physical activity module.
Methods: We use the widely used WHO HEAT for walking and cycling as a case study. HEAT currently
quantifies health impacts in terms of premature deaths avoided or caused as a result of changes in active
transport. We assess the effect of incorporating “duration of life gained” as an impact measure to increase
the precision of the model without substantially affecting usability or increasing data requirements.
Results: Compared with the existing tool (HEAT version 4.2), which values premature deaths avoided,
estimates derived by valuing life-years gained are more sensitive to the age of the population affected by
an intervention, with results for older and younger age groups being markedly different between the two
methods. This is likely to improve the precision of the tool, especially where it is applied to interventions
that affect age groups differentially. The life-years method requires additional background data (obtained
and used in this analysis) and minimal additional user inputs; however, this may also make the tool
harder to explain to users.
Conclusions: Methodological improvements in the precision of widely used tools, such as the HEAT, may
also inadvertently reduce their practical usability. It is therefore important to consider the overall impact
on the tool's value to stakeholders and explore ways of mitigating potential reductions in usability.
© 2021 The Author(s). Published by Elsevier Ltd on behalf of The Royal Society for Public Health. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

0/).

Introduction

There has been an increasing awareness of the need to
incorporate Health in All Policies (HiAP) to ensure that
nonehealth government agencies work in partnership to
incorporate considerations of health and well-being when

developing policy.1 One simple way in which HiAP is often
facilitated is through quantitative Health Impact Assessments
(HIA), simple statistical models of the world, which aim to
quantify the costs and benefits of interventions.2,3 To make HIA
easier and cheaper to implement, online tools have been
developed, which allow stakeholders to undertake their own
HIA.4,5

The WHO-Europe's Health Economic Assessment Tool (HEAT
4.2) is an example of a widely used HIA tool designed specifically
for a HiAP purpose,1 allowing decision-makers in the transport
sector to incorporate the health implications of walking and cycling
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into economic appraisals.6 The tool has been used directly by public
sector decision-makers in different locations, including Kuopio
(Finland), Parnu (Estonia), Brighton & Hove (UK), Modena (Italy),
and Viana do Castelo (Portugal), and by academics in a number of
published studies over the past two decades.7,8 One of the reasons
why the HEAT has been so popular is that it is simple and easy to
use, as one of the core principles of the HEAT is to be “as user-
friendly as possible”.6

The HEAT 4.2 has four modules: physical activity, air pollution,
crash risk, and carbon emissions.6 The physical activity module
generally accounts for most of the estimated intervention effect.4,9

Within the physical activity module, the estimated net mortality
risk change is valued using the Value of a Statistical Life (VSL), an
estimate of the societal willingness to pay for a reduction of one
statistical fatality.10 The measure is commonly used in transport
planning.11,12

Previous studies have compared the results derived by the
HEAT with other HIA tools, such as the Integrated Transport and
Health Impact Modelling Tool and Dynamic Modelling for Health
Impact Assessment.13,14 Other studies have assessed the effect of
the method used to aggregate benefits within HEAT.15 However,
these comparisons have focused on the effect of the shape of the
doseeresponse relationship between physical activity and health
outcomes13 and the choice of a static vs dynamic modeling
methodology.14 To the best of our knowledge, there are no
published studies of the effect of the health valuation method,
the valuation of lives saved vs life-years gained, on the results of
Health Impact Assessment tools for walking and cycling or
physical activity. This paper attempts to fill that gap in the
literature.

The VSLY represents society's willingness to pay for re-
ductions in fatality risk, which result in an additional statistical
life-year. When using the VSLY reductions in fatality risks,
younger populations, with greater expected life-years remain-
ing, are valued more highly than reductions in fatality risks for
older populations. When the population affected by a policy is
representative of society, valuing premature deaths averted
using the VSL and life-years saved using the VSLY are likely,
conceptually, to yield similar results. However, when the pop-
ulation is not representative, in terms of age, the two ap-
proaches are likely to yield very different results. Attempting to
value policies in response to the COVID-19 pandemic made this
particularly apparent: multiplying the number of premature
deaths averted by the VSL resulted in much higher values than
multiplying expected life-years saved by the VSLY since COVID-
19 related mortality rates rise super-linearly with age.16,17 In
this article, we argue that the same holds for the HEAT:
multiplying premature deaths averted from walking and cycling
interventions by VSL is likely to yield different results than
multiplying life-years saved by the VSLY if the distribution of
age in the intervention group does not match the age distri-
bution implicit in the selected HEAT age group.

We begin by using a simple algorithm to derive estimates of
VSLY from the VSL values used by the HEAT. We then compare the
results, for the physical activity module of the HEAT, for six hypo-
thetical scenarios using both the VSL and VSLY methods. We focus
on how a relatively simple HIA tool, the HEAT, could be adapted to
better reflect the age distribution within the active travel popula-
tion.We also discuss the potential implications of these adaptations
on the tool's usability, a core principle of the HEAT,6 and suggest
means by which the tool could remain easy to use.

All data and code (in R software environment) is provided in an
open access online repository (https://anonymous.4open.science/r/
b1ac653f-7e70-43ab-870c-f3ccc4d63914/).

Methods

Data and measures

This study relies on data used in the HEAT 4.2 and previously
described in a study by Kahlmeier et al.,6 that is, WHO country
names, country ISO3 codes, VSL estimates based on the OECD
Recommendations on Mortality Risk Valuation in Environment,
Health and Transport Policies,12 and doseeresponse relationships
between walking and cycling and mortality from a study by Kelly
et al.18 This study also makes use of two additional data sets:
population estimates and life tables for 2017 from a study by Dicker
et al.19 Table A1 in the supplementary material shows a full list of
the variables used in the analysis.

Study design

This paper is a methods paper, using simulation to estimate the
effect of a methodological change to the HEAT 4.2 physical activity
module.

Analysis

First, we estimate, for each of the 51 WHO European Region
countries included in the HEAT tool, the VSLY (in 2015 Euros). We
then go on to compare the societal value of premature deaths
averted for six scenarios when using the VSLY method, the current
HEAT method for the full adult range (VSL-1), stratified by younger
vs older adults (VSL-2), and the use of VSL using individual age
mortality risks (VSL-55).

Estimating the value of a statistical life-year
The VSL estimate used in the HEAT model is based on a meta-

analysis of stated preference studies,12 in which individuals were
asked how much they were willing to pay for a small reduction in
mortality risk. The estimates vary considerably between countries,
ranging from approximately EUR 143,000 in Tajikistan to almost
EUR 7m (2015 values) in Luxembourg. The mean age of participants
within the studies in HEAT countries was 50 years. By making the
assumptions that (1) the VSL at the age of elicitation is the value
derived from future life-years until death and (2) all years are
valued equally, it is possible to estimate the VSLYusing the equation
below. The equation inverts the equations used to calculate the VSL
in Annex 1.A1 of the OECD report published in 2012.12

VSLY ¼ VSL50P109
i¼50

Qi
a¼50PrðSÞa � 1

ð1þrÞa�50

(1)

The VSLY is equal to the VSL at age 50 years divided by the
discounted expected life-years remaining between age 50 and 109
years, the maximum age in our data. The discounted expected life-
years remaining is calculated for each age a, using the probability of
survival, Pr(S), to the next birthday, as well as the annual discount
rate, r. The VSLY for a country is greater where VSL is greater, annual
survival probabilities from 50 to 109 years are lower, or if the dis-
count rate is greater.

The Pr(S) estimates were derived from the Global Burden of
Disease Estimates19 and validated against the UN World Popula-
tion Prospects life tables.20 The discount rate, r, was set to zero
within this analysis for simplicity because different nations use
different discount rates in decision-making. The discounted
life-years remaining at each age were validated against the yll
package in R.21
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Estimating monetary benefit using the VSLY
The VSLY method estimates the value of premature deaths

averted by (1) estimating the relative risk associated with an
intervention, given increases in walking and cycling using a linear
doseeresponse function from;18 (2) estimating discounted life-
years saved, given the relative risk, population age distribution,
and baseline mortality rates by age; and (3) multiplying the esti-
mated discounted life-years saved by the VSLY estimate.

The equation is shown below:

MB¼ dLYS� VSLY (2)

Discounted life-years saved (dLYS) can be estimated by multi-
plying the absolute difference in the relative risk of death (ADRR),
estimated using a relative risk function from a study by Kelly et al.
(2014), by the age-specific mortality rates MR_i to estimate the
effect of an intervention onmortality for the population in each age
group pop_i. These changes are then multiplied by discounted ex-
pected life-years remaining dLYR_i (itself estimated from Global
Burden of Disease life tables) for each age group to give overall
discounted life-years saved.

As the absolute difference in relative risk is independent of age,
it can be factorized, giving Equation 3 (below) in the case of an
intervention affecting 20- to 74-year-olds.

dLYS¼DRR�
X74

i¼20

MRi � dLYRi � popi (3)

Inputting this back into our original equation gives:

MB¼VSLY � DRR�
X74

i¼20

MRi � dLYRi � popi (4)

where i has 55 values representing each age from 20 to 74 years.
Note that both VSLY and ADRR are constants while mortality

rate, discounted life-years remaining, and population varywith age.
This equation is not substantially more complex than the

existing HEAT method (in Equation 5 below), in which monetary
benefit is the VSL multiplied by the absolute difference in relative
risk associated with an intervention, age group mortality risk, and
the number affected.

MB¼VSL� DRR�MR20�74 � pop20�74 (5)

Comparing four methods for six hypothetical scenarios
To compare the proposed VSLY model with the current HEAT

models, we estimate the annual, per capita monetary benefit using
four different methods: (1) VSL-1 refers to the current HEAT model
with a single mortality rate for the entire population aged 20e74
years, (2) VSL-2 uses the current HEAT model with two mortality
rates based on weighted population means (walking: 20e44 and
45e74; cycling: 20e44 and 45e64), (3) VSL-55 uses the existing
HEATmodel methodology (valuing premature deaths averted using
theVSL) butwith separatemortality risk estimates for each age from
20 to 74 years, and finally, (4) the VSLY model described previously,
using individual ages as in (3) but valuing life-years saved using the
VSLYestimates derived earlier. In all cases, the discount ratewas set
to zero for ease of comparison.We use the fourmethods to estimate
the value of six hypothetical scenarios, three for walking and three
for cycling, as shown in Table 1 alongside results for France.

Results

There is considerable heterogeneity in the VSLY estimates of
WHO-Europe countries, ranging from EUR 5828 in Kyrgyzstan to

EUR 216,838 in Luxembourg, with higher values in western Europe
than in eastern Europe. A full table of the VSLY estimates derived
are provided in the supplementary material in Table A2 and are
broadly aligned with previous estimates of societal willingness to
pay for a statistical life-year.22

In the first simple scenario, an extra 10-min walking per week
for every person aged 20e74 years, the VSLY method results in
approximately 25% lower estimated benefits than VSL-1 or VSL-2
(current method with one or two age groups). The effect is not
because of more precise mortality rate estimates; the VSL method
applied to a population categorized in 1-year age bands (VSL55)
results in the same estimates to the VSL model with one and two
groups (VSL-1 and VSL-2). Rather, the different estimates for the
VSLY are due to assigning our estimates of life-years remaining to
each prevented premature death. A full set of results are available in
the supplementary material: Table A3 for the three walking sce-
narios (Scenarios 1, 2, and 3) and Table A4 for the three cycling
scenarios (Scenarios 2, 4, and 6).

Fig. 1 displays the results from Scenario 1 graphically for all 51
countries. The current ‘best’ HEAT method, the VSL with two age
groups (VSL-2), is shown on the x-axis as the referencemethod, and
all other methods are depicted in a color-coded scatter plot with a
45-degree line used to depict equity. As these assessments cover
the entire HEAT age range (20e74 years), the VSL-1 and VSL-55
estimates are identical to the VSL-2 estimates and therefore lie
(jittered) on the 45-degree line. The monetary benefits estimated
by the VSLY (blue) are around one-third lower than those estimated
by the current VSL-2 model (black line). This is because those with
the greatest mortality rates (older people) also have the lowest
discounted life-years remaining, thereby reducing the effect that
older people have on the mean.

Fig. 1 shows the estimates generated by increased activity in the
population aged 20e74 years. However, this masks differences in
estimates for the two current HEAT age groups (20e44 and 45e74
years). Fig. 2 depicts the estimates generated by stratifying the
analysis to the population aged 20e44 years (left) and 45e74 years
(right). In both cases, the VSL55 (green) estimates are equal to the
VSL-2 estimates. The VSL-1 (red) method results in higher values
when restricting the analysis to youngerpeople and lower values for
older people. The VSLY (blue) estimates tend to be greater than that
of the VSL-2 in younger people and lower in older people because
younger populations have more expected life-years remaining.

Because there are clear differences in the values generated by
different methods, and these differences vary between older and
younger populations, we also looked at how the valuation methods
differ over the life course in an exemplar country. Fig. 3 below
shows a comparison of annual monetary benefits per capita (2017
Euro) associated with 10 min/week of additional walking, for each
individual age from 20 to 74 years for the Latvian population using
the four different models: VSL-1 (red), VSL-2 (black), VSL-55
(green), and VSLY (blue).

The VSL-1 method generates the same results regardless of
age, the VSL-2 method generates different results for the popu-
lation aged 20e44 years to those aged 45e74 years, and the VSLY
(blue) and VSL-55 (green) results are similar until around age 55
years, with monetary benefit increasing as age, and therefore,
mortality rates increase. However, the VSLY model does not
increase as quickly with age because life-years remaining are
falling with age alsodthis is particularly stark from age 60 years
onwards.

Finally, it is interesting to observe the differences in results
between countries when using the VSLY methods. Fig. 4 shows the
estimated per capita annual monetary benefit of an additional
10 min of walking per week per person aged 20e74 years for the
HEAT countries on a choropleth map. There are large differences in
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estimated monetary benefit per capita between HEAT countries,
with estimated monetary benefit ranging from EUR 4.52 in
Tajikistan to EUR 117.13 in Luxembourg.

Discussion

This study is the first to compare the effect of the valuation
method used to value averted premature deaths in a Health
Impact Assessment tool for physical activity. It uses the WHO
HEAT 4.2 for walking and cycling as a case study to compare the
estimates of the value of active transport using two different
methods: the Value of Statistical Life and the Value of Statistical

Life-Year. We show that the VSLY approach generates lower es-
timates and is more sensitive to differences in the age of the
affected population than the VSL with two age groups (VSL-2).
However, this comes with a trade-off: although the use of the
VSLY may be more accurate, there are additional data re-
quirements of the user. As the minimal data entry requirements
of HEAT 4.2 have shown to be a main barrier to wider use of the
HEAT, this potential additional user burden warrants serious
consideration.

Our findings align with those of previous studies, for example,
the work of Robinson et al.,16 which found that estimates using the
VSLY method result in lower valuations of interventions to reduce

Table 1
Monetary benefit estimates for France for each of the six scenarios using the VSL method with two age groups and the VSLY method with individual ages (assumes scenario
population is representative of the general population within that age range).

Scenario VSL method result
(two groups) in 2017 EUR

VSLY method result
in 2017 EUR

Population aged between 20 and 74 do an additional 10 min of walking per week. 86.56 63.75
Population aged between 20 and 64 do an additional 10 min of cycling per week. 77.85 72.5
Population aged between 20 and 44 do an additional 10 min of walking per week. 15.11 21.73
Population aged between 20 and 44 do an additional 10 min of cycling per week. 22.27 32.03
Population aged between 45 and 74 do an additional 10 min of walking per week. 147.27 99.45
Population aged between 45 and 64 do an additional 10 min of cycling per week. 143.42 120.26

VSL, value of statistical life; VSLY, value of statistical life-year.

Fig. 1. Estimated annual monetary benefit per capita (in 2017 Euro) in scenario 1, comparing alternative methods to VSL-2. VSL, value of statistical life; VSLY, value of statistical life-
year; VSL-1, VSL for full adult age range; VSL-2, VSL stratified by younger vs older adults; VSL-55, VSL using individual age mortality risks.
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Fig. 2. Estimated annual monetary benefit (in 2017 Euro) per capita from 10-min additional weekly walking using country-specific population age distributions from 20 to 44 years
(left) and 45e74 years (right), VSLY vs current HEAT models. VSL, value of statistical life; VSLY, value of statistical life-year; VSL-1, VSL for full adult age range; VSL-2, VSL stratified by
younger vs older adults; VSL-55, VSL using individual age mortality risks.

Fig. 3. Annual monetary benefit per capita (in 2017 Euro) from 10-min additional weekly walking for each age of Latvian population, using each method. VSL, value of statistical life;
VSLY, value of statistical life-year; VSL-1, VSL for full adult age range; VSL-2, VSL stratified by younger vs older adults; VSL-55, VSL using individual age mortality risks.

R. Smith, C. Thomas, H. Squires et al. Public Health 194 (2021) 263e269

267



COVID-19 deaths, primarily from older populations. However, this
is the first study that has explicitly analyzed the significance of
these methodological decisions for an HIA tool. It is also the first to
critique the valuation methods in the physical activity module of
the WHO HEAT for walking and cycling. We offer a simple
enhancement to the current HEAT physical activity module, which
remains within the framework used by transport planners but in-
corporates the duration of life.

Differences in the estimates using VSL and VSLY methods pro-
voke normative questions about the valuation of premature mor-
tality. The VSL values mortality risk equally irrespective of age,
thereby valuing a year of expected lifemorehighly for older persons.
On the other hand, the VSLY assigns a constant value to s life-year,
but, as a result, values mortality risk reduction in younger persons
morehighly.17 Transport economics typically uses the former, health
economics the latter (and includesqualityof life). AsanHIA toolused
widely in transport planning, the HEAT straddles two fields. The
appropriate method may depend on the decision problem itself.
Giving the tool user the ability to choose which method they would
like to use would be a useful future feature in the tool.

There are several limitations of this study. The biggest perceived
challenge to implementing the VSLY in the HEAT is the difficulty
users inmany countries would face in inputting the age distribution
of those affected by an intervention. There is therefore a trade-off
between precision and usability in this HIA tool. Potential solu-
tions include (1) using the distribution of age in the general pop-
ulation as a default for the active travel population with the option
to manually overwrite or (2) the creation of a bespoke age distri-
bution from user-defined parameters, for example, minimum,
maximum, andmedian age. Although neither of these solutions are
perfect, they may provide a compromise between usability and
accuracy.

A further challenge exists specifically for the HEAT tool in
explaining the VSLY method to stakeholders and users. Transport
planners are familiar with the concept of the VSL, but gaining buy-
in for the use of the VSLY requires an explanation of how dis-
counted life expectancy is calculated. This is another example of
where the adaptation of a widely used tool, already being used by

stakeholders to support or inform policy, must be carefully
considered even if it is methodologically valid. Over the duration of
the HEAT's existence the core team have attempted to achieve
balance between complexity and precision on the one hand and
usability on the other.23 However, recent developments in data
availability, statistical programming, andweb-based user interfaces
have made it easier to allow stakeholder engagement in complex
models.24 Therefore, the improvements in the conceptual validity
provided by the VSLY method should justify implementation
within the global version of HEAT currently under development.

An additional issue for accurate valuation of increased popula-
tion walking and cycling is that the VSL estimates used (in both the
VSL and VSLY methods) are derived from a stated preference study
with a median age of 50 years. As VSL has been shown to peak
around age 50 years,11 calculating the VSLY from this figure may
result in overestimates. Further research is needed to develop
stated preference values that account for the many different factors
influencing respondents of different ages.

Conclusion

Our findings suggest that incorporation of duration of life gained
into the HEAT is theoretically possible, yields very different results
where intervention populations are not representative of overall
populations, and is more aligned with guidance from the field of
health economics. However, where changes to improve the preci-
sion of widely used tools such as the HEAT may also reduce their
practical usability, it is important to consider the overall impact on
the tool's value to decision-makers and other stakeholders. Thus, it
will be important to consider the usability of the modifiedmodel in
practice in future work.
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Abstract 
Introduction: The WHO-Europe’s Health Economic Assessment Tool is 
a tool used to estimate the costs and benefits of changes in walking 
and cycling. Due to data limitations the tool’s physical activity module 
assumes a linear dose response relationship be-tween physical activity 
and mortality. 
Methods: This study estimates baseline population physical activity 
distributions for 44 countries included in the HEAT. It then compares, 
for three different scenarios, the results generated by the current 
method, using a linear dose-response relationship, with results 
generated using a non-linear dose-response relationship. 
Results: The study finds that estimated deaths averted are relatively 
higher (lower) using the non-linear effect in countries with less (more) 
active populations. This difference is largest for interventions which 
affect the activity levels of the least active the most. Since more active 
populations, e.g. in Eastern Europe, also tend to have lower Value of a 
Statistical Life estimates the net monetary benefit estimated by the 
scenarios are much higher in western-Europe than eastern-Europe. 
Conclusions: Using a non-linear dose response function results in 
materially different estimates where populations are particularly 
inactive or particularly active. Estimating base-line distributions is 
possible with limited additional data requirements, although the 
method has yet to be validated. Given the significant role of the 
physical activity module within the HEAT tool it is likely that in the 
evaluation of many interventions the monetary benefit estimates will 
be sensitive to the choice of the physical activity dose response 
function.
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Introduction
There is a growing recognition of the importance of considering  
health in all policies1–3. One example of successful integration  
of health impact in another policy domain is the World  
Health Organization’s Health Economic Assessment Tool 
(HEAT), which has been widely used, primarily by transport  
planners, to estimate the health benefits associated with  
increased walking and cycling4. The success of the HEAT is in 
part due to its simplicity, requiring relatively few user inputs  
compared to other health economic models5.

However, a limitation of the HEAT is that despite broad  
consensus that the relationship between physical activity and  
all-cause mortality is non-linear, such that the greatest health 
benefits from an extra unit of physical activity accrue in those 
who are least active6–8, the HEAT assumes a linear relationship  
between physical activity and mortality. The HEAT methods 
and user guide states that “a linear relationship was chosen to 
avoid additional data requirements on baseline activity levels  
(which would be needed using a non-linear dose–response  
function)”4. There is however a recognition that improvements 
in data availability could allow for a non-linear relationship to 
be used in the future. The same report states that “An approach  
based on a non-linear relationship could be adopted as part of 
future updates of HEAT, when suitable data on the baseline 
level of physical activity in different populations are available  
to provide default values for HEAT” (p.9).

This study uses a method developed by Hafner et al.9 to  
estimate the distribution of physical activity in 44 countries 
in the WHO European Region for which the HEAT applies. It 
then compares, for three hypothetical scenarios, the number of  
deaths averted and the monetary benefit when assuming a  
linear relationship, as done by the current HEAT model, and a  
non-linear relationship between physical activity and all-cause  
mortality. Although previous analysis has shown the importance 
of estimating changes in the distribution of physical activity,  
rather than categorizing activity levels10 this is the first time  
that the effect of the shape of the dose response relationship  
has been analysed within a single health economic model,  
with all other structural assumptions held constant.  
Woodcock et al. (2013)11 estimated the difference in the 
number of deaths averted between the ITHIM and HEAT tools 

when modelling all-cause mortality, and when modelling  
several diseases individually. Since the ITHIM model uses a 
non-linear power transformation, the difference between the 
ITHIM and HEAT does in part reflect differences associated  
with the dose-response function. However, there are other  
differences between the ITHIM and HEAT which make it impos-
sible to isolate the effect of the shape of the dose-response  
relationship for physical activity on model outcomes. This study 
aims to isolate this effect, to investigate how sensitive the HEAT  
model is to the assumed dose response relationship.

Material and methods
Data and measures
This study uses data on the prevalence of insufficient physical  
activity in 44 HEAT countries from a publication by 12, the  
self-reported non-occupational (leisure time and commuting)  
physical activity levels of a representative sample of the  
English population from the Health Survey for England 201513, 
country specific mortality rates for those aged 20–74 from the 
European Mortality Database14 and value of a statistical life  
estimates from a systematic review15. It uses the linear dose-
response relationship between physical activity and mortality  
from 7 as described in the HEAT methodology paper4,  
and a non-linear dose-response relationship as described in 16.  
A summary of data including sources can be found in Table 1.

Analysis
We estimate the number of deaths averted per 100,000 and the 
net monetary benefit using both the non-linear dose-response  
method and the linear dose-response currently used by HEAT  
for 44 European countries in three scenarios:

1.  Scenario 1: An extra 10 minutes of daily walking for 
every person in the population.

2.  Scenario 2: Every adult meets WHO Guidelines. 
Every adult in the country who doesn’t already meet 
WHO guidelines of 600 MET-mins per week (equiva-
lent to around 150 minutes of brisk walking per week) 
increase their activity to that level. Those meeting  
guidelines are unchanged.

3.  Scenario 3: A 10% increase in physical activity  
levels of the population aged 20–74, such that those 
who are the most active have the largest absolute  
activity increase, and those who are least active have  
the smallest absolute activity increase.

This analysis is not an attempt to estimate the probability,  
feasibility or costs of achieving the scenarios. For each scenario 
we assume that the outcome is achieved, and we estimate the 
benefits in terms of deaths averted per 100,000 and monetize  
these benefits using the VSL.

The current HEAT method using a linear dose response 
relationship
The current HEAT method requires the user to input pre- 
intervention and post-intervention physical activity levels, in terms  

     Amendments from Version 1
There have been several updates:
1) The Abstract has been tidied to ensure that line-breaks are 
implemented correctly.
2) There are several adaptations to the text as per responses to 
reviewers, there has been one additional reference added (see 
tracked changes).
3) As a result of these changes based on reviewer requests, 
Figure 3 has been updated in the main body and a new figure 
and table have been added to the extended data.

Any further responses from the reviewers can be found at 
the end of the article

REVISED
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of minutes of walking and cycling4. It estimates the relative  
risk associated with each activity level using Equation 1 below. 

                {1 (1 ) , }local
minlit

re f

Mins
R max RR RRMins= − − ×                (1)

For a walking intervention the relative risk RR
lit
 is 0.89, the  

reference minutes of activity from the literature Mins
ref

 is 168mins 
per week and the risk reduction cap RR

min
 is 0.7, such that 

every additional 10 minutes of weekly walking (Mins
local

 = 10)  
reduces relative risk by 0.65 percentage points, to a limit of 
30 percentage points. Number of deaths averted DA is then  
calculated by multiplying the absolute difference in relative risk  
between intervention and comparator (RR

i
−RR

c
) by the country  

specific mortality rate of the population aged 20–74 MR
c
 and 

the population affected, pop (Equation 2 below). This is then 
monetized in terms of monetary benefit (MB) in Equation 3  
by multiplying the number of deaths averted by the country  
specific value of a statistical life VSL

c
:

                          ( )c ciDA RR RR MR pop= − × ×                          (2)

                                     cMB DA VSL= ×                                     (3)

The adapted method using a non-linear dose response 
relationship
The non-linear dose response method requires a baseline  
distribution of physical activity. We use weekly metabolic 
equivalent of task minutes (MET-minutes) from moderate and  
vigorous physical activity to summarize an individual’s physical  
activity level in one number17. A distribution of weekly  
MET-mins for each country was imputed using a method from 
Hafner et al. (2019)9. This method combines estimates of  
prevalence of physical inactivity for each of the 44 countries 
with the distribution of physical activity in a generic distribu-
tion (we use the distribution derived from the Health Survey 
for England). Each percentile, n, of physical activity in the  

target country, c, distribution is calculated separately using the  
equation below. 

                            1 1( ) cn n n n
g gc c g

xp p p p x
− −= + −                             (4)

The weekly MET-mins, p, for each country c, at each percen-
tile, n, is based on the prevalence of sufficient physical activity, 
x

c
, in the country, c, compared to the prevalence of sufficient 

activity in the generic distribution, x
g
. The values for each 

percentile then form the estimated physical activity distribu-
tion for each country. More detail on this method, as well  
as comparisons of country distributions, can be found in  
Hafner et al. (Appendix C)9. The estimates derived from these  
equations, along with a density plot for 6 countries included in  
the analysis, are available in the extended data.

The population relative risk is calculated as the simple arith-
metic mean of relative risk for each percentile of the physical  
activity distribution, as shown in Equation 5 below. For each 
percentile relative risk is estimated using a log-linear rela-
tionship, calculated using the relative risk from the literature  
(RR

lit
 = 0.89), percentile MET-mins (mets

p
), reference  

MET-mins (mets
ref

) which is simply 4 (METs associated  
with moderate physical activity) × mins

ref
 (from Kelly et al.,  

20147), and a power transformation t. The power transformation  
is 0.375 in the main analysis, and varied from 0.25 to 0.75  
in sensitivity analysis, as recommended in Woodcock et al.16. 

                            
100 ( )( )

( 1)

100

p

ref
t

N
mets
mets

litp RR
RR

=
==

∑                              (5)

Figure 3 shows the dose response relationship between  
physical activity and all cause mortality risk for the linear 
model and the non-linear models with different values of t is  
shown in the extended data.

Table 1. Variable names, description and source of data used in analysis.

Variable Description Source

From the HEAT methodology

MR Country specific mortality rates (for ages 20–74) European Mortality Database (2017)14

RR_lit Relative risk in literature 7; 4

mins_ref Reference physical activity duration 7; 4

RR_min Minimum relative risk (max effect) 7; 4

VSL Value of a Statistical Life for each country 15

Other sources

piap % of population inactive 12 Appendix 5 

mets Distribution of met mins in English population HSE 201513

t Log-linear dose response function power (t) 16
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Once relative risk is calculated, the deaths averted and monetary 
benefit are calculated using Equation 2 and Equation 3.

Comparison
For each of the 44 countries included in the analysis, for each 
of the three scenarios, and for each of the four dose response  
functions, we calculated two metrics:

- the number of deaths averted per 100,000 persons aged 20–74.

- the monetary benefit associated with mortality reduction, using 
the HEAT VSL estimates for each country15.

A comparison of the number of deaths averted under different  
modelling methods are displayed using simple scatter plots with 
a 45-degree line of equality, and monetary benefit estimates  
are shown, in Euros, on choropleth maps of Europe.

Results
The estimated distributions of physical activity for each of the  
44 countries in the analysis are provided in the extended 
data, and can also be found on this GitHub repository:  
https://github.com/RobertASmith/HEAT_DRF/blob/master/output/
country_mets_dist.csv.

A comparison of the number of premature annual deaths 
averted per 100,000 people using the two different methods in 
each of the three scenarios for the 44 WHO European Region  
countries is shown in Figure 1 below. The estimates derived 
using the linear dose response method are shown on the 
x-axis and the non-linear dose response on the y axis. A  
45-degree line of equality is plotted to aid comparison. The 
country points are labelled with ISO3 codes and shaded from 
black for low insufficient physical activity prevalence (IPAP)  
to blue for those with a high IPAP.

The figure shows that for the first scenario, an additional  
10 minutes of daily walking, countries with particularly inactive  
(active) populations tend to have higher (lower) estimated  
deaths averted using the non-linear function compared to the linear 
function.

In the second scenario all individuals with activity levels 
below WHO physical activity guidelines of 600 MET-mins per 
week increase activity to meet guidelines. Here, the non-linear  
function results in higher deaths averted than the linear func-
tion in most countries, except for some with especially low 
prevalence of insufficient physical activity (e.g. Moldova and  
Belarus).

In the third scenario, in which all individuals increase their  
physical activity level by 10%, estimates derived using a  
non-linear function are much lower than using a linear function  
for all countries, regardless of the prevalence of insufficient 
physical activity. This is because those with low physical activity  
levels, who would benefit the most from increased physical  

activity according to a non-linear model, have low increases 
in MET-mins, while those who are highly active have high 
absolute increases in MET-mins but benefit little in terms of  
premature mortality reduction when using a non-linear model.

In order to allow for trade-offs in decision making between 
health and non-health outcomes, the HEAT tool monetises the 
deaths averted using the Value of a Statistical Life (VSL)18,  
giving an estimate in terms of monetary benefit. Figure 2 below 
shows the monetary benefit associated with Scenario 1, using 
a log-linear dose response function with a power transformation  
of 0.375. The monetary benefits tend to be higher in coun-
tries with higher insufficient physical activity prevalence and 
higher VSL (e.g. Ireland, the UK and Luxemburg) and mark-
edly lower in countries with lower VSL and/or lower physical 
inactivity prevalence such as Ukraine and Moldova, this results  
in marked differences between the West and East Europe. 

Discussion
Increasing population physical activity is likely to yield large 
benefits in health, wellbeing & productivity worldwide9.  
However, trade-offs often exist between increasing popula-
tion physical activity and achieving other health and non-health  
outcomes. It is therefore important to have a robust method 
to consider whether interventions that improve activity levels  
provide good value for money. The HEAT is an example  
of a tool, often used by transport planners, which allows users 
to estimate, and monetize, the benefits of increased walking 
and cycling3. In general, the estimates derived from the physi-
cal activity module of the tool have been shown to contribute the  
most to total monetary benefit (Mueller et al., 2015).

We describe an adaption to the current HEAT physical activ-
ity module which applies a non-linear dose response relationship  
between physical activity and mortality risk to estimated country 
specific baseline distributions of physical activity. The method 
is more sensitive to interventions which increase the activ-
ity levels of the least active, and less sensitive to interventions  
which increase the activity levels of the most active. This means 
that similar scenarios may yield less health benefit in more 
active countries. As noted in our previous work5, since coun-
tries with higher GDP tend to have a higher Value of a Sta-
tistical Life15 and higher prevalence of insufficient physical  
activity12, the estimated net monetary benefit tends to be higher  
in western Europe than eastern Europe.

There are numerous limitations of this analysis. Firstly, the 
method used to estimate the baseline distributions of physical  
activity in each of the HEAT countries (from 9) assumes that 
the shape of the physical activity distribution is relatively simi-
lar in every country. Comparing the distributions estimated  
by this method, and provided in the extended data, with 
more detailed datasets would help to validate the estimates  
of population physical activity distributions. It is likely that 
the method is reliable for similar countries (e.g. the UK 
and Germany) but may not be reliable where culture differs  
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Figure 1. Deaths averted per 100,000 for three scenarios using the non-linear and the current (linear) relationship.
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Figure 2. Annual Monetary Benefit of an additional 10 minutes daily walking for 44 European Countries, in 2016 USD.

Figure 3. Relative risk using linear & non-linear dose response functions with different power transformations:
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(e.g. the UK and Chad). However, it is unlikely that this 
would affect the main finding of this study, since large differ-
ences in the linear and non-linear functions exist when using  
the UK distribution which is based upon survey data. It is 
also worth noting that in this study, as in many other studies  
relying upon secondary data, the assumption is made implicitly 
that the same survey methods for physical activity are utilised  
in the estimation of the dose-response function, and for the  
purposes of calculating relative risk. Any differences in the  
survey methods will generate a bias in the estimation of relative  
risk.

We also note that the comparison between the linear dose 
response function currently used by the HEAT, and a non-linear 
function based on Woodcock et al. 2011 is a false dichotomy.  
It is likely that non-parametric regression techniques, such as 
spline regression will yield a dose response relationship that 
is more appropriate, avoiding implausibly large benefits for  
particularly inactive individuals, which is apparent at low  
levels of Weekly MET-mins in Figure 3. However, the authors 
are not aware of any such studies directly relating to population  
mortality to date, although it is likely new evidence will emerge.

A further limitation of this study is that we do not consider the 
usability of the tool, only show that a more conceptually valid 
method is possible. Since the tool is designed to be used by  
users with little to no public health, epidemiology, statistics 
and programming ability it is also important that the methods 
behind the tool are easy to explain, and the tool is simple to use.  
Increased complexity, in terms of more, or more detailed inputs, 
and a more difficult to explain model structure may make the 
tool less ‘use-able’, used here as a loose term which encom-
passes both technical feasibility of use and user understanding  
& confidence, and therefore less valuable. Further work 
to determine whether stakeholders understand the use of a  
non-linear dose response relationship on baseline and inter-
vention distributions, and whether users can obtain interven-
tion group physical activity distributions, will likely be a  
determining factor as to the feasibility of adapting the HEAT 
tool. Nevertheless, this paper demonstrates that the two 
approaches do result in substantial differences at the population 
level, and therefore where possible the non-linear dose response  
function should be used by researchers.

The trade-off between the ‘usability’ and ‘accuracy’ of health 
impact assessment tools (and public health economic mod-
els more generally) is one that needs further attention in the  
academic literature. Models and tools tend to be either high 
accuracy but low usability - for example models created 
in high level programming languages with high computa-
tional demands and long runtimes - or low accuracy but high  
usability - including the HEAT physical activity modules. 
Understanding how to utilize new tools from data-science to 

make models which are very accurate and usable would be a  
useful avenue of future research. Likewise, understanding 
how to incrementally improve the accuracy of highly usable 
models (like HEAT) without compromising usability would  
be a valuable endeavor.

Conclusions
We show that for the WHO European Region countries included 
in the HEAT tool, the estimates of deaths averted, and there-
fore monetary benefit, differs substantially depending on the  
dose response function used. The nonlinear dose response func-
tion results in greater estimated benefits, relative to the linear 
dose response function, where increased physical activity  
accrues to those who are relatively inactive. It therefore results 
in greater benefits in countries with higher prevalence of physi-
cal inactivity, or interventions which are targeted toward the 
least active. Developing tools which are both usable, in terms 
of data requirements and ease of explanation to users, and  
highly accurate is an important avenue for future research in 
health impact assessment and public health economics more  
widely.

Data availability
Zenodo: A comparison of the World Health Organisation’s  
HEAT model results using a non-linear physical activity  
dose response function with results from the existing tool.  
https://doi.org/10.5281/zenodo.6505091.

This project contains the following underlying data:

Data file 1. (Density Plot).

Data file 2. (Country physical activity distributions used in the 
analysis).
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Chapter 5. HEAT Model - Discussion 

In the chapters above, I discussed two ways in which the HEAT tool, which has been shown to be 

particularly useful, can be adapted to improve its external validity. 

According to the first paper, which compared different approaches for valuing deaths averted in the 

model, the use of the VSLY method allows for a more nuanced analysis of the benefits of increased 

physical activity. While estimating the number of deaths averted by a policy is useful to decision makers, 

it does not consider the duration of lives saved. The VSLY method, on the other hand, accounts for 

both the number of lives saved and the length of time that each life is extended, providing a more 

complete picture of the overall benefit of an intervention. This is particularly important when 

interventions which affect different populations (older vs younger persons) are competing for scarce 

resources. The paper, published in Public Health, argued that by assigning the same value to mortality 

risk reduction to all groups, regardless of age, we are implicitly assigning a higher value on each year 

of life for older people, something that may be perceived as unfair by those who think that, all else 

equal, an extra (statistical) year of life should be valued equally regardless of the age of the recipient.   

As noted in the paper "The price of precision," making changes to improve the precision of tools like 

the HEAT “may also reduce their practical usability” (p.268). In health economic modelling, there is 

sometimes a trade-off between model usability and external validity. More externally valid models may 

require more complex data and be harder to use and interpret, while simpler models may be easier to 

use but less externally valid. In the case of incorporating a life-years approach, this may require a more 

detailed understanding of the age distribution of those affected by the intervention, which may not be 

feasible for all users of the tool. It is important to carefully consider this trade-off between usability and 

external validity in order to ensure that the model meets the needs of the intended audience and serves 

its intended purpose. 

In the second paper I discussed the use of a non-linear dose-response function to replace the linear 

dose response function currently used in the HEAT. We know that the benefits to a unit of increased 

physical activity are larger for those who are less active (Geidl et al. 2020; Grandes et al. 2023). The 

proposed changes allow this to be more accurately captured by the HEAT tool model: “The nonlinear 

dose response function results in greater estimated benefits, relative to the linear dose response 

function, where increased physical activity accrues to those who are relatively inactive”. This has 

important implications for policy, since interventions that focus on encouraging people who are currently 

inactive to become more active will, all else being equal, be the most cost-effective use of resources 

and may reduce inequalities.  

Despite the potential benefits of using a nonlinear dose-response function in the HEAT tool, there are 

still significant challenges to implementing this approach. One challenge is determining the shape of 

the nonlinear function, which can be more complex than determining the slope of a linear function 
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(Kahlmeier et al. 2017). Another challenge is accurately estimating the distribution of baseline physical 

activity in the population affected by the intervention. This can be difficult to do, as survey methods for 

collecting this information can be expensive and people may overestimate their physical activity levels 

in surveys. These challenges must be addressed in order to effectively incorporate a nonlinear dose-

response relationship into the HEAT tool. 

The common theme 

A lot of time and resource is devoted to developing a model structure and parameter inputs which 

capture most or all of the important characteristics of a system or process that impact on outcomes 

which may influence decisions (Squires et al. 2016b). We refer to the extent to which this is achieved 

as ”external-validity”, which can be evaluated in several ways, including comparing the predictions of 

the model to real-world data, assessing the internal consistency of the model, and comparing the results 

of the model to the results of other models that have been developed to study similar questions. No 

model is perfectly accurate, and all models are subject to limitations and assumptions .  

However, ultimately, the goal of a health economic model is typically to provide useful and relevant 

information to inform decision-making (Huserau et al. 2013). As a result, there is often a trade-off 

between usability and external validity. More externally valid models may require more complex and 

detailed input data, and may be more difficult to use and interpret, or to adapt to different questions 

(Hoffmann et al. 2002). On the other hand, simpler models may be easier to communicate, and therefore 

may gain credibility with decision makers who find them easier to engage with (to ‘use’) but may be less 

externally valid. This trade-off can be challenging because models that are hard to communicate or 

difficult for decision makers to interact with may not be practical or useful for decision-making, while 

models that are too simple or inaccurate may not provide reliable or relevant information.  

It is important for modellers to carefully consider this trade-off and choose the model that is most 

appropriate for their intended audience and research question. Caro et al. (2012) suggest that “finding 

the balance between simplicity of modelling and avoidance of oversimplification [...] is perhaps the most 

important skill that a modeller can learn if a model is to truly fulfil its potential as a communication tool” 

(p.675). We extend this more widely to usability vs external-validity, whereby one must consider both 

and may choose to prioritise one over the other depending on the specific needs and goals of the 

decision maker - in a similar fashion to a productive possibility frontier in classical economic theory 

(Pareto, 1906). 

There are several factors that could yield improvements in external-validity or usability without 

commensurate reductions in the other. Some of these factors include: 

● An improvement in the algorithms or methods used to build the model which simultaneously 

better reflect reality and are more intuitive and easier to explain. For example, to some extent 

individual level simulations which follow patients through a journey can be easier to explain to 

decision makers (Brennan et al. 2006) . 
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● An increase in the computing power available to run the model. This could allow the model to 

handle larger datasets or more complex calculations, improving its external validity without 

sacrificing usability. Likewise, it could reduce the run-time of an existing model. 

● A reduction in the resources required to build or maintain a model. This could allow for the 

development of more externally valid models that are still affordable and practical for decision-

makers to use. This may be driven by a decrease in the hourly cost of labour or an increase in 

the efficiency of labour. 

● Improvements in technology which improve the user-friendliness of the model's interface or 

documentation or increase in the level of training or support available to users of the model, or 

a given resource. These improvements could help users to better understand and use the 

model, improving its usability without sacrificing external validity. 

In chapters 7 and 8 we will discuss the disruptive role of new technologies, in particular methods from 

data-science and computing, in changing this trade-off, and in shifting the production possibility frontier 

outwards. The focus will be in the last two points above: increasing the level of usability of a model and 

reducing the resources required to develop and maintain models.  
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Part 3 - Developing a new model: a 

case study in modelling the long run 

cost effectiveness effect of school 

based physical activity interventions  

Chapter 6. Physical Activity in Children Economic 

Model (PACEM) 

Abstract 

This chapter develops and tests new methods to increase the external validity of health economic 

evaluations of physical activity interventions in children and young adults. It uses a school based 

physical activity intervention as a case study, describing a new microsimulation model which 

incorporates a non-linear dose response relationship between physical activity and multiple health 

conditions simultaneously. As well as comparing the findings to previously published evaluations of 

similar interventions, it investigates the sensitivity of the model to different methods of estimating health-

related quality of life and to structural assumptions about decay of intervention effect and habit 

formation. The model results are very sensitive to habit formation and assumptions around the duration 

over which the health benefits of physical activity last. This was anticipated since much of the health 

burden of physical activity related diseases occurs in older adults.  The chapter concludes by discussing 

the implications of the findings for decision modellers attempting to estimate the cost-effectiveness of 

interventions to increase physical activity, much of which applies to other public health interventions. In 

particular, since other health economic evaluations attempt to model costs and benefits via similar 

pathways, it is likely that they are also sensitive to the same modelling choices. 

Introduction 

As discussed in Chapter 1, physical activity is crucial for maintaining overall health and well-being. 

Numerous studies have shown that increasing physical activity can significantly reduce the risk of 

various health conditions and decrease all-cause mortality (Warburton et al. 2017). However, despite 
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the clear benefits of physical activity, many children worldwide do not engage in enough physical activity 

and fail to meet recommended guidelines (Guthold et al. 2020). Furthermore, physical activity levels 

tend to decrease with age, although research indicates that physical activity habits tend to persist 

throughout the lifespan, with individuals who were most active during childhood and young adulthood 

more likely to be active in middle and old age (Lounassalo et al. 2019; van Sluijs et al. 2021). 

Interventions which are effective at increasing physical activity in childhood and adolescence and result 

in long-term habit formation are likely to be a good investment. However, while the costs of these 

interventions can be easily observed in the short term, the benefits occur over a longer period of time 

and are therefore difficult to quantify directly. As discussed in Chapter 2, to estimate the long-term cost-

effectiveness of interventions, health economic models are commonly used. Such models are 

constructed with certain simplifying assumptions, including the linear decay of an intervention's effect, 

the proportion of the population whose habits are sustained, the duration of physical activity's effect on 

health outcomes, and the simplification of physical activity into an ordinal variable with "states" that 

people can transition between (Candio et al. 2012). 

It is important to understand how the methodological assumptions used in these models affect their 

outcomes, to make informed policy and resource allocation decisions. Previous studies have performed 

sensitivity analysis on their results, but typically these are often not the primary focus of study (Gc et 

al., 2019; Frew et al., 2014). This chapter investigates the impact of some of these assumptions on the 

cost-effectiveness of interventions aimed at increasing physical activity in children and young adults. A 

school based physical activity intervention is used as a case study, the effect size of which is derived 

from a meta-analysis of school-based interventions conducted by Mears & Jago (2016). This 

intervention is the same as one analysed in Gc et al. (2019), which enables some comparison of findings 

between modelling studies.  

To test the effect of structural and parametric assumptions on the cost-effectiveness estimates, a new 

model is developed. The model is distinct from the model developed by Gc et al., but uses the same 

parameter values where possible, to allow for a comparison of the model results. It deviates from Gc et 

al. by using a microsimulation model (rather than a Markov model) to incorporate a non-linear dose 

response relationship between physical activity and health outcomes, captures multiple health 

conditions simultaneously, estimates incremental discounted costs and Health Related Quality of Life 

(utilities) and incorporates individual level subgroup effects.  

Sensitivity analysis is conducted to investigate the effect of assumptions about decay of intervention 

effect and habit formation in the intervention population. It investigates the effect of different methods 

used to estimate health-related quality of life, assessing the sensitivity of the model to multiplicative and 

minimum methods for health state quality of life aggregation previously discussed in Ara & Brazier 

(2010). It also investigates the sensitivity of the model to both intervention cost and effect size through 

economically justifiable costing analysis. Some of the sensitivity analyses are similar to those conducted 
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by Gc et al. and other models previously, allowing for some inference as to whether some parameters 

and structural assumptions may be particularly important for physical activity models. 

 

Methods 

A probabilistic individual-level microsimulation model was developed to estimate the costs and benefits 

of interventions which aim to increase physical activity levels in children and adolescents relative to a 

No intervention scenario. The scope (the population, intervention, comparator and outcomes) is 

described first, after which the structure is outlined in detail. The methods used to describe the 

probabilistic analysis and the one-way sensitivity analysis are then outlined. Finally, access to open-

source code, data and validation methods are described.   

The model operates in fixed one-year cycles, with each individual's physical activity trajectory impacting 

their risk of developing cardiovascular, metabolic and oncological diseases, and therefore directly and 

indirectly, their risk of dying in any given cycle. The model does not take into account interactions or 

competition for resources among individuals. It calculates individual health utilities and costs from the 

perspective of the National Health Service (NHS) and Personal Social Services (PSS) from age 11 to 

80 and aggregates them for the entire cohort. It is probabilistic, with 5,000 iterations run, with each 

sampling from underlying parameter distributions. The mean discounted costs and quality-adjusted life 

years (QALYs) are reported as primary outcomes with information on incidence and prevalence of the 

five diseases also provided.  

The process of developing the model followed the framework described in Squires et al. (2016b). The 

framework is made up of four phases: Aligning the framework with the decision-making process, 

identifying relevant stakeholders, understanding the problem, and developing and justifying the model 

structure. This ‘problem-oriented conceptual model’ (conceptual model) (Tappenden, 2012) that 

resulted from this process is shown in Appendix A4.   This was a result of incorporating the outcome of 

the reviews described in Chapter 1 and 2, with input from an expert advisory group consisting of 

clinicians and experts in physical activity modelling and health economics from 2017 to 2019. The scope 

of the model was subsequently reduced due to limitations in data and an unexpected reduction in 

capacity. As a result, some of the outcomes (e.g. mental health outcomes and academic attainment), 

mediating variables (e.g. BMI) and subgroup analysis (IMD quintile) were removed when developing 

the ‘design-orientated conceptual model’  (Tappenden, 2012), which is described in more detail below. 

This is unfortunate given that many of these were identified in Chapter 1 as being important 

determinants, and in Chapter 2 as being neglected by previous studies.   

The methods were developed to correspond to the CHEERs checklist, a set of guidelines for reporting 

economic evaluations of healthcare interventions that covers key components such as model structure, 
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data inputs, assumptions, and transparency (Husereau et al. 2022), a completed version of which can 

be found in Appendix A2. 

The model scope 

The model population is a cohort of 10,000 children aged 11, sampled to be representative of the 

general population in sex, socioeconomic deprivation, and physical activity level. The cohort size of 

10,000 was specifically chosen to ensure enough statistical power to capture relatively rare events, 

such as the occurrence of cancers in younger persons, and to provide reliable estimates of their 

frequency and characteristics in the population. The model’s time horizon is 69 years, from age 11 to 

age 80. The intervention is a hypothetical after-school intervention with an effect size based on a meta-

analysis of similar interventions published by Mears & Jago (2016) and a cost obtained from Gc et al. 

(2019). The comparator is the current status quo, which assumes that the plethora of interventions and 

initiatives currently in place result in a decay of PA in adolescence similar to that observed in 

epidemiological studies (Dumith et al. 2011a). The perspective taken is a National Health Service (NHS) 

and Personal Social Services (PSS) perspective. The primary model outcomes are incremental 

discounted Quality Adjusted Life Years, and incremental discounted healthcare costs. The evaluation 

is therefore a cost-utility analysis.  

Five diseases were included in the model: Ischemic Heart Disease (IHD), Breast Cancer (BC), 

Colorectal Cancer (CC), Type 2 Diabetes (T2D) and Stroke (IS). These diseases were chosen because 

(1) they are the conditions most commonly included in health economic models of physical activity, as 

discussed in Chapter 2, and (2) epidemiological studies provide good quality evidence on the incidence, 

prevalence and non-linear dose response relationship with physical activity (Kyu et al. 2016). The 

original intention was to incorporate mental health outcomes (anxiety and depression) into the model, 

a key limitation of other models identified in Chapter 2, as well as musculoskeletal injuries. However, 

the evidence-base is not as strong for these intermediate outcomes as for the five ‘core’ conditions 

included, and the scope of this chapter was reduced due to time pressures, and therefore they were 

not included. A further discussion of this limitation is included in the limitations section.  

The model structure 

The model is a closed system, meaning that the cohort of children is followed over time, and no new 

individuals are added. The model consists of a physical activity module that creates trajectories of 

physical activity over the lifecourse, an epidemiological module that estimates disease and survival 

status for every individual in each cycle, and an economic module that calculates health state utilities 

and costs accrued by each individual over the lifecourse. A diagram of the model structure can be seen 

in Figure 2 below. Each child’s initial physical activity level (MET-mins per week), sex and IMD quintile 

are sampled jointly to ensure the population is representative of the general population at age 11. 

Physical activity level (METs) in each cycle is dependent on age, sex, no-intervention scenario PA 
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distribution, and intervention effect. Age, sex and METs then affect (independently) the risk of 

developing Ischemic Heart Disease (IHD), Breast Cancer (BC), Colorectal Cancer (CC), Type 2 

Diabetes (T2D) and Stroke (IS). Individuals can die at any age, with their mortality risk being a function 

of age, sex and disease status. The duration of each disease is fixed, and physical activity only 

influences healthcare costs and HRQoL via disease status. 

Figure 2 Diagram of PACEM model structure. 

 

Physical activity module 

Initial population physical activity 

Data was obtained from the Health Survey for England (2015) and filtered to a dataset of 11- and 12-

year-old respondents only. The dataset contains detailed estimates of the number of minutes of a large 

number of physical activities undertaken by each child in the past week alongside data on the child's 

sex and linked data to the quintile of Index of Multiple Deprivation (IMD) score. Children who reported 
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more than 7,000 minutes (16 hours per day) of moderate to vigorous physical activity in the previous 

week were assumed to have entered data incorrectly and were excluded.  A compendium of metabolic 

equivalent of task (MET) estimates from Butte et al. 2018 was matched to each activity in the HSE 

dataset manually and used to estimate the total weekly MET minutes for each child in the sample (see 

Appendix A3 for the MET values used). 

Sampling weights were estimated by 1) assuming that there are even numbers of male and female 

children in the population, 2) using ONS data on dependent children in each Lower Layer Super Output 

Area (LSOA) to estimate the target proportion in each quintile of IMD. The latter is necessary because 

children are more likely to live in areas with higher levels of deprivation than the general population. In 

particular children have a greater than 20% chance of being in the bottom quintile of LSOA IMD scores. 

Combining these two sources of information results in a weight for each individual child, which was 

used when sampling to generate a representative sample of dependent children in the general 

population.  

A density plot of the initial levels of physical activity at age 10 are shown in the figure below. The dotted 

lines show the level of MET-mins that would be achieved if an individual followed guidance and 

participated in moderate to vigorous activity averaging 6 METs (equivalent to walking at a brisk pace) 

for an average of 60 minutes each day. The proportion to the left of the line (not meeting guidelines) is 

57% for male and 41% for females at age 10 in the baseline simulation. This is higher than many of the 

estimates reported in Chapter 1, and the higher rates of insufficient physical activity in males in the data 

is surprising. The physical activity report from the Health Survey for England 2015 estimates that only 

24% of boys and 18% of girls met PA guidance (Scholes & Mindell, 2016), but this cannot be compared 

to the proportions estimated from the distributions below because guidance at the time was for over 60 

minutes of PA on every day without exception and does not include a direct estimate of MET minutes. 

Very few individuals have activity levels above 5000 METs per week, equivalent to averaging 60 

minutes of distance running per day, which is as expected. 
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Figure 3 Initial physical activity levels, measured in weekly Metabolic Equivalent of Task 
minutes,  for females and males in the simulation. The dotted line represents the threshold 
required to meet guidelines. 

 

Trajectories of Physical Activity 

Chapter 1 referenced the literature showing that physical activity tends to decline over the life-course 

(Bauman et al., 2012) and especially in adolescence (Dumith et al. 2011a). The model aims to capture 

this by splitting the simulation into two periods, from age 11 to 18 and from age 18 onwards. From age 

11-18 trajectories of physical activity are informed by physical activity at baseline and a constant rate 

of decay of 6.1% (95% CI 3.9% - 8.3%) as per Dumith et al. 2011a.  At age 18 in the No Intervention 

scenario, a cumulative density function is derived from the physical activity level of males and females 

separately. Each individual is assigned their percentile based on this distribution, and thereafter follow 

their percentile of physical activity until death such that an individual in the 45th percentile age 18 will 

still be in the 45th percentile age 70. This approach is based upon research indicating that PA tracks 

relatively well in adulthood, although trajectories are much less stable in childhood (Farooq et al. 2020; 

Lounassalo et al. 2019). The physical activity distribution for each age from 18 to 80 is estimated using 

self-report questions included in the Health Survey for England (HSE) 2014, 2015 and 2017. For the 

midpoint of each five-year age-band a set of physical activity percentiles were calculated by rank 

ordering the sample (split by sex) and cutting the sample at a sequence of cuts in increments from 0 to 

1 in units of 0.01. Age specific estimates were derived using linear interpolation between the age-

midpoint values for each percentile of the distribution. The intervention group are assigned a percentile 

from the baseline distribution based upon their activity level age 18 and, in the absence of effect waning, 

follow this percentile until death. 
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Figure 4 below shows a schematic of the method for a simulated dataset of females. The solid black 

line is the trajectory of the individual who had the median physical activity level at age 18 in the baseline 

scenario. Each year, her physical activity level changes such that she follows the linear interpolation 

between the median level of physical activity at the mid-point of  each age-band. The benefit of this 

approach is that the No Intervention simulation maintains the currently observed distribution of physical 

activity at each age. The limitation of this method is that it assumes that there are no cohort effects, and 

therefore the median female aged 18 will have similar levels of activity when she is 75 to a 75-year-old 

today. 

Figure 4 Visual representation of the method used to project physical activity levels for females  
from age 18 to age 80 (same method used for males separately). The solid black line shows the 
median female trajectory, measured in units of MET minutes. 

 

NOTE: The schematic has been created to illustrate the method and is based upon a simulated dataset. 
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Intervention Effect 

Size of Effect 

The case-study intervention is an after-school physical activity intervention described in Gc et al. (2019), 

which results in an additional 4.84 minutes (95% CI −0.94 to 10.61) of moderate to vigorous physical 

activity (MVPA) per day (Mears and Jago, 2016). This estimate of intervention effect is converted to a 

weekly MET-mins estimate by; assuming that the values reported are the average over a 7-day week, 

assuming that MVPA corresponds to a metabolic equivalent of task (MET) of 5.5, giving an intervention 

effect for the model of 186 (-36 to 408) weekly MET-mins. Each child is assigned an individual increment 

from this distribution, capturing the distribution around the mean effect. This intervention is assumed to 

occur for the period at which children are at secondary school (from age 11 to 18), at which point the 

intervention ceases and the effect decays. The intervention is assumed to have no direct impact on 

health-related quality of life or health-care costs. The indirect effect, via the five diseases and mortality, 

is modelled in the epidemiological model. 

Decay of effect 

There is no decay of intervention effect while the intervention is ongoing, which is assumed to be until 

age 18. At age 18, individuals are assigned to a percentile from the age 18 No-Intervention scenario 

physical activity distribution, so that if the intervention group is more active, they will be assigned a more 

active percentile than the no-intervention scenario group. From age 18 onwards, the intervention's effect 

on MET-min levels decays back towards the No-intervention scenario trajectory. This decay occurs at 

a constant rate of 50% in the central case, as assumed in Gc et al. (2019), such that the intervention 

group approaches the no-intervention scenario in around seven years. The effect of this common 

assumption is tested by comparing scenarios in which some proportion of the population (0%, 10%, 

and 100%) maintain the physical activity habit for the remainder of their life and scenarios in which the 

physical activity level decays linearly over 10 years. The 100% maintenance scenario is identical to the 

0% waning scenario run by Gc et al. These figures are used to investigate the impact of structural 

assumptions in the model and do not reflect expert opinion of feasible parameter ranges. They are 

compared in a table and individually as scenarios on a tornado diagram. 

Figure 5 below shows some of the options for modelling decay in effect, similar to previous approaches 

taken such as for a model of Type 2 Diabetes (Bates, 2021) In the absence of effect decay, an individual 

experiences the trajectory of physical activity associated with an individual at their level of physical 

activity at age 18, shown by the top black line in the figure. Three options for decay in effect size (Linear, 

Exponential and Fixed Duration) are shown as rows, and an option to allow a proportion of the 

population to develop a habit and experience no decay is shown on the right-hand column. Although 

the model is set up to enable a fixed duration effect, only sensitivity analyses using exponential and 

linear decay with a proportion of the population developing a habit are reported.  
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Figure 5 Decay in the mean effect of the intervention from the full intervention effect trajectory 
(top black line) to the baseline physical activity trajectory (bottom black line) for a hypothetical 
cohort of 10,000 individuals aged 18 under six different illustrative scenarios. The x axis (age) 
is cut at 30 to aid visualisation. 

 

Lines as follows - Red: Exponential decay of 50% per year for entire population; Yellow: Exponential decay of 

50% per year for 75% of the population;  Green: No intervention effect after 2 years for entire population; Light 

blue No intervention effect after 2 years for 75% of population; Dark blue: Linear decay over 10 years for entire 

population; Purple: Linear decay over 10 years for 75% of population. 
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The use of a microsimulation model allows for much more flexibility in modelling approach - allowing 

intervention effects to be varied at the individual level. In particular, the ability to vary the intervention 

effect alongside the dynamics which would be expected to be observed as people age in the absence 

of the intervention is an underutilised modelling method. The approaches above are therefore different 

to approaches previously described for Markov models which make simplifying assumptions about 

probability of transition between physical activity ‘states’ over the lifecourse (Candio et al. 2021). 

Epidemiological module 

Risk of disease 

The model focuses on five diseases that have a clear relationship between physical activity and risk, 

and for which there is a continuous dose-response function available: Breast Cancer (BC), Colon 

Cancer (CC), Type 2 Diabetes (T2D), Ischemic Heart Disease (IHD), and Stroke (IS) all of which are 

reported in Kyu et al., (2016). At the start of the model, all children are assumed to have none of the 

five diseases. During each cycle, individuals have a probability of developing each of the five diseases 

independently, and of dying, based on their age, sex, and MET-mins. For example the probability of a 

female with MET-mins of 600 being diagnosed with Breast Cancer between age 60 and 61 is calculated 

by multiplying the incidence of Breast Cancer in 60 year old women, obtained from the Global Burden 

of Disease 2019 database (Vos et al., 2020), with her relative risk of BC calculated from her physical 

activity level using the PA dose response function for BC (described below). As a result, more active 

people have a lower probability of developing health diseases than less active people. Individuals can 

develop multiple diseases simultaneously, and the risk of developing each disease is modelled 

independently - a weakness discussed further in the limitations section. 

Incidence and prevalence of each disease were obtained for males and females in five-year age-bands 

from 0 to 90 (Vos et al., 2020). The central estimates and 95% confidence intervals around them were 

linearly interpolated from age 10 to 80 to derive single age-specific incidence (and 95% CI) for each 

sex and disease separately. When conducting probabilistic sensitivity analysis, a percentile for each 

disease was selected at random and used to extract a vector from age 10 to age 80 of incidence or 

prevalence. This approach is preferred to sampling incidence or prevalence each year independently 

since it is assumed that the uncertainty in the GBD estimates is likely methodological and therefore 

would be correlated between ages. We assume that there are no cohort effects, i.e. that independent 

of physical activity, the cohort of children will experience similar incidences of disease when they reach 

age ‘a’ to the incidences currently observed in the population aged ‘a’ .Trying to predict the long term 

trends in the incidence of each disease over a 70 year period was deemed to be beyond the scope of 

this study. 
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Dose response relationship with physical activity 

The parameters used to estimate the relative risk function for each disease by weekly metabolic 

equivalent of task minutes are shown in Table 9 below. The log-linear relationships were originally 

derived from Kyu et al. (2016)’s estimates and are reported in Love-Koh et al. (2017)’s model described 

in Chapter 2. Uncertainty in the relationship was incorporated by sampling coefficients from a normal 

distribution informed by the 95% confidence intervals reported by Love-Koh and displayed in the table 

below. 

Table 9 Coefficients for the log-linear model used to estimate the relative risk of five diseases 
from weekly metabolic equivalent time minutes (MET-mins) per week. The upper and lower 95% 
CI for the coefficients are shown separately. 

Disease Mean (SD) 95% CI Upper 95% CI Lower 

 Constant ln(MET-mins) Constant ln(MET-mins) Constant ln(MET-mins) 

IHD 1.016 -0.030 0.985 -0.034 1.043 -0.026 

IS 1.073 -0.037  1.026 -0.043 1.140 -0.033 

T2D 1.108 -0.040 1.108 -0.045 1.114 -0.035 

BC 1.110 -0.024  1.120 -0.031 1.095 -0.017  

CC 1.088 -0.031 1.076 -0.036 1.092 -0.024 

Mortality rates  

Disease specific mortality rates and other cause mortality was estimated from incidence, prevalence 

and mortality by age extracted from the GBD study database (Vos et al. 2020) using the DISMOD 

software (Barendregt et al. 2003), which assumes that mortality from all other causes is independent of 

disease specific mortality. Other-cause-mortality, the remaining mortality after these diseases are 

excluded, was derived by subtracting the disease specific mortality from overall mortality rates 

published in ONS life tables (Sanders, 2017). For individuals with multiple diseases, fatality rates are 

combined additively. The duration for which each disease impacted fatality rates differed by disease, 

with increased risk from oncological diseases lasting ten years, and metabolic and cardiovascular 

diseases being assumed to result in life-long higher rates of mortality. 

Economic module 

Intervention Cost 

The intervention cost is included at £57 per individual, as estimated for a school-based teaching 

assistant-led extracurricular physical activity intervention (Jago et al. 2014), and inflated to 2020-21 

prices using inflation indices from Jones and Burns (2021). The same source was used to inform 
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intervention costs in Gc et al., 2019. This cost includes training of teaching assistants to lead physical 

activity sessions, as well as some minor equipment and administrative costs. 

Health State Utilities 

The model estimates the HRQoL for each individual in annual cycles based on the disease status of 

the individual in that cycle. Individuals without any of the five diseases may still have other health 

conditions, but since the model includes five highly prevalent diseases it is likely that they would have 

a higher level of HRQoL than average. Therefore, quality of life in the absence of the five included 

diseases was estimated by taking the weighted average of general population HRQoL and the HRQoL 

for those with no reported health conditions (Ara & Brazier, 2011),  where the weight was determined 

by an estimate of the proportion of overall health condition burden at each age that is attributable to the 

five diseases included in the model. The assumption used to inform the weight was that the percentage 

contribution of the five diseases to the difference between ‘no reported health condition’ HRQoL and 

general population HRQoL increased linearly from 0% at age 11 to 50% at age 80. This assumption 

was based upon a cumulative proportion of total disease burden for the five diseases of around 30% 

observed in the Global Burden of Disease study (Vos et al., 2020), and the observation that the 

prevalence of the five diseases is disproportionately skewed towards older persons. 

In the base case, a multiplicative approach is used, such that HRQoL is the product of the individual 

health state utility values. A further analysis is conducted using the minimum approach where HRQoL 

is equal to the minimum HRQoL of any of the individual health state utility values. These approaches of 

estimating quality of life in the presence of comorbidities are explained in more detail in Ada & Brazier 

(2010). Health state utilities for each disease were identified from Sullivan et al. (2011), as also 

previously used in the decision model described in Gc et al. (2019). Health state utilities are divided by 

the mean health related quality of life for the 60-70 age group in the model to give a set of utility 

multipliers. These multipliers are then combined multiplicatively, or the minimum used and multiplied by 

the estimated health state utility of the population with none of the five diseases. The uncertainty around 

these central estimates is incorporated into the model by using random draws from a beta distribution 

for each disease using the distributions shown in Table 10. Death is assumed to have a quality of life 

of zero. 
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Table 10 Health related quality of life mean value for illustration, and distribution sampled from 
in the model. 

Disease Health Related Quality of 
Life (Mean) 

Distribution Source 

IHD 0.65 Beta(a=357,b=191) Sullivan et al. 2011 

IS 0.52 Beta(a=355,b=323)  Sullivan et al. 2011 

T2D 0.66 Beta(a=5032,b=2548)  Sullivan et al. 2011 

BC 0.76 Beta(a=791,b=256)  Sullivan et al. 2011 

CC 0.67 Beta(a=150,b=73) Sullivan et al. 2011 

Health State Costs 

The model assigns individuals an annual healthcare cost based on their disease status (see Table 11) 

and accumulates costs for individuals with multiple diseases. A single lifetime cost of treatment for 

Breast Cancer and Colon Cancer is assigned in the first year (following Gc et al. 2019), while 

cardiovascular diseases have a higher first-year cost and lower costs in subsequent years. We use a 

simplifying assumption of constant annual Type 2 Diabetes costs over the remainder of an individual’s 

lifetime. The costs were based on data from a previous study (Gc et al., 2019) and were inflated to 

2020-21 prices using inflation indices from Jones and Burns (2021). 

Table 11 Health state costs in the first year and subsequent years with mean value for 
illustration, the distribution used in the model and the source of the data. 

Disease Mean Distribution Source 

First year  
IHD £6,187 Gamma (α=100, β=62) Ward et al. 2007 

IS £11,110 Gamma (α=100, β=111) Ward et al. 2007 

T2D £1,441 Gamma (α=100, β=14) Clarke et al. 2003 

BC* £13,566 Gamma (α=100, β=136) Madan et al. 2010 

CC* £18,830 Gamma (α=100, β=188) Tappenden et al. 2007 

Subsequent years  

IHD £221 Gamma (α=100, β=2) Ward et al. 2007 

IS £2,992 Gamma (α=100, β=30) Ward et al. 2007 

T2D £1,257 Gamma (α=100, β=13) Clarke et al. 2003 
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Discounting 

Both costs and quality of life estimates were discounted at a constant rate of 3.5% per year, but this 

rate was varied in sensitivity analysis to 1.5%. The total costs and quality-adjusted life years (QALYs) 

for the intervention and no intervention scenarios were calculated for the entire cohort each year, with 

half cycle correction applied, and averaged across the iterations of the probabilistic model. All costs and 

QALYs are reported per-capita.  

Incorporating Probabilistic Sensitivity Analysis and reporting results 

To incorporate parametric uncertainty in the model, probabilistic sensitivity analysis (PSA) was run on 

the baseline model and all one-way sensitivity analyses (OWSA) as recommended by NICE guidance 

(NICE, 2014). 5,000 iterations were run for the central scenario and 2,500 for each OWSA. The results 

are shown to be stable at around 2,500 PSA iterations in Appendix A5. The distributions around central 

values for costs and health state utilities are provided above, to be consistent with the study by Gc et 

al. The duration of BC and CC was sampled from a triangular distribution (8 - 12 years) with a mean of 

10 years. Health state specific mortality was sampled from a uniform distribution with a range 5% either 

side of the mean estimate from DISMOD. A dose response function was created each iteration using 

uncertainty around the estimates of coefficients provided by Kyu et al. 2016. Baseline disease 

incidences were sampled using the 95% confidence intervals from Vos et al. 2020 to inform the standard 

deviation around the mean value for each age. Physical activity percentiles at each age for the 

population were fixed.  

The results are reported by way of an incremental cost-effectiveness results table and visualised 

graphically using a cost-effectiveness plane (CE-Plane), a cost-effectiveness acceptability curve 

(CEAC) created using the open source ‘darkpeak’ package in R (Smith & Schneider, 2021c), and an 

economically justifiable cost analysis plot.  

Sensitivity analysis 

Sensitivity analyses were undertaken on the probabilistic model to estimate the impact of several 

methodological assumptions commonly made when building health economic models of physical 

activity. 

● To assess the effect of habit formation, the proportion of the population that retain their higher 

physical activity tracking for the remainder of the life-course was varied from 10% to 0% and 

100%.  

● To compare the use of an exponential decay rate of 50% annually with a linear decay rate of 

10 years for the intervention effect. We vary the assumption of multiplicative utilities with that 

of minimum utilities when combining disease utility decrements for multiple diseases.  
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● To understand the sensitivity of the model to the effectiveness of the intervention, the effect 

size was varied by 50% either side of the mean effect size (multiplying the entire individual level 

distribution by 0.5 and 1.5)  

● To determine the effect of discounting, the discount rate for costs & quality of life was varied 

from 3.5% to 1.5%. 

The table below shows the parameters used for each scenario. In each scenario only one parameter 

is edited from the central default model run at a time (One Way Sensitivity Analysis). 

Table 12 Scenarios run as One Way Sensitivity Analysis in the model. Each structural or 
parametric assumption varied in any of the scenarios is included as a column, with each 
scenario given a name (first column). 

Name Proporti
on 
develop
ing 
habit 

Decay 
method 

Utility 
method 

Discount 
Rate 

Number 
of 
iteration
s 

Populati
on 

Int Effect 
(METmin
/ week) 

Central (default) 
model run 

10% Exp Mult 3.5% 5,000 10,000 186 

0% develop habit 0% Exp Mult 3.5% 2,500 5,000 186 

100% develop habit 100% Exp Mult 3.5% 2,500 5,000 186 

Linear decay 10% Linear Mult 3.5% 2,500 5,000 186 

Minimum HRQoL 
method 

10% Exp Min 3.5% 2,500 5,000 186 

1.5% Discount Rate 10% Exp Mult 1.5% 2,500 5,000 186 

Lower Intervention 
Effect 

10% Exp Mult 3.5% 2,500 5,000 93 

Higher Intervention 
Effect 

10% Exp Mult 3.5% 2,500 5,000 279 

Mult = Multiplicative; Min = Minimum; Exp = Exponential 

The results of the OWSA are visualised on a CE-Plane and a tornado diagram, and sensitivity analysis 

on intervention effect was displayed graphically on the economically justifiable cost-analysis plot. 

Assessing external validity 

The model structure and mechanics were critiqued by experts throughout the development process. 

Furthermore, while it is difficult to quantitatively assess the external validity of the mechanics of a model 
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constructed ex-ante, it is feasible to compare some outcomes of the ‘No Intervention’ model run to 

where data exists. The incidence and prevalence of each disease in the model population was 

compared with the Global Burden of Disease 2019 Incidence and Prevalence estimates (Vos et al., 

2020), overall survival with life tables reported by the ONS (Sanders, 2017), and with estimates of 

Health-Related Quality of Life from Ara & Brazier (2011). 

Model code validation and documentation 

The model was programmed in the ‘R’ language (R core team, 2022). Where possible, the coding 

framework follows Alarid-Escudero et al. (2019) and is documented using Roxygen (Vidoni, 2022). The 

model code has been re-run independently by a third party to verify that the code achieves the same 

results, as recommended by the ISPOR-SMDM Modelling Good Research Practices Task Force (Eddy 

et al. 2012). The full model source code is available on GitHub at 

https://github.com/RobertASmith/PACEM. Data is available upon request. 

Results 

There are three main sections to the results. The first section, Model external validity, compares the No 

Intervention model outcomes to data where they do exist. The second, Model results, reports the results 

of the model run using the central estimates for parameters and the default structural assumptions. The 

final section, Sensitivity analyses, runs extensive sensitivity analysis on the parametric and structural 

assumptions of the model. 

Model external validity 

The external validity of the base model was assessed visually against external datasets for the 

incidence and prevalence of the diseases, mean health state utility, and overall survival, by age. Figure 

6 shows the mean and 95% CI for 5,000 iterations of the no-intervention scenario model run against 

the central and 95% CI of the Global Burden of Disease 2019 Incidence and Prevalence estimates (Vos 

et al., 2020). Incidence, as would be expected, exhibits a high degree of concordance, while prevalence, 

complicated by the incorporation of estimates of duration of disease and fatality rates, has lower levels 

of agreement.  
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Figure 6 Incidence and prevalence of diseases from age 11 to age 80 from the no-intervention 
model results (blue) compared to the Global Burden of Disease study 2019 for the general 
population in the UK (red). The mean is shown as a solid line, with 95% CI shown 

 

Two additional visuals are shown below. Figure 7 shows survival in the no-intervention model run 

compared to the ONS life tables (Sanders, 2017). The model overpredicts overall survival in the 

lifetables, likely because of a combination of factors: projections of disease prevalence in the baseline 

scenario differ slightly from that observed in the GBD study. Updates to the model methodology after 

the calculation of other cause mortality have resulted in a mismatch. This should be addressed in future 

work.  
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Figure 7 Survival from age 10 in the model results, with 95% credible intervals, compared to 
ONS Life Tables. 

 

Figure 8 shows the health-related quality of life for the general population from Ara and Brazier (2011), 

compared to health-related quality of life for those alive in the model. For Ara and Brazier, we use linear 

interpolation between the mid-points of the reported age-groups for the mean and 95% confidence 

interval to generate a central estimate and 95% CI ribbon for each individual age to make the two 

outputs comparable. This compares favourably with considerable overlap between credible intervals.    

Figure 8 Health Related Quality of Life for the general population (Based on Ara & Brazier 2011) 
compared to model results, from age 11 to 80. 

 



 

96 

 

Model results 

The results of the analysis, summarised in Table 13 below, estimates that the intervention would result 

in a discounted incremental cost of £45 per person and increase discounted QALYs by 0.001 per person 

over the remainder of the life-course. The Incremental Cost-Effectiveness Ratio, the cost per Quality 

Adjusted Life year gained, is £37,438, which is above the willingness to pay threshold of £20,000. 

Therefore, the incremental net benefit is negative, at £21 per person.  

Table 13 Incremental Cost-effectiveness Table for the Intervention versus the No Intervention 
strategy. 

Scenario Total cost (£)  Total QALYs Incremental cost 
(£) 

Incremental 
QALY 

 ICER 
(£) 

INB at 
£20,000/
QALY 

No Intervention 3,853.18 
(2,689.60; 
5,171.91) 

23.766 
(23.600; 
23.936) 

NA NA NA NA 

Intervention 3,898.62 
(2,741.18; 
5,210.51) 

23.767 
(23.600; 
23.937) 

45.44 (-29.30; 
119.89) 

0.001 (-
0.012; 
0.015) 

37,438 -21 (-
342; 
305) 

 

Cost-effectiveness Plane  

There is considerable uncertainty in the model results, as shown by the cost-effectiveness-plane in 

Figure 9 below which depicts all iterations of the PSA. The mean estimate falls in the north-west 

quadrant, meaning the intervention has positive incremental costs and QALYs. The point for the mean 

is to the north-west of the threshold shown by the dotted line, indicating that the central estimate of the 

incremental cost-effectiveness ratio is above £20,000. 
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Figure 9 Cost-effectiveness plane for the base case at price £57 showing incremental costs and 
Quality Adjusted Life Years (QALY) for the Intervention relative to No-intervention scenarios. 
The dotted line represents a £20,000 threshold for a willingness to pay 

 

Cost-effectiveness Acceptability Curve  

A cost-effectiveness acceptability curve is shown in Figure 10 below. The intervention has a lower than 

50% probability of being cost-effective at Willingness to Pay per QALY of £20,000, with the point at 

which the probability is greater than 50% corresponding to the ICER of £37k. An indication that the 

median resulting from the PSA results in the same finding as the mean. Furthermore, the less than 

100% probability of cost-effectiveness even at a price of zero shows the impact of high levels of overall 

uncertainty in the model, and the small and uncertain marginal effect of the intervention. 



 

98 

Figure 10 Cost-effectiveness Acceptability Curve showing the probability each strategy is 
Cost-Effective over a range of Willingness to Pay per QALY from £0 to £50,000. 

 

 

Economically Justifiable Cost Analysis  

Figure 11 shows the probability that the intervention is cost-effective for per capita costs between £0 

and £75. Three scenarios are shown: the central scenario with intervention effect of 186 METs/week, a 

scenario with intervention effects 50% below the central scenario (93 METs), and a scenario with effect 

at 50% above the central scenario (279 METs). The cost at which there is a greater than 50% probability 

of cost-effectiveness differs by effectiveness scenario: at approximately £36 in the central scenario, £14 

in the lower effectiveness scenario and £56 for the upper effectiveness scenario. Note that even at zero 

cost, because the model is probabilistic and the intervention effect is small and uncertain, the probability 

that the intervention is cost-effective is lower than 100%. 
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Figure 11 Probability that the intervention is cost-effective over a range of intervention costs 
from £0 to £75 at a willingness to pay per QALY of £20,000. Lines show, for three intervention 
effect sizes, the proportion of the PSA iterations for which the intervention is cost-effective. The 
dashed vertical line represents the price at which the intervention has a 50% probability (black 
horizontal dotted line) of being cost-effective. Note that the sensitivity analyses model runs (279 
and 93 METs) have a smaller population size and so greater variance than the default model run.

 

Sensitivity analyses 

The results of the OWSA, the methods for which are described in ‘Methods-Sensitivity analyses are 

visualised in the figures and tables below. Figure 12 shows the incremental cost and QALYs for each 

of these scenarios in comparison to a "No-intervention" group. Each iteration of the probabilistic 

sensitivity analysis for each scenario is represented by a small point coloured to represent the scenario. 

The mean result is shown by a large black triangle. In all cases there is considerable uncertainty about 

outcomes, reflected by a wide range of points. The assumption around long-term habit formation and 

discount rate is most influential to the cost-effectiveness estimates compared to the other sensitivity 

analyses. At an intervention cost of £57, the extent of habit formation had a significant impact on 

whether the intervention was considered cost-effective at a Willingness to Pay of £20,000 (as indicated 

by the dotted line), with the 100% habit formation resulting in the intervention becoming dominant 

(higher QALYs and lower cost). The choice of discount rate and the intervention effect size were also 

important. Smaller effects were seen for the choice of intervention effect decay function and HRQoL 

aggregation method.  
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Figure 12 Cost-Effectiveness Planes showing per capita incremental costs and Quality Adjusted 
Life Years (QALY) for each scenario relative to No Intervention on separate plots for each 
scenario. The dotted line represents a £20,000 threshold for a willingness to pay per QALY. 
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Table 14 Pairwise Cost-effectiveness Table for Intervention vs No Intervention  for 5 sensitivity 
analyses: Habit formation, Intervention effect decay Function, HRQoL aggregation method, 
annual discount rate on costs & QALYs and intervention effect size.  

Scenario Total cost 
(£)  

Total 
QALYs 

Incremental 
cost (£) 

Incremental 
QALY 

 ICER NMB (£20k) 

No Intervention 3,853 
(2,690; 
5,172) 

23.766  
(23.600; 
23.936) 

- - - - 

Intervention 
(Default) 

3,899 
(2,741; 
5,211) 

23.767 
(23.600; 
23.937) 

45  
(-29; 120) 

0.001 (-
0.012;  
0.015) 

37,438 -21 (-342; 
305) 

Habit Formation  

0% Habit 
(Pessimistic) 

3,923 
(2,712; 
5,177) 

23.765 
(23.598; 
23.933) 

51  
(-57; 161) 

0.001 (-
0.019;  
0.021) 

76,627 -38 (-511; 
435) 

100% Habit 
(Optimistic) 

3,862 
(2,666; 
5,092) 

23.772 
(23.606; 
23.939) 

-10 
(-125; 109) 

0.007 (-
0.013;  
0.028) 

Dominant 154 (-316; 
644) 

Intervention effect decay function  

10-year linear 
decay  

3,911 
(2,702; 
5,154) 

23.766 
(23.600; 
23.935) 

38  
(-70; 149) 

0.002 (-
0.018;  
0.023) 

18,854 2 (-464; 481) 

HRQoL aggregation method  

Minimum 3,917 
(2,706; 
5,166) 

23.788 
(23.627; 
23.950) 

45  
(-64; 157) 

0.001 (-
0.018; 
0.021) 

36,237 -20 (-474; 
428) 

Annual discount rate on costs & QALYs*  

1.5%  
*No intervention 

9,256 
(6,462; 
12,117) 

38.049 
(37.687; 
38.417) 

- - - - 

1.5% 
*Intervention 

9,288 
(6,497; 
12,149) 

38.052 
(37.688; 
38.413) 

32 
(-202; 265) 

0.003 (-
0.040;  
0.046) 

11,252 25 (-951; 
1,055) 

Intervention effect size 

93 METs 3,924 
(2,710; 
5,181) 

23.765 
(23.597; 
23.933) 

51  
(-57; 161) 

0.001 (-
0.019; 
0.021) 

83,014 -39 (-515; 
432) 

279 METs 3,910 
(2,702; 
5,153) 

23.766 
(23.599; 
23.934) 

38  
(-71; 143) 

0.002 (-
0.018; 
0.023) 

17,843 5 (-466; 477) 

*The No intervention costs and QALYs for sensitivity analyses differ for No-intervention when the discount rate is 

changed, therefore both intervention and no intervention results are shown. 
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The results above are depicted on an adapted tornado diagram, showing each scenario on a line 

rather than minimum and maximum values for each, to visualise how Net Monetary Benefit varies 

among the scenarios.  

Figure 13 Tornado diagram showing the Net Monetary Benefit for each scenario compared to 
the default scenario (vertical black line). The scenarios are ranked in order of variance from the 
default scenario Net Monetary Benefit. 

 

 

Discussion 

In a recent review of the methods used in models of physical activity, Candio et al. (2020) recommended 

that “A more structured and formal approach to assessing the implications of key structural assumptions 

on the economic decision should be a minimum requirement. In absence of data, a range of plausible 

scenarios should be explored, and results be presented as such, rather than just a base-case” (p.1160). 

While this is the case for all health economic models, the authors identified the lack of sensitivity 

analysis as being particularly acute in models of physical activity. This study has attempted to analyse 

the sensitivity of results to some of these key structural assumptions, in the context of an intervention 

which increases physical activity in children and adolescents resulting in habit formation for some. It 

builds on the work of Gc et al. 2019 in estimating long term costs and QALYs from interventions in 
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childhood and adolescence. The results of this study, which in the central scenario find a ICER of 

£37,438, which is higher than that of Gc et al. at £11,486. However, the two models have several 

differences, for example this model uses a new model structure (microsimulation model) which is better 

suited to capture individual level risks and physical activity trajectories, includes a proportion of the 

population for whom the effect did not decay, and includes an individual level non-linear dose response 

relationship between physical activity level and disease risk.  

One large difference between this model and that of Gc et al. (2019) is that this model does not include 

any direct effect of PA on HRQoL. The assumption made by Gc et al, that the observed relationship 

between PA and HRQoL is causal, is likely to have a large impact on model results since 1) the effects 

are immediate, occurring in adolescence, 2) the effect size is relatively large (a 4pp increase in HRQoL) 

and 3) it applies to the entire population with increased PA, not just those who go on to develop a 

disease. Unfortunately, no sensitivity analysis was undertaken on this direct effect, but it is likely that in 

the absence of this effect the results would have been considerably less favourable than the results of 

the analysis described in this paper. 

Sensitivity analysis - implications for model design 

The results of the analysis described above indicate that the model is particularly sensitive to the 

percentage of the population that maintain increased PA over the rest of their lifetime. When assuming 

100% of individuals form such habits (i.e. no decay in effectiveness), the cost-effectiveness of the 

intervention improved significantly compared to assuming 10% (the central case), making the 

intervention cost-saving and therefore dominant.  

A recent review found that 15 out of 25 PA models in the published literature assumed no decay in the 

intervention effect for 100% of the population (Candio, 2020). Of the 10 that did assume some decay, 

three performed sensitivity analysis on the rate of decay (Roux et al. 2008; 2015; Gc et al. 2019; Cobiac 

et al. 2009). Roux 2008 does not provide much information, simply stating that “varying the dissipation 

of the effect sizes of the interventions had a marginal impact“ (p584). Cobiac et al. 2009 and Gc et al. 

2019 both varied the rate of decay from their central estimates (50%) to 0% and 100% as sensitivity 

analysis for their analysis of the cost-effectiveness of multiple interventions. Between the two studies, 

decreasing the central estimate of decay to 0% resulted in one or more interventions becoming cost 

saving, and increasing it to 100% resulted in one or more interventions exceeding the cost-effectiveness 

threshold. Another model by Frew et al. (2012) includes a scenario in which physical activity is reduced 

after one year for half of those who had improved their physical activity levels in a trial of community 

based physical activity programs for adults, in this scenario the ICER increased from £400 to £1,840, 

implying a significant (x4) effect on incremental QALYs, albeit with limited impact on the decision due 

to the low initial ICER. The sensitivity of previously published models, and the model described in this 

chapter, to assumptions about habit formation and rate of decay suggests that other models which 
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assume no decay in intervention effect are likely overestimating the cost-effectiveness of PA 

interventions in adolescents. 

The model was also sensitive to the discount rate selected. This is because most costs and HRQoL 

benefits occur later in life. Decision makers should consider that many of the benefits of interventions 

for children will not be realised for a long time. A discount rate of 3.5% means that benefits accruing at 

age 60 for a 10-year-old are only worth a sixth of immediate benefits, potentially leading to short-sighted 

policymaking that prioritises ‘quick-fix’ interventions to temporarily increase physical activity while 

under-investing in interventions which change long term habit formation. 

The results were sensitive to both the cost and marginal effect of the intervention. Doubling the effect 

of the intervention meant that the justifiable cost could be increased by around 50%, while halving the 

effect size reduced the justifiable cost by around half. It is notable that even at zero cost the intervention 

was not certain to be cost-effective, since there is considerable uncertainty about both the benefits of 

the intervention and the intervention had a small marginal impact on costs and QALYs in the context of 

large uncertainties in many of the model parameters. 

The model results showed low sensitivity to the method of aggregating health-related quality of life and 

the choice of decay function (exponential or linear) of the intervention effect. The decay function may 

be of low significance for this model because the benefits of physical activity occur far in the future, 

unlike other physical activity models which may be more sensitive to this parameter. 

Strengths 

There are several strengths of the underlying model that make it a valuable contribution to the field. 

Firstly, the model is a microsimulation that captures many individual level dynamics that Markov models 

cannot, in particular capturing duration of time in each of five independent health disease states 

simultaneously without the need for a large number of tunnel health states as in many previous studies 

(Gulliford et al. 2014). In this regard, it is a ‘cleaner’ modelling method than many of the previous models 

created using a Markov structure more common for pharmacoeconomic modelling. 

In the absence of a whole-of-life longitudinal study, the approach taken here estimates the long-term 

impact of physical activity in a new way, capturing both the long-term trajectory of physical activity and 

the potential for habit formation and intervention effect decay over the life course. This is a simplified 

version of the method used in the Population Health Model (POHEM) developed by ‘Statistics Canada’. 

This is a relatively complex problem that has been simplified crudely in many studies in the past (Candio 

et al., 2020). This study therefore aims to abide by the recommendations by Candio et al. (2020) that 

“Natural trends in PA levels should be used as baseline data for comparison”, and that “Assumptions 

regarding time lags and decay of intervention effects over time must also be made explicit” . 



 

105 

The model incorporates a non-linear dose-response relationship between physical activity and multiple 

diseases over the entire life-course. This allows for a more externally valid representation of the 

relationship between physical activity and disease outcomes. The model also incorporates a 

consideration of both decaying intervention effect, risks of disease and death based on physical activity 

history, and estimates health state utilities given combinations of diseases and other conditions not 

included in the model but assumed constant in the population.  

As a result of these methodological improvements, the base model has been seen to result in similar 

incidence, prevalence, and health state utilities to that observed in epidemiological studies (Vos et al., 

2020). Many earlier health economic models did not undertake this comparison, making it hard to 

determine their external validity. While this does not ensure that the marginal effect is accurate, it does 

at least indicate that effect sizes are being calculated on the correct disease burden in the absence of 

the intervention. 

The analysis also has several strengths. Firstly, each structural assumption is evaluated within a 

probabilistic model which gives some indication of the impact on both the mean and the variance in 

results. Multiple structural assumptions are compared, and their impact contextualised against each 

other. Finally, all model code and outputs are made openly available for others to run.  

Overall, the model and analysis meet the minimum standards identified by Candio et al. (2020) as 

limitations in many other models; modelling of downstream disease risks, using natural trends in PA as 

the baseline for comparison, explicit assumptions around decay of intervention effect, extensive 

scenario analysis and individual level differences in risks and outcomes. 

Limitations  

The current study has several limitations that should be considered when interpreting the findings. 

Firstly, the study only includes a cohort of a single age, which is routine, but some interventions may 

be targeted towards broader age-cohorts (O’Mahony et al. 2015). Secondly, while the approach taken 

to model long-term trajectories of physical activity is simple to understand and generally maintains 

credible population physical activity distributions at each age, it fails to account for individual variability 

in physical activity levels throughout the lifespan and does not account for cohort effects.  

The model only has a time horizon up until age 80. As a result, the survival benefit of physical activity 

may not be fully incorporated into the model if those who are more active have better long-term survival 

past age 80. It is not clear how this will influence the model results, since, as discussed in Mytton et al. 

(2017) there are substantial healthcare cost increases associated with increased longevity which may 

result in a longer time horizon reducing the cost-effectiveness of the intervention.   

Some diseases which are likely to be influenced by physical activity, discussed in Chapter 1, were not 

included in the final model (Warburton et al. 2017). Including mental health conditions and injuries in 
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childhood and adolescence may impact the model results substantially, as might incorporation of 

Dementia and Alzheimer’s in older age - although it is worth noting that it is not always clear in what 

direction since increased longevity due to physical activity may greatly increase the cost of these 

conditions (Mytton et al. 2017). However, the model is programmed in such a way as to easily 

incorporate new conditions, so the hope is that others may be interested in building upon the methods 

described here. Additionally, the model does not include feedback loops between diseases and physical 

activity, or incorporation of competing risks between diseases, a common limitation of models in the 

field (Candio et al., 2020).  

Furthermore, estimating the HRQoL, risks of death, costs, and other outcomes for combinations of 

diseases is fraught with challenges. We use the DISMOD calculator to estimate the disease specific 

mortality rates, but this assumes that the entire difference in mortality rates by disease status can be 

attributed to the disease. We have generally assumed independence between diseases with 

multiplicative risks and have combined HRQoL for comorbidities multiplicatively as per the NICE 

reference case (NICE, 2014). Child specific HRQoL are also not included in the model, since the bulk 

of the quality-of-life burden occurs in later life. Direct impacts of physical activity on HRQoL and 

healthcare costs were excluded, assuming to only occur via the diseases included, which may have led 

to an underestimate of the benefits of physical activity. However, this decision was made to avoid 

overestimating the benefits (via double counting) as is likely the case in previous studies. Costings are 

aggregated across diseases with each disease treated independently, and only allowed to vary in the 

first year versus subsequent years, rather than including information about trajectories of long-term 

costs, which may be important for diseases such as Type 2 Diabetes where costs are expected to 

change over time.  

Finally, the model is slow to run, which makes it computationally challenging to perform additional 

sensitivity analysis and limits its usability in a user-interface with stakeholders. 

Future Research 

To address the limitations of the current study, future research could incorporate more diseases into 

the model, in particular depression, anxiety and injuries. Incorporating some of the feedback loops 

between different conditions included in  previous models of diabetes (Breeze et al. 2017), such as 

increased risk of IHD after T2D, would greatly improve the external validity of the model, as would the 

incorporation of methods to calibrate disease fatality rates to better fit to observed disease prevalence. 

Additionally, future research could attempt to incorporate statistical analysis of HRQoL that includes 

covariates for age, sex, physical activity and comorbidities, and to include child specific HRQoL and 

cost estimates. Finally, efforts could be made to optimise the model to make it faster to run in order to 

be able to more rapidly perform additional sensitivity analysis and to be able to run it in real-time for 

stakeholders, considerably improving the usability of the model. 
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Implications for policy 

Many of the benefits of increased physical activity, such as improvements in health-related quality of 

life (HRQoL) and reductions in healthcare costs, are disproportionately accrued in later life. This means 

that the largest effects, in terms of healthcare costs and HRQoL, of any changes in social norms and 

behaviours in young people over the past decade will not be observed for many years. Policymakers 

should take a long-term view when making investments aimed at increasing physical activity in younger 

populations. This is important not only to improve outcomes observed in older populations now, but also 

to mitigate the potential negative impact of changes in behaviour currently being observed in young 

people now, but which won’t be visible as changes in healthcare costs and quality of life for many years.  

When interpreting the results from health economic models of physical activity, decision makers should 

be particularly sensitive to assumptions around habit formation and the rate at which intervention effects 

decay. Models that assume no decay in intervention effect for any proportion of the population are likely 

to significantly overestimate the effect of interventions, particularly when longer term studies show that 

behaviour is often not maintained. Since investments in interventions that have low decay rates and 

high probabilities of long-term habit formation are more likely to be cost-effective, identifying activities 

that can be maintained or adapted over the life course should be a priority. These activities may differ 

by sex, socioeconomic status, and ethnicity. 

Conclusions 

This study has identified that several structural assumptions commonly made in health economic 

models of interventions aimed at increasing physical activity in children and young people significantly 

affect the outcomes of cost-effectiveness analyses. Most importantly, assumptions around intervention 

effect decay and habit formation are crucial. Undertaking sensitivity analyses within modelling reports 

and allowing stakeholders to vary these structural assumptions would help improve the robustness of 

model results. 
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Part 4 - New methods to improve 

usability, efficiency, and transparency 

of  health economic models. 
This section of the thesis focuses on how new methods in data science and computing can enhance 

the usability, transparency, and efficiency of the development and updating of health economic models.  

Chapter 7 describes web-based user interfaces for health economic models and outlines their value, 

and the necessary skills for building them. It includes a peer-reviewed tutorial paper that has been used 

by various health economists, including those working with the World Health Organization, UK Health 

Security Agency, and several pharmaceutical companies, to guide the development of user interfaces 

(Smith & Schneider, 2020a). It also includes a discussion of a case study that applied these methods 

to make a geospatial public health decision model more accessible to decision makers, illustrating the 

value of web-based user-interfaces in helping engage and empower decision-makers (Smith, 

Schneider, Bullas et al. 2020b; Schneider, Smith, Bullas et al. 2020). 

Chapter 8 expands on the previous chapter by proposing a method for the automation of health 

economic model updates that rely on sensitive data, while allowing the data-owner (e.g. a company, 

NHS trust or government department) to share data. It includes a peer-reviewed tutorial paper that 

provides a step-by-step guide to the code of an open-source prototype application (Smith, Schneider & 

Mohammed, 2022a). The method can be applied to any situation in which a health economic evaluation 

needs to be updated regularly and is not specific to  models of physical activity interventions. However, 

a discussion of potential use cases specifically for models of physical activity is included in Chapter 8. 

This method has been  presented at the EARL conference in London, R-HTA in Oxford, R-HTA-LMIC 

(Remote) and short courses provided to health economics teams within pharmaceutical companies, 

market access consultancies and a workshop organised with NICE. Stakeholders have suggested it is 

likely to be most useful where data is updated regularly, and where decisions have to be made quickly, 

with obvious contenders being infectious diseases. There was also a recognition that the method 

complements the increasing use of real-world evidence in health economics. However, it has not yet 

been applied in a real-world project. 
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Chapter 7. On the creation of web application user 

interfaces for health economic and public health 

models. 

“Authors of modelling papers can do things to make their work substantially more useful for policy. The 

best is to provide an interactive interface, where if the policymaker does not agree with the starting 

assumptions of the model, they can change them.” (Whitty, 2015) 

Health economic decision models play a crucial role in decision making by those responsible for 

allocating healthcare resources and determining public health policy  (NICE, 2014). However, as 

discussed in previous chapters, there is often a trade-off between the usability of a model, how easy it 

is for decision makers to use the model to improve their understanding and inform their decision, and 

the external validity of a model, the extent to which the model attempts to capture the complexities of 

the real world. In a previous chapter, I introduced the Production Possibility Frontier (PPF) to describe 

this trade-off and identified several factors that may result in the PPF shifting outwards. One of the 

factors identified was  “improvements in technology which improve the user-friendliness of the model's 

interface”. This chapter is about one of the technological advances in data science which can help to 

mitigate this trade-off by making it easier to create user-friendly interfaces for health economic 

evaluation models (Chang et al. 2022).  

An interactive interface for a health economic model is a tool that allows users to interact with the model, 

input data, and view results. The design of a user interface can vary depending on the specific needs 

of the model and the intended user group, but some common elements include:  

● Input fields to allow users to enter data into the model, such as patient demographics, treatment 

costs, and outcomes data. 

● Output displays to show the results of the model, such as cost-effectiveness ratios or budget 

impact estimates. These may be presented in the form of tables, graphs, or other visualisations. 

● Navigation to allow users to move between different sections of the model. 

● Help and documentation to help users understand and use the model, such as a user manual 

or online help pages. 

The result is a user-friendly and intuitive interface which enables users to easily input data, adjust 

parameters, view the results, and ‘play with the model’.  

There are many benefits of web-based user interfaces for health economic models as compared to 

user-interfaces contained in spreadsheet software: 
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● Accessibility: Web-based interfaces can be accessed from any device with an internet 

connection, which makes it easier for users to access the model from anywhere (Chang et al., 

2022).  

● Collaboration: Web-based interfaces allow multiple users to access and collaborate with the 

model simultaneously, which can be useful for team-based projects, or for expert elicitation 

(Williams et al. 2021). 

● Ease of use: Web-based interfaces often have a user-friendly design, which makes it easier for 

users to navigate and use the model, even if they have little technical expertise.  

● Scalability: Web-based interfaces can handle large numbers of users and data, making them 

well-suited for large-scale projects. There is a significant administrative burden of sharing large 

spreadsheet files between different groups of users who must all have that spreadsheet 

software installed that is alleviated by developing a web-based interface. 

● Security: Web-based interfaces can be configured to have secure login and data protection 

features, which can help to ensure the confidentiality of sensitive data and/or intellectual 

property. 

● Version control: Web-based user interfaces can be easily updated and modified remotely, 

which can be useful for making improvements or fixing errors in the model. These updates can 

be made quickly and efficiently, without the need to distribute new software to users. This 

ensures that the model being used is the most up-to-date version. 

● Data updates: the data used by web-based models are typically stored on remote servers which 

can be kept externally valid, up-to-date, and secure. This can be especially important for models 

that rely on data that changes frequently, such as data on treatment costs or effectiveness, or 

data that is commercially sensitive (Hart et al. 2020). 

● Computing power: web-based user interfaces run model code on a remote server with more 

powerful hardware and processing capabilities than that of personal computers. Incerti et al. 

2019 note that “methodological and computational advances now allow for models that are 

increasingly sophisticated and realistic but cannot be reasonably computed in Excel” (p.575).  

● Tailored analysis: As discussed by Incerti et al. (2019) “decision makers can tailor analyses to 

their local population by modifying the characteristics of the target population or using 

parameters based on data relevant to the local setting”. This can be much more efficient than 

building a model for each setting. 

● Transparency: Health economic models are typically presented in reports that include results 

and sensitivity analysis. However, these reports are static and do not allow decision makers to 

interact with the model or update inputs (Cohen & Wong, 2017). User interfaces can enable 

decision makers to change inputs and re-run sensitivity analysis, empowering them to engage 

with the model and better understand the impact of different assumptions. This is particularly 

important in public health, where there is often more uncertainty and heterogeneity in methods, 

and subgroup analysis is more regularly applied. 
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However, to build a web-based user interface for a health economic model, the following skills may be 

necessary:  

● Health economics: A strong understanding of health economics and the specific need of the 

model is essential to design an effective and user-friendly user interface. 

● Programming: Building a web-based user interface for a health economic model typically 

requires that the model is built in a programming language such as R or Python. Even those in 

the industry with experience “acknowledge that there are difficulties associated with learning a 

script-based language for modelling” (Baio & Heath, 2017). In addition, expertise is needed with 

building user-interfaces with software packages such as shiny (for R) or Dash (for Python) as 

well as programming languages such as HTML, CSS, and JavaScript if further customisation 

is required. 

● Data management: The user interface may need to handle large amounts of data, so skills in 

database management and data manipulation may be necessary. 

● User experience design: Building a user-friendly and intuitive user interface requires a strong 

understanding of user experience (UX) design principles. 

● Project management: Building a web-based user interface may involve coordinating with a team 

of developers, designers, and other stakeholders, so project management skills may be 

necessary. 

Given that each of these skill sets require years of training it is unlikely that all will be undertaken by a 

single individual, therefore project management skills may also be useful in coordinating the 

development process with multiple team members. Given that the health economic model is the core 

of the work, and typically requires the longest training of any of the skillsets (typically an MSc or PhD), 

and is arguably in shortest supply (Kaambwa & Frew, 2013), the most efficient way to upskill the industry 

is likely to give health economists the broad skillset to manage the process of building web-based user-

interfaces for their models - drawing on the expertise of others where required.  

One of the barriers to the proliferation of web-based user interfaces for health economic models was a 

lack of instructional material to provide experienced health economists with the necessary skills to 

deploy such applications. To address this issue, I worked with colleague Paul Schneider to create a 

tutorial paper on using the shiny software package in R (Smith & Schneider, 2020a) to build and deploy 

web-based user interfaces for health economic evaluation models. The paper, which has been 

published in an open access journal with publicly available reviewer reports, is the first to outline the 

method for constructing a user interface for cost-effectiveness analysis and to provide all the necessary 

code open source. The tutorial paper describes a method in which a health economic decision model, 

including probabilistic sensitivity analysis, is wrapped into a single function in R and controlled by 

numeric, slider, and drop-down inputs in the user interface. When the "run-model" button is clicked, the 

model function is executed on the server side, with user inputs as parameter values. The outputs of the 

model, such as plots and tables, are then displayed to the user.  
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While the paper is the first to outline the method of creating a web-based application for a health 

economic model, previous papers have described the functionality of applications to run Network Meta-

Analysis (Owen et al. 2019; Baio et al. 2017) and Value of Information Analysis (Strong et al. 2015). A 

recently published paper also outlines the core functionality and provides a case for the use of R-Shiny 

in health economics more widely (Hart et al. 2020). 

A PDF of the published tutorial paper is provided below, with a wider set of tutorial materials available 

on an online repository linked in the paper, with the aim of making these materials easy to access, 

which is essential, especially for countries where fewer opportunities for formal taught courses exist 

(Frew et al. 2018) . Since the tutorial paper was published, the method has been used to build and 

deploy applications for various organisations, including for the World Health Organisation Department 

of Reproductive & Maternal Health (WHO, 2022), parkrunUK (Smith et al. 2021b; Schneider et al. 2020; 

Smith et al. 2020b), the UK Health Security Agency and several companies in the pharmaceutical 

industry. 

The work with parkrun illustrates the value to decision-makers of access to a well-designed UI for a 

model. A body of work undertaken with colleagues from ScHARR and Sheffield Hallam in 2020 led to 

the development of a model which was used to identify the optimal locations for new parkrun events in 

England (Smith et al. 2021b; Schneider et al. 2020; Smith et al. 2020b). However, the results were hard 

to articulate in a written report for laypersons due to the quantity of data input into and output from the 

model, and the complexity of the modelling methods. Through the deployment of a web-based user 

interface, currently hosted by the University of Sheffield (http://iol-map.shef.ac.uk/), the team at parkrun 

were able to better engage with the model. The web-app was used by the parkrunUK team to identify 

potential sites, which were then visited by volunteers on the ground to assess practical suitability. Sites 

which were deemed suitable were then designated as target sites and local links used to encourage 

the establishment of a new event. The value of this tool was outlined by parkrun in their blog, and I 

joined the parkrun podcast to discuss the methods (Parkrun Blog, 2020). Since none of the parkrun 

team had experience programming in R it was unlikely that they would have been able to benefit from 

the work in the absence of the web-based user-interface (UI). The final step of developing the UI, which 

took significantly less time than the conceptualisation of the problem or the development of the statistical 

model, meant that the work was able to directly engage decision makers and therefore inform policy. 

The argument, made repeatedly throughout this thesis, is that alongside methodological improvements 

to the underlying model, development of UIs can help build confidence in models by allowing users to 

adapt parameters based on new or different information, or to better understand the sensitivity of 

findings to those parameters. This approach simplifies complex statistical analysis, making it easily 

comprehensible for decision-makers who may not possess the necessary time or expertise to conduct 

such analysis independently. The next section, in the form of a published paper, provides an overview 

of how to build user-interfaces using open-source software in the R software environment. 

  

http://iol-map.shef.ac.uk/
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A tutorial on the creation of user interfaces for health economic 

models 

This section of the chapter contains a publication which outlines a method by which user-interfaces can 

be developed to improve the transparency and usability of health economic evaluation models. 

This article was published open access following the requirement of the Wellcome Trust who financially 

supported this work. The conditions of the open access publishing allow use of the final published PDF, 

original submission or accepted manuscript in this thesis (including in any electronic institutional 

repository or database). The original content has not been edited. A full set of peer reviewer comments 

for the entire history of the article can be found online at the link above. All code and data has been 

provided open source. 

https://wellcomeopenresearch.org/articles/5-69 

The paper in the chapter was written with a single co-author, Dr Paul Schneider. Robert Smith is the 

lead and corresponding author. Robert and Paul conceptualised the paper together in 2019, while 

working with the WHO on a project to improve the usability of an economic model of Female Genital 

Mutilation reduction strategies, while Robert was working on the HEAT walking and cycling model, and 

when working together with parkrun to optimise locations of events. Since the paper was more aligned 

to Robert’s research, he led the process of developing the concept into a tutorial paper and obtaining 

input from external stakeholders via a workshop, one to one discussion with experts at UCL and Imperial 

College London, and submission and responses to reviewers in Wellcome Open Research and 

therefore was named as first author. Paul provided comments and suggestions throughout.

https://wellcomeopenresearch.org/articles/5-69
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Abstract 
Health economic evaluation models have traditionally been built in 
Microsoft Excel, but more sophisticated tools are increasingly being 
used as model complexity and computational requirements increase. 
Of all the programming languages, R is most popular amongst health 
economists because it has a plethora of user created packages and is 
highly flexible. However, even with an integrated development 
environment such as R Studio, R lacks a simple point and click user 
interface and therefore requires some programming ability. This 
might make the switch from Microsoft Excel to R seem daunting, and 
it might make it difficult to directly communicate results with 
decisions makers and other stakeholders. 
 
The R package Shiny has the potential to resolve this limitation. It 
allows programmers to embed health economic models developed in 
R into interactive web browser based user interfaces. Users can 
specify their own assumptions about model parameters and run 
different scenario analyses, which, in the case of regular a Markov 
model, can be computed within seconds. This paper provides a 
tutorial on how to wrap a health economic model built in R into a 
Shiny application. We use a four-state Markov model developed by the 
Decision Analysis in R for Technologies in Health (DARTH) group as a 
case-study to demonstrate main principles and basic functionality. 
 
A more extensive tutorial, all code, and data are provided in a GitHub 
repository.
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            Amendments from Version 1

The changes made are all in response to the reviewers suggestions. For each comment by the reviewers we have 
responded with the exact change (see responses to reviewer comments below).

None of these changes change the fundamental teaching strategy of the tutorial, or the reasons why this tutorial paper 
was published, they are just relatively minor changes to the text used to clarify things which the reviewers found more 
difficult to follow, or felt we should have explained differently. 

In two cases this resulted in changes to large chunks of text.

Running the model for a specific set of PSA inputs   - We provide more detail on the way in which the f_MM_
sicksicker function works. This was in response to a request by reviewer 2 to do this.

Discussion – we add in more clarity about the limitations and strengths of the apps in response to the reviewers (in 
blue). This is in response to a request by reviewer 1 to do this.

Any further responses from the reviewers can be found at the end of the article

REVISED

Introduction
As the complexity of health economic decision models increase, there is growing recognition of the advantages of 
using high level programming languages (e.g. R, Python, C++, Julia) to support statistical analysis. Depending on 
the model that is being used, Microsoft Excel can be relatively slow. Certain types of models (e.g. individual-level 
simulations) can take a very long time to run or become computationally infeasible, and some essential statistical  
methods can hardly be implemented at all (e.g. survival modelling, network meta-analysis, value of sample  
information), or rely on exporting results from other programs (e.g. R, STATA, WinBUGs).

Of all the high level programming languages, R is the most popular amongst health economists1. R is open source 
and supported by a large community of statisticians, data scientists and health economists. There are extensive  
collections of (mostly free) online resources, including packages, tutorials, courses, and guidelines. Chunks of 
code, model functions, and entire models are shared by numerous authors, which allow R users to quickly adopt  
and adapt methods and code created by others. Importantly for the UK, R is also currently the only programming 
environment accepted by NICE for HTA submissions, the alternative submission formats Excel, DATA, Treeage, and 
WinBUGs are all software applications2.

Despite the many strengths of the script based approach (e.g R) to decision modelling, an important limitation has  
been the lack of an easy-to-understand user-interface, which would be useful as it “facilitates the development and 
communication of the model structure” (p.743)1. While it is common practice for ’spreadsheet models’ to have a  
structured front tab, which allows decision makers to manipulate model assumptions and change parameters to assess 
their impact on the results, up until recently, R models had to be adapted within script files or command lines.

Released in 2012, Shiny is an R-package that can be used to create a graphical, web browser based interface. The  
result looks like a website, and allows users to interact with underlying R models without the need to manipulate 
the source code3. Shiny has already been widely adopted in many different areas and by various organisations to  
present the results of statistical analysis4. Within health economics Shiny is currently being used to conduct network 
meta analysis5 and value of information analysis6,7.

Using Shiny, it is possible to create flexible user interfaces that allow users to specify different assumptions,  
change parameters, run underlying R code and visualise results. The primary benefit of this is that it makes script 
based computer models accessible to those with no programming knowledge - opening models up to critical  
inquiry from decision makers and other stakeholders8. Other benefits come from leveraging the power of R’s  
many publicly available packages; for example, allowing for publication quality graphs and tables to be  
downloaded, user specific data-files to be uploaded, open-access data to be automatically updated and,  
perhaps most importantly, to efficiently run comprehensive probabilistic sensitivity analyses in a fraction of 
the time that it would take in Microsoft Excel. Shiny web applications for R health economic decision models  
seem particularly useful in cases where model parameters are highly uncertain or unknown, and where  
analysis is conducted with heterogeneous assumptions (e.g. for different populations). Examples of well-designed 
shiny applications include, for example, the the Innovation and Value Initiative’s open-source rheumatoid arthritis  
individual patient simulation model, Bresmed’s ‘IntRface’ application, and the SHARP CKD-CVD outcomes  
model9–11.

While, from a transparency perspective, it is preferable that models constructed in R are made open-access to  
improve replicability and collaboration, it is not a requirement12. Sensitive and proprietary data and/or models can  
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be shared internally, or through password-protected web applications, negating the need to email zipped folders.  
Once an R model and a Shiny application have been created, they can also be easily adapted, making it pos-
sible to quickly update the model when new information becomes available. Several authors have pos-
tulated that there is considerable potential in using Shiny to support and improve health economic deci-
sion making. Incerti et al. (2019) identified web applications as being an essential part of modelling,  
stating that they “believe that the future of cost-effectiveness modeling lies in web apps, in which graphical  
interfaces are used to run script-based models” (p.577)13. Similarly, Baio and Heath (2017) predicted that R Shiny 
web apps will be the “future of applied statistical modelling, particularly for cost-effectiveness analysis” (p.e5)14.  
Despite these optimistic prognoses, adoption of R in health economics has been slow and the use of Shiny seems 
to have been limited to only a few cases. A reason for this might be the lack of accessible tutorials tailored  
towards an economic modeller audience.

Here, we provide a simple example of a Shiny web app, using a general four-state Markov model. The model is 
based on the ’Sick-Sicker model’, which has been described in detail in previous publications15,16 and in open 
source teaching materials by the DARTH workgroup17. The model was slightly adapted to implement probabilistic  
sensitivity analysis. This paper aims to provide a tutorial, designed specifically for those familiar with decision  
modelling in R, to create web-based user interfaces for R models using R Shiny.

Methods
While the focus of this tutorial is on the application of Shiny for health economic models, below we provide a brief 
overview of the “Sick-Sicker model”. For further details, readers are encouraged to consult previous publications by 
the DARTH group15,16,18 and the DARTH group website17.

The Sick-Sicker model is a four-state (Healthy, Sick, Sicker or Dead) time-independent Markov model. The  
cohort progresses through the model in cycles of equal duration, with the proportion of those in each health state 
in the next cycle being dependant on the proportion in each health state in the current cycle and a time constant  
transition probability matrix.

The analysis incorporates probabilistic sensitivity analysis (PSA) by creating a data-frame of PSA inputs (one 
row being one set of model inputs) based on cost, utility and state transition probability distributions using  
the function f_gen_psa and then running the model for each set of PSA inputs using the model function  
f_MM_sicksicker.We therefore begin by describing the two functions f_gen_psa and f_MM_sicksicker in more  
detail before moving on to demonstrate how to create a user-interface. In this tutorial, we follow Alarid-Escudero  
et al.’s (2019) coding framework and add to it the prefix ‘f_’ to denominate functions15.

Functions
The f_gen_psa function (see the file f_gen_psa.R in the open access repository: https://doi.org/10.5281/ 
zenodo.372705219) returns a data-frame of probabilistic sensitivity analysis inputs: transition probabilities between  
health states using a beta distribution, hazard rates using a log-normal distribution, costs using a gamma distribu-
tion and utilities using a truncnormal distribution. It relies on two inputs, the number of simulations (PSA inputs),  
and the cost (which takes a fixed value). We set the defaults to 1000 and 50, respectively.

Running the model for a specific set of PSA inputs
The function f_MM_sicksicker (see the file f_MM_sicksicker in the open access repository: https://doi.org/10.5281/
zenodo.3727052) makes use of the with function, which applies an expression (in this case the rest of the code) to a 
data-set (in this case params, which will be a row of PSA inputs). 

The function first calculates transition probabilities from each health state to each health state and uses these to fill 
a transition probability matrix (m_P). It then creates a matrix for the markov trace (m_TR) which has t+1 nrows and  
four columns (one for each health state). The ‘PROCESS’ part of the code then ‘loops’ through the markov  
model, using matrix multiplication (elicited using %*% in R), iteratively computing, for each period, the proportion  
of the population that is in each state. 

In the ‘OUTPUT’ section of the code the markov trace (m_TR) is multiplied (again using matrix multiplication) with 
vectors of health state utilities (e.g. v_u_trt) and costs (e.g. v_c_trt), giving a vector of total costs and utilities in  
each time interval. These vectors are then discounted using a discount weight vector (e.g. v_dwe & v_dwe) to arrive 
at a single cost/QALY value. The resulting total discounted costs and QALY estimates for the treatment and the  
no-treatment group then are combined into a vector and returned from the function. In this simple example,  
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treatment only influences utilities and costs, not transition probabilities. For further details on the underlying  
model, we refer to the published source code19

Creating the model wrapper
When using a web application,  it is likely that the user will want to be able to change parameter inputs and rerun 
the model. In order to make this simple, we recommend wrapping the entire model into a function. We call this  
function f_wrapper, using the prefix f_ to denote that this is a function.

The wrapper function has as its inputs all the parameters that we may wish to vary using R-Shiny. We set the 
default values to those of the base model in any report/publication. The model then generates PSA inputs using the  
f_gen_psa function, creates an empty table of results, and runs the model for each set of PSA inputs (a row  
from df_psa) in turn. The function then returns the results in the form of a data-frame with n=5 columns and  
n=psa rows. The columns contain the costs and QALYs for treatment and no treatment for each PSA run, as well as an 
ICER for that PSA run.

Model wrapper function

f_wrapper <— function(

#—— User adjustable inputs ——#

# age at baseline
n_age_init = 25,
# maximum age of follow up
n_age_max  = 110,
# discount rate for costs and QALYS
d_r     = 0.035,
# number of simulations
n_sim   = 1000,
# cost of intervention treatment in states sick and sicker
c_Trt   = 50

 ){

#—— Unadjustable inputs ——#

# number of cycles
n_t <— n_age_max — n_age_init
# the 4 health states of the model:
v_n <— c("H" , "S1" , "S2" , "D")
# number of health states
n_states <— length(v_n)

#—— Create PSA Inputs ——#

df_psa <— f_gen_psa(n_sim = n_sim,
                    c_Trt =  c_Trt)

#—— Run PSA ——#

# Initialize matrix of results outcomes
m_out <— matrix(NaN,
                nrow = n_sim,
                ncol = 5,
                dimnames = list(1:n_sim,
                c("Cost_NoTrt", "Cost_Trt",
                  "QALY_NoTrt", "QALY_Trt",
                  "ICER")))
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Figure 1. Diagram depicting how the Sick-Sicker app is structured.

# run model for each row of PSA inputs
for(i in 1:n_sim){

 # store results in row of results matrix
 m_out[i,] <— f_MM_sicksicker(df_psa[i, ])

  } # close model loop
#—— Return results ——#

# convert matrix to dataframe (for plots)
 df_out <— as.data.frame(m_out)

# output the dataframe from the function
 return(df_out)
  
 } # end of function

Integrating into R-Shiny
The next step is to integrate the model function into a Shiny web-app. This is done within a single R file, which we  
call app.R. This can be found within the GitHub repository here .

The app.R script has three main parts, each are addressed in turn below:

•     set-up (getting everything ready so the user-interface and server can be created)

•     user interface (what people will see)

•     server (R code running in the background)

Figure 1 depicts the relationship between the server and the user interface within the Shiny application. On a  
conceptual level, the user interface has three components: Shiny inputs (objects that the user can specify, e.g. by  
inputting a number), Shiny outputs (objects created on the server side, e.g. plots and tables), and non-interactive  
features (any fixed elements, such as texts, headings, logos etc.). The server works almost like a normal R session. 
It runs various R operations, including the model function, which takes non-Shiny inputs (defined only on the server  
side) and some Shiny inputs from the user interface. The results are then sent to the user interface and displayed as 
Shiny outputs.
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Initial set-up
The set-up is relatively simple. First, load the R-Shiny package from your library so that you can use the shinyApp 
function. The next step is to use the source function in baseR to run the script that creates the f_wrapper function, being 
careful to ensure your relative path is correct (’./wrapper.R’ should work if the wrapper.R file is in the same folder as 
the app.R file).

Code initialization (within app.R)

#  install 'shiny' if haven't already.
#  # install.packages("shiny")  # necessary if you don’t already have the function 
'shiny' installed.

# we need the function shiny installed, this loads it from the library.
library(shiny)

#  source the wrapper function.
  source("./wrapper.R")

Creating the user interface function
The user interface is extremely flexible, we show the code for a very simple structure (fluidpage) with a sidebar  
containing inputs and a main panel containing outputs. We have done very little formatting in order to minimize 
the quantity of code while maintaining basic functionality. In order to get an aesthetically pleasing application, we  
recommend much more sophisticated formatting, relying on CSS, HTML and Javascript.

The example user interface displayed in Figure 2 and online on this website. The user interface is a fluidpage in  
a sidebarLayout (other types of layout are available). The sidebarLayout is made up of two components, a titlepanel 
and a sidebar layout display (which itself is split into a sidebar and a main panel). This is a basic structure used for 
teaching purposes, there are a plethora of templates available online.

The title panel contains the title “Sick Sicker Model in Shiny”, the sidebar panel contains two numeric inputs and 
a slider input (“Treatment Cost”, “PSA runs”, “Initial Age”) and an action button (“Run / update model”). The  
values of the inputs have ID tags (names), which are recognised and used by the server function, we denote these 
with the prefix “SI” to indicate they are ’Shiny Input’ objects (SI_c_Trt, SI_n_sim, SI_n_age_init). The action 
button also has an ID, this is not an input into the model wrapper f_wrapper so we leave out the SI and call  
it run_model.

Figure 2. Screen-print of Sick-Sicker model user interface.
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The main panel contains two objects that have been output from the server: tableOutput(“SO_icer_table”) is a table 
of results, and plotOutput(“SO_CE_plane”) is a cost-effectiveness plane plot. It is important that the format (e.g. 
tableOutput) matches the format of the object from the server (e.g. SO_icer_table). Again, the SO prefix reflects the 
fact that these are Shiny Outputs. The two h3() functions are simply headings, which appear as “Results Table” and 
“Cost-effectiveness Plane”.

Shiny user interface code

ui <— fluidPage (    # creates empty page

  #  title of app
  titlePanel("Sick Sicker Model in Shiny"),

  # layout is a sidebar—layout
  sidebarLayout(

    sidebarPanel( # open sidebar panel

# input type numeric
    numericInput(inputId = "SI_c_Trt",
                 label = "Treatment Cost",
                 value = 200,
                 min = 0,
                 max = 400),

    numericInput(inputId = "SI_n_sim",
                 label = "PSA runs",
                 value = 1000,
                 min = 0,
                 max = 400),
# input type slider
    sliderInput(inputId = "SI_n_age_init",
                label = "Initial Age",
                value = 25,
                min = 10,
                max = 80),

# action button runs model when pressed
    actionButton(inputId = "run_model",
                 label   = "Run model")

                ),  # close sidebarPanel

# open main panel
  mainPanel(

# heading (results table)
    h3("Results Table"),

# tableOutput id = icer_table, from server
    tableOutput(outputId = "SO_icer_table"),

# heading (Cost effectiveness plane)
    h3("Cost—effectiveness Plane"),

# plotOutput id = SO_CE_plane, from server
    plotOutput(outputId = "SO_CE_plane")

            ) # close mainpanel

      ) # close side barlayout

  ) # close UI fluidpage
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Creating the server function
The server is marginally more complicated than the user interface. It is created by a function with inputs and 
outputs. The observe event indicates that when the action button run_model is pressed the code within the  
curly brackets is run. The code will be re-run if the button is pressed again. Setting the parameter ignoreNULL to  
False lets the model run when it is initialised, i.e. when the app is started.

The first thing that happens when the run_model button is pressed is that the model wrapper function f_wrapper 
is run with the user interface inputs (SI_c_Trt, SI_n_age_init, SI_n_sim) as inputs to the function. The input prefix  
indicates that the objects have come from the user interface. The results of the model are stored as the data-frame object 
df_model_res.

The ICER table is then created and output (note the prefix output) in the object SO_icer_table. The func-
tion renderTable generates a table from the model results to display it on the web interface See previous section 
on the user interface and note that the *tableOutput* function has as an input SO_icer_table. The function  
renderTable rerenders the table continuously so that the table always reflects the values from the data-frame of  
results created above. In this simple example we have created a table of results using code within the script.  
Normally we would use a custom function that creates a publication quality table that is aesthetically pleasing. There 
are different packages that provide this functionality15,20,21.

The cost-effectiveness plane is created in a similar process, using the renderPlot function to continuously update 
a plot, which is created using baseR plot function using incremental costs and QALYs calculated from the results  
dataframe df_model_res. For aesthetic purposes we recommend this is replaced by a ggplot2 or plotly plot, which 
have much improved functionality22,23. As with the results table, there are also numerous health economic modelling  
specific R packages that have plotting features15,20,21.

Shiny server function

server <— function(input, output){

# when action button pressed ...
 observeEvent(input$run_model,
               ignoreNULL = F, {

# Run model function with Shiny inputs
 df_model_res = f_wrapper(
        c_Trt = input$SI_c_Trt,
        n_age_init = input$SI_n_age_init,
        n_sim = input$SI_n_sim)

#—— CREATE COST EFFECTIVENESS TABLE ——#

# renderTable continuously updates table
 output$SO_icer_table <— renderTable({
 
 df_res_table <— data.frame( # create dataframe

 Option = c("Treatment","No Treatment"),

 QALYs  = c(mean(df_model_res$QALY_Trt),
            mean(df_model_res$QALY_NoTrt)),
 
 Costs  = c(mean(df_model_res$Cost_Trt),
            mean(df_model_res$Cost_NoTrt)),
 
 Inc.QALYs = c(mean(df_model_res$QALY_Trt) —
               mean(df_model_res$QALY_NoTrt),
               NA),
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Inc.Costs = c(mean(df_model_res$Cost_Trt) —
               mean(df_model_res$Cost_NoTrt),
               NA), 

  ICER = c(mean(df_model_res$ICER), NA)
 
  ) # close data—frame
# round the data—frame to two digits
df_res_table[,2:6] = round(
        df_res_table[,2:6],digits = 2)

# print the results table
  df_res_table
   
  }) # table plot end.
  
#—— CREATE COST EFFECTIVENESS PLANE ——#

# render plot repeatedly updates.
output$SO_CE_plane <— renderPlot({

# calculate incremental costs and qalys
df_model_res$inc_C <— df_model_res$Cost_Trt —
                      df_model_res$Cost_NoTrt

df_model_res$inc_Q <— df_model_res$QALY_Trt —
                      df_model_res$QALY_NoTrt

# create cost effectiveness plane plot

plot(
# x y are incremental QALYs Costs
x = df_model_res$inc_Q,
y = df_model_res$inc_C,

# label axes
xlab = "Incremental QALYs",
ylab = "Incremental Costs",

# set x—limits and y—limits for plot.
xlim = c( min(df_model_res$inc_Q,
                df_model_res$inc_Q*—1),
           max(df_model_res$inc_Q,
                df_model_res$inc_Q*—1)),

ylim = c( min(df_model_res$inc_C,
                df_model_res$inc_C*—1),
           max(df_model_res$inc_C,
                df_model_res$inc_C*—1)),

# include y and y axis lines.
abline(h = 0,v = 0)

 ) # CE plot end

 }) # renderplot end

 }) # Observe event end

  } # Server end
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Running the app
The app can be run within the R file using the function shinyApp, which depends on the ui and server that have  
been created and described above. Running this creates a Shiny application in the local environment (e.g. your 
desktop). It is also possible to deploy the application onto the web from RStudio using the shinyapps.io server  
(using the publish button in the top right corner of the R-file in R-Studio). Alternatively, apps can be hosted on  
private servers and integrated into existing websites. Server specifications should be chosen to match model  
requirements: while simple Markov chain state transition models may run on almost any server, more computa-
tionally burdensome models (e.g. agent-based models) may require considerable computing power. A step by step  
guide to the process of publishing applications can be found on the R-Shiny website or other online resources3,24.

Running the app

shinyApp(ui , server)

Additional functionality
The example Sick-Sicker web-app that has been created is a simple, but functional, R-Shiny user interface for a  
health economic model. There are a number of additional functionalities, many of which are covered in an online  
book by Hadley Wickham24.

•      fully customised user interface aesthetics. Since the user interface is translated into HTML and CSS it is  
possible to customise all components (such as colors, fonts, graphics, layouts and backgrounds)3,25.

•      leverage many popular R packages to visualise model inputs (e.g. distributions) and outputs (e.g. plots  
and results tables)22,23,26.

•      upload files containing input parameters and data to the app24.

•      download specific figures and tables from the app24.

•      create a downloadable full report including model inputs and outputs24.

•      send model results/report to an email address once the model has finished running27.

It is also possible to integrate all of the steps of health economic evaluation into one program. After select-
ing a subgroup of studies to use as inputs for a network meta-analysis, and economic model assumptions, the user  
would be required to simply click a ’run’ button. They would then be presented with results of the network  
meta-analysis, economic model and value of information analysis in one simple user-interface. The app user 
would then also be able to download a report (or have it sent to an email address) with the model results and  
appropriate visualisations updated to reflect their assumptions. 

Discussion
In this paper, we demonstrated how to generate a user-friendly interface for an economic model programmed in R, 
using the Shiny package. This tutorial shows that the process is relatively simple and requires limited additional  
programming knowledge than that required to build a decision model in R.

The movement towards script based health economic models with web based user interfaces is particularly  
useful in situations where a general model structure has been created with a variety of stakeholders in mind,  
each of which may have different assumptions (input parameters) and wish to conduct sensitivity analysis specific  
to their decision. For example, the World Health Organisation Department of Sexual and Reproductive Health  
and Research recently embedded a Shiny application into their website28. The application runs a heemod model20  
in R in an external server, and allows users to select their country and specify country specific assumptions  
(input parameters), run the model and display results. 

A well designed user interface can allow users to explore and better understand the relationship between 
model input and results. This allows users to tailor the health economic model to their specific situation and  
assumptions, without the expense of creating a new model. This may be  particularly useful in the following  
scenarios: Firstly, in areas where one health economic decision model is applied in range of circumstances (e.g. in 
public health, models are often built to be used in a number of different countries). Secondly, when the full model  
source code can or may not be shared (e.g. for proprietary or privacy reasons). R-Shiny apps can be made  
available in a way that allows users to interact with the web interface, without revealing the model behind it.  
Finally, R shiny apps may enable stakeholders and decision makers, who would otherwise not be able to interact 
directly with statistical computer models, to experiment with and to reflect on various scenarios and the validity of 
model inputs and outputs.
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However, in all of these scenarios, the ability for users to test different assumptions is not without limits: the  
available options to vary point estimates or the uncertainty around input parameters are defined by the model  
developer, and it is also not possible to specify alternative model structures or test any other aspect that the  
developer did not implement. Therefore, the model source code and data will still need to be made available to  
reviewers to allow for a thorough assessments of health economic models. Further investigation into how to  
communicate economic decisions models in a transparent and inclusive way is an important avenue of future research

The authors’ experience of creating user-interfaces for decision models has led to the conclusion that the most  
efficient method is to work iteratively, starting with a very simple working application, and adding functionality step 
by step, testing the app at each iteration to ensure it works as intended. It is worth noting that the simple model 
chosen as an exemplar is a markov model, however the method described can be applied to any model built using 
R, regardless of model type. For example, in this case, the f_MM_sicksicker function could also be replaced by a  
function containing any other type of model (e.g. a DES model).

There are several challenges that exist with the movement toward script based models with web-based  
user-interfaces. The first is the challenge of up-skilling health economic modeller used to working in Microsoft  
Excel. We hope that this tutorial provides a useful addition to previous tutorials demonstrating how to construct  
decision models in R16. A second, and crucial challenge to overcome, is a concern about deploying highly sensi-
tive data and methods to an external server. While server providers such as ShinyIO provide assurances of SSR  
encryption and user authentication clients with particularly sensitive data may still have concerns. This problem 
can be avoided in two ways: firstly, if clients have their own server and the ability to deploy applications they can  
maintain control of all data and code, and secondly, the application could simply not be deployed, and instead  
simply created during a meeting using code and data shared in a zip file. Finally, a challenge (and opportunity) exists 
to create user-interfaces that are most user-friendly for decision makers in this field; this is an area of important  
research that requires closer collaboration between decision makers, stakeholders and health economic decision  
model developers.

Conclusion
The creation of web application user interfaces for health economic models constructed in high level  
programming languages should improve their usability, allowing stakeholders and third parties with no program-
ming knowledge to conduct their own sensitivity analysis remotely. This tutorial provides a reference for those  
attempting to create a user interface for a health economic decision model created in R. Further work is necessary to 
better understand how to design interfaces that best meet the needs of different decision makers.
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The Sick Sicker model used in this tutorial is a simple open-source model that has been widely used 

for teaching health economists to use R (Alarid-Escudero et al. 2023). The goal of using the Sick Sicker 

Model was to make the paper more accessible to readers. The approach can also be applied to more 

complex models and could be used to create a user-interface for the PACEM model discussed 

previously. However, since the PACEM model was not designed to inform commissioning decisions 

and does not have a decision maker to aid, a user-interface has not been developed. In the future, if 

the PACEM model is used to inform policy, a new user-interface could be created to allow users to 

conduct their own sensitivity analysis or upload data specific to their own region's population and 

physical activity levels. 
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Chapter 8. A tutorial on automating updates for 

health economic models while protecting sensitive 

data. 

One of the main barriers to the transparency of health economic modelling is the need to protect 

sensitive data. Health economic models built for health economic evaluation, for example those 

submitted to agencies such as NICE, are often created using spreadsheet software (Jalal et al. 2017), 

which makes it difficult to separate the data from the model (Incerti et al. 2019). On the other hand, 

script-based models can be more easily separated from the underlying data they are based on, since 

the model code and the data are two separate entities. This has two main advantages: first, the model 

code can be shared without revealing sensitive data, improving the transparency and accessibility of 

health economic models (Cohen et al. 2017; Sampson et al. 2019); and second, script-based models 

can be automated to re-run every time new information becomes available, reducing the financial and 

administrative burden of model updates. While academics and experts in health economics may be 

particularly interested in the first advantage, agencies and academic groups and consultants struggling 

with workloads may be more excited about the second advantage. 

In the context of economic evaluations of physical activity interventions, developing this methodology 

may help keep models up to date as new information emerges on the cost of treatment of different 

health conditions, baseline epidemiological parameters and as new evidence emerges on the 

relationship between physical activity and health outcomes. It may also be useful where evaluations 

occur in real time to decide whether or not to extend funding for a particular pilot study, for example 

providing free passes to a gym. By combining the health economic model into the trial stage of the 

project it may be possible to immediately determine whether to continue funding rather than delaying a 

decision to await results of a modelling study.    

In this chapter, I describe a process for generating automated health economic evaluation reports when 

triggered by human interaction with a web app or changes to data stored on a remote server, such as 

in a pharmaceutical company's database. The method builds upon the development of web-based user 

interfaces for hosting health economic models (Smith & Schneider, 2020a) and applies the motivation 

behind the OpenSafely initiative  (Williamson et al. 2020), which allows for the analysis of electronic 

health records data, to health economics and decision science. A paper, which includes all source code 

and data, has been published open access in Wellcome Open Research (Smith, Schneider & 

Mohammed, 2022a). 

The goal of this process is to eliminate the need for companies to repeatedly share sensitive data with 

those building, reviewing, and using health economic evaluation models. It is hoped that those who own 

sensitive data will be more willing to allow stakeholders to interact with health economic models (e.g. 



 

129 

through a web app) or share their underlying code if they have confidence that the sensitive data 

remains secure. In the long term, this may lead to improved modelling transparency and a better 

understanding of the sensitivity of results to parameter values (Sampson et al., 2019). In addition, the 

process allows for the comparison or combination of multiple models using weights informed by 

goodness of fit to observed data or expert judgement (Jackson et al. 2009), helping to improve 

understanding of structural uncertainties as undertaken in processes like the Mount Hood (Kent et al. 

2019). 

Another advantage of this process is that it creates automated updates to health economic evaluation 

reports. The model can be re-run at a set time or when triggered by human interaction or data updates, 

and an updated model report generated. This reduces the time and resources required to update 

models as real-world evidence, clinical trial data, or parameter assumptions change. By semi-

automating model updates, moving from manual copy-paste of results across a pipeline to a semi-

automated update process as shown in Figure 14 below, health economic evaluation can become more 

efficient, allowing for more regular evaluation of new technologies with the same human resources, 

thereby avoiding health economic evaluations being ‘out-of-date’ (Shields, et al. 2022) and thereby 

improving external-validity. The effect of this should be to improve decisions by government medicines 

agencies and public health commissioners, ultimately leading to better population health outcomes.  
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Figure 14 The top visual depicts the commonly used process of conducting statistical analysis 
in STATA or SAS, but then building the underlying model in MS Excel, perhaps using VBA, 
creating plots and tables in MS Excel, and manually copy-pasting them into MS Word, and later 
presenting using MS PowerPoint. The bottom visual illustrates a process where every stage is 
run in the R software environment using open-source packages, enabling updates to model 
reports, presentations, and web applications to be automated or updated with just one click. 
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The concept of a "living" evidence base, which continually updates as new data becomes available, 

gained popularity during the COVID-19 pandemic as the evidence base rapidly expanded and decisions 

had to be made quickly (Eldridge et al. 2022). A recent paper I published with researchers from 

ScHARR, ICER, and NICE outlined a framework for a full "living" HTA pipeline and identified potential 

challenges and barriers to its adoption (Thokala et al. 2023). The paper discussed how each stage of 

the HTA pipeline could be made "living" and how updates could be semi-automated as new evidence 

becomes available. As far as the authors know, there are no published methods for automating any 

stage of the HTA pipeline. However, "living" systematic reviews are becoming more common (Eldridge 

et al. 2022) and there is a growing codebase that could be used to create "living" meta-analysis 

(Siemieniuk et al. 2020). With the addition of Smith, Schneider & Mohammed's (2022a) contribution on 

a "living" health economic evaluation, it may not be long before the entire HTA process is combined into 

a single "living" (and possibly semi-automated) framework. 
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Living HTA: Automating Health Economic Evaluation with R 

This section of the chapter contains a publication which outlines a method by which updates to health 

economic evaluation models can be automated without requiring sharing of data between data-owners 

and health economists, thus improving the efficiency and potentially transparency of health economic 

modelling. 

This article was published open access following the requirement of the Wellcome Trust who financially 

supported this work. The conditions of the open access publishing allow use of the final published PDF, 

original submission, or accepted manuscript in this thesis (including in any electronic institutional 

repository or database). The original content has not been edited. A full set of peer reviewer comments 

for the entire history of the article can be found online at the link above. All code and data has been 

provided open source. 

https://wellcomeopenresearch.org/articles/7-194 

The paper was written with two co-authors: Paul Schneider and Wael Mohammed. Robert Smith was 

lead author and corresponding author and led the conceptualization, data curation, formal analysis, 

investigation, methodology, project administration, software, visualisation, wrote the original draft and 

edited the manuscript based upon comments from other authors and reviewers. Paul Schneider 

contributed to the conceptualisation, methodology, software, reviewing the initial draft and reviewing 

the manuscript. Wael Mohammed contributed to the methodology, reviewing the initial draft and the 

responses to reviewers. 

https://wellcomeopenresearch.org/articles/7-194
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Abstract 
Background: Requiring access to sensitive data can be a significant 
obstacle for the development of health models in the Health 
Economics & Outcomes Research (HEOR) setting. We demonstrate 
how health economic evaluation can be conducted with minimal 
transfer of data between parties, while automating reporting as new 
information becomes available. 
Methods: We developed an automated analysis and reporting 
pipeline for health economic modelling and made the source code 
openly available on a GitHub repository. The pipeline consists of three 
parts: An economic model is constructed by the consultant using 
pseudo data. On the data-owner side, an application programming 
interface (API) is hosted on a server. This API hosts all sensitive data, 
so that data does not have to be provided to the consultant. An 
automated workflow is created, which calls the API, retrieves results, 
and generates a report. 
Results: The application of modern data science tools and practices 
allows analyses of data without the need for direct access – negating 
the need to send sensitive data. In addition, the entire workflow can 
be largely automated: the analysis can be scheduled to run at defined 
time points (e.g. monthly), or when triggered by an event (e.g. an 
update to the underlying data or model code); results can be 
generated automatically and then be exported into a report. 
Documents no longer need to be revised manually. 
Conclusions: This example demonstrates that it is possible, within a 
HEOR setting, to separate the health economic model from the data, 
and automate the main steps of the analysis pipeline.
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Introduction
The development of economic models sometimes involves the transfer of sensitive data (e.g. individual patient 
or price data) between parties. This paper demonstrates how the use of application programming interfaces 
(API) allows data-owners in the Health Economics & Outcomes Research (HEOR) industry to collaborate  
with multiple partners on health economic decision models, while, retaining full control of their data. The use 
of an API furthermore makes it possible to streamline and automate reporting as new information becomes  
available, significantly reducing the financial and administrative burden of economic model updates.

To our knowledge this is the first publication to outline a process for automated reporting in HEOR, which we 
term Living HTA, and the first to demonstrate the process of sending health economic model algorithms to  
sensitive data using APIs.

Two other bodies of work are particularly relevant. The first is the OpenSafely initiative, which inspired this 
work. Williamson et al.1 describe the OpenSafely interface, which was developed to analyse electronic health  
records data without the need to share confidential patient information:

    “secure software interface that allows detailed pseudonymized primary care patient records to be analysed 
in near-real time where they already reside - hosted within the highly secure data centre of the electronic  
health records vendor — to minimize the reidentification risks when data are transported off-site”.

The method described in this paper has a similar objective, but aims to protect sensitive information in the HEOR  
sector. 

The second work, a publication by Adibi et al.2, describes a cloud-based model accessibility platform for 
models developed in R. The authors make the case for cloud based platforms to improve the accessibility,  
transparency and standardization of health economic models, particularly highlighting the benefits of hosting  
computationally burdensome models on remote servers. The authors outline a framework for hosting mod-
els, contained within R packages, which are run using calls to an API. A set of standardized model call functions  
provide the user of the API with enough information to pass the necessary parameters to the model, run the model, 
and retrieve the necessary results directly into an R session. The publication is the first, to our knowledge, to  
discuss the enormous implications that remote model hosting could have in the HEOR industry.

We combine elements from both Adibi et al.2 and the OpenSafely initiative, and provide an open-source code base 
which demonstrates the ease with which APIs can be deployed on remote servers to avoid the need to share sensitive  
data, and enabling automation of model updates. In short, we propose that data-owners (e.g. pharmaceutical  
companies or governments), with support from health economists, host their own model accessibility platforms. 
We therefore see the primary contribution of this paper as being the development of a system in which the health  
economic model and the data are two separate entities, and the health economic model is sent to the data rather  
than the other way around. By working in this way, it is theoretically easier to share the model with-
out the sensitive data on which it is run, although making the model open source is not a requirement. 
Our hope is that providing these materials will encourage others to use these methods to improve the  
transparency, accessibility and efficiency of health economic models.

          Amendments from Version 1
Since the previous version of the article we have done the following:
- Added additional text in the introduction section to outline the value of the contribution.
- Included a new figure, related to the above, which is more aesthetically pleasing than the one in the preprint.
- Refined the methods sections to improve the flow and clarity of the article, in particular we have added a paragraph 
to provide more information about the example use case for which we provide open source code.
- Added descriptions to the code chunks to make it clearer who is running the code chunks and where.
- Indented several lines of the code to make the code easier to follow.
- Added to the discussion section to include more information on deploying these types of APIs, and the limitations of 
different deployment methods.

The fundamental contribution of the paper, the general message and the open source code remains unchanged.

Any further responses from the reviewers can be found at the end of the article

REVISED
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Methods
A common problem in health technology assessment is a situation in which a data-owner (e.g. a company in  
the pharmaceutical industry) holds sensitive data, but requires the services of a consultant to conduct health  
economic modeling. For example the data-owner may have interim clinical trial data at the patient level, and may  
need an external health economist (the consultant) to build a state transition model to determine the cost- 
effectiveness of the treatment. Currently the data-owner may be required to send the consultant cuts of data as  
the trial progresses (e.g. 12 month, 18 month, 24 month). This is burdensome and results in multiple iterations 
of sharing sensitive data. We propose a solution that does not require the sharing of data between parties and  
allows for automated updates to the analysis as data is updated.

This automated analysis and reporting pipeline for health economic modeling consists of three parts:

•    An economic model. The model can initially be developed using pseudo data – that is, randomly generated  
data, which has the same format as the actual data, but does not contain any sensitive information.

•    An API, hosted by the data-owner side. It can be generated using the R package plumber. An automated 
workflow is created. This workflow sends the economic model to the data-owner’s API. The model is 
then run within the data-owner’s server. The results are sent back to the consultant, and a (PDF) report is 
automatically generated using RMarkdown3. This API server hosts all sensitive data, so that data does  
not have to be sent between parties.

•    All of these processes can be controlled with a web-based user-interface. We provide an example user-
interface built in the R shiny package4, based on the tutorial application in our previous paper5. This appli-
cation allows users to select input parameters with which to query the API, and view the results. This 
allows non-technical stakeholders to interact with the model in real time, while allowing the data-owner to 
retain control of the data. The application will always reflect the data on the data-owner’s server, and the  
model hosted by the consultant at the time of use.

Figure 1 shows a schematic of the interaction between the data-owner’s API and the consultant’s automated  
workflow. All of the methods discussed in this paper, as well as the code for the demonstration app can be found  
contained within an open access GitHub repository (see Software availability6).

Figure 1. Schematic showing the interaction between the company API (application programming interface) 
and the consultant automated workflow. HTA, Health Technology Assessment; JSON, Javascript Object Notation.
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The economic model
This model code has been adapted from the Decision Analysis in R for Technologies in Health (DARTH) group’s 
open source Cohort state-transition model (the Sick-Sicker Model) which is discussed in Alarid-Escudero  
et al.7 with open source code available online8. The code includes several functions, but for the purpose of this 
example we can treat the model as a black box, as a single function called run_model which runs the DARTH 
Sick Sicker model. The run_model function takes a single argument, psa_inputs, which is a data-frame containing  
Probabilistic Sensitivity Analysis parameter inputs for the model variables that are allowed to vary. Additional,  
sensitive parameters (including treatment costs and hazard ratio for treatment B) are not allowed to be varied by  
the API request and will be informed by the values held by the data-owner.

The data-frame has four columns:

•    parameter - the name of the parameter (e.g. p_HS1)

•    distribution - the distribution of that parameter (e.g. “beta”)

•    V1 - the first parameter for the distribution in R (for beta this would be shape1, for normal this would  
be mean)

•    V2 - the second parameter for the distribution in R (for beta this would be shape2, for normal this would  
be sd)

The run_model function returns a data-frame with six columns. The first three columns are costs for each treat-
ment option, and the second three columns are Quality Adjusted Life Years (QALYs) for each treatment  
option. Each row represents the result of the model run for a set of inputs.

The function described is designed as a simple reproducible example. The proposed method is flexible to any  
inputs, model structure, and outputs.

The API
An application programming interface is a set of rules, in the form of code, that allow different computers to 
interact with one another in real time. Whereas user-interfaces such as those generated by the R package shiny  
allow humans to interact with data, APIs are designed to enable computers to interact with data4.

When a ‘client’ application wants to access data, it initiates an API call (request) via a web-server, to retrieve 
the data. If this request is deemed valid, the API makes a call to an external program/server, the server sends 
a response to the API with the data, and the API transfers the data to the ‘client’ application. In a sense, the  
API is the broker (or middle-man) between two systems.

There are numerous benefits to APIs:

•    in supporting programmatic access. In contrast to what web applications offer (for example shiny apps), 
APIs allow users to access data, or other utilities (for example, proprietary applications) programmatically.  
Programmatic access enables users to invoke actions through an application or third-party tool. 
For example, R users can write a function that fetches or analyses data via an API and use it  
in their workflow as any other user-defined function.

•    in allowing cross-platform communications. Statisticians and decision-model developers can use different  
programming languages or packages. For example, APIs can allow a decision analytic model, devel-
oped in C++ to programmatically utilise data from a bayesian meta-analysis performed using the Python  
programming language.
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•    in aiding speed of collaboration between institutions, ensuring inputs and outputs are standardised so 
that applications can ‘talk’ to one another. Users from one institution need not to take into account the  
software or package used by their partners, but focus on how they would interact with the expected data.

•    in security, eliminating the necessity to share data manually (e.g. via email). All interaction with data 
can be logged and access can be restricted by passwords and by limiting IP address access. For example, 
APIs can safely allow statisticians to programmatically accumulate sub-group summary-statistics from  
securely stored trial-data to inform a network meta-analysis.

•    in expanding sharing avenues. For example, APIs can allow institutions to give limited access to their  
proprietary tools such as in-house decision-analytic models. Users of such tools can pass their data to the  
model and receive the respective outputs via the API.

•    eliminating computational burden on the client side (since all computation is done on the API owner side).

There are lots of different implementations of APIs, but the main focus of this paper is on Partner APIs, which 
are created to allow data transfer between two different institutions. This requires a medium level of security,  
usually through the creation of access keys that are shared with partners.

In the examples below we use Javascript Object Notation (JSON), a data interchange format that is commonly  
used to transfer information between computers, to pass information to and from our API. Since the model is  
written in R, we convert back and forth between JSON and R data formats using the jsonlite R package9.

Creating the API using plumber
The R package plumber allows programmers to create web APIs by decorating R source code with roxygen-like  
comments10,11. These functions are then made available as API endpoints by plumber.

The API can be called using a number of HTTP request methods (also known as HTTP verbs). The  
most-commonly used methods POST, GET, PUT, PATCH, and DELETE correspond to create (POST and  
PUT), read (GET), update (PATCH), and delete (DELETE) operations. These annotations generate the API’s 
endpoint(s) and specify the operation(s) or response(s) the respective R function is responsible for generating.  
The below example shows the ‘GET’ request (the default for web-browsers).

The code below gives an example function which echos a message. The function takes one input, a string with the 
message, and outputs the message contained within a list. If this function was created in R it would return a list  
containing some text, like this: The message is: ‘example_msg’.

1   #* Echo back the input
2   #* @param msg The message to echo
3   #* @get /echo 
4   function(msg="") {
5     list(msg = paste0("The message is: '", msg, "'"))
6   }

The code for the model function uses the same principles, but is much more developed. There are three  
arguments to the model API; path_to_psa_inputs, model_functions and param_updates.

The core API function created by plumber sources the model functions from software development website 
GitHub, obtains the model parameter data from within the API, and then overwrites the rows of the parameter 
updates that exist in param_updates. It then runs the model functions using the updated parameters, post-processes  
the results, checks that no sensitive data is included in the results, and then returns a data-frame of results. This 
entire process occurs in the server on which the API is hosted, with inputs and outputs passed to the API over the  
web in JSON format.
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Code chunk 1 - Generating the API (this code is run on the data-owner’s server)

 1   library(dampack)
 2   library(readr)
 3   library(assertthat)
 4   
 5   #* @apiTitle API hosting sensitive data
 6   #*
 7   #* @apiDescription This API contains sensitive data, the data-owner does not
 8   #* want to share this data but does want a consultant to build a health
 9   #* economic model using it, and wants that consultant to be able to run
10   #* the model for various inputs
11   #* (while holding certain inputs fixed and leaving them unknown).
12    
13   #* Run the DARTH model
14   #* @serializer csv
15   #* @param path_to_psa_inputs is the path of the csv file containing the PSA parameters
16   #* @param model_functions gives the GitHub repository to source the model code
17   #* @param param_updates gives the replacement values of the editable parameters
18   #* @post /runDARTHmodel
19   function(path_to_psa_inputs = "parameter_distributions.csv",
20            model_functions = paste0("https://raw.githubusercontent.com/",
21                                     "BresMed/plumberHE/main/R/darth_funcs.R"), 
22            param_updates = data.frame(
23              parameter = c("p_HS1", "p_S1H"),
24              distribution = c("beta", "beta"),
25              v1 = c(25, 50),
26              v2 = c(150, 70)
27            )) {
28 
29 
30     # source the model functions from the shared GitHub repo... 
31     source(model_functions)
32    
33     # read in the csv containing parameter inputs
34     psa_inputs <- as.data.frame(readr::read_csv(path_to_psa_inputs))
35    
36     # for each row of the data-frame containing the variables to be changed... 
37     for(n in 1:nrow(param_updates)){
38    
39        # update parameters from API input
40        psa_inputs <- overwrite_parameter_value(
41                                  existing_df = psa_inputs,
42                                  parameter = param_updates[n,"parameter"], 
43                                  distribution = param_updates[n,"distribution"], 
44                                  v1 = param_updates[n,"v1"],
45                                  v2 = param_updates[n,"v2"])
46     }
47    
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48     # run the model using the single run-model function.
49     results <- run_model(psa_inputs)
50    
51     # check that the model results being returned are the correct dimensions
52     # here we expect a single dataframe with 6 columns and 1000 rows
53     assertthat::assert_that(
54       all(dim(x = results) == c(1000, 6)), 
55       class(results) == "data.frame",
56       msg = "Dimensions or type of data are incorrect,
57     please check the model code is correct or contact an administrator.
58     This has been logged"
59     )
60    
61     # check that no data matching the sensitive csv data is included in the output
62     # searches through the results data-frame for any of the parameter names,
63     # if any exist they will flag a TRUE, therefore we assert that all = F
64     assertthat::assert_that(all(psa_inputs[, 1] %in%
65           as.character(unlist(x = results,
66                               recursive = T)) == F))
67    
68     return(results)
69    
70   }

Deploying an API
There are numerous providers of cloud computing services. The most convenient, yet not the cheapest, service  
is offered by RStudio Connect. An account is required for this, but provides the benefit of being able to deploy the 
API directly from the Rstudio integrated development environment. RStudio have a blog on how to publish an API  
created using plumber to RStudio connect here.

Interacting with the API
We first show how to run the model from an R script, calling the API and retrieving the results of the model run. 
We then show how to use GitHub actions to automate the process, running the R script when triggered by an  
event (e.g. a data-update) or a scheduled time (e.g. the 1st of each month).

Interact with the API from an RScript. We use the POST function from the httr package to query the  
API12 - as shown in the code chunk below. This function requires an internet connection. We provide values for  
several arguments:

•    url - the URL of the RStudio Connect server hosting the API we have created using plumber.

•    path - the path to the API within the server URL.

•    query & body - objects passed to the API in list format, with names matching the plumber function  
arguments.

•    config - allows the user to specify the KEY needed to access the API.

The content function attempts to determine the correct format for the output from the API based upon the  
content type. This function ensures that the result object is a dataframe.

The script then then goes on to save the data and generate a PDF report from the outputs using the RMarkdown  
package3, the code for which can be found here. The R-Markdown report uses functions adapted from  
the darkpeak R package.
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Code chunk 2 - Query the API, retrieve model results and generate report (this code is run by the consultant)

 1   # remove all existing data from the environment.
 2   rm(list = ls())
 3   
 4   library(ggplot2)
 5   library(jsonlite)
 6   library(httr)
 7   
 8   # run the model using the connect server API
 9   results <- httr::content( 
10     httr::POST(
11       # the Server URL can also be kept confidential, but will leave here for now
12       url = "https://connect.bresmed.com",
13       # path for the API within the server URL
14       path = "rhta2022/runDARTHmodel",
15       # code is passed to the data-owner API from GitHub.
16       query = list(model_functions =
17                      paste0("https://raw.githubusercontent.com/",
18                             "BresMed/plumberHE/main/R/darth_funcs.R")),
19       # set of parameters to be changed ...
20       # we are allowed to change these but not some others
21       body = list(
22         param_updates = jsonlite::toJSON( 
23           data.frame(parameter = c("p_HS1","p_S1H"),
24                      distribution = c("beta","beta"), 
25                      v1 = c(25, 50),
26                      v2 = c(150, 100))
27         )
28       ),
29       # we include a key here to access the API here the key is a env variable
30       config = httr::add_headers(Authorization = paste0("Key ",
31                                                        Sys.getenv("CONNECT_KEY")))
32     )
33   )
34
35   # write the results as a csv to the outputs folder...
36   write.csv(x = results,
37             file = "outputs/darth_model_results.csv")
38    
39   source("report/makeCEAC.R")
40   source("report/makeCEPlane.R")
41    
42   # render the markdown document from the report folder,
43   # passing the results dataframe to the report.
44   rmarkdown::render(input = "report/darthreport.Rmd",
45                     params = list("df_results" = results),
46                     output_dir = "outputs")

Living HTA - scheduling model report updates. Once the API is created and hosted online, it can be called 
any time. The advantage of this is that any updates to either the model code, or the data used by the model, 
can be undertaken separately and the model re-run by either party. Calls to the API can also be sched-
uled at routine intervals. This would enable the health economic evaluation model report to be updated,  
without human interaction, at regular intervals to reflect the most up-to-date data.

In the example below we show how a GitHub Actions (other providers available) workflow can be used to auto-
mate an update to a health economic evaluation13. The workflow runs at 0:01 on the first day of every month or 
any time there are changes made to the source code. It first clones the GitHub repository on a GitHub actions  
Windows 2019 server, then install the necessary dependencies, before running the script described 
above to generate the model report. It creates a pull request to the repo with this new updated report. If 
GitHub is not the preferred location of report storage, it is possible to send the report via email or save  
to cloud storage solutions such as Google Drive or Dropbox.
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Code chunk 3 - Automated report updates

 1   on:
 2     push:
 3       branches:
 4       - main
 5     schedule:
 6       - cron: '1 1 1 * *'
 7   
 8   name: Run DARTH model via API 
 9   jobs: 
10     createPullRequest: 
11       runs-on: windows-2019 
12       env: 
13         GITHUB_PAT: ${{ secrets.GITHUB_TOKEN }}
14     # Load repo and install R 
15       steps: 
16       - uses: actions/checkout@master
17       - uses: r-lib/actions/setup-r@master
18    
19       - name: Setup pandoc
20         uses: r-lib/actions/setup-pandoc@v2
21         with:
22           pandoc-version: '2.17.1.1'
23    
24       - name: Install TinyTeX
25         uses: r-lib/actions/setup-tinytex@v2 
26         env:
27             # install full prebuilt version 
28             TINYTEX_INSTALLER: TinyTeX
29    
30       - name: Install dependencies 
31         run: |
32             install.packages(
33             c("reshape2", "jsonlite", "httr", "readr", "rmarkdown", "markdown")
34             )
35             install.packages(
36             "scales", dependencies = TRUE, repos = 'http://cran.rstudio.com/'
37             )
38             install.packages(
39             "ggplot2", dependencies = TRUE, repos = 'http://cran.rstudio.com/'
40             )
41         shell: Rscript {0}
42    
43       - name: Run the model from API and create report 
44         env:
45            CONNECT_KEY: ${{secrets.PLUMBER_SECRET}}
46         run: |
47             source("scripts/run_darthAPI.R")
48         shell: Rscript {0}
49    
50       - name: Create Pull Request
51         uses: peter-evans/create-pull-request@v3
52         with:
53           token: ${{ secrets.GITHUB_TOKEN }}
54           commit-message: Automated Model Run from API
55           title: 'Living HTA Automated Model Run' 
56           body: >
57             Automated model run
58           labels: report, automated pr

Results
All source code for the API, the economic model, the automated model update framework, and the example  
dataset are available online (see Software availability6 and Underlying data14).
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The most up to date automated report, based on the data held on the exemplar API (hosted on RStudio Connect),  
can always be found here.

The method has been validated by two co-authors using Windows and MAC with example data (see Underlying  
data14). Those validating the method were able to run the model with updated parameter values without 
access to sensitive data, were able to trigger the automated report generation based on existing sensitive data, 
and were able to query the model through an example R-Shiny application, hosted on GitHub (see Software  
availability6). However we are keen to validate the method further, and invite collaboration. A live exemplar API 
is currently hosted by Lumanity (using the exact source code provided open access). If the reader is interested  
to test the functionality of the API please contact the corresponding author, who can provide the key.

Discussion
As the collection and storage of large data sets has become more commonplace in health & health care settings, 
this data is increasingly being used to inform decision making. However, concerns about the security of this data, 
and the ethical implications about linked data sets, make the owners of this valuable resource particularly reluc-
tant to share data with health economic modelling teams. The ability to host APIs on data-owners’ servers, and 
send the model to the data rather than the data to the model, is one potential solution to this problem. The example  
described in this paper may be relatively simple, but gives a tech savvy health economist everything they need  
to set up a modelling framework which does not rely on the sharing of data by a pharmaceutical company (or other 
data-owner).

The framework described has a number of benefits.

•    Firstly, no data needs to leave the data-owner’s server. This is likely to significantly reduce administrative  
burden for both the  data-owner and the consultant, and reduce the number of data-leaks.

•    Separating the data from the model has significantly improved the transparency of the health economic 
model. Allowing others to critique methods & hidden structural assumptions, test the code and identify 
bugs should improve the quality of models in the long run. It also enables the pool of people working on 
developing the health economic model and accompanying user-interface to be widened, without con-
cern for confidentiality & data security. For example a shiny application could be developed for a model  
built under this framework without the programmer needing access to any sensitive data or information.  
However, if it is necessary to restrict access to model code, it is possible for the API to be passed  
‘private’ source code. As keen proponents of open source modeling that was determined to be beyond the  
scope of this publication.

•    The computational burden of the model is handled on a remote server. The power of these servers is  
typically considerably greater than that of a typical personal computer, speeding up model run time con-
siderably. This is likely to be especially important for models that incorporate uncertainty through 
monte-carlo sampling algorithms which can be parallelized on machines with multiple cores15, for  
example probabilistic one way sensitivity analysis16 or partial expected value of perfect information17.

•    The use of APIs to perform distinct tasks can improve interoperability within the field of health econom-
ics. Different modules, or tasks within a modelling framework can be written in different languages (e.g. 
R, Python, Julia & C++) and linked using APIs. This is likely to improve collaboration between different  
sub-disciplines, which often use different languages (e.g. health economists in R and data-scientists in  
Python).

•    API calls can be made at any time, and will always reflect the data held by the data owner. In many cases 
these datasets are updated regularly, allowing companies, and other stakeholders, to see the results of 
the decision model based on the most up to date data, without needing human intervention to: send new  
datasets, re-run analysis, write a report, and provide that report in a suitable format for the data-owner.  
Automating model updates at set schedules, or when data is updated, may be invaluable where data is updated 
regularly, as has been the case throughout the COVID-19 pandemic.

•    Any model can be passed to the API, as long as the inputs and outputs to the model meet the require-
ments of the API. This means that multiple health economic models could be passed to the API, to be run  
using the data on the data-owner’s server, and compared to account for structural uncertainty.
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•    In the (intentionally simple) example we give in this paper, it is assumed that the data owner provides  
readily estimated parameter values. In a real world use case, this does not need to be the case: the  
consultant may also send a survival model specification, for example, to estimate parameters from  
individual patient data, before the parameters are then passed to the health economic model.

•    Specifying a model without access to and feedback from the actual data may come with its own challenges. 
However,  if these hurdles are overcome, the benefit is that it enforces a thorough statistical analysis plan by 
default, in every use case. This helps to avoid biases introduced by stakeholder incentives.

However, the framework has a number of limitations:

•    Firstly, the method is relatively complex, and requires a strong understanding of health economic model-
ling in R, API creation and hosting, RMarkdown or other automated reporting packages, and GitHub  
Actions. While we hope that this paper provides a useful resource to health economists seeking to utilise  
these methods, the bulk of the industry still operates in MS Excel18. Providing tuition to upskill health 
economists, or creating teams consisting of both health economists and data-scientists and software engi-
neers may mediate this limitation somewhat. Groups like the R for HTA consortium has the potential  
to play a crucial role in upskilling the industry.

•    There are still likely to be concerns about data security, even with the authentication procedures built in 
to the API functionality. Collaboration with experts in this field may mediate this significantly, since there 
is no fundamental reason why health data is any more sensitive, or vulnerable, than the plethora of other 
data (including banking data) that relies on APIs every day. It will be important to reassure companies 
that the use of APIs is likely to reduce, not increase the risk of data breaches, and that every interaction  
with the data can be logged.

•    There is a risk that running the model remotely will result in the perception that the model is a ‘black box’. 
The use of user-interfaces (such as those increasingly being created in shiny) to interrogate the model, as 
well as the increased transparency associated with being able to share code on sites such as GitHub, 
should reassure stakeholders that this framework is more transparent than the existing spreadsheet based  
solutions19.

•    R is single threaded, and therefore will only work on one task at a time. This can make it slow when  
lots of requests are made simultaneously, which may occur if a model takes a long time to run. Most  
hosting platforms (including RSConnect, where we have deployed this example) solve this problem by 
creating multiple R processes, which work in isolation. The PRISM solution outlined by Abidi et al.2 uses  
OpenCPU which works in the same way. This is fine for the example model we provide, since our model  
doesn’t store any information required by other users, who would be working on another R process, during 
the session. Further information can be found on the plumber guide here: https://www.rplumber.io/articles/ 
hosting.html.

•    Often, when building a model, it is helpful to have the underlying data to be able to investigate the data,  
often through the generation of descriptive statistics. The process of sharing pseudo-data enables  
modellers to ensure that the models they create conform to the structure of the data input. However, the  
modeller still needs to be able to write code that is versatile enough to cope with data with unknown  
distributions ranges and number of observations. This is easily solved, again by improved training and  
the use of standard packages such as hesim and heemod20,21.

The recent working paper by Adibi et al.2 has provided a similar call to action, extolling the virtues of the 
API for decision modelling, and showing how APIs can be used to shift much of the computational burden 
away from those querying models, making models more accessible. However, there are several limitations to 
this innovative paper. Firstly, while the authors outline a framework for making models more transparent and  
accessible, and describe how they have done this for a number of models using the PRISM server, they do not  
provide instruction on how to replicate this process. Additionally, while the authors state that “A practical model 
accessibility platform should be able to protect confidential information such as patient data and confidential  
pricing” (p6), the framework as described would require companies to give the owners of the model accessibility  
platform access to their confidential data, or else host the model accessibility platform themselves.
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Part 5 - Discussion and conclusion 

Chapter 9. General discussion and conclusion 

Main findings 

The focus of this thesis is on exploring the balance between the external-validity and usability of 

models used in health economic evaluations, with a specific emphasis on models related to physical 

activity. The thesis has identified ways in which existing models can be adapted to make them more 

externally valid (Ch. 3 & 4), a new model developed to address existing methodological limitations 

which impact external validity (Ch. 6), and methods developed to help improve the usability of models 

(Ch 7 & 8). The aim throughout has been to encourage the development of models that are the 

optimal combination of externally valid and usable to maximise the public health benefits of health 

economic evaluations. 

The first chapter outlined the benefits of physical activity, the strategy of public health institutions, 

challenges in surveillance and measurement, and the determinants and correlates of physical activity.  

Chapter 2 reviewed the methods used for estimating the cost-effectiveness of physical activity 

interventions, with an emphasis on the techniques employed by models submitted to NICE. The review 

was originally carried out in 2017 but has been updated in 2023. It identified several limitations of these 

methods, such as the use of categorical representations of physical activity (e.g. active/inactive), the 

use of discrete or linear dose-response relationships, a lack of inter-sectoral analysis, limited attention 

to the duration and decay of intervention effects, and a narrow focus on a subset of health conditions 

related to physical activity. Many of these limitations were linked to the choice of a simple model 

structure (Markov models) commonly used in HTA submissions for pharmaceutical products but which 

make it very difficult to overcome these limitations. The thesis also notes that submitted models tend to 

have limited transparency beyond the technical report and were difficult to access, both for laypeople 

and researchers without direct communication with the authors. Finally, although there was a shift 

toward the use of QALYS, many studies in the wider literature did not use a cost-utility framework and 

instead looked at cost-consequence. 

Chapters 3, 4 and 5 attempted to quantify the effect of some of the structural assumptions used in 

existing models and suggest methodological adaptations to better match the understanding of the 

epidemiological literature in Chapter 1, and to address some of the modelling limitations identified in 

Chapter 2.  
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Chapter 3 evaluated the impact on net monetary benefit of the use of the VSLY approach (vs the existing 

VSL approach) for valuing deaths averted in HEAT and found that while it could improve the external 

validity of estimates for interventions targeting non-representative groups, such as those in or near 

educational institutions, it may also decrease the tool's ease of use and acceptance among key 

stakeholders. Importantly, it raised ethical questions around the use of the tool to make resource 

allocation decisions between countries with different mortality rates, VSL estimates and demographics.  

Chapter 4 assessed the implications of incorporating a non-linear dose-response function into the HEAT 

model and found that it led to significantly different estimates for populations with non-representative 

levels of baseline physical activity, which may be important when targeting specific subgroups, such as 

cycle lane users. Understanding the implications of the use of a different dose-response function within 

and between countries is important for both overall outcomes but also inequalities within and between 

countries.  

Chapter 6 tested the feasibility of a method to incorporate a consideration of physical activity tracking 

over the life course, incorporating multiple conditions simultaneously with age specific risks and utilising 

data on baseline population quality of life to inform a utility model. It also tested the effect of several 

common structural assumptions made in health economic models of physical activity including 

assumptions around intervention effect duration and methods of utility estimation in the presence of 

comorbidity. 

Chapters 7 and 8 explore ways to enhance the transparency, usability, and efficiency of health 

economic models in the form of tutorial papers with accompanying open-source code and software 

prototypes. 

Chapter 7 outlined a method by which a user interface can be built and deployed online for an economic 

model built in a script-based programming language to improve access to, transparency of and 

engagement with models. It is posited that web-based user interfaces can help to improve the usability 

of health economic models without sacrificing external-validity, making an existing model more 

accessible and useful for a wider range of stakeholders.  

Chapter 8 extends the methods discussed in Chapter 7 outline how health economic evaluations can 

be adapted to be ‘Living’ so as to avoid the information and data on which they are based becoming 

out-of-date, a common reason why models become less usable. The method applies new methods from 

data-science to health economics, to update the model report as new effectiveness evidence is 

published, new prices or discounts are set, or where the model is directly informed by analysis which 

itself can be continually updated. This has huge potential in the context of public health and physical 

activity more specifically, since data is regularly collected on patient outcomes by General Practitioners 

and could be accessed via NHS Digital, allowing the cost-effectiveness of interventions to be continually 

reviewed over time.  
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Throughout the thesis, the focus has remained on achieving the right balance between usability and 

external validity. This can be aided by iteration in model building, incrementally adapting and improving 

models over time. This has the added benefit of potentially bringing decision-makers along on a journey 

over time, as has been the case with the HEAT, to gradually improve model external-validity while 

maintaining usability.  

Contributions to existing knowledge 

Consideration of potential trade-offs between external-validity and usability. 

Little consideration has been given to the trade-off between the external-validity and usability of health 

economic models in the literature. This work hopes to contribute to the literature on this topic, providing 

a discussion throughout about potential pitfalls that some models may face which limit their ability to 

have impact on decisions. I provide some examples in which there does appear to exist a clear trade-

off between external-validity and usability and outline some ways in which this could be mitigated, and 

some ways in which one can be incrementally improved with limited negative repercussions on the 

other.  

Valuation methods for reductions in mortality rates due to physical activity 

Chapter 3 investigates the impact of the choice of valuation for mortality reduction due to physical 

activity, using the HEAT for 44 countries as a case study. The choice of the valuation method, valuing 

life years saved using the VSLY or valuing deaths averted using the VSL, can have a profound impact 

on the net monetary benefit estimates derived from physical activity models. This is especially the case 

where populations impacted by an intervention are demographically unrepresentative of the general 

population in a country. As a result of the limitations of these approaches a decision was made to use 

QALYs in the analysis for chapter 6.  

Dose-response functions for physical activity  

The scoping review in Chapter 2 identified that a common limitation of physical activity models was the 

simplification of the dose-response relationship between physical activity and health outcomes 

(including mortality) to be either categorical (with physical activity split into categories such as 

Active/Inactive), or linear with a maximum effect. Chapter 4 investigates the impact of the choice of 

dose-response function for the relationship between physical activity and mortality using the HEAT as 

a case study. It showed that the net monetary benefit associated with increases in physical activity were 

highly sensitive to the choice of dose response relationship, and that this sensitivity was starker for 

interventions which affect groups which are particularly inactive or active compared to the general 

population. Chapter 6 outlined a method of incorporating independent non-linear dose response 

functions for multiple diseases simultaneously, estimating incidence and prevalence given a set of 
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assumed disease durations. It incorporated uncertainty around the dose response relationship, 

incidence and disease duration into the model by sampling from distributions around each for a large 

number of iterations (probabilistic sensitivity analysis). 

Feasibility of incorporating long-run tracking of physical activity over the life course, 

and impact of assumptions around intervention effect decay 

Chapter 6 also incorporated long-run tracking of physical activity over the life course via estimations of 

the distribution of physical activity at each age. While the simplifying assumption that individuals remain 

at the same percentile is unrealistic and should be varied if future studies wish to investigate inequalities, 

the result is that the overall population estimates are credible. This is important because changes in 

habit formation that last a lifetime should be understood in the context of falling general levels of PA. 

The HEAT model, discussed in Chapters 3-5, does not incorporate changes in physical activity levels 

over time. Finally, assumptions around intervention effect decay were varied substantially in Chapter 6. 

This analysis highlights how sensitive models of physical activity intervention are to assumptions around 

duration of effect, and extent of decay. While the model discussed in Chapter 6 is particularly sensitive 

due to the intervention group (children) and the nature of the diseases included (NCDs), many other 

models have previously been developed with the similar aged intervention groups and diseases and 

have made varying assumptions on the decay in intervention effect. 

Tutorial on the development of user-interfaces for health economic models  

One of the limitations of models identified in Chapter 2 was the limited ability to engage with the models, 

other than reading the reports. Chapter 7 outlines a method by which user-interfaces can be built for 

health economic models constructed in R, deployed online and shared with stakeholders to enable 

them to better engage with and understand the model. This chapter is written in tutorial format, guiding 

the reader through the process of building the user-interface and deploying it, with the aim of helping 

health economists to make their models more transparent and usable. 

A prototype ‘Living’ health economic evaluation model report 

Recent advances in data-science and computing make it increasingly feasible for some parts of health 

economic model updates to be automated. Chapter 8 provides a description of the process by which a 

health economic model could be automatically updated as data, stored on a secure server, is updated, 

or when triggered by a user of a UI (as developed using Chapter 7). There is a lot of research ongoing 

on the wider context for Living Health Technology Assessment, of which interventions to increase 

physical activity may be one but having a published methodology for Living Health Economic Evaluation 

with prototype application and open-source code goes some way to demonstrating that the process is 

at least technically possible.  
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Implications 

Trade-offs 

Understanding the trade-offs between the external-validity and usability of health economic models 

should be prioritised when conceptualising a model. Increasing the external validity of a model at the 

cost of usability may not be desirable - despite being of academic interest. 

Iteration is useful. Incrementally improving the external-validity, and usability, of models over time allows 

decision makers and the broader stakeholder community to engage with the process over time and gain 

confidence. For this to work best, model code should be made open source, to enable others to test the 

implications of adaptations to models, and apply to the model ‘owners’ with suggestions, with the aim 

of gradually improving the model over time - an approach that is preferential to a preponderance of 

models. 

External validity 

Economic models which estimate the benefits of physical activity should carefully consider the 

implications of using categories of physical activity or assuming a linear dose-response relationship. 

The benefit of physical activity has been shown to be both continuous and non-linear, characterised by 

the WHO’s guidance that ‘some physical activity is better than doing none’ and even at higher levels of 

activity ‘More physical activity is better’ (Bull et al., 2020). The work discussed in Chapter 4 also showed 

that model results are highly sensitive to this choice, especially when populations affected by an 

intervention are non-representative of the general population. 

Models which incorporate societal valuations on changes in mortality rates should consider whether 

they wish to value deaths-averted, or life-years gained. Chapter 2 showed that the valuation of deaths-

averted is simpler to calculate but can result in particularly high valuations on interventions which reduce 

the risk of death in older persons - which is of particular concern when the intervention being assessed 

is targeted at populations which are demographically unrepresentative of the general population.  

A similar theme emerges from Chapter 6. In the absence of data with life-long follow up, those building 

health economic models of physical activity interventions should consider a feasible duration over which 

to decay the effect of the intervention. Decision makers should be sceptical of models without decay in 

effect. Modellers should also consider how to incorporate long-term benefits into models, and decision-

making bodies should consider the implications of their choice of discount rates for public health 

interventions, especially where discounting the future too heavily may result in a significant healthcare 

burden for later generations. Finally, sensitivity analysis should be undertaken throughout to ensure 

that decision makers are easily able to determine which factors the decision is particularly sensitive to. 
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Usability 

Models built in script-based programming languages, such as R, can be rapidly deployed online and 

shared with stakeholders worldwide via a user-interface. Although there are initial costs in the 

development of a user-interface, the long-term benefits of utilising the methods outlined in Chapter 7 

are likely to far exceed costs in most cases. Since the publication of the tutorial paper, the paper has 

been cited in several other publications calling for the utilisation of the method in health economic 

models more generally (Naylor et al. 2023; Xin, 2022; Pouwels et al. 2022). However, to get the greatest 

benefit it is best to engage with decision makers and other stakeholders early to ensure that the UI 

meets their requirements in both functionality and aesthetics, since usability is determined by the user 

and whether the model is used to inform policy is often dependent on engagement with the decision-

maker.   

The technical capability exists to facilitate ‘Living Health Economic Evaluation’ to ensure that health 

economic evaluation reports always reflect the latest available data (Chapter 8). The implications of this 

are less certain, since the technical feasibility is just one consideration that must be considered when 

determining whether ‘Living Health Economic Evaluation’ is desirable (Thokala et al. 2023). However, 

it is likely most useful when the model depends on data and evidence that is continually being updated, 

and when decisions need to be made rapidly. It is therefore most obviously useful for commissioning in 

infectious diseases. However, the process may also be useful in informing commissioning decisions 

where the intervention effect is highly uncertain, but evidence is continually being published. One 

example would be  a physical activity intervention which has a limited evidence base but for which 

multiple trials are underway.  

Strengths & Limitations 

The individual strengths and limitations of each study are discussed independently within Chapters 3 - 

8. However, there are several overarching strengths and limitations of the thesis. 

Strengths 

Taking a two-year gap during my PhD to work on the UK government's response to the pandemic has 

had its drawbacks, but it has also provided me with significant benefits. One major advantage is that I 

have been able to publish the work in peer-reviewed journals and present methods at (online) 

conferences and through short course tutorials and have made all of the source code related to these 

studies open-source. As a result, much of the work included in this thesis has been influenced by or 

benefited from feedback from colleagues from a variety of backgrounds, including academia, 

government, industry, and consulting. Additionally, this gap has allowed some of the work to be 

replicated (ReproHack Hub Team; 2020; 2021.) and built upon by other academics (Smith et al. 2022b; 

Haake et al. 2022), and has had a direct impact on policy and methods used in industry (see 
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Contributions section) in ways that may not have been possible within the typical three-year PhD 

timeframe. 

The research both adapts the HEAT model in two ways and develops a new health economic model 

from scratch. Testing changes to an existing model is useful in the context of incrementally editing 

modelling methods while holding all other structural assumptions constant to determine the effect of the 

assumption in isolation, thereby assessing the marginal impact of the adaptation on external-validity 

and usability, with a discussion about the relative merits of the adaptation. Building a new model allows 

for the use of a microsimulation model which avoids many of the limitations of Markov models identified 

in the review chapters. It is a more ambitious approach, but one that allows for analysis on the effect of 

several distinct methodological approaches on the cost-effectiveness of interventions targeted at 

children and adolescents. As a result, the thesis provides a useful reference point to someone 

attempting to build or adapt health economic models for interventions targeted at increasing population 

physical activity.  

The latter part of the thesis presents tutorials on two new methods that combine new techniques from 

data science and computing to health economic evaluation. These are to date the only published papers 

that provide information on the benefits of, outline the concept, and provide detailed instructions 

including all source code to enable others to apply the methods to improve the usability of their own 

models. This is a strength because it enables the work to have considerable impact beyond this thesis, 

via the improvement in  the usefulness of health economic models developed using the methods. The 

papers have been written for a general audience to facilitate their use in decision models for public 

health and health technology assessment for pharmaceuticals. 

Limitations 

This thesis has several limitations that should be acknowledged. Firstly, a comprehensive systematic 

review of the literature was not conducted. Instead, the focus in Chapter 2 was on NICE models and 

papers reviews identified by a review of reviews. Future research could examine the limitations 

identified in a larger number of model reports directly. However, it was deemed beyond the scope of 

this thesis to conduct a full systematic review, and the limitations identified by other reviews were 

considered sufficient to justify the choice of structural assumptions to undertake sensitivity analysis on. 

Additionally, while the PACEM model in Chapter 6 addresses some limitations of previous physical 

activity models identified in Chapter 2, it does not address the intersectoral consequences of physical 

activity policy or include any consideration of distributional effects, although the model is set up to allow 

for differential impact by deprivation quintile if this information is available in the future. These limitations 

are primarily the result of narrowing the scope of the thesis and the impact of other responsibilities 

during the pandemic on time and resource constraints. 

The PACEM model, described in Chapter 6, was not developed in consultation with decision-makers. 

While the original conceptual model was developed with a group of experts including individuals working 
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within government departments, they did not have subsequent input due to other commitments during 

the pandemic. As a result, it does not provide direct policy recommendations and instead makes only 

methodological contributions to the literature. It is therefore of primary interest to those attempting to 

better understand the implications of structural assumptions in cost-effectiveness models, rather than 

decision-makers. However, all code is made open-source so the model could be adapted to a specific 

decision problem in the future. This is in contrast to the body of work developed in collaboration with 

parkrun, for which the decision problem was formulated by the decision maker, and the papers 

published on the WHO’s HEAT for walking and cycling which has been widely used and tailored to the 

needs of decision-makers over a decade. It is also a weakness relative to the published literature 

discussed in Chapter 2, much of which was developed as part of NICE appraisals and therefore has 

the benefit of direct input from decision-makers and other stakeholders, as well as a clear route to 

impact via NICE guidance. 

The tutorial on the development of web-based user-interfaces for health economic models has been 

well received. However, it is uncertain whether the methods discussed in the Living Health Economic 

Evaluation section can be implemented in ongoing projects. The field of Living HTA is still relatively 

new, and further research needs to be done to better understand the needs of decision-makers, 

technology developers and the general public in their engagement with health economic evaluation 

before it can be used in standard practice. 

Areas for future research 

There is a growing body of research on how physical activity levels change over the life course. To 

better understand these trajectories and their determinants, it would be helpful to improve the availability 

of high-quality longitudinal studies over the entire life course with consistent, and ideally objective, 

measurements of physical activity. Additionally, a comprehensive review of the methods used to include 

long-term physical activity data in health economic models would be helpful. 

The PACEM model could be improved by including subgroup analysis and by using data on physical 

activity and disease rates by levels of socioeconomic deprivation. This would enable the evaluation of 

the distributional cost-effectiveness (Asaria et al. 2016) of physical activity interventions, which is 

particularly important given that physical activity levels and engagement with public health interventions 

can vary significantly between socioeconomic groups (Smith et al. 2020b). Furthermore, the model 

could be adapted to different regions in the UK to account for variations in physical activity, 

socioeconomic deprivation, and health outcomes. Also, the model could be modified to consider 

feedback loops and interdependencies between physical activity, Type 2 Diabetes, Ischemic Stroke, 

and other health conditions. 

Additional research could explore ways to improve the ease of use and user-experience of a web-based 

health economic model for different stakeholders. In particular, research could examine how decision-
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makers prioritise external-validity and ease of use in the HEAT model, with the goal of developing a tool 

that offers different levels of complexity for different users. In the future, A-B testing (a method of 

comparing two versions of a product or website to determine which performs better) and direct feedback 

within the tool could be used to collect quantitative data on user preferences. 

The concept of "Living HTA" and "Living Health Economic Evaluation" is emerging in health economics 

(Thokala et al. 2023). As the allocation of government funds becomes increasingly constrained, the 

demand for healthcare continues to rise, and new medical technologies and treatments become 

available, it is necessary to explore new ways to fund healthcare. One promising area for future research 

is the integration of data from healthcare services and individual patient records into health economic 

models, which would enable policymakers to evaluate the cost-effectiveness of interventions in real-

time and make informed decisions about commissioning. 

Conclusion 

The thesis aimed to examine the trade-off between the external-validity and usability of models used 

for health economic evaluations, with a specific focus on physical activity models. The research 

identified ways to adapt existing models to increase external validity, develop new models to address 

methodological limitations, and improve the usability of models. By doing so, this body of research 

aimed to encourage the development of models that are the optimal combination of externally valid and 

usable, to improve their value to decision makers and thereby maximise the public health benefits of 

health economic evaluations. 
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Appendix 

A1. Literature review extraction form 

The completed form can be acquired in xlsx format from the author upon request. The structure of the 

extraction form is as follows: 

Rows:  

Section/item, Reference, Title, Abstract, Introduction, Background and objectives, Methods, Target 

population and subgroups, Setting and location, Study perspective, Comparators, Time horizon, 

Discount rate, Choice of health outcomes, Measurement of effectiveness, Measurement and valuation 

of preference based outcomes, Estimating resources and costs, Currency, price date, and conversion, 

Choice of model, Assumptions, Analytical methods, Results, Study parameters, Incremental costs and 

outcomes, Characterising uncertainty, Characterising heterogeneity, Discussion, Study findings, 

limitations, generalisability, and current knowledge, Other, Source of funding, Conflicts of interest, 

Nature of PA, Inequalities, Lifecourse, Base Population, Explicitly state poor quality evidence Other 

Sectors included, ICER 

Columns: 

Section/item, Item No, Recommendation,  Love-Koh & Taylor (2017), Campbell et al. (2013), Anokye 

et al. (2013), Brennan et al. (2012), Fordham & Barton (2008), Bending et al. (2008) 
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A2. CHEERS 2022 Checklist 

Topic No. Item Location where 
item is reported 

Title 1 Identify the study as an economic evaluation 
and specify the interventions being compared. 

Title of section and 
prelude to chapter 

Abstract 2 
Provide a structured summary that highlights 
context, key methods, results, and alternative 
analyses. 

Abstract Section 

Introduction       

Background and objectives 3 
Give the context for the study, the study 
question, and its practical relevance for decision 
making in policy or practice. 

Introduction 

Methods       

Health economic analysis plan 4 Indicate whether a health economic analysis 
plan was developed and where available. Not undertaken 

Study population 5 
Describe characteristics of the study population 
(such as age range, demographics, 
socioeconomic, or clinical characteristics). 

Methods, 
Introduction 

Setting and location 6 Provide relevant contextual information that 
may influence findings. Introduction 

Comparators 7 Describe the interventions or strategies being 
compared and why chosen. 

Methods, The 
Intervention 

Perspective 8 State the perspective(s) adopted by the study 
and why chosen. Methods, Scope 

Time horizon 9 State the time horizon for the study and why 
appropriate. Methods, Scope  

Discount rate 10 Report the discount rate(s) and reason chosen. Methods, Economic 
Module 

Selection of outcomes 11 Describe what outcomes were used as the 
measure(s) of benefit(s) and harm(s). 

Methods, 
Epidemiological 

Module  

Measurement of outcomes 12 Describe how outcomes used to capture 
benefit(s) and harm(s) were measured. 

Methods, 
Epidemiological 

Module 

Valuation of outcomes 13 Describe the population and methods used to 
measure and value outcomes. Methods, Scope 

Measurement and valuation of 
resources and costs 14 Describe how costs were valued. Methods, Economic 

Module 

Currency, price date, and 
conversion 15 

Report the dates of the estimated resource 
quantities and unit costs, plus the currency and 
year of conversion. 

Methods, Economic 
Module 
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Rationale and description of 
model 16 

If modelling is used, describe in detail and why 
used. Report if the model is publicly available 
and where it can be accessed. 

Methods- Model 
Structure & 

Methods- Model 
Code 

Analytics and assumptions 17 

Describe any methods for analysing or 
statistically transforming data, any 
extrapolation methods, and approaches for 
validating any model used. 

Methods 

Characterising heterogeneity 18 Describe any methods used for estimating how 
the results of the study vary for subgroups. NA 

Characterising distributional 
effects 19 

Describe how impacts are distributed across 
different individuals or adjustments made to 
reflect priority populations. 

NA 

Characterising uncertainty 20 Describe methods to characterise any sources of 
uncertainty in the analysis. 

See Methods - 
Incorporating 

Probabilistic … and 
Sensitivity Analysis 

Approach to engagement with 
patients and others affected by 
the study 

21 

Describe any approaches to engage patients or 
service recipients, the general public, 
communities, or stakeholders (such as clinicians 
or payers) in the design of the study. 

Methods - The 
model scope  

Results       

Study parameters 22 
Report all analytic inputs (such as values, 
ranges, references) including uncertainty or 
distributional assumptions. 

See Methods - The 
model structure 

Summary of main results 23 

Report the mean values for the main categories 
of costs and outcomes of interest and 
summarise them in the most appropriate overall 
measure. 

Results - Model 
Results  

Effect of uncertainty 24 

Describe how uncertainty about analytic 
judgments, inputs, or projections affect 
findings. Report the effect of choice of discount 
rate and time horizon, if applicable. 

Results - Sensitivity 
Analysis 

Effect of engagement with 
patients and others affected by 
the study 

25 

Report on any difference patient/service 
recipient, general public, community, or 
stakeholder involvement made to the approach 
or findings of the study 

Methods - 
Introduction 
paragraph 

Discussion       
Study findings, limitations, 
generalisability, and current 
knowledge 

26 
Report key findings, limitations, ethical or 
equity considerations not captured, and how 
these could affect patients, policy, or practice. 

Discussion 

Other relevant information       

Source of funding 27 
Describe how the study was funded and any 
role of the funder in the identification, design, 
conduct, and reporting of the analysis 

NA 

Conflicts of interest 28 
Report authors conflicts of interest according to 
journal or International Committee of Medical 
Journal Editors requirements. 

NA 

From: Husereau D, Drummond M, Augustovski F, et al. Consolidated Health Economic Evaluation Reporting 

Standards 2022 (CHEERS 2022) Explanation and Elaboration: A Report of the ISPOR CHEERS II Good 

Practices Task Force. Value Health 2022;25. doi:10.1016/j.jval.2021.10.008 
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A3. METs for HSE physical activity classifications  

The following HSE physical activity classifications (for example nspatT6) were manually compared to 

the different activities included in Butte et al. 2008 and a metabolic equivalent of task (MET) assigned. 

These METs are used in the model to estimate total weekly MET minutes for each individual in the 

model. 

HSE Activity code Estimated METs HSE Activity code Estimated METs 

nspatT6 4 gymtot08 2.7 

nspatT7 4 wkouttot08 2.9 

nspatT8 4 aertot08 4.3 

nspatT9 4 tentot08 6.4 

nspatT10 4 schMonMVPA 6 

wepat3 4 schTueMVPA 6 

wepat4 4 schWedMVPA 6 

cyctot08 5.5 schThurMVPA 6 

hoovtot08 3.9 schFriMVPA 6 

hoptot08 6.6 schSatMVPA 6 

tramtot08 7.2 schSunMVPA 6 

playtot08 6 WlkScWT 4 

skatot08 5.2 CycScWT 5.5 

danctot08 4.3   

skptot08 7.1   

fblltot08 8.2   

nblltot08 5.7   

crkttot08 4.1   

runtot08 8.8   

swmltot08 9   

swmstot08 2.7   

gymtot08 2.7   
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A4. Original problem oriented conceptual model 
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 A5. Stability of results in Probabilistic Sensitivity Analysis 

Figure showing the stability of the Incremental Cost-Effectiveness Ratio (ICER) on the y-axis and the 

number of probabilistic sensitivity analysis (PSA) iterations on the x-axis ranging from 500 to 5000. 

The ICER estimates for the first 500 iterations are excluded due to high expected variance. The 

dotted red horizontal line represents the mean ICER estimate at 5000 iterations. The shaded ribbon 

around the mean line represents the range of +/- 5% of the mean ICER value, illustrating the degree 

of variation in the ICER estimates. 
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