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Abstract

The development mechanisms of numerous complex, rare diseases are largely
unknown to scientists partly due to their multifaceted heterogeneity. Stratifying
patients is becoming a very important objective as we further research that inherent
heterogeneity which can be utilised towards personalised medicine. However,
considerable difficulties slow down accurate patient stratification mainly represented
by outdated clinical criteria, weak associations or simple symptom categories.
Fortunately, immense steps have been taken towards multiple omic data generation
and utilisation aiming to produce new insights as in exploratory machine learning
which showed the potential to identify the source of disease mechanisms from
patient subgroups. This work describes the development of a modular clustering
toolkit, named Omada, designed to assist researchers in exploring disease
heterogeneity without extensive expertise in the machine learning field. Subsequently,
it assesses Omada’s capabilities and validity by testing the toolkit on multiple data
modalities from pulmonary hypertension (PH) patients. I first demonstrate the
toolkit’s ability to create biologically meaningful subgroups based on whole blood
RNA-seq data from H/IPAH patients in the manuscript “Biological heterogeneity in
idiopathic pulmonary arterial hypertension identified through unsupervised
transcriptomic profiling of whole blood”. Our work on the manuscript titled “Diagnostic
miRNA signatures for treatable forms of pulmonary hypertension highlight challenges
with clinical classification” aimed to apply the same clustering approach on a PH
microRNA dataset as a first step in forming microRNA diagnostic signatures by
recognising the potential of microRNA expression in identifying diverse disease
sub-populations irrespectively of pre-existing PH classes. The toolkit’s effectiveness
on metabolite data was also tested. Lastly, a longitudinal clustering approach was
explored on activity readouts from wearables on COVID-19 patients as part of our
manuscript “Unsupervised machine learning identifies and associates trajectory
patterns of COVID-19 symptoms and physical activity measured via a smart watch”.
Two clusters of high and low activity trajectories were generated and associated with
symptom classes showing a weak but interesting relationship between the two. In
summary, this thesis is examining the potential of patient stratification based on
several data types from patients that represent a new, unseen picture of disease
mechanisms. The tools presented provide important indications of distinct patient
groups and could generate the insights needed for further targeted research and
clinical associations that can help towards understanding rare, complex diseases.
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Chapter 1 - Introduction

High-throughput biological experiments are currently generating unprecedented
volumes of data which are handled by various types of bioinformatics methods. This
new field has to continuously adapt to answer questions based on new data and
emerging biological hypotheses. Personalised medicine is one of the forefront
concepts that can revolutionise healthcare but relevant research comes with many
challenges. This work is focusing on exploring heterogeneity through the power of
unsupervised learning as a way to overcome such challenges and make personalised
medicine more approachable. It focuses on creating a methodology to assist
researchers bypass the complexity of unsupervised learning and extract valuable
information from their data. As a complex heterogeneous disease, PH posed as an
ideal example to investigate and simultaneously test the aforementioned
methodology. The various chapters of this work and their relation to current
challenges are shown in Figure 1.

Figure 1: Current challenges and the relevant work presented in each chapter
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1.1 Need for patient stratification

Advances in biological and clinical data generation technologies (van Dijk et al., 2018;
Ameur, Kloosterman and Hestand, 2019) are enabling researchers to study human
physiology at a deeper level (Shashi et al., 2014) by utilising genetic insights and
recent methodologies. The higher quality and reduced cost of genetic data increase
its granularity and enhance the predictive and discriminative power of existing
data-driven models (Pezoulas et al., 2021) generating more accurate models.
Previously hidden disease mechanisms could be uncovered and provide answers to
important medical questions such as early diagnosis (Choi et al., 2017; Sharma et al.,
2021), prognosis (Moura et al., 2016; Westeneng et al., 2018) and development (Pinto
et al., 2020). That would allow the allocation of patients in sub-disease cohorts
allowing specialised disease treatment plans, the ultimate goal of personalised
medicine (Schork, 2019; Peng et al., 2021). This makes patient stratification a
prominent goal for future medical research since we keep uncovering the complexity
of rare diseases in studies that have discovered subgroups of patients with distinct
behaviours (Esteva et al., 2017; Kariotis et al., 2021), phenotypes (Gurovich et al.,
2019) and treatment (Hurvitz et al., 2021). However, such distinctions are
occasionally based on weak criteria, symptom similarities or even diagnosis of
exclusion due to lack of data, as for example in idiopathic pulmonary hypertension
(Montani and Simonneau, 2012). The erroneous stratification (or complete lack of it)
can occur due to disease heterogeneity which can be caused or affected by multiple
sources (Montani and Simonneau, 2012) such as genetic irregularities (Zanwar and
Kumar, 2021) or physiological changes. The multimodality of the data needed to
answer these questions requires the computational power of machine learning
methods to detect signals under enormous amounts of relevant measurements
(Schaefer et al., 2020). The latter can be used to explore deeper into molecular
mechanisms to uncover the complex structure of diseases that manifests disease
heterogeneities.

1.1.1 Disease heterogeneity

A heterogeneous disease is a medical condition which can have multiple
etiologies/causes (Cho and Feldman, 2015) or involves different mechanisms that
produce similar phenotypes (Manchia et al., 2013). Heterogeneity can be found in
several disease types, namely infectious, hereditary (genetic and non-genetic) and
physiological diseases and conditions. Its presence can severely increase research
complexity and cause serious inaccuracies in phenotype/genotype estimations
(Manchia et al., 2013).
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Cancer is a well studied disease characterised by significant heterogeneity even
within its subtypes. For example, a recent study on prostate tumour heterogeneity
(Haffner et al., 2021) discussed both genetic and phenotypic heterogeneity,
enhancing previous studies that identified similar results (Haffner et al., 2013;
Gundem et al., 2015; Hong et al., 2015). In the subject of breast cancer, (Turashvili
and Brogi, 2017) states the inability to classify cancer cases in a clinical context due
to intertumor (breast carcinomas from different individuals) and intratumor
(presence of heterogeneous cell populations within an individual tumour (Ellsworth et
al., 2017)) heterogeneity. Cancer therapeutics and biomarker discovery is also
hindered by this heterogeneity (Fisher, Pusztai and Swanton, 2013). Current machine
learning methodologies have investigated these distinctions within cancer cases as
described in (Laurinavicius et al., 2021; Lee, Park and Kim, 2021) where authors
highlight their value in clinical guidance, cancer biology and therapeutics.

Cardiovascular diseases (CVD) entail conditions which affect the heart or blood
vessels (Papageorgiou, 2016). Most such diseases are characterised as complex due
to the coaction of environmental and genetic factors in their origins and development
(Papageorgiou, 2016; Ehret, 2018; Musunuru and Kathiresan, 2019). Research
estimates that up to 90% of CVD might be preventable (McGill, McMahan and
Gidding, 2008; O’Donnell et al., 2016) highlighting the need for accurate identification
of disease subtypes. Metabolomics studies indicated heterogeneity in functional
phenotypes in high cardiovascular risk individuals (Mao et al., 2019) while coronary
heart disease research showed not only inter-person heterogeneity, driven by risk
factors, but also unobserved heterogeneity in individuals with identical risk
(Simonetto et al., 2022). This heterogeneity type induced biases during risk factor
identification and interpretation of relevant results (Aalen et al., 2015; Balan and
Putter, 2020). Risk factors have also shown heterogeneity in subpopulations
(Rivera-Andrade and Luna, 2014; Koirala et al., 2021). Current research also showed
clinical (Hernandez-Gonzalez et al., 2020) and biological heterogeneity in pulmonary
arterial hypertension, a rare complex disease group, identified by variants and genetic
expression, respectively.

Infectious diseases compose another heterogeneous category of disorders where
the causes consist of various organisms such as bacteria and viruses. As in the
previous types, heterogeneity is multifaceted and includes transmission ways or
disease progression. More specifically, the ability of hosts to transmit can change the
disease dynamics based on multiple factors such as infectiousness, contact rate and
infection duration. These mechanisms are described in (VanderWaal and Ezenwa,
2016) where the authors stress the importance of studying pathogen transmission
heterogeneity considering the above factors. Another source of heterogeneity was
shown to be the causing organism, host susceptibility as well as environmental
factors which can influence the risk of infection, as demonstrated for tuberculosis
(Trauer, Dodd and Gomes, no date) and malaria (Feachem et al., 2010). Infectious
disease control mechanisms are also more complex due to heterogeneity
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(Woolhouse et al., 1997). As it became prevalent in recent years, COVID-19 has been
the focus of multiple studies whtargeting its inherent heterogeneity. Disease burden
(Chen and Assefa, 2021; Vallée, 2022) was the main factor of heterogeneity
expression leading to large differences between high and low burden countries with
mortality (García-Guerrero and Beltrán-Sánchez, 2021) also contributing. Testing
methodologies have also been affected (Berrig, Andreasen and Frost Nielsen, 2022).
Very importantly, it was shown that COVID-19 lifestyle (Nikolaidis et al., 2022) and
symptoms were highly heterogeneous, ranging from mild to acute across individuals
and over time (Rodebaugh et al., 2021).

1.1.2 Diagnostic tests for molecular subtype classification based on
molecular heterogeneity

Molecular heterogeneity in cancer is expressed through multiple mechanisms with
possible genetic (Burrell et al., 2013), non-genetic and epigenetic origins, including
tumour mutational burden and somatic mutations, genomic instability and mutant
allele imbalance as well as chromosomal aberrations (Zito Marino et al., 2019).
Additionally, tumours can show differences in growth rates, cell surface markers and
resistance to therapy (Kreso and Dick, 2014).

In (Jamal-Hanjani et al., 2015; Rich, 2016) authors described this heterogeneity to
manifest in two main ways depending on the tumour type. The variations observed
between different tumours (different patients, tissues and/or cell types) define the
intertumoral heterogeneity, associated with differences in genetic profiles, protein
signatures or marker expression, potentially linked to variable treatment responses
(Gerdes et al., 2014). The subclonal differentiations within a single tumour are
referred to as intratumour heterogeneity which can increase the complexity of cancer
prognosis and treatment (Michor and Polyak, 2010).

This heterogeneity introduces a vast amount of complexity in cancer research but
can also be utilised to differentiate tumours or patients and create molecular profiles
with immense value in prognosis and treatment. To facilitate such studies, machine
learning approaches were developed to classify molecular subtypes. In bladder
cancer, consensus molecular classification was performed using the results of
several classifiers on multiple datasets and cohorts to define six molecular subtypes
(Kamoun et al., 2020). On the unsupervised side, (Robertson et al., 2017) used
clustering on multiple data types (mRNA, lncRNA, miRNA) to identify 5 expression
subtypes with diverse epithelial-mesenchymal transition status, carcinoma-in-situ
scores, histologic features and survival. In breast cancer, initial gene expression
profiling studies (starting with microarray data) showed distinctions on a
transcriptomic level and the potential of additional molecular subtypes (Reis-Filho et
al., 2010). In recent years, molecular (Jansen et al., 2005) classifiers and prognostic
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multigene classification systems (Loi et al., 2008) have been developed for prediction
purposes.

State-of-the-art diagnostic tests for molecular subtype classification, such as
Decipher (Genomic profiling for prostate and bladder cancers, 2019), are now being
tested and validated so they can be used to reveal the underlying biology of tumours.
When used alongside clinical information they can greatly assist with personalising
treatment and managing disease development. Apalutamide is a treatment for
localised prostate cancer and in a recent study (Feng et al., 2021) such a classifier
associated molecular subtypes to outcome differences when patients were treated
with apalutamide. For another type of prostate cancer, a genomic classifier identified
subtypes that were associated with prognosis and could help identify patient
candidates for chemohormonal therapy (Hamid et al., 2021). These recent advances
highlight the importance of molecular profiling tools due to their ability to harvest
crucial heterogeneity information towards more accurate and targeted clinical
decisions.

1.1.3 Pulmonary arterial hypertension

Currently, the biomedical field generates enormous amounts of diverse information
measuring different aspects of human health. Despite the numerous high-throughput
methods (Qiang-long et al., 2014) providing data, rare diseases such as pulmonary
hypertension (PH), often require special efforts to tackle relevant problems (limited
samples, inconsistent/variable definitions, scattered, unstructured data and inherent
heterogeneity) in the race to help diagnose (Vachiéry and Gaine, 2012), treat (Elinoff
et al., 2018) or prevent the disease.

As seen in Figure 2, an understudied form of PH is pulmonary arterial hypertension
(PAH), a subgroup of PH which consists of disorders classified by similar
pathological findings, hemodynamic descriptions and disease management
approaches (Simonneau et al., 2019). Medically in PAH, the increase in pulmonary
artery pressure is driven by progressive pulmonary vascular remodelling. The latter
consists of sustained vasoconstriction and dysregulated cell growth (Lan et al.,
2018). PAH itself is subdivided in the following categories: Heritable, relating the
disease with inherited gene mutations e.g. BPMR2 (Morrell et al., 2019) and recently
a larger set of rare mutations (Gräf et al., 2018), drug and toxic induced e.g. SSRI
during pregnancy, associated with a second disease such as Connective tissue
disease (Kieler et al., 2012), and the less rigidly described idiopathic form, IPAH. The
latter category has mostly unknown causes and describes a heterogeneous group of
conditions defined by a diagnosis of exclusion (Firth, Mandel and Yuan, 2010). This
leads to a heterogeneous population of patients and a difficulty to define how IPAH is
structured. Due to the disease complexity and its potential genetic causes (Morrell et
al., 2019), unsupervised machine learning based on genomic data, is often utilised to
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explore gene expression (the most fundamental level at which the genotype connects
to the phenotype) of such diseases, as in (Jiang et al., 2016) where different rare cell
types were detected. Thus, gene expression profiles of patients may possess the
potential to distinguish subtypes of IPAH.

Figure 2: Known classification of PH and PAH and the lack of IPAH identified subgroups
(Bisserier et al., 2020)

1.2 Research limitations

However, such rare disease studies are hampered by small patient pools. Therefore,
mainstream methods that work well for other diseases are not easily transferable to
PAH. Moreover, several data types are prone to biases (Zheng, Chung and Zhao,
2011) further clouding the potential genetic signal underlying patient variations. On a
higher level, the molecular complexity allows a specific data type to only provide
insights about a single aspect of a certain problematic condition. However, the
mechanisms within a health condition context are very often affected by several
factors. Research usually focuses on one factor in an effort to reduce complexity or
make a specific diagnostic method viable but recently multi-omics studies have
started to appear (Chung and Kang, 2019) concerning complex diseases.
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As an additional hindering factor, PAH/IPAH sub-structure has not been described
yet, which makes the task of assigning patient treatment very hard (Bazan and Fares,
2015) and introduces an element of uncertainty concerning the correct response to a
set of symptoms, as demonstrated by (Montani et al., 2010) where different PAH
subtypes react very differently to acute vasodilator testing. Although PAH’s structure
is not entirely hidden (Thenappan et al., 2018), IPAH’s heterogeneity may be used to
identify patient subgroups that are driven by similar mechanisms thus allowing novel,
more precise targeted treatment.

1.3 Molecular data types for clustering

Rapid advances in data generation technologies have fostered the development of
large diverse data sets, known as Big Data, to be used in the study and exploration of
disease and condition contexts (Prasad et al., 2021). Multiple types of data (Schatz,
2015) such as genomic sequencing, proteomics, non-coding RNA, epigenetics,
physical activity and metabolomics can be applied to answer different research
questions either individually or in combinations to identify patterns and explore
sample differences (Bayat, 2002). Aside from exploration, the development of cutting
edge methodologies aims to understand these enormous datasets and find ways to
reduce costs that relate to data computation and management or effective and
economical treatment and general currently costly or even unfeasible healthcare
applications.

As made apparent, these complex molecular datasets have the potential to answer
critical questions in healthcare but they don’t come without problems (Marx, 2013).
Biological data always represent one aspect of a very complicated system that
cannot be captured in its entirety in a single experiment. More often than not these
datasets only contain a part of the hidden biological signal making its detection even
harder and in some cases the challenging (Davidson, Overton and Buneman, 1995;
Gligorijević and Pržulj, 2015) integration of data types necessary. Furthermore, the
high-dimensionality of the data, despite the opportunities it provides (Quackenbush,
2007), poses an obstacle to most methods used to decryptify noisy biological data
as a large amount of useless or even misleading information can drive
methodologies (Clarke et al., 2008). Researchers need to exclude as much of this
data as possible in order to extract meaningful insights from the context they explore.
Additionally, the appropriate methods need to be utilised for maximising the amount
of extracted vital information as well as the interpretability of any results. The
generation of methods and their application to the most common types of molecular
data are described below.
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1.3.1 RNA sequencing data

The quantitative analysis of the expression of genes is the most direct way to study
genome regulation. Gene expression was initially measured through microarrays
(Lamot et al., 2015) with a few thousands of genes screened at a time which resulted
in large expression datasets. However, microarray technology incurred high
experiment costs and sensitivity, low specificity probes and manufacturer technical
biases impacting the actual expression estimation (Jaksik et al., 2015). Transitioning
from arrays to deep sequencing, RNA-sequencing became the main tool for
transcriptome profiling (Wang, Gerstein and Snyder, 2009) providing more precise and
affordable measurements illuminating the complexity of disease (Costa et al., 2013).

Contrary to previous methodologies, high-throughput next-generation sequencing
(NGS) is directly determining the transcript sequence, by sequencing complementary
DNA (cDNA) (Wang, Gerstein and Snyder, 2009), instead of targeting specific
genomic regions and limiting their outputs. As demonstrated in Figure 3, RNA
sequencing starts from total RNA extraction, followed by isolating and filtering
certain RNA types. The remaining material is then converted to cDNA which is used
to construct a sequencing library to be amplified by polymerase chain reaction (PRC).
It should be noted that multiple protocols for library creation exist and they detect
specific transcripts that might be of interest in individual studies. A detailed table of
such protocols can be found in (Kukurba and Montgomery, 2015).
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Figure 3: “Overview of RNA-Seq. First, RNA is extracted from the biological material of choice
(e.g., cells, tissues). Second, subsets of RNA molecules are isolated using a specific protocol,
such as the poly-A selection protocol to enrich for polyadenylated transcripts or a ribo-depletion
protocol to remove ribosomal RNAs. Next, the RNA is converted to complementary DNA (cDNA)
by reverse transcription and sequencing adaptors are ligated to the ends of the cDNA fragments.
Following amplification by PCR, the RNA-Seq library is ready for sequencing.”, taken from
(Kukurba and Montgomery, 2015).

The amplified RNA-seq libraries (reads) created by such experiments need a few
additional processing steps to be used in downstream analysis which requires a
quantified representation of the expression landscape. Initially, sequencing reads
need to be aligned to the reference genome of the organism of interest (Howe et al.,
2013). Such genomes are pre-assembled and updated to be as accurate as possible
in order for all further analyses to be based on a realistic representation of the nucleic
acid sequence. Reads are then assembled into transcripts either using reference
transcript annotations (identified functional elements of the genome sequence) or in
cases where a reference is not available, i.e. when assembling small bacteria
genomes, de novo sequence assembly methods (Steinegger, Mirdita and Söding,
2019). Finally, the desired expression of the included gene is estimated by counting
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the number of reads that aligned to each annotated region. For traditional sequencing
that aims to estimate only the function of protein coding genes, only reads that align
to exons and full length transcripts are considered. In other cases, like microRNAs,
different non-coding regions are used.

Genomic sequencing data are being analysed in the field of bioinformatics for diverse
research purposes (Corchete et al., 2020). Such data provide measurements about
DNA as well as sequence variation across individuals used in genotype-phenotype
association studies in PAH (Lane et al., 2000; Gräf et al., 2018). Lately, imaging data
(e.g. magnetic resonance imaging) utilised machine learning methods to predict
outcomes of PAH patients (Dawes et al., 2017). Current research is focusing on
high-throughput RNA sequencing for disease profiling (Lightbody et al., 2019) and
tools assessing its quality (Planet et al., 2012; Thrash, Arick and Peterson, 2018). Its
product, relative expression of genes, is widely used to uncover gene behaviour in
contexts of interest and was recently used in induced PAH in mice where they marked
CREB as the master transcription factor in the pathogenesis of PAH (Xiao, Xie and
Lian, 2018). Furthermore, these interactions can form gene/pathway networks, e.g.
based on co-expression (Pita-Juárez et al., 2018), revealing a higher-level
organisation of a cell. Naturally, RNA-seq data from different tissues and organs
show a different regulatory picture which allows the study of specific contexts within
the human genome. However, in some cases tissue samples are too invasive to
acquire and researchers have to compromise. For example, the lack of lung tissue
biopsy studies use whole blood RNA measurements as a surrogate, as demonstrated
in (Blankley et al., 2014).

1.3.2 microRNA data

As mentioned, multiple forms of RNA sequencing can be performed to generate data
to help answer different questions. A special form, microRNAs(miRNAs), are found in
various tissues and blood plasma, are composed of a short sequence (averaging 22
nucleotides) and contribute to gene regulation by binding to messenger RNA (mRNA)
repressing protein production or causing post-translational silencing (Cannell, Kong
and Bushell, 2008; O’Brien et al., 2018). miRNAs have only recently started to be
explored because their small length requires a generation method with the extreme
precision only offered by current next-generation sequencing technologies.
Generating miRNAs is part of the high-throughput next-generation sequencing and
requires specific libraries (Lu, Meyers and Green, 2007) that target and amplify
miRNA regions as well as annotation databases (Kozomara and Griffiths-Jones,
2014).

21

https://paperpile.com/c/AZdH38/TLRNL
https://paperpile.com/c/AZdH38/SJczY+sZeBJ
https://paperpile.com/c/AZdH38/x0Hqe
https://paperpile.com/c/AZdH38/5Kz05
https://paperpile.com/c/AZdH38/9oA2j+0Fl0k
https://paperpile.com/c/AZdH38/Sc8OB
https://paperpile.com/c/AZdH38/Sc8OB
https://paperpile.com/c/AZdH38/t1AhB
https://paperpile.com/c/AZdH38/zb30a
https://paperpile.com/c/AZdH38/iexvu+hzNmJ
https://paperpile.com/c/AZdH38/iexvu+hzNmJ
https://paperpile.com/c/AZdH38/qr8sT
https://paperpile.com/c/AZdH38/3TBxF
https://paperpile.com/c/AZdH38/3TBxF


Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is
one of the prominent technologies through which we can quantitate mrRNAs (Adams,
2020).

Quantitative PCR, whether involving a reverse transcription step or not, is routinely
used in molecular biology labs and has revolutionised the way in which research is
carried out due to its relatively simple pipeline (Figure 4). Its advantages over
standard PCR include the ability to visualise which reactions have worked in real time
and without the need for an agarose gel. It also allows truly quantitative analysis. One
of the most common uses of qPCR is determining the copy number of a DNA
sequence of interest. Using absolute quantitation, the user is able to determine the
target copy numbers in reference to a standard curve of defined concentration in a far
more accurate way than ever before. RT-qPCR, on the other hand, allows the
investigation of gene expression changes upon treatment of model systems with
inhibitors, stimulants, small interfering RNAs (siRNAs) or knockout models, etc. This
technique is also routinely used to detect changes in expression both prior to (as
quality control) and after (confirmation of change) RNA-Seq experiments.

RT-qPCR combines two workflows, reverse transcription PCR (RT-PCR) and
quantitative real time PCR (qPCR, Figure 4B) to allow measuring of RNA levels using
cDNA in a qPCR to rapidly detect expression changes. More specifically, during the
RT-PCR step RNA from the sample is isolated to then be used to generate cDNA with
reverse transcriptase (Figure 4A). Subsequently, PCR is used to amplify specific
regions. In qPCR (Figure 4B), DNA is isolated and amplified instead, with fluorescent
probes used to quantitate the PCR product. This quantification method is often used
to detect pathogen presence and measure copy number of certain DNA sequences.
As a combination (Figure 4C), RT-qPCR isolates RNA followed by the generation of
cDNA before the aforementioned qPCR quantification facilitating rapid quantification
of changes on expression.
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Figure 4: “(A) RT-PCR workflow. RNA is isolated and cDNA is generated via reverse
transcription (RT); PCR is then carried out to amplify areas of interest. (B) qPCR schematic.
DNA is isolated and amplified; amplification is quantitated using a probe which fluoresces
upon intercalation with double-stranded DNA. (C) RTqPCR procedure. RNA is isolated and
cDNA generated before commencing a qPCR procedure.”, taken from (Adams, 2020).

Since research started looking into non-coding regions and their importance in gene
regulation (Qureshi et al., 2014; Statello et al., 2021) sequencing protocols focused on
that species of small RNA (miRNAs). With gene regulation being a very important
function, miRNAs have been found to play multiple integral roles including cell
development, differentiation, division etc (Cimmino et al., 2005; Xiao and Rajewsky,
2009). That being the case, the bioinformatics field has been creating tools to
improve the quality of miRNAs (Potla, Ali and Kapoor, 2021) as well as methods and
pipelines to take advantage of the information hidden in these accurately identified
small genome regions. Their clinical application in infectious diseases (Drury,
O’Connor and Pollard, 2017) and their potential on a variety of human disease groups
(Li and Kowdley, 2012) has been discussed in recent years. More specifically, in the
context of cardiovascular diseases (CVDs) (Li et al., 2017) miRNAs were found to be
highly expressed and synergistically work to play an important role in heart tissues.
Specific miRNAs were shown to be involved in cardiac hypertrophy by directly
affecting cell cycle related genes (Carè et al., 2007). In PAH a set of miRNAs was
noted as potential biomarkers (Errington et al., 2021) with (Santos-Ferreira et al.,
2020) highlighting the potential for further analysis and the need to translate miRNA
research to treatment implementations.

23

https://paperpile.com/c/AZdH38/C77Ny
https://paperpile.com/c/AZdH38/DwHtC+mj3a1
https://paperpile.com/c/AZdH38/4Uo0J+UQY6R
https://paperpile.com/c/AZdH38/4Uo0J+UQY6R
https://paperpile.com/c/AZdH38/Hdvca
https://paperpile.com/c/AZdH38/QQlWu
https://paperpile.com/c/AZdH38/QQlWu
https://paperpile.com/c/AZdH38/Yz5t0
https://paperpile.com/c/AZdH38/Ys9GV
https://paperpile.com/c/AZdH38/Q0Zoc
https://paperpile.com/c/AZdH38/qTcNg
https://paperpile.com/c/AZdH38/8iPqP
https://paperpile.com/c/AZdH38/8iPqP


1.3.3 Metabolomic data

Metabolomics describe the study of metabolites, small molecules found in cells,
biological fluids or tissues. Metabolites, being substrates and products of
metabolism, can directly represent or measure biochemical activity and reflect a
molecular phenotype (Gieger et al., 2008).

A variety of, often complementary, methods have been developed to extract, detect
and quantify the activity of metabolites (Roessner and Beckles, 2009) due to the
enormous diversity of existing chemical structures and abundance variations. In
most cases the metabolites are divided into subsets and preparation and analytical
methods are applied individually depending on the subsets characteristics (functional
groups, structural similarity etc) as demonstrated in Figure 5. This method
heterogeneity can create problems in integrating metabolome results and as a
consequence multiple methods have been developed to report (Sumner et al., 2007)
and test (Martin et al., 2015) compatibility.

Figure 5: “Illustration of the liquid chromatography–mass spectrometry (LC-MS)-based
metabolomics platform used at the Broad Institute of MIT and Harvard. A comprehensive
metabolomics platform that uses targeted and nontargeted LC-MS methods to measure
lipids, metabolites of intermediate polarity such as free fatty acids and bile acids, and polar
metabolites. IPA, isopropanol; RP, reversed phase; HILIC, hydrophilic interaction liquid
chromatography.” as seen in (Clish, 2015)
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Many methodologies and tools have been developed to make metabolite analysis
more efficient and assist in biological interpretation (Lamichhane et al., 2018). As a
result, metabolites have become increasingly popular in researching metabolism
related conditions and diseases. More specifically, a metabolome profiling method
showed potential novel biomarkers pointing to inborn metabolism error in patients
(Coene et al., 2018). Similarly, microbiome sequencing and metabolome data were
utilised by a machine learning model to identify metabolic profiles (Yin et al., 2020). In
another integration recent study, COVID-19 specific genome-scale metabolic models
were analysed and showed differences in cholesterol metabolism regulation and
metabolic pathways related to host response and are potential antiviral targets
(Režen et al., 2022). More metabolic pathways of Natural Product Metabolism were
explored in Medicinal Plants when metabolic and NGS data were integrated (Scossa
et al., 2018). Finally, the current and future utility in precision medicine was described
in (Clish, 2015).

1.3.4 Physical activity data

Initially, physical activity was recorded through questionnaires (InterAct Consortium
et al., 2012) but since the development of wearable technologies physical activity
measurements have been of great study interest (Füzéki, Engeroff and Banzer, 2017).
It has been shown that exercise affects multiple systems in the human body at a
molecular level (Hawley et al., 2014) but the majority of them are still unexplored
(Neufer et al., 2015). Wearable monitors are now able to provide a number of
measurements or physiological markers such as heart-rate, energy burned, step
count and ventilation (Freedson et al., 2012). These data have been complemented by
environment variables (such as education, ethnicity etc) and used to investigate the
effects of activity (or inactivity) in various populations (Atkin et al., 2017). Regression
models have been used with physical activity data like energy expenditure to assess
mortality from various sources (Mok et al., 2019). Accelerometer measurements
were used to classify several rehabilitation categories (Skovbjerg, Honoré and
Mechlenburg, 2022) and wearable data were used to passively assess COVID through
machine learning (Sarwar and Agu, 2021).

1.4 Machine learning, a field of exploration and prediction

Machine learning (ML) is an area of computer science aiming to discover patterns
within volumes of data. This field creates methods which require the use of
algorithms and statistics to understand patterns and either differentiate data groups
or predict where new data points belong. The main characteristic of such methods is
their ability to learn from input data and in principle refine their results as more data
become available. The explosion of ML popularity and utility is based on three trends
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(Fradkov, 2020). First, the ever increasing amount of data generated in practically
every field where variables can be measured allowed ample inputs for ML algorithms
to train and improve. Secondly, as technology improves the cost of (parallel)
computing is being reduced while available memory dramatically increases the limits
and computational power of statistics. Finally, the above improvements allowed the
development of new ML algorithms, such as deep learning and neural networks,
which are harnessing the computational benefits and big data information to tackle
the prediction and stratification problems from new angles.

1.4.1 Unsupervised learning / clustering

For exploratory projects, such as discovering underlying disease branches and
differentiating features, unsupervised methods are best suited, as demonstrated in
(Kallenberg et al., 2016) where they are able to extract a feature hierarchy related to
mammographic risks. Commonly known as clustering, grouping objects based on
their inherent similarities (Rokach and Maimon, 2005), has been used extensively in
many fields. In image recognition, clustering is used to discover the distribution of
objects in a feature space (Kheradpisheh, Ganjtabesh and Masquelier, 2016).
Robotics use clustering towards object detection (Zapf et al., 2018) while
Recommender Systems build user groups and improve recommendation quality (Das
et al., 2014). In medicine, it has been used in a wide variety of subjects, from medical
diagnosis (Wu, Duan and Du, 2015) to analysing drug-drug interaction networks
(Udrescu et al., 2016). The advantage that sets clustering methods apart from other
machine learning approaches is their ability to function without any prior knowledge
about the objects’ class. In terms of disease biology this means no prior literature of
clinical classifications.

The variety of clustering approaches, as depicted in Figure 6, often makes the
identification of the appropriate algorithm a difficult task. Algorithm efficiency can be
affected by several factors, such as the type, distribution and volume of data, the
expected nature of similarities between samples and each algorithm’s specific
strengths and weaknesses.
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Figure 6: Taxonomy of clustering approaches (Saxena et al., 2017)

Certain clustering approaches (that encapsulate more specific methods) are
preferred in medical research and bioinformatics due to the complex nature of
medical data. Hierarchical clustering connects samples to form clusters based on
their distance, while density-based clustering defines clusters as areas of higher
density compared to the remainder of the data set. Probability distribution-based
clustering is based on distribution models where clusters can be defined as objects
that most likely belong to the same distribution. Applications of the above include
building regulatory networks (Fiers et al., 2018), discovering disease subtypes
(Keenan et al., 2018), inferring gene function/coexpression (Chen et al., 2008) and
reducing dimensionality (Lee et al., 2018). Currently, spectral clustering is a popular
technique that performs feature reduction based on the first eigenvectors, before
clustering (Jia et al., 2014). Due to its implementation simplicity and promising
performance this technique has been used in bioinformatics, e.g. to cluster cells
utilising single-cell RNA-sequencing (Park and Zhao, 2018) as well as different fields,
e.g. for speech recognition (Li et al., 2018).

1.4.2 Clustering analysis challenges

As noted, RNA-seq potentially possesses the power to discriminate between patients
and healthy individuals by revealing gene activity. This potential can be harvested by
clustering gene expression, a method potentially capable of deciphering the features
that characterise a health condition or a clinical phenotype (Burgel, Paillasseur and
Roche, 2014). Clustering can be very effective in PAH, as it does not require prior
knowledge of the branches in which each patient belongs, allowing independent

27

https://paperpile.com/c/AZdH38/ueSxU
https://paperpile.com/c/AZdH38/lsYQM
https://paperpile.com/c/AZdH38/PFosV
https://paperpile.com/c/AZdH38/6N2TS
https://paperpile.com/c/AZdH38/zFnq3
https://paperpile.com/c/AZdH38/Wl5nk
https://paperpile.com/c/AZdH38/E2WWf
https://paperpile.com/c/AZdH38/QUVD8
https://paperpile.com/c/AZdH38/33r4Z
https://paperpile.com/c/AZdH38/33r4Z


clusters of patients and controls to be formed within this context of heterogeneity.
Such clusters are further analysed either using independent clinical data or
differentially expressed genes. These analyses enable the association of such
features with a specific cluster of samples as well as cross-cluster comparisons.
Ideally, a set of significant associations can point to biologically meaningful
phenotypes.

However, clustering work can be complex even before the application of an
unsupervised approach (Hennig et al., 2015). The inherent grouping of the dataset
has to be assessed before any algorithm is applied. Sample sets with no grouping
potential (i.e. healthy volunteer samples with no underlying condition of interest) do
not offer an interesting dataset for clustering as they will most likely base the sample
partitioning on variables of no interest. In most cases the validity of clusters in a
dataset is tested after the clustering analysis and can be also referred to as
assessing the number of clusters. Most methods have to assume the number of
clusters before any calculation therefore this initial choice greatly affects any
outputs. Since in most real datasets there isn’t a priori knowledge about existing
clusters an estimation is needed by the user. A number of indexes (such as the
silhouette score (Shahapure and Nicholas, 2020)) have been created to measure how
far apart the clusters are and how compactly their samples form indicating the
number of clusters. However, each index only provides an indication of quality from a
different perspective and one must be careful not to present misleading pictures of
cluster quality. Another important matter is the dimensionality of a dataset (the
number of samples and features) as it provides the statistical power in algorithm
formula calculations. Large dimensional imbalances can cause skewed calculations
and obscure otherwise detectable clusters i.e. too many patients of a specific
condition may cause the algorithm to ignore a much smaller set of very different
patients due to their low count. The total size of the dataset can also be a challenge.
Very large datasets, known as Big Data, can cause computational problems and even
disable certain algorithms. It is well observed that Big Data need special handling in
clustering projects (Zhou and Wang, 2016; Saeed, Al Aghbari and Alsharidah, 2020)
such as data preprocessing and feature selection (Devi, Gayathri Devi and Sabrigiriraj,
2018), the latter being very important for gene expression data where we deal with
thousands of genes. Selecting the most effective clustering methodology is also a
very important challenge for this type of analysis as results may greatly vary. Certain
data types and research questions best fit the formulas of certain algorithms (Hennig
et al., 2015).
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1.5 Hypothesis and aims

The central hypothesis of this thesis is that a semi-automated machine learning
toolkit applied to high-dimensional readouts from patients can provide a robust and
effective way of partitioning diseases. I aimed to create and test this approach on a
variety of disease contexts and data profiled from patients with the following aims:

A. Create a modular toolkit that helps users without extensive machine learning
experience to perform an in-depth unsupervised analysis of RNA sequencing
data (Chapter 2).Most current research that aims to identify heterogeneity within
expression datasets only utilises a small variety of methodologies due to the
specialisation and experience needed to apply more complex machine learning
methods. For that reason I have focused on creating a set of easily expandable
tools assisting with decisions that need to be addressed during this type of work.
A large number of clustering parameters and relevant metrics are integrated into
these tools in order to allow non-ML experts to generate gene expression based
subgroups and justify their decisions along the way supported by machine
learning theory.

B. Apply the toolkit on mRNA data from patient blood to detect subgroups of
pulmonary arterial hypertension (Chapter 3). The Omada toolkit is providing
educated estimates on integral machine learning questions based on well
studied algorithms and formulas. However, I needed to test its effectiveness in
real disease data to validate its ability towards the identification of meaningful
patient subgroups, a central question in current research especially in the context
of disease treatment and diagnosis. Therefore, I aimed to apply each tool on a
H/IPAH cohort and biologically separate this heterogeneous group of patients
while providing valuable insights towards patient group characterisation.

C. Test the toolkit on other molecular data types collected from pulmonary
hypertension patients (Chapter 4 & 5). The application and validation of Omada
on RNA sequencing datasets led to the question whether other omics data can
be utilised by this pipeline. This part of my work aimed to test whether the toolkit
is applicable to other popular molecular data such as metabolomics and miRNAs
and whether it can produce interesting subgroups and biological insights.
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D. Test longitudinal clustering on the activity data of COVID-19 patients (Chapter
6). Partition of patients according to longitudinal criteria is a very different
approach to traditional clustering on data from a single timepoint as we have to
consider the relationship between measurements across timepoints. Using data
generated by wearable technology, I aimed to identify physical activity subgroups
in COVID-19 patients based on multiple activity over-time measurements utilising
Fretchet distances, additional trajectory related distances and transformations.
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Chapter 2 - Omada: Robust clustering of
transcriptomes through multiple testing

2.1 Background

The main goal of this research was to explore the utility of unsupervised learning on
gene expression data and potentially provide valuable tools that help with partitioning
of samples in a biologically meaningful way. Driven by the need to avoid the
application of default clustering algorithms in modern research, which in most cases
will provide suboptimal results, I created a set of tools, named Omada, that make
critical decisions during any clustering analysis. Each step in such an analysis needs
to be supported by established machine learning theory and be able to justify any
decisions it makes. Each tool is built independently to allow the addition of methods
to increase its future utility. The work presented in the article describing the tools of
Omada aims to assist with one of the following clustering analyses problems:

● Help with initial unsupervised learning dataset feasibility

● Identify the most robust clustering algorithm per dataset

● Estimate the set of genes that provide the most stable clustering

● Estimate the most probable number of clusters

● Provide clustering with estimated optimised parameters

● Meta-analysis with cluster gene signatures

The tools are solely based on the expression of genes and agnostic to any clinical
information therefore only affected by the genetic profile of each patient. In this way
all identified categories of patients only stem from gene expression patterns. This
toolkit, Omada, is published as a package in Bioconductor and can be found at
10.18129/B9.bioc.omada.

2.2 Contribution

For this publication I was the first author from the conception of the study to the
implementation and writing of the manuscript. More specifically, I was the main
contributor in writing the manuscript, implementing all unsupervised learning work as
well as the majority of the analyses of the results in both main and supplementary
documents. I also created all the relevant code published along with the paper in
bioconductor. Sections not generated by me are in italics and brackets in text.
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2.3 Manuscript 1
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Abstract

Cohort studies increasingly collect biosamples for molecular profiling and are
observing molecular heterogeneity. High throughput RNA sequencing is providing
large datasets capable of reflecting disease mechanisms. Clustering approaches
have produced a number of tools to help dissect complex heterogeneous datasets,
however, selecting the appropriate method and parameters to perform exploratory
clustering analysis of transcriptomic data requires deep understanding of machine
learning and extensive computational experimentation. Tools that assist with such
decisions without prior field knowledge are nonexistent. To address this we have
developed a suite of tools to automate these processes and make robust
unsupervised clustering of transcriptomic data more accessible through automated
machine learning based functions. The efficiency of each tool was tested with five
datasets characterised by different expression signal strengths to capture a wide
spectrum of RNA expression datasets. Our toolkit’s decisions reflected the real
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number of stable partitions in datasets where the subgroups are discernible. Within
datasets with less clear biological distinctions, our tools either formed stable
subgroups with different expression profiles and robust clinical associations or
revealed signs of problematic data such as biased measurements.

Introduction

The rapid development of next-generation sequencing boosted the quantitative
analysis of gene expression in a variety of human tissues and organs1,2 generating
valuable resources3 for downstream investigative analysis. In recent years, such
analyses aim to elucidate disease mechanisms4 and construct genomic profiles5 to
explain diagnosis6, prognosis and treatment patterns. However, transcriptomic
profiles can be heterogeneous due to several causes pertaining to technical biases
that produce batch effects7, cellular diversity8, disease heterogeneity9 as well as
differences between individuals and populations10,11. In turn, this heterogeneity
hinders traditional research efforts12 aiming to define structures especially under
complex diseases which led to the utilisation of the field of machine learning towards
this data demanding goal. More specifically, unsupervised machine learning i.e.
clustering, in the form of transcriptomic profiling based on sequencing data13–15, has
been explored in terms of symptomatic heterogeneity in complex diseases revealing
differences in molecular states16–18 and phenotypes described by the gene expression
of diseased tissue. However, deep medical and molecular knowledge is required to
identify solvable problems and interpret results within the context of various diseases
and conditions. Simultaneously, specialised knowledge and experience is needed to
create functional, efficient and insightful models which generate reproducible
solutions. Despite the inherent power of these models, most times a default model is
not sufficiently tuned to the specific dataset thus unable to extract essential
information. Many models have been compared, tested and found to work on
different data and research questions19,20 highlighting that no single model is always
optimal without tuning (or optimising) on the specific dataset at hand, especially with
state-of-the-art methodologies21,22.

Machine learning (ML) is currently being used in many forms and combinations23, for
different types of projects within diverse fields of biomedical research24–26.
Supervised and unsupervised methods are being developed to address specific
questions and/or data problems as the pace of new data generation increases
rapidly. Big data has made the importance of tailored methodologies essential for
specialised datasets27,28, as speed and accuracy pose an even greater obstacle,
especially when handling sizable medical data. The impact of machine learning in
biomedical sciences has risen considerably with the multitude of methodologies
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leading to previously unfeasible computations29,30. Unsupervised learning proved to
be an invaluable tool towards exploring heterogeneity in complex diseases since its
functioning without any prior knowledge or assumptions of sample labels. Due to this
diversity, there is a need for methods that support non-expert users to utilise the
characteristics of various methodologies in their unsupervised work. One of the most
important aspects of sample partitioning is the stability of the generated groups as
unstable clusters, usually imply the lack of signal which should be present and drive
the clusters. Signals can take many forms, for example the level of gene activity in
RNA sequencing datasets. Cluster instability can be caused inherently by the data
points or by the type and application quality of a clustering technique.

With the above obstacles in mind, we introduce Omada, a toolkit with multiple
functions based on cluster stability and machine learning formulas to provide
assistance to both experienced and inexperienced users during the steps from
dataset assessment to the formation of the subgroups. Each function’s results are
based on machine learning theory and multiple metrics to ensure that a wealth of
methods will be considered, in the current version and in the future, during the
decision and clustering process.

Methods

This toolkit consists of a pipeline that takes in a gene expression matrix to identify
transcriptomic subgroups of samples (Figure 1 and Supplementary Figure 1). Starting
from a matrix of gene expression values (e.g. transcripts per million from
RNAsequencing), the most suitable clustering method is chosen, followed by
selecting the transcript features for clustering and determining the number of
clusters and memberships.
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Figure 1: An overview of steps for discovering gene expression subgroups using Omada’s
clustering tools. First, processing, quality control and feasibility analysis are ensuring the input
data are suitable for clustering. Then, choose the most robust clustering methodology that
provides the most consistent partitions. Next, determine the genes that are useful for
discriminating samples and provide the most stable clusters. Finally, determine the number of
subgroups that potentially exist in the cohort by selecting the number of clusters (k) supported by
the majority of internal machine learning indexes. The end result, after the final optimised
clustering, consists of the assignment of a cluster to each sample driven solely by its expression
profile.
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Sample and gene expression preprocessing

A preprocessing step is recommended by the user before the application of these
tools on any dataset to heighten the chances of any underlying important signal to be
discovered. Data biases and format can often drive clustering attempts to focus on
discriminating data points based solely, or mostly, on known information producing
no new insights irrespectively of the method used21,31. To address this, it is
recommended to attempt to remove/normalise any data points that might be
introducing strong biases to allow the novel signal to be detected. Furthermore,
numerical data may need to be normalised in order to account for potential
misdirecting quantities (i.e. outliers) or specifically transformed to satisfy an
algorithm's input criteria. Data points or samples have to be filtered based on field
knowledge to allow the data to answer specific scientific questions. Expression data
should go through proper quality control depending on the manner of collection to
identify outliers and remove unreliable datapoints. For microarrays it’s important to
assess sample, hybridization and overall signal qualities along with signal
comparability and potential biases. Array correlations through PCA and correlation
plots should also be considered32. RNA sequencing experiments also produce data
that need to be controlled for potential trimming of adapter sequences, low quality
reads, uncalled based and contaminants by using a plethora of available tools33,34.
Additionally, qPCR generated data should be checked for abnormal amplification,
positive and negative control samples, control on PCR replicate variation and
determine reference gene expression stability and deviating sample normalisation
factors35. As for the number of genes, it is advised for larger genesets (>1000 genes)
to filter down to the most variable ones before the application of any function as
genes that do not vary across samples do not contribute towards identifying
heterogeneity. Moreover, large genesets require increased computational power and
extended runtime without adding any real value due to the large number of non useful
genes. Lastly, it is important to note that technical artefacts, such as sampling
location or machine specifications, may drive clustering causing the formation of
very distinct clusters which can solely be attributed to relevant biases. It is very
important for those cases to be identified and extracted insights should be
disregarded as they do not reflect real signals or data trends.

Determining clustering potential

At the start of each study, we assess the suitability of the input dataset for clustering
to ensure general dataset attributes do not influence the process (Figure 1). The
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number of samples and features -i.e. genes-, as well as the balance of the two
dimensions, directly affects the capabilities of clustering methods to handle the
dataset. An inadequate number of samples does not provide enough training power36,
while an overabundance of samples might clutter the provided information and
confuse most methodologies37. Similarly, too few features can lead to weak
clustering criteria and too many features might lead a methodology away from the
features that can really differentiate between clusters of samples. Therefore, to
estimate the feasibility of a clustering procedure on a specifically sized dataset we
rely on measurable metrics of cluster quality, such as stability. Clusters of high
stability denote both a partitionable dataset as well as a dataset-suitable
methodology38. The feasibility score of any dataset is a function of both dimensions
as well as the number of classes requested. As such, if too many or a single class is
requested of a relatively small dataset the calculation will reflect low feasibility due to
insufficient samples and/or features to form the desired classes.

Simulating datasets

To assess the quality of the dataset to be used, our toolkit includes two functions for
simulating datasets of different dimensionalities for stability assessment. We use
those to understand the relation between the number of samples, genes and cluster
sizes. The first function we use to simulate datasets allows for tuning the number of
samples (n), genes (m) and clusters (c). Each cluster contains samples drawn𝑛

𝑐

from a normal distribution with a different mean and standard deviation. Each mean
is drawn from a sequence of c evenly spaced integers that belong to the range

. Each standard deviation is similarly drawn from a range of . To[5,  𝑐 * 10] [1,  𝑐 * 2]
estimate the difference between distributions, we calculate the two sided
Kolmogorov's D statistic between each pair of distributions representing the
generated classes and plot the empirical cumulative distribution function (EDCF).

Subsequently, we calculate the stability of each k (number of clusters for a particular
clustering run) using the clusterboot function in R package fpc v2.2-3. The number of
clusters k to be considered belong to

, with a minimum of k = 2. The𝑘 ∈ [𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 − 2,  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 2]
maximum and average stabilities over all k are reported, providing a stability-based
quality score that provides an insight in deciding whether a prospect dataset is
suitable for a clustering study.

To assess the clustering feasibility of an existing dataset this tool kit also provides a
similar function which generates a simulated dataset based on an input dataset and
the user’s estimation of the number of classes. The number of samples and genes
equal those of the input dataset and its mean (minput) and standard deviation (sdinput)
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affect those of each generated class within the dataset. Specifically, if 𝑛 ∈ (1, 2, 3,  ...)
is the number of classes, each class mean (mclass) equals and each𝑚

𝑖𝑛𝑝𝑢𝑡
* 10 * 𝑛

class standard deviation (sdclass) equals .𝑠𝑑
𝑖𝑛𝑝𝑢𝑡

* 2 * 𝑛

Intra-method Clustering Agreement

Unsupervised learning offers a multitude of methods to be applied on specific types
of data due to their nature (e.g. numeric, binary) or underlying signal to be detected.
Most studies employ widely-used methods (e.g. hierarchical clustering) without
exercising any kind of selection method that would point towards the most effective
methodology. Selecting an appropriate approach requires extensive machine learning
and data analysis knowledge coupled with tuning and testing of multiple different
algorithms. To enable non-machine learning expert users to utilise the vast
capabilities of this field and avoid default limited efficiency methodologies we
present a clustering selection tool that offers an intelligent selection method with
unbiased results through parameter randomization. The nature of this selection
method allows any number of well established unsupervised methods to be
considered.

To address the lack of class labels and thus a performance measure in unsupervised
models, we compare how consistently different approaches partition our data when
one or more parameters change. As high consistency we define the high agreement
score calculated between different variations of a clustering algorithm. When two
different clustering runs agree on the partitioning of the samples they also show
robustness since they do not randomly assign samples to subgroups but rather are
driven by the underlying structure of the data.

We implemented a tool (Figure 1) to calculate an average agreement score per
clustering approach by comparing a number of runs within each of the three
clustering approaches (hierarchical39, k-means40, spectral clustering41) using multiple
parameters (kernels, measures, algorithms) specifically based on the data set
provided. The number of comparisons (c), between runs of the same approach, is an
additional overarching parameter of this tool and contributes to the agreement score.
For each comparison, the parameters of the two runs are drawn randomly from a
predefined set (Table 1) selected randomly with replacement while not allowing the
same parameters to be used within one comparison. In the interest of performance
and computational time we suggest three comparisons to be used. Depending on c,
we generate variations of the base clustering algorithms (package kernlab v0.9-29),
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along with the various distance measures and clustering categories they belong to.
Within each pair of clustering runs the agreement is calculated using the adjusted
Rand Index (package fossil v0.3.7), the corrected-for-chance version of the original
Rand index42, which is based on the number of times any pair of points is partitioned
in the same subgroup throughout different clusterings runs. To calculate the
agreement within each clustering algorithm (spectral, k-means, hierarchical) we are
considering pairs of runs using the same algorithm but different parameters. For
those pairs the agreement is averaged across clustering runs and k number of
clusters tested. The algorithm that presents the highest intra-method agreement over
a logical range of clusters (k∈[2,x]) is noted as the most appropriate clustering of
the samples based on a detected signal. A logical range of k is considered a set of
successive k’s (where k⩾2) that is most probable to exist within our data, often
determined by prior knowledge of the data, previous studies or domain expertise.
This selection procedure is mainly affected by the type and size of the data leading
similar datasets to opt for the same method due to the specific mathematical
formulas within each algorithm.

Spectral clustering algorithm41

Given a set of points S = {s1 ... ,sn} in Rl that we want to cluster into k subsets:

1. Form the affinity matrix A∈ Rn✖n defined by Aij = exp(-||si - sj||2 /2σ2) if i ≠ j , and Aii = 0

2. Define D to be the diagonal matrix whose (i, i)-element is the sum of A’s i-th row, and

construct the matrix L = D-l/ 2AD-l/ 2

3. Find x1 , x2 , ... , xk , the k largest eigenvectors of L (chosen to be orthogonal to each

other in the case of repeated eigenvalues), and form the matrix X = [x1 x2 … xk]∈ n✖k

by stacking the eigenvectors in columns

4. Form the matrix Y from X by renormalizing each of X's rows to have unit length (i.e.

Yij = Xij / (Σj X2
ij)1/2)

5. Treating each row of Y as a point in Rk , cluster them into k clusters via K-means or

any other algorithm (that attempts to minimize distortion)

6. Finally, assign the original point si to cluster j if and only if row i of the matrix Y was

assigned to cluster j
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Hierarchical clustering algorithm (average linkage)

Given a set of points S = {s1 ... ,sn} that we want to cluster into k subsets:

1. Initialise with n clusters, each containing one data point (si)

2. Compute the between-cluster distance D(r, s) as the between-object distance of the two

data points in clusters r and s respectively, r, s =1, 2, ..., n. Let the square matrix D = (D(r,

s)). Various distances can be used (euclidean, manhattan, canberra, minkowski,

maximum).

3. Find the most similar pair of clusters r and s, such that D(r, s) is minimum among all

pairwise distances

4. Merge r and s to a new cluster t and compute the between-cluster distance D(t, k) for

any existing cluster k ≠ r, s. Once the distances are obtained, delete the rows and

columns corresponding to the old cluster r and s in the D matrix, as r and s do not exist

anymore. Then add a new row and column in D corresponding to cluster t.

5. Repeat Step 3 a total of n − 1 times until there is only one cluster left.

6. Decide on a point to cut the cluster tree created above so as to obtain the desirable

number of clusters (k)
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K-means40

K: kernel matrix, k: number of clusters, w: weights for each point, tmax: optional

maximum number of iterations, {πc
(0)}kc=1: optional initial clusters

1. If no initial clustering is given, initialize the k clusters π1
(0), … , πk

(0) (i.e. randomly). Then,

set t = 0

2. For each ai and every cluster c, compute

d(ai, mc) = Kii - +
2Σ

α
𝑗
∈π

𝑐
(𝑡) 𝑤𝑗

𝐾
𝑖𝑗

Σ
α

𝑗
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𝑐
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𝑗
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𝑙
∈π

𝑐
(𝑡) 𝑤𝑗

𝑤
𝑙
𝐾
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𝑗
∈π

𝑐
(𝑡) 𝑤𝑗

)2

3. Find c*(ai) = argmincd(ai, mc), resolving ties arbitrarily. Compute the updated clusters as

πc
(t+1) = {a: c*(ai) = c}

4. If not converged or tmax > t, set t = t + 1 and go to Step 2; Otherwise, stop and output final

clusters

{πc
(t+1)}kc=1

41



Table 1 | The clustering algorithms, their approach category and the various distance
measures tested

Clustering
algorithms Category Distance measures/kernels Additional

parameters

K-means Partitioning Hartigan-Wong, Lloyd, Forgy,
MacQueen -

Hierarchical Hierarchical Euclidean, Manhattan, Minkowski,
Canberra

Average,
complete, median

(linkage)

Spectral Graph Theory
Rbfdot, Polydot, Tanhdot,

Laplacedot, Vanilladot, Anovadot,
Splinedot

-

Feature set subsampling

While gene expression data provide measures on the thousands of transcripts in the
transcriptome, not all of them may provide discriminative information on the samples
and may not be useful for clustering. Moreover, most clustering algorithms are
heavily affected by a large number of features both computationally due to input size
and in performance due to misdirecting data noise43. A common strategy to select
interesting and potentially useful RNA features is to measure their variance across
samples and select the ones with the highest scores instead of those that are either
housekeeping or do not differentiate in our context. In this tool, we exclude RNA
features that remain stable across samples and are therefore unable to offer any
discriminatory power to our unsupervised machine learning models. Furthermore, the
exhaustive feature selection procedure incrementally considers all the genes in the
feature set and takes into account the stability of all generated test clusters and
number of cluster ranges. This step does not require any deep knowledge or filtering
decisions by the user.

Based on this observation our sample selection step, which is a part of the tool for
bootstrap resampling of features presented in Figures 1C and 2A, first ranks features
in a descending order of variance (var() function from the Stats R package) across
samples, generating a list of the most variable features. Subsequently, multiple
datasets of all samples and subsets of features are generated. All subsets draw a
different number of features from the top of the variance list with replacement. The
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first dataset uses a relatively small number of features (n), depending on the total
number of features (N) and the granularity of the result desired. The following
datasets re-draw from the initial list increasing the number of features by n, ending up
with datasets.𝑁

𝑛

Stability-based assessment of feature sets

To assess the suitability of each resampled feature set for our clustering, we
measure the average stability of the clusters they generate per run when a clustering
method is applied over a range of k’s (Figure 2B). First, the clustering range, where the
stability of each dataset will be calculated, is selected. For each dataset we generate
the bootstrap stability for every k within range. To calculate each bootstrap stability
score the data is randomly sampled with replacement and clustered internally using a
spectral approach. We then compute the Jaccard similarities between the original
clusters and the most similar clusters in the resampled data. The above procedure
results in a stability score for each k and each dataset. We then calculate the final
stability of each dataset by averaging the stability over k. The genes that comprise
the dataset with the highest stability are the ones that compose the most appropriate
set for the downstream analysis.

Figure 2: Sample selection overview. (A) Ranking of samples based on their variance across
features and the subsequent generation of datasets of increasing size. (B) Calculation of the
stability score of each generated dataset. Initially, we select a cluster range to run our clustering
method for each dataset. After the clustering procedure, we calculate and average the stability
over the generated clusters. Finally, we average the stabilities over k per dataset and determine
a final stability score for each dataset. The features of the dataset with the highest stability are
the ones that compose the most appropriate set for the downstream pipeline
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Choosing k number of clusters

Most clustering methods require the number of k clusters to be defined as a
parameter before the application of the algorithm on the data. The lack of a concrete
way to determine the real number of clusters in a dataset led many studies to base
their estimation on field/prior knowledge or various estimation methods such as the
Silhouette score44. However, each method favours different aspects of the generated
clusters (i.e. how compact clusters are and how far apart cluster centres are) and
therefore suits specific datasets and may introduce bias towards the selection of k.
To encompass these different angles in one methodology, avoid the risk of selecting
an ineffective index and present a more general solution, this tool uses an ensemble
learning approach (Figure 1) where multiple internal cluster indexes contribute to the
decision making45. This approach prevents any bias from specific metrics and frees
the user from making decisions on any specific metric and assumptions on the
optimal number of clusters.

Initially, the value of the 15 indexes is calculated for each k within a cluster range of
, where x is a logical upper limit of the number of clusters realistic for our[2,  𝑥]

dataset. The means over k are calculated per index and the optimal k is estimated by
majority voting of the 14 means that evaluate the compactness and/or the distance
between different subgroups. The selection of indexes can be found in Table 2. It is
important to note that the most important aspect of determining k is minimum loss
of information which directs us to overestimate and not underestimate k43 while
interpreting the voting results. Furthermore, cases that present only a single k as the
optimal number of clusters should be treated with caution in case they are a result of
a biased dataset.
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Table 2: The list of 15 internal indexes used to estimate the optimal number of clusters (k).

Internal index Ideal Formula Sour
ce

Calinski-
Harabasz max

( 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑘−1 )

( 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
𝑛−𝑘 )

46

Dunn max
𝑚𝑖𝑛(𝑖𝑛𝑡𝑒𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

𝑚𝑎𝑥( 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠)
47

Pbm max 1
𝑘 *   𝐸𝑇

𝐸𝑊 * 𝐷
𝐵

48

Tau max
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠−𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

𝑁
𝐵

*𝑁
𝑊

𝑁
𝑇
(𝑁

𝑇
−1)

2

49

Gamma max
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 − 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 + 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

50

C index min
𝑆

𝑊
 − 𝑆

𝑀𝐼𝑁

𝑆
𝑀𝐴𝑋

 − 𝑆
𝑀𝐼𝑁

51

Davies–
Bouldin min 1

𝑛 *
𝑖=1

𝑛

∑ 𝑚𝑎𝑥( 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑒𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ) 52

Mcclain
rao min

𝑁
𝐵

𝑁
𝑊

*
𝑆

𝑊

𝑆
𝐵

53

sd_dis min 𝑎 * (𝑎𝑣𝑔 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 𝑓𝑜𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠) +
𝑡𝑜𝑡𝑎𝑙 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

54

Ray–Turi min 1
𝑛 *  𝑤𝑖𝑡ℎ𝑖𝑛−𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛

 𝑚𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑏𝑎𝑟𝑦𝑐𝑒𝑛𝑡𝑒𝑟𝑠
55

g_plus min
2 * 𝑠−

𝑁
𝑇
(𝑁

𝑇
 − 1)

56

Silhouette max 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 44

s_dbw min 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 +  𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 57

Compact
ness max 𝐼𝑛𝑡𝑟𝑎 − 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 58

Connecti
vity max 𝑇ℎ𝑒 𝑒𝑥𝑡𝑒𝑛𝑡 𝑏𝑦 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚𝑠 𝑎𝑟𝑒 𝑝𝑙𝑎𝑐𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒

𝑠𝑎𝑚𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑠 𝑡ℎ𝑒𝑖𝑟 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑝𝑎𝑐𝑒 -

All indexes are using different formulas to score a partitioning, measuring one or both of
the following concepts: a) how compact each cluster is and b) how well the clusters
separate. For each index we present which value is preferred (min or max) and its source.
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For the formulas: k = number of clusters, n = number of data points, ET = sum of the
distances of all the points to the barycenter G of the entire dataset, EW = sum of the
distances of the points of each cluster to their barycenter, NB = pairs constituted of points
which do not belong to the same cluster, NB = pairs constituted of points which belong to
the same cluster, NT = NW + NB , SW = sum of the NW distances between all the pairs of points
inside each cluster, SMIN = sum of the NW smallest distances between all the pairs of points
in the entire data set, SMAX = sum of the NW largest distances between all the pairs of points
in the entire data set, SB = sum of the between-cluster distances, α = weight equal to the
value of average scattering of clusters obtained for the partition with the greatest number
of clusters.

Optimal parameter tuning

Previous steps have selected the optimal method, number of features and clusters.
To perform the optimal clustering we automate the selection of parameters for each
method so that manual tuning is not required. Towards that goal we utilise cluster
stabilities to decide on the parameters (which depend on the specific algorithm i.e.
kernels in k-means and spectral clustering, linkage method in hierarchical clustering)
selected by this toolkit. All available parameters (Table 1) participate in the selection
procedure where we measure the average bootstrap stability of the clusters
(clusterboot function in R package fpc v2.2-3) using the previously determined
optimal k and feature set for each parameter. The parameter that produces the
highest stability is used for the optimal clustering run.

Test datasets

Five datasets were used to validate different capabilities of the Omada package.
First, two datasets were simulated by Omada’s functions. Function
feasibilityAnalysisDataBased() was used to generate a multi-class dataset with 359
samples and 300 genes based on the contents and dimensions of the original
RNA-seq data18 and composed of five groups of samples drawn from five different
distributions with means (5,16,27,38,50) and sd (1,3,5,7,10), representing the five
classes. Function feasibilityAnalysis() simulated a single-class dataset of 100
samples and 100 genes drawn from a single distribution. For the multissue
Pan-cancer dataset we downloaded RNAseq expression data for 2244 samples and
253 genes representing three types of cancers: breast (n=1084), lung (n=566) and
colon/rectal (n=594) downloaded through cbioportal59 from TCGA PanCancer Atlas60.
The mRNA expression was in the form of z-scores relative to normal samples where
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we applied an extra step of arcsine normalisation. After filtering for tissue-specific
genes61 for the three cancer types we retained 243 genes. Next, we utilised a PAH
dataset (25,955 genes) generated from 359 patient samples with idiopathic and
heritable pulmonary arterial hypertension (IPAH/HPAH). The transcriptomic data can
be found in the EGA (the European Genome-phenome Archive) database under
accession code EGAS000010055326562 (restricted access) and all pre-processing
details and parameters used can be found in 18. Finally, we used an RNA dataset from
the whole blood of 238 mothers during midgestation (26-28 weeks of pregnancy).
Read counts were extracted from GEO (accession number GSE18240963) and were
then read into R and converted into TPM using the convertCounts function available
in the DGEobj.utils package. For the purpose of clustering, we mapped the TPM
dataset to the list of 24,070 genes used in the PAH dataset described in a previous
section.

Results

Omada was applied to five diverse gene expression datasets to demonstrate its utility
in guiding cluster analysis and identifying plausible subgroups of samples. Two
datasets were simulated by our tools. The simulated dataset with multiple distinct
classes was used to determine Omada’s ability to accurately estimate k with
reasonable stability when we know the existence of sample classes. In contrast,
samples in the single-class simulated dataset were drawn from a single class and
used to demonstrate the toolkit’s ability to point towards the lack of sample
subgroups by indicating inconclusive low scores throughout the analysis. A
multi-tissue pancan dataset was introduced to assess Omada’s capability to generate
signal-based clusters that closely follow the tissue-specific patient sample
distributions. In addition, to determine whether Omada can identify distinct
heterogeneous subgroups from data without any prior classification information but
potential present heterogeneity, we used a whole blood RNA-seq dataset from
patients with pulmonary arterial hypertension (PAH)18. Lastly, implementation of the
toolkit on a whole blood expression dataset (GUSTO) was included to demonstrate a
case with potential technical biases and no known subgroups since it is composed of
healthy participants.

For the above, we measured its consistency on algorithm, feature and number of
clusters (k) selection and the stability of the generated clusters for a particular k
(stabilityk) and the average across k’s (stabilityavg). It's important to note that the value
of this validation is derived from the fact that unstable clusters should not be
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interpreted as this instability comes from problematic data or an incorrect approach.
On the other hand, it's worth noting that cluster stability only provides a way to
assess the potential underlying data structure and further information is required to
fully validate the clusters38 , ideally using biological criteria.

Identifying known clusters

Multi-class dataset: Five distinct simulated expression classes representing
heterogeneity

Omada’s basic function is to help identify samples that come from different sources
and group together samples that come from the same source. Towards that end, we
simulated a dataset with five sets of expression profiles with 50 samples each and
120 genes sourced from five unique distributions of expression data that represent
heterogeneity within our samples. The means and standard deviations of each class
are presented in Figure 3A, depicting the expression differences. Additionally, the
empirical Cumulative Distribution Functions (ECDFs) of the five simulated classes
(Figure 3B) as well as the high average Kolmogorov-Smirnov distances (Davg=88.3%,
supplementary Table 1) show distinct differences between the distributions in
respect to the expression in the simulated RNA-seq dataset. To demonstrate the
effect of different sample and gene numbers, multiple datasets were simulated with
an increasing number of samples and genes (Figure 3C). The calculated cluster
stabilities, where each value represents the stability over a range of k and a specific
number of samples and features, show five or less samples per class provide highly
unstable and unreliable clusters. The minimum acceptable stability threshold of 60%
was achieved with at least 20 samples and a reliable stability of 75% was achieved
using 1000 samples.

48



Figure 3: A) Expression boxplots for the five clusters showing the means and standard
deviations B) The cumulative probability (as calculated from the empirical cumulative
distribution function) for the five clusters calculated by a two sided Kolmogorov-Smirnov Test
C) Average over-k stabilities for simulated datasets of increasing sample and gene numbers. A
small number of samples consistently provides extremely unstable clusters (orange) while
increasing both numbers consistently produces datasets that pass the stability threshold of 0.6
(blue).

To test the ability of the clustering tools to produce stable clusters in various
contexts we first apply them in sequence on strategically simulated data. The data
are composed of distinct classes (based on class meanmclassand standard deviation
sdclass) and due to that strong signal our tools are expected to determine an accurate
k with reasonable stability, scoring above 60%. To allow for a more direct comparison,
we used a multi-class simulated dataset (see Test datasets inMethods) based on the
original RNA-seq data18. When considering ranges of k we are using [2, 6] clusters to
observe a broader range of results for comparison reasons. First, the clustering
feasibility tool showed that the highest stability was 78% (Supplementary Table 4)
providing a strong indication of stability across our clusters. Since we selected a
limited range of k∊[2, 6] where the stability should remain high, the averaged -over
every tested - stability (stabilityavg) of 72% indicates a dataset of adequate size and
class definition to proceed to clustering analysis. It should be noted that when large
ranges of k are selected the average stability will naturally decrease as the
calculations will take into account k’s much larger or smaller than the actual number
of classes in the data. In such cases the user can review the individual k stabilities
generated as part of this tool to conclude whether those values are satisfying i.e a
minimum of 60%. Next, we calculated the partitioning agreement of three clustering
algorithms and spectral clustering showed the highest average score of 56% (Figure
5A and Supplementary Table 4). Partitioning agreement scores should be interpreted
across algorithms applied on the same dataset rather than as absolute values
keeping in mind that a score below 50% represents a random partitioning and
subsequently a non-robust clustering. In the subsequent feature selection step, the
highest average stability was registered when using all 300 features (stabilityavg =
78%, Supplementary Table 4), not discarding any feature as they all demonstrated
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very similar variance due to the nature of the simulated data. Finally, 8 out of 15
internal metrics voted five clusters as the optimal number during the k estimation
step (Figure 5B) providing a confident estimation above 50%.

Single-class dataset: Homogeneously simulated dataset

To demonstrate Omada’s ability to identify datasets without any present clusters
where all patients belong to one class, we used the single-class simulated dataset
(see Test datasets in Methods). All potential k of two or higher achieved low scores
with average and maximum stabilities of 45% and 55%, respectively (supplementary
Table 2). It is recommended to avoid clustering analysis on such low score datasets
and instead opt for scores of at least 60%. Ideally, stabilities of 80-90% are
considered very strong64, however the potential of several signals in transcriptomic
data and the exploration across multiple k generally decreases the output stability to
an acceptable threshold of 60-70%. Next, Figure 4A shows the overall low partitional
consistencies (averaged over all tested k) for all algorithms with spectral average
partition agreement of 52%, kmeans average partition agreement of 3% and
hierarchical average partition agreement of 26%. With the best performing algorithm
showing an agreement of around 50% we can assume that the tested algorithms are
randomly assigning memberships, therefore we cannot achieve a robust model with
the current data. When using spectral clustering to select the most appropriate set of
genes, the cluster stability rapidly dropped below 50% when using more than 20
genes (Figure 4B) indicating that the algorithm got worse in assigning memberships
as we considered more simulated genes. Finally, the ensemble voting step showed
the majority of the votes supporting five clusters (Figure 4C), a significant variation
from the single simulated class of this dataset. In such unexpected outputs, one
should examine the generated metric scores. In this case, the vast majority of metric
scores are worse when we are testing single-class instead of multi-class simulations
(supplementary Table 3) inferring lower cluster quality, i.e lower compactness and
smaller distance between clusters. Additionally, worse scores (decided according to
Table 2) infer higher uncertainty during the voting process.
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Figure 4: Performance criteria for single-class simulated dataset. The results demonstrate
low scores for the majority of steps. A) shows the average partition agreement of all three
algorithms below the 52% mark indicating very unstable clustering runs overall. In B) the
stability of every possible subsets of genes does not surpass 51.3% underlying overall
unstable clusters. C) shows five clusters as the first estimate (voted by 8 metrics),
significantly different from the one class this dataset contains.

Discriminating cancer types from pan cancer tissue expression data

An integral capability of Omada is to accurately stratify patients according to any
biologically relevant signal present in expression data and detect differences
stemming from genes, pathways, tissues etc. Real multi-tissue samples are often the
focus of exploratory studies as they present cell-type differences but still unknown
factors that may discriminate them. Using expression data from multiple cancer
types (Pan-cancer dataset as described in Test datasets in Methods), we expect our
tools to identify clusters that are consistent with the samples’ tissues of origin. Due
to the different types of tumours we explored the potential cluster range of [2, 5] for
each pipeline step. The clustering feasibility of the dataset (2244 samples, 243
genes) presented an average stability of 88% and maximum stability of 100%
(Supplementary Table 5) providing confidence for the downstream analysis. Spectral
clustering showed the highest consistency (partition agreementavg = 63% closely
resembling the simulated multiclass dataset, Figure 5A) and was therefore deemed
as the most robust. In this example hierarchical clustering showed high instability, as
shown in Figure 5A, demonstrating the importance of selecting the appropriate
algorithm to create a robust model. According to our selection tool, all 243 genes
produced the most stable set of clusters with a stability of 96% (Supplementary Table
5) which coupled with the high algorithm robustness indicated a model that most
likely detects a signal in the data. Additionally, a very important observation is that all
genes were deemed important to produce nearly perfectly stable clusters agreeing
with the filtering of genes based on the cancer type annotations we performed prior
to this clustering analysis. The ensemble voting tool estimated our dataset to contain
three clusters of samples with the support of 57% of the metrics (Figure 5B). When
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comparing these results with the simulated five-class dataset, both achieved higher
certainty on the five clusters (>50%, Figure 5B) reflecting the rigid differences
between the clusters when dealing with cancer tissues and simulated classes. In the
case of the pancan partitioning, the breast, lung and colon/rectal samples almost
perfectly grouped in their respective clusters (Figure 5C).

Figure 5: Performance criteria for two heterogeneous datasets, simulated multi-class and
Pancan dataset. The multi-class dataset contains artificial samples from five distinct clusters
and the Pancan dataset is composed of three different cancer types presenting biological
heterogeneity. A) The agreement between the predicted and true clusters (Adjusted Rand
Index) from three different clustering algorithms (HC: hierarchical, KM: K-means, SC: spectral
clustering) applied to the two datasets. B) Shows the real number of clusters for the dataset
(black text) and the three most likely number of clusters k, with estimates of their percent
probability. C) The contingency tables of the combinations between generated clusters (1st
estimates) and real classes in the datasets. Darker red colour intensity denotes higher
frequency.

RNAseq data from diseased tissue with unknown heterogeneity

It is important for Omada to be able to robustly identify patient subgroups when
heterogeneity for the cohort has not been previously characterised. We applied our
tools on such a dataset (PAH dataset as described in Test datasets in Methods) to
assess whether they can still produce stable clusters that differ in terms of
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expression profiles and other phenotypic measures. The feasibility for this dataset’s
simulation showed an average stability of 61% and a maximum stability of 74% both
acceptable to proceed with the clustering analysis (Supplementary Table 7). A
notable 13% difference between average and maximum stability provides a positive
indication that a specific k might prove significantly more stable downstream. The
spectral clustering technique recorded the highest partitional consistency (partition
agreementavg = 86% and partition agreementmax = 96%, Supplementary Table 7) when
we examined each algorithm's partition agreement for up to ten clusters. The
bootstrapping subset selection tool estimated the 300 most variable genes as the
most stable clustering parameter with a maximum stability of 73% (Figure 6A)
showing an impressive reduction from the initial gene set (25,955) and ensuring the
removal of a lot of data noise. According to the ensemble voting tool two clusters
were voted by 71% of the internal metrics followed by k = 3 (14%) and k = 5 (7%).
Despite the strong indication of two clusters, k = 5 was selected to prevent loss of
information occuring when smaller embedded clusters are disregarded. As shown by
the downstream analysis, fully presented in 18, selecting the higher k, even as a
second estimate, allowed us to detect strong expression profiles. After considering
cluster sizes the three predominant subgroups showed significant differences in
expression, immunity and survival profiles as well as risk category distributions
(Figure 6B, C).

RNA-seq data from healthy whole blood tissue

Next we tested how Omada would discriminate samples from healthy individuals
from a single tissue type. Generally, in studies based on a dataset with no discernible
heterogeneity to be explored - i.e a dataset without patients of dissimilar outcomes or
controls - clustering algorithms may not be robust and may generate variable results.
Useful partitionings might still be formed, such as unforeseen disease subgroups, but
these observations must be validated. Towards that end we used the GUSTO RNA
dataset of 238 mothers, as seen in Test datasets in Methods. During determining
clustering potential our simulated dataset showed stabilityavg = 56% and stabilitymax =
59% (Supplementary Table 8), a similar low-stability score as in the simulated
single-class (45% and 55%). We examined a k-range of [2, 5] where spectral and
k-means clustering showed very similar internal average partitional agreements of
61% and 60% and very high maximum agreements of 93% and 88% (Supplementary
Table 8), respectively. The extremely high agreement scores should be interpreted
with caution as they might not reflect a very strong signal but an underlying bias that
partitions samples in similar groups repeatedly, over-powering the parameter
changes. The 50 most variable genes were estimated to produce the most stable
clustering with maximum stability = 71% (Figure 6A). Similarly to the agreement
scores, a small number of genes driving the most stable clusters (starting from
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24,070 genes) might indicate either a strong expression signal or a pre-existing bias.
When estimating the number of clusters, two (46%) and three (40%) clusters were
voted by the majority showing a general consensus. Considering all the above strong
indications, we need to assess the dataset and the resulting subgroups for potential
biases before relying on the cluster memberships. Towards that end and utilising
clinical data, the association results show the dataset might be biased based on
technical batches with sequencer machine and flowID presenting significant
differences between clusters (1.39e-03 and 2.55e-06, respectively) with hospital
location coming close to significance with p-value = 0.072 (Supplementary Table 9).
Additional statistical tests and regression analysis with maternal and foetal
physiological and clinical phenotypes did not show any association with the clusters.
The expression profiles of the two clusters show visible differences as do the t-SNE
and PCA analyses (Figure 6E) with the first principal component of the latter
explaining 79% of the variance in the GUSTO dataset.
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Figure 6: Performance criteria for PAH and GUSTO datasets which have no known
subgroups. Panel A) depicts the average and max sample set stabilities (percentage) for both
datasets. The red dashed line represents the threshold of a stable clustering (60%). The PAH
RNA-seq dataset contains expression of IPAH patients with panel B) showing the gene
expression heatmap and C) survival profiles for discovered subgroups. The GUSTO dataset
contains expression from healthy maternal whole blood with panel D) showing the gene
expression heatmap. The following panels show the distribution of cluster members across
E) sequencer machines(chi-square p-value 1.39e-03), F) flow IDs (chi-square p-value
2.55e-06) and G) hospitals where the data were collected (chi-square p-value 0.072). H) t-SNE
and PCA plots of the expression profiles with labelling of the two discovered subgroups.
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Discussion

Our toolkit is designed to answer multiple questions arising during transcriptomic
exploratory studies that target to uncover heterogeneity and subtypes within any
condition that might be driven by expression changes. With the plurality of
unsupervised methods available and their specialised nature, the selection of the
most appropriate approach is a multi-factor problem. A lot of technical decisions are
required in the procedure starting with a dataset and completed with a meaningful
set of subgroups. To assist with this problem, our toolkit initially assesses the
potential of a target dataset and provides estimates of the most appropriate method,
gene set and number of subgroups finally outputting a partition based on optimised
parameters unburdening the user of specialised decision making (Figure 1). All
individual tools are computed internally and therefore do not require prior deep
knowledge of machine learning by the user. All results, intermediate and final, are
observable and each step is justified by multiple measures and indices representing
widely used machine learning techniques.

Applying unsupervised learning on expression datasets is often not a straightforward
task as it contains the element of uncertainty mainly introduced by the lack of
knowledge on the data points. No methods or metrics can give a definitive answer to
the main clustering questions, as presented in previous sections, therefore each tool
has to be used with caution, i.e. determining the dataset clustering potential is an
indication rather than a clear sign that partitioning the dataset will yield informational
subgroups. Additionally, clustering can often contain non-deterministic steps
allowing for each function to behave slightly differently between similar runs. To
reduce the uncertainty and provide a reliable set of tools, this toolkit has been applied
on various gene expression datasets where its efficiency has been demonstrated.
However, it is important to note that despite the use of multiple methodological
approaches within this toolkit the inherent exploratory characteristics of clustering do
not allow for clusters of definite value, instead they are meant to be dealt with
scientific caution and biological validation. Aside from the actual memberships, the
functions in this package can also reveal useful information about the input data. The
GUSTO RNA-seq dataset showed that biases can be discovered by applying simple
tests, such as PCA or tSNE, in conjunction with the cluster members. It is also
possible for Omada to hint towards the existence of a single class, and therefore no
heterogeneity, by consistently revealing low partition agreement and stability scores
across multiple functions, as demonstrated in our single-class dataset example.
Furthermore, Omada can help in selecting a small group of genes with potential
partitioning capabilities as the feature selection step is expected to greatly reduce
the number of genes which in most cases count to thousands. This toolkit is
currently based on specific clustering techniques and metrics but its modular nature
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allows its extension to accommodate different data types that come in the form of
continuous numeric values such as microRNA, metabolite or single cell RNA
datasets. Furthermore, the structure of this toolkit allows for additional approaches
to be added in the future to the pool of clustering algorithms to be tested keeping up
with the current state of the art techniques.

Code availability

Code will be available on github and as a bioconductor software package (Omada) at
10.18129/B9.bioc.omada.

Data availability

The expression datasets used in this work can be accessed through the following
sources: The two simulated, by Omada, datasets (single and multi-class) can be
accessed and downloaded at https://github.com/BioSok/OmadaSimulatedDatasets.
The Pan cancer tissue expression data can be accessed through
(https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq). The
transcriptomic data used in this study can be accessed through the EGA (the
European Genome-phenome Archive) database under accession code
EGAS00001005532. In compliance with the Ethics under which these data and
samples have been collected, the transcriptomic data are available through restricted
access for approved researchers who agree to the conditions of use, i.e. keeping it
secure and only using it for approved purposes. To apply for access please contact
cohortcoordination@medschl.cam.ac.uk. You will receive an application form within
30 days. The ‘UK National PAH Cohort Study Data Access Committee’ will review
requests within 3 months of receipt of the completed application form and if
approved, provide details for access to the RNAseq data stored at the EGA. All
requesters must agree to the data access conditions found in EGA. The data used to
generate statistics, plots and figures are accessible through our interactive portal
found in https://sheffield-university.shinyapps.io/ipah-rnaseq-app/. The GUSTO
expression dataset is available in NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under the accession numbers GSE182409
(Corresponding Reviewer token number: qjolmmeudnofnsv).
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2.4 Supplementary information from Manuscript 1

Omada: Robust clustering of transcriptomes through multiple testing

Kariotis et al

Supplementary methods

To determine the significance of the difference between simulated distributions, used
during the dataset simulation, the Kolmogorov's D statistics are shown in
Supplementary Table 1.

Supplementary results

All results generated from our tools application on the available datasets can be
found in Supplementary Table 2 (simulated single-class dataset), Supplementary
Table 4 (simulated multi-class dataset), Supplementary Table 5 (pancan dataset),
Supplementary Table 7 (I/PAH dataset) and Supplementary Table 8 (GUSTO dataset).
Additionally, the confusion matrices for simulated multi-class and pancan datasets,
for which we know the actual labels, are presented in Supplementary Table 6.
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Supplementary tables

Supplementary Table 1 | Kolmogorov's D statistic for a simulated dataset containing 5
clusters (A, B, C, D, E). Each distance D has a p-value of less than 2.2e-16

AvsB AvsC AvsD AvsE BvsC BvsD BvsE CvsD CvsE DvsE

0.99 0.99 1 1 0.84 0.97 0.97 0.65 0.88 0.54

Supplementary Table 2 | Simulated single-class dataset results, composed of 100 samples
and 100 genes drawn from a single distribution

Tool Parameters Results

Dataset clustering
feasibility 100 samples, 100 features max stability = 0.55

average stability = 0.45

Clustering method
selection

max clusters = 6
comparisons = 3

Spectral PA = 0.52
Kmeans PA = 0.03

Hierarchical PA = 0.26

Sample set selection
min(k) = 2
max(k) = 6

feature step = 20

Optimal features = 20
max stability = 0.51

average stability = 0.47

K estimation
min(k) = 2
max(k) = 6

method = spectral
Optimal k = 5

*max clusters: the maximum number of clusters to be tested starting from 2, range [2, max clusters]
*min(k): minimum number of clusters to be tested
*max(k): maximum number of clusters to be tested
*feature step: the number of features by which the generated datasets grow. Also, the smallest dataset to be
tested
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Supplementary Table 3 | The scores of all internal indexes used to decide on the ensemble
voting of the number of clusters for the multi and single class simulated datasets. The scores
for the most voted k are presented for each dataset along with the ideal score (min/max) for
each index

Multi Class (k=5) One Class (k=6) Ideal

Calinski-Harabasz 608.5824 5.325228 max

Dunn 0.672101 0.373477 max

Pbm 740.0956 0.709396 max

Tau 0.50501 0.192052 max

Gamma 0.896494 0.335348 max

C index 0.01731 0.324603 min

Davies–
Bouldin

0.993194 2.897971 min

Mcclain
rao

0.303852 0.907469 min

sd_dis 0.233813 0.479863 min

Ray–Turi 0.301727 2.20407 min

g_plus 0.016422 0.108995 min

Silhouette 0.479414 0.050476 max

s_dbw 0 0 min

Compact
ness

0 145.1075 max

Connecti
vity

7.512624 6.277666 max
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Supplementary Table 4 | Simulated multi-class dataset results, where distribution is
represented by around 120 samples and 3 clusters are used as a default parameter

Tool Parameters Results

Dataset clustering
feasibility 359 samples, 300 features max stability = 0.78

average stability = 0.72

Clustering method
selection

max clusters = 6
comparisons = 3

Spectral PA = 0.56
Kmeans PA = 0.53

Hierarchical PA = 0.28

Sample set selection
min(k) = 2
max(k) = 6

feature step = 25

Optimal features = 300
max stability = 0.84

average stability = 0.78

K estimation
min(k) = 2
max(k) = 6

method = spectral
Optimal k = 5

*max clusters: the maximum number of clusters to be tested starting from 2, range [2, max clusters]
*min(k): minimum number of clusters to be tested
*max(k): maximum number of clusters to be tested
*feature step: the number of features by which the generated datasets grow. Also, the smallest dataset to be
tested

Supplementary Table 5 | Pancan multi-tissue RNA-seq dataset B results using 5 tumour
classes, filtering genes with expression variance less than 5

Tool Parameters Results

Dataset clustering
feasibility 801 samples, 20531 features max stability = 0.87

average stability = 0.70

Clustering method selection max clusters = 5
comparisons = 3

Spectral PA = 0.60
Kmeans PA = 0.46

Hierarchical PA = 0.12

Sample set selection
min(k) = 2
max(k) = 6

feature step = 50

Optimal features = 350
max stability = 0.85

average stability = 0.85

K estimation
min(k) = 2
max(k) = 6

method = spectral
Optimal k = 3

*max clusters: the maximum number of clusters to be tested starting from 2, range [2, max clusters]
*min(k): minimum number of clusters to be tested
*max(k): maximum number of clusters to be tested
*feature step: the number of features by which the generated datasets grow. Also, the smallest dataset to be
tested
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Supplementary Table 6 | The confusion matrix of cluster estimations and actual classes of
samples for simulated multi-class and pancan dataset

Simulated multi-class dataset

Class 1 Class 2 Class 3 Class 4 Class 5

Cluster 1 72 0 0 0 0

Cluster 2 0 0 0 72 0

Cluster 3 0 0 72 0 0

Cluster 4 0 0 0 0 72

Cluster 5 0 71 0 0 0

Pancan multi-tissue dataset

BRCA COAD KIRC LUAD PRAD

Cluster 1 152 0 0 0 0

Cluster 2 0 73 145 0 136

Cluster 3 53 1 1 2 0

Cluster 4 0 4 0 139 0

Cluster 5 95 0 0 0 0

Supplementary Table 7 | RNA-seq iPAH/HPAH dataset results as shown in (Kariotis et al.,
2021)

Tool Parameters Results

Dataset clustering
feasibility 359 samples, 25955 features max stability = 0.74

average stability = 0.61

Clustering method
selection

max clusters = 10
comparisons = 3

Spectral PA = 0.86
Kmeans PA = 0.17

Hierarchical PA = 0.57

Sample set selection
min(k) = 2
max(k) = 10

feature step = 50

Optimal features = 300
max stability = 0.73

Average stability = 0.61

K estimation
min(k) = 2
max(k) = 10

method = spectral
Optimal k = 5

*max clusters: the maximum number of clusters to be tested starting from 2, range [2, max clusters]
*min(k): minimum number of clusters to be tested
*max(k): maximum number of clusters to be tested
*feature step: the number of features by which the generated datasets grow. Also, the smallest dataset to be
tested
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Supplementary Table 8 | Gestational diabetes dataset (GUSTO) results

Step Parameters Results

Dataset clustering
feasibility 238 samples, 24,070 features max stability = 0.59

average stability = 0.56

Clustering method
selection

max clusters = 5
comparisons = 3

Spectral PA = 0.61
Kmeans PA = 0.60

Hierarchical PA = 0.12

Sample set selection
min(k) = 2
max(k) = 6

feature step = 50

Optimal features = 50
max stability = 0.71

average stability = 0.65

K estimation
min(k) = 2
max(k) = 6

method = spectral
Optimal k = 2

*max clusters: the maximum number of clusters to be tested starting from 2, range [2, max clusters]
*min(k): minimum number of clusters to be tested
*max(k): maximum number of clusters to be tested
*feature step: the number of features by which the generated datasets grow. Also, the smallest dataset to be
tested

Supplementary Table 9 | P-values of chi-square statistical and generalised linear regression
analysis results for clinical variables and maternal phenotypes for the GUSTO dataset

Method p-value

Hospital (2 locations) chi-square 0.072

Time before/after 11am chi-square 0.351

Sequenced location (2 locations) chi-square 0.468

Sequenced machine (7 machines) chi-square 1.39e-03

Sequenced Flow (22 flows) chi-square 2.55e-06

Ethnicity (Chinese/Malay/Indian) chi-square 0.15

Full/pre term chi-square 0.53

Mother GDM chi-square 1

Infant sex chi-square 0.119

Pre-eclampsia chi-square 0.153

ppBMI (under/normal/overweight) chi-square 0.235

bookingBMI, WHO class(under/normal/overweight) chi-square 0.235
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Total GWG IOM (ppBMI)
(Inadequate/Normal/Excessive)

chi-square 0.577

Total GWG IOM (bookBMI)
(Inadequate/Normal/Excessive)

chi-square 0.063

Rate of GWG IOM (ppBMI)
(Inadequate/Normal/Excessive)

chi-square 0.311

Rate of GWG IOM (bookBMI)
(Inadequate/Normal/Excessive)

chi-square 0.425

Average maternal age GLM 0.299

Average gestational weeks GLM 0.604

Average ppBMI GLM 0.379

Average bookingpBMI GLM 0.539

Average total GWG (ppweight) GLM 0.655

Average total GWG (bookingweight) GLM 0.258

Average rate of GWG GLM 0.294

Average EPDS GLM 0.602

Average STAI state GLM 0.25

Average STAI trait GLM 0.195

Average fasting glucose GLM 0.696

Average 2hr post glucose GLM 0.762
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Supplementary figures

Supplementary Figure 1: A) Clustering method selection based on the highest partition
agreement between multiple differently parameterized runs B) Selection of the most cluster
stable omics feature subset C) Estimating the optimal number of clusters for a dataset based
on majority voting of several compactness and separation internal machine learning indexes D)
Generating signature groups of clinical features/variables that drive each cluster by a multistep
ensemble feature selection process utilising several machine learning classifiers E) Generating
signature groups of omics features based on directional coefficients of a LASSO regression
model
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Chapter 3 - Biological heterogeneity in idiopathic
pulmonary arterial hypertension identified through
unsupervised transcriptomic profiling of whole blood

3.1 Background

This piece of research focused on understanding the heterogeneity of idiopathic and
heritable pulmonary arterial hypertension (IPAH) patients using RNA profiles
observed in their blood. Our Omada toolkit was applied to a cohort of IPAH patients
profiled by whole blood RNA-seq to identify what is differentiating them in a way that
is agnostic to clinical characteristics. The work presented in this article attempts to
answer four questions:

● Can clustering identify stable patient subgroups for idiopathic PAH?

● How many distinct RNA-based subgroups of IPAH patients?

● Are any subgroups significantly associated with clinical outcomes?

● What is the relationship between gene and clinical signatures for RNA subgroups?

The first part of this study is composed of the application of Omada to explore and
partition the PAH patients while generating robust and reproducible results supported
by reliable machine learning algorithms and metrics. We showed a robust
methodology which we validated through supervised learning and interpreted
biologically. The second part generated gene and clinical signatures with supervised
approaches (classification and regression) which we combined and validated with
additional expression datasets. Finally, to show the subgroup distinctions, we
performed extensive biological downstream analyses which included the subjects of
survival, disease risk, immune expression and differential cell composition as well as
gene-clinical variable correlations.
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3.2 Contribution

For this publication I was the first co-author from the conception of the study to the
implementation and writing of the manuscript and supplementary. More specifically, I
was the main contributor in writing the manuscript and supplementary, implementing
the code and all unsupervised learning work as well as the analyses of the results in
both main and supplementary documents. Sections/figures not generated by me are
in italics and brackets in text specifying the author.
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Abstract

Idiopathic pulmonary arterial hypertension (IPAH) is a rare but fatal disease
diagnosed by right heart catheterisation and the exclusion of other forms of
pulmonary arterial hypertension, producing a heterogeneous population with varied
treatment response. Here we show unsupervised machine learning identification of
three major patient subgroups that account for 92% of the cohort, each with unique
whole blood transcriptomic and clinical feature signatures. These subgroups are
associated with poor, moderate, and good prognosis. The poor prognosis subgroup is
associated with upregulation of the ALAS2 and downregulation of several
immunoglobulin genes, while the good prognosis subgroup is defined by upregulation
of the bone morphogenetic protein signalling regulator NOG, and the C/C variant of
HLA-DPA1/DPB1 (independently associated with survival). These findings
independently validated provide evidence for the existence of 3 major subgroups
(endophenotypes) within the IPAH classification, could improve risk stratification and
provide molecular insights into the pathogenesis of IPAH.

Introduction

Pulmonary arterial hypertension (PAH) is a rare but devastating disease
characterised by sustained pulmonary vasoconstriction and progressive pulmonary
vascular remodelling. This leads to an increase in pulmonary vascular resistance and
pulmonary artery pressure, resulting in right heart failure and death1. The cause of
idiopathic PAH (IPAH) remains unknown and diagnosis is derived from the exclusion
of other forms of PAH, resulting in a heterogeneous group of patients who have
significant differences in survival and treatment response across clinical cohort and
registry studies2,3,4,5.

The pathobiology of PAH involves the complex interaction of resident vascular cells,
including endothelial cells, arterial smooth muscle cells and fibroblasts, with
infiltrating inflammatory cells, and has been shown to be regulated by an ever
growing number of molecular and genetic mechanisms6,7,8. We have identified both
rare mutations9 and common variants10 in heritable and idiopathic PAH (H/IPAH) that
have provided further insight into the genetic underpinning of PAH. Additional
proteomic11, metabolomic12 and transcriptomic13 studies have described diagnostic
and prognostic biomarkers that add to our increasing understanding of the molecular
mechanisms that regulate disease in this cohort. In Rhodes et al. we compared
clinically defined H/IPAH cases to healthy controls and defined an imperfect
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diagnostic signature for H/IPAH; however, we have not previously examined the
molecular heterogeneity that exists within H/IPAH cases. Deep RNA profiling of blood
samples have provided accessible biomarkers to detect rare diseases14 and defined
molecular mechanisms behind myocardial infarction15. We therefore investigated
whether transcriptomic profiling of whole blood can provide more granular molecular
‘endophenotypes’ of H/IPAH to stratify patients better than is currently permissible
with the standard clinical classification. Furthermore, we hypothesised that these
transcriptome-defined subgroups would provide additional insights into biological
pathways driving disease, and potential drug targets offering a route to precision
medicine approaches for H/IPAH.

In this study, assessment of transcriptome patterns in whole blood was conducted
using unsupervised machine learning agnostic to the clinical definitions and
descriptors of H/IPAH. We describe the unbiased partitioning of patients into multiple
distinct transcriptomic subgroups that associate with different survival properties,
each with predictive clinical and genetic features. Specifically, we highlight the
potential role of immunity and immune genes in discrimination of PAH
endophenotypes associated with differential patient outcomes. These data further
highlight the concept that inflammation is an important mediator of PAH
pathogenesis16,17,18,19,20,21,22 and the discovery of distinct immune subgroups from
blood cytokine profiles of patients with PAH16,17,18. Finally, we identify a specific panel
of clinical features that describe each transcriptomic subgroup and replicate these
subgroups in a validation cohort who did not undergo full transcriptomic profiling
using their clinical phenotype data. The gene expression profile of key cluster
associated genes was subsequently confirmed, and the correlation with key clinical
variables validated in both internal and external validation cohorts, thereby validating
our approach, and providing an alternative method to define these endophenotypes
without the need for transcriptomic data.
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Results

Unsupervised cluster analysis of whole-blood transcriptomes
reveals five distinct subgroups of H/IPAH

Whole blood samples from patients with H/IPAH (n = 359) were processed for
RNA-sequencing as previously described13. Samples from 359 patients and 21
samples collected from a second time point underwent RNAseq data processing to
reduce noise, and gene filtering to remove gender bias as sex chromosomes
produced the highest variation in gene expression during clustering (Supplementary
Fig. 1). Sample collection site did not produce any discernible effect on clustering
(Supplementary Figs. 2 and 3). Simultaneously, the 300 genes that produced the
most stable expression dataset were utilised to identify unique subgroups of gene
expression profiles and describe the biological and clinical descriptors of these
subgroups (Fig. 1). A clustering algorithm for selection and majority voting of
multiple internal validation indexes (Supplementary Data 1) allowed us to identify as
statistically optimal five distinct and stable subgroups of patients’ profiles (Fig. 2a)
while retaining the maximum heterogeneity information found in our dataset. The
largest of the patient clusters identified was subgroup I (n = 129), which had poorer
survival (53%, five-year median survival from sampling; Fig. 2b). The second largest,
subgroup II (n = 112), demonstrated the best survival (78%, 5 years from sampling;
Fig. 2b). Subgroup V (n = 89) demonstrated a mixed gene expression pattern and
average survival outcome compared to subgroups I and II (Fig. 2a, b). Subgroups III
(n = 19) and IV (n = 10) also demonstrated distinct gene expression patterns, with
subgroup III most similar to subgroup II, and subgroup IV similar to subgroup I both in
terms of gene expression level and survival outcomes. Due to the small size of
subgroups III and IV (making statistical significance unattainable), we focused further
characterisation of genetic and clinical correlates for subgroups I, II and V. The 33
HPAH patients in our PAH cohort showed an equal distribution (~10%) among the
subgroups of our initial clustering (Supplementary Table 1), indicating that the
inclusion of HPAH, or the small number of mis-classified patients, did not drive the
partitioning procedure. An additional clustering pipeline exclusively utilising 313
samples frοm patients with IPAH (i.e. excluding those with HPAH, or re-classified PH)
also showed five subgroups (Supplementary Fig. 4), where there were also a group of
patients with poorer survival (clusters B and E, n = 149), a group with good survival (A
and C, n = 109) and a group with moderate survival (D, n = 55).
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Fig. 1: Overview of IPAH subgroup identification methodology.

a A cohort of 359 IPAH patients and a set of 300 genes are selected for clustering based on
RNA data quality and variability of expression across samples. b Spectral clustering of
patients using expression values (TPM) was benchmarked against hierarchical clustering
(HC) and k-means clustering (KM), and the optimal number of IPAH subgroups was selected
based on internal indexes. c Associated gene expression and clinical features were identified
and validated in independent cohorts.
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Fig. 2: Gene expression profiles, survival and risk categories that demonstrate five distinct
subgroups.

a The expression heatmap for the five discovered subgroups showing distinct expression
profiles. b Kaplan–Meier survival curves for the three predominant subgroups demonstrating
the difference in survival profiles (from RNA sampling) for a span of 5 years along with
two-sided log-rank test p values. c The percentage of predominant subgroups I, II and V
patients across REVEAL risk categories. High- and very-high-risk populations mostly consist
of subgroup I patients (45.5% and 73.3%, respectively), while the low-risk population is
mostly composed of subgroup II (38.3%) and V (29.5%) patients. Fisher’s exact test showed
a statistically significant difference (two-sided p value = 0.024) between subgroups I and II
for low- and very-high-risk categories.

In order to determine whether the survival differences between the three main
(largest) transcriptomic subgroups were also associated with disease severity in the
surviving patients, we calculated the REVEAL 2.0 risk score4 across all risk levels: low
(n = 146), moderate (n = 41), high (n = 44) and very high (n = 15). Subgroup I which
had the worst survival also had both the highest percentage of patients in high-risk
categories (medium 43.9%, high 45.5% and very high 73.3%) and a lower percentage
(32.2%) in the low-risk category (Fig. 2c). In contrast, subgroup II which had the best
survival contained the largest group of low risk patients (38.3%), a proportion
significantly different to subgroup I (z-test p = 0.01422, Fig. 2c). The distribution of
subgroup V was uniform across the risk groups, except for a small proportion of
very-high-risk patients (6.6%). Age and sex were also included as covariates with the
subgroups in a Cox regression model. Age above 52 years (median) was significantly
associated with poor survival (HR = 2.29) while gender showed no relationship with
overall survival. Even with these covariates, subgroup I was still significantly
associated with survival and was the biggest risk factor (HR = 3.83) for poor outcome
(Supplementary Fig. 5). Within each subgroup, a small number of patients had a
second time-point sample collected on average after 463 days. Patients with these
longitudinal samples (n = 19) were found to either remain within their subgroup or
transition from either subgroup I (poor prognosis) or II (good prognosis) to the
moderate prognosis subgroup V (Supplementary Fig. 6a). Interestingly, no patient
transitioned from subgroup II (best survival) directly to subgroup I (worst survival) or
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vice versa over time, 9 patients changed through the moderate subgroup, while 12
stayed in the same subgroup. Additionally, no functional class changes observed with
almost all samples belonging to functional class III. When including transcriptomes
from healthy volunteers in our cluster analysis, the highest proportion of healthy
volunteers (39.1%) grouped with subgroup II patients (better prognosis)
(Supplementary Fig. 6b). To further investigate the defining characteristics of the
three largest subgroups, we interrogated both their gene expression profiles and
clinical features to define their endophenotype.

Relative expression of immunoglobulins define RNA-based
subgroups of IPAH

We next interrogated the three largest RNA-based subgroups using a multivariate
penalised regression to identify the relationship between gene expression profiles
and each of the three subgroups. The most parsimonious model revealed 57 genes
with measurable association to the subgroups. ALAS2 (erythroid ALA-synthase), a
catalysing haeme biosynthesis enzyme, appeared in the signatures for both
subgroups I and II, and was the most differentially expressed gene (>2-fold) between
the two subgroups. Several immunoglobulin light chain genes (IGKV and IGLV) were
key markers for the subgroups, and these were found to be either downregulated in
subgroup I (poor prognosis) or upregulated in subgroup II (good prognosis; Fig. 3a).
Other than immunoglobulins, Noggin, a bone morphogenetic protein 4 antagonist,
and inhibitor of hypoxia-induced proliferation23, was the gene with the highest positive
regression coefficient for subgroup II, underlining its association with good
prognosis. BMP antagonist Noggin and immunoglobulin genes associated with the
good prognostic subgroup II were all downregulated by more than twofold in
subgroup I (Fig. 3b), fitting with contemporary understanding of perturbed BMP and
inflammatory signalling in PAH pathogenesis16,21,24. Across the three major
subgroups, the relative expression level of immunoglobulins ranged from low,
intermediate and high for subgroups I, V and II, respectively (Fig. 3a, c), while Noggin
showed significantly higher expression in subgroup II (Supplementary Fig. 7).
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Fig. 3: Genes associated with subgroups I (low survival), II (high survival) and V
(intermediate survival).

a Genes with the highest 5% of LASSO coefficients across subgroups I, II and V. b Average
expression fold change (log2 scaled) of the signature genes between subgroups I and II, with
significance notations. Genes over-expressed in subgroup I are denoted by light blue bars
while genes primarily expressed in subgroup II are represented by dark blue bars. c
Expression level of immunoglobulin genes selected by LASSO across the three predominant
subgroups with medians shown. Subgroups I (n = 134), V (n = 98) and II (n = 119) can be
defined as having low, intermediate and high immunoglobulin characteristics. Vertical centre
line represents the median, top and bottom bounds of the box represent the first and third
quartile, while the tips of the whiskers represent min and max values.

Differential immune cell composition between IPAH subgroups

To ascertain whether the large expression differences in immunoglobulin genes
associated with subgroups I and II also corresponded to different levels of immune
activity, we deconvoluted the RNA profiles to estimate the proportions of immune cell
types in each sample. Significant differences (p < 0.01) in the proportion of
lymphocytes and neutrophils were observed between samples in subgroup I and II
(Fig. 4a and Supplementary Fig. 8). In particular, CD4/CD8 T cells and memory B
cells were significantly more abundant in subgroup II where we observed
upregulation of immunoglobulins. The lower proportion of lymphocytes (B cells and T
cells) and higher proportion of neutrophils in the poor prognosis subgroup I was
found to be statistically significant (Supplementary Table 2) and validated by clinical
whole-blood cell counts (Fig. 4b). A higher neutrophil–lymphocyte ratio is known to
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be an indicator of poor overall survival25. The differences observed in CD4 T cells and
memory B cells may be due to changes in MHC class II antigen presentation genes,
such as HLA-DP. We have previously identified the HLA-DPA1/DPB1 rs2856830
genotype to be strongly associated with survival in a large IPAH GWAS study, with the
C/C homozygous genotype conferring increased survival compared with the T/T
genotype, despite similar baseline disease severity10. Consistent with this genotype
association with prognosis, we found that there was a significantly higher proportion
of patients (p = 0.009) with the C/C genotype in subgroup II (good survival) compared
with subgroup I (poor survival). This difference in variant frequencies between
subgroups was not seen in known genetic risk factors for H/IPAH9, including BMPR2
and SOX17 (Fig. 4c, Supplementary Fig. 9 and Supplementary Table 3).

Fig. 4: Immunity cell composition across PAH transcriptomic subgroups.

a CIBERSORT estimation of relative cell abundance in patients of subgroups I (n = 129), II
(n = 112) and V (n = 89) using two-sided test and Bonferroni adjusted mean difference
significance notation, p-values in Supplementary Table 7 .Vertical centre line represents the
median, top and bottom bounds of the box represent the first and third quartile, while the tips
of the whiskers represent min and max values. b Whole-blood cell counts across subgroups I
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(n = 129), II (n = 112) and V (n = 89) using two-sided test and Bonferroni adjusted mean
difference significance notation. p-values in Supplementary Table 7. Vertical centre line
represents the median, top and bottom bounds of the box represent the first and third quartile,
while the tips of the whiskers represent min and max values. c Proportion of patients in each
subgroup with DNA variants in HLA-DPA1/DPB1 (rs2856830), SOX17 (rs10106467 and
rs13266183, homozygous and heterozygous), BMPR2 (rare pathogenic variant). Notably, pI-II
(HLA-DPA1/DPB1) = 0.009. Generated using a two-sample test for equality of proportions with
continuity correction. *P value ≤ 0.05, **p value ≤ 0.01, ***p value ≤ 0.001. [The whole blood
deconvolution was performed by Pablo Otero]

Common clinical characteristics across RNA subgroups

Patients in this cohort were diagnosed at a median age of 45 years (IQR = 35–59
years) and sampled at a median age of 52 years (42–64) with an average of 5.3
years’ time between diagnosis and sampling. As shown in Table 1, patients in
subgroup I were significantly older (p value < 0.01) at 57 [45–70] years than the other
subgroups. Consistent with the incidence rate of IPAH in the UK population3, patients
in the cohort were predominantly females (70%). Patients in the subgroups were also
predominantly females with 62%, 73% and 70% in subgroups I, II and V, respectively.
Across the whole cohort, 16.4% of patients presented positive pulmonary vasodilator
response, 44.4% were in Functional Class (FC) III at sampling date with 6-minute walk
distance (6MWD) of 387 m and a mean N-terminal (NT)-proBNP of 222.5
[78.9–1162.8] ng/ml. When the cohort was stratified, subgroup I had the highest
proportion of FC III (50.4%), whereas subgroup II had the highest proportion of
patients for FC I and II (16.5% and 41.3%, respectively, p value = 0.013). The lowest
6MWD (median = 327 m, p < 0.01) and the highest N-terminal (NT)-proBNP was
(median = 345.0 ng/ml, p = 0.055) were observed in patients from subgroup I (poorest
survival group). Diagnostic RHC across the cohort showed mean pulmonary arterial
pressure (mPAP) was 54 (46–61) mmHg, pulmonary arterial wedge pressure (PAWP)
was 10 (7–12) mmHg and CO was 3.8 (3.0–4.9) l/min at diagnosis. The cohort at the
time of sampling, 143 (40.2%) of the patients were FC II and 158 (44.4) FC III with a
median 6MWD of 387 m, pulmonary vascular resistance (PVR) was 8.9 Wood units
and an NT-proBNP 222.5 ng/ml suggestive of a slight improvement of disease
phenotype in response to vasodilator therapy. The full demographics table can be
found in Supplementary Data 2.
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Table 1Major clinical characteristics of the three main RNA subgroups in the discovery
cohort (n = 359) at the time of sampling.

Intervals describe first and third quartiles. Parentheses describe standard deviation (SD).

[Initial statistics generated by Emilia M Swietlik]

Clinical signatures describe RNA-based subgroups

Identification of specific clinical characteristics associated with each
transcriptome-derived subgroup could explain how the gene expression patterns
manifest into differences in patient outcome. We therefore used supervised machine
learning with feature selection to identify the most important clinical features to
describe the subgroups. The full list of clinical features used by the multivariate
classifiers are described in Supplementary section 'Clinical features identification:
Supervised learning' and in table format in Supplementary Data 2. Each clinical
feature was assessed individually in a univariate model (Fig. 5a and Supplementary
Fig. 10) and in combination with other features (multivariate model). Ensemble
feature selection was used to identify reliable sets of clinical features that describe
signatures for the RNA subgroups. The most important features in the signature for
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subgroup I irrespective of feature selection method were C-reactive protein (CRP),
creatinine, age of diagnosis, body mass index (BMI) and 6MWD. For subgroup II, the
important features were CRP, creatinine, age of diagnosis, BMI and 6MWD, oxygen
saturation (pre-6MWD) and right atrial area (RAA) (by echocardiography). CRP, 6MWD,
urate, pulmonary vascular resistance (PVR), white blood cell count (WBC) and
positive acute vasodilator challenge (at diagnostic right heart catheter) characterised
subgroup IV.
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Fig. 5: Clinical variables descriptive of RNA subgroups and used for classification of new
patients.

a Comparison of clinical variables deemed most important from our univariate feature
selection model across subgroups I (n = 129), II (n = 112) and V (n = 89). Vertical centre line
represents the median, top and bottom bounds of the box represent the first and third
quartile, while the tips of the whiskers represent min and max values. b Clinical variables
selected by ensemble feature selection from models predictive of each subgroup.
Coefficients shown for each variable are from the most predictive support vector machine
classifiers. [Source data generated by Emmanuel Jammeh] c Selected clinical features are
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used to classify 197 IPAH patients from an independent validation cohort. d Kaplan–Meier
survival curves per predicted subgroup in the validation cohort confirming the difference in
survival outcomes between subgroups along with log-rank test p values. e Gene and clinical
variable correlation network. Diamond nodes represent clinical variables drawn from the
clinical signatures. Round nodes represent genes drawn from the gene signature generated
by our LASSO model. Edges denoted Spearman rank correlation and have been thresholded
to 0.25 and two-tailed test p value < 1.11 × 10−5. Additional P values found in Supplementary
Table 8.

CRP and 6MWD were the only clinical features present in signatures for subgroup I, II
and V. Higher CRP was a marker for subgroup I, whereas lower levels indicated
subgroups II and V. In contrast, 6MWD was negatively associated with subgroup I and
positively with subgroups II and V. CRP showed a 37.19% increase in subgroup I
compared to the average for subgroups II and V, 20.75% reduction in subgroup V
compared to the average for subgroup I and II and 47.86% reduction in subgroup II
compared to the average for subgroups I and V. 6MWD was 29.05% lower in
subgroup I compared to the average for II and V, and increased by 7.63% in subgroup
V compared to the average for II and I and 16.97% increase in subgroup II compared
to the average for I and V. Five clinical features were present in signatures for
subgroup I and II but had opposite coefficients (Fig. 5b). Higher age of diagnosis,
BMI, RAA and creatinine are associated in subgroup I, whereas lower levels of those
three features are associated with subgroup II. Subgroup I has 17.8% higher average
age compared to the average for II and V and 21.2% lower in subgroup II compared to
the average for I and V. BMI was 13.1% higher in subgroup I compared to the average
for II and V, and 12.9% lower in subgroup II compared to the average for I and V.
Additionally, creatinine was higher by 12.8% in subgroup I compared to the average
for II and V and lower by 14.4% in subgroup II compared to the average for I and V.
RAA was higher by 6.8% in subgroup I and lower by 6.3% in subgroup II. In contrast,
there was a 27.6% reduction of renal sodium in subgroup I compared to the average
for II and V, and 26.7% increase in subgroup II compared to the average for I and V.

Validation of clinical signatures on an independent cohort

To validate the relationship between clinical and gene features in the RNA subgroups,
we used the clinical feature signatures of the subgroups to classify patients in an
independent cohort of H/IPAH patients (n = 197) where whole-blood RNA profiling
was not performed (Fig. 5c). Similar to the discovery cohort, patients were diagnosed
at a median age of 52 years (IQR = 39–67) and 67% were female. In all, 17.7% of the
patients showed positive pulmonary vasodilator response and the majority were
categorised in Functional Class III (66%) with a 6MWD of 295 m (170–396) and

86



NT-proBNP of 796 ng/pl (128–1092). Their mPAP was 51 mmHg (42–57) and PAWP
was 9 mmHg (6–11). The clinical features associated with RNA subgroups from the
discovery cohort were used to classify this validation cohort. Our supervised
approach identified three subgroups similar to our discovery cohort subgroups I, II
and V (Table 2). These subgroups also displayed differences in their 10-year survival
outcome from diagnosis (Fig. 5d). Those characterised as subgroup I based on their
clinical features (corresponding to the low Noggin and immunoglobulin expression
subgroups from RNAseq) (n = 96) demonstrated the lowest survival of 71% from the
time of diagnosis. Subgroup V (corresponding to the immune neutral, intermediate
RNAseq subgroup) (n = 31) also had an intermediate survival of 86%, while patients in
Subgroup II (corresponding to the best surviving subgroup with upregulated Noggin
and immunoglobulin genes) showed a very high survival rate of 97.2% (n = 96). These
results provide key validation of the existence of endophenotypes for the three major
subgroups of patients within the H/IPAH clinical classification group, and that these
new subgroups can be identified using routinely collected clinical features associated
with RNA dysregulation.
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Table 2Major clinical characteristics of the three subgroups within the validation cohort
(n = 197) at time of diagnosis.

Intervals describe first and third quartiles. Parentheses describe standard deviation (SD). [Initial
statistics generated by Emilia M Swietlik]

Clinical signatures are associated with subgroup-specific genes

We assessed the relationship between gene and clinical features of the subgroups by
measuring the correlation between the most predictive features in both signatures.
Immunoglobulins IGHV2.5, IGKV4.1, IGLV2.8 and IGHM (Spearman rho = −0.354,
-0.342, −0.334, −0.297, respectively, p value <1.11 × 10−5) are negatively correlated
with age of diagnosis (Fig. 5e). Indeed, we observed lower expression of
immunoglobulin in poor prognosis subgroup I where there were older patients.
Noggin was negatively correlated with age of diagnosis (rho = −0.443) but positively
correlated with oxygen saturation (rho = 0.275). Interestingly, ALAS2 correlated most
strongly with BMI (rho = 0.382) but showed an inverse correlation with 6MWD
(rho = −0.323). This is consistent with our observations in the poor prognostic
subgroup I where patients with higher expression of ALAS2 also had higher BMI and
shorter walk distances. Genes negatively correlated with BMI included
immunoglobulins (IGKV4.1, IGKV2.24 and IGKV1.27).
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Gene expression in clinical-feature defined subgroups

Although the RNAseq whole transcriptome was not measured in this internal
validation cohort, we compared gene expression differences between subgroups in
this cohort using TaqMan PCR for 17 of the 27 genes (GAPDH used as the
endogenous control gene) previously associated with the subgroups and/or clinical
variable correlations. Nine of the 11 genes we measured demonstrated a fold change
between subgroup I and II in the same direction as the discovery cohort (Fig. 6a).
Differences in expression of key genes (IGHM, IGKV2.24, IGLV6.57 and NOG) were
significant (p < 0.01) between subgroups I and II (Fig. 6b and Supplementary Table
4).

Fig. 6: Genes of interest with data based on our qPCR results of 91 patients (I = 53, II = 38)
of the validation cohort.

a Mean expression fold change (log2 scaled) of the signature genes between validation
subgroup I (immune inactive) and II (immune active). The fold ratio was generated based on
negative delta Ct values (vs GAPDH). Genes over-expressed in subgroup I are denoted by
light blue bars while genes primarily expressed in subgroup II are represented by dark blue
bars. b The relative quantity (RQ) of each gene of interest relative to GAPDH using a
two-sided t-test with medians and significant differences shown with pI-II
(IGHM) = 8.256 × 10−3, pI-II (IGKV2.24) = 2.373 × 10−3, pI-II (IGLV6.57) = 5.908 × 10−3 and
pI-II (NOG) = 1.233733 × 10−4. **p < 0.01, ***p < 0.001. Vertical centre line represents the
median, top and bottom bounds of the box represent the first and third quartile, while the tips
of the whiskers represent min and max values.
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Clinical signatures are associated with subgroup-specific genes

The correlations between gene and clinical features observed in the discovery cohort
were also examined in our validation cohort of 91 subjects, and also in an external
cohort of 32 subjects with RNA collected from PBMCs26. We found that 64 of the 90
(71%) correlations measured in these two independent cohorts were consistent with
our discovery cohort (Supplementary Table 5).

Discussion

In this study we describe a machine learning approach to identify transcriptome
associated subgroups or endophenotypes of patients with heritable or idiopathic
PAH. We defined five distinct clinical subgroups based on clinical presentation,
severity and survival. The three largest subgroups displayed significantly different
clinical characteristics, severity and survival outcomes suggesting that a molecular
classification for PAH may be possible. We also identified patients that progressed
through these subgroups over time with treatment and disease progression, the
majority of which remaining within their subgroup with only a few transitioning to and
from the intermediate subgroup V. The dysregulation of immunoglobulin genes, NOG
and ALAS2, were most predictive of the subgroups with the best and worst
prognosis, suggesting that these genes are key in determining patient outcome, and
may therefore represent future drug targets but also a tool to identify patients
responsive to current treatments. Estimates of cell counts in whole blood revealed
elevated levels of lymphocytes, in particular T cells, and lower levels of inflammatory
markers in the better prognosis subgroup. We further generated classifiers based on
associated clinical features of these new RNA subgroups and used it to identify
subgroups that differed in survival outcome in an independent cohort.

The most striking difference between the best and worst surviving subgroups was in
immunoglobulin transcription. The upregulation of transcripts coding for the variable
domain of immunoglobulin light chains (IGLV and IGKV genes) that participate in
antigen recognition were markers of subgroup II, while their downregulation were
markers of subgroup I. Differential levels of IGVL and IGKV gene transcripts, as seen
in subgroup I, may control self-reactivity of human antibodies27, and the reduction in
the diversity of light chains has been associated with several autoimmune diseases,
including systemic lupus erythematosis (SLE), type 1 diabetes, and myasthenia
gravis28, 29. The association between autoimmunity and PAH has long been discussed.
There are known associations with autoimmune diseases in other forms of PAH such
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as systemic sclerosis, SLE, Sjogren’s, etc., and the dysregulation of immune cells
including T cells, B cells30 and natural killer cells31 are well described in IPAH, further
validating that our unbiased approach has identified important subgroups. While we
detected significant differences in lymphocyte, neutrophil and CRP levels in the blood
samples of subgroup I patients, deeper genomic characterisation of T cell receptor
and B cell receptors may be needed to understand the role of adaptive immunity on
PAH progression.

Beyond the differences in immunoglobulin genes, the expression patterns that
defined each subgroup also highlighted haeme biosynthesis through ALAS2 was a
marker for subgroup I and correlated with greater disease severity. Previous gene
expression studies across multiple forms of PH, including IPAH, showed significantly
increased expression of ALAS2 in both systemic sclerosis-associated PAH (SSc-PAH)
and IPAH32. In that study, in IPAH patients increased ALAS2 levels also demonstrated
strong correlation with right atrial pressure, pulmonary vascular resistance,
pulmonary artery saturation and cardiac index32. These data, and our own
observations (Fig. 3), are suggestive of a role for ALAS2, iron33 and hepcidin34, 35 in
pulmonary vascular remodelling and PH. Subgroup II with better prognosis can be
partially defined by the downregulation of ALAS2 and increased expression of NOG, a
BMP antagonist with high-affinity binding to BMP4 (ref. 36) which has been shown to
inhibit hypoxia-induced proliferation of PASMC23, and previously associated with BMI
in PAH37 has been proposed as a potential therapeutic target38. The role of Noggin in
the low-risk group is particularly interesting given the proposed role of both Gremlin
and Noggin in the mechanism of action for Sotatercept in the treatment of PAH39.

Previous studies have identified clinical features collected during the diagnosis of
PAH that also have prognostic utility. The clinical features identified here share many
commonalities with those previously included in widely used risk scores (e.g.
REVEAL, ERS) assessment for PAH, including, for example, 6-MWD, WHO functional
class, and NT-proBNP4, 40, 41. This provided further validation that the transcriptomic
profile associated with these subgroups provide insight into the biology of disease,
and perhaps future drug targets. In addition to biomarkers such as CRP which is
known to be elevated in PAH and CTEPH and shown to be predictive of outcome and
sensitive to therapies42 and NT-proBNP with high levels highly prognostic of right
ventricular failure43, age of diagnosis, BMI and renal function were also identified.
Renal function has previously been associated with outcome in PAH, although likely
because of cardiac function44. The age of diagnosis is often discussed as a
consequence of genetics45, or occurrence of co-morbidities; however, in our study the
age of diagnosis was most strongly associated with the immunoglobulin light chain
genes and Noggin. Carriers of BMPR2 mutations often present with PAH at a younger
age and have a worse survival46 so the association with Noggin is interesting in the
context of perturbed BMP signalling. However, the patients with BMPR2 mutation did
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not cluster within one subgroup perhaps fitting with the concept that it is
dysfunctional TGFβ/BMP signalling rather than the precise mutation that is
important.

There is a well-described sex-paradox in PAH47 with a 4:1 female to male prevalence
but the worse survival in male patients48, 49. During our initial analyses of the RNAseq
data, we identified subclusters exclusively defined by sex genes. To mitigate against
any gender bias, we excluded sex-chromosome-associated genes in our
preprocessing steps of the analysis pipeline. Although we cannot reject the
possibilities of the aforementioned genes contributing towards PAH or resilience, we
believe that their removal ensures that the clustering algorithm captures
heterogeneity independent of sex-associated expression variation. However, the
interactions between gender and other autosomal genes in the context of PAH
require further study.

The application of unsupervised learning from molecular profiles of IPAH is a
powerful approach for revealing subgroups within a heterogeneous population that
has not been defined clinically. Most studies employ widely used clustering
algorithms without exploring their data suitability. By contrast, in this study we
determine spectral clustering as the most consistent method in detecting differences
and subsequently partitioning RNA-sequencing samples using robust performance
criteria. Furthermore, previous studies have focused on clustering all PAH cases
using a small set of immune markers, and captured immune phenotypes overlooked
by the broad clinical classifications50. We used a much larger set of features, i.e., the
whole transcriptome and clustered cases lacking causal pathologies, and also found
immune phenotypes that differentiated the subgroups. While we controlled for
confounding factors that affect clustering, such as gender-associated genes
(Supplementary Fig. 1), there may yet be other hidden factors, such as viral infections
related to age and gender that could influence patterns observed from whole blood51.
The large degree of validation of the subgroups using both transcriptomic and clinical
features to define them provides strong evidence that these endophenotypes are
reproducible and may be useful to risk stratify or biologically classify subgroups of
IPAH patients. However, further transcriptomic studies profiling patients at multiple
timepoints are required to fully understand the dynamics of the immune components
we identified, the frequency of acute infections, and the impact on PAH phenotype.

Transcriptomic profiling of the blood samples coupled with clinical data from IPAH
patients provides an insight into endophenotypes that may describe this
heterogeneous disease based on RNA expression. The use of additional ‘omic'
biomarkers to provide further molecular profiles (e.g. DNA, protein, metabolites) as
stable biomarkers for stratifying patients could further improve our algorithmic
predictions of patient outcomes and reveal endophenotypes to be targeted
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therapeutically. Furthermore, these data hold promise that these molecular
endophenotypes may be tractable to existing therapies, may offer an alternative
approach to tailor, and assess individual treatment response, in PAH as well as
offering insights into disease pathogenesis that can be targeted by therapeutics as a
precision medicine approach52 in PAH and potentially other diseases to drive
molecular clinical classification suited to the future precision medicine era in
healthcare.

Methods

Study design

The Cohort study of idiopathic and heritable PAH is an observational, prospective and
longitudinal study of patients with idiopathic and heritable PAH (clinicaltrials.gov
NCT019072950). The Sheffield Teaching Hospitals Observational Study of Pulmonary
Hypertension, Cardiovascular and other Respiratory Disease (UK REC Ref
18/YH/0441) is a longitudinal study of patients with suspected pulmonary
hypertension or an associated cardiovascular or respiratory condition. Follow-up
information is collected as a part of routine clinical care every 6 months. The study
allows recruitment of both incident and prevalent cases. Patients consented to the
study agreed to have blood taken for next-generation sequencing and other omics
studies. Healthy adult controls were recruited for comparison studies. The
subsequent whole-blood sample collection process is described in ref. 13. [written by
other co-authors]

Ethics

All UK samples were obtained following informed consent into the UK National
Cohort Study of Idiopathic and Heritable Pulmonary Arterial Hypertension
(clinicaltrials.gov NCT01907295; UK REC Ref. 13/EE/0203) and/or the Sheffield
Teaching Hospitals Observational Study of Pulmonary Hypertension, Cardiovascular
and other Respiratory Disease (UK REC Ref 18/YH/0441). Data were obtained from
samples collected at the University of Arizona Pulmonary Hypertension clinic
between 2012 and 2015 following institutional guidelines and following informed
consent. [written by other co-authors]
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Participants

Patients diagnosed with H/IPAH, PVOD or PCH, relatives of index cases and
unrelated healthy controls were recruited at nine UK centres and followed up by a
median of 7.9 years. In total, 358 patients (Supplementary Fig. 11) of which 96.7%
were further verified to be H/IPAH, 13 relatives, and 21 healthy controls recruited to
the H/IPAH Cohort study were analysed. Both prevalent and incident cases were
allowed. Prevalent cases were defined as diagnosed earlier than 6 months before the
study initiation. Patients in Cohort study were followed longitudinally as part of their
clinical PAH care. All cases were diagnosed between March 1994 and November
2016, and diagnostic classification was made according to international guidelines53.
Patients with PAH associated with anorexigen exposure were considered as IPAH,
whereas HPAH was defined by the presence of a positive family history of PAH.
Clinical, functional and haemodynamic characteristics at the time of PAH diagnosis
were prospectively entered into the database. The date of diagnosis corresponded to
that of confirmatory right heart catheterisation.

Following diagnosis, subsequent treatments and follow-ups were at the discretion of
the treating physician, according to the contemporary guidelines. In most centres,
patients were seen every 3–6 months with an assessment of functional status and
exercise capacity. Right heart catheterisation was repeated when considered
necessary by the responsible clinician. Study visits were performed every 6 months.
Healthy controls had been sampled only once and had clinical information recorded
from the time of sampling. [written by other co-authors]

Clinical data capture, processing and quality control

Pseudonymised results of routinely performed clinical tests reported in either clinical
case notes or electronic medical records (EMR) were stored in web-based
OpenClinica (OC) data capture system (Community edition). Twenty electronic
Clinical Case Report Forms (eCRFs) distributed across seven events (Diagnostic,
Continuous data, Follow-up, Epidemiology questionnaire, Suspension, Relatives,
Unrelated healthy control) were constructed to accommodate routinely available
clinical information. Details regarding data verification procedures were previously
described in detail54.

Information about participants’ status was collected every 6 months (via National
Health System Digital Spine portal or an equivalent local system). Current analysis
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was performed on the census performed on 31 January 2020. Two risk assessment
strategies were applied to the data. Reveal risk score4 and abbreviated ERS risk
scores55 were calculated in all patients who had the necessary minimum phenotypic
information available. Patients who died or were transplanted were suspended on the
day of the event, patients who withdrew from the study were censored on the date of
the last visit, the reason for withdrawal was recorded. [written by other co-authors]

Missingness assessment and imputation

Missingness rates, patterns and causes were assessed per individual, variable and
centre and visualised with vim package v5.1.1R (Supplementary Fig. 12). Multiple
imputation by the chain equations method was used to impute missing data (mice
v3.8.0 package R)56. The imputation model included all variables that were necessary
in the analysis model, including cumulative baseline hazard function and variables
that predicted both the incomplete variable and if the incomplete variable was
missing like the centre and whether the case was incident or prevalent. Quality of
predictors was assessed using outflux–influx plot. Numerical data were imputed with
predictive mean matching (pmm), factors with two levels were imputed using logistic
regression, factors with more than two levels with multinomial logit model and
ordered factors with more than two levels with the ordered logit model. Transformed
variables (BMI, ratios, score sums) were imputed as just another variable as well as
passively with good concordance. The visiting sequence was set to 'monotone' to
speed up convergence. The number of iterations was set to 20. Following the rule of
thumb proposed by White et al.57 that the number of imputations should be at least
equal to the percentage of incomplete cases, the procedure was performed at m = 50.
The convergence of the algorithm was checked, and the means and standard
deviations of imputed values were plotted over 20 iterations. The streams of
numerical and factor variables intermingled and showed no trends at later iterations.
Factors influencing the accuracy of the imputation include the variability in time
between diagnosis and sampling, higher missingness in clinical data for prevalent
cases (diagnosed sometimes many years ago), and differences in measurement
error between centres which followed different protocols for clinical data collection.
[written by Emilia M Swietlik and Divya Pandya]
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RNA data preprocessing

A number of preprocessing steps were required to prepare the raw sequencing data
for unsupervised machine learning. High-throughput sequencing generated raw
pair-end counts of 205,259 transcripts across 508 samples that belong to GenCode
Release 28 (GRCh38.p12). Consequently, Salmon
(https://combine-lab.github.io/salmon/) was used to estimate the relative abundance
of the transcripts (TPM, units of transcripts per million) which were then mapped to
genes (n = 60,144) using the tximport R package. Only genes with more than two
reads (in a transcript level) in at least 95% of control and patient samples were
considered and 11 additional male genes were removed (n = 25,955). Hyperbolic
arcsine transformation (package base v3.6.0) was applied to the final RNAseq TPM
matrix. Further information on quality control of samples and genes can be found in
the Supplementary Methods. The RNA-sequencing and clinical data of healthy
controls were not used in the main pipeline of this study. A secondary clustering with
all patient and healthy samples was implemented to demonstrate the lack of pure
patient and healthy subgroups within our cohort (Supplementary Fig. 6b). Principal
component analysis of expression profiles from samples with a second replicate
clustered together according to the first four principal components (Supplementary
Fig. 13).

Spectral clustering: gene expression subgroup identification

We performed cluster analysis to partition IPAH patients to distinct RNA-based
groups. The spectral clustering model (package kernlab v0.9-29) was selected as the
most suitable unsupervised learning algorithm based on the highest partitional
consistency when comparing multiple dissimilar algorithms (Supplementary Table
6). For the spectral clustering method, data points (i.e. patients) are embedded and
partitioned in a low-dimensional space in the form of a similarity graph, rather than
being characterised by more than 25,000 gene dimensions. High partitional
consistency was defined as the high adjusted Rand Index (package fossil v0.3.7) and
low standard deviation calculated between different variations of each clustering
algorithm (k-means, spectral, hierarchical clustering), as described in Clustering
algorithm selection. For the selection of the most appropriate clustering algorithm we
utilised 25,955 genes across 359 IPAH patient samples (discovery cohort) after
further filtering for repeated same-visit samples and non-H/IPAH diagnosis. We
compared three fundamentally different methods (hierarchical, k-means and spectral)
and use partitioning consistency to determine which method picks up an underlying
signal from our data type (RNA-sequencing). As shown in Supplementary Fig. 14,

96

https://combine-lab.github.io/salmon/


spectral clustering showed the highest consistency (Adjusted Rand Index) in
detecting differences and subsequently partitioning patients in similar clusters
independently of the kernel. Notable is the difference in intra-agreement of spectral
(~75%) and k-means (−13%) clustering, which highlights the importance of the extra
step of mapping data in a low-dimensional space (as a similarity graph) in spectral
clustering. To run the main spectral clustering partitioning we first selected the most
relevant gene set by ranking all genes based on the variability of their expression
across patient samples using the stats v3.6.0R package (Supplementary section
'Feature selection of genes'). Subsequently, several candidate gene sets of increasing
size were drawn from the top ranking gene list and the one that generated subgroups
of highest stability, according to package fpc v2.2-3, was selected (Supplementary
section 'Highest stability gene set'; Supplementary Fig. 15). This resampling
bootstrap approach determined that the most stable gene set was composed from
the 300 most variable genes. As observed in Supplementary Fig. 15, the average
stability is expected to peak towards the smaller sets of genes because in most
biological cases the relevant genes tend to be fewer than hundreds and usually the
ones that show the most variance across patients/samples. However, variability
across all patients does not always mean partitioning power (i.e. clearer cluster
separation). Some distinctive features (in our case genes) might have received a
lower variance ranking since they could effectively discriminate only between smaller
groups of patients but score less overall variance across the entire cohort. Therefore
they would only be included in larger genesets, as described in the geneset selection
method step. For that reason, we might observe smaller peaks following the highest
one, as in Supplementary Fig. 15. Another reason for this observation can be that the
stability score consists of an averaging of the stabilities across different numbers of
clusters (k) starting from two and usually reaching above five (in our case up to six).
As the clustering algorithm takes into account higher ks, lower variance genes might
contribute to the finer partitions thus increasing the stability. Due to the stability
averaging over k, this effect becomes less prominent but still can be reflected in the
formation of late lower peaks.

For the secondary clustering run with only IPAH, 1700 variable genes were selected
as the most stable gene set for clustering.

The number of IPAH subgroups was estimated through ensemble learning58 utilising
15 internal indexes calculated using the package diceR v0.6.0 (Supplementary
sections 'Optimal number of subgroups k' and 'Internal Index Voting'). A
representation of patient flow across k can be found at Supplementary Fig. 16. The
Radial Basis function kernel was used as the similarity measure with five target
subgroups, identified as the optimal number of subgroups by an ensemble learning
method. We elected to investigate k = 5 subgroups, since in clustering contexts it is
safer to overestimate than underestimate the number of subgroups to prevent loss of
information. However, k = 3 subgroups were voted from the vast majority of methods
and we expect them to be the main subgroups. Further information on the selection
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of clustering algorithms and parameters can be found in the Supplementary
Methods.

Analysis of subgroup differences

Survival analysis was performed (R package survival 3.1-7) on the main
(Supplementary Fig. 17) and validation cohorts to identify the survival differences
between subgroups. Kaplan–Meier survival curves from diagnosis and sampling
were calculated for the main patient cohort (per spectral subgroup) as well as the
validation cohort (per predicted subgroup). Subsequently, two multivariate Cox
models were fitted and Hazard ratios calculated on the main cohort once adjusting
for gender and once adjusting for the composite clinical signature discovered by
supervised machine learning. Gene signatures for each subgroup were identified
using LASSO regression models with cross-validation (package glmnet 3.0-1). The
variables with the 5% highest coefficients for each class were highlighted
(Supplementary Fig. 18), and the full list of non-zero coefficients for each class can
be found in Supplementary Data 3. The pathfinder R package was used to highlight
enriched gene pathways between subgroups and differential expression analysis
using the DESeq2 package59 was performed on genes associated with the subgroups
(Supplementary Fig. 19). Gene expression differences across subgroups are
presented in Supplementary Fig. 20. All statistical tests between subgroups were
two-sided and Bonferonni adjusted for multiple testing. [regression analysis was
performed by Thomas S Mascarenhas]

Identifying clinical signatures of subgroups

The dataset was initially cleaned and filtered on 119 features that were identified by a
domain expert from the original 887 features that described the dataset.
Subsequently, any feature that had more than 5% missing data was dropped, and
categorical features numerically encoded.

All ML tasks were carried out using Scikit-learn60 ML framework version 0.23.2 in a
Python 3 environment. As machine learning classifiers, we used Logistic Regression
(LR), support vector machines (SVM), Random Forest (RF) and k-nearest neighbour
(kNN). RF is a powerful ensemble learning technique especially for high-dimensional
classification tasks. Further details about classifier training and feature selection can
be found in the Supplementary Methods.
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Classification of new patients using signatures

Each clinical signature was used to develop a classification model trained on the
discovery cohort to classify new patients into the RNA-based subgroups.
Classification models were built using SVM61, RF62, LR63 and KNN64. The candidate
signature that obtained the best performance was selected. This process was
repeated for all signature sizes, s = 1 to s = 20, for subgroups I, II and V. A final
signature for each subgroup was selected based on a compromise between the
fewest number of features (s = 1 to s = 20) and classification performance. Final
selected signatures for each of the subgroups were pooled to create a composite
signature, which was then used in a multi-class classification model. The model was
trained on the discovery dataset to discriminate between subgroups I, II and V, used
to predict subgroup membership of an unseen validation dataset. The predicted
subgroup membership was then used to calculate survival of predicted subgroups.
Survival of the predicted subgroups was compared to known survival of subgroups in
the discovery dataset for validation purposes. [written by Emmanuel Jammeh]

qPCR on validation cohort

Frozen Tempus tubes collected from patients in the validation cohort, collected under
the UK National Cohort study, were obtained; RNA was extracted using Maxwell® 16
LEV simplyRNA Blood Kit (Cat.# AS1310) as described in the manufacturer’s
instructions on the Maxwell® 16 Instrument (Cat.# AS2000). Extracted RNA was
transcribed using the High-Capacity-RNA-to-cDNA kit (Thermo Fisher Cat.# 437406)
following the manufacturer’s instructions. Resultant cDNA was analysed using
custom TaqMan array cards (Thermo Fisher Cat.#4342249) with Fast Advanced
Mastermix (Thermo Fisher Cat.# 4444964); damples were run 8 to a card across 25
cards with 24 primer probes (Thermo Fisher) per sample (18S-Hs99999901_s1,
ACTB-Hs00357333_g1, ALAS2-Hs01085701_m1, BMPR2-Hs00176148_m1,
C4BPA-Hs00426339_m1, CRISP3-Hs00195988_m1, CTSG-Hs00175195_m1,
GAPDH-Hs02786624_g1, HPRT1-Hs02800695_m1, IFI27-Hs01086373_g1,
IGHM-Hs00941538_g1, IGHV3-75-Hs03832008_sH, IGKV2-24-Hs06671746_g1,
IGLV6-57-Hs01696637_s1, LINC00221-Hs01382601_m1, LTF-Hs00914334_m1,
MT-RNR1-Hs02596859_g1, NEBL-Hs01067284_m1, NOG-Hs00271352_s1,
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NOS2-Hs01075529_m1, NPRL3-Hs00429221_m1, PI3-Hs00160066_m1,
SMIM11A;SMIM11B-Hs00938773_m1, XIST-Hs01079824_m1). These assays were
performed in duplicate using the Applied Biosystems 7900HT Fast real-time PCR
system with the TaqMan Low Density Array card block following calibration using the
TaqMan Low Density Array Calibration Kit (Thermo Fisher Cat.# 10341465). Ct values
were determined with Automatic thresholding in the SDS2.4 software. GAPDH-
Hs02786624_g1 was used as a control. Relative quantity was calculated using the
ΔΔCt method. [written by Josephine A. Pickworth

External cohort validation

An external validation cohort of patients with Group 1 PAH prospectively recruited at
the University of Arizona Pulmonary Hypertension clinic between 2012 and 2015
following institutional guidelines and informed consent was used. The cohort
comprised 84 subjects with Group 1 PAH of whom 32 were diagnosed with idiopathic
PAH. For each subject, demographics and clinical variables were collected26. PBMCs
were stored in RNAlater as previously described. In total, approximately 3600 million
clusters with paired-end 75 bp reads (∼35M cluster per sample) were generated from
PBMC-derived RNA. [correlation data provided by Ankit A. Desai]

Clinical variable and gene correlations

We calculated correlations between the clinical and gene signatures we generated in
previous steps of this study. For discovery and validation cohorts we used the rcorr
function of R package Hmisc (version 4.5-0). For the external validation we used the
values found in ref. 26.

Study approval

Study approval for the use of sample and data were obtained from the UK National
PAH Cohort Study Data Access Committee (clinicaltrials.gov NCT01907295; UK REC
Ref 13/EE/0203), and the Sheffield Teaching Hospitals Observational Study of
Pulmonary Hypertension, Cardiovascular and other Respiratory Diseases Scientific
Advisory Board (UK REC Ref 18/YH/0441).
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Data availability
The transcriptomic and clinical data used in this study have been deposited in the
EGA (the European Genome-phenome Archive) database under accession code
EGAS00001005532. In compliance with the Ethics under which these data and
samples have been collected, the transcriptomic data are available through restricted
access for approved researchers who agree to the conditions of use, i.e. keeping it
secure and only using it for approved purposes. To apply for access please contact
cohortcoordination@medschl.cam.ac.uk. You will receive an application form within
30 days. The ‘UK National PAH Cohort Study Data Access Committee’ will review
requests within 3 months of receipt of the completed application form and if
approved, provide details for access to the RNAseq data stored at the EGA. All
requesters must agree to the data access conditions found in EGA. The data used to
generate statistics, plots and figures are accessible through our interactive portal
found in https://sheffield-university.shinyapps.io/ipah-rnaseq-app/. Source data are
provided with this paper.

Code availability
Additionally, the code used to generate the results of this study is publicly available at
https://zenodo.org/badge/latestdoi/299615578 (ref. 66). [Feature selection related
code was written by Emmanuel Jammeh]
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3.4 Supplementary information from Manuscript 2

Heterogeneity of Idiopathic pulmonary arterial hypertension revealed
through unsupervised transcriptomic profiling of whole blood

Kariotis et al

Supplementary methods

Cohort population and study design

This expression based study utilizes the UK national H/IPAH cohort including all
patients for which idiopathic and heritable PAH was identified in one of the National
Centres for Pulmonary Hypertension within the UK, Golden Jubilee National Hospital
(n=32), Imperial College Healthcare NHS Trust (n=119), Newcastle Pct (n=31),
Papworth Hospital NHS Foundation Trust (n=68), Royal Brompton And Harefield NHS
Foundation Trust (n=33), Royal Free Hampstead NHS Trust (n=20) and Sheffield
Teaching Hospitals NHS Foundation Trust (n=63). Full written, informed consent with
the local ethical committee was required for clinical data as well as blood sampling
with the intent of next generation sequencing. The subsequent whole blood sample
analysis is described in 1 . Complete information at Supplementary Data 2. [written by
other co-authors]

Missingness

Clinical data for RNA sequenced patients was assessed for missingness, and
patterns within the missing data, prior to analysis. Diagnosis and cohort visit 1 data
were analysed separately, using the R packages VIM and Naniar. When looking at
clinically relevant variables, overall missingness was 21.35% and 48.64% across the
diagnostic and visit 1 datasets, respectively. When focusing on diagnostic variables,
the highest percentage of missing data were present in the following variables: BNP
(75.77%), left atrial size (73.54%), Troponin (72.42%), NT-proBNP (71.31%), right atrial
area (71.03%). High levels of missing data for BNP and NTproBNP are due to centres
carrying out only one of these tests to assess BNP levels. For the other variables,
echocardiography is not required for diagnosis and the clinical blood tests chosen
are centre dependent. When focusing on cohort visit 1, the highest percentages of
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missingness can be seen in Troponin (96.94%), jugular venous pressure (89.42%), left
atrial size (88.86%), total lung capacity (86.91%) and SvO2 (86.91%). When looking at
variables with the lowest levels of missingness, age (diagnosis) (0.28%), history of
syncope (0.28%) , ankle swelling (0.56%) and ascites (0.56%), and weight (2.22%),
rank lowest amongst diagnostic data. In comparison, for visit 1, the following
variables have the lowest percentages of missingness: functional class (0.84%),
ankle swelling (1.11%) and ascites (1.11%), renal sodium (5.01%) and renal urea
(5.01%). These variables are recorded routinely when joining the cohort study (for
diagnostic variables) or routinely checked as part of clinical examinations. When
analysing missingness per centre, diagnostic data had lower levels of missingness
than visit 1. This is unsurprising, as the diagnostic event is more comprehensive than
subsequent visits. For the diagnostic dataset, Glasgow had the highest rate of
missingness at 36.20% compared to Imperial and Hammersmith which had 2 the
lowest percentage missingness at 19.10%. For cohort visit 1, Glasgow again showed
the highest rate of missingness at 71.96%, while Papworth had the lowest at 39.10%.
Imperial and Hammersmith accounted for 33.43% of patients in the study, while the
other centres contributed between 5.57% and 18.10% of participants, thus inflating
missingness statistics. Centre specific differences also exist, with Sheffield using the
shuttle test to assess exercise performance in the place of 6MWD. Specific values for
missingness calculated for classifier variables only can be seen in Supplementary
Figure 12, with NT-proBNP exhibiting the highest missingness and age at the time of
diagnosis with the lowest missingness, for both diagnosis and cohort visit 1
datasets. [written by Emilia M Swietlik]

Ethnicity

H/IPAH Cohort study collected and coded the self-reported ethnicity information as
per The Office of National Statistics: White: A – British, B – Irish, C – Any other White
background, Mixed: D – White and Black Caribbean, E – White and Black African, F –
White and Asian, G – Any other mixed background, Asian or Asian British: H – Indian,
J – Pakistani, K - Bangladeshi, L – Any other Asian background, Black or Black British:
M – Caribbean, N – African, P – Any other Black background, Other Ethnic Groups: R
– Chinese, S – Any other ethnic group, Z – Not stated. [written by other co-authors]

Sample and gene selection preprocessing

The initial gene expression dataset consisted of 508 samples, both patients and
controls. A number of samples had to be filtered out to ensure a high quality,
unskewed input sample set for all subsequent clustering runs. Initially, the first
occurrences of three samples were removed from the RNA-seq matrix as they were
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repeated samples from the same visit of the corresponding patient/control with
identical gene expression values. Moreover, 11 patients were excluded as their
diagnosis of PAH was not of the idiopathic form and an additional eleven as they
were diagnosed with a different form of PH (Pulmonary veno-occlusive disease).
Finally, 10 relatives of IPAH patients were excluded due to potentially sharing
underlying genetic characteristics with the corresponding IPAH samples. As part of
the preprocessing for the clustering two gene filtering steps were implemented.
Firstly, only genes that have more than two reads (in a transcript level) in at least 95%
of control and patient samples were considered. This step reduces the number of
genes from 60,144 (that occurred after the transcript transformation) to 25,966.
Additionally, 11 male genes were removed as they were driving all following
clusterings forming subgroups composed entirely by male or female samples. After
selecting for genes and samples a patient gene expression dataset of 385 samples
and 25955 genes was generated. The dataset was used to determine the most fitted
clustering algorithm in terms of robustness and partition consistency, estimate the
optimal number of subgroups and as input for the gene filtering step. A large number
of clinical variables, 121 from the original clinical file and an additional 760 from
OpenClinica study database, were uniformly measured at the different medical and
research centers that provided samples as described in the Cohort / Study design
section. The date related clinical entries were updated according to the census date
of 30.01.2019. Specifically, the date of sampling (defined as the first visit to the
corresponding medical center when the blood sample was taken) was composed of
additional data on patient samples and healthy volunteers from Imperial and
Sheffield local databases. They were mapped to the sample ids to be used either by
the clustering algorithms or the downstream biological analyses. Samples with
multiple trials were flagged and technical repeats were excluded from the sample
pool. Samples with multiple visits (where blood was collected on different dates)
were dated to retain the chronological relation between them as useful longitudinal
information for the biological analyses.

Feature selection of genes

Next generation sequencing methods measure the expression of thousands of genes
providing a huge number of dimensions (>20,000) per sample. However, diseases are
usually regulated by smaller groups of genes rather than thousands, as reviewed for
PAH in (Ma and Chung 2017). Therefore, the majority of genes are expected not to
contribute to PAH development. Additionally, gene filtering helps in reducing the
computational burden of most clustering algorithms also affecting their performance
by removing misdirecting noise, as shown in (Rodriguez et al. 2019). Investigating
IPAH subgroups concerns the structure underneath the idiopathic form of the
disease and is characterised by the complete lack of sample labels. Standard feature
selection methods, used for RNAsequencing data, can not be used in this case as
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they require labels, e.g. in (Rodriguez et al. 2019; Wenric and Shemirani 2018) where
they use disease and control labelling. Therefore, to investigate disease subgroups
we ranked all genes based on the variability of their expression across patient
samples, as expression variance indicates interesting gene behaviour in our disease
context. Each gene was scored according to its variability across the 385 patients
using the var() function from the Stats R package. Subsequently, all 25,955 genes
were ranked based on that score. To generate the candidate gene sets for the
determination of the most stable one, multiple subsets of the top ranked genes were
extracted, each time increasing the size by 100.

Highest stability gene set

In our case of feature selection we needed to select one of the gene sets to base the
clustering on. Since there are no known IPAH-related genes in the literature we moved
forward with the gene sets (one per pipeline) that generated the subgroups of highest
stability. We used the established clusterboot function from the fpc R package. The
function assesses the clusterwise stability by resampling the data in a bootstrap
approach. Then it computes the Jaccard similarities of the original subgroups to the
most similar subgroups in the resampled data. Spectral clustering (kernlab R
package), 50 resampling runs, k between 2 and 6 and a seed of 28588 for
reproducibility purposes was used. We generated multiple gene sets starting from the
top 100 ranked genes and increasing the size of the gene set by 100 until we reach
the total number of 25,955 genes.

Clustering algorithm selection

There is a wealth of methods in the unsupervised learning field that are appropriate
for certain data types. Most studies employ widely-used methods (e.g. hierarchical
clustering) without utilising any kind of selection method that would point towards a
certain effective methodology. In this study we aimed to examine a group of diverse
algorithms that cover different clustering approaches. Since we lacked labels, and
thus a performance measure, we compared the partitioning consistency of the
different approaches on the expression data. As good consistency we defined high
agreement and low standard deviation calculated between different variations of a
clustering algorithm. When two different clustering runs agree on the partitioning of
the samples they show robustness since they do not randomly assign samples to
subgroups but rather are driven by the underlying structure of the data.
(Supplementary Table 6) presents the various algorithms used, along with various
distance measures and clustering categories they belong to. The preprocessed
RNA-seq dataset and k2,10 were used for the determination of the algorithm
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agreements. Within each pair of clustering runs the agreement was calculated using
the adjusted Rand Index, the corrected for-chance version of the original Rand index
(Rand 1971), which is based on the number of times any pair of 4 points is
partitioned in the same subgroup throughout different clusterings. To calculate the
intra-agreement of each clustering algorithm (spectral, k-means, hierarchical) we
considered only pairs in which both runs were based on the same algorithm. For
those pairs the agreement was averaged across clustering runs and ks. In a similar
way, the standard deviation per algorithm was calculated.

Optimal number of subgroups k

Estimating the actual number of subgroups is a key decision for every clustering
algorithm and is usually based on field knowledge, specific study decisions or
statistical indexes. Due to the lack of prior knowledge about the structure of IPAH we
are unable to set the number of subgroups based on literature or biology. Since this is
an exploratory study (which does not include a predetermined number of subgroups)
we are utilizing various indexes depending on the questions we are addressing.

For the case of the IPAH subgroups, we are using ensemble learning, the process
where multiple indexes (or experts) participate in the selection of the optimal value of
a machine learning decision 2 . Specifically, since we can not use any class related
labels, we estimate the optimal number of subgroups using voting among 15 internal
indexes that evaluate the compactness and/or the distance between different
subgroups (see Supplementary methods: Internal Index Voting).

Determining the optimal number of clusters (k) is an inherently difficult task in
unsupervised machine learning as it is always an educated estimation, since we do
know the actual number of categories within our data. Indeed some of the 14 used
indexes are bound to not work on our data type (RNA-seq) and that is why we used an
ensemble/voting method to estimate k (supplementary section Internal index voting)
since we cannot base our estimation on any one index. The voting result
(Supplementary Data 1) showed the clear majority of indexes to favour up to 5
clusters, with a preference to 2 clusters. The most important aspect in selecting the
number of clusters in a data set is retaining as much information as possible,
therefore selecting the highest supported k minimizes information lost. Following
that notion, we retained the highest voted k = 5, where we discovered 3 distinct
adequate sized clusters and 2 small clusters that, despite their interesting gene
expression profiles (Figure 2A), were unable to show any statistical significance in
follow-up work due to their small size. In Supplementary Figure 16, we demonstrate
the flow of patients between clusterings along with the cluster sizes and the
proportion/count of transferring patients across k. The colored nodes represent our
subgroups I, II,III, IV and V. According to the clustering tree, the 3 main subgroups I, II
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and V remain clustered together when k = 2 (in a 341 sized cluster) and k = 3 (in a
295 sized cluster). This indicates that for k < 5 we are missing the information that
separates these 3 distinct subgroups. The two smaller subgroups (III and IV) mostly
originate from a group of patients (circled in green) that dissociates early on from
main subgroups I, II and V implying that these samples show some differences even
when less subgroups are requested. The remaining samples that end up in subgroup
III have a common parent with subgroup II.

Gene signatures of subgroups

A number of biological analyses are used to explore IPAH sub-structure. For the
patients of each subgroup survival (Kaplan-Meier curves), response to vasodilators
(IPAH treatment), gender and functional class (Fisher’s exact test) are calculated and
compared while measuring significance. Additionally, the difference in the age of
diagnosis (one-way anova test) and a number of known PAH-related genes are
examined across subgroups. We perform a driver gene discovery analysis (LASSO
regression model) which can indicate the most influential genes whose
literature-generated annotations are investigated. The results of the patient 5
clustering are used to draw genetic differences between the two groups. IPAH
subgroups are subjected to differential expression analysis and subsequently to
pathway analysis in order to interpret the genes’ involvement in terms of functionality.
The p values of each gene when considering the fold change between subgroups I
and II were calculated using a Welch Two Sample t-test on the raw values and
presented in the Supplementary Table 4. The absolute lower cut off values of fold
change (log2 scaled) is 0.28. [Initial regression performed by Thomas S Mascarenhas]

Internal index voting

To implement ensemble learning, we used the majority voting rule among 15 internal
validation indexes, selecting as the optimal number of subgroups (k) the one voted by
the most indexes. The various indexes6–17 , (McClain and Rao 1975) and (Ray and Turi
1999) results can be found in Supplementary Data 1. All of the above are based on
variations of the same idea, to score a partitioning on how compact each subgroup is
and how well the subgroups separate. No index can select the real number of
subgroups with perfect accuracy, therefore the “voting of experts” method can
provide a safer alternative to using any one index. The preprocessed RNAseq dataset
after the appropriate gene filtering step was used for this work.
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Clinical variable associations / classification

Survival analysis using a Kaplan-Meier estimate 18 was undertaken to compare the
time until death between patient subgroups, a measure able to overcome issues such
as subjects withdrawing from the study or not experiencing death during the course
of the study’s observations. In this cohort withdrawal etiologies include withdrawal by
clinician, transplant, leaving the country, and loss to follow up. As the clinical data for
the patients did not include a cause of death, it was decided to limit the duration of
the analysis to minimise the inclusion of other causes of death. A duration of 10
years from diagnosis was selected as it is a period during which almost 80% of IPAH
deaths occur if conventional therapy is used (Kang et al. 2014), while also being
sufficient time to allow for useful statistical analysis. Patients who did not die during
this period were considered to be alive for the analysis and had their survival time set
to 10 years. The Kaplan-Meier model was created using the survival R package to
compare survival time between the subgroups, and subsequently plotted using
survminer R package (ggsurvplot function). Cox Regression was undertaken to show
any statistically significant survival differences between the subgroups. A Cox model
was selected as it has been shown to be a more flexible alternative to parametric
methods, and does not require the distribution of survival times to be stated
(Bradburn et al. 2003). It was noted that patient survival could be affected by factors
other than their subgroup membership. Therefore, survival analysis was repeated
using a multivariate Cox regression which included the patients’ age at diagnosis,
sex, and New York Heart Association (NYHA) functional class. This method allows
for adjustment to the impact of these other factors, and shows an estimate of their
respective strength of effect.

A frequency table was created for vasoresponders, gender and each functional class
within each patient subgroup. Pairwise comparisons were made between the
subgroups using Fisher’s exact test. This test was performed using the rcompanion R
package and a Bonferroni correction was used as multiple comparisons were made.

A comparison of the age at IPAH diagnosis was made between the patient subgroups
using a one-way anova test. This test assumes that the observations within each
subgroup are normally distributed, and that the data are homoscedastic with equal
standard deviation between the subgroups. The normality of the data within each
subgroup was confirmed visually by producing a histogram for the age of diagnosis
for each subgroup, as well as by plotting a histogram of the residuals for the anova
model to ensure that these followed an approximately 6 normal distribution, and
creating a Q-Q plot of the residual values. The homoscedasticity was assessed by
plotting the residual values against the fitted value, and by using the car R package to
perform a Levene’s test.
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A regression model was used for feature selection of genes whose expression most
significantly drove subgroup membership. The RNA-seq counts were split into a
training and testing set with a ratio of 70:30. The glmnet R package uses penalised
maximum likelihood in order to fit a regression. The model family was set to
“multinomial” as the model was to be used to predict a nominal dependent variable
with multiple categories, subgroup membership, given gene expression data. As an
additional parameter, the type.multinomial was set to “grouped”, meaning that
multinomial coefficients for a variable were included or excluded together. This also
demonstrated an increase in model prediction accuracy during initial testing of
models. Ridge, elastic-net, and lasso models were created using the training set, their
parameters optimised by cross-validation (cv.glmnet function), and then used to
predict the subgroup membership of samples in the test data-set. The models run on
the entire data-set to produce coefficients for each gene relating to each subgroup.
The elastic-net regression model was preferred based on its ability to select strongly
correlated variables in or out together, a useful feature when dealing with genes
which may be correlated due to sharing a biological pathway (Zou and Hastie 2005).
From the regression results heat maps were produced showing the coefficients for
genes in each subgroup. Genes in the top 5% for largest coefficients were selected
for further investigation to identify common pathways or functions. It was decided to
investigate genes with both positive and negative coefficients, as genes with
decreased gene expression which drove subgroup membership are still of biological
interest.

The pathfinder R package was used to demonstrate enriched pathways between
subgroups. Genes with an absolute LFC in the highest 10% for their subgroup, and
with an adjusted p value ≤ 0.05, were inputted to the package. [Initial regression
analysis and statistics tests performed by Thomas S Mascarenhas]

Identifying clinical signatures of RNA subgroups

The following clinical variables were used during the clinical signature pipeline:
age_diagnosis, sex, diagnosis, drug_exposure, bmi, functional_class, 6 minute
walking distance, oxygen saturation (pre), oxygen saturation (post), mRAP, mPAP,
mPAWP, cardiac output, SvO2, vasoresponse (lenient), vasoresponse (stringent),
FEV1, FVC, TLC, KCO, right Atrial Area, Right Ventricle, Tricuspid Apse, emphysema
Category, Fibrosis Category, Thromboembolic disease, NT-proBNP, BNP, Urate,
inflammation CRP, haem. HB, haem. WBC, haem. Platelets, Renal Sodium, Renal
Potassium, Renal Urea, Renal Creatinine, Metabolic Syndrome, Comorbidity HHT,
Comorbidity epistaxis, Comorbidity bleed, Comorbidity AVM, Comorbidity Cirrhosis,
Comorbidity Hepatitis, Comorbidity PPH, Comorbidity DM1, Comorbidity DM2,
Comorbidity Hypothyroidism, Comorbidity SLE, Comorbidity SS, Comorbidity
Ankylosing Spondylitis, Comorbidity Sjogren, Comorbidity UCTD, Comorbidity
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Necrotising Vasculopathies, Comorbidity Overlap Syndrome, Comorbidity
Polymyalgia Rheumatica, Comorbidity COPD, Comorbidity Asthma, Comorbidity OSA,
Comorbidity CAD, Comorbidity CVA, Comorbidity PAD, Comorbidity HTN, Comorbidity
Arrhythmia, Comorbidity Hyperlipid, Comorbidity PE, Comorbidity Heterotaxy,
Comorbidity Asplenia, Comorbidity CKD, Comorbidity CA, PVR, Sum of Comorbidities,
Any Comorbidity.

Ensemble feature selection19 based on recursive feature elimination (RFE)20,21 and a
linear SVM22 as the estimator, was used to ensure robust identification of the
smallest set of clinical features (signature), from the clinical features, that best
describe each subgroup. RFE feature ranking was based on absolute weights of
features from the SVM, which quantifies the contribution or importance of each
feature towards the multivariate construction of a hyperplane separating the
subgroups. The regularisation parameter of the SVMs was set to C=1. The discovery
dataset used for feature selection was resampled without replacement into 500
subsamples (90% of samples), for each subgroup over signature sizes (s) ranging
between s=1 to 20. Each 7 resampled dataset was further divided into bootstrap
samples (k), with k=50. Feature values of each bootstrap sample were normalised to
improve feature selection performance. RFE-SVM20 was used to rank features for
each bootstrap sample, and an aggregate rank was calculated for each feature using
all k bootstrap rankings. This process was repeated over all resampled datasets,
resulting in 500 candidate signatures for each signature size, s. Each candidate
signature was then used to develop a classification model, which was then trained on
the discovery dataset to discriminate between a given subgroup from all other
subgroups. Classification models were built using support vector machines (SVM)23,
random forest (RF)24, logistic regression (LR)25, and knearest neighbour (KNN)26 .

LR was implemented using sklearn.linear_model.LogisticRegression using l2 penalty
and default values used for all other parameters. SVM was implemented using
sklearn.svm.LinearSVC with regularisation parameter C set to 1, and default values
used for all other parameters. RF was implemented using
sklearn.ensemble.RandomForestClassifier with default values used for all other
parameters. kNN was implemented using sklearn.neighbors.KNeighborsClassifier
with a number of neighbours (n_neighbors) set to 5 and default values used for all
other parameters.

For feature selection tasks, we used ensemble feature selection based on recursive
feature elimination (RFE) technique. RFE is a backward feature elimination technique
that iteratively prunes the least informative feature(s) from a training dataset. A RFE
based on a linear SVM starts by using all features to train an SVM model and ranks
all features according to importance. The least ranked feature is removed from the
training dataset and the SVM model refitted. This is iteratively done until only the
required number of features remain. All features are also ranked according to
importance.
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Ensemble feature selection aggregates several feature rankings into a single
consensus feature ranking to ensure robustness of the feature selection process and
of selected features. Feature importance measures used for feature ranking are
based on the hyperplane weight vector of a linear support vector machine (SVM). The
weight vector quantifies the contribution of each feature to the construction of the
hyperplane, and is used for ranking features according to importance.

Ensemble feature selection56 based on recursive feature elimination (RFE)57,58 and a
linear SVM59 as the estimator, was used to ensure robust identification of the
smallest set of clinical features (signature) that best describe each subgroup. RFE
feature ranking was based on absolute weights of features from the SVM, which
quantifies the contribution or importance of each feature towards the multivariate
construction of a hyperplane separating the subgroups. The regularisation parameter
of the SVMs was set to C=1. The discovery dataset used for feature selection was
resampled without replacement into 500 subsamples (90% of samples), for each
subgroup over signature sizes (s) ranging between s=1 to 20. Each resampled
dataset was further divided into bootstrap samples (k), with k=50. Feature values of
each bootstrap sample were normalised to improve feature selection performance.
RFE-SVM57 was used to rank features for each bootstrap sample, and an aggregate
rank was calculated for each feature using all k bootstrap rankings. The set of feature
rankings R, aggregated over all bootstrap samples, is calculated as

where k is the number of bootstrap samples, N is the total number of features in the
dataset, and 𝑟𝑖

𝑛 is the rank of feature n in bootstrap sample i. This process was
repeated over all resampled datasets, resulting in 500 candidate signatures for each
signature size, s. The candidate signature that obtained the best performance was
selected. This process was repeated for all signature sizes, s=1 to s=20, for
subgroups I, II and v. A final signature for each subgroup was selected based on a
compromise between the fewest number of features (s=1 to s=20) and classification
performance. Final selected signatures for each of the subgroups were pooled to
create a composite signature, which was then used to develop a multi-class
classification model. The model was trained on the discovery dataset to discriminate
between subgroups I, II and V, used to predict subgroup membership of an unseen
validation dataset. The predicted subgroup membership was then used to calculate
survival of predicted subgroups. Survival of the 8 predicted subgroups was compared
to known survival of subgroups in the discovery dataset for validation purposes. [This
whole section was written by Emmanuel Jammeh]
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Differential expression analysis

Differential expression analysis was performed between patients' subgroups. The
raw un-normalised counts which were the output of the Salmon quantification were
used. The DESeqDataSetFromTximport function was used to create an input data-set
for DESeq2 which included the raw count data, and the subgroup membership for
each sample. Rows with fewer than a total of 10 counts were excluded in order to
decrease computing time. Utilizing the apeglm R package the log fold change (LFC)
shrinkage was performed on the results in order to reduce noise from genes with low
counts, while retaining genes with large fold changes. This is an alternative to
introducing filtering thresholds or pseudocounts which have disadvantages such as
resulting in the loss of genes with true expression differences. This method was used
to create pairwise comparisons of gene LFC between the control subgroup and each
patient subgroup. Using the LFC data, genes with a log2fold change of greater than
+/-1.5 were selected, and ranked by their p-value. The LFC data used ensembl92 gene
IDs, so the biomaRt R package was used to add HUGO Gene Nomenclature
Committee (HGNC) gene names and a brief description to allow for easier
identification of genes of interest. [Performed by Thomas S Mascarenhas]

Secondary clustering analysis with healthy volunteers

All RNA-seq samples (508) are utilised along with the genes that provide the most
information when attempting to predict whether each sample belongs to a patient or
a healthy volunteer. We used the patient and control labels as ground truth. Utilizing
the labels, we ranked the genes according to the amount of information they
contribute in distinguishing the two classes. To determine the amount of information
each gene contributed towards separating IPAH and healthy samples we used the
Information Gain Criterion from the Biocomb R package. The 25,955 genes were
scored and ranked. To generate the candidate gene sets for the determination of the
most stable one, multiple subsets of the top ranked genes were extracted, each time
increasing the size by 50. While investigating the differences between disease and
healthy samples we can utilise the only ground truth we have established, the
partitioning of the samples into patient and control groups. This knowledge enables
the selection of the number of subgroups (k) to be based on the average subgroup
purity of each k and compare them to select the k with the highest average purity.
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Additional clustering pipeline of IPAH patients

To estimate the impact the 33 HPAH patients had on our main clustering pipeline, we
examined their distribution across subgroups and ran an additional clustering
pipeline including exclusively the 313 IPAH samples. As in the main pipeline, we
utilised spectral clustering with the rbfdot kernel, the 300 most variable genes and
identical preprocessing (section Sample and gene selection preprocessing).

Supplementary Tables

Supplementary Table 1 | Distribution of HPAH samples across the 5 subgroups and their
proportion in each subgroup.

I II III IV V

12(9.3%) 6(5.35%) 3(15.7%) 1(10%) 11(12.3%)

Supplementary Table 2 | Bonferroni adjusted p-values for various white blood cell counts.

Subgroup
Pairs Lymphocytes Eosinophils Monocytes Neutrophils Neutrophils /

Lymphocytes

I - II 0.13 0.18 0.0076 7.2e-12 0.0061

I - III 0.14 1 1 8.0e-04 0.1100

I - IV 1 1 0.0390 8.7e-03 1

I - V 1 1 0.5900 1.3e-03 1

II - III 0.47 1 1 1 1

II - IV 1 0.87 1 3.2e-10 1

II - V 1 1 1 4.4e-04 0.23

III - IV 1 1 1 2.7e-06 1

III - V 0.16 1 1 1.3e-01 0.0670

IV - V 1 1 1 6.4e-08 1
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Supplementary Table 3 | The distribution of BMPR2 mutations across all patient subgroups
(n=357).

I II III IV V

BMPR2 22 (20.5%) 23 (26.1%) 4 (26.6%) 4 (50%) 18 (26.4%)

Not
BMPR2 107 88 15 8 68

Supplementary Table 4 | All fold changes p values of the gene signature for subgroups
calculated using a two-sided t-test.

Gene P value Gene P value

ALAS2 1.60E-12 MIR5195 2.36E-13

LTF 5.40E-06 IGKJ4.43 1.92E-17

CRISP3 4.99E-07 IGHM 8.50E-16

CTSG 1.53E-05 IGHV4.39 2.69E-12

RP11.20D14.6 1.73E-08 IGLV2.14 6.82E-22

RP11.678G14.3 4.53E-09 IGKV1.27 2.42E-10

NPRL3 0.006121994 IGHV3.48 2.55E-17

CH17.296N19.1 6.31E-05 IGLV6.57 2.01E-11

RP1.229K20.9 0.002453699 IGLV7.43 5.59E-18

AC131056.3 0.08654707 IGHV2.5 4.21E-08

MT.RNR1 0.4689423 MIR5195 2.36E-13

NOG 1.05E-11 IGKJ4.43 1.92E-17
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Supplementary Table 5 | Correlations between discovery, validation and external validation
cohorts. In the discovery set, Spearman correlations were calculated between RNA-req TPM
values, the validation set between negative delta Cts values with GAPDH used as the
endogenous control gene. Green cells denote agreement in the directionality of gene-clinical
variable correlations between the validation sets and the discovery set. Red cells denote
disagreement/opposite correlation between the two data sets. Notation of (**) denotes a
p-value of less than 0.01, (***) denotes a p-value of less than 0.001 (using asymptotic
approximated p-value by using the t distribution , while no stars denote non-significant
p-values.

Genes
Discovery [n= 359] Validation [n =91] External Validation

[n =32]

Age BMI SixMWD Age BMI SixMWD Age BMI SixM
WD

ALAS2 0.2*** 0.38*** -0.32*** -0.006 0.06 -0.1 -0.08 0.31 -0.35

C4BPA 0.01 0.02 -0.07 0.14 -0.11 -0.13 0.02 -0.19 0.25

CRISP3 0.16* 0.14 -0.16* 0.11 0.016 -0.22 -0.07 0.14 0.05

CTSG 0.19*** 0.14* -0.12* 0.07 0.06 -0.17 0.06 0.19 -0.12

IFI27 0.19** 0.16* -0.22*** 0.24* 0.004 -0.28* 0.1 0.1 -0.32

IGHM -0.29*** -0.18*** 0.2*** -0.42*** -0.21* 0.18 -0.15 0.33 -0.02

IGHV3.48 -0.27*** -0.08 0.14* -0.31 0.34 -0.5* -0.11 0.22 0.12

IGKV2.24 -0.25*** -0.26*** 0.24*** -0.45*** -0.17 0.11 -0.07 0.14 0.15

IGLV6.57 -0.21*** -0.16* 0.15* -0.5*** -0.08 0.16 -0.31 0.32 0.04

LTF 0.18** 0.19*** -0.13* 0.08 0.12 -0.23* 0.01 0.08 0.01

NEBL 0.01 0.05 0.01 -0.09 -0.01 -0.23 0.03 0.12 -0.16

NOG -0.44*** -0.19*** 0.2*** -0.58*** -0.2* 0.18 -0.13 0.02 0.14

NPRL3 0.05 0.18* -0.13* -0.002 -0.09 -0.1 0.03 -0.06 -0.41

PI3 0.15** 0.25*** -0.17** 0.1 0.04 -0.21 -0.13 -0.02 0.31

SMIM11A -0.03 -0.2*** 0.12* -0.24* -0.13 0.06 0.1 -0.04 0.18

Supplementary Table 6 | The clustering algorithms, their approach category and the various
distance measures tested.

Clustering algorithms Category Distance measures

K-means Partitioning rbfdot, polydot, tanhdot, laplacedot

Hierarchical Hierarchical euclidean, manhattan, minkowski,
canberra

Spectral Graph Theory rbfdot, polydot, tanhdot, laplacedot
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Supplementary Table 7 | P-values relative to main Figure 4
Relative CIBERSORT abundance between subgroups P value

pI-II(Dendritic cells activated)  0.011

pI-II(Neutrophils) 4.4 × 10−11

pI-V(Neutrophils) 2.0 × 10−3

pII-V(Neutrophils) 1.7 × 10−3

pI-II(T cells CD8) 4.8 × 10−5

pI-II(T cells CD4 naive) 1.9 × 10−8

pI-V(T cells CD4 naive) 3.8 × 10−3

pI-II(T cells CD4 memory resting) 2.3 × 10−5

pI-II(B cells naive) 2 × 10−5

pI-II(B cells memory) 2.5 × 10−6

pI-V(B cells memory) 3.9 × 10−3

pI-II(Plasma cells) 6.4 × 10−4

pII-V(Plasma cells) 6.5 × 10−5

pI-II(Monocytes) 0.0053

Whole blood cell counts across subgroups P value

pI-II (Neutrophils) 7.2 × 10−12

pI-V (Neutrophils) 8.0 × 10−4

pII-V (Neutrophils)  4.4 × 10−4

pI-II (Neutrophils/Lymph.)  0.0061

pI-II (monocytes) 0.0076
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Supplementary Table 8 | P-values relative to main Figure 5
Correlation P values between gene and clinical variables P value

BMI-ALAS2 1.27 × 10−11

BMI-PI3 3.17 × 10−6

BMI-IGHG2 4.13 × 10−6

BMI-RP11.678G14.3 8.22 × 10−6

BMI-IGKV1.27 9.32 × 10−6

BMI-IGKV2.24 3.09 × 10−6

BMI-IGKV4.1 9.55 × 10−7

6MWD-IGKV4.1 2.83 × 10−6

6MWD-IGKJ4 2.08 × 10−6

6MWD-ALAS2 7.52 × 10−10

AoD-IGHV2.5 3.72 × 10−10

AoD-IGLV2.8 1.06 × 10−9

AoD-IGHM 6.2 × 10−8

AoD-NOG 3.18 × 10−17

AoD-IGHV3.48 7.7 × 10−7

AoD-IGLV7.43 1.04 × 10−6

AoD-IGKV4.1 6.35 × 10−10

AoD-IGKV2.24 4.19 × 10−6

AoD-IGKV1.27 3.93 × 10−7

OxygenSat-NOG 1.11 × 10−6
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Supplementary Figures

Supplementary Figure 1: Heatmap of gene expression after clustering with 11 male genes
included. Separation of subgroups consisted solely of males (C2 and C3) or females (C1, C4,
C5), thus obstructing the capturing of the disease signal. 11 male specific genes (PRKY,
TTTY15, AC006032.1, RPS4Y1, EIF1AY, KDM5D, TXLNG2P, USP9Y, ZFY, DDX3Y, UTY) were
observed to drive the initial clustering of genomic expression profiles.
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Supplementary Figure 2: Plot of the first two principal components of the RNA-seq data
derived from the 10,000 most variable genes according to IQR in our dataset. Each dot
represents a distinct sample in the dataset coloured according to the institute that provided
that sample. No discernible effect is seen due to the sample collection site. [Generated by
Mark Dunning]
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Supplementary Figure 3: Boxplots showing the distribution of the first eight principal
components of the RNA-seq dataset (n = 10,000 most variable genes) grouped according to
the Site that provided the sample. No discernible effect is seen due to sample collection site.
Red line represents the median, top and bottom bounds of the box represent min and max
values. [Generated by Mark Dunning]

128



Supplementary Figure 4: Survival of patients in clusters(A, B, C, D, E) created by clustering only
IPAH samples with two-sided log rank test p-value.
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Supplementary Figure 5: Hazard Ratio of discovery cohort clustering adjusted for gender
and age category of patients. Notation of (**) denotes a two-sided log rank test p-value of
less than 0.01, (***) denotes a p-value of less than 0.001, while no stars denote
non-significant p-values. Data are presented as median values and error bars as 95%
confidence intervals. Gender did not reveal any relationship with survival while an age over
52 was significantly associated with poor survival (HR=2.29). The most significant
association with poor survival was found for patients classified in subgroup I.
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Supplementary Figure 6 | Step-wise progression of IPAH. From healthy individuals to
subgroup II, then V, then I. (A) longitudinal samples change across subgroups with different
prognoses. (B) The five subgroups (C1-C5) from our secondary clustering pipeline which
included patients and healthy volunteers. Each subgroup contains subgroups from our
original clustering (I, II, V and the other classes -III and IV-) and healthy volunteers (HV).

Supplementary Figure 7: Noggin presents significantly higher expression in the high
survival/low risk subgroup II. Furthermore, it is shown to be upregulated in the same
subgroup based on our LASSO regression analysis. Boxplots were calculated for I (n=134), II
(n=119), III (n=19), IV (n=10) and V(n=98). Vertical line represents the median, top and
bottom bounds of the box represent the first and third quartile, while the tips of the whiskers
represent min and max values.
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Supplementary Figure 8: Quantity of various types of white blood cells across subgroups I
(n=41), II (n=43) and V(n=28). Vertical line represents the median, top and bottom bounds of the
box represent the first and third quartile, while the tips of the whiskers represent min and max
values.

Supplementary Figure 9: Oncoprint of variants previously associated with PAH across RNA
subgroups. Presence of any pathogenic BMPR2 variant is labeled for each patient while the
presence of specific SNPs for SOX17 and HLA-DPA1/DPB1 are labeled.
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Supplementary Figure 10: Comparative measurements of all clinical variables from feature
selection across RNA-based subgroups for subgroups I(n=129), II(n=112) and V(n=89).
Vertical line represents the median, top and bottom bounds of the box represent the first and
third quartile, while the tips of the whiskers represent min and max values.

Supplementary Figure 11: Revised diagnoses for each subgroup
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Supplementary Figure 12: A) Heatmap showing missingness across important clinical
variables for the diagnostic dataset. B) Barchart showing the proportion of missing data and
chart showing the combinations of missing data for the classifier variables from the diagnostic
dataset. C) Heatmap showing missingness across important clinical variables for the cohort
visit 1 dataset. D) Barchart showing the proportion of missing data and chart showing the
combinations of missing data for the classifier variables from the cohort visit 1 dataset.
[Generated by Emilia M Swietlik and Divya Pandya]

Supplementary Figure 13: Principal components analysis of expression profiles from samples
with a second replicate that was RNA sequenced (labeled as “...Trial2”). Both replicates are
clustered together according to the first four principal components. [Generated by Thomas S
Mascarenhas]
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Supplementary Figure 14: The average adjusted rand index (ARI) of three clustering methods:
spectral (blue line), hierarchical (green line) and k-means (red line) clustering. For each method
3 different distance measures/kernels were used and their ARI was averaged for each method.

Supplementary Figure 15: The bootstrap resampling describes stability of clustering as a
function of increasing size (by 50) of gene sets. The highest stability is observed for the gene
set that contains the top 300 variable genes across patients
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Supplementary Figure 16: Clustree visualisation of the 5 subgroups (colored) discovered by our
spectral clustering methodology. Edges represent the transfer of patients between clusterings
of different k. Their opaqueness indicates the amount of patients that transferred.
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Supplementary Figure 17: Survival curves and gender hazard ratios from Cox Proportional
Hazards model using data (A) from sampling and (B) time of diagnosis. Forest plot data are
presented as median values and error bars as 95% confidence intervals.
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Supplementary Figure 18: Genes with the top 5% of Lasso coefficients showing gene
signatures for each subgroup.
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Supplementary Figure 19: Volcano plots of differential expression between pairs of subgroups.
Dots coloured in red are genes with > 2 fold change and bonferroni log adjusted two-sided
t-test p<0.01.
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Supplementary Figure 20: Gene signature expression (TPM) across subgroups I(n=129),
II(n=112) and V(n=89). Vertical line represents the median, top and bottom bounds of the box
represent the first and third quartile, while the tips of the whiskers represent min and max
values.
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Chapter 4 - Application of Omada to miRNA profiles

4.1 Background

The expression of genes can reveal a great amount of information about the genetics
of a disease. However, as described in Chapter 1 many data types may contribute to
a more complete picture of a complex mechanism such as a rare disease. In PH
specifically, recent advances have taken advantage of multiple omics to shed light in
transcriptional signatures in various cells (Harbaum et al., 2021). In (Sweatt et al.,
2019) unsupervised learning was used with proteome data to identify distinct blood
cytokine phenotypic patient groups while our transcriptomic work (Kariotis et al.,
2021) showed distinct prognosis H/IPAH patient groups. Also, authors of (Rhodes et
al., 2017) used metabolomic data to distinguish metabolite profiles associated with
survival. The above research highlights the importance of considering multiple omics
to discover patient dissimilarities that can lead to risk assessment and potential
novel biomarkers associated with clinical outcomes.

In this chapter I describe my unsupervised work on microRNA data included in
Manuscript 3 and additional exploratory microRNA clustering analyses. The purpose
of this chapter is to assess the utility of clustering on circulating microRNA data in
identifying subgroups of patients with associated molecular signatures. A variety of
clustering runs were compared and tested based on the output clusters. One of these
analyses was used in manuscript 3 to explain heterogeneity within PH. Other runs
offered valuable insights in the clustering behaviour of microRNA data and PH
classes.

I performed clustering analysis in several subsets of a microRNA dataset described
in the following sections. One clustering analysis is part of manuscript 3 and the
remaining were exploratory analyses targeting different groups of microRNA activity
such as PH categories.

4.2 Contribution

My work in this publication focused on generating microRNA based clusters as part
of a methodology to identify molecular signatures associated with different clinical
PH classes. I was not the first author of this study and my contribution revolved
around creating microRNA patient profiles, so I did not include the full manuscript
here, but only the sections I contributed to. In the manuscript sections following the
sections/figures not generated by me are in italics and brackets in text.
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4.3 Manuscript 3

Introduction

Pulmonary hypertension is a medical condition associated with elevated resting
mean pulmonary artery pressure (PAP) and subsequently reduced life expectancy but
also a challenging diagnosis with non-exclusive symptoms. PH patients are
categorised to one of the five recognised classes, mainly based on their clinical
features, which affects treatment decisions that potentially disregard the phenotype
complexity of patients. Several approaches, such as circulating biomarkers and
NT-proBNP, have recently shown to offer benefits towards informing patient
management but were only effective to specific groups. Searching for a different
approach, studies have shown miRNAs to be dysregulated in PH contexts (Rhodes et
al., 2013; Rothman et al., 2016; Errington et al., 2021) and their potential to be an
alternative or additive test towards diagnosis or risk stratification. In this work we
consider the diverse cellular origin of miRNAs and hypothesise that circulating
miRNAs can be distributed differently across PH types and would inform about
molecular PH patient endotypes. Also taking into account the severity spectrum of
PH we hypothesised that an miRNA-based unsupervised learning approach would
partition patients in groups with similar molecular and clinical phenotypes.

Methods

Study population and clinical data

The study cohort was comprised of 1150 patients with PH and 334 disease controls
as summarised in Table 1. Patients were recruited from 3 UK national PH referral
centres, located at Hammersmith Hospital (Imperial), Royal Hallamshire Hospital
(Sheffield) and Royal Papworth Hospital (Cambridge), as summarised in
Supplementary Tables 1 and 2. All cases were diagnosed between 2008 and 2019
using contemporaneous diagnostic guidelines. All samples were obtained following
informed consent to one of three cohorts: the Imperial College Prospective Study of
Patients with Pulmonary Vascular Disease cohort (PPVD, UK REC Ref 17/LO/0563),
the Sheffield Teaching Hospitals observational study of pulmonary hypertension,
cardiovascular and other respiratory diseases (STH-ObS, UK REC Ref 18/YH/0441) or
the Royal Papworth cohort (Cambridgeshire East Research Ethics Committee
reference 08/H0304/56). All samples were collected as per local standard operating
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procedures and stored at -80oC until assayed. All cases/samples were pre-processed
into training, interim and validation datasets to balance age, sex, PH classification
and recruitment site. The validation samples were analysed separately. [Sample
collection performed by contributed centres]

Quantification of NT-proBNP and miRNAs

“Total RNA was extracted from 200 µl of serum or plasma using the Maxwell® RSC
miRNA Plasma and Serum Kit (Promega, Madison, USA) as per the manufacturer’s
recommendations with the following modifications: (a) a set of three proprietary
spike-in controls (MiRXES, Singapore) was added, representing high, medium, and
low levels of RNA, into the lysis buffer C prior to sample RNA isolation. The spike-in
controls are 20-nucleotide RNAs with unique sequences (distinct from any of the
2588 annotated mature human miRNAs in miRBase version 21.0, RRID:SCR_003152)
and are used to monitor RNA isolation efficiency and normalise for technical
variations during RNA isolation; (b) bacteriophage MS2 RNA (Roche, Basel,
Switzerland) was added at 0.4ng per sample isolation to improve RNA isolation yield.
For biomarker discovery, a highly controlled RT-qPCR workflow was used to quantify
the expression of miRNA in each sample. Isolated RNA was reverse transcribed using
miRNA-specific reverse transcription (RT) primers according to manufacturer’s
instructions (ID3EAL Customized Individual miRNA RT Primer, MiRXES) on
QuantStudio™ 5 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA).
Additional information about the protocol can be found in the Supplementary
Methods. NT-proBNP was assayed using coba Elecsys per manufacturer's
instructions.” [Performed by miRXES]

Pre-processing of miRNA expression data

“Data on 326 miRNAs detected in no less than 90% of samples were analyzed further.
Missing values were imputed separately in the combined discovery and interim sets,
and subsequently the validation set, by replacing missing values with miRNA [mean –
4 standard deviations]. miRNA data were further global normalized. Samples from
Cambridge showed higher total miRNA counts than the other centres. To further
correct for this batch effect, total miRNA counts were modelled with a LASSO model
composed of 11 miRNAs chosen from summed miRNA counts of detected miRNA by
increasing lambda arbitrarily to reduce selected miRNAs to a reasonable number with
high performance (rho 0.9687). A linear regression using this model was then used to
adjust the counts, retaining the mean miRNA levels.” [Written by Niamh Errington and
Chris Rhodes]
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Unsupervised Patient Clustering

The clustering methodology required an extra preprocessing step to retain only the
relevant information. Additional clinical information was used to filter out samples
not in the discovery/interim phase as well as non PH1, PH2 or PH3, generating a
finalised dataset of 615 samples and 326 miRNAs. The finalised dataset was used as
an input to the heterogeneity clustering methodology described previously (20) with
optimization using multiple subsets of the miRNAs, each time increasing the size by
50. Each subset was then used to run multiple spectral clusterings (for k = 2,3,4,5,6)
whose stability was measured using a bootstrap approach (package fpc v2.2-3). The
mean cluster stability over clusters and ks was calculated for every subset and
plotted to discover the size of the most variable miRNA subset that provided the
highest stability. The optimal number of patient clusters (range of [2, 10]) was then
estimated based on the ensemble voting of internal machine learning indexes and
the final clustering run partitioned samples to distinct subgroups based on their
miRNA profile. The intra-agreement was calculated using the average of the adjusted
Rand index (package fossil v0.3.7) of three pairs of clustering runs per algorithm type
(Supplementary Table 7).

Supplementary Table 7: Three examined clustering algorithm types with the parameter pairs
used to calculate the intra-agreement of each algorithm type.

Spectral Hierarchical K-means

rbfdot/polydot euclidean/manhattan rbfdot/tanhdot

vanilladot/tanhdot canberra/minkowski vanilladot/tanhdot

laplacedot/besseldot canberra/maximum rbfdot/vanilladot

Re-classifying patients assigned to PAH, PH-LHD and PH-lung using
unsupervised learning from miRNAs

Differentiating patients with PAH, PH-LHD and PH-lung with confidence using
routinely collected clinical measurements can be particularly challenging, leading to
patients being misclassified. The prospect of shared pathology (particularly the
occurrence of pre- and post- capillary PH) might further limit the utility of the current
clinical classification for identifying miRNA signatures that represent PH
endophenotypes and so limit the full potential of miRNAs to inform on the underlying
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molecular drivers. We therefore examined how the distribution of miRNAs, unfettered
by the clinical classification, might inform the clinical presentation of patients from a
mixed cohort of PAH, PH-LHD and PH-lung (Group 5 PH was excluded because of the
small number of patients). The clustering pipeline, utilising the expression of 50
miRNAs, identified 6 stable clusters (Figure 5) that are agnostic to current PH clinical
classification (Supplementary Table 8). [Written by Niamh Errington]

Figure 5: Unsupervised clustering of patients across PH groups 1, 2 and 3 shows distinct
miRNA profiles

Supplementary Table 8: Prevalence of PH clinical classifications within clusters

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F

PH 1.1 43 49 34 35 34 34

PH 1.2 3 1 4 2 1 1

PH 1.3 1 2 0 1 0 0

PH 1.4 17 24 23 21 27 37

PH 2 36 24 29 12 13 23

PH 3 10 18 20 13 11 11
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Results

Six patient clusters discovered by miRNAs have distinct clinical
characteristics

Inspection of clinical phenotypes of clusters showed significant differences in clinical
phenotypes between the clusters. Interestingly there was no significant difference in
the distribution of classification groups (1-3) across the 6 clusters (Figure 6A), nor in
age, sex, BMI, WHO Functional class or REVEAL risk score. There was, however, a
significant difference in 3 or 5-year and all-time survival (Figure 6B) with cluster A
having the best survival and clusters C and F the worst (Hazard ratios 1, 1.77 and
1.71 respectively). There were also significant differences between the clusters in a
number of important clinical variables (Figure 6C-H). Most notably cluster A was
associated with low mPAP, low PVR but not the lowest NT-proBNP. Patients in
clusters C and F were both associated with significantly worse survival than cluster A
but patients in cluster F had significantly lower NT-proBNP than cluster C. These
characteristics highlight the challenges of using single biomarkers (e.g. NT-proBNP)
or haemodynamics (PVR) to attribute risk and define molecular mechanism. [Written
by Niamh Errington]
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Figure 6: Clinical Characteristics of the six miRNA clusters. A) Number of patients from each
PH Clinical classification group 1-3 within each of the 6 miRNA clusters; B) 5-year survival of
patients within each miRNA cluster. Box and Whisker plots show the relative values for C)
Serum NT-proBNP levels, D) mean PAP, E) PAWP, F) PVR, G) six-minute walk distance, and H)
SvO2 within each miRNA Cluster. * p<0.05, ** p<0.01 on specific comparisons. For H) $ p<0.05
compared to cluster C, and # p<0.05 compared to cluster E following Kruskal-Wallis
chi-squared followed by Benjamini-Hochberg post-hoc analysis. [Generated by Niamh
Errington]
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4.4 Additional microRNA analysis, signs of heterogeneity in PH

Many PH patients live with undiagnosed or untreated PH since they don't fall under
any current clinical PH classification and especially for PH1 where they are treated
with vasodilator therapies in absence of PH1 targeted therapies. As an effort to
provide relevant insights our analysis of circulating serum miRNAs of over 600
patients of PH1, PH2 and PH3 in manuscript 3 led to 6 distinct clusters whose
molecular profiles were extending across clinical classifications i.e. miRNA profiles of
PH1 patients resemble those of PH2 or PH3 patients. These clusters were
associated with unique miRNA and clinical signatures and demonstrated different
survival profiles irrespective of their clinical PH classification. Uniquely enriched
pathways were also associated with the clusters along with important PH clinical
variables such as PVR, mPAP and NT-proBNP. The above highlighted the potential to
identify patients with similar disease drivers that may be benefitted by specific PAH
treatments. In light of this information we decided to explore additional subsets of
PH patients to assess their utility in identifying insightful clusters. We used a dataset
of 1138 patients each belonging to one of the clinical PH categories and a total of
554 miRNAs (generated as described in Data Introduction section above). We created
subsets of patients to focus on specific PH categories as shown in Table 1.
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Table 1: Multiple miRNA analyses with respective PH groups, number of patients as well as
the optimal clustering method, number of miRNAs and k. In red are marked the k which
received the most votes per analysis.

Analysis
number

IPAH
Groups patients Clustering

method
Optimal
miRNAs K votes

1 PH1 449 spectral 350 k.2 = 9
k.6 = 5

2 PH1.4 164 spectral 100
k.2 = 8
k.3 = 2
k.6 = 4

3 PH1, PH2, PH3
(manuscript 3) 615 spectral 50

k.2 = 4
k.4 = 2
k.5 = 4
k.6 = 5

4 PH4 258 spectral 50

k.2 = 4
k.3 = 4
k.4 = 1
k.5 = 4
k.6 = 1

5 PH4 + PH0_CTED 322 spectral 50

k.2 = 4
k.3 = 3
k.4 = 3
k.6 = 4

6 PH1, PH2, PH3, PH4, PH5 900 spectral 50 k.2 = 8
k.6 = 6

7 All patients 1138 spectral 50

k.2 = 5
k.3 = 3
k.5 = 4
k.6 = 2

PH1: Pulmonary Arterial Hypertension
PH1.4: systemic diseases such as connective tissue diseases, HIV infection and congenital heart
disease
PH2: PH due to left heart disease
PH3: PH due to lung diseases and/or hypoxia
PH4: Chronic thromboembolic pulmonary hypertension (CTEPH)
PH5: Pulmonary hypertension with unclear multifactorial mechanisms

Initially, we investigated PH1 (PAH), the patient class with the most heterogeneity (as
shown in (Kariotis et al., 2021). MiRNA analysis 1 focused on the entirety of PH1 and
included 449 patients and 554 miRNAs while analysis 2 looked at the more narrow
set of patients associated with systemic diseases such as connective tissue
diseases, HIV infection and congenital heart disease (PH1.4). Omada’s feasibility
step showed usable datasets for both analyses 1 and 2 with average stabilities of
0.83 and 0.88, respectively. For all downstream analysis I used a k range of [2, 6].
When tested for the optimal algorithm, spectral clustering achieved a satisfying
average of 0.72 (analysis 1) and 0.65 (analysis 2) partition agreement (over all tested
k) well above k-means (0.45, 0.46) and hierarchical clustering (0.08, 0.13). Given that
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spectral clustering performed best in multiple subsets of the same miRNA dataset
(manuscript 3 and analyses 1,2) I expected the remaining analysis to also fit this
selection. Looking at the subset of miRNAs that provide stable clusterings, analysis 1
showed that more than half of the most variable miRNAs (350) was the optimal
number, an observation that might indicate a weak signal in this specific portion of
the data. A weak signal would allow more miRNAs to be included as no miRNAs
could provide sufficient value (in our case cluster stability). On the other hand,
analysis 2 estimated the top 100 variable miRNAs to provide the most stability, a
much smaller number compared to analysis 1 which might stem from the smaller
sample size (449 - 164). It is interesting to note that all 100 optimal miRNAs of
analysis 2 were also included in the optimal 350 of analysis 1, as seen in Figure 7. As
a reminder, the most variable miRNAs are recalculated every time across each
dataset’s samples meaning that different datasets can have very different prioritised
miRNAs. Based on this observation and since no miRNAs were unique in analysis 2
we could note that this methodology did not capture any signal related to PH1.4.

Figure 7: Venn diagram of the overlap between the optimal miRNAs estimated for the tested
miRNA subset based on their PH categories. In top right we see the overlap of estimated
miRNAs when using patients from categories PH1 and PH1.4. Top right venn diagram shows
the overlap of estimated miRNAs when using patients from categories PH4 and PH4 + CTED.
Bottom venn diagram shows the overlap of miRNAs when comparing the selected miRNAs of
(PH1,PH2,PH3) with (PH1,PH2,PH3,PH4,PH5) and all patients used.
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Next, I investigated the number of potential subgroups in the two datasets. Both
datasets clearly favoured the existence of two clusters according to our ensemble
methodology with over 50% of metrics agreeing (Table 1). Then I performed a tsne
and PCA analysis to visually inspect whether the two-group partitioning was
apparent. In all four plots shown in Figure 8 two clusters are easily discernible
however additional t-sne and PCA analysis showed no groupings according to the
official PH1 subcategories (Figure 9).

Figure 8: PCA (left) and tsne analysis performed on A) analysis 1 and B) analysis 2 showing a
distinct two-cluster grouping.

Figure 9: PCA (left) and tsne analysis performed on the memberships generated as part of
analysis 1. The four colours indicate the PH1 subcategories of patients.
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The latter confirmed that the two clusters were not formed driven by traditional PH
diagnosis but rather a different source. To gain some insights on potential
discriminating variables I conducted a statistical analysis (Wilcoxon test) on the
available numeric clinical variables of the cohort. As demonstrated in Figures 10,11
variables such as BMI and PVR were significantly different between the two clusters
(in both analyses 1 and 2) and might offer promising grounds for further analysis.

Figure 10: Boxplots of the clinical variables for clusters 1 and 2 of miRNAs analysis 1.
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Figure 11: Boxplots of the clinical variables for clusters 1 and 2 of miRNAs analysis 2.

Next I explored PH4 which entails CTEPH patients with chronic thromboembolic
pulmonary hypertension. I also included patients with CTED (chronic thromboembolic
pulmonary vascular disease to assess whether their miRNA profiles differ as they
presumably are variants of the same pathophysiological mechanism(Lang et al.,
2021). Analysis 4 focused solely on 258 CTEPH patients and analysis 5 on a total of
322 CTEPH and CTED patients. Both analyses utilised 326 miRNAs as in manuscript
3. The Omada feasibility analysis deemed the datasets of both analyses to have
satisfying average stabilities of 0.89 and 0.87, respectively, and spectral clustering
was selected as the preferable algorithm. During the miRNA subsets’ analysis,
Omada estimated 50 miRNAs as the optimal number of features. Figure 7 shows
85.2% of them were shared between analyses 4 and 5 which makes sense since
dataset 4 comprises 80% of dataset 5. Interestingly, there was a spread in selecting
the number of clusters in both cases. Analysis 4 (CTEPH) was split between 2,3 and 5
clusters each getting 26% of the ensemble votes (Table 1). To investigate how these
clusters and their profiles look, I generated t-SNE, PCA plots as well as the miRNA
heatmap which shows the expression profiles per k (Figure 12). For every k,
according to the heatmaps there seem to be small sets of miRNAs that differentiate
between the clusters (usually places on the left side of the heatmap due to the
internal column/miRNA clustering) agreeing with the previous step where 50 miRNAs
showed to provide the most stable results. PCA and t-SNE also seem to support
some cluster distinction for each k but with low variance explained (16% on the first
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component). Further clinical statistics were generated for those clusters by Niamh
Errington showing some clinical variable differences such as PVR, survival and
NTproBNP mostly for the two-cluster run. However, a cox hazard ratio model showed
that these differences were associated with patient age and sex rather than cluster
membership (global p-value of 3.596e-07).

Figure 12: miRNA profiles, t-SNE and PCA analysis for the three possible k clusters for miRNA
analysis 4 (CTEPH patients). A) refers to two clusters B) refers to three clusters and C) refers
to five clusters
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Analysis 5 showed a slightly different picture since the ensemble votes were split
between several k values (Table 1). t-SNE and PCA analyses showed some
distinction between the clusters for the most voted ks of 2 and 6. Interestingly, when
considering six clusters different sets of miRNAs seemed to differentiate specific
clusters. In Figure 13B, clusters C2 and C3 seem to have large expression differences
for a small number of miRNAs while clusters C5 and C6 differ in a different set of
miRNAs. Statistical analysis (Fisher's Exact and Chi-squared tests) [performed by
Niamh Errington] showed that when we consider six clusters there are some
significant differences between pairs of clusters in various clinical variables, however
we didn’t note a difference in survival that wasn’t attributed to age.

Figure 13: miRNA profiles, t-SNE and PCA analysis for the two estimated k for miRNA
analysis 5 (CTEPH+CTED patients). A) refers to two clusters and B) refers to six clusters.
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Finally, to investigate purely PH patients, analysis 6 includes only the five PH groups.
Analysis 7 looked at the full cohort which includes the five PH classifications as well
as CTED(81) and patients without PH(254). The goal of these two analyses was to
explore if miRNA-based clustering was able to discriminate between all or some of
the PH classes and the patients without PH. As expected, both datasets were
producing more stable clusters when spectral clustering was applied and they were
both good candidates for Omada analysis with average stabilities of 0.91 and 0.89.
As in previous analyses 50 miRNAs promoted stable clusterings with average scores
of 0.83 and 0.86. Figure 7 shows a selected miRNA overlap of 92.3% for analyses
3(manuscript 3), 6 and 7 possibly indicating PH1, PH2 and PH3 to have the strongest
signatures as discovered in manuscript 3.

When estimating the number of clusters (k), analysis 6 is split between two and six
possible clusters with similar vote percentages. However, looking at their respective
miRNA profiles and t-SNE/PCA analyses for six clusters (Figure 14B) there seem to
be no correspondence between the PH classes and the formed clusters despite the
visible cluster separation.

Figure 14: miRNA profiles, t-SNE and PCA analysis for the two estimated k for miRNA
analysis 6 (all PH patients). A) refers to two clusters and B) refers to six clusters.

Additionally, none of the PH classes concentrates in any one of the clusters as
evident in Table 2. To get an idea of why the clusters differentiated, post-hoc tests
were performed by Niamh Errington based on the cluster memberships. A number of
interesting clinical variables, such as NTproBNP, mPAP and PVR, were found to be
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significantly different between pairs of six clusters, fully described in Table 3,
indicating possible differences in the mechanisms driving these groups of patients.
Survival did not show any significant deviations based on cluster membership when
age was also considered. Despite its inability to match patient clusters with PH
classes this analysis showed the potential of this miRNA-based patient partitioning
to capture phenotypically distinct groups stressing the need for further analysis and
validation of the groups.

Table 2: Six cluster memberships for analysis 6 containing all five PH categories along with
PH1 subcategories

A B C D E F Sum

PH1.1 29 54 29 34 45 39 230

PH1.2 4 1 1 2 3 1 12

PH1.3 0 2 0 1 1 0 4

PH1.4 23 24 32 23 18 29 149

PH2 26 27 23 11 35 15 137

PH3 19 21 8 13 9 13 83

PH4 55 43 52 30 50 28 258

PH5 6 4 3 7 2 5 27

Sum 162 176 148 121 163 130 900
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Table 3: Clinical variables statistically tested with their adjusted p-values and the specific
post-hoc tests deemed significant

Clinical variable Adjusted p-value Significant post-hoc tests

NTproBNP 0 A/B, A/C, A/D, A/E, B/F, C/F, D/F

Treatment 0 A & D

sPAP 0.0012 A/E, B/E, B/F, C/F, D/E, D/F, E/F

6MWD 0.0014 A/D, A/F, B/D, B/F, C/F, D/F, E/F

mPAP 0.0014 A/E, B/F, C/F, E/F

Site 0.0025 A,B,C,D,F

Creatinine 0.0025 A/B, A/C, A/D, A/E, D/F

SvO2 0.0026 A/C, A/D, A/E, B/F, C/F, D/F, E/F

Uric Acid 0.0074 A/B, A/D, A/E

REVEAL risk group 0.0080 -

eGFR 0.0080 A/D, D/F

mRAP 0.0093 A/C, A/D, A/E

dPAP 0.0094 A/C, A/E, C/F, E/F

PVR 0.0198 E/F

Adding non-PH and CTED patients for analysis 7 the selection of k showed a different
picture by spreading the votes. Non PH and CTED patients were spread across
clusters with no significant enrichment anywhere (Table 4).
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Table 4: Five cluster memberships for analysis 7 containing all five PH categories along with
PH1 subcategories, Non-PH and CTED patients

A B C D E Sum

CTED 8 16 26 14 6 70

No PH 36 54 34 21 35 180

PH1.1 66 52 29 44 38 229

PH1.2 3 4 0 2 4 13

PH1.3 0 2 0 0 2 4

PH1.4 25 25 27 34 38 149

PH2 13 42 25 33 19 132

PH3 19 13 14 19 15 80

PH4 28 58 67 57 45 255

PH5 4 4 2 7 9 26

Sum 202 270 224 231 211 1,138

4.5 Discussion

Gene expression studies have shown the presence of heterogeneity within PH, such
as in (Kariotis et al., 2021) where we showed its biological manifestation specifically
on IPAH patients through exploratory machine learning. Looking from a different
perspective, our learning models on circulating miRNA of manuscript 3 revealed the
strength of a miRNA signature by matching or surpassing the performance of
established clinical biomarkers in discriminating PH patients and/or controls. Ouf
belief that patients characterised by the same signature might share pathologies was
strengthened by miRNA clusters with variable prognosis and associations with
distinct molecular pathways which according to literature are implicated in PAH
subgroups. That was in agreement with (Yao et al., 2021) where molecular signatures
derived from lung tissue showed potential towards understanding PAH mechanisms.
The additional miRNA analysis investigated subsets of the miRNA cohort and
identified potential miRNAs that can play a role in differentiating categories which do
not necessarily coincide with PH classifications. As demonstrated in (Sessa and
Hata, 2013), dysregulation of miRNAs can influence the function of tissues with
pathological conditions and in PH specifically where it can affect metabolic
reprogramming, and enhanced proliferative capacity. Our different additional
analyses showed results ranging from the inability to detect any differentiating signal
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to promising phenotypic differences based on clinical variables underlying the
complexity that characterises such work. However, as we showed, clustering can
provide a way to explore patient heterogeneity purely based on miRNA signal and
independently of any clinical information and pre-existing classifications. However,
since clustering is an exploratory tool, further analysis is always needed to validate
the generated clusters and associate them with clinical characteristics and outcomes
such as survival.

162



Chapter 5 - Application of Omada to metabolite
profiles

5.1 Introduction

In this chapter I worked on metabolomic data which were available for a large subset
of the PAH patients presented in Chapter 3 and 4. Metabolomic data have recently
been associated with PH in various ways. Metabolites showed dysregulated
metabolism pathways on PH patients compared to their healthy counterparts (Chen
et al., 2020). Moreover, specific metabolite profiles could distinguish CTEPH patients
from controls and disease comparators in (Swietlik et al., 2021) showing the
implication of metabolites in PH. To explore their potential, I applied Omada to a
dataset of 1072 samples which overlapped with those of the dataset used for the
miRNA clustering analysis in the previous section. The current dataset includes 1522
metabolites drawn from blood serum as a readout of the whole body metabolism
state. This dataset was generated using liquid chromatography mass spectrometry
(LC-MS) as described in Chapter 1 sectionMetabolomic data.

5.2 Methods

The current analysis aimed to partition the dataset into patient subgroups showing
distinct metabolic profiles, therefore multiple combinations of PH categories were
used as input. Metabolomic data collection and processing is described in the
methods section of (Rhodes et al., 2017). Metabolomics analysis 1 was performed
for 571 patients in groups PH1, PH2 and PH3 aiming to show whether metabolites
can discriminate between patients of the three categories. Metabolomics analysis 2
included 246 patients from PH4 and was performed to assess whether there is
heterogeneity within CTEPH that is detectable by metabolism profile differences.
Lastly, all 1072 patients were considered in metabolomics analysis 3 to assess if
metabolite differences are detectable between all PH classes in this dataset. For all
three clustering analyses we tested a cluster range k of [2, 6] for selecting the
clustering method, optimal metabolite subset (with the additional parameter of
comparisons set to 3, please refer to manuscript 1) and determining the number of
clusters, k. Finally, clusters were generated for all but we calculated𝑘 ∈ [2, 6]
statistics only for the top 3 voted k [statistics were generated by Niamh Errington]. For
the calculations, each parameter was assessed for normality, followed by the
appropriate statistical test to look for associations to cluster membership. In cases
of unequal variance, the data were log transformed. When the initial p-value was
significant, post hoc tests were applied between groups.
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5.3 Results

5.3.1 No distinct metabolism subgroups found

Table 5 details the PH categories participating in each clustering analysis along with
the main Omada results for each tool. I went through with the analysis as all three
datasets showed clustering potential based on the Omada feasibility analysis (using
the default 3 classes) with average stability scores of 0.89, 0.88 and 0.85,
respectively.

Table 5: The three metabolite clustering analyses with the PH groups and samples sizes
considered. The clustering method, optimal number of metabolites and the votes for each
number of clusters (k) estimated from the Omada application are also noted.

Analysis
number PH Groups Number of

patients
Clustering method

selected
Optimal number of

metabolites k votes

1 PH1, PH2, PH3 571 spectral 50
k.2 = 12
k.3 = 1
k.6 = 2

2 PH4 246 spectral 50
k.2 = 12
k.5 = 1
k.6 = 2

3 All groups 1072 spectral 500
k.2 = 13
k.3 = 1
k.6 = 1

PH1: Pulmonary Arterial Hypertension
PH2: PH due to left heart disease
PH3: PH due to lung diseases and/or hypoxia
PH4: Chronic thromboembolic pulmonary hypertension (CTEPH)
PH5: Pulmonary hypertension with unclear multifactorial mechanisms

The second step also showed promising signs that spectral clustering was the
appropriate algorithm for the dataset as it was selected in all three cases with
average (over all tested k) partition agreement of 0.68, 0.65 and 0.74, respectively
(Figure 15).
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Figure 15: Average partition agreements for the three clustering analyses and the three
algorithms tested. In all cases spectral clustering surpassed the Adjusted Rand Index
threshold of 60% while the remaining algorithms showed considerably less robustness.

Analysis 1 (PH1, PH2, PH3) and analysis 2 (PH4) showed a relatively smooth stability
for different sets and selected the same number of metabolites (50) to provide the
most stable clusters as shown in Table 5 and Figure 16. 25 metabolites overlapped
(50%) as the most variable in the two analyses. When considering analysis 3, where
all patients were included, the unsupervised model estimated a much larger set of
metabolites (500) and a very sharp drop when more were considered.
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Figure 16: Average bootstrap stabilities for the three clustering analyses including each
subset of the most variable (across patients) metabolites. Analyses 1 and 2 showed almost
identical stabilites both selecting 50 metabolites (only 50% of which were overlapping).
Analysis 3 showed a much different picture selecting 500 metabolites and showing a very
sharp drop when additional metabolites were added.

When estimating the number of clusters in each dataset all analyses overwhelmingly
indicated the existence of two subgroups (Table 5) even when considering the
diverse nature of the 15 internal indexes. That would indicate a very confident
estimation on k, however since two is the smallest possible number of clusters it is
very important to consider the possibility of no present clusters. First, I checked the
cluster sizes for every case (Table 6). The large differences in sample sizes,
especially in the 2-cluster cases, indicated that the algorithm was not picking up a
strong signal between real subgroups and might only be forming 2 clusters due to
minimal differences (otherwise the clusters would have more similar sizes). Further
analysis, such as tSNE plots, show no discernible groupings and no overlap with any
PH classes therefore implying the potential lack of structure in the data.
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Table 6: The first three estimates for the number of clusters for the three analyses

Analysis 1 (PH1, PH2, PH3)

k Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

2 567 5 - - - -

3 29 54 489 - - -

6 42 305 31 48 107 39

Analysis 2 (PH4)

k Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

2 247 2 - - - -

5 27 6 31 22 163 -

6 158 31 27 22 9 2

Analysis 3 (PH1, PH2, PH3, PH4, PH5)

k Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

2 3 1069 - - - -

3 3 1059 10 - - -

6 26 394 501 1118 317 320

5.4 Discussion

It is shown by current research that metabolite changes occur under PH conditions
and those changes have been utilised to identify PH categories from healthy
individuals (Rhodes et al., 2017; Chen et al., 2020). However, no current studies
present models able to discriminate between PH classes. We explored this potential
from a machine learning (stability) perspective and the metabolite datasets we used
showed promise in being used as inputs for clustering based on dimensionality and
specific algorithm robustness. Despite our model’s inability to form distinct
metabolism clusters, the 25 metabolites that overlapped in variability in analyses 1
and 2 might be an interesting target for further research. Since the two analyses did
not have overlapping patients the fact that 25 metabolites were selected in both
means that their selection was purely based on their variable expression levels (in
these two PH contexts) instead of being dependent on specific patients.
Consequently, this set of metabolites might potentially play a role in general PH
metabolism since the two analyses collectively include four PH categories (1: PH1,
PH2, PH3 and 2: PH4). When considering all patients, the unsupervised model
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estimated a much larger set of metabolites that provided stable clusters (~60%).
Although this observation only serves as an indication with further analysis needed, it
might imply sets of metabolites that differentiate PH subgroups in this dataset, not
necessarily following the established PH classes, as in (Carlsen et al., 2022) where
authors demonstrated different metabolic phenotypes independent of PH diagnosis.
All three analyses/datasets pointed towards the existence of two clusters underlying
however a huge cluster size discrepancy. Our tSNE results for the various analyses
showed no visible groupings of patients and thus no metabolism driven clusters, an
idea also backed by the lack of significant differences from the statistical analysis of
clinical variables associated with the clusters. Several factors might influence the
ability of this metabolite dataset to find clinically relevant clusters. From a machine
learning perspective, in some of these analyses the partitioning process generated
clusters of very different sizes drastically reducing the statistical power of any
association with clinical data. Moreover, blood serum metabolites might not present
the ideal source of metabolic difference discovery as literature has shown that
metabolic abnormalities in PH show variations by organ or cell type (Xu, Janocha and
Erzurum, 2021). Finally, additional data might be needed to interpret or help create
any metabolic clusters, such as pathway related data which have shown to
differentiate within PH (Xu et al., 2004; Xu and Erzurum, 2011) since the current
dataset was not able to reveal any systematic structure to be captured by
unsupervised learning.
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Chapter 6 - Longitudinal exploration of activity
during COVID

6.1 Introduction

In recent years, SARS-CoV-2 infections have caused a diverse set of symptoms
varying in duration and severity (Sudre et al., 2021). This large degree of
heterogeneity in symptoms and the long-term outcome of infected patients with
milder/asymptomatic COVID-19 that were not hospitalised remains unknown. The
potential of cardiovascular activity measurements has been studied on hospitalised
patients, such as heart rate variability (HRV) in (Mol et al., 2021), however mild and
asymptomatic cases have not been explored as of yet. Moreover, the use of wearable
devices for relevant data capture during the pandemic has increased considerably
(Hijazi et al., 2021). The work presented in this section, which is part of manuscript 6,
builds on the above information and attempts to answer the following questions:

● Can activity-based longitudinal clustering uncover distinct COVID-19 patient
groups?

● Can physical activity COVID19 longitudinal clusters be associated with symptom
trajectories?

During the COVID-19 pandemic frontline healthcare workers (HCW) were at a high
risk of infection resulting in several local and national studies to monitor infection
and symptoms. Several studies from UK NHS trusts have shown SARS-CoV-2
seroprevalence rates of 20-50% in frontline HCW after the first pandemic wave, at a
time when the estimated seropositivity in the general population was only 6% (Eyre et
al., 2020; Houlihan et al., 2020). A longitudinal study of the long-term symptoms of
COVID in 38 HCW indicated that 55% indicated at least one continuous symptom,
with fatigue being the most abundant symptom (57%) six months after COVID-19
diagnosis. Within the population there is a large degree of heterogeneity in COVID
both in terms of severity and duration of symptoms (Sudre et al., 2021), and the
long-term outcome of those infected with COVID-19 who had milder or asymptomatic
COVID-19 and therefore not-hospitalised remains unknown. [Written by co-authors
Varsha Gupta and Elham Alhathli]

Previous studies have highlighted the potential for heart rate variability (HRV) to
predict survival in hospitalised patients with COVID-19 (Mol et al., 2021) and there
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has been heightened interest in the use of wearable devices and smartphones to
capture data during the pandemic (Hijazi et al., 2021) but little is known about the
utility of HRV, or other measurements of cardiovascular/physical activity in relation to
mild or asymptomatic people infected with SARS-CoV-2. [Written by co-authors
Varsha Gupta and Elham Alhathli]

We present data with >1 year follow up from a cohort of HCWs enrolled into a
clinician-led COVID-19 symptom monitoring study who also possessed compatible
iOS devices and enrolled into the MyHeart Counts iOS App study. Using unsupervised
learning methods for longitudinal data we identified two trajectory patterns of
COVID-19 symptoms, and two trajectory patterns representing different levels of
physical activity. We observe associations of long and short COVID-19 symptom
patterns with some of the physical activity features. This study highlights the
importance of further monitoring of COVID symptoms and physical activity levels
through wearables to understand the long-term impact of COVID-19 as well as other
forms of cardiovascular and respiratory diseases. [Written by co-authors Varsha
Gupta and Elham Alhathli]

Focusing on a 121 frontline health care worker cohort, the first part of this study
generates long and short patient classes of symptom trajectories over different
time-points. Additionally, activity-based patient clusters were created by longitudinal
unsupervised learning over a maximum of 596 time points. Long COVID trajectories
were associated with a higher number of symptoms at baseline and symptoms
showing longer duration evidence. We then build association models between the
classes and clusters to investigate their relationship and associate them with
physical activity, health and demography data, reinfections and biological markers.

6.2 Methods

Participant recruitment

Participants were recruited into the Sheffield Teaching Hospitals NHS Foundation
Trust Observational study of pulmonary hypertension, cardiovascular and respiratory
diseases study (STH-ObS, 18/YH/0441). All participants provided written informed
consent. Eligible participants were adults aged 18 years or older, currently working as
health-care workers, including allied support and laboratory staff, and possessing an
iPhone 6 or later were offered an Apple Watch Series 4. Procedures were done in
compliance with the principles of the Declaration of Helsinki (2008) and the
International Conference on Harmonisation Good Clinical Practice guidelines.
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Of the 204 participants recruited to the study between July 2020 and July 2021 138
participants had either been PCR or were sero-positive for COVID-19 infection at the
time of consent. The remaining 65 Participants were negative for COVID-19 and 1
participant did not have information about PCR or sero-positive test. Participant
demographics and data on COVID-19 testing, symptoms, vaccination status were
recorded during clinician led clinics. 140 participants owned compatible iOS devices
and were recruited into the MyHeart Counts Study. [Written by co-author Allan Lawrie]

MyHeart Counts

MyHeart Counts is an iOS smartphone app that collects information about an
individuals cardiovascular health, wellbeing, diet, smoking history and can perform a
six-minute walking test (McConnell et al., 2017; Hershman et al., 2019). In addition to
these self-reported questionnaires, the app can pull heart rate data from compatible
wearables through Apple HealthKit and has been used as a platform for a
randomised control interventional study of physical activity (Shcherbina et al., 2019).
During the early stage of the COVID-19 pandemic MyHeart Counts was updated
(Version 2.3.0) to include self-reported COVID-19 symptoms and testing. Each
participant was provided with a pseudonymous identifier to link data obtained from
the App to their clinical data and participants were asked to complete questionnaires
on their cardiovascular health status and history, physical activity levels, diet, sleep,
wellbeing and risk perception and fortnightly updates on COVID-19 testing and
symptoms. [Written by co-authors Allan Lawrie and Emmanuel Jammeh]

Clustering of physical activity trajectories

Longitudinal activity data of 73 patients were imported to R (version 4.2.0) and
filtered based on the availability of relevant dates of interest. For each patient the
start of the time series was derived using the following priorities. The date of onset
(first symptoms) was prioritised followed by the date of a potential positive PCR test,
followed by a potential positive serology test and lastly the date of the first physician
visit. Based on the availability of the above, trajectories of 31-34 patients were
created depending on the specific activity and varied in number of timepoints ranging
between 42 and 596. The trajectories were utilised by a longitudinal clustering
approach (KmlShape R package) to generate activity profiles for each variable. To
reduce the complexity and computational requirements of longitudinal clustering as
required by the algorithm, the trajectories were first minimally merged based on the
Fretchet distance (Montero and Vilar, 2015). The distance between each pair of
trajectories was calculated and used to generate a smaller number of senator
trajectories (30-33) which represent the actual trajectories but reduce the number of
calculations needed for the following clustering. In turn, the senator trajectories were
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reduced to 100 time points for the purposes of calculating shape similarities.
Multiple clusterings were carried out with selected k - number of clusters - ranging
between two and five creating activity profiles for every type of activity registered.
Due to sample sizes, the two-cluster run was retained for each activity and the
differences between the mean representative trajectories of each cluster were
calculated by averaging the trajectories of their members, smoothed by local
polynomial regression fitting (loess in R Stats package).

The continuous distance between each trajectory and the representative trajectory
was calculated using the Fretchet distance (TSdist R package) which allows the
computation of distances even with unequal number of times points. The
representative trajectory was calculated as the mean of the trajectories of the
generated clusters based on their difference on each variable value. Each individual
trajectory was signed as positive or negative depending on its position relative to the
representative trajectory. Distances closer to zero represent patients closer to the
representative trajectory demonstrating less clear distinction between the clusters
while higher absolute values represent samples further away from the representative
trajectory and as an extension from the opposite cluster.

6.3 Results

Physical activity trajectories during and after COVID-19 symptoms

Two clusters of participants were formed for each physical activity with cluster sizes
and the statistics for the time-points used (overall average 487 time-points)
presented in Supplementary Table 1. Depending on the activity measure, 31-34
patients were split between two clusters with the low activity clusters being on
average 3 times larger in each case. 'Walking distance generated the most similar
sized clusters (ratiolow-high = 1.38) while the number of flights climbed showed a
ratiolow-high of 7. Walking heart-rate average, flights climbed and step count considered
the most timepoints on average across patients (496.5, 493.5 and 493.5 respectively)
with basal energy burned using the least (472). When checked for activity levels the
pairs of clusters showed significant differences for every activity (p-values <=
2.858e-07) except the average Walking Heart Rate (p-value = 0.3593). All p-values,
calculated by two-sided t.tests, are presented in Supplementary Table 2. The mean
representative trajectories were plotted in Figure 1 showing a distinction of high and
low mean activity of the trajectory clusters accompanied by the individual time-points
of the patient trajectories they represent. More prominently, patients in the high
activity cluster (green colour in Figure 1) showed double walking/running distance
(10,955m) as well as energy burned (949,650) compared to the low cluster members
(4964.5m and 538,190, respectively with p-values of 2.2e-16). The highest difference
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was noted at the number of flights climbed where high activity patients climbed 243
more flights, especially during the first 30 days according to Figure 1. Heart rate was
as an average number almost identical between the two clusters (around 1.4),
however high activity patients showed lower heart rate early on until the point of 160
days and higher afterwards. Heart rate variability (SDNN) differentiated considerably
between the two clusters at around 200 days while energy burned demonstrated a
peak at 250 days after the date of onset/PCR/serology/first visit.

Supplementary Table 1: Timepoint statistics and details for the clusters generated for each
activity variable

Patients Cluster
1 (low)

Cluster
2 (high) Min Mean Media

n Max

heartRate 33 25 8 56.0 414.4 487.0 593.0

basalEnergyBurned 34 25 9 75.0 406.3 472.0 593.0

stepCount 32 21 11 67.0 421.3 493.5 593.0

heartRateVariabilitySDNN 32 24 8 87.0 429.2 489.0 593.0

flightsClimbed 32 28 4 88.0 434.5 496.5 596.0

distanceWalkingRunning 31 18 13 42.0 411.1 487.0 593.0

walkingHeartRateAverage 32 19 13 86.0 428.2 493.5 593.0

energyBurned 34 27 7 62.0 426.6 481.0 593.0
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Supplementary Table 2: The clusters formed by longitudinal clustering for each of the 8
activity measures along with their sizes and the significance of the difference between
their means

Activity
variables

Cluster 1(low) Cluster 2 (high) p-value
(meanc1-c2)n Mean n Mean

heart
Rate 25 1.4

(0.8-2.7) 8 1.42
(0.8-2.7) 2.858e-07

basal Energy
Burned 25

1,716,256.0
(14,896.0-32,318,588.

0)
9

2,251,475.0
(14,979.0-63,452,416.

0)
2.2e-16

step
Count 21 6763.2

(4.0-64,102.0) 11 11,753.8
(2.0-218,935.0) 2.2e-16

heart Rate
Variability
SDNN

24 35.9
(7.8-164.0) 8 60.6

(14.1-212.7) 2.2e-16

flights
Climbed 28 61.1

(1.0-489.0) 4 304.2
(2.0-1,062.0) 2.2e-16

distance
Walking
Running

18 4964.5
(1.3-43,860.9) 13 10,955.7

(1.51-481,780.4) 2.2e-16

walking
Heart Rate
Average

19 1.71
(0.8-2.9) 13 1.7

(0.9-3.0) 0.3593

energy
Burned 27 538,190.8

(21.0-5,267,592.0) 7 949,650.0
(37.0-25,279,771.0) 2.2e-16
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Figure 1: The smoothed mean representative trajectories of each generated cluster for the
physical activity measures. The individual time points of the cluster members are visible
around the curves along with a density estimation to help visualise their presence.

175



Association of symptoms and physical activity trajectories

There were only 21 participants with both COVID symptoms and physical activity
longitudinal patterns (Figure 2). Amongst these 21 participants, 6 participants also
had re-infection. The association of high/low activity vs short/long covid using
chi-square test (Table 1) revealed significant association of short covid with low
activity cluster of ‘flight climbed’ and ‘distance walking running’ (p<0.05). [Paragraph
written by co-authors Elham Alhathli and Niamh Errington]

There is association between symptoms trajectories and some baseline daily activity
data, that started from the first date of symptoms onset and was averaged at
different time points of 3 days, 1 week, 2 weeks, 1 month and 3 months. The activity
variable distance walking, running, flight climbed (starting from 1 week average), and
steps count (starting from 1 month average) have significant associations with any
symptoms of long/short covid (p <0.05) . The difference in means between
short/long covid are represented in Figure 3 and in all the three activity variables
(distance walking running, flight climbed and steps count) long covid has lower mean
activity level compared to short covid (Figure 3). [Paragraph written by co-authors
Elham Alhathli and Niamh Errington]

We studied the distribution of biological markers in long and short trajectories
corresponding to 21 patients (9 short, 12 long trajectories) who also had reported
physical activity. Although, there is no statistically significant difference in biological
markers between long and short trajectories, there is elevation of ORF8 with both
long covid and high activity trajectories. [Written by co-authors Elham Alhathli and
Niamh Errington]
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Figure 2: Heatmaps of unsupervised classes of 21 patients that have complete symptom and
activity data. A) This heatmap shows the binary symptom classes with cyan denoting patients
classified in short covid profiles and dark blue denoting patients with a long covid symptom
profile. B) This heatmap shows the Frechet distance (log2 scaled) from the centre point
between the two cluster centres(low and high activity). Green cells represent members of the
high activity cluster while red cells represent patients of the low activity cluster. Numbers
closer to zero represent patients closer to the centre point demonstrating less clear distinction
between the clusters. Numbers with higher absolute values represent patients further away
from the centre point and as an extension from the opposite cluster. On the right side with
dark red are denoted the patients that were re-infected
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Table 1: Association between long and short covid trajectories vs high and low activity
cluster in in any symptoms using chi-sq test

Low v High Activity Cluster
Long vs Short COVID Symptoms

chi-squared P-value

Steps Count 5.36e-32 1

Heart Rate 0.1 0.75

Heart Rate Variability 0.17 0.68

Walking Heart Rate 0 1

Flights Climbed 3.7 0.05

Distance Walking Running 5.5 0.02

Basal Energy Burned 0.1 0.75

Energy Burned 1.28 0.26

Figure 3: Boxplots to show distribution of biological markers in long and short COVID patients.
[Figure generated by co-authors]

178



6.4 Discussion

Recent COVID literature has shown that infections can cause short and long lasting
symptoms and that activity measurements can be used to partition patients.
Specifically, wearable device readouts currently generate physical activity
measurements of adequate quality and depth to be used in healthcare research such
as in (O’Regan et al., 2021) where cluster analysis showed distinct patient subgroups
associated with morbidity and healthcare utilisation. Looking from a longitudinal
perspective and using activity data, three phenotypes (clusters) of different physical
activity patterns and quality of life have been previously identified (Carvalho da Silva
et al., 2022). In this work, we used activity data from wearable devices of 121
healthcare workers along with registered symptoms to generate symptom
trajectories (short and long covid) and longitudinal physical activity
trajectories/clusters (high and low activity). We observed some associations
between short COVID and high activity in the form of higher levels of variables like
walking, flights climbed and step count. The clustering approach we used for activity
trajectories provided a flexible method that allowed patient trajectories with different
amounts of timepoints to be included so that we avoid the shrinkage of our dataset.
However, having a small number of patients (~32) reduced the capabilities of our
longitudinal model to more accurately partition patients and generate representative
trajectories per cluster. Moreover, an even smaller set of patients overlapped with the
symptom dataset (21) further reducing the statistical power of our associations. The
activity gaps observed due to work limitations relative to the wearable devices
(healthcare worker restrictions of wearing devices) also created a mismatch of
registered data at different timepoints resulting in the disqualification of clustering
algorithms that require input time series vectors of identical length.
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Chapter 7 - Final discussion and future directions

This work aimed to explore the potential of unsupervised learning used along with
various omics data to uncover patient subgroups present due to disease
heterogeneity. The main focus was to build a toolkit for non-machine-learning experts
that largely automates unsupervised analysis of RNA-sequencing data and provides
valuable insights. This will directly enable researchers to overcome the challenge of
using complex machine learning algorithms without extensive training to investigate
heterogeneity through molecular big data. To validate its utility, I applied the Omada
toolkit to a real heterogeneous dataset and discovered biologically and clinically
distinct patient subgroups through additional analysis. To assess the expansion
capabilities and robustness of Omada (and as an extension the potential of
clustering analysis) I also tested on more omics data types and across a variety of
clinical classes. Furthermore, I experimented with clustering trajectories of times
series activity data to stratify a COVID cohort longitudinally.

Omada was designed to make the most impactful decisions required during any
clustering analysis, overcoming the underpowered approaches of using default
clustering algorithms and parameters. Such decisions include selecting the most
robust algorithm for a dataset, which set of genes offers the highest cluster stability
as well as determining how many clusters we should be looking for in our data.
Utilising multiple widely used and established algorithms, metrics and measures of
clustering quality this toolkit aims to especially enable non-experts to work through a
complete clustering analysis justifying each decision along the way allowing more
time to be invested in interpreting insights. Notably, these tools were created with
core machine learning values in mind so they can be used, extended and maintained
effectively. Firstly, every result, intermediate or final, can be justified by established
machine learning theory and formulas and in turn provide an explanation for each
decision (i.e. explainability). Moreover, the tools allow for testing hypotheses, such as
the existence of patient subgroups in a dataset, and results can be directly
interpreted (i.e interpretability) towards valuable insights (e.g. lower algorithm
agreement and stability scores indicate the lack of multiple clusters/heterogeneity).
As far as the results are concerned, all outputs are provided in an easy to find, collect
and understand manner and no decisions are hidden making them findable and
accessible. This pipeline also has an interoperable character as each step feeds the
next one and the final step provides data that can be used in further standard
analyses. Additionally, each result can be re-used by other methods due to their
standard format.

All the above were studied in the context of gene expression and were shown to
output invaluable insights concerning disease heterogeneity. However, additional
useful knowledge was extracted from this exploratory work. Omada’s application on
simulated data showed when a dataset consists of a single class we can observe
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significantly lower scores when we are selecting the number of clusters. This
observation can serve as a hint towards the limited utility of the input dataset.
Furthermore, when tested on a dataset without visible (or expected) differences
among participants (i.e. all healthy maternal RNA, GUSTO) our tools can provide
indications towards the lack of subgroups (consistently low stabilities) and the
presence of potential biases which becomes more transparent when there is no
underlying signal. Omada’s tools attempt to directly assist with several clustering
analysis challenges such as reducing dimensions to improve specificity and
computational efficiency. Crucially, utilising and comparing multiple approaches
(clustering algorithms, cluster quality metrics etc) also helps reduce the complexity
of making informed and dependable analysis decisions.

Pulmonary Hypertension (PH) and its understudied structure is the focus of my
work’s heterogeneity exploration and a complex disease with several unique
pathologies characterised by increased pressure within pulmonary circulation. Its
development has been associated with numerous genes (such as BMPR2),
biochemical and molecular pathways (TGF-β) establishing a genetic link early on. In
(Kariotis et al., 2021) we described our methodology to discover H/IPAH patient
clinically-agnostic subgroups based on gene expression (RNA-seq) and presented
our results that associated this heterogeneity with prognosis levels, immune gene
profiles and relevant variants. In (Kariotis et al., 2021) we validated the utility of
Omada by partitioning H/IPAH patients in three distinct subgroups independently of
any PH clinical classification aiming for novel insights. Using additional clinical data
we demonstrated different prognosis (survival), expression and immune profiles
across the subgroups by revealing the predictive power of immunoglobulin genes,
NOG and ALAS2 emphasising their potential to determine patient outcome and
potentially be future drug targets or patient treatment response identifiers. In general,
this work highlights the importance and utility of RNA-sequencing data in reflecting
certain aspects of disease mechanisms which can then be perceived and examined
as systems of reduced complexity. Such systems can then be investigated and
provide more direct information on disease related hypotheses.

To showcase that multiple omics can be used by unsupervised learning to show
different aspects of a disease I also used microRNAs, non-protein coding RNA
sequences that play a very important role in gene regulation by RNA silencing or
post-transcriptional regulation within the nucleus. A large number of microRNAs have
been measured in blood and their role has been assessed in various contexts
(O’Brien et al., 2018), including as promising biomarkers in cancer diagnostics
(Mishra, 2014). Especially in PAH, (Zhou, Chen and Raj, 2015) has reviewed the role of
microRNAs in various cell types and their future contribution to treatment strategies.
PH has a specific clinical classification (that includes PAH, as described in Chapter 1,
Pulmonary Arterial Hypertension) based on which patients are diagnosed and
subsequently treated. However, this classification is based on clinical observations
which might limit the identification of microRNA signatures that can potentially drive
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existing patient heterogeneity. In this work I focused on exploring this heterogeneity
on a dataset of 1138 samples and 554 microRNAs in line with the current need to
stratify patients towards targeted medicine. The main body of this section concerned
a subset of patients (615) and microRNAs (326) and challenged their categorisation
in three PH categories PH1(Pulmonary Arterial Hypertension), PH2 (PH due to left
heart disease), PH3(PH due to lung diseases and/or hypoxia). Our Omada analysis
identified six clusters based on 50 microRNAs with distinct expression profiles and
clinical characteristics such as phenotypes with low survival/mPAP/PVR but higher
than expected NT-proBNP. The aforementioned fact coupled with the observation that
no PH classes were fitting in any generated clusters highlighted the existence of
currently undetected phenotypic patient differences that might provide integral
disease knowledge. Of interest was the observation that these groups of patients
were characterised by combinations of clinical variables rather than a single
measurement (e.g. PVR) showing that single biomarkers might possess insufficient
identifying power. Next I chose to widen the scope of research questions and utilised
multiple combinations of patients belonging to PH classes. I discovered that the
various microRNA datasets were feasible inputs for Omada (clustering) and spectral
clustering seemed to be the most robust algorithm to use. I generally detected a
weak signal when examining single PH classes (PH1) and subclasses (PH1.1,
systemic diseases such as connective tissue diseases, HIV infection and congenital
heart disease). However, some significant clinical differences in the generated
clusters were detected in more than one of these microRNA analyses and might
provide an interesting prospect for further research between cluster phenotypes.
Analysis of CTEPH and CTED was unable to indicate distinct phenotypes based on
microRNAs as patient age and sex drove the partitioning, a phenomenon
unsurprisingly (risk factors in PAH (Schachna et al., 2003)) also observed during
RNA-seq clustering analysis. Lastly, when the whole cohort was examined 50
microRNAs generated the most stable clusters and they completely overlapped with
the microRNAs found in manuscript 3 enhancing the confidence in the finding of
manuscript 3. Interestingly, the associations of manuscript 3 (PH1, PH2, PH3) could
not be replicated in our full cohort analysis (PH1, PH2, PH3, PH4, PH5) potentially
showing a stronger signal in the first three PH classes which weakens when
additional PH4, PH5 patients are included. All the above phenotypic differences
across patient subgroups constitute a first step towards building representative
molecular subtypes which in turn can be the basis of new diagnostic tests.

Following the latest research where metabolites are being implicated with
dysregulated metabolism in PH and certain profiles distinguishing CTEPH patients, I
investigated a metabolite PAH cohort overlapping with the aforementioned microRNA
dataset. I focused on the potential heterogeneity in clinical PH classes and patients
with CTEPH. The datasets were stable enough and spectral clustering was
sufficiently robust but in all cases the minimum k (=2) was selected with extremely
differently sized clusters. If we also consider the unclear t-SNE results when looking
for PH classes, the two clusters are most probably a selection of exclusion and not
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based on a real metabolite signal. However, during the analysis 25 metabolites were
independently selected when exploring different PH classes showing potential to
influence PH functions and providing a hint for future research.

Studies have shown that clinical measurements and COVID-19 can be used in
predictive models as in (Mol et al., 2021) where heart rate variability was used to
predict survival of hospitalised patients. Wearable devices were also reviewed in
terms of physical activity changes pre and post COVID-19 and showed high
percentages of reduction (Panicker and Chandrasekaran, 2022). Following such
leads, our longitudinal COVID-19 unsupervised methods identified associations
between symptoms and short/long COVID-19 groups with time series clustering
generating independent high and low activity groups. Although the activity groups
showed weak association with short/long COVID groups they still provide an
indication of low activity participants more likely to have long COVID-19. Moreover,
we showed increased presence of the ORF8 protein in both high activity and long
COVID-19 groups, agreeing with recent literature (Flower et al., 2021) about the
contribution of ORF8 to COVID-19 pathogenesis. This longitudinal work showed the
utility of a different clustering approach in grouping patient trajectories and therefore
the overall potential of unsupervised models to provide insights in various health
contexts.

For users with new datasets, we recommend pre, during and post application tips for
using Omada or similar approaches. Although preprocessing steps are not part of
this toolkit we have found that, as a clustering pipeline, potential input data need to
be processed to increase the chances of identifying strong relations between data
points of the same cluster. Proper scaling and normalisation, such as the hyperbolic
arcsine used in manuscript 1 will allow algorithms to access each gene equally and
reduce the impact of outliers and data noise present in every real life medical
dataset. Also, missing values in gene expression should either be imputed or the
genes excluded depending on the percentage of missingness. Post processing can
also be applied after the generation of the first clustering results (memberships)
when the user can identify obvious genes driving clusters, such as sex exclusive
genes (nearly) perfectly separating patients into male and female clusters. The
feasibility preparation step Omada offers can and must be used only as an indication
of dataset’s fitness for clustering analysis. Since this step assesses a dataset based
on its dimensions it serves as a checkpoint towards the main clustering analysis and
not as a reassurance that a real signal exists in the input data. After acquiring a
dataset fit for clustering analysis, selecting the appropriate algorithm through Omada
will yield the most stable and robust methodology across multiple cluster
requirements and parameters ensured by the randomised component of the function.
Our testing showed spectral clustering to work very well with RNA-sequencing data
due to its ability to globally consider a large dataset, in contrast to hierarchical
clustering which includes some arbitrary localised decisions. Regarding the question
of which genes to include in an analysis, Omada’s feature selection step is expected
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to filter down a gene set considerably (from tens of thousands to maximum
hundreds). The relevant scores can be a strong indication of the gene set that can
drive the differences between patient groups and the stability trajectory should be
examined carefully to decide the most inclusive set of genes that might be of
interest. Following that assessment, the number of clusters can be estimated
through Omada’s ensemble step. It is advised not to automatically adopt the highest
estimate but rather observe the top two or three most voted options. In case these
estimates are close in number (i.e. 3 and 4 clusters) the highest one should be
selected so as not to lose potentially valuable information. Lastly, as part of a
meta-analysis, Omada’s Lasso coefficients can serve as a hint towards the
association (and its directionality) between specific genes and patient groups since
they result from the optimised clustering model generated by the above steps. It is
advised to complement these associations with further analysis of biological nature.

7.1 Limitations

Clustering is a valuable tool to uncover relationships between samples and form
groups with unique characteristics irrespectively of external information, but since it
is not based on truth labels its accuracy can be lesser than supervised models. Also,
an integral and challenging part of using unsupervised learning in scientific research
is the interpretation of partitioning results as we did in (Kariotis et al., 2021)
(manuscript 2) through a large number of analyses. In the same study we used whole
blood as a surrogate which might have hampered our findings’ power, avoiding
however invasive sample collection. The totality of this work was hindered up to a
point by the amount of data wrangling required to run any part of the analysis. Data
generated in bulk cannot be used without, sometimes rigorous, preparation. In our
case, although we undertook several preprocessing steps, in both RNA-sequencing
and microRNA datasets, a number of samples were excluded due to low quality or
uncertain clinical information effectively reducing the statistical power of our models
or analyses. Although this did not harm our presented results it might have hidden
weaker associations that we would otherwise have picked up. Additionally, although
we used various excellent data this research could delve deeper if the overlap of
patients across our available datasets (RNA-seq, microRNA, metabolomic) was
higher in order to combine the different dimensions of patient groups and look for
signs of more complex disease mechanisms possibly forming networks. Lastly, the
inherent differences between RNA datasets did not allow for the creation of an
additional Omada modality that would systematically tackle input data
preprocessing. However, indications of well tested and used preprocessing
techniques and suggestions are presented throughout this work to assist users with
their dataset.
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7.2 Future directions

Unsupervised learning is gaining traction with the increased availability of data, the
constant conception of new advanced techniques and the inability of people to label
generated data. This creates an interesting future opportunity to increase the scope
of this work by adding newly developed clustering methods as well as more data
types. Due to the character of clustering, where no solution can be validated without
a doubt, examining and comparing more approaches can add an extra degree of
result confidence or even provide a way to tackle an exploratory problem where other
angles have failed. Furthermore, various hypotheses can be tested in the clustering
agnostic way when new data types (omics and non-omics) are utilised showing new
perspectives to look at solutions. In principle, most current clustering approaches
require normally distributed continuous numeric inputs (but definitely not exclusively)
which is also the format modern omics measurements are generated as potentially
allowing for transferable use of the same algorithms. This work looked at several
omic types individually to provide insights but to take it a step further, omics
integration may offer a more robust and complete picture of cell mechanisms and
therefore contain a stronger biological signal, with our RNA-seq, microRNA and
metabolite datasets serving as a potential example of integration. However, omics
(and non-omics) integration can prove to be a very challenging piece of work (López
de Maturana et al., 2019) requiring intricate data structures, such as tensors, and
specialised algorithms (Garali et al., 2018). Longitudinal analysis could also be an
additional tool to explore datasets (Domanskyi, Piermarocchi and Mias, 2020) where
the interest lies in the development of a disease rather than snapshots of expression.
The second part of an exploratory analysis aims to take advantage of sample
partitions to extract useful insights in conjunction with clinical characteristics. Based
on that, another exciting future focus of this work/toolkit can be additional
meta-analysis, such as survival, pathway, clinical associations and expression-clinical
correlation networks. With adequate data, agnostically generated memberships can
be connected to patient clinical features and implicate pathways while combining
expression patterns with the enrichment of clinical variables. The above would
provide a wider picture of the disease in discussion and more opportunities for
further targeted research.

In summary, this work is a comprehensive exploration of the application of clustering
on gene expression (and other omics) data in a disease context. It attempts to test
hypotheses related to the need of patient stratification due to the numerous sources
of disease heterogeneity. A large number of decisions and machine learning model
tuning was implemented while handling omics data revealing (and dealing with) a lot
of the difficulties researchers face when unsupervised learning is applied. As a main
contribution, this work resulted in a toolkit tailored to assist researchers in their
clustering analysis and more importantly provide the initial insights on which further
research can be based on to illuminate underlying drivers of patient phenotypic
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groups. The potential future extension of this toolkit, as clustering algorithms
advance, can serve as the first step for disease studies that target personalised
medicine.
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Single-class simulated dataset

A single-class dataset of 100 samples and 100 genes drawn from a single
distribution, generated by Omada’s function feasibilityAnalysis. Utilised in Chapter 2.

Multi-class simulated dataset

A multi-class dataset of 359 samples and 300 genes based on the contents and
dimensions of the RNA-seq dataset (see below). Composed of five groups of
samples drawn from five different distributions representing the five classes and
generated by Omada’s function feasibilityAnalysisDataBased. Utilised in Chapter 2.

Multi-tissue Pan-cancer RNA-seq dataset

An RNAseq expression dataset of 2244 samples and 253 genes representing three
types of cancers: breast (n=1084), lung (n=566) and colon/rectal (n=594). The mRNA
expression was in the form of z-scores relative to normal samples. Accessible
through cBioPortal from the TCGA PanCancer Atlas (details in Chapter 2). Utilised in
Chapter 2.

Whole blood RNA-seq IPAH/HPAH dataset

An IPAH/HPAH RNAseq dataset drawn from whole blood of 359 patients/samples
and 25,955 genes concerning idiopathic and heritable pulmonary arterial
hypertension cases. The transcriptomic data can be found in the European
Genome-phenome Archive database. The raw sequencing data were processed into
the final TPM(transcript per million) format (details in Chapter 3). This dataset’s
samples partially overlap with the blood serum/plasma microRNA and blood serum
metabolite datasets. Utilised in Chapter 2 and Chapter 3.

Whole blood RNA-seq (GUSTO)dataset

An RNA dataset from the whole blood of 238 mothers/samples during midgestation
representing 24,070 genes. Read counts were extracted from GEO with further
preprocessing (details in Chapter 2). Utilised in Chapter 2.
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Blood serum/plasma microRNA dataset

A dataset of 1138 patients each belonging to one of the clinical Pulmonary
Hypertension classes and a total of 554 microRNAs from blood serum or plasma
(details in Chapter 4). This dataset’s samples partially overlap with the whole blood
RNA-seq IPAH/HPAH and blood serum metabolite datasets. Utilised in Chapter 4.

Blood serum metabolite dataset

A metabolite dataset of 1072 samples and 1522 metabolites drawn from blood serum
generated using liquid chromatography mass spectrometry (LC-MS). It contains five
classes of Pulmonary Hypertension (PH) patients (details in Chapter 5). This dataset’s
samples partially overlap with the whole blood RNA-seq IPAH/HPAH and blood
serum/plasma microRNA datasets. Utilised in Chapter 5.

COVID-19 activity dataset

A longitudinal dataset of 34 patients and 8 activity measures with a maximum of 596
timepoints. The patients all contracted COVID-19 and their physical activity measures
were captured by smart watches. Utilised in Chapter 6.
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