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Abstract

Water level data from telemetry stations can be used for early warning to prevent

risk situations, such as floods and droughts. However, there is a possibility that the

equipment in the telemetry station may fail, which will lead to errors in the data,

resulting in false alarms or no warning of true alarms. Manually examining data is

time-consuming and require expertise. As a result, the automated system is required.

There are several algorithms available for detecting and correcting anomalous data, but

the question remains as to which algorithm would be most suitable for telemetry data.

To investigate and identify such an algorithm, statistical models, machine learning

models, deep learning models, and reinforcement learning models are implemented

and evaluated.

For anomaly detection, we first evaluated statistical models using our modified sliding

window algorithm called Only Normal Sliding Windows (ONSW) to assess their perfor-

mance. We then proposed Deep Reinforcement Learning (DRL) models and compared

them to Deep Learning models to determine their suitability for the task. Additionally,

we developed a feature extraction approach that combines the saliency map and nearest

neighbor extracted feature (SM+NNFE) to improve model performance. Various en-

semble approaches were also implemented and compared to other competitive methods.

For data imputation, we developed the Full Subsequence Matching (FSM) technique,

which fills in missing values by imitating values from the most similar subsequence.

Based on the results, machine learning models with ONSW are the best option for

identifying abnormalities in telemetry water level data. Additionally, a deep rein-

forcement learning model could be used to identify abnormalities in crucial stations

requiring further attention. Regarding data imputation, our technique outperforms

other competitive approaches when dealing with water level data influenced by tides.

However, relying solely on a single or limited number of models may be risky, as their

performance could deteriorate in the future without being realized. Therefore, building

models using ensemble techniques is a viable option for reducing errors caused by this

issue.
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Chapter 1

Introduction

1.1 Background

The Hydro Informatics Institute, or HII, has been studying, building, and deploying

telemetry water level stations around Thailand since 2004 (as shown in Figure 1.1). HII

telemetry systems are comprised of sensors that collect hydrological and meteorological

data such as temperature, humidity, air pressure, precipitation, and water level. Every

ten minutes, the station transmits the measured data to the HII data centre through

cellular or satellite networks. The data is available online at “www.thaiwater.net”

and in the “ThaiWater” mobile applications, which are available for free download on

Google Play and the App Store.

Floods and droughts occur more frequently and more severely in many parts of the

world as an effect of climate change. This results in significant damage to infrastructure

and fatalities. Floods continue to be one of the most destructive natural catastrophes

in Thailand, causing up to £34.2 billion in economic damage and losses each year

(Bank, 2012). The use of telemetry data can help mitigate risks associated with these

natural disasters. For example, in the case of floods, telemetry data can help predict

the severity and location of flooding, allowing individuals and emergency services to

prepare and evacuate those in high-risk areas. The risks associated with floods can

include damage to property, infrastructure, and the environment, as well as loss of

life and business disruption. Effective flood management can reduce the number of

fatalities per flood event, despite the significant increase in the number of floods (Parker

et al., 2007).
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Figure 1.1: Location of HII telemetry stations in Thailand.

Similarly, in the case of droughts, telemetry data can assist in predicting the severity

and duration of the drought, allowing for more effective planning and conservation

efforts to be implemented. The risks associated with droughts can include agricul-

tural losses, water shortages, environmental damage, and economic disruption. As a

result, information about water levels will show how drought directly affects people

and animals’ lives (Senay et al., 2015).

To minimise damage and prevent loss of life, early warnings must be accurate and

reliable. However, the collected data from the sensors at telemetry stations can be

wrong due to some factors such as floating objects around the sensors, human or

animal activities, or malfunctioning devices. Any errors in the data, generally referred

to as anomalies, might lead to inaccurate decisions, such as false alarms or missed true

2



Chapter 1 – Introduction

alarms.

Figure 1.2: The reported telemetry water level data on the webpage.

The data from telemetry stations has been shown on the map, as depicted in Figure

1.2, representing the situations in the monitored area, which are classified based on

the values of the measured data. The current approach for determining anomaly data

begins with analysing data from stations identified as overflow/crisis. The data is then

compared to neighbouring stations or earlier data from its own station. The data will

be deleted if it is confirmed to be a false alarm. However, this procedure was carried

out by people, and the correctness of this judgement depends on the experience and

expertise. In other words, the information will be verified whenever there is a notice

posted on the website.

Although the data can be manually checked before being disseminated for further

analysis, the process requires knowledge experts to examine the data from each station

and then make judgements on potential anomalies. This manual process is considerably

labour-intensive and too slow to meet the requirements to deal with all the data from

several hundred monitoring stations to send out early warnings in time.

The aim of this work is to apply machine learning methods to detect and correct

errors in telemetry water level data with the highest possible accuracy and in the
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shortest amount of time feasible. In order to determine the best approaches, we explore

statistical models, machine learning models, deep learning models, and reinforcement

learning models. Also, to fully develop our method, we investigate ensemble techniques,

which is the intuitive way in machine learning to combine the results from different

techniques to achieve the best results. The performance of different approaches is

compared using a confusion matrix and appropriate statistical tests.

1.2 Motivation

Because the accuracy and reliability of early warning systems depend on the quality

of the data, it is very important to be able to quickly detect and correct data errors

in telemetry water level data. However, these anomalies require expert judgments to

determine if they are anomalies, which is labor-intensive and too slow to deal with

data from hundreds of monitoring stations to send early warnings in time. With the

performance of machine learning methods, which are widely used in a variety of fields

of work including the detection and correction of anomalies. Even though machine

learning has been used in many studies to detect and correct anomalies in hydrological

data (Yu et al., 2014; Pratama et al., 2016; Ma et al., 2017; Yang et al., 2017; Gao et al.,

2018; van de Wiel et al., 2020), each water level dataset has different behaviours if it

was measured from a different location or sensor. Consequently, successful approaches

may not perform well when applied to other water level datasets. This challenge

motivated us to apply machine learning to detect and correct data errors in the water

level telemetry systems of HII.

1.3 Anomaly Definition

The crucial thing is to provide a formal definition for the idea of abnormality. This is

critical because various definitions of abnormalities need different detection strategies.

As a result, the definition must identify the major features of anomalies and indicate

their limits. However, there are various definition of anomaly and outlier such as

Aggarwal (2017) stated that “Outliers are also referred to as abnormalties, discordants,
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deviants, or anomalies in the data mining and statistics literature”. Others considered

a data outlier is a corrupted value, while anomalies are irregular points with a distinct

pattern Günnemann et al. (2014). According to Braei and Wagner (2020), an anomaly

is an observation or a series of observations that deviates significantly from the overall

distribution of data. As we have shown, there is no clarity in the literature about the

distinction between anomalies and outliers. Therefore, in this study, we use the words

“outlier” and “anomaly” interchangeably and define anomalies as follows:

Definition “An anomaly is a data point or sequence of data points that differs signif-

icantly from a very small part of the dataset or whole dataset. ”

1.4 Research Questions

The research question we aim to answer are:

• How efficient are the statistical models in detecting anomalies in telemetry water

level data?

• Is deep reinforcement learning (DRL) applicable and effective for identifying ab-

normalities in water level data?

• Can multi features data improve the performance of anomaly detection models?

• How efficient is pattern-matching-based data imputation for imputing data errors

in telemetry water level data?

• Can ensemble methods improve the performance of single models?

1.5 Aims and Objectives

There are many algorithms that have been used to detect and correct anomalous data,

but which one is appropriate with our water level telemetry systems? Our aim is to

study and determine which algorithms are the most suitable. We selected the statistical

models, machine learning models, deep learning models, and reinforcement learning

models to deal with. Moreover, the model that works well with these stations may not

work well with others. We then applied the ensemble methods to combine different
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individual models to achieve the best results. Given the fact that the data labelling

procedure for use as ground-truth takes time because it requires hydrological expert

judgement and the completion of data that relies on the maintenance interval of each

year, we then utilise data from certain stations and some time periods to conduct each

experiment. However, we believe that experimenting with the data from many stations

may be worth doing as future work.

Our specific objectives to achieve the overall aim are as follows.

1. Choose datasets with different characteristics of water level to provide a suitable

test for our approach.

2. Apply a number of statistical models and observe their performance.

3. Propose a deep reinforcement learning algorithm and compare it with a number

of deep learning algorithm models and observe their performance.

4. Apply a number of anomaly detection algorithms and observe their performance

when there are more features.

5. Propose a method to combine the individual models using ensemble techniques.

6. Apply the number of imputation models and observe their performance.

7. Evaluate and compare the proposed methods to establish the most appropriate

machine learning algorithms in the context of detecting and correcting anomalies

in water level data.

1.6 Contributions of the Proposed Work

This research provides several contributions including development a modified sliding

window algorithm; an algorithm to saving the DRL models with different criteria of

performance; a feature extraction algorithm that uses the least amount of data points

in sliding windows; data imputation based on pattern searching; ensemble models for

data detection; data imputation with pattern searching algorithm; the combination of

different models with ensemble methods.
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The following summarises the contributions of this research:

1. We have proposed statistical models with sliding windows to find anomalies in

each window. But when the window is moved forward to the next step, the de-

tected anomaly data will be included in the window and will affect the prediction

of the next possible anomaly value along the time series. So we then applied the

sliding windows algorithm by which only the normal values can be moved into the

windows. This work was published in the International Conference on Innova-

tive Techniques and Applications of Artificial Intelligence, 2020 (Khampuengson

et al., 2020)

2. We have developed deep reinforcement learning models that were generated based

on different performance criteria to address the time spent to find the optimum

training epoch. The proposed deep reinforcement learning ensemble for detecting

anomaly in telemetry water level data was published in Water journal, 2022

(Khampuengson and Wang, 2022)

3. We have devised a Nearest Neighbour algorithmic method, in conjunction with a

Saliency Map, to extract more features for improving the performance of anomaly

detection models.

4. We have proposed a technique for imputing telemetry water level data with sub-

sequence matching. Instead of splitting the subsequence in two, the missing data

are temporarily replaced with some constant values to produce a dummy full

subsequence, and then a sliding window is used to search for the most similar

historical data subsequence. The identified subsequence will be adapted to fit the

missing part based on their similarity. The proposed novel methods for imputing

missing values in water level monitoring data was published in Water Resources

Management journal, 2022 (Khampuengson and Wang, 2023)

5. We have proposed the ensemble to combine the anomaly detection algorithm as

follows.

• Our first proposed methods are simple and complex ensembles with different

statistical models.
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• Our second is DRL ensemble models with weighted and majority voting.

• Finally, we also build the ensemble model from multivariate variables from

the models that were trained with the extracted features from our feature

extraction.

6. Data imputation in water level data with a pattern searching-based algorithm.

1.7 Thesis Outline

The remainder of this thesis is organised as follows:

• Chapter 2: Telemetry Systems. The details of telemetry systems and the

description of datasets used in all the experiments are described in this chapter.

• Chapter 3: Technical Background and Related Work. This chapter de-

scribes the technical background on the data and methodologies developed in

the literature for data pre-processing, error detection, and error correction. Also

including the evaluation methods and measures that are used for comparing the

performance of each method.

• Chapter 4: Anomaly Detection with Statistical Models and Their En-

sembles. We presents empirical investigation of applying statistical-based mod-

els for detecting anomalies. In addition, it presents two ensemble methods, Simple

and Complex models.

• Chapter 5: Anomaly Detection with Reinforcement Learning and Their

Ensembles. In this chapter, we present an investigation of applying reinforce-

ment learning for detecting anomalies and enhancing their performance utilising

ensemble techniques.

• Chapter 6 New Multiple Features Extraction Methods for Anomaly

Detection.: We present a feature extraction algorithm that was developed to

extract important features from telemetry water level data in order to improve

the performance of anomaly detection models.
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• Chapter 7: Subsequence Matching Approaches for Data Correction

and Imputation. This chapter presents an empirical investigation of applying

pattern searching algorithms for data correction and imputation of missing and

anomalous values.

• Chapter 8: Evaluation. In this chapter we present an overall evaluation and

discussion of the work undertaken for this thesis and the results obtained.

• Chapter 9: Conclusion and Further Work. The final chapter presents some

concluding remarks on each chapter, along with possible ideas and suggestions

for future work.
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Chapter 2

Telemetry Systems

2.1 Introduction

Telemetry is an automatic system for monitoring environments in a remote or inac-

cessible area and transmitting data via many kinds of media such as radio, infrared,

ultrasonic, mobile network, satellite or cable, depending on the objective of project

and limitation of each area. Since 2012, HII has been researching, developing, and

installing telemetry water level stations around Thailand for measuring water levels

in the river and other water sources. As of 2018, there are 342 water level stations

installed across Thailand.

2.2 Telemetry Station

In this section we will describe a details of telemetry stations including component,

data collection methods.

2.2.1 Telemetry Station Components

The telemetry stations are composed of three major components, as follows:

Sensor Unit

It is composed of a variety of sensors capable of transmitting a signal in the 0 – 5 V or 4

– 20 mA standard format. The HII’s telemetry system supports the installation of any

type of measurement kit that complies with that specification. Currently, measuring
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Figure 2.1: Components of a telemetry station: the green square represents the sensor
unit, the blue square represents the control and transmission unit, and the red square
represents the power unit.

kits for precipitation, temperature, humidity, air pressure, light intensity, and water

level are being used, with varying degrees of precision and accuracy depending on the

objective of use.

Control and Transmission Data Unit

This is the heart of the telemetry station. The researchers at HII have developed

software for their own use, allowing them to customise and modify the system as

needed. There is a time calibration system from the global positioning system (GPS)

satellites to record and operate as scheduled. The measured data has been transmitted

to the centre via message queuing telemetry transport (MQTT) protocol (Yuan, 2017)

to be processed and published on the website.

Power Unit

The telemetry stations are powered by a 12 V automobile battery that is recharged

through a solar panel. Additionally, since the telemetering system’s equipment is small
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and enclosed in a weatherproof box, it may be installed outdoors for simplicity of

installation or inside for ease of maintenance.

2.2.2 Data Collection Methods

Telemetry water level stations are installed across Thailand to collect meteorological

data and hydrological data for use in water management. They monitor air temper-

ature, relative humidity , air pressure, precipitation, and water level. The equipment

used to measure each data have been detailed as follows.

Air Temperature, Relative Humidity, and Air Pressure

These sensors are installed at a height of 1.5 metres in a radiation shield. The accuracy

of the temperature sensor is ± 3 ◦C, and it can measure temperatures from -40 ◦C to

123.8 ◦C. The relative humidity is accurate to within ±2% RH across the working

range of 0 - 100% RH. Pressure accuracy is ± 0.02 kPa for the working range of 30 to

110 kPa.

Precipitation

HAII telemetry system uses a tipping bucket sensor as a rain gauge. When rainwater

fills in the bucket and reaches 0.2 mm, the (temporary) collected rainwater will be

tipped-off and counted. Another empty bucket is ready for collecting further rainwater.

An electrical signal will be sent for each counted tip using counting circuits. The

amount of rainfall should be equal to the counted tips multiplied by 0.2 mm.

Water Level

The water level is measured with a radar-based level sensor which located at a fixed

point above the water surface. This sensor sends high-frequency waves to the water

surface. When waves touch the water surface, they will be reflected and received by

the sensor. So, we can calculate the distance between the sensor and the water surface

with the time intervals between transmission and reception. This can be converted into

a water level. The main advantage of this method is that it is easy to maintain and

install because we can install this sensor without contact with the water. The accuracy
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is ±2 mm., the case is constructed of polybutylene terephthalate (PBT) plastic that is

resistant to heat and sunshine, waterproof to IP66/67.

The HII telemetry water level station uses radar technology to monitor the water level

in a river of interest due to its easy installation and high accuracy. Furthermore, due

to the tiny size and light weight of the sensor, it was installed on the bridge railing.

As a consequence, it is simple to move, install, and maintain.

2.3 Telemetry Datasets

HII telemetry systems are comprised of sensors that collect hydrological and meteoro-

logical data. The details of each datasets as follow:

2.3.1 Meteorological Datasets

The reported meteorological data reflects the weather conditions at the time of the

report such as the temperature at 12:00 a.m. refer to the temperature on that time.

Rainfall data, on the other hand, reflects the quantity of rain that fell in the past at

the time of the report. Hourly rainfall at 10:00 a.m., for example, refers to rain that

occurred between 09:01 a.m. and 10:00 a.m.

However, telemetry water level stations have been installed on a publicly accessible

bridge, and the installed weather sensor is intended to be used for research and de-

velopment of the HII’s weather sensor. As a result, the quality of weather sensors

and the accuracy of those under development are unsuitable for use in this research.

Furthermore, many meteorological sensors have been damaged or malfunctioned due

to external factors, such as when a car drives over a bridge, the vibration causes the

sensor on the tipping bucket to tilt, resulting in false reported rainfall. Alternatively,

if the rain bucket is stolen, the measured rainfall will not reflect the real amount of

precipitation. As a result, meteorological datasets were discarded from our databases.
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2.3.2 Hydrological Datasets

Water level data is a hydrological dataset collected from the HII’s telemetry station.

This data provides the water level at installed telemetry stations at the time the data

was collected, which is every ten minutes.

Water level data is seasonal data, therefore it is usually a similar pattern in each season.

However, there are external factors that influence the pattern of water level, which can

be divided into three main factors:

i) Tidal : The stations installed near the mouth of the river connecting to the sea

will have a strong periodic pattern due to the effect from tidal, as shows in Figure

2.2a.

ii) Rain: When there is rainfall in those or upper areas, the water level is affected.

As a result, the water level will vary in a variety of ways, both in upward and

downward patterns, as depicted in Figure 2.2b.

iii) Irrigation: The irrigation operation will have an effect on the water level in the

canal. Because this canal was constructed to convey water from the main canal,

which may be controlled by floodgates, in order to conduct irrigation in the distant

areas or to prevent flooding. As a result, the water level will vary depending on

the event. The example of data with irrigation effect as show in Figure 2.2c.

Additionally, when the gate is in operation, such as closing or opening, the water

level data from the nearby station changes rapidly. The measured water level in

the canal away from the floodgate, on the other hand, has a few changes.

2.4 Telemetry Systems Overview.

The overview of the telemetry system has been described in Figure 2.3. The measured

data from telemetry stations has been transmitted and then the data has been stored in

a database system on the cloud . The information that was collected is made available

to the public through different data services such as websites, mobile applications,

online services, etc. Meanwhile, any information that meets the criteria for a warning

will be sent to the relevant agency for use in the process of decision-making in advance
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(a) Tidal influences on data characteristics.

(b) Rain influences on data characteristics.

(c) Irrigation operation influences on data characteristics.

Figure 2.2: An example of external factors that influence on water level data charac-
teristics

of any probable crisis. It was not only notified to the appropriate agency, but it was

also displayed on the website to allow others to become aware of the current situation

(as shown in Figure 1.2). There is also a process in place to have warning data checked

by specialists to confirm an alarm and improve the accuracy of data from telemetry

stations.

2.5 Causes and Type of Anomaly Data

Telemetry water level stations transmit the collected data to data center every 10 min-

utes. During the data collection and transmission, some errors can be introduced to the

data. The main cause of anomaly values in telemetry time series data can be divided

into 2 types as follow

15



Chapter 2 – Telemetry Systems

Figure 2.3: The overview of telemetry systems.

i) Instrument Error . It occurs by malfunctions from any parts of the sensor,

which may be caused by

- Software Error: It is caused by some problems or bugs in a program. These

types of errors can be deterministic when the same bugs were encountered again

and again. They can be fixed by developing new software to prevent this type of

errors.

- Hardware Error: The cause of the anomaly could be due to a malfunction in

the device used for measuring the water level. This malfunction can manifest in

two ways: it could either result in an error in the measurement or make it seem like

the device is working properly, but in reality, it is not able to measure the water

level accurately or at all.It can be modified by replacing a new sensor or changing

only the malfunction parts. The values from the station that anomaly usually

either over or lower than measurement ability from instrument specification.
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Figure 2.4: Example of data that has been affected by the environment in summer,
and not affected in rainy season. The instrument gave unreasonable readings as water
levels should not be oscillating abruptly by physics.

ii) Interference Error: It is usually caused by external factors besides the sensor

such as environment, or human. Although the value from a station is in the range of

instrument specification, the data is inconsistent when compared to other values.

Usually, it is affected by the environment surrounding that has been changed

temporarily or permanently, it is very difficult to identify this type of error and

needs expert’s analysis.

- Temporary changed surrounding occurs when the sensor has been affected

by something suddenly or in short interval such as there is a boat under the water

level sensor or in drought season there is no water left in the river then the sensor

will detect another object(rock or grass) in this case the value will not be normal

as presented in Figure 2.4.

- Permanently changed usually occurs when there is a new construction around

the installed area such as new building or building extension that affects the mea-

surement accuracy for each sensor.

The types of anomaly data that is affected from above mentioned causes can be divided

into the following categories.
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i) Missing values : This is because telemetry data cannot be sent to a server for

the reasons mentioned above. Thus, no data has been kept in a database because

of this.

ii) Point anomaly : If a value deviates significantly from previous values , it is

considered an anomaly. These anomalies could be caused by faulty sensors, or

they could be a short-term event of interest to system operators, like a flash flood.

iii) Contextual anomaly : Some values may be considered normal in one context,

whereas in another situation, the same values may be considered anomalous.

Figure 2.5 illustrated the three type of anomalies that often occurred on telemetry

water level data.

(a) Missing data

(b) Point and contextual anomalous

Figure 2.5: An example of anomaly in water data
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2.6 Data Quality

HII provided time series water level data between 2013 and 2018, gathered from teleme-

try stations across Thailand. There are 243 stations which automatically measure the

water level at a frequency of once every 10 minutes. So, each station has 52,560 data

points per year.

We begin by examining the missing data from each station for each year and classifying

them according to the percentage of missing data, as given in Table 2.1. As we can

see, the majority of telemetry stations were missing data by around 10% per year. In

2013, there were 40 sites with more than 90% missing data; this number has dropped

year after year to just six stations in 2018. In contrast, the number of stations with

less than 10% missing data has increased from 75 in 2013 to 119 in 2018. Because

the telemetry stations were installed in remote areas and only maintained once a year.

Thus, a station that fails to operate after a few days or weeks of maintenance will

resume operation after the following year of maintenance. However, HII recognised

this issue and has worked to enhance the quality and performance of the telemetry

station each year. As a consequence, the telemetry station can function as the number

of stations with missing data over than 90% has decreased each year.

Table 2.1: The number of stations for each percentage of missing data in each year.

Missing(%) 2013 2014 2015 2016 2017 2018 Average
1 - 10 75 64 109 98 118 119 97

11 - 20 62 61 24 38 27 39 42
21 - 30 17 32 12 23 20 12 19
31 - 40 12 20 10 29 21 9 17
41 - 50 11 10 21 20 18 13 16
51 - 60 10 8 14 1 5 14 9
61 - 70 5 1 6 5 13 15 8
71 - 80 8 7 8 3 12 9 8
81 - 90 3 4 1 4 7 7 4
91 - 100 40 36 38 22 2 6 24

Telemetry water level stations have been installed in various locations with the aim of

monitoring the water behaviour of each river basin, which is critical information for

water management. The river basin in Thailand have been divided into 25 basins. The

average annual percentage of missing data for each basin, as well as the number of

installed telemetry stations (NS) for each basin, are presented in Table 2.2.
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Table 2.2: The average percentage of missing data in each year each river basin.

Basin (No. of Stations) 2013 2014 2015 2016 2017 2018 Avg.
Bang Pakong(12) 17.19 13.62 10.99 24.41 26.44 10.69 17.22
Chi(28) 30.45 36.59 33.77 27.79 28.52 31.18 31.38
Chao Phraya(35) 14.65 17.71 23.38 21.25 19.4 29.73 21.02
East Coast(12) 80 70.4 69.86 10.85 19.92 5.7 42.79
West Coast(3) 70.52 71.61 67.09 67.06 44.57 6.45 54.55
Kok(5) 16.49 14.11 21.46 18.64 24.5 10.34 17.59
Khong(12) 30.09 25.17 25.9 17.35 16.86 18.28 22.28
Mae Klong(7) 40.32 33.07 26.09 29.83 37.52 47.32 35.69
Mun(22) 24.2 32.33 23.42 24.58 26.18 20.46 25.20
Nan(19) 27.23 20.26 9.86 21.06 24.05 23.56 21.00
Salawin(2) 15.42 5.01 25.51 33.6 10.3 2.02 15.31
Pasak(6) 23.86 17.14 25.13 18.7 20.32 35.8 23.49
Pattani(4) 90.22 95.73 86.13 67.51 59.14 40.98 73.29
Phetchaburi(5) 31.46 27.09 30.37 41.04 16.59 29.18 29.29
Ping(13) 38.43 24.49 25.74 19.38 17.33 15.85 23.54
Prachin Buri(8) 45.09 46.29 31.85 17.37 19.63 17.95 29.70
South East Coast(11) 25.43 32.91 14.88 19.88 10.92 27.55 21.93
Sakae Krang(5) 84.64 83.24 90.48 80.38 48.56 11.54 66.47
Songkhla Lake(7) 22.15 38.54 13.05 32.15 23.97 26.73 26.10
South West Coast(16) 54.32 61.33 65.3 52.26 47.59 40.2 53.50
Tha Chin(12) 10.17 18.78 41.12 22.39 12.89 11.63 19.50
Tonle Sap(3) 70.79 68.57 62.8 8.63 1.7 21.05 38.92
Tapi(11) 50.66 47.05 47.93 45.17 29.15 14.41 39.06
Wang(5) 6.43 14.14 5.86 13.34 9.55 37.68 14.50
Yom(18) 29.16 25.09 19.22 17.86 16.24 30.12 22.95

The Chao Phraya basin is the largest river basin in Thailand, with 35 installed teleme-

try stations. In this river basin, the average missing data from installed telemetry

stations is around 21%. The highest rate of missing data from telemetry was found

in the Pattani basin at 73.29%. Meanwhile, the Wang basin, the northern area, had

the lowest average percentage of missing data at 14%. However, the average rate of

missing data in this basin increased to 37.68 percent in 2018, an increase of more than

20% over the previous year.

Furthermore, since telemetry stations are placed in remote places throughout the coun-

try, travel to maintain just one station may result in unnecessary maintenance expen-

ditures. As a result, HII decided to maintain every station with a single trip once a

year in order to save money, which they usually do before the rainy season that starts

in June. And the maintenance procedure begins with the northern station, then moves

to the north-east, central, and finally the southern station. Table 2.3 shows the average
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percentage of missing data for each river basin in each month. We can observe that

the data missing rate decreased between May and June for northern stations, June and

July for north-east stations, July and August for central stations, and after August for

southern stations.

The water level data from telemetry stations is unlabelled in the first place. To evaluate

the accuracy of our models in this study, we asked some experts at the HII to look at

the data of each station and then make judgements on possible anomalies. Given the

fact that, due to human limitations and the amount of data, these processes may not

be able to find all of the anomalies in all datasets. An example of expert-labelled data

is shown in Figure 2.6. As a consequence, we will select the appropriate datasets from

some stations to do the experiments on. However, we believe that experimenting with

more datasets may be worth doing as future work.

Figure 2.6: An example of expert-labelled data from CPY012 station, May 2016.

21



Chapter 2 – Telemetry Systems

T
ab

le
2.

3:
T

h
e

av
er

ag
e

p
er

ce
n
ta

ge
of

m
is

si
n

g
d

at
a

in
ea

ch
m

on
th

ea
ch

ri
ve

r
b

as
in

.

R
e
g
io
n

B
a
si
n

(N
o
.
o
f
S
ta
ti
o
n
s)

J
a
n

F
e
b

M
a
r

A
p
r

M
a
y

J
u
n

J
u
l

A
u
g

S
e
p

O
ct

N
o
v

D
e
c

N
o
rt
h
e
rn

K
ok

(5
)

42
.5

4
35

.5
7

22
.0

8
20

.8
4

14
.4

5
10

.1
6

7.
67

6.
71

9.
81

4.
68

14
.7

6
23

.0
0

N
an

(1
9)

34
.1

4
32

.1
2

22
.5

4
25

.0
2

20
.5

7
18

.4
8

18
.5

0
15

.9
9

18
.7

4
12

.7
2

14
.6

4
19

.3
8

P
in

g(
13

)
30

.6
1

28
.2

8
25

.3
8

27
.5

7
23

.7
4

26
.0

4
27

.4
7

20
.5

5
22

.5
6

17
.8

1
15

.9
4

16
.8

5
S

al
aw

in
(2

)
34

.7
6

28
.4

8
18

.4
9

19
.1

7
6.

34
4.

72
13

.6
5

12
.0

2
8.

48
8.

59
12

.6
2

17
.1

8
W

an
g(

5)
16

.0
0

14
.2

2
16

.4
3

19
.6

2
16

.6
5

14
.7

9
16

.1
6

12
.0

5
13

.0
0

8.
05

13
.3

8
13

.7
0

Y
om

(1
8)

28
.5

3
28

.1
6

27
.5

6
32

.1
5

32
.4

4
27

.7
2

22
.9

1
17

.4
0

15
.5

9
10

.4
3

14
.1

6
18

.7
2

N
o
rt
h
E
a
st

C
h

i(
28

)
39

.4
6

42
.2

9
40

.9
7

41
.8

9
43

.7
5

31
.2

8
28

.3
6

18
.2

8
18

.6
0

17
.8

3
23

.8
6

30
.6

9
K

h
on

g(
12

)
27

.7
9

31
.0

9
27

.0
2

26
.9

6
27

.3
8

22
.9

3
24

.7
7

16
.5

4
14

.3
6

11
.8

8
15

.9
6

21
.1

3
M

u
n

(2
2)

36
.4

3
32

.3
8

30
.7

5
34

.6
0

29
.8

6
27

.1
8

24
.9

1
24

.3
9

17
.8

1
12

.5
6

13
.3

4
18

.5
2

C
e
n
tr
a
l

B
an

g
P

ak
on

g(
12

)
24

.8
1

18
.3

6
13

.4
3

18
.2

3
17

.9
4

16
.7

9
19

.5
7

15
.3

4
17

.0
2

13
.5

5
20

.0
3

11
.8

6
C

h
ao

P
h

ra
ya

(3
5)

24
.5

9
23

.6
4

19
.5

7
20

.8
0

22
.4

0
24

.4
6

25
.5

4
19

.1
6

18
.6

8
15

.8
3

20
.5

3
17

.2
9

G
u

lf
R

iv
er

(1
2)

45
.6

6
46

.2
7

44
.1

1
42

.7
2

43
.3

4
42

.6
3

41
.9

1
43

.5
5

46
.7

0
44

.1
8

41
.7

6
30

.8
7

G
u

lf
R

iv
er

(3
)

62
.1

1
57

.0
4

56
.2

0
56

.8
2

58
.6

8
61

.7
3

56
.4

9
53

.6
7

51
.6

0
48

.0
3

46
.9

9
45

.5
1

M
ae

K
lo

n
g(

7)
42

.9
6

41
.8

3
36

.4
6

33
.4

8
37

.8
3

37
.5

7
37

.2
1

37
.0

7
35

.8
5

30
.4

3
28

.4
7

29
.4

1
P

as
ak

(6
)

25
.0

9
28

.2
0

37
.4

3
45

.9
4

36
.3

8
22

.5
0

16
.8

7
11

.6
7

6.
82

8.
69

18
.7

3
23

.9
9

P
h

et
ch

ab
u

ri
(5

)
40

.9
9

39
.0

5
34

.3
6

35
.7

4
30

.0
7

32
.4

2
31

.4
0

20
.1

7
17

.4
0

17
.0

3
22

.9
8

30
.5

5
P

ra
ch

in
B

u
ri

(8
)

36
.7

8
39

.7
5

39
.1

1
36

.3
2

34
.4

2
29

.5
8

27
.2

6
30

.0
2

25
.4

5
20

.2
2

19
.6

8
18

.3
6

T
h

a
C

h
in

(1
2)

23
.5

6
21

.9
1

19
.5

2
20

.8
3

20
.3

0
19

.8
2

18
.6

0
16

.6
6

17
.6

8
19

.1
4

19
.5

0
16

.6
9

S
ak

ae
K

ra
n

g(
5)

70
.0

5
71

.9
5

73
.5

1
73

.7
9

74
.5

8
76

.4
5

75
.6

5
61

.7
0

56
.5

5
54

.1
9

54
.3

9
55

.2
8

S
o
u
th

e
rn

P
at

ta
n

i(
4)

76
.3

8
76

.5
8

76
.1

7
73

.9
8

74
.3

5
77

.1
0

77
.1

9
75

.6
8

73
.8

6
69

.2
5

62
.3

4
66

.6
7

S
ou

th
E

as
t

C
oa

st
(1

1)
19

.0
1

22
.7

2
20

.8
1

20
.1

7
21

.9
4

23
.6

5
25

.9
7

24
.3

9
29

.1
9

21
.4

4
17

.0
1

16
.9

5
S

on
gk

h
la

L
ak

e(
7)

26
.2

5
28

.3
9

26
.7

9
29

.0
1

25
.4

4
28

.2
8

30
.2

9
25

.5
0

31
.3

5
30

.7
6

15
.4

1
15

.9
6

S
ou

th
W

es
t

C
oa

st
(1

6)
53

.6
2

54
.3

6
54

.9
9

56
.9

0
59

.2
7

57
.9

1
58

.5
1

56
.4

3
55

.6
0

47
.8

2
42

.0
4

44
.5

6
T

on
le

S
ap

(3
)

45
.0

5
39

.6
7

40
.5

7
40

.6
5

40
.3

4
43

.4
7

40
.4

3
40

.7
7

40
.6

2
35

.7
2

34
.1

1
25

.6
6

T
ap

i(
11

)
40

.8
9

40
.9

0
41

.6
5

41
.8

8
43

.6
0

41
.6

8
40

.9
9

41
.6

5
38

.5
0

30
.3

4
31

.7
4

35
.0

4
A
v
e
ra

g
e

37
.9

2
36

.9
3

34
.6

4
35

.8
0

34
.2

4
32

.7
7

32
.3

3
28

.6
9

28
.0

7
24

.4
5

25
.3

7
26

.5
5

22



Chapter 2 – Telemetry Systems

2.7 Summary

This chapter describes the details of the telemetry station and datasets that were used

in this research. The telemetry stations are composed of three major components: 1)

the sensor unit; 2) the control and transmission unit; and 3) the power unit. Telemetry

stations have been utilised for a variety of purposes, including data collection for hy-

drological study, sensor studies, and early warning. However, with the limitation and

objective of installing the weather sensor, we intended to use only water level data in

this research. Missing values, point anomalies, and contextual anomalies are the three

primary categories of anomalies in water level data. Although there are datasets from

over 200 telemetry water level stations, the data quality of each station differs for a

variety of reasons. In addition, we are unable to label data at all stations. As a result,

appropriate data selection in each experiment is essential.

The methodology that have been used in this research has been describe in the next

chapter.
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Chapter 3

Technical Background and Related
Work

3.1 Introduction

Telemetry data is the backbone of various applications, and it plays a crucial role in

decision-making processes. However, real-world data is often incomplete, inconsistent,

and contains errors. Therefore, effective pre-processing, error detection, and error

correction techniques are essential to ensure data accuracy and reliability. This chapter

aims to provide an overview of the technical background and methodologies for data

pre-processing, error detection, and data correction.

3.2 Data Pre-processing Approaches

Data pre-processing is an important stage in the machine learning pipeline that involves

cleaning, transforming, and preparing raw data for modeling. The following is a general

process for data pre-processing:

• Data collection: Raw data is collected from various sources, such as databases,

APIs, or files.

• Data cleaning: This step involves identifying and handling missing values, out-

liers, and inconsistencies in the data. Duplicate data points are also removed.

• Data transformation: Data is transformed into a format that is suitable for mod-

eling. This can include scaling, normalization, feature extraction, and feature
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selection.

• Splitting the dataset: The data is split into training, validation, and test sets.

This ensures that the model is trained on one set of data and evaluated on a

different set of data.

In real-world datasets like telemetry water level data, missing values and abnormalities

are commonly noticed as a result of faulty sensors or unexpected events. So, data

cleaning is the most important aspect of data pre-processing for telemetry water level

datasets. When missing data is present in a dataset, improper handling may lead to

biassed or inaccurate results. This process can be optimised to ensure that the data

is accurate, reliable, and consistent for subsequent analysis. This can improve the

accuracy and performance of machine learning models or other analytical techniques

applied to the data. Thus, the missing data must be addressed before proceeding with

the analysis. These are some popular strategies for missing data pre-processing:

• Deletion: This technique involves removing the rows or columns that contain

missing values. It is the simplest technique but can result in loss of important

information.

• Imputation: This technique involves filling in the missing values with estimated

values. There are various methods for imputation, such as mean imputation, me-

dian imputation, mode imputation, regression imputation, and k-nearest neigh-

bor imputation.

• Interpolation: This technique involves estimating the missing values based on the

values of other data points. There are various methods for interpolation, such as

linear interpolation, spline interpolation, and polynomial interpolation.

• Multiple imputation: This technique involves creating multiple imputed datasets

by estimating the missing values multiple times using different methods. The

results from the multiple imputed datasets are then combined to provide more

accurate estimates.

As our research focuses on detecting and correcting anomalies, we must keep all errors

and label them to improve our models’ learning. However, to avoid making unnecessary
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changes to the data, we excluded stations with a high percentage of missing values.

Moreover, if there were gaps in the data, we used an interpolation method with a

polynomial degree 2 to fill them.

Telemetry water level datasets has only one feature which may have not enough in-

formation for training models to achieved the best accuracy. Feature extraction is

a technique that can be used to extract more features. The process involves using

mathematical or statistical methods to derive new features that capture additional in-

formation from the original feature. One common approach is to use a transformation

function to create new features based on the original feature. For example, if the orig-

inal feature is a measurement of temperature, a transformation function could be used

to derive features such as mean, variance, and standard deviation. Another approach

is to use feature engineering, which involves manually creating new features based on

domain knowledge or intuition. For example, in image processing, new features can be

derived by extracting edges, corners, and other high-level features from the raw pixel

data. The goal of feature extraction is to create a set of features that can provide

more meaningful and relevant information to machine learning algorithms, ultimately

leading to better model performance. Additionally, through effective feature extrac-

tion techniques, we can gather valuable insights from the telemetry water level data,

leading to improved model performance. We demonstrated a suitable technique for

feature extraction in Chapter 6.

3.3 Anomaly Detection Approaches

Anomaly detection aims to identify data that is different from the majority of the data,

which results from an error (Zimek and Schubert, 2017), and which will often result in

some kind of issue, such as strange patterns in network traffic that could signal a hack.

Anomaly detection is often used in preprocessing to remove anomalous data from the

dataset, which frequently results in a significant increase in statistical accuracy. There

are various strategies for detecting anomalies, but this study focuses on techniques for

detecting errors in time series data. Anomaly detection methods on time-series data

can be divided in three main categories (Braei and Wagner, 2020):
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3.3.1 Statistical Approaches

The easiest method for spotting data anomalies is to find data points that differ from

the distribution’s common statistical features, such as mean, median, mode, and quan-

tiles. Some of the most common statistical anomaly detections are:

Z-Score

The Z-score is a statistical measure that indicates how many standard deviations an

observation is from the mean. In this method, the time series data is first pre-processed

to remove any trends or seasonal components using techniques such as differencing or

seasonal decomposition. Then, the mean and standard deviation are used to figure out

the z-score for each observation in the time series. Any observation that has a z-score

beyond a certain threshold (e.g., 3 standard deviations) is considered an anomaly. An

example of research that applies Z-Score is the research to detect anomalies in real-time

temperature time series by Liu et al. (2020).

Interquartile Range (IQR)

IQR method is a statistical technique used to identify outliers or anomalies in a dataset.

It involves calculating the difference between the upper and lower quartiles of the data

distribution, which is the range containing the middle 50% of the observations. To

apply the IQR method, the data is sorted, and the first and third quartiles are cal-

culated. The IQR is then computed as the difference between these quartiles, and

the lower and upper boundaries are determined as Q1 - 1.5*IQR and Q3 + 1.5*IQR,

respectively. Any observation that falls outside the lower or upper boundaries is con-

sidered an outlier or anomaly. The IQR method is useful for detecting anomalies in

skewed distributions, but may not be suitable for datasets with a small number of ob-

servations or Gaussian distributions. Vinutha et al. (2018) applied the IQR technique

to identify outliers in the NSLKDD’99 dataset, which can produce false positive alarms

and reduce the efficiency of intrusion detection systems.
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Sigma Rule of Thumb (K-Sigma)

The data set that has most of the data distributed around the mean values in a sym-

metric shape is called “normally distributed”. Consequently, when a data set has a

normal distribution, then the mean and the median are the same (in the case of a

perfectly bell-shape) or almost equal, 99.7% of all data falls between [mean ± 3 ∗ σ].

This rule is also known as “three-sigma rule of thumb”. We defined values outside

that interval as anomalous. K-Sigma was used by Ostroumov and Kuzmenko (2021)

to find outliers in unmanned aerial system (UAS) data, and it proved to be the most

successful approach.

Autoregressive Model (AR)

AR is a linear model when current value Xt is based on a finite set of previous values

of length p and error values ϵ, also called AR process of order p or AR(p), as represent

as follow:

Xt = c +

p∑
i=1

ai ·Xt−i + ϵt

where a and c are the coefficients values which can be approximated by using the

training data.

Moving Average (MA)

The current value may be calculated using the average of prior data. And if the current

value is significantly different from the average, it may be labelled as an anomaly.

A moving average is calculated by averaging the values over a specific number of

previous values, called the window size. It is simple and commonly used in time

series analysis and forecasting, as shown by Bernacki and Ko laczek (2015) which can

apply for anomaly detection.

Autoregressive Moving Average Model (ARMA)

ARMA is the combination of AR and MA, which is often used for a univariate time-

series. A time series of the ARMA(p,q), where p is the order of autoregression, and q
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is the order of the moving average. The equation is given by:

Xt =

p∑
i=1

ai ·Xt−1 +

q∑
i=1

bi · ϵt−i + c + ϵt

where a is the autoregressive model’s parameters, b is the moving average model’s

parameters, c is a constant, and ϵ is an errors (or white noise). The main challenge

when applying this method is to select appropriate values for p and q and the data

need to be stationary (Braei and Wagner, 2020).

Auto-Regressive Integrated Moving Average (ARIMA)

One of the most significant issues with time-series datasets is that they might be non-

stationary. Typically, we utilise the differencing or integrated technique to convert the

series into a stationary time series by subtracting the t-1 value from the time series’ t

values. If, after applying the first differencing, we are still unable to get a stationary

time series, we apply the second-order differencing or more orders until it is stationary.

ARIMA models use this approach to handle ARMA model issues that need stationary

data, by combining a number of differences previously applied to the model in order to

make it stationary, the number of previous lags, and residual errors in order to forecast

future values.

3.3.2 Machine Learning Approaches

Machine learning methodologies have gained in popularity over the last several decades

as processing power has increased exponentially, especially for data science applications.

As a consequence, a growing number of academics have begun to use machine learning

approaches for abnormality detection. Below is a brief overview of popular machine

learning-based techniques for anomaly detection.

Density-Based Anomaly Detection

• K-nearest neighbour

It operates on the concept that every data point that is close to another belongs
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to the same class. In other words, a new data point is more likely to have the

same class label as its k-nearest neighbours than the data points farther out

(Peterson, 2009). As a result, anomaly data tends to be located farther away

from the class of similar data.

• Local Outlier Factor (LOF)

Breunig et al. (2000) proposed the LOF algorithm for finding anomalous data

points based on the concept of local density. By comparing the local density of

a given data point to the local densities of its neighbors, the point that has a

substantially lower density than its neighbours is considered an anomaly.

• Density-Based Spatial Clustering of Applications with Noise(DBSCAN)

It was suggested by Ester et al. (1996) with the idea of finding the core points in

the dataset that have at least minPoints around them within an epsilon distance

and then making clusters from these samples. Following that, all of the points

that are close enough (within epsilon distance) to any sample in a cluster are

added to the cluster. Then, it does the same thing over and over again for the

new samples that are added to the cluster. DBSCAN will decide the cluster

number on its own, and outlier samples will be given the number -1.

Clustering-Based Anomaly Detection

Clustering is one of the most common ideas in the field of unsupervised learning. The

data points that are similar are likely to be in the same groups or clusters, based on

how far they are from the local centroids that they belong to. K-means is a common

way to group things together. It makes groups of data points that are “k” similar.

Data that does not fit into one of these groups could be marked as an anomaly.

Support Vector Machine-Based Anomaly Detection

Boser et al. (1992) presented a supervised classification method, which evolved into

what are now known as support vector machines (SVMs). It is a traditional machine

learning approach that can be used to detect anomalies in datasets. It is especially
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beneficial for multidomain applications running in a big data environment. The ob-

jective of the SVM algorithm is to identify and formulate a hyperplane that separates

data points in an N-dimensional space. The data points that lie on either side of the

hyperplane can be assigned different classes. Furthermore, the dimension of the hyper-

plane is determined by the number of features. For example, a hyperplane is just a line

when the number of input features is two, and becomes a two-dimensional plane when

the number of input features is three. Support vectors are data points that are closer

to the hyperplane and have an impact on the hyperplane’s location and orientation.

Gaussian Naive Bayes (GNB)

This is a popular algorithm used for classification tasks in machine learning. It is a

variant of Naive Bayes that assumes the features are independent of each other and

normally distributed. This means that the algorithm calculates the probability of each

class based on the likelihood of the input data given the class and the prior probability

of the class.

To train the model, GNB estimates the mean and variance of each feature for each

class in the training data. During inference, the algorithm calculates the probability

of each class based on the likelihood of the input feature vector given each class, using

Bayes’ theorem.

Despite its assumption of feature independence, GNB has been found to work well in

many practical scenarios and is commonly used in text classification and spam filtering,

as well as in medical and biological applications. However, GNB may not perform well

when the features are strongly correlated or the class distribution is imbalanced.

Decision Tree (DT)

This algorithm used for classification, regression, and anomaly detection tasks. The

algorithm creates a tree-like model of decisions and their possible consequences or

outcomes.

In anomaly detection using decision trees, the algorithm learns the patterns of normal

behavior from the training data and identifies anomalies as data points that do not

31



Chapter 3 – Technical Background and Related Work

follow the learned patterns. The algorithm partitions the feature space into regions

and assigns a decision rule to each region based on the feature values.

To detect anomalies, the decision tree algorithm classifies new instances as either nor-

mal or anomalous based on their position in the feature space relative to the decision

boundaries learned from the training data. Data points that fall outside of the decision

boundaries are considered anomalous.

Decision trees are easy to interpret and visualize, which makes them a popular choice

for anomaly detection tasks in many domains. However, decision trees can be prone

to overfitting the training data and may not generalize well to new data if the tree is

too complex. Therefore, it is important to tune the hyperparameters of the decision

tree, such as the maximum tree depth, minimum number of instances per node, and

minimum improvement in separation, to avoid overfitting and ensure good performance

on new data.

Isolation Forest

The Isolation Forest was initially developed by Liu et al. (2008). It isolates data from

a collection by randomly selecting a feature and then processing the randomly selected

subsample in a tree structure. Anomalies are more likely to be detected on the shorter

branches of the tree, since the tree finds it easier to identify them from the other data.

Extreme Gradient Boosting (XGBoost)

XGBoost was introduced by Chen and Guestrin (2016). It is a gradient boosted decision

tree (GBDT) implementation optimised for speed and performance. It is built on top

of the following technologies: supervised machine learning, decision trees, ensemble

learning, and gradient boosting. XGBoost is a scalable and highly accurate gradient

boosting solution that pushes the limits of boosted tree algorithm processing power.

It was created in particular to boost the performance and computational speed of

machine learning models. With XGBoost, trees are generated in parallel rather than

sequentially as with GBDT. It looks at gradient values to figure out how good each

possible split in the training set is.
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3.3.3 Neural Network Approaches

During the last decade, deep learning methods have made remarkable progress in com-

puter vision. Researchers were inspired by this achievement to use similar techniques

to identify abnormalities by using neural networks to make predictions. Following

that, the error of prediction is used as a threshold to classify data points as normal or

abnormal.

In this subsection, we have chosen the most popular methods that have been used for

anomaly detection in time series data in recent years.

Multiple Layer Perceptron (MLP)

An MLP is a network of primitive neurons known as perceptrons. The perceptron

produces a single output y from a large number of inputs x by constructing a linear

combination based on the weights (w) and bias(b) of the inputs and then passing

the result through some nonlinear activation function to create the nonlinear decision

boundary, as depicted in Figure 3.1. This may be mathematically expressed as

y = φ(w · x + b)

where φ is an activation function.

Figure 3.1: A simple perceptron neural network.

To make a single perceptron work better, we can group several neurons together in

layers and create a multilayer perceptron (MLP). The input signal travels through each

layer of the network one after another, which helps improve its overall performance.
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The signal-flow of such a network with two hidden layers of five neurons each and one

output, as depicted in Figure 3.2.

Figure 3.2: An example form of multiLayer perceptron neural network.

Recurrent Neural Network (RNN)

The input data of a typical neural network is organised in such a way that one input

has no impact on the other. This is not the case while looking at time series or textual

data, since values coming later in the sequence are often impacted by prior values. As

a result, we must consider the whole sequence rather than just the last data point.

RNN was made to solve this problem by making standard neural networks more power-

ful with the concept of “memory” which enables them to store the states or information

associated with prior inputs in order to generate the sequence’s next output. As seen in

Figure 3.3, RNN employs cyclical hidden states to make each of these steps dependent

on the previous. The output of a recurrent neural network is the following:

yt = φ(wx · xt + yt−1 · wy + b)

where wx is the weight for x inputs, wy is the weight for layer that connect to the

output layer.

RNN is extensively utilised in a variety of fields, including natural language modeling,

voice and speech recognition, image and video caption generation, and also time series

data.
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Figure 3.3: An unrolled RNN

Long Short Term Memory (LSTM)

When RNNs are trained over very long sequences of data, the gradients tend to become

either extremely large or so extremely tiny that they vanish to almost zero. LSTM is

designed to avoid the long-term sequence problem by adding gates, or memory cells,

that allow it to control whether to store or delete previous information. Weights were

employed to give priority to the data, which the algorithm also learns. This simply

means that it learns over time what information is important and what is not. The

LSTM has three gates: an input gate, a forget gate, and an output gate. Input gates

decide whether or not to accept new input. The forget gate is in charge of deleting

unnecessary information. The output gate selects and displays valuable information

from the current cell state. Figure 3.4 shows the structure of an LSTM network.

Figure 3.4: An example form of LSTM networks.
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Gated Recurrent Unit (GRU)

The GRU seeks to address the problem of vanishing gradients that occurs with regular

recurrent neural networks. To overcome this issue, GRU uses an update and reset

gate to keep information from a long time ago and choose which information should

be transmitted to the output, rather than deleting information that is irrelevant to the

prediction like LSTM does.

Convolutional Neural Networks (CNN)

CNNs are most often employed in computer vision to perform tasks such as object

detection, classification, and segmentation. They have three main types of layers, as

depicted in Figure 3.5, which are as follows: 1) The convolutional layer is the first

layer of a convolutional network and serves as the brain and major processing centre in

a CNN. 2) Pooling layers, also known as downsampling, reduce the dimensionality of

input data by reducing the number of parameters. 3) Fully-connected layer, where the

neurons in this layer have full connections to all activations in the previous layer, this

layer performs the task of classification based on the features that were found in the

previous layers and the different filters that they used. CNNs are widely used for deep

learning for three important reasons: first, they eliminate the need for manual feature

extraction; second, they produce very accurate recognition results; and third, they can

be retrained for new recognition tasks, which lets you build on an existing network.

Figure 3.5: An example form of convolutional neural networks.
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Residual Neural Network (ResNet)

A residual neural network (ResNet) is an artificial neural network (ANN) that uses

skip connections, or shortcuts, to bypass some layers. In typical ResNet models, two

or three layers that contain batch normalisation and an activation function (usually

ReLU) are often skipped.

Figure 3.6: An example form of residual neural network

One of the issues that ResNets address is the well-known vanishing gradient. This is

due to the fact that when the network is excessively deep, the gradients from which the

loss function is derived simply drop to zero after numerous applications of the chain

rule. As a consequence, the weights never update their values, and hence no learning

occurs. However, in the case of ResNets, gradients can flow straight through via the

skip connections from later layers to early filters.
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Autoencoder

An autoencoder is a special kind of multi-layer neural network that reduces the number

of dimensions of data in a way that is both hierarchical and nonlinear. The output layer

typically has the same number of nodes as the input layer, and the design is layered and

symmetric. An autoencoder’s purpose is to produce the output as nearly as possible

to the input. An autoencoder has two connected networks: 1) encoder, which takes

an input and turns it into a compressed representation of knowledge in the bottleneck

layer; and 2) decoder, which turns the compressed representation back into the original

input. An example form of autoencoder as illustrates in Figure 3.7. Because the

autoencoder generates a simplified representation of the data, it is a natural method

for detecting outliers. The basic idea is that outliers are significantly more difficult to

express correctly than normal data. As a result, the error in reconstructing an outlier

will be high.

Figure 3.7: An example form of autoencoder model.

3.4 Data Correction and Imputation Approaches

Discovered anomalies and missing data are often removed or excluded from a series of

data, which is problematic because many statistical analyses require complete data sets
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to avoid biassed or erroneous analysis results. As a consequence, effective methods for

estimating missing values from available data are required. Missing value imputation

algorithms commonly employ the following techniques:

3.4.1 Statistical Approaches

A simple and widely used technique of data imputation is to use statistical methods to

estimate a value from the values that are present. The mean and mode are the most

straightforward imputation techniques for numerical and categorical values. The mean

technique fills in missing data by averaging the value across all present data. On the

other hand, the mode technique uses the most frequently occurring value in all the

present data to fill in the missing attribute values.

Using a regression model to make a prediction about the value of the anomalous data

point based on the values of other variables in the data set is yet another statistical

method for imputed anomalies that have been discovered. Estimating the relationship

between the variables and predicting the value of an anomalous data point based on the

values of the other variables are both things that may be accomplished with the use of

the regression model. This strategy has the potential to be effective in circumstances

in which there is a strong association between the variables that are included in the

data collection.

Interpolation is another widely used approach for data imputation. The most fre-

quently used methods for interpolation include linear interpolation, polynomial inter-

polation, spline interpolation, and multiple imputation. The selection of an appropriate

method depends on the complexity of the data and the specific issue that needs to be

resolved. Linear interpolation is best suited for simple data structures, while spline

interpolation is more appropriate for complex structures. Interpolation methods can

be used to predict missing data or fix inaccurate measurements. The accuracy of the

results depends on the quality of the available data and the assumptions made about

the data. Interpolation is a widely used technique in many fields, including survey

research, clinical trials, and longitudinal studies.
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3.4.2 Machine Learning Approaches

Traditional approaches for data correction and imputation rely on statistical techniques

and expert knowledge, which can be time-consuming and subjective. With the recent

advances in machine learning, there has been growing interest in using machine learning

approaches for data correction and imputation. In this subsection, we have selected

the most widely used techniques for anomaly correction and imputation in time series

data over the past few years.

k-Nearest Neighbours (KNN)

It works on the assumption that neighbouring data points belong to the same class. In

other words, a new data point is more likely to have the same class label as its k-nearest

neighbours than distant data points (Peterson, 2009). k-NN identifies the neighboring

points through a measure of distance and the missing values can be estimated using

completed values of neighboring observations.

Decision Tree

A decision tree is a machine learning system that shows all possible outcomes and their

connected routes in the form of a tree. This approach imputes missing values by first

constructing decision trees to identify missing values for each variable, and then using

the associated trees to fill in the missing values for each variable (Twala, 2009).

Random Forest

A random forest is an ensemble of decision tree algorithms. It is a development of

the bagging technique, an effective ensemble approach to decision trees in which each

decision tree is fitted to a slightly different training dataset. As a result, the predictions

and errors made by each tree are more distinct from each other. When the predictions

from these less correlated trees are combined to make a prediction, the result can be

better than if they were all bagged together (Breiman, 2001).
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MissForest (MF):

It is another machine learning-based data imputation technique that based on the

Random Forest (RF) algorithm which has been created by Stekhoven and Bühlmann

(2012). It can be divided into 3 main steps. Firstly, replace the missing values with the

mean (for continuous variables) or the most frequent class (for categorical variables).

Secondly, the observed observations are served as the training set and the missing

observations are served as the prediction set. The training sets and the prediction sets

are fed into a RF model. Then, the RF model’s predictions are put in place of the

prediction set, creating a transformed dataset. Finally, one imputation loop is complete

when all missing variables are imputed. Imputations are repeated.

Support Vector Regression (SVR)

SVR is a technique similar to support vector machine (SVM), except it is used to solve

regression issues. The goal of regression analysis is to use a training set to identify a

function (hyperplane) that can map an input domain to a target domain within the

decision boundary and have the least error rate. So, we can use this function to predict

the values that are missing in our dataset.

Figure 3.8: SVR concept illustration.

3.4.3 Neural Network Approaches

Neural networks have been used to estimate missing values by training them as re-

gression models using only the remaining complete features from incomplete datasets

as inputs. This allows the model to learn from the incomplete datasets. In the last
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decade, there has been much research using neural networks for data imputation, as

reviewed by Fang and Wang (2020); Saad et al. (2020). However, the type of neural

network that is widely used was developed based on RNN, LSTM, and GAN.

RNN-Based

Beginning with the RNN-Based method, delaying the output of RNNs by a particular

number of time frames has been used to incorporate future knowledge into present

predictions. But a bi-direction RNN (BRNN) takes into account all input sequences in

both the past and the future when predicting the output vector Schuster and Paliwal

(1997). In order to do this, one RNN processes the sequence forward in time. Another

RNN processes the sequence in the reverse direction of time, from end to beginning,

with no interaction between them. This concept has been applied for data imputation

by Cao et al. (2018). They developed bidirectional recurrent imputation for time series

(BRITS). Instead of using complete data for training a model, they use a sequence with

missing data as an input. Since RNN uses the information from prior inputs to generate

the future values, they replace the current actual values with the obtained imputation

and validate them with the future observed values. But the estimation error cannot be

obtained immediately when there is some missing data. So, they used BRNN to figure

out the missing value by getting the estimation error from both directions, forward

and backward.

LSTM-Based

It is possible to boost the capacity of BRNNs by stacking hidden layers of LSTM cells, a

technique known as bidirectional LSTM (Bi-LSTM) (Ma et al., 2020; Kulanuwat et al.,

2021). It is more powerful than LSTM networks that are just used in one direction.

The Bi-LSTM model exploits the advantages of the BRNN while also addressing the

issue of vanishing gradients (Salehinejad et al., 2017). This technique, however, has a

disadvantage in that it increases computing complexity as compared to LSTM, which

is because of the forward and backward learning processes.
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GAN-Based

Goodfellow et al. (2014) was the first to define the generative adversarial networks

(GAN) architecture. The GAN model’s architecture is made up of two sub-models:

a generator model, which is in charge of making new examples, and a discriminator

model, which is in charge of figuring out if the new examples are real examples from

the domain or fake examples made by the generator model, as illustrated in Figure 3.9.

Figure 3.9: GAN concept illustration.

3.5 Ensemble Methods

The ensemble technique is another alternative that has been regularly employed to

increase model performance. The basic idea behind this strategy consists of producing

results using numerous models, and then integrating multiple outcomes into a consis-

tency function to obtain final results.

Based on the underlying machine learning techniques, there are two basic forms of

ensembles: homogeneous and heterogeneous. A homogeneous ensemble is constructed

from learners of the same type, e.g., a set of decision trees. A heterogeneous ensemble is
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constructed from several kinds of learners, such as a support vector machine, k-nearest

neighbour, or neural networks.

To generate the ensemble models consists of three main steps as follows:

i) Data preparing: A dataset, which contains a number of records in which each

instance represent a set of input features along with the target class, used to train

the base models.

ii) Model generator: various types of model have been generated by training with the

prepared data from the previous step and are placed into a pool as the member

candidate for building ensemble.

iii) Combiner: This is the step for making the final decision from among the selected

models in the model pool.

In the combiner step, the results of each model can be combined by voting or averaging

schemes. Voting is used for classification, which is the main focus of our work, and

averaging is used for regression. Our research is a classification problem, so we will

focus on voting schemes. Voting classification can be divided into two main different

schemes:

• Majority Voting : The predictions of each model in an ensemble have to be aggre-

gated, and the final prediction is the class that gets the most votes. To prevent

the possibility of a tie in voting, we will construct each of our ensembles using

an odd number of classifiers. This means that the number of classifiers in the

ensemble will not be evenly divisible by two, which reduces the likelihood of an

equal number of votes for different classes. However, it is important to note that

having an odd number of classifiers does not completely eliminate the possibility

of ties if there are the same number of votes for different options.

• Weighted Voting : When multiple models with varying levels of performance

are involved in decision-making processes, treating all models equally can lead

to unsatisfactory results. This is because different models may have different

strengths and weaknesses, and giving equal weight to all predictions may not be
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the most effective approach. So, we devised a weighted voting mechanism to take

this difference into consideration when making a final decision in an ensemble.

With the weighted voting method, the contribution from a model is weighed by

its performance. For a model mi, after it has been trained with the training

data, its weight score wi is derived by using its F1-score that is calculated on

the given validation dataset, so we will have a set of F1-scores of each model,

F1m = {F1m1, F1m2, ..., F1mM}. Then these F1-scores will be ranked to find the

maximum and minimum scores. Finally, calculate the normalised weighting score

wi for module mi using the equation below:

wi =
F1mi −min(F1m)

max(F1m) −min(F1m)
, ∀ i = 1, ...,M (3.5.1)

The output of an ensemble, Φ(x), is calculated by multiplying the weight with the

output of an individual module and taking the argument of maxima as follows:

Φ(x) = argmax
M∑
i=1

wimi(x) (3.5.2)

Where M is the number of models in an ensemble, mi(x) is the predicted class

of model i.

Ensemble methods can provide several benefits over individual models, including im-

proved accuracy, stability, and robustness. It can also provide insights into the un-

derlying patterns in the data. However, ensemble methods can be computationally

expensive and may require significant computational resources.

3.6 Evaluation

This section describes the existing methods and measures that will be used to carry

out the experiments and evaluate the results.
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3.6.1 Binary Class Performance Measures

As this is essentially a binary classification problem, we chose Recall(R), Precision(P)

and F1 measures. They are calculated with the following equations based on a confu-

sion matrix as shown in Table 3.1.

Table 3.1: Confusion Matrix of Performance Measures.

Predicted
Anomaly Normal

A
ct
u
a
l Anomaly TP FN

Normal FP TN

Recall : The number of correctly classified anomalies is divided by the total of success-

fully classified anomalies and mistakenly classified normal.

Recall =
TP

TP + FN
(3.6.1)

Precision : The number of correctly classified anomalies is divided by the total of

successfully classified anomalies and mistakenly classified anomalies.

Precision =
TP

TP + FP
(3.6.2)

F1 : The harmonic mean of precision and recall.

F1 = 2 × Precision×Recall

Precision + Recall
(3.6.3)

Where TP , FP , FN , and TN denote the number of True Positive, i.e correct clas-

sification for anomaly data, False Positive - the number of incorrect classification for

anomaly data, False Negative - the number of incorrect classification for normal data,

and True Negative - the number of correct classification for normal data, respectively.

3.6.2 Critical Difference Diagram

To make statistical comparisons, we implemented a statistically rigorous test for mul-

tiple classifiers across many datasets. This approach was initially described by Demšar

46



Chapter 3 – Technical Background and Related Work

(2006) and is intended to examine the statistical significance of classifiers. This tech-

nique takes the strategy of testing the null hypothesis against the alternative hypothe-

sis. The null hypothesis states that no difference exists between the average rankings of

k algorithms on N datasets. The alternative hypothesis is that at least one algorithm’s

average rank differs.

In the first place, the k methods are ranked according to their performance over the

N datasets, then the average ranking of each algorithm is calculated. To test the null

hypothesis, the Friedman test is calculated using Equation 3.6.4.

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
(3.6.4)

Where Rj is the rank of the j th of k algorithms on N datasets and the statistic is

estimate using a Chi-squared distribution with k − 1 degrees of freedom.

If the null hypothesis is rejected at the selected significance level α, the post-hoc

Nemenyi test is used to compare all classifiers to each other. The Nemenyi test is

similar to the Turkey test for ANOVA, and uses a critical difference (CD), which is

presented in Equation 3.6.5

CD = qα

√
k(k + 1)

6N
(3.6.5)

Where qα is calculated by the difference in the range of standard deviations from the

smallest valued sample and the largest valued sample. The results of these tests are

often visualised using a CD diagram. Classifiers are shown on a number line based on

their average rank across all datasets, and bold CD lines are used to connect classifiers

that are not significantly different. In Figure 3.10 we present an example critical

different diagram.
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Figure 3.10: An example Critical Difference (CD) diagram demonstrating how to in-
terpret the results from a pairwise comparison of five models over multiple datasets.

To interpret the results of the critical difference is straightforward and demonstrates

their utility. Models A and B are in the same CD line and are not significantly different.

However, model A is significantly different from models C, D, and E. Model B is not

significantly worse than models A or C, but is significantly better than models E and

D. Model C is significantly worse than model A, but is not significantly better than

model D or model E. Finally, models D and E are not significantly worse than each

other or model C, but are significantly worse than models A and B. This diagram

provides a good breakdown of the rankings of each classifier and how they compare to

one another. The bold CD lines give an understanding of where classifiers are similar

in performance and where one or more classifiers may be better than others.

3.6.3 Evaluating imputation methods

To verify the performance of our proposed methods, we compared them to existing

imputation methods using three distinct measures, including root mean square error

(RMSE), mean absolute error (MAE), and similarity (Sim). They are detailed as

follows:

• RMSE: The average squared difference between the imputed value ŷ and the

respective genuine value y is referred to RMSE. This metric is very useful for

determining overall correctness. The technique with the lowest RMSE would be

the most effective.

RMSE(ŷ, y) =

√√√√ 1

T

T∑
i=1

(ŷi − yi)2
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Where T is the number of missing values.

• MAE: This is compute as average of the absolute difference between imputed

values ŷ and actual values y, which calculated by:

MAE(ŷ, y) =
1

n

n∑
i=1

|ŷi − yi|

The method that is more effective will have a lower MAE.

• Sim: Sim(ŷ, y) defines the similar percentage between the imputed value (ŷ) and

the actual data (y). It is calculated by:

Sim(ŷ, y) =
1

T

T∑
i=1

1

1 + |ŷi−yi|
max(y)−min(y)

A higher similarity indicates a better ability to infill missing values.

3.7 Related Work

In this section we will present some work which is directly related to this thesis. This

section will consist of subsections including data preprocessing, anomaly detection,

anomaly correction and imputation, and ensemble methods.

3.7.1 Related Work for Data Preprocessing

Time series analysis has become increasingly important in many fields, including fi-

nance, economics, and engineering. However, before conducting any analysis, it is

essential to preprocess the data to ensure that the time series is suitable for analysis.

This literature review will discuss some common data preprocessing techniques used

in time series analysis.

The first step in data preprocessing for time series is to check for missing values. Miss-

ing values can occur due to various reasons, such as data collection errors or equipment

malfunctions. The presence of missing values can affect the accuracy of the analysis, so
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it is essential to impute the missing values before proceeding with any analysis. Several

imputation methods can be used (Rashid and Gupta, 2021). For example, Raja and

Thangavel (2020) proposed a new method for handling missing values in data mining

using unsupervised machine learning techniques, called rough K-means centroid-based

imputation. It combines soft computation approaches with clustering techniques to

overcome the problems of inconsistency. The method is compared with other imputa-

tion algorithms and is found to perform well, particularly in handling uncertainty and

inconsistencies in datasets. The results obtained by the proposed method are promis-

ing for the prediction of missing values. Another study from Zhang et al. (2021b)

suggested using a generative adversarial network (GAN) with an encoder network to

fill in missing values in multivariate time series data. The proposed model outperforms

existing state-of-the-art methods in imputation tasks and downstream applications

such as classification and regression. However, the choice of method depends on the

nature of the data and the amount of missing data.

Data normalization is also an important preprocessing step in time series analysis as

disscussed in Asesh (2022). Normalization refers to the process of transforming the

data to a common scale, enabling comparisons between different time series. The nor-

malization techniques include min-max scaling, z-score normalization, and log trans-

formation. The choice of normalization technique depends on the distribution of the

data and the intended analysis.

In conclusion, data preprocessing is a crucial step in time series analysis (Alasadi and

Bhaya, 2017; Ramrez-Gallego et al., 2017; Zelaya, 2019). It ensures that the data is

suitable for analysis and eliminates any errors that could affect the results.

3.7.2 Related Work for Anomaly Detection

The data generated from a water level monitoring station is a time series. There are

many methods for detecting anomalies in time series data. One basic approach is to

use statistics-based methods, as reviewed in Rousseeuw and Hubert (2011); Zimek and

Filzmoser (2018). For example, simple and exponential smoothing techniques were

used to identify anomalies in a continuous data stream of temperature in an industrial
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steam turbine (Kumar et al., 2012). But in general whilst they provided a baseline,

they have a disadvantage in handling trends and periotics, e.g., the water level will

dramatically rise before the flood, which differs considerably from the other data points

and may lead to an increased false alarm rate. In addition, they can be affected by

the types of anomaly and some work well for a certain type of problem. For example,

for missing and outlier values, when the data is normally distributed, the K-means

clustering method (Lin et al., 2018) is usually used, as it is simple and relatively ef-

fective. Kulanuwat et al. (2021) used the median and the median absolute deviation

(MAD) to detect anomalies in telemetry water level. The findings showed that their

approaches produced good results for non-cyclical data behaviors. The two-sided me-

dian method and the one-sided median method were used to detect unexpected jump

values in time series (Basu and Meckesheimer, 2007). However, there is unfortunately

no general guideline for choosing a method for a given problem.

Most of their models have been computed based on a sliding window (Golab, 2004;

Ding and Fei, 2013; Jiang et al., 2011). A time window is specified with n continuous

input data points, and a model has been generated from the data in this window.

Then the window is shifted by a given step size along the time series and the model

is recomputed on the next window. This has two drawbacks: the computed values are

limited to a specific window and it is time-consuming.

Some machine learning methods were used to detect anomalies. But as almost all the

applied methods use supervised learning algorithms to learn from the labelled historical

data, there are several issues with them. 1) There is not enough labelled data for a

learning algorithm to learn well to generate good enough models. 2) Because time-

series data is continuous or streaming in real time, models learned from historical data

may need to be retrained as new data is received (Hill et al., 2007). 3) Each model is

limited by the data it has been trained with, so it may be suitable to detect a particular

type of error, but not other anomalies.

For hydrological data, Yu et al. (2014) developed a time series outlier detection method

by comparing the observed data with the result from a forecasting model that learns

from the historical data enclosed in a sliding window. Similar techniques were used by
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Ma et al. (2017) to identify outliers in meteorological data. However, the optimization

of window size is time-consuming for different hydrological elements and user require-

ments. van de Wiel et al. (2020) used regression-based approaches to locate outliers in

water level time series with univariate and multivariate models. Their research reveals

that multivariate outlier models outperform univariate outlier detection algorithms.

However, optimisation of threshold values when using regression-based models may

require a certain amount of time and complexity for various hydrological elements and

user requirements.

Change point detection (CPD) is an important method for time series analysis. It

indicates an unexpected and significant change in the analysed time series stream data

and has been studied in many fields, as surveyed by Aminikhanghahi and Cook (2017)

and Truong et al. (2020). However, the CPD has no ability to detect anomalies since

not all detected change points are abnormalities. Many studies are being conducted to

solve this problem by integrating CPD with other models to increase anomaly detec-

tion effectiveness. For example, Apostol et al. (2021) presented new techniques, called

rule-based decision systems, that combine the results of anomaly detection algorithms

with CPD algorithms to produce a confidence score for determining whether or not a

data item is indeed anomalous. They tested their suggested method using multivariate

water consumption data collected from smart metres, and the findings demonstrated

that anomaly detection can be improved. Moreover, it has been proposed to detect

anomalies in file transfer by using the CPD to detect the current bandwidth status

from the server, then using this to calculate the expected file transfer time. The server

administrator has been notified when observed file transfers take longer than expected,

which may mean it may have something wrong (Dao et al., 2018). Siris and Papa-

galou (2004) investigated the cumulative sum (CUSUM) algorithm for change point

detection to detect SYN flood attacks. The results demonstrated that the proposed

algorithm provided robust performance with both high and low intensity attacks. Al-

though change point detection performed well in many domains, the majority of them

focused on changes in the behaviour of time series data (sequence anomaly) rather than

point anomaly, which is my primary research emphasis. Furthermore, water level data

at certain stations is strongly periodic with tidal effects, resulting in numerous data
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points changing from high tides to low tides each day, which is typical behaviour.

To perform further in-depth analysis, the time domain can be converted to different

domains. For example, Ren et al. (2019) converted data to the spatial domain by using

Saliency Map (SM) (Hou and Zhang, 2007) to find outliers in real-time services and a

deep Convolutional Neural Network (CNN) to improve performance. Additionally, Pan

et al. (2020) also used saliency maps to extract feature information from multivariate

time series, which improved the accuracy of prediction.

Ouyang et al. (2017) demonstrated a method for performing anomaly detection by ex-

tracting hierarchical time series features. But the challenge is how to find the smallest

size of a window in datasets. While Yang et al. (2021) applied a time series features

extractor, TSFRESH, and a genetic algorithm-based feature selection method to ex-

tract dominant features from stream data. They also trained an XGBoost model to

record the pattern of stream data to detect the appropriate anomaly detection service

in real time.

Although extracted features can improve the performance of models, most existing fea-

ture extraction methods divide data into windows for calculating new features. How-

ever, inappropriate window size can lead to time-consuming and extracted non-useful

features, which lead to the poor performance of models.

In recent decades, machine learning methods, including deep neural networks (DNNs),

have been satisfactorily implemented in various hydrological issues such as outlier detec-

tion (Yu et al., 2014; van de Wiel et al., 2020), water level prediction (Yang et al., 2017;

Park et al., 2022), data imputation (Vu et al., 2021), flood forecasting (Chang et al.,

2018), streamflow estimation (Liu et al., 2022), etc. For example, Zhou et al. (2019)

proposed the R-ANFIS (GL) method for modelling multistep-ahead flood forecasts of

the Three Gorges Reservoir (TGR) in China, which was developed by combining the

recurrent adaptive-network-based fuzzy inference system (R-ANFIS) with the genetic

algorithm and the least square estimator (GL). Chang et al. (2020) presented a flood

prediction by comparing the expected typhoon tracking and the historical trajectory

of typhoons in Taiwan in order to predict hydrographs from rainfall projections im-

pacted by typhoons. The PCA-SOM-NARX approach was developed by Chang et al.
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(2022) to forecast urban floods, combining the advantages of three models. Principal

component analysis (PCA) was used to derive the geographical distributions of urban

floods. To construct a topological feature map, high-dimensional inundation recordings

were grouped using a self-organizing map (SOM). To build 10-minute-ahead, multistep

flood prediction models, nonlinear autoregressive with exogenous inputs (NARX) was

utilised. The results showed that not only did the PCA-SOM-NARX approach produce

more stable and accurate multistep-ahead flood inundation depth forecasts, but it was

also more indicative of the geographical distribution of inundation caused by heavy

rain events. Even though we can use forecasting methods to find anomalies by using

prediction error as a threshold to classify data points as normal or not, it may take

time to find the suitable threshold for each station.

Reinforcement Learning (RL) is an algorithm that imitates the human learning process.

It is based on the self-learning process in which an agent learns by interacting with

the environment without any assumptions or rules. With the advantage of being able

to learn on their own, it can identify unknown anomalies (Pang et al., 2020), which

gives it an edge over other models. RL has been applied to a variety of applications

such as games (Mnih et al., 2013; Silver et al., 2017), robotics (Kormushev et al., 2013;

Polydoros and Nalpantidis, 2017), natural language processing (Sharma and Kaushik,

2017; Luketina et al., 2019), computer vision (Le et al., 2021), etc. It has also been

used in some studies to detect anomalies in data, such as an experiment by Huang

et al. (2018) that shows the use of the deep Q-function network (DQN) algorithm

to detect anomalies in time series. Network intrusion detection systems (NIDS) are

developed by Hsu and Matsuoka (2020), based on deep reinforcement learning. They

utilised it to identify anomalous traffic on the campus network with a combination of

flexible switching, learning, and detection modes. When the detection model performs

below the threshold, the model is retrained. In the comparison against three traditional

machine learning approaches, their model outperformed on two benchmark datasets,

NSL-KDD and UNSW-NB15. A binary imbalanced classification model based on DRL

was introduced by Lin et al. (2020). They developed the reward function by setting

the rewards for the minority class to be greater than the rewards for the majority class,

which made DRL paying more attention to the minority class. They compared it to
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seven imbalanced learning methods and found that it outperformed other models in

text datasets and extremely imbalanced data sets. Although deep learning and RL

methods have achieved excellent results in time series, one common issue is that their

performance varies and it is hard to predict when they do better and when they perform

relatively poor.

An Autoencoder is an unsupervised learning neural network, it comprised two parts,

an encoder and a decoder. They are effectively used for solving many applied problem,

from face recognition (Gao et al., 2015; Xu et al., 2017), anomaly detection (Pereira and

Silveira, 2018; Zhou and Paffenroth, 2017; Zong et al., 2018; Gong et al., 2019) to noise

reduction (Jiang et al., 2017; Maas et al., 2012; Chiang et al., 2019). In hydrological

domain, Kao et al. (2021) presented the SAE-RNN model, which combines the stacked

autoencoder (SAE) with a recurrent neural network (RNN) for multistep-ahead flood

inundation forecasting. Starting with SAE to encode the high dimensionality of input

datasets (flood inundation depths), and then utilising an LSTM-based RNN model to

predict multistep-ahead flood characteristics based on regional rainfall patterns, and

then decoding the output by SAE into regional flood inundation depths. They con-

ducted experiments on datasets of flood inundation depths gathered in Yilan County,

Taiwan, and the findings demonstrated that SAE-RNN can reliably estimate regional

inundation depths in practical applications.

3.7.3 Related Work for Data Imputation

Time series imputation methods are classified into two types depending on the input

data. The first technique, which is the primary focus of our study, is univariate al-

gorithms, which depend on a single variable to impute missing values. The second is

multivariate approaches, which estimate missing data by examining the relationship

between each variable.

Several fundamental approaches to filling missing data in univariate, including mean,

median, LOCF (last observation carried forward), and interpolation techniques, are

frequently utilised. When only one or a few consecutive missing data points are present,

those methods provide acceptable results. However, when the missing gaps are large,
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the results are bad.

Some studies have been conducted in the recent decade with the goal of imputing

missing values in meteorological and hydrological data. For example, the study by

Yang et al. (2017) used the mean of nearby points imputation methods for imputing

the missing data of the integrated data set from the water level and atmospheric data.

Lai and Kuok (2019) suggested a method known as bayesian principal component

analysis (BPCA) to impute missing values in rainfall data; the findings showed that

BPCA outperformed KNN when dealing with large continuous missing gaps. while

the research by Gao et al. (2018); Pratama et al. (2016) provided a review of applied

statistical and machine learning methodologies for imputed anomalies and missing

data.

With the significant contribution of ML in many domains, it has also been applied

to imputation tasks. Kim et al. (2015) compared ML, artificial neural network, and

physical-based model for recovering streamflow data. The result revealed that ML

were generally better than other at capturing high flows. Dwivedi et al. (2022) used

random forest to impute the continuous gaps and extreme of sub-hourly ground water.

Li et al. (2022) improve the availability of IoT multivariate data and ability of anomaly

detection by applied the imputation techniques to impute the detected anomalies data.

Others research that using a ML model to estimate the missing values are averaging

the prediction from two directions (forward and backward) as the final imputed values

(Akouemo and Povinelli, 2014; Bokde et al., 2018; Phan, 2020). Two forecasting models

for estimating the missing value based on the forecaster and the backcaster of time series

were proposed by Moahmed et al. (2014).

All of the approaches that use subsequences before and after missing gaps for searching

or training models are based on the assumption that current values of time series have

an influence from past or previous values. But in the case of water level data, only

using values from the past or future may not correspond to the current situation since

the behaviour of water levels has altered due to climate change.

Replacing the missing gap by using the values from their most similar subsequence

is extensively used in many domains. Dynamic time warping (DTW) is an excellent
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Figure 3.11: Most similar subsequence that has same dynamic but difference position

technique of this kind, which is extensively used in many domains, such as Tormene

et al. (2009) used DTW to find the most similar incomplete time series from the stored

reference of an arm movement sensor. Or, the research by Caillault et al. (2020), the

imputation of missing data for univariate time series was proposed, which used deriva-

tive dynamic time warping (DDTW) developed by Keogh and Pazzani (2001) to search

for subsequences before the missing gap, and then to repair the gaps by replacing them

with the next subsequence that is most similar. The disadvantage of using dynamic

time warping is that it takes time. They addressed this issue by extracting sequence

features in sliding windows using a shape-feature extraction algorithm (Caillault et al.,

2016), then calculating DDTW only if the correlation between the shape-feature of

this window and the subsequences before the missing gap is very high. The results

demonstrate that their method produces superior outcomes when dealing with time

series with high correlation and strong seasonality.

Although DTW can find the most similar pattern that has similar dynamics, it may

warp the shape by expanding or compressing, so the position of missing gaps may not

be the same position as the original pattern that we are looking for as depicted in

Figure 3.11.

The another way that uses for searching the most similar subsequence is to find two

subsequences that have the lowest Euclidean distance as an indication of similarity.

Since we need to calculate the distance of every pairwise in time series, the time needed

to search for matches in a large time series dataset can be long and hence is considered
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as a disadvantage of this method. To address this issue Yeh et al. (2016) developed

the techniques called matrix profile (MP), to speed up the process. An MP gives the

distances between all subsequences and their nearest neighbours and thus can be used

to efficiently extract some patterns characterised by a time series, such as motifs and

discords. Very similar subsequences in a time series are called motifs, whereas very

differing subsequences are called discords.

In the last two decades, deep learning techniques have been widely applied to vari-

ous problems in time series analysis. Various studies have exploited deep learning to

impute the missing data. Zhang and Thorburn (2021) proposed a dual-head sequence-

to-sequence imputation model (Dual-SSIM) for water quality data imputation. By

averaging the prediction from gated recurrent units (GRU) with the information be-

fore and after the missing gaps. In this proposal, the model imputes missing data more

accurately than 5 benchmarks. Kulanuwat et al. (2021) reported work that used three

approaches for imputing missing data, including linear interpolation, spline interpola-

tion, and bidirectional LSTM for data imputation on telemetry water level data. Spline

interpolation performed better on non-cyclical data, while bidirectional long short-term

memory (BiLSTM) beat other interpolation approaches on a particular tidal data pat-

tern. But, one common disadvantage that all deep learning neural networks have is

very time consuming, which makes them less practical in real time applications, such

as water level analysis and flood forecasting.

Although neural networks offer great performance and accuracy in many domains, it is

not possible to design a single universal network architecture that works in all instances.

Also, the models need to be retrained to improve how well they work, which makes it

hard for users to know when they need to be retrained.

3.7.4 Related Work for Ensemble Methods

Some of the previous research has shown that it is possible to combine various indi-

vidually trained models to produce a model that is more accurate than any of the

single models (Opitz and Maclin, 1999). This combination of multiple models to work

together is called the ensemble method. It has been demonstrated to be effective in
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a wide range of real-life problems, such as weather forecasting (Gneiting and Raftery,

2005), detecting anomalies in cellular networks (Ciocarlie et al., 2013), wireless sen-

sor networks detection (Curiac and Volosencu, 2012), gene expression data for cancer

classification (Tan and Gilbert, 2003).

Time series based on ensemble modelling have recently attracted attention. In a study

by Yu et al. (2017), they introduced the method EN-RTON2, which is an ensemble

model with real-time updating using online learning and a submodel for real-time wa-

ter level forecasts. However, they experimented with fewer datasets, a smaller number

of records, and lower data frequency than our datasets. Furthermore, the authors offer

no indication of the time necessary for training models and forecasting, which may be

inadequate in our case given the number of stations and frequency of data transmis-

sion. The ensemble models were proposed by Iftikhar et al. (2020), which applied the

sliding window based ensemble method to find the anomaly pattern in sensor data for

preventing machine failure. They used a combination of classical clustering algorithms

and the principle of biclustering to construct clusters representing different types of

structure. Then they used these structures in a one-class classifier to detect outliers.

The accuracy of these methods was tested on a time series of real-world datasets from

the production of industry. The results have verified the accuracy and the validity of

the proposed methods.

Kieu et al. (2019) proposed two autoencoder ensemble frameworks for unsupervised

outlier identification in time series data based on sparsely connected recurrent neural

networks, which address the issues from Chen et al. (2017) that given the poor results

when using autoencoder with time series data. In one of the frameworks called the In-

dependent Framework, multiple autoencoders are trained in a manner that is indepen-

dent of one another, whereas in the other framework, the Shared Framework, multiple

autoencoders are trained jointly in a manner that is multi-task learning. They exper-

imented by using univariate and multivariate real-world datasets. Experiment results

reveal that the suggested autoencoder ensembles with a shared framework outperform

baselines and state-of-the-art approaches. However, a disadvantage of this method is

its high memory consumption when training many autoencoders together. The time
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factor is a challenge for real-time flood forecasting; typical physically based numerical

models are often too slow for use in real-time forecasting systems. To address this

issue, Berkhahn et al. (2019) proposed an ensemble of neural network models for the

prediction of maximum water levels during a flash flood event. According to the results

of this study, even if the outputs of the ensemble do not beat physically based mod-

els, they may be considered suitable for real-time forecasting. Additionally, it offers

alternatives to enhance the accuracy of predictions, which may beat the other physical

models.

3.8 Summary

In this chapter, the literature on the technical background of the data and method-

ologies developed for detecting and correcting anomalies in data is reviewed. We start

by introducing data pre-processing, then review a number of algorithms for detecting

and correcting anomalies, as we will use those for our experimentation. Furthermore,

we provide a description of the ensemble technique that involves a review of the most

common ensemble methods and the different ways of combining models. Finally, a

survey of the related studies that covered anomaly detection, data imputation, and

ensemble methods with hydrological data is provided.

The work that was done on anomaly detection using statistical models is going to be

detailed in the next chapter.
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Anomaly Detection with Statistical
Models and Their Ensembles

Contributing Publications

• Khampuengson, T., Bagnall, A., and Wang, W. (2020). Developing ensemble

methods for detecting anomalies in water level data. In International Confer-

ence on Innova- tive Techniques and Applications of Artificial Intelligence, pages

145–151. Springer.

4.1 Introduction

Several machine learning techniques were employed to identify anomalies, but most

of them utilised supervised learning algorithms to learn from labelled historical data,

which led to various challenges. Firstly, there is a scarcity of labelled data, making

it difficult for the learning algorithm to produce satisfactory models. Secondly, since

time is a continuous or streaming variable, the models developed from past data may

require retraining with newly arriving data (Hill et al., 2007). Finally, each model is

restricted to the data it has been trained on, making it effective at detecting specific

types of errors but not all anomalies.

While statistical models do not require labelled data. Furthermore, they are widely

used to identify anomalies since they are not only simple to implement but also have

a low computational cost, making them an attractive option for tasks where time-

consuming processing is a concern. Using the advantages of such approaches, we intend
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to create statistical models to detect anomalies in water level data from telemetry

stations as fast and as accurately as possible.

4.2 Methods

In this section we described the details of chosen statistical model, and development

of sliding windows algorithm.

4.2.1 Statistical Models

Seven basic models were selected as the member candidates for building an ensemble,

which are Auto Regression (AR), Differenced Based(DB), Interquartile Range (IQR),

Sigma rules of thumb (K-Sigma), Moving Average Smoothing(MAS), Slope as an Angle

(SA), Z-Score. They were chosen because they are simple and use no or few data for

training. As a result, they take much shorter time to calculate, thus are suitable

for detecting anomaly in near real-time situations. Each of these 7 models is briefly

summarised below.

• Autoregression (AR)

AR methods are a class of time-series models used for anomaly detection. These

methods involve modelling the time series data using previous values of the same

series and using the difference between the actual and predicted values to identify

anomalies. Once the model is fitted, the difference between the actual and pre-

dicted values is calculated, and observations that fall outside a certain threshold

or confidence interval are flagged as anomalies.

• Difference Based (DB)

In time series data, anomalies can be detected by identifying values that deviate

significantly from the average difference between normal values. By computing

the difference between consecutive observations and setting a threshold, we can

identify and flag as anomalies those values that exceed it.

• Interquartile Range (IQR)
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An outlier or extreme value can be detected by using median as opposed to the

mean, which is often summarized by the difference between the first and the

third quartiles, called the Interquartile Range(IQR), the values that are not in

this range will be defined as an anomaly.

• Sigma Rule of Thumb (K-Sigma)

The K-Sigma method is a statistical technique that involves defining boundaries

for normality as k times the standard deviation away from the mean and identi-

fying any observation that falls outside the boundaries as an anomaly, making it

useful for detecting anomalies in datasets.

• Moving Average Smoothing (MAS)

This technique used to remove the noise from the data. It is simple and commonly

used in time series analysis and forecasting. User has to define the number of raw

observation data, called windows size. The value at time period t is calculated

by finding the average value of the raw observations inside the windows. The

anomaly has been defined by compare the expected values and a root mean

square error (RMSE) is calculated.

• Slope as Angle (SA)

The anomaly data is the point that is usually significantly different from the

previous data point. Consequently, the value that could be anomaly will have a

slope angle close to 90◦. In this research, we defined a point as an anomaly if

there is angle slope more than 45◦.

• Z-Score

Z-score is the difference between the value and the mean expressed as the number

of standard deviations. The observation values that has a Z-score lower than -2.5

and greater than 2.5, it will be considered as anomalous.
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4.2.2 A Modified Sliding Window Algorithm

Every model, except SA, requires to employ a sliding window algorithm to find the

threshold θ for the current window and uses it to identify an anomaly. But it has a

drawback, that is, when the window is moved forward to the next step, the detected

anomaly data will be included in the window and because this anomaly data has

not been removed or corrected, it will add some bias to the threshold and then as a

consequence it will affect the prediction of next possible anomaly value along the time

series.

We then modified the sliding window algorithm by updating the sequence in the window

once the next member is detected as a normal value, so-called only normal sliding

windows. The algorithm of new sliding windows as show in algorithm 1.

Algorithm 1 Only Normal Sliding Windows

procedure new sliding window(Model,Data)
start = 0
end = windowSize
anomaly = array()
while end ≤ count(Data) do

input = Data[start:end]
nextVal = data[end+1]
threshold = Model(Data[start:end]) ▷ Findind the threshold values
if nextVal > threshold then ▷ Detected as anomaly data

Data[end+1].remove
anomaly.append[actual] ▷ Store anomaly values in an array

else ▷ Detected as normal data
start = start + 1
end = end + 1

4.2.3 Ensemble Methods

We have identified 7 classic methods for detecting anomalies. In general they are simple

and fast so have been used in many. But each model has its limits, only suitable for

detecting some particular types of errors. Nevertheless, they can be constructively

combined into form an ensemble to work together so that they can compensate each

other’s weakness and then perform better than individual models working separately.

However, the fundamental issues of ensemble methods and emphasised that a successful

ensemble can be built with some appropriate models selected by using suitable criteria,
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otherwise an ensemble may not improve at all (Wang, 2008).

So, in this experiment, we developed two types of ensembles. The first type is a simple

ensemble, the second type is the complex ensemble which has a compound structure of

ensemble of ensembles. This section describes how these ensembles are constructed in

detail.

Simple ensemble

A simple ensemble is built with some models selected from 7 basic models briefly

mentioned earlier. But a key question is what criterion we should use to select a

model as a member of an ensemble. We devised a new scoring function (see below)

to calculate the goodness score of a model and then use this score to determine if a

model is good enough to be selected. Once an ensemble is formed, a decision-making

function is applied to work out the final output of the ensemble. In this study, a simple

majority voting method is used. So, a simple ensemble operates in 2 main stages:

Model Selection and Decision Making.

• Model Selection: It is done in three steps:

(1) Evaluating the accuracies of models.

We firstly use three different measures TP, FP and FN as criteria to asses the

performance of a model.

(2) Ranking the models with different criteria.

With those 3 measures, we produce 3 rankings R1, R2, and R3 respectively. Then

for each ranking of the models, we calculate their score in ranking Rj as follows:

S(mi,Rj) =
N + 1 − r(mi,Rj)

N
,∈ [

1

N
, 1] (4.2.1)

Where, where: S(mi,Rj) = Score of model mi in ranking Rj.

r(mi,Rj) = ranking position of mi in Rj.

N = number of models in a ranking.

i = index of models: 1, 2, ..., N .

j = index of Rankings: 1, 2, 3.
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Then we devised a new measure called total score of performance (TSP) that

combines the three scores from each model (TSPmi
) by the following equation.

TSPmi
=

1

N

3∑
j=1

S(mi,Rj),∈ [
1

N
, 1] (4.2.2)

Then all the models are ranked again by their TSP score in a descending order,

the models with higher TSP values are ranked higher. In doing so, we produced

4 rankings for each model.

(3) Selecting models for building ensembles.

In this stage, we need to decide what models and how many models should be

selected to build an ensemble. A general consideration is to select a certain

number of suitable models that will maximize the performance of an ensemble

model. To avoid a tie-situation in decision making, we set the number of member

models to be an odd number as there are only 7 basic models in total in this

experiment, we set three different sizes for ensembles: 7, 5 and 3, to investigate

whether the size of an ensemble has any influence on its performance. So we chose

top 7, 5 and 3 models from each ranking to build simple ensembles respectively.

In this way, we built 9 simple ensembles and they are coded with their size and

the used measure, e.g. Top5TP represents an ensemble built with top 5 of TP

score models. In summary, we have 4 ensembles with top 3 models from each

rankings, i.e.Top3TP, Top3FN, Top3FP and Top3TSP, 4 with top 5 models from

each rankings: Top5TP, Top5FN, Top5FP and Top5TSP, and one ensemble with

all the 7 models, called Ensem7.

In addition, we also used another pair of measures - Sensitivity and Specificity

to select the same numbers of models to build ensembles for comparison. So, we

have 4 more simple ensembles, Top5Sen, Top3Sen, Top5Spec and Top3Spec.

In total, we constructed 13 simple ensembles based on 6 different performance

measures and 2 different sizes.
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• Decision Making : Although there are several decision-making strategies to com-

bine the outputs of the models in an ensemble, in this research we chose the simple

majority voting approach for its simplicity and efficiency, which is particularly

essential for our anomaly detection system to work fast enough in real-time with

streaming data. A data point will be classified as an anomaly by an ensemble if

more than half of its member models predict it as anomaly, otherwise, normal.

These simple ensembles were tested on the testing data and the results will be presented

in the next section. Our initial experimental results show that simple ensembles are

better than the individual models but we want to improve further. So we developed a

method for building complex ensembles.

Complex ensemble

A complex ensemble is built by using selected simple ensembles as its member models.

It can simply be viewed as an ensemble of ensembles, so donated as EoE. An EoE

still uses the majority voting among the selected simple ensembles to determine its

final result. From the 13 simple ensembles built earlier, we can construct 5 complex

ensembles by selecting top 3, 5, 7, 9 and 11 simple ensembles based on their TSP score,

and another one with all the 13 simple ensembles. They are donated as EoE3, EoE5,

EoE7, EoE9, EoE11 and EoE13, respectively.

These complex ensembles were in the same ways as for the individual models, and

simple ensembles with the same dataset.

4.3 Evaluation

4.3.1 Datasets

To demonstrate and compare the efficiency of each anomaly detection model that will

be developed in this research, we chose 17 telemetry stations from Yom Basin that

installed in the same year, which represents the typical geological, meteorological and

hydrological features in Thailand. All the stations installed VEGA PULS WL 61/62

instruments to measure water level every 10 minutes during the years of 2013 to 2018.
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Table 4.1: Summary of data from 17 telemetry stations.

Station No. of Records No. of Anomaly % of Anomaly Data

DIV002 167708 24106 14.37
DIV004 215330 121 0.06
DIV006 216541 20849 9.63
NAN008 113833 1 0.00
VLGE13 191276 57 0.03
YOM001 177323 0 0.00
YOM002 179756 0 0.00
YOM003 192959 0 0.00
YOM004 163131 92 0.06
YOM005 168782 2902 1.72
YOM006 149321 4 0.00
YOM007 170142 0 0.00
YOM008 162099 2 0.00
YOM009 178241 2626 1.47
YOM010 202398 3080 1.52
YOM011 134031 638 0.48
YOM012 224404 1 0.00

Telemetry water level data is unlabelled in the first place. To evaluate the accuracy of

our models, we asked some expert at the HII to look at the data to identify and label

the anomalies. The details of the data are summarised in Table 4.1. We can see that

not every station has anomaly data and some stations only have one anomaly. Because

of HII telemetry stations installed radar water level gauge located at a fixed place

above the water surface, the object under the sensors such as weeds, boats, or things

that float along the water can affect sensors’ reading of water level. In a dry season,

the sensor may not detect the water surface properly, instead, it may detect waterbed

or grass land. Figure 2.4 gives an example of such, where the water level sensor gave

abnormal or incorrect readings on the water levels in Summer but produced reasonable

water levels during the rainy season. For these reasons, the data from these stations

are very difficult for human to label normal or abnormal as ground-truth. Although

we can avoid the stations that have a low number of anomaly from this experiment,

we want to keep it to test our models to see if they can misidentify normal data, which

in turn can help our experts to check the labelled anomaly data for validating the

ground-truth.
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4.3.2 Evaluation Metrics

As this is essentially a binary classification problem, we chose the values from the

confusion matrix which is a widely used technique for summarizing the performance of

a classification algorithm. As our purposes are to detect the anomaly and reduce the

false alarm, Precision,Recall and F1 − score are suitable to use as criteria.

4.4 Results

The 7 classic anomaly detection methods have been trained with the training data of the

chosen stations by moving the windows over the entire duration to find their decision

threshold. Then those cut-off values are applied to the testing data to evaluate their

performance with Recall, Precision, F1-score and TSP score, by comparing predicted

values and their corresponding ground-truth. Then these basic individual models were

used to build simple ensembles and the simple ensembles were used to build complex

ensembles. All the ensembles were tested in the same manners as for the individual

models. Their testing results are presented below separately.

4.4.1 Individual Model Results

The results of each model when detect anomaly in telemetry water level data as shows

in Table 4.2. Even though the AR model’s recall score was satisfactory, averaging

approximately 0.6190, its precision and F1-score were inadequate, averaging 0.0298

and 0.0532, respectively. This indicates that the AR model produced a large number

of false alarms. Additionally, the AR model is ineffective at detecting anomalies in

stations with few anomalies. On the other hand, the DB model had a lower average

recall score than the AR model, but its precision and F1-score were better. Moreover,

it could detect abnormalities in as few as seven stations. The DB model showed an

impressive F1-score for identifying anomalies in the DIV006 and YOM010 datasets,

exceeding 0.40. In terms of recall and F1-score, the IQR model outperformed the AR

and DB models, but its accuracy was inferior to that of the DB model.
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The IQR model performed exceptionally well in detecting anomalies in stations with

over 10% anomalies, such as DIV002 and DIV006, with an F1-score of 0.9815 and

0.8476, respectively. The K-Sigma model’s performance was poor, with low recall

(0.3420), accuracy (0.0714), and F1-score (0.0426) scores. However, it could identify

abnormalities in more stations than the AR and DB models. The MAS model had a

higher accuracy and F1-score than the IQR model, but its recall score was significantly

lower. Despite this, the MAS model’s performance was perfect, with a score of 1.00 in

each performance metric, when detecting anomalies in YOM004 files. The SA model

could only detect anomalies in three datasets (DIV006, YOM005, and YOM006). Its

recall score was poor, but its accuracy was excellent, with an average precision of

0.6230. Lastly, Z-Score had an ideal recall score in ten datasets, but its accuracy score

was very low, resulting in a high false-alarm rate.

Overall, the IQR and Z-Score models demonstrated the highest performance in terms

of the recall index, with an average of over 0.99, while the SA model showed the worst

performance with an average of 0.3339. The SA model provided the greatest average

precision score at 0.6230, followed by MAS at 0.3455, and IQR at 0.2415. Meanwhile,

MAS had the highest average F1-score at 0.3237, followed by IQR at 0.3035.

Despite the SA model’s best performance in the average precision index, it is not

suitable for detecting anomalies in water level data due to its poor performance on

the average recall and F1 indexes, and its ability to identify only a few anomalies

from three stations. While IQR and Z-score have the highest recall scores in 11 and

12 stations, respectively, their precision scores are relatively low in some stations. For

instance, IQR has a recall score of 1.0000 but a precision score of just 0.0115 in DIV004.

Similarly, MAS effectively identified anomalies in YOM004 without any detection errors

but displayed poor precision when analyzing data in certain stations like DIV004 and

VLGE013.

Even if a model has a high average score, it does not always mean it is the best at

recognising all types of errors. As a result, we compute TSP from each model, which

is shown in Table 4.3. The AR model has the lowest performance with an average

TSP score of only 0.46. The IQR model is the best model because it has not only
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the highest score from 8 stations but also the highest total (14.29) and average scores

(0.84) over all the stations.

Table 4.3: TSP score of individual model (best results are in bold).

Station AR DB IQR KSigma MAS SA ZScore

DIV002 0.43 0.43 0.86 0.43 0.76 0.43 0.76
DIV004 0.24 0.62 0.81 0.57 0.67 0.43 0.76
DIV006 0.52 0.52 0.76 0.33 0.67 0.43 0.76
NAN008 0.33 0.57 0.86 0.81 0.90 0.62 0.76
VLGE13 0.43 0.48 0.90 0.48 0.81 0.52 0.76
YOM001 0.71 0.95 0.86 0.90 0.76 1.00 0.81
YOM002 0.71 0.90 0.86 1.00 0.76 0.95 0.81
YOM003 0.71 0.95 0.86 0.90 0.76 1.00 0.81
YOM004 0.43 0.43 0.86 0.43 1.00 0.48 0.76
YOM005 0.52 0.48 0.90 0.48 0.52 0.52 0.76
YOM006 0.14 0.95 0.81 0.38 0.90 1.00 0.76
YOM007 0.71 0.95 0.86 0.90 0.81 1.00 0.76
YOM008 0.33 0.57 0.90 0.81 0.86 0.62 0.76
YOM009 0.52 0.43 0.71 0.48 0.67 0.43 0.76
YOM010 0.33 0.62 0.86 0.48 0.62 0.43 0.67
YOM011 0.43 0.48 0.81 0.48 0.71 0.52 0.76
YOM012 0.33 0.57 0.81 0.86 0.90 0.62 0.76

Total 7.86 10.90 14.29 10.71 13.10 11.00 13.00

Average 0.46 0.64 0.84 0.63 0.77 0.65 0.76

Std. 0.17 0.21 0.05 0.23 0.12 0.24 0.03

Figure 4.1: Critical difference diagram for different statistical models.

Figure 4.1 shows the comparison of the critical difference between the different statis-

tical models. The number associated with each algorithm is the average rank of the

models on each type of datasets, and solid bars represent groups of classifiers with no

significantly difference. We can observe that IQR has the highest ranked than other.

AR not only has the lowest ranked but also significantly difference from IQR, MAS,

Z-Score, and SA.
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4.4.2 Simple Ensemble Results

Table 4.4 displays the results of various ensemble models using different combination

techniques. Ensem7 demonstrated the best performance in detecting anomalies in

the DIV002 dataset, with an F1-score of 0.9247. Ensem7 also performed well in the

DIV006, VLGE13, YOM010, and YOM011 datasets, with F1-scores greater than 0.70.

However, identifying anomalies in the YOM012 dataset was the most challenging for

Ensem7, with a precision of 0.0333 and an F1-score of 0.0645

Top5TP, Top5FN, and Top5Sen demonstrated better performance than Ensem7 on

certain datasets such as DIV002, DIV06, YOM004, YOM09, and YOM011, but their

average F1-score remained lower than that of Ensem7. Top3TP, Top3FN, and Top3Sen

achieved a perfect recall of 1.00, an accuracy of 0.9895, and an F1-score of 0.9947

while detecting anomalies in the DIV002 dataset. However, identifying anomalies in

DIV002, NAN008, VLGE13, and YOM012 proved to be challenging, as evidenced by

their low accuracy and F1-scores. Top5FP and Top5Spec demonstrated the highest

F1-score in DIV002, but their performance was weak in NAN008, VLGE13, YOM009,

and YOM012, with F1-scores below 0.100. Although Top3FP and Top3Spec worked

well on DIV002, they failed to detect any anomalies in NAN008, VLGE13, YOM008,

YOM011, and YOM012.

Top5TP showed the best performance in detecting anomalies in the DIV002 dataset,

with an F1-score of 0.9989. However, there were significant false alarms on several

datasets, including DIV004, NAN008, YOM006, YOM08, and YOM012. Top3TSP

achieved strong results on several datasets with F1-scores above 0.80 but performed

poorly on others, such as the NAN008 dataset, where it had a recall of 1.000, a precision

of 0.0033, and an F1-score of 0.0065.

Ensem7 had the highest average F1-score of 0.5031, followed by Top5TP, Top5FN,

and Top5Sen, which had an average score of 0.4833. Top3Sen had the lowest average

F1-score of 0.2962. While Ensem7 performed better than others in terms of F1-score,

it generated a significant number of false positives on DIV004, NAN001, YOM006, and

YOM012, as evidenced by high recall but very low precision scores.
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Table 4.5: Total and average TSP scores of simple ensemble models.

Station Ensem7 Top5TP Top3TP Top5FN Top3FN Top5FP Top3FP Top5Sen Top3Sen Top5Spec Top3Spec Top5TSP Top3TSP

DIV002 0.49 0.59 0.77 0.59 0.77 0.59 0.44 0.59 0.77 0.59 0.44 0.67 0.77
DIV004 0.49 0.67 0.77 0.67 0.77 0.54 0.44 0.67 0.77 0.54 0.44 0.59 0.77
DIV006 0.54 0.67 0.69 0.67 0.69 0.54 0.44 0.67 0.69 0.54 0.44 0.28 0.77
NAN008 0.95 0.87 0.77 0.87 0.77 0.95 0.44 0.87 0.77 0.95 0.44 0.87 0.69
VLGE13 0.90 0.85 0.77 0.85 0.77 0.49 0.44 0.85 0.77 0.49 0.44 0.87 0.77
YOM001 0.95 0.82 0.74 0.82 0.74 0.95 1.00 0.82 0.74 0.95 1.00 0.87 0.85
YOM002 0.90 0.87 0.74 0.87 0.74 0.95 1.00 0.87 0.74 0.95 1.00 0.79 0.77
YOM003 0.90 0.82 0.74 0.82 0.74 0.95 1.00 0.82 0.74 0.95 1.00 0.87 0.85
YOM004 0.59 0.85 0.77 0.85 0.77 0.59 0.59 0.85 0.77 0.59 0.59 0.87 0.69
YOM005 0.49 0.62 0.74 0.62 0.74 0.49 0.44 0.62 0.74 0.49 0.44 0.51 0.85
YOM006 1.00 0.87 0.77 0.87 0.77 0.92 1.00 0.87 0.77 0.92 1.00 0.79 0.69
YOM007 1.00 0.85 0.74 0.85 0.74 1.00 1.00 0.85 0.74 1.00 1.00 0.87 0.77
YOM008 0.90 0.82 0.74 0.82 0.74 1.00 0.44 0.82 0.74 1.00 0.44 0.85 0.87
YOM009 0.49 0.64 0.74 0.64 0.74 0.38 0.54 0.64 0.74 0.38 0.54 0.51 0.77
YOM010 0.49 0.64 0.74 0.64 0.74 0.49 0.44 0.64 0.74 0.49 0.44 0.51 0.62
YOM011 0.49 0.64 0.74 0.64 0.74 0.49 0.44 0.64 0.74 0.49 0.44 0.67 0.77
YOM012 0.90 0.87 0.77 0.87 0.77 0.95 0.44 0.87 0.77 0.95 0.44 0.87 0.69

Total 12.44 12.95 12.77 12.95 12.77 12.26 10.49 12.95 12.77 12.26 10.49 12.28 12.95

Average 0.73 0.76 0.75 0.76 0.75 0.72 0.62 0.76 0.75 0.72 0.62 0.72 0.76

Std. 0.22 0.11 0.02 0.11 0.02 0.24 0.26 0.11 0.02 0.24 0.26 0.18 0.07

Table 4.5 presents the TSP score for each of the simple ensemble models, indicating

that the simple ensembles generally perform better than the individual models for

detecting anomalies. The Top5TP, Top5FN, Top5Sen, and Top3TSP models achieved

the highest average TSP score of 0.76, while the Top3FP and Top2Spec models had

the lowest average TSP score of 0.62. However, the results from the CD diagram in

Figure 4.2 revealed that Top5TP, Top5FN, and Top3Sen had the highest performance

rankings, with a significant difference from Top3Sen, Top3FN, Top3TP, Top3Spec,

and Top3FP. Therefore, it can be concluded that the Top5TP, Top5FN, and Top3Sen

models are the most effective in detecting anomalies among the simple ensemble models.

Figure 4.2: Critical difference diagram for 13 different simple ensemble models.

4.4.3 Complex Ensemble Results

Table 4.6 displays the performance results of several complex ensemble models. EoE13

achieved an F1-score greater than 0.75 on several datasets, but it struggled with detect-

ing anomalies in the NAN008, YOM008, and YOM012 datasets. EoE11 performed sim-

ilarly to EoE13, except for detecting anomalies in the YOM004 and YOM005 datasets,
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where it performed poorly. On the other hand, EoE9 outperformed EoE11 by a sig-

nificant margin on the YOM004 and YOM006 datasets, with its F1-score being 2-4

times better. EoE7 generated the lowest F1-score on the DIV004 dataset, but it out-

performed EoE13, EoE11, and EoE7 in detecting anomalies in the YOM008 dataset.

Finally, EoE5 and EoE3 struggled to detect anomalies in the YOM012 dataset, as

evidenced by their high recall but low precision scores.

Table 4.6: The performance indexes of 6 complex ensemble models on telemetry water
level data. (Since some models cannot detect anomalies in particular datasets, com-
puting those three metrics is meaningless.)

Method EoE13 EoE11 EoE9

Station Recall Precision F1 Recall Precision F1 Recall Precision F1

DIV002 0.9996 0.9938 0.9967 0.9996 0.9938 0.9967 1.0000 0.9926 0.9963
DIV004 0.9917 0.0772 0.1433 0.9917 0.0772 0.1433 0.9917 0.0693 0.1295
DIV006 0.8865 0.9621 0.9227 0.8865 0.9621 0.9227 0.8865 0.9621 0.9227
NAN008 1.0000 0.0078 0.0155 1.0000 0.0078 0.0155 1.0000 0.0078 0.0155
VLGE13 1.0000 0.0718 0.1340 1.0000 0.0718 0.1340 1.0000 0.0635 0.1195
YOM001 - - - - - - - - -
YOM002 - - - - - - - - -
YOM003 - - - - - - - - -
YOM004 1.0000 0.7731 0.8720 1.0000 0.0718 0.1340 0.4130 0.9744 0.5802
YOM005 0.9683 0.6862 0.8032 0.9683 0.6173 0.7540 0.9810 0.6185 0.7587
YOM006 1.0000 0.1600 0.2759 1.0000 0.1600 0.2759 1.0000 0.2667 0.4211
YOM007 - - - - - - - - -
YOM008 1.0000 0.0247 0.0482 1.0000 0.0247 0.0482 1.0000 0.0247 0.0482
YOM009 0.7555 0.4889 0.5937 0.7555 0.4890 0.5937 0.8275 0.4890 0.6147
YOM010 0.9001 0.6147 0.7305 0.9056 0.5955 0.7185 0.9219 0.5850 0.7158
YOM011 0.9919 0.6696 0.7995 0.9919 0.6595 0.7922 0.9984 0.5870 0.7393
YOM012 1.0000 0.0065 0.0130 1.0000 0.0065 0.0130 1.0000 0.0065 0.0130

Average 0.9578 0.3786 0.4460 0.9583 0.3119 0.3787 0.9183 0.3879 0.4232

Std 0.0753 0.3538 0.3709 0.0750 0.3317 0.3477 0.1689 0.3642 0.3388

Method EoE7 EoE5 EoE3

Station Recall Precision F1 Recall Precision F1 Recall Precision F1

DIV002 1.0000 0.9895 0.9947 1.0000 0.9895 0.9947 1.0000 0.9895 0.9947
DIV004 1.0000 0.0113 0.0223 0.9917 0.0772 0.1433 0.9917 0.0772 0.1433
DIV006 0.8865 0.9621 0.9227 0.8865 0.9621 0.9227 0.8865 0.9621 0.9227
NAN008 1.0000 0.0078 0.0155 1.0000 0.0625 0.1176 1.0000 0.0625 0.1176
VLGE13 1.0000 0.0718 0.1340 1.0000 0.0718 0.1340 1.0000 0.5089 0.6746
YOM001 - - - - - - - - -
YOM002 - - - - - - - - -
YOM003 - - - - - - - - -
YOM004 1.0000 0.9892 0.9946 1.0000 0.7797 0.8762 1.0000 0.7797 0.8762
YOM005 1.0000 0.6163 0.7626 1.0000 0.1188 0.2124 1.0000 0.1188 0.2124
YOM006 1.0000 0.2667 0.4211 1.0000 0.2667 0.4211 1.0000 0.2667 0.4211
YOM007 - - - - - - - - -
YOM008 1.0000 0.1176 0.2105 1.0000 0.1250 0.2222 1.0000 0.1538 0.2667
YOM009 0.9992 0.4836 0.6518 0.7555 0.4890 0.5937 0.7555 0.4890 0.5937
YOM010 0.9737 0.4009 0.5680 0.9737 0.3509 0.5159 0.9737 0.3509 0.5159
YOM011 0.9984 0.5870 0.7393 0.9919 0.6595 0.7922 0.9984 0.5950 0.7456
YOM012 1.0000 0.0065 0.0130 1.0000 0.0333 0.0645 1.0000 0.0357 0.0690

Average 0.9882 0.3767 0.4546 0.9666 0.3330 0.4180 0.9672 0.3667 0.4632

Std 0.0329 0.3581 0.3664 0.0739 0.3186 0.3158 0.0741 0.3038 0.3025
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Table 4.7: Total and average TSP scores of complex ensembles.

Station EoE13 EoE11 EoE9 EoE7 EoE5 EoE3

DIV002 0.56 0.56 0.56 0.83 0.83 0.83
DIV004 0.89 0.89 0.67 0.72 0.89 0.89
DIV006 1.00 1.00 1.00 1.00 1.00 1.00
NAN008 0.89 0.89 0.89 0.89 1.00 1.00
VLGE13 0.94 0.94 0.72 0.94 0.94 1.00
YOM001 0.94 0.94 0.94 0.94 0.94 1.00
YOM002 0.83 0.83 0.83 0.94 0.94 1.00
YOM003 0.83 0.83 0.83 0.94 0.94 1.00
YOM004 0.72 1.00 0.44 1.00 0.83 0.83
YOM005 0.56 0.50 0.56 0.83 0.78 0.78
YOM006 0.78 0.78 1.00 1.00 1.00 1.00
YOM007 1.00 1.00 1.00 1.00 1.00 1.00
YOM008 0.83 0.83 0.83 0.89 0.94 1.00
YOM009 0.61 0.78 0.67 0.72 0.78 0.78
YOM010 0.44 0.50 0.56 0.83 0.78 0.78
YOM011 0.67 0.61 0.78 0.78 0.61 0.83
YOM012 0.89 0.89 0.89 0.89 0.94 1.00

Total 13.39 13.78 13.17 15.17 15.17 15.72

Average 0.79 0.81 0.77 0.89 0.89 0.92

Std. 0.17 0.17 0.18 0.09 0.11 0.10

The TSP scores of complex ensembles are presented in Table 4.7 revealing that EoE3

is the top-performing model with an average TSP score of 0.92. EoE5 and EoE7 are

closely behind with the same average TSP score of 0.89. EoE3 outperformed other

models in 14 out of 17 stations, achieving a full score in 10 of those 14 stations. This

finding is supported by CD diagram in Figure 4.3, which shows that EoE3 had the

highest rank, followed by EoE5 and EoE7. Additionally, EoE3 is not only the best-

performing model, but it is also significantly different from EoE9 and EoE13.

Figure 4.3: Critical difference diagram for complex ensemble models.

Finally, CD diagram was created using a set of 26 models, which included 7 statistical

models, 13 simple ensemble models, and 6 complex ensemble models., as depicted in

Figure 4.4. Based on the results, EoE3 is the best performing model, while AR is

the least effective. The complex ensemble models performed better than the simple

ensemble models and statistical models. Among the statistical models, IQR was not

only the best but also outranked some of the simple ensemble models such as Top3Spec
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and Top3FP. Additionally, EoE3, EoE7, and EoE5 showed significant performance

differences compared to the other 7 statistical models.

Figure 4.4: Critical difference diagram for all models.

4.5 Discussion

Regarding individual models, although several models had high recall scores, their

precision was insufficient, resulting in a high rate of false alarms and a low F1-score.

Further analysis revealed that data from several stations demonstrated high fluctua-

tions or erratic patterns due to external factors such as a water shortage in a part

of the river during the dry season, causing the sensor to detect the riverbed or any

obstacle instead of the water. As a result, the water level measurements provided

inaccurate measurements, making it difficult for humans to determine the veracity of

the data, which in turn resulted in the models struggling to learn from and gener-

alise from this data. This was reflected in the high false-negative values for stations

DIV006, YOM009, and YOM010 across all models. Despite this, some models per-

formed well in detecting normal data, which was useful for retaining relevant data in

the datasets. However, at some stations, such as DIV004, NAN008, and YOM012, the

normal data was greatly outnumbered by anomalies, resulting in poor accuracy and

significant standard deviations.

On the other hand, the simple ensemble model outperformed individual models. It
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is evident that the performance of an ensemble model is not based on the number of

members but on the selection strategies used to construct the ensemble. For example,

the seven-member ensemble (Ensem7) performed worse than the three-member en-

semble (Top3TSP), while the five-member ensemble (Top5TP, Top5FN, and Top5Sen)

performed better than the three-member ensemble (Top3TSP).

Moreover, the results showed that complex ensemble models outperformed both indi-

vidual and simple ensemble models. Furthermore, the selection procedures used were

found to be more critical than the total number of models used.

4.6 Summary

In this research, we applied statistical model for detecting anomaly in water level data

from telemetry systems. We produced a modified a sliding window algorithm and

devised a total scoring function (TSP) by combining 3 measures - TP, FP and FN, to

assess the overall performance of a model.

The classic models, simple ensembles and complex ensembles were tested on the data

from 17 stations, the results show that the classic model IQR is the best individual

model at detecting anomalies but poor for classifying normal data. In general simple

ensembles are more accurate and consistent than individual models. The best simple

ensemble (Top5TP, Top5FN, and Top5Sen) outperformed the best individual model

IQR by achieving the greater accuracy on detecting anomaly data and more accurate

results for normal data than IQR. Further improvements were produced by our complex

ensembles. It is clear that the complex ensemble EoE3, with only three member models,

beats both the best individual model IQR and the best simple ensemble with clear

margins in detecting anomalies and also normal data.

Even though statistical methods have been effective in many domains, they may not be

sufficient for anomaly detection in telemetry water level data. Therefore, it is impor-

tant to explore alternative solutions. One promising approach is to use reinforcement

learning models, which have been shown to effectively learn from complex data sets

and identify patterns that are difficult to detect using traditional statistical methods.
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With the use of reinforcement learning models, we can improve the accuracy and re-

liability of anomaly detection in telemetry water level data. In the next chapter, we

will develop and apply reinforcement learning models for detecting anomalies in the

telemetry water level data.
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5.1 Introduction

In Chapter 4, we first studied seven statistics-based models for detecting the anomalies.

Although an individual model can be used to identify anomalies, it still produces too

many false alarms since the water level will dramatically rise before the flood, and

therefore the water level in such a scenario is notably different from the other data

points. As a result, the majority of statistical models will identify such points as

anomalous. We also created two ensemble methods to improve the performance of

individual models. The first ensemble method is simple as it just combines some

selected models with majority voting as its decision making function. However, the

test results showed that the simple ensemble models did not work well enough, even

though they were usually better than most of the basic individual models. So, we then

developed a complex ensemble method. It basically builds an ensemble of some simple

ensembles selected from the candidates with some criteria. The findings indicate that

a complex ensemble can improve the performance of individual models in recognising
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both abnormal and normal data.

Reinforcement Learning (RL) is an algorithm that imitates the human learning process.

It is based on the self-learning process in which an agent learns by interacting with the

environment without any assumptions or rules. With the advantage of being able to

learn on their own, it can identify unknown anomalies (Pang et al., 2020), which gives

it an edge over other models. RL has been used in some studies to detect anomalies

in data (Huang et al., 2018; Hsu and Matsuoka, 2020; Lin et al., 2020). However,

we discovered that none of the RL methods have been applied to identify anomalies

in telemetry water level data. We wonder whether RL is applicable for identifying

abnormalities in telemetry water level data. To answer this question, we conducted an

intensive investigation by evaluating the accuracy of RL models. Furthermore, even

if the final RL models perform well on training data, there is no guarantee that they

will also perform well on testing data. Then we proposed a strategy to build some

ensembles by selecting some suitable RL models.

5.2 Methods

This section describes firstly how reinforcement learning is constructed for detecting

anomalies in water level telemetry data; and then how an ensemble can be built ef-

fectively by selecting suitable individual models to improve the accuracy of anomaly

detection.

5.2.1 Reinforcement Learning

RL is a branch of machine learning and it is one of the most active areas of research in

artificial intelligence (AI), which is growing rapidly with a wide variety of algorithms.

It is goal-oriented learning. The learner, or agent, learns from the result, or rewards,

of its actions without being taught what actions to take. The way in which the agent

decides which action to perform depends on the policy, which can be in the form of

a lookup table or a complex search process. So, a policy function defines the agent’s

behaviour in an environment.
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Most techniques that are used to find the optimal policy for resolving the RL problem

are based on the Markov decision process (MDP), whereby the probability of next state

s′ depends only on the current state s and action a. It is represented by five important

variables (Atienza, 2018):

• A finite set of states (S), which may be discrete or continuous.

• A finite set of actions (A). The agent takes an action a from the action set A,

a ∈ A.

• A transition probability (T (s, a, s′)), which is the probability to get from state s

to another state s′ with action a.

• A reward probability (R(s, a, s′) ∈ R), which is the reward after going from state

s to another state s′ with action a.

• A discount factor(γ), which focuses on controls the important immediate and

future rewards and lies within o to 1, γ ∈ [0, 1].

The goal of learning is to maximise the expected cumulative reward in each episode.

The agent should try to maximise the reward from any state s. The total reward R

at state s as the sum of current rewards and the total discounted reward at the next

state s′, which can be represented as follow:

R(s) = R(s, a, s′) + γR(s′)

The algorithm that has been widely used in RL is Q-learning. It tries to maximize

the values from Q-function, as shown in Equation (5.2.1), which can be approximated

using the Bellman equation, which represents how good it is for an agent to perform a

particular action in a state s.

NewQ(s, a) = Q(s, a) + α(r + γ maxQ′(s′, a′) −Q(s, a)) (5.2.1)

where α is the learning rate, and maxQ′(s′, a′) is the highest Q value between possible

actions from the new state s′.
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Deep Q-Learning Network (DQN)

Q-learning has a limitation: it does not perform well with many states and actions.

Furthermore, going through all the actions in each state would be time-consuming.

Therefore, DQN (Mnih et al., 2015) has been developed to solve those issues by using

a neural network (NN). The Q-value is approximated by an NN with weights w, instead

of finding the optimal Q-value through all possible state-action pairs, and errors are

minimized through gradient descent.

An agent usually does not know what action is best at the beginning of training. It

may select the greatest action that is the best based on history (exploitation) or may

explore new possibilities that may be better or worse (exploration). However, when

should an agent “exploit” rather than “explore”? This remains a challenge since if the

chosen action results in a faulty selection, an agent may get stuck in incorrect learn-

ing for a time. The epsilon-greedy algorithm is a simple way to balance exploration

and exploitation. It does this by randomly choosing between exploration and exploita-

tion and using the hyperparameter ϵ to switch between random action and Q-values,

as shown in Equation (5.2.2). The normal procedure is to begin with ϵ = 1.0 and

gradually lower it to a small value, such as 0.01.

a =


select a random action a with probability ϵ

argmaxaQ(s, a) otherwise

(5.2.2)

Moreover, we make a transition from one state s to the next state s′ by performing

some action a and receive a reward r as T (s, a, s′). So, neural networks may overfit with

correlated experience from those transitions. So, we saved the transition information

in a buffer called replay memory and trained the DQN with a random transition in

replay memory instead of training with last transitions. It will reduce the correlated

experience of learning each time, and then it will reduce the overfitting of the model.

84



Chapter 5 – Anomaly Detection with Reinforcement Learning and Their Ensemble

Figure 5.1: Overall process of DRL.

Deep Reinforcement Learning Model (DRL)

The action of the DRL agent is to determine whether or not a data point is an ab-

normality. We assigned a value of 1 to the anomaly class and a value of 0 to the

normal class. DQN was chosen as our reinforcement learning strategy. When state

s is received, an MLP is used as the RL agent’s brain to generate Q-value, which is

then followed by the Q function. The epsilon decay approach is used for exploration

and exploitation. In order to explore the entire environment space, we use the greedy

factor ϵ to determine whether our DRL agent should follow the Q function or randomly

select an action. The overall process of DRL is depicted in Figure 5.1.

For each iteration, DQN receives the set of states S and predicts the label for training

the DRL model. The transition is stored in replay memory. In each epoch, a mini

batch of replay memory is sampled and used to train the model for loss minimization.

Moreover, whether the model will learn well or not depends on the rewards function.

The good reward function has an effect on the model’s performance. If we offer a high

reward for correctly identifying normal data in datasets, DRL may identify all data as

normal in order to get the highest score. If, on the other hand, we give a high reward

for finding outliers, DRL might label all data as outliers to get the best score.

Since our datasets are imbalanced, we will give the reward of the minority class higher

than the majority class and give the penalty when our model misclassifies (Lin et al.,
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2020). This will impact on the results in Q-values, then the model will select the best

action to maximize the rewards. The reward function is defined below

rewards =


A predicted anomaly correct

B predicted wrong

C predicted normal correct

(5.2.3)

A general issue in training neural networks is to determine how long they should be

trained. Too few epochs may result in the model learning insufficiently, whereas too

many epochs may result in the model overfitting. So, the performance of the model

must be monitored during training by evaluating it on a validation data set at the end

of each epoch and updating the model if the performance of the model on a validation

is better than at the previous epoch. In our experiments, we selected 5 criteria as

the conditions for generating the models: four performance metrics and the maximum

number of epochs. The four measures are F1-score, the reward of each epoch, accuracy,

and validation loss values. In the end, we will have five models: the finished training

model (DRL), the models with the highest F1-score (DRLF1), the models with the

highest rewards (DRLRwd), the model with the highest accuracy (DRLAcc), and the

model with the lowest validation loss values (DRLV alid).

Ensemble Methods

In general, the capacity of an individual model is limited and may have only learned

some parts of the problem, and hence may make mistakes in the areas where it has

not learned sufficiently. Therefore, it can be useful to combine some individual models

to form an ensemble to allow them to work collectively to compensate for each other’s

weaknesses. Many studies (Wang, 2008; Wan et al., 2021; Casciaro et al., 2021; Marathe

et al., 2021) have shown that if an ensemble is built with diverse models and appro-

priate decision-making functions, it can improve the accuracy of classification and also

reliability. In our research, we created multiple ensembles by selecting suitable DRL

models that had been generated from the previous experiments. We investigated two

combining methods to aggregate the outputs from the member models of an ensemble:
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simple majority voting and weighted voting algorithms.

5.3 Evaluation

5.3.1 Datasets

Since the DRL algorithm takes a lot of time for training on the computing facilities

that we had, we were limited to consider some relatively small datasets. After data

preprocessing, the 8 stations from the HII telemetry water level station were chosen

for use in this experiment, including CPY011, CPY012, CPY013, CPY014, CPY015,

CPY016, CPY017, and YOM009. We chose the datasets from May and June for

CPY011, CPY012, CPY013, CPY015, CPY016, and CPY017 in 2016 and similar

months in 2015 for CPY014 and YOM009 because they have a low percentage of

missing data. Figure 5.2 shows the water levels of these eight stations. It is visually

clear that station YOM009 has very different behaviour from the others because it is

located in a different region.

All the data are normalised and divided into 3 subsets, with the first 60% of a time series

for training, the next 20% for validating , and the last 20% for testing, respectively.

Table 5.1 shows the demographics of one partition of the data from each station. As

can be seen, in general, the rates of anomalies are quite low for most stations, but the

variances are considerably large. For example, they varied from 0.14% to 7.22% in the

training data.

Table 5.1: Demographic summary of the water level data of 8 stations used in this re-
search.

Code
Training Validating Testing Total

Rec. Anomaly Rec. Anomaly(%) Rec. Anomaly(%) Rec. Anomaly(%)

CPY011 5142 16(0.31%) 1713 7(0.41%) 1714 7(0.41%) 8569 30(0.37%)
CPY012 5142 101(1.96%) 1713 41(2.39%) 1714 34(1.98%) 8569 176(2.05%)
CPY013 5142 97(1.89%) 1713 33(1.93%) 1714 28(1.63%) 8569 158(1.84%)
CPY014 5142 49(0.95%) 1713 7(0.41%) 1714 4(0.23%) 8569 60(0.70%)
CPY015 5142 7(0.14%) 1713 15(0.88%) 1714 34(1.98%) 8569 56(0.65%)
CPY016 5142 367(7.14%) 1713 220(12.84%) 1714 107(6.24%) 8569 694(8.10%)
CPY017 5142 42(0.82%) 1713 2(0.12%) 1714 3(0.18%) 8569 47(0.55%)
YOM009 5142 417(7.22%) 1713 173(10.97%) 1714 81(3.79%) 8569 624(7.28%)

Avg. 5142 137(2.66%) 1713 62(3.63%) 1714 37(2.17%) 8569 231(2.69%)
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(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 5.2: Water level data from eight stations: CPY011, CPY012, CPY013, CPY014,
CPY015, CPY016, CPY017, and YOM009 (a-h). The different colours show the par-
titions of the data for training (blue), validation (orange) and testing (green). The
anomalies are indicated by red crosses, x.

88



Chapter 5 – Anomaly Detection with Reinforcement Learning and Their Ensemble

5.3.2 Evaluation metrics and Comparison methods

Since our main goal is to divide the telemetry water level data into “normal” and

“abnormal” groups, we decided to use commonly used performance metrics, such as

Recall, Precision, and F1-score, to measure how well our models worked. These mea-

sures allowed us to evaluate the accuracy of the models in detecting anomalies while

minimising false positives and negatives. To enable statistical comparisons between

the models, we utilised a CD diagram, which is a powerful tool for identifying sig-

nificant differences between different models’ performances. The CD diagram allowed

us to determine which models performed significantly better than others and to make

informed decisions about which models to select for the anomaly detection task.

5.3.3 Parameter setting

Four sets of experiments

We designed four sets of experiments to test DRL models and ensemble models. (1) to

train various DRL models and test them with the different data sampled from the same

water level monitoring stations; (2) to train various DRL models with the data from

a station and then test them with the data from other stations; (3) to build several

ensembles by selecting different numbers of the DRL models and test them with the

testing data from the same stations; and (4) to test the ensembles with the data from

different stations. The purpose of doing these cross-station testing is to check and

evaluate the generalisation ability of the DLR models and the ensembles.

Parameter Setting

For the DRL model, a multilayer perceptron network was used in the Q-network with

the following parameters: the number of input nodes in the input layer was 36, one

hidden layer with 18 nodes, and 2 nodes in the output layer. Moreover, epsilon-greedy

policy (ϵ) was used for exploration from 0.1 to 0.0001. The size of replay memory

is 50,000, discount factor of intermediate rewards γ was 0.99. The Adam algorithm

was used to optimise the parameters of Q-Network and the learning rate was 0.001.

The batch size was 256, training with 100, 500, 1000, 5000, and 10,000 episodes.
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The episode was over when the number of incorrectly identified anomalies was greater

than the number of certain anomalies in the training set or had been trained on all the

samples in the training set. We set the reward function parameters for A, B, and C

to be 0.9, −0.1, and 0.1, respectively. Furthermore, the window size of 6 was chosen

to save time during the training process.

For comparison, MLP and LSTM were used with the identical structures as we used

in DRL. They were trained using 100 epochs with early stopping to avoid overfitting.

For each setting, the experiments were repeated 10 times with variations, and then the

means and standard deviations of the results are reported in the next section.

5.4 Results

5.4.1 Accuracies of DRL models

For each station, various DRL models were generated over a range of epochs from 100

to 10,000, with the intention of investigating how well our proposed DRL method learns

at the different points of training. The results are shown in Table 5.2.

Using the CPY011 dataset, we observed that DRL and DRLRwd with 1000 training

iterations not only earned the highest F1-score of 0.8333, 0.7143 recall, and 1.0000

precision but also provided the highest average F1-score of 0.7433. However, after 1000

epochs of training, the performance of all models, with the exception of DRLV alid

decreased and then rose when 10,000 epochs were used.

The top models to identify anomalies on the CPY012 dataset are DRLV alid, with a

maximum F1-score of 0.7826 after 10,000 training epochs. However, DRLAcc obtained

the greatest average F1-score with 0.7234. Meanwhile, 10,000 training epochs with

DRLF1 and DRLAcc delivered the highest F1-score for identifying anomalies in CPY013

data, at 0.8000 F1-score. Furthermore, DRLF1 provided the highest average F1-score

of 0.6963.

90



Chapter 5 – Anomaly Detection with Reinforcement Learning and Their Ensemble

Table 5.2: The performance of DRL when increasing the learning epochs (the best
F1-score of each row shown in bold).

Station Epochs
DRL DRLF1 DRLRwd DRLAcc DRLV alid

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 0.5455 0.6667 0.8571 0.7500 0.8000 0.8571 0.5455 0.6667 0.8571 0.7500 0.8000 0.7143 0.6250 0.6667
500 0.8571 0.7500 0.8000 0.8572 0.5455 0.6667 0.8571 0.7500 0.8000 0.8571 0.5455 0.6667 0.8571 0.6667 0.7500

1000 0.7143 1.0000 0.8333 0.8571 0.6667 0.7500 0.7143 1.0000 0.8333 0.8571 0.6667 0.7500 0.4286 0.2727 0.3333
5000 0.7143 0.6250 0.6667 0.8571 0.5000 0.6316 0.7143 0.6250 0.6667 0.8571 0.5000 0.6316 0.7143 0.7143 0.7143

10,000 0.8571 0.6667 0.7500 1.0000 0.5833 0.7368 0.8571 0.6667 0.7500 1.0000 0.5833 0.7368 0.8571 0.4000 0.5455

Avg 0.8000 0.7174 0.7433 0.8857 0.6091 0.7170 0.8000 0.7174 0.7433 0.8857 0.6091 0.7170 0.7143 0.5357 0.6020
Std 0.0782 0.1743 0.0760 0.0639 0.0997 0.0674 0.0782 0.1743 0.0760 0.0639 0.0997 0.0674 0.1749 0.1901 0.1689

CPY012 100 0.7059 0.4000 0.5106 0.7647 0.7027 0.7324 0.6764 0.3898 0.4946 0.7059 0.6857 0.6957 0.7647 0.7027 0.7324
500 0.7647 0.6341 0.6933 0.7941 0.7297 0.7606 0.7353 0.6250 0.6757 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606

1000 0.6765 0.6571 0.6667 0.7647 0.6667 0.7123 0.6176 0.6000 0.6087 0.7647 0.6667 0.7123 0.7647 0.4062 0.5306
5000 0.7059 0.7059 0.7059 0.6176 0.6176 0.6176 0.7059 0.7273 0.7164 0.6765 0.6970 0.6866 0.7059 0.7273 0.7164

10,000 0.6471 0.7586 0.6984 0.7059 0.8000 0.7500 0.7059 0.7742 0.7385 0.7059 0.8276 0.7619 0.7941 0.7714 0.7826

Avg 0.7000 0.6311 0.6550 0.7294 0.7033 0.7146 0.6882 0.6233 0.6468 0.7294 0.7213 0.7234 0.7647 0.6675 0.7045
Std 0.0436 0.1378 0.0821 0.0702 0.0684 0.0572 0.0446 0.1489 0.0984 0.0483 0.0637 0.0357 0.0360 0.1481 0.1005

CPY013 100 0.8710 0.3506 0.5000 0.8710 0.6136 0.7200 0.9032 0.3836 0.5385 0.8710 0.6136 0.7200 0.6774 0.1214 0.2059
500 0.6774 0.3684 0.4773 0.8065 0.5000 0.6173 0.7419 0.3966 0.5169 0.8065 0.5000 0.6173 0.8387 0.4906 0.6190

1000 0.8065 0.5952 0.6849 0.8065 0.5682 0.6667 0.7097 0.6111 0.6567 0.8065 0.5682 0.6667 0.9677 0.5556 0.7059
5000 0.7742 0.5714 0.6575 0.6774 0.6774 0.6774 0.8065 0.5682 0.6667 0.6774 0.6364 0.6562 0.6774 0.5250 0.5915

10,000 0.7097 0.6667 0.6875 0.8387 0.7647 0.8000 0.7742 0.6857 0.7273 0.8387 0.7647 0.8000 0.7419 0.6571 0.6970

Avg 0.7678 0.5105 0.6014 0.8000 0.6248 0.6963 0.7871 0.5290 0.6212 0.8000 0.6166 0.6920 0.7806 0.4699 0.5639
Std 0.0770 0.1423 0.1039 0.0736 0.1015 0.0685 0.0743 0.1337 0.0899 0.0736 0.0978 0.0706 0.1237 0.2045 0.2061

CPY014 100 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
500 0.7500 0.3750 0.5000 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571

1000 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000 0.7500 0.3750 0.5000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000
5000 0.7500 0.3333 0.4615 0.7500 0.5000 0.6000 0.7500 0.3333 0.4615 0.7500 0.5000 0.6000 0.7500 0.4286 0.5455

10,000 0.2500 0.1667 0.2000 0.7500 0.6000 0.6667 0.2500 0.1667 0.2000 0.7500 0.6000 0.6667 0.7500 0.4286 0.5455

Avg 0.6500 0.4000 0.4823 0.7500 0.6200 0.6733 0.6500 0.5250 0.5537 0.7500 0.6200 0.6733 0.7500 0.6214 0.6596
Std 0.2236 0.2137 0.1952 0.0000 0.1255 0.0751 0.2236 0.3405 0.2584 0.0000 0.1255 0.0751 0.0000 0.2495 0.1385

CPY015 100 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.1765 0.3529 0.2353
500 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.1471 0.3846 0.2128

1000 0.3824 0.4483 0.4127 0.3824 0.5000 0.4333 0.3824 0.4483 0.4127 0.3824 0.5000 0.4333 0.4118 0.4516 0.4308
5000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137

10,000 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127

Avg 0.2883 0.4609 0.3477 0.3471 0.5135 0.4134 0.2883 0.4609 0.3477 0.3471 0.5135 0.4134 0.2706 0.4216 0.3211
Std 0.0868 0.0116 0.0604 0.0323 0.0124 0.0219 0.0868 0.0116 0.0604 0.0323 0.0124 0.0219 0.1202 0.0503 0.0995

CPY016 100 0.6636 0.3100 0.4226 0.5981 0.5203 0.5565 0.6916 0.2960 0.4146 0.5981 0.5203 0.5565 0.6168 0.4889 0.5455
500 0.6636 0.2763 0.3901 0.6355 0.4048 0.4945 0.6449 0.2727 0.3833 0.5981 0.5161 0.5541 0.5047 0.5094 0.5070

1000 0.6355 0.2547 0.3636 0.5981 0.5333 0.5639 0.6449 0.2644 0.3750 0.6168 0.5641 0.5893 0.6168 0.4342 0.5097
5000 0.5888 0.2727 0.3728 0.5888 0.6238 0.6058 0.3084 0.2089 0.2491 0.5421 0.6105 0.5743 0.5234 0.2902 0.3733

10,000 0.5794 0.2366 0.3360 0.6168 0.4177 0.4981 0.6355 0.2208 0.3277 0.6262 0.5447 0.5826 0.6168 0.4177 0.4981

Avg 0.6262 0.2701 0.3770 0.6075 0.5000 0.5438 0.5851 0.2526 0.3499 0.5963 0.5511 0.5714 0.5757 0.4281 0.4867
Std 0.0402 0.0274 0.0321 0.0187 0.0904 0.0472 0.1562 0.0366 0.0644 0.0326 0.0384 0.0156 0.0567 0.0858 0.0659

CPY017 100 1.0000 0.7500 0.8571 1.0000 0.5000 0.6667 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
500 1.0000 0.7500 0.8571 1.0000 0.5000 0.6667 1.0000 0.7500 0.8571 1.0000 0.3750 0.5455 0.6667 0.5000 0.5714

1000 1.0000 0.2143 0.3529 1.0000 0.7500 0.8571 1.0000 0.2000 0.3333 1.0000 0.7500 0.8571 0.0000 0.0000 -
5000 1.0000 0.5000 0.6667 1.0000 0.4286 0.6000 1.0000 0.5000 0.6667 1.0000 0.4286 0.6000 1.0000 0.3333 0.5000

10,000 0.6667 0.6667 0.6667 0.6667 0.2857 0.4000 0.6667 0.6667 0.6667 1.0000 0.6000 0.7500 0.6667 0.6667 0.6667

Avg 0.9333 0.5762 0.6801 0.9333 0.4929 0.6381 0.9333 0.5733 0.6762 1.0000 0.5807 0.7219 0.6667 0.4500 0.6488
Std 0.1491 0.2266 0.2062 0.1491 0.1683 0.1641 0.1491 0.2323 0.2140 0.0000 0.1755 0.1443 0.4082 0.2982 0.1547

YOM009 100 0.6308 0.3178 0.4227 0.5692 0.3033 0.3957 0.6462 0.3182 0.4264 0.5692 0.3033 0.3957 0.5692 0.3394 0.4253
500 0.5846 0.2734 0.3725 0.6769 0.3121 0.4272 0.6923 0.3020 0.4206 0.4769 0.4769 0.4769 0.4769 0.4769 0.4769

1000 0.5385 0.2966 0.3825 0.6769 0.2973 0.4131 0.5538 0.3103 0.3978 0.4615 0.3947 0.4255 0.5846 0.3016 0.3979
5000 0.5538 0.1818 0.2738 0.6615 0.3644 0.4699 0.6154 0.2581 0.3636 0.4923 0.4103 0.4476 0.5077 0.4177 0.4583

10,000 0.4769 0.2627 0.3388 0.5692 0.2741 0.3700 0.4769 0.2605 0.3370 0.5385 0.2917 0.3784 0.4308 0.4308 0.4308

Avg 0.5569 0.2665 0.3581 0.6307 0.3102 0.4152 0.5969 0.2898 0.3891 0.5077 0.3754 0.4248 0.5138 0.3933 0.4378
Std 0.0570 0.0519 0.0558 0.0565 0.0334 0.0373 0.0839 0.0285 0.0382 0.0449 0.0776 0.0395 s0.0640 0.0712 0.0306

With just 500 epochs of training on CPY014 data, DRLRwd and DRLV alid delivered

the best F1-score of 0.8571. However, the maximum average F1-score achieved by

DRLF1 and DRLAcc was just 0.6733. When looking at the results on CPY015 data,

the best models are DRLF1 and DRLAcc. This is shown by the fact that their F1-score

were the highest in many training epochs.

DRLAcc was the best model for detecting anomalies in CPY016 data since it not

only had the greatest F1-score in almost every training epoch but also had the highest

average F1-score of 0.5714. Meanwhile, every model scored the best F1-score of 0.8571,
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100 percent recall, and 0.7500 accuracy when trained with 100 epochs on CPY017,

with the exception of the DRLF1 model, which achieved just 0.6667 F1-score. While

the best models for detecting anomalies on YOM009 are DRLAcc and DRLV alid, which

both have the same F1-score of 0.4769, the worst models are DRL while training with

5000 iterations at a 0.2728 F1-score, 0.5538 recall, and 0.1818 precision.

Figure 5.3 shows the comparison of the critical differences between the different DRL

models. The number associated with each algorithm is the average rank of the DRL

models on each type of dataset, and solid bars represent groups of classifiers with no

significant difference. There is no statistically significant difference across the mod-

els, with DRLAcc ranking first, followed by DRLF1, DRL, DRLRwd, and DRLV alid

ranking last.

Figure 5.3: A critical difference diagram for 5 different DRL models on different
datasets of telemetry water level data.

Figure 5.4 also shows a line graph of the F1-score as the number of epochs of training

from each model increases. We can observe that as the number of epochs is increased,

the performance of all deep reinforcement learning models using data from CPY012,

CPY013, and CPY015 tends to improve. When training with CPY014 data, on the

other hand, the F1-score of each model tends to stay the same or go down as the number

of epochs goes up. In the case of trained models with CPY016 data, the F1-score of

each model tends to stabilise and slightly decrease, with the exception of DRLV alid,

which tends to grow after 5000 epochs of training. When we looked at the models

that were trained with the CPY017 dataset, the F1-score of DRLF1 went up after

training with 1000 epochs and then went down. Other models, however, went up when

training with more epochs, even though the performance of some models went down

after 1000 epochs, while the F1-score of models that have been trained with CPY011

and YOM009 remained stable when training with more epochs.
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(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 5.4: F1-score when increasing the learning epochs at each station.

Figure 5.5 shows the findings of the best DRL model for each station. We can observe

that the DRL model performs well, capturing the majority of abnormalities in testing

datasets. However, it still did not work well when there were anomalies in data that

changed frequently, like when there were anomalies in YOM009 data between 29 June

and 1 July 2015, and in CPY015 data on 19 June 2016.
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(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 5.5: Anomaly detection from the best DRL model of each station. (a) CPY011
with DRL; (b) CPY012 with DRLV alid; (c) CPY013 with DRLF1; (d) CPY014 with
DRLRwd; (e) CPY015 with DRLF1; (f) CPY016 with DRLF1; (g) CPY017 with DRL;
(h) YOM009 with DRLAcc.

5.4.2 Performance on the Same Station

We evaluated the performance of our techniques with MLP and LSTM models on eight

telemetry water level datasets. The data in each station is first divided into training,

validating, and testing parts in a 6:2:2 ratio. The results were averaged after being

run ten times and then were compared to the averaged DRL models of each station as

shown in Table 5.3.
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Table 5.3: The mean F1-score and standard deviation of all DRL, MLP, and LSTM
models when testing with the dataset from different stations (the best F1-score of each
row is shown in bold).

Station DRL DRLF1 DRLRwd DRLAcc DRLV alid MLP LSTM

CPY011 0.7433 (±0.08) 0.7170 (±0.07) 0.7433 (±0.08) 0.7170 (±0.07) 0.6020 (±0.17) 0.8505 (±0.06) 0.8167 (±0.04)
CPY012 0.6550 (±0.08) 0.7146 (±0.06) 0.6468 (±0.10) 0.7234 (±0.04) 0.7045 (±0.10) 0.7822 (±0.03) 0.7753 (±0.02)
CPY013 0.6014 (±0.10) 0.6963 (±0.07) 0.6212 (±0.09) 0.6920 (±0.07) 0.5639 (±0.21) 0.6998 (±0.03) 0.7265 (±0.02)
CPY014 0.4823 (±0.20) 0.6733 (±0.08) 0.5537 (±0.26) 0.6733 (±0.08) 0.6596 (±0.14) 0.8571 (±0.00) 0.8571 (±0.00)
CPY015 0.3477 (±0.06) 0.4134 (±0.02) 0.3477 (±0.06) 0.4134 (±0.02) 0.3211 (±0.10) 0.2220 (±0.10) 0.3276 (±0.09)
CPY016 0.3770 (±0.03) 0.5438 (±0.05) 0.3499 (±0.06) 0.5714 (±0.02) 0.4867 (±0.07) 0.5651 (±0.14) 0.6252 (±0.06)
CPY017 0.6801 (±0.21) 0.6381 (±0.16) 0.6762 (±0.21) 0.7219 (±0.14) 0.6488 (±0.15) 0.9778 (±0.07) 0.9857 (±0.05)
YOM009 0.3581 (±0.06) 0.4152 (±0.04) 0.3891 (±0.04) 0.4248 (±0.04) 0.4378 (±0.03) 0.2358 (±0.05) 0.2596 (±0.06)

It demonstrated that DRLF1 and DRLAcc had the highest average F1-score for de-

tecting anomalies on CPY015, with F1-score of 0.4133. MLP had the greatest average

F1-score when it came to detecting anomalies on CPY011, CPY012, and CPY014 with

scores of 0.8505, 0.7822, and 0.8571, respectively. On the other stations, LSTM was

the top performing model. According to the CD diagram in Figure 5.6, the best LSTM

model had the greatest ranking of performance, followed by DRLAcc and MLP.

Figure 5.6: A critical difference diagram of each model.

Since RL models need time to learn until they have enough knowledge to do their task,

time costing is the one important thing that we need to be interested in. We calculate

the time spent by the best deep learning models (BDRL) and comparative models,

as shown in Table 5.4. The MLP model requires the least training time per epoch,

with an average of 0.30 seconds, followed by the LSTM model at 0.64 seconds, and the

DRL model at 17.56 seconds. For MLP and LSTM training with early stopping, they

needed an average of 12 and 15 training epochs, respectively, while our method requires

around 4,638 epochs to get optimal results. It means that the MLP model took an

average of 2.97 seconds to train, while LSTM took 9.20 seconds and DRL took an

average of 78,756 seconds, which is about 22 hours.
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Table 5.4: The number of training epochs and the time spent on each epoch for
each model.

Station
Training Epochs Time(s./epochs) Total Time(s.)

MLP LSTM BDRL MLP LSTM BDRL MLP LSTM BDRL

CPY011 12 17 1000 0.17 0.64 18.66 2.04 10.88 18,666
CPY012 15 19 10,000 0.16 0.62 18.20 2.40 11.78 182,000
CPY013 11 17 10,000 0.18 0.64 17.88 1.98 10.88 178,000
CPY014 11 6 500 0.55 0.83 18.32 6.05 4.98 2490
CPY015 7 11 10,000 0.24 0.62 16.03 1.68 6.82 160,300
CPY016 17 21 5000 0.17 0.51 16.58 2.89 10.71 82,900
CPY017 13 17 100 0.20 0.56 16.74 2.6 9.52 1674
YOM009 6 11 500 0.69 0.73 18.82 4.14 8.03 4015

avg 12 15 4638 0.30 0.64 17.65 2.97 9.20 78,756

5.4.3 Performance on the Different Station

After generating various models on some stations’ data and testing them with the same

stations, we tested these models with the data collected from different stations with

the intention of examining their generalisation ability. The F1-score of each model are

provided in Table 5.5.

Table 5.5: The F1-score of the best DRL models when testing with the dataset from
same station (show in the bracket) and different stations, while the average F1-score
and standard deviations of each station were calculated without their own scores.

Tested Dataset
Trained Dataset

CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.8333) 0.1667 0.1967 0.0255 0.4138 0.0596 0.2000 0.1556
CPY012 0.6000 (0.7826) 0.7164 0.1136 0.0533 0.5088 0.6667 0.6667
CPY013 0.6531 0.6667 (0.8000) 0.1875 0.1034 0.5421 0.5970 0.5952
CPY014 0.4000 0.8571 0.8571 (0.8571) 0.0000 0.2727 0.5871 0.6000
CPY015 0.0000 0.1538 0.1474 0.0672 (0.4407) 0.0900 0.2078 0.0839
CPY016 0.5369 0.6129 0.6550 0.1276 0.4103 (0.6058) 0.1203 0.6703
CPY017 0.5000 0.3529 0.5455 0.2308 0.0000 0.1765 (0.8571) 0.4000
YOM009 0.0000 0.3297 0.1905 0.0771 0.0000 0.4189 0.3158 (0.4769)

avg 0.3843 0.4485 0.4727 0.1185 0.1401 0.2955 0.3850 0.4531

std 0.2742 0.2680 0.2908 0.0713 0.1896 0.1975 0.2257 0.2457

Using DRLRwd - the best model for detecting anomalies by training with CPY011 data

and then identifying anomalies from other stations, we can see that, though it works

rather well, with F1-score ranging from 0.4 on CPY014 to 0.65 on CPY013 data, it

is unable to detect anomalies on CPY015 and YOM009. Using the BDRL model of

the CPY012 training dataset, DRLV alid, although it provided good performance when

identifying anomalies in the CPY013, CPY014, and CPY016 datasets with F1-score
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greater than 0.61, especially CPY014 with a 0.8571 F1-score, which more than detected

anomalies on its own dataset, it provided poor performance, with an F1-score lower

than 0.4000, when detecting anomalies in other stations. Similar to DRLF1, which

was trained using CPY013 data, it not only performs well when recognising anomalies

on its own dataset but also when detecting anomalies on the CPY014 dataset, with an

F1-score of 0.8571. The BDRL model, DRLRwd, that was trained with CPY014 did the

worst when it was used to find anomalies in other stations’ data, with an F1-score of less

than 0.23 for every dataset and the lowest F1-score of only 0.0255 for CPY011. Similar

to the best model on CPY015 datasets, which performed poorly, with the highest

F1-score on CPY011 data being 0.4138 and being unable to identify anomalies on

CPY014, CPY017, and YOM009. Meanwhile, the best model for detecting anomalies

on CPY016 data performed the best for detecting anomalies on CPY013 with a 0.5421

F1-score. The model that was trained on CPY017 did the best of finding anomalies in

data from CPY012, CPY013, and CPY014 with an F1-score greater than 0.58. While

the best model from the YOM009 training dataset achieved a low F1-score on CPY011,

CPY015, and CPY017, 0.0839 is the lowest F1-score. However, when it was used to

find outliers on COY012, CPY013, CPY014, and CPY016 with F1-score higher than

0.59, it did better than its own training data.

It is worth noting that models trained using CPY014 and CPY015 data perform poorly

when used to identify anomalies from other stations. This may be due to the fact that

the actual number of anomalies in those stations are relatively low and most of them are

kind of extreme outliers, as shown in Figure 5.2, so the models were trained with only

those kinds of anomalies, which may not be enough for the model to learn. In contrast

to YOM009, which has a many number and types of anomalies for model to learn,

as a result, it can identify abnormalities on CPY012, CPY013, CPY014, and CPY016

better than other models that were trained with another station.

Then, we tested MLP and LSTM using data from different stations to compare our

method to the candidate models. Table 5.6 represents the results of the MLP models

when tested with the datasets from the same and different stations. Using the CPY011

dataset, the MLP models achieved the highest F1-score of 0.5430 on CPY016, despite
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Table 5.6: The F1-score of the MLP models when testing with the dataset from the
same station (shown in the bracket) and different stations.

Tested Dataset
Trained Dataset

CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.9231) 0.4000 0.2917 0.7778 0.0000 0.1373 0.7059 0.6087
CPY012 0.4889 (0.8387) 0.8060 0.7500 0.0541 0.6923 0.7273 0.7857
CPY013 0.4390 0.6786 (0.7500) 0.7000 0.0000 0.7123 0.6909 0.7719
CPY014 0.0000 0.8571 0.8571 (0.8571) 0.0000 0.6000 0.8571 0.8571
CPY015 0.1951 0.1509 0.2093 0.2593 (0.3529) 0.1420 0.3077 0.2414
CPY016 0.5430 0.6380 0.6587 0.6322 0.0915 (0.6629) 0.5665 0.6550
CPY017 0.5000 0.6667 0.6000 1.0000 0.0000 0.2857 (1.0000) 1.0000
YOM009 0.0000 0.2308 0.2955 0.1818 0.0000 0.4404 0.1772 (0.2857)

avg 0.3094 0.5174 0.5312 0.6144 0.0208 0.4300 0.5761 0.7028

std 0.2396 0.2609 0.2643 0.2929 0.0371 0.2473 0.2460 0.2408

their being unable to identify anomalies on CPY014 and YOM009. Similar to finding

anomalies on CPY012, it offered good results with F1-score of more than 0.63, with the

exception of CPY011, CPY015, and YOOM009, which produced F1-score of less than

0.4. The best MLP of the CPY013 training dataset provided the highest F1-score on

the CPY014 dataset (0.8571 F1-score) and the lowest on CPY015 (0.2093 F1-score).

Anomalies on the YOM009 dataset were the most difficult for the MLP models trained

on CPY014 to detect, with an F1-score of just 0.1818. However, it performed excel-

lent results in identifying anomalies on CPY017 with a 1.0000 F1-score. Meanwhile,

the MLP model on the CPY015 dataset performed poorly when detecting abnormal-

ities from other stations. On the other hand, the MLP models that were trained on

CPY016 and CPY017 generated good results when used to identify anomalies from

other stations, despite still performing poorly in some stations. In contrast, the MLP

model trained on YOM009 worked well when used to detect abnormalities on other

stations but performed badly when detecting anomalies on its own data. Furthermore,

it performed well on CPY017 data, with a 1.000 F1-score.

In the case of the LSTM model, as depicted in Table 5.7. They performed well,

with an average F1-score of more than 0.42 for each station except CPY015, which

had an average F1-score of 0.1099. However, they generated poor performances in

some stations, such as the LSTM of CPY016 that achieved an F1-score of only 0.1754

when used to detect anomalies on the CPY011 dataset, and it was unable to detect

anomalies on CPY014, CPY017, and YOM009 datasets with the LSTM that had been

trained on the CPY015 dataset. However, it provided excellent performance when
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Table 5.7: The F1-score of the LSTM models when testing with the dataset from the
same station (shown in the bracket) and different stations.

Tested Dataset
Trained Dataset

CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.8571) 0.4828 0.2333 0.5000 0.3077 0.1754 0.7059 0.5185
CPY012 0.6400 (0.8387) 0.8308 0.7368 0.0444 0.7536 0.7500 0.7458
CPY013 0.5652 0.7333 (0.7463) 0.7213 0.1081 0.6857 0.7333 0.7188
CPY014 0.4000 0.8571 0.8571 (0.8571) 0.0000 0.8571 0.8571 0.8571
CPY015 0.3043 0.3636 0.2340 0.3939 (0.4364) 0.2045 0.3704 0.2564
CPY016 0.5679 0.6897 0.6824 0.5634 0.3089 (0.6630) 0.6296 0.6359
CPY017 0.5000 1.0000 0.5455 1.0000 0.0000 0.3333 (1.0000) 0.8571
YOM009 0.0000 0.2619 0.3146 0.2727 0.0000 0.4190 0.2857 (0.3542)

avg 0.4253 0.6269 0.5282 0.5983 0.1099 0.4898 0.6189 0.6557

std 0.2190 0.2679 0.2717 0.2430 0.1410 0.2747 0.2111 0.2129

detecting anomalies on CPY017 with the LSTM that has been trained on the CPY014

dataset. When the LSTM was trained on YOM009, it did well at finding anomalies

from other stations, especially CPY014 and CPY017, with an F1-score of 0.8571.

Furthermore, we generated a bar chart to compare the average F1-score from each

model when tested with the data collected from different stations, as shown in Fig-

ure 5.7. When evaluated with data from other stations, the models trained with

CPY012 and CPY013 produced an average F1-score greater than 0.4. The models

trained on CPY015 earned poor performance when used to identify anomalies from

other stations, with an average F1-score lower than 0.2. DRL models that were trained

with CPY015 outperform other models in detecting anomalies in data from other sta-

tions. LSTM models trained on CPY011, CPY012, CPY016, and CPY017, on the

other hand, outperform other models in detecting abnormalities on other datasets.

When trained with data from CPY013, CPY014, and YOM009, MLP had the best

F1-score for finding outliers in other datasets.

Figure 5.7: Bar charts of average F1-score of the DRL, MLP, and LSTM when tested
with the data collected from different stations.
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5.4.4 Ensemble Results

Since we have multiple RL models after each epoch of training, and since each model

performs the best in each of the criteria, we then built an ensemble that combined the

decisions of all RL models, with the aim of generating a better final decision. In model

selection, we select all five models and select the three models with the highest ranking

in F1-score to build our ensemble model. For decision making, we used majority voting

and weighted voting strategies to make a final decision. So, we have 4 ensemble models

for each epoch of training, including a majority voting ensemble model with 3 (EDRL3)

and 5 (EDRL5) models, and a weighted ensemble model with 3 (WEDRL3) and 5

(WEDRL5) models.

Performance on the Same Station

The results of our ensemble models are shown in Table 5.8 demonstrated that ensemble

with majority voting and weighted voting that were generated from the top three DRL

models of CPY011 provided the best with 0.8333 F1-score, while WDRL3 that was

generated from the DRL model after trained with 10,000 epochs is the best model to

detect anomalies in CPY012 datasets with an F1-score of 0.7941. The ensemble model

of CPY013 that performs the best is EDRL3 and WEDRL3 at 0.8000. The best

ensemble model for identifying anomalies in CPY014 datasets is the ensemble model

that provided the F1-score of 0.8571. With CPY015 data, the models with the high-

est F1-score are EDRL3, WEDRL3, and WEDRL5. These models were built based

on the individual DRL model, which was trained for 10,000 iterations. Meanwhile,

WEDRL3 got the highest F1-score of 0.5922 for CPY016 by combining the best three

DRL models that were trained over 5000 iterations. With CPY017, EDRL5 outper-

forms other ensemble models with a 100 percent in every metric. The ensemble results

of YOM009, WEDRL5, offered the highest performance with an F1-score of 0.5032

that was generated from the DRL model after 500 epochs of training.
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Table 5.8: The performance of ensemble models (the best F1-score of each row is shown
in bold).

Station Epochs
EDRL3 EDRL5 WEDRL3 WEDRL5

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 0.7500 0.8000 0.7143 0.6250 0.6667 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000
500 0.8571 0.7500 0.8000 0.8571 0.6667 0.7500 0.8571 0.7500 0.8000 0.8571 0.6667 0.7500

1000 0.7143 1.0000 0.8333 0.7143 0.8333 0.7692 0.7143 1.0000 0.8333 0.8571 0.7500 0.8000
5000 0.7143 0.6250 0.6667 0.7143 0.6250 0.6667 0.7143 0.7143 0.7143 0.7143 0.7143 0.7143

10,000 0.8571 0.6667 0.7500 1.0000 0.7778 0.8750 0.8571 0.6667 0.7500 0.8571 0.6000 0.7059

Avg 0.8000 0.7583 0.7700 0.8000 0.7056 0.7455 0.8000 0.7762 0.7795 0.8285 0.6962 0.7540
std 0.0782 0.1455 0.0650 0.1278 0.0949 0.0863 0.0782 0.1297 0.0471 0.0639 0.0637 0.0451

CPY012 100 0.7647 0.7027 0.7324 0.7353 0.7353 0.7353 0.7647 0.7027 0.7324 0.7647 0.6842 0.7222
500 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606 0.7941 0.7297 0.7606 0.7941 0.7105 0.7500

1000 0.7647 0.6667 0.7123 0.7353 0.8621 0.7937 0.7647 0.6667 0.7123 0.7353 0.6410 0.6849
5000 0.7059 0.7273 0.7164 0.7059 0.7500 0.7273 0.7059 0.7273 0.7164 0.7353 0.7353 0.7353

10,000 0.7059 0.8276 0.7619 0.7059 0.8276 0.7619 0.7941 0.7941 0.7941 0.7353 0.8333 0.7812

Avg 0.7471 0.7308 0.7367 0.7353 0.7809 0.7558 0.7647 0.7241 0.7432 0.7529 0.7209 0.7347
std 0.0394 0.0598 0.0236 0.0360 0.0601 0.0261 0.0360 0.0466 0.0342 0.0263 0.0719 0.0355

CPY013 100 0.8710 0.6136 0.7200 0.8387 0.6190 0.7123 0.8710 0.6136 0.7200 0.9032 0.5957 0.7179
500 0.8065 0.5000 0.6173 0.7742 0.5714 0.6575 0.8387 0.4906 0.6190 0.8065 0.5556 0.6579

1000 0.8065 0.6098 0.6944 0.8065 0.6098 0.6944 0.9355 0.6042 0.7342 0.9032 0.6087 0.7273
5000 0.8065 0.5952 0.6849 0.7097 0.5789 0.6377 0.7097 0.6471 0.6769 0.7742 0.6486 0.7059

10,000 0.8387 0.7647 0.8000 0.7419 0.6765 0.7077 0.8387 0.7647 0.8000 0.8387 0.7429 0.7879

Avg 0.8258 0.6167 0.7033 0.7742 0.6111 0.6819 0.8387 0.6240 0.7100 0.8452 0.6303 0.7194
std 0.0288 0.0949 0.0660 0.0510 0.0417 0.0328 0.0822 0.0983 0.0674 0.0577 0.0712 0.0467

CPY014 100 0.7500 0.7500 0.7500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.7500 0.7500
500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

1000 0.7500 0.5000 0.6000 0.7500 0.6000 0.6667 0.7500 0.3750 0.5000 0.7500 0.3750 0.5000
5000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000 0.7500 0.5000 0.6000 0.7500 0.3750 0.5000

10,000 0.7500 0.6000 0.6667 0.7500 0.6000 0.6667 0.7500 0.6000 0.6667 0.7500 0.7500 0.7500

Avg 0.7500 0.6700 0.6948 0.7500 0.7400 0.7295 0.7500 0.6950 0.6962 0.7500 0.6500 0.6714
std 0.0000 0.2110 0.1097 0.0000 0.2408 0.1196 0.0000 0.2896 0.1584 0.0000 0.2710 0.1625

CPY015 100 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2647 0.4737 0.3396
500 0.3235 0.5000 0.3929 0.2059 0.4667 0.2857 0.3235 0.5000 0.3929 0.2941 0.5263 0.3774

1000 0.3824 0.5000 0.4333 0.4118 0.4828 0.4444 0.3824 0.5000 0.4333 0.3824 0.4643 0.4194
5000 0.3235 0.5238 0.4000 0.2353 0.4706 0.3137 0.3235 0.5238 0.4000 0.3235 0.5238 0.4000

10,000 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3824 0.5200 0.4407 0.3824 0.5200 0.4407

Avg 0.3471 0.5135 0.4134 0.3000 0.4737 0.3605 0.3471 0.5135 0.4134 0.3294 0.5016 0.3954
std 0.0323 0.0124 0.0219 0.0916 0.0192 0.0666 0.0323 0.0124 0.0219 0.0526 0.0300 0.0390

CPY016 100 0.5981 0.5203 0.5565 0.6075 0.4962 0.5462 0.5981 0.5203 0.5565 0.6168 0.5366 0.5739
500 0.5981 0.5203 0.5565 0.6168 0.3952 0.4818 0.6075 0.5603 0.5830 0.5981 0.5333 0.5639

1000 0.6168 0.5323 0.5714 0.6542 0.4636 0.5426 0.6168 0.5546 0.5841 0.6168 0.5455 0.5789
5000 0.5701 0.6100 0.5894 0.5514 0.4275 0.4816 0.5701 0.6162 0.5922 0.5888 0.3987 0.4755

10,000 0.6168 0.4177 0.4981 0.6262 0.4295 0.5095 0.6262 0.5447 0.5826 0.6449 0.5111 0.5702

Avg 0.6000 0.5201 0.5544 0.6112 0.4424 0.5123 0.6037 0.5592 0.5797 0.6131 0.5050 0.5525
std 0.0191 0.0684 0.0343 0.0377 0.0386 0.0314 0.0215 0.0353 0.0135 0.0215 0.0608 0.0434

CPY017 100 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
500 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

1000 1.0000 0.7500 0.8571 1.0000 0.2308 0.3750 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571
5000 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

10,000 0.6667 0.6667 0.6667 0.6667 0.6667 0.6667 1.0000 0.6000 0.7500 0.6667 0.6667 0.6667

Avg 0.9333 0.6833 0.7809 0.9333 0.6295 0.7131 1.0000 0.6700 0.7976 0.9333 0.6833 0.7809
std 0.1491 0.1087 0.1043 0.1491 0.2868 0.2354 0.0000 0.1151 0.0866 0.1491 0.1087 0.1043

YOM009 100 0.6308 0.3254 0.4293 0.5846 0.3115 0.4064 0.6154 0.3226 0.4233 0.6462 0.3281 0.4352
500 0.4769 0.4769 0.4769 0.6154 0.3960 0.4819 0.4769 0.4769 0.4769 0.6000 0.4333 0.5032

1000 0.5538 0.3600 0.4364 0.5538 0.3186 0.4045 0.5231 0.3778 0.4387 0.4923 0.3299 0.3951
5000 0.5538 0.4091 0.4706 0.5846 0.4086 0.4810 0.6308 0.3981 0.4881 0.5538 0.3830 0.4528

10,000 0.5385 0.2991 0.3846 0.4923 0.3048 0.3765 0.4154 0.3971 0.4060 0.4615 0.3158 0.3750

Avg 0.5508 0.3741 0.4396 0.5661 0.3479 0.4301 0.5323 0.3945 0.4466 0.5508 0.3580 0.4323
std 0.0548 0.0707 0.0371 0.0467 0.0501 0.0484 0.0914 0.0554 0.0350 0.0757 0.0494 0.0503

Figure 5.8 depicts line charts that indicate the F1-score of each ensemble model that

was trained using data from each station. It was clear from the results that the ensemble

models not only delivered good performances and had a tendency to either improve or

keep their F1-score steady but also reduced the false alarms by increasing the precision
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scores. When we compared the results of each training epoch of the individual DRL

model and the ensemble model, as shown in Tables 5.2 and 5.8, we discovered that

ensemble models performed better than every single DRL model in many training

epochs. In particular, EDRL5 on the CPY017 with 500 training epochs generated

an excellent score of 1.0000 in every metrics index, resulting from a 25% increase in

accuracy and a 15% increase in F1-score. Meanwhile, EDRL5 on the CPY011 with

10,000 training epochs improved the performance of the best individual model with an

F1-score from 0.75 to 0.8750, reached 1.00 in terms of recall, and increased precision by

20%. By combining the DRL models trained on only 500 epochs, the ensemble model

on YOM009 got the highest F1-score of 0.5032.

(a) CPY011 (b) CPY012

(c) CPY013 (d) CPY014

(e) CPY015 (f) CPY016

(g) CPY017 (h) YOM009

Figure 5.8: F1-score of ensemble model when increasing the learning epochs at CPY011,
CPY012, CPY013, CPY014, CPY015, CPY016, CPY017, and YOM009 (a-h).
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Table 5.9: The mean F1-score and standard deviations of all of the DRL, MLP, LSTM,
and ensemble of DRL-based models when testing with the dataset from different sta-
tions (the best F1-score of each station is shown in bold).

Models CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

DRL 0.7433 (±0.08) 0.6550 (±0.08) 0.6014 (±0.10) 0.4823 (±0.20) 0.3477 (±0.06) 0.3770 (±0.03) 0.6801 (±0.21) 0.3581 (±0.06)
DRLF1 0.7170 (±0.07) 0.7146 (±0.06) 0.6963 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5438 (±0.05) 0.6381 (±0.16) 0.4152 (±0.04)
DRLRwd 0.7433 (±0.08) 0.6468 (±0.10) 0.6212 (±0.09) 0.5537 (±0.26) 0.3477 (±0.06) 0.3499 (±0.06) 0.6762 (±0.21) 0.3891 (±0.04)
DRLAcc 0.7170 (±0.07) 0.7234 (±0.04) 0.6920 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5714 (±0.02) 0.7219 (±0.14) 0.4248 (±0.04)
DRLV alid 0.6020 (±0.17) 0.7045 (±0.10) 0.5639 (±0.21) 0.6596 (±0.14) 0.3211 (±0.10) 0.4867 (±0.07) 0.6488 (±0.15) 0.4378 (±0.03)
EDRL3 0.7700 (±0.06) 0.7367 (±0.02) 0.7033 (±0.07) 0.6948 (±0.11) 0.4134 (±0.02) 0.5544 (±0.03) 0.7809 (±0.10) 0.4396 (±0.04)
EDRL5 0.7455 (±0.09) 0.7558 (±0.03) 0.6819 (±0.03) 0.7295 (±0.12) 0.3605 (±0.07) 0.5123 (±0.03) 0.7131 (±0.24) 0.4301 (±0.05)
WEDRL3 0.7795 (±0.05) 0.7432 (±0.03) 0.7100 (±0.07) 0.6962 (±0.16) 0.4134 (±0.02) 0.5797 (±0.01) 0.7976 (±0.09) 0.4466 (±0.03)
WEDRL5 0.7540 (±0.05) 0.7347 (±0.04) 0.7194 (±0.05) 0.6714 (±0.16) 0.3954 (±0.04) 0.5525 (±0.04) 0.7619 (±0.10) 0.4323 (±0.05)
MLP 0.8505 (±0.06) 0.7822 (±0.03) 0.6998 (±0.03) 0.8571 (±0.00) 0.2220 (±0.10) 0.5651 (±0.14) 0.9778 (±0.07) 0.2358 (±0.05)
LSTM 0.8167 (±0.04) 0.7753 (±0.02) 0.7265 (±0.02) 0.8571 (±0.00) 0.3276 (±0.09) 0.6252 (±0.06) 0.9857 (±0.05) 0.2596 (±0.06)

As shown in Table 5.9, we evaluated the average F1-score of each individual DRL

model and ensemble of DRL models against the other neural network models. We can

see that the LSTM model was the best model when detecting anomalies on CPY013,

CPY014, CPY016, and CPY017, while WEDRL3 provided the highest average F1-

score on CPY015 and YOM009. The highest F1-score was 0.4134 on CPY015, which

was provided by DRLF1, DRLAcc, EDRL3, and WEDRL3. Although MLP and LSTM

beat other models in many datasets, WEDRL3 has the greatest average ranking,

as shown in Figure 5.9. In other words, the ensemble model not only has the potential

to improve the performance of a single model, but it also has a higher reliability to

deliver excellent performance than a single model.

Figure 5.9: Critical difference diagram for DRL, MLP, LSTM, and ensemble of DRL-
based models when testing with the dataset from different stations.

Performance on the Different Station

We then tested the generalisation ability of the best ensemble (WEDRL3) with the

data collected from different stations. The F1-score of each model is depicted in Ta-

ble 5.10. We can observe that the ensemble model that was created from the model

trained on CPY011 data performed well not only on their own dataset but also on

CPY017, with an F1-score of 0.8200, similarly to WEDRL3 on CPY012 and CPY013,
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Table 5.10: The mean F1-score of the WEDRL3 models when testing with the dataset
from the same station (shown in the bracket) and different stations.

Tested Dataset
Trained Dataset

CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.7795) 0.2772 0.2278 0.1718 0.4345 0.0788 0.2830 0.0900
CPY012 0.7183 (0.7432) 0.6817 0.4624 0.2182 0.5355 0.6419 0.5096
CPY013 0.6920 0.7281 (0.7101) 0.5512 0.2713 0.5625 0.5959 0.4816
CPY014 0.7276 0.8421 0.8143 (0.6962) 0.5714 0.5471 0.7948 0.3450
CPY015 0.3748 0.2683 0.1664 0.1482 (0.4134) 0.1290 0.1994 0.0739
CPY016 0.5813 0.6283 0.6450 0.3327 0.3647 (0.5797) 0.4711 0.5748
CPY017 0.8200 0.4423 0.4514 0.3803 0.3545 0.2075 (0.7976) 0.2931
YOM009 0.1084 0.3261 0.3109 0.2619 0.0568 0.4613 0.3375 (0.4466)

avg 0.6002 0.5320 0.5010 0.3756 0.3356 0.3877 0.5152 0.3518

std 0.2426 0.2310 0.2451 0.1887 0.1551 0.2121 0.2292 0.1889

which recognised anomalies on CPY014 better than their own dataset with F1-score of

0.8421 and 0.8143, respectively. Inversely, the ensemble model on CPY014, CPY015,

and CPY016 trained datasets provided poor performance when used to detect anoma-

lies on other stations. Even though the ensemble model trained on the CPY017 dataset

got an F1-score of more than 0.5 on CPY012, CPY013, and CPY014, it did not do

well on many stations, with an F1-score of less than 0.3. WEDRL3 scored badly not

just on their own dataset but also on others, with F1-score ranging from 0.0739 on

CPY015 to 0.5748 on CPY016.

Ensemble with all Seven Models

Then, to learn more about how well the ensemble worked, we combined our developed

DRL models with MLP and LSTM models. In model selection, we selected all seven

models and selected the five and three models with the highest ranking in F1-score to

build our ensemble model. We used the same strategy to make a final decision. So, we

have 6 ensemble model for each epochs of training include majority voting ensemble

model with 3 (E3), 5 (E5), and 7 (E7) model, and weighted ensemble model with 3

(WE3), 5 (WE5), and 7 (WE7) models, and the results are displayed in Table 5.11.
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Table 5.11: The performance of the ensemble models built by combining DRL and
candidate models (the best F1-score of each row is shown in bold).

Station Epochs
E3 E5 E7 WE3 WE5 WE7

Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

CPY011 100 0.8571 1.0000 0.9231 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
500 0.8571 1.0000 0.9231 0.8571 0.7500 0.8000 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

1000 0.8571 1.0000 0.9231 0.8571 1.0000 0.9231 0.8571 1.0000 0.9231 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
5000 0.8571 1.0000 0.9231 0.7143 0.7143 0.7143 0.8571 0.7500 0.8000 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

10,000 0.8571 1.0000 0.9231 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571

avg 0.8571 1.0000 0.9231 0.8285 0.8143 0.8189 0.8571 0.8214 0.8360 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571 0.8571
std 0.0000 0.0000 0.0000 0.0639 0.1168 0.0774 0.0000 0.1101 0.0546 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CPY012 100 0.7647 0.9286 0.8387 0.7647 0.8387 0.8000 0.7941 0.7714 0.7826 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254
500 0.7647 0.9286 0.8387 0.7941 0.7297 0.7606 0.7941 0.9000 0.8438 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254

1000 0.7647 0.9286 0.8387 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254
5000 0.7647 0.9286 0.8387 0.7059 0.7500 0.7273 0.7353 0.8333 0.7812 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254

10,000 0.7647 0.9286 0.8387 0.7941 0.9000 0.8438 0.7059 0.8276 0.7619 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7941 0.9000 0.8438

avg 0.7647 0.9286 0.8387 0.7647 0.8230 0.7914 0.7588 0.8458 0.7990 0.7647 0.8966 0.8254 0.7647 0.8966 0.8254 0.7706 0.8973 0.8291
std 0.0000 0.0000 0.0000 0.0360 0.0800 0.0475 0.0383 0.0537 0.0342 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0131 0.0015 0.0082

CPY013 100 0.7742 0.7273 0.7500 0.8387 0.6842 0.7536 0.8065 0.6757 0.7353 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273 0.7742 0.6857 0.7273
500 0.7742 0.7273 0.7500 0.8387 0.6341 0.7222 0.7419 0.6970 0.7188 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077

1000 0.7742 0.7273 0.7500 0.8710 0.6750 0.7606 0.8065 0.6410 0.7143 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273 0.7742 0.6857 0.7273
5000 0.7742 0.7273 0.7500 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7419 0.6765 0.7077 0.7742 0.6857 0.7273

10,000 0.8387 0.7647 0.8000 0.7742 0.7742 0.7742 0.7742 0.7742 0.7742 0.8387 0.7647 0.8000 0.7742 0.7273 0.7500 0.7419 0.6765 0.7077

avg 0.7871 0.7348 0.7600 0.8129 0.6888 0.7437 0.7742 0.6929 0.7301 0.7613 0.6941 0.7262 0.7613 0.6903 0.7240 0.7613 0.6820 0.7195
std 0.0288 0.0167 0.0224 0.0530 0.0516 0.0277 0.0323 0.0497 0.0267 0.0433 0.0394 0.0413 0.0177 0.0212 0.0175 0.0177 0.0050 0.0107

CPY014 100 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
500 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

1000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
5000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

10,000 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.6000 0.6667 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571

avg 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 0.9200 0.8190 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571 0.7500 1.0000 0.8571
std 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1789 0.0851 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

CPY015 100 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2647 0.4737 0.3396 0.2353 0.4444 0.3077
500 0.3235 0.5000 0.3929 0.2353 0.5000 0.3200 0.2353 0.5000 0.3200 0.3235 0.5000 0.3929 0.2941 0.5263 0.3774 0.2647 0.5000 0.3462

1000 0.3824 0.5000 0.4333 0.4118 0.4828 0.4444 0.2647 0.4286 0.3273 0.3824 0.5000 0.4333 0.3824 0.4643 0.4194 0.3824 0.4333 0.4062
5000 0.3235 0.5238 0.4000 0.2647 0.5000 0.3462 0.2647 0.5000 0.3462 0.3235 0.5238 0.4000 0.2941 0.5000 0.3704 0.2941 0.5000 0.3704

10,000 0.3824 0.5200 0.4407 0.3824 0.4483 0.4127 0.3529 0.4800 0.4068 0.3824 0.5200 0.4407 0.3824 0.5200 0.4407 0.4412 0.4839 0.4615

avg 0.3471 0.5135 0.4134 0.3118 0.4862 0.3739 0.2765 0.4817 0.3493 0.3471 0.5135 0.4134 0.3235 0.4969 0.3895 0.3235 0.4723 0.3784
std 0.0323 0.0124 0.0219 0.0795 0.0225 0.0522 0.0446 0.0309 0.0342 0.0323 0.0124 0.0219 0.0551 0.0274 0.0404 0.0858 0.0315 0.0587

CPY016 100 0.5421 0.8529 0.6629 0.5981 0.5470 0.5714 0.6075 0.5462 0.5752 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8286 0.6554
500 0.5421 0.8529 0.6629 0.5981 0.6154 0.6066 0.5888 0.6632 0.6238 0.5421 0.8406 0.6591 0.5421 0.8406 0.6591 0.5421 0.8406 0.6591

1000 0.5421 0.8529 0.6629 0.5794 0.5794 0.5794 0.6075 0.5372 0.5702 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8286 0.6554
5000 0.5421 0.8529 0.6629 0.5607 0.7059 0.6250 0.5607 0.6122 0.5854 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5607 0.8333 0.6704

10,000 0.5421 0.8529 0.6629 0.6075 0.5752 0.5909 0.5981 0.4638 0.5224 0.5421 0.8406 0.6591 0.5421 0.8286 0.6554 0.5421 0.8529 0.6629

avg 0.5421 0.8529 0.6629 0.5888 0.6046 0.5947 0.5925 0.5645 0.5754 0.5421 0.8406 0.6591 0.5421 0.8310 0.6561 0.5458 0.8368 0.6606
std 0.0000 0.0000 0.0000 0.0187 0.0616 0.0215 0.0194 0.0762 0.0363 0.0000 0.0000 0.0000 0.0000 0.0054 0.0017 0.0083 0.0103 0.0063

CPY017 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5000 1.0000 1.0000 1.0000 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10,000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.6667 1.0000 0.8000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

avg 1.0000 1.0000 1.0000 1.0000 0.9000 0.9428 0.9333 0.8500 0.8743 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
std 0.0000 0.0000 0.0000 0.0000 0.1369 0.0783 0.1491 0.1369 0.0745 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

YOM009 100 0.6308 0.3254 0.4293 0.5846 0.3115 0.4064 0.5538 0.3303 0.4138 0.6154 0.3226 0.4233 0.6462 0.3281 0.4352 0.5846 0.3065 0.4021
500 0.4769 0.4769 0.4769 0.6154 0.3960 0.4819 0.3538 0.4694 0.4035 0.4769 0.4769 0.4769 0.6000 0.4333 0.5032 0.6154 0.4082 0.4908

1000 0.5538 0.3600 0.4364 0.5538 0.3186 0.4045 0.4769 0.3875 0.4276 0.5231 0.3778 0.4387 0.4923 0.3299 0.3951 0.5538 0.3396 0.4211
5000 0.5538 0.4091 0.4706 0.4923 0.4384 0.4638 0.4462 0.4531 0.4496 0.6308 0.3981 0.4881 0.5538 0.3789 0.4500 0.5385 0.4430 0.4861

10,000 0.5385 0.2991 0.3846 0.4923 0.3048 0.3765 0.4154 0.3293 0.3673 0.4154 0.3971 0.4060 0.4615 0.3158 0.3750 0.5538 0.3186 0.4045

avg 0.5508 0.3741 0.4396 0.5477 0.3539 0.4266 0.4492 0.3939 0.4124 0.5323 0.3945 0.4466 0.5508 0.3572 0.4317 0.5692 0.3632 0.4409
std 0.0548 0.0707 0.0371 0.0550 0.0599 0.0443 0.0741 0.0661 0.0305 0.0914 0.0554 0.0350 0.0757 0.0489 0.0500 0.0308 0.0595 0.0440

We can see that, on the CPY011 dataset, the ensemble of the top three models (E3)

earned the greatest F1-score of 0.9231 with every epoch of training. On CPY012,

the greatest F1-score of 0.8438 was obtained by E5 and WE7 with models trained with

10,000 epochs, and E7 with models trained with 500 epochs, while E3 and WE3 models

trained with 10,000 epochs performed the best in identifying anomalies on the CPY013

dataset. With the CPY014 dataset, all ensemble models gave an F1-score of 0.8571,

with the exception of the ensemble with majority voting of all seven models trained

with 10,000 epochs, which performed badly with an F1-score of 0.6667. WE7 surpassed

other ensemble models on the CPY015 and CPY016 datasets, with the greatest F1-

score of 0.4615 and 0.6704, respectively. Every ensemble model on CPY017 produced

outstanding results with a 1.0000 F1-score, particularly E3, WE3, WE5, and WE7,
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which produced excellent results with all training epochs. The weighted ensemble with

5 models (WE5) trained with 500 epochs performed the best on the YOM009 dataset,

with a 0.5032 F1-score.

Table 5.12: The mean F1-score and standard deviation of all models when testing with
the dataset from different stations (the best F1-score of each station is shown in bold).

Models CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

DRL 0.7433 (±0.08) 0.6550 (±0.08) 0.6014 (±0.10) 0.4823 (±0.20) 0.3477 (±0.06) 0.3770 (±0.03) 0.6801 (±0.21) 0.3581 (±0.06)
DRLF1 0.7170 (±0.07) 0.7146 (±0.06) 0.6963 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5438 (±0.05) 0.6381 (±0.16) 0.4152 (±0.04)
DRLRwd 0.7433 (±0.08) 0.6468 (±0.10) 0.6212 (±0.09) 0.5537 (±0.26) 0.3477 (±0.06) 0.3499 (±0.06) 0.6762 (±0.21) 0.3891 (±0.04)
DRLAcc 0.7170 (±0.07) 0.7234 (±0.04) 0.6920 (±0.07) 0.6733 (±0.08) 0.4134 (±0.02) 0.5714 (±0.02) 0.7219 (±0.14) 0.4248 (±0.04)
DRLV alid 0.6020 (±0.17) 0.7045 (±0.10) 0.5639 (±0.21) 0.6596 (±0.14) 0.3211 (±0.10) 0.4867 (±0.07) 0.6488 (±0.15) 0.4378 (±0.03)
MLP 0.8505 (±0.06) 0.7822 (±0.03) 0.6998 (±0.03) 0.8571 (±0.00) 0.2220 (±0.10) 0.5651 (±0.14) 0.9778 (±0.07) 0.2358 (±0.05)
LSTM 0.8167 (±0.04) 0.7753 (±0.02) 0.7265 (±0.02) 0.8571 (±0.00) 0.3276 (±0.09) 0.6252 (±0.06) 0.9857 (±0.05) 0.2596 (±0.06)
EDRL3 0.7700 (±0.06) 0.7367 (±0.02) 0.7033 (±0.07) 0.6948 (±0.11) 0.4134 (±0.02) 0.5544 (±0.03) 0.7809 (±0.10) 0.4396 (±0.04)
EDRL5 0.7455 (±0.09) 0.7558 (±0.03) 0.6819 (±0.03) 0.7295 (±0.12) 0.3605 (±0.07) 0.5123 (±0.03) 0.7131 (±0.24) 0.4301 (±0.05)
E3 0.9231 (±0.00) 0.8387 (±0.00) 0.7600 (±0.02) 0.8571 (±0.00) 0.4134 (±0.02) 0.6629 (±0.00) 1.0000 (±0.00) 1.0000 (±0.04)
E5 0.8189 (±0.08) 0.7914 (±0.05) 0.7437 (±0.03) 0.8571 (±0.00) 0.3739 (±0.05) 0.5947 (±0.02) 0.9428 (±0.08) 0.9428 (±0.04)
E7 0.8360 (±0.05) 0.7990 (±0.03) 0.7301 (±0.03) 0.8190 (±0.09) 0.3493 (±0.03) 0.5754 (±0.04) 0.8743 (±0.07) 0.8743 (±0.03)
WEDRL3 0.7795 (±0.05) 0.7432 (±0.03) 0.7100 (±0.07) 0.6962 (±0.16) 0.4134 (±0.02) 0.5797 (±0.01) 0.7976 (±0.09) 0.4466 (±0.03)
WEDRL5 0.7540 (±0.05) 0.7347 (±0.04) 0.7194 (±0.05) 0.6714 (±0.16) 0.3954 (±0.04) 0.5525 (±0.04) 0.7619 (±0.10) 0.4323 (±0.05)
WE3 0.8571 (±0.00) 0.8254 (±0.00) 0.7262 (±0.04) 0.8571 (±0.00) 0.4134 (±0.02) 0.6591 (±0.00) 1.0000 (±0.00) 1.0000 (±0.03)
WE5 0.8571 (±0.00) 0.8254 (±0.00) 0.7240 (±0.02) 0.8571 (±0.00) 0.3895 (±0.04) 0.6561 (±0.00) 1.0000 (±0.00) 1.0000 (±0.05)
WE7 0.8571 (±0.00) 0.8291 (±0.01) 0.7195 (±0.01) 0.8571 (±0.00) 0.3784 (±0.06) 0.6606 (±0.01) 1.0000 (±0.00) 1.0000 (±0.04)

As indicated in Table 5.12, we averaged the F1-score of each individual model and

ensemble model to compare their performance. We can observe that E3 not only

performed the best model with the greatest average F1-score on all datasets but also

excellently performed with a 1.0000 F1-score on CPY017 and YOM009. Among the

models tested on the CPY014 dataset, the best F1-score of 0.8571 was achieved by

MLP, LSTM, E3, E5, WE3, WE5, and WE7. In contrast, on the CPY015 dataset,

the model with DRL-based (DRLF1, DRlAcc, EDRL3, and WEDRL3) generated the

highest F1-score of 0.4134.

Figure 5.10: A critical difference diagram of all models when testing with the dataset
from different stations.
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Furthermore, as shown in Figure 5.10, the CD diagram was chosen to make a statistical

comparison of our results, which revealed that E3 had the highest ranking, and the

ensemble model that combined all seven individual models outperformed both the indi-

vidual model and the ensemble model created using DRL models. It also demonstrated

the ability of ensemble methods to improve the performance of individual DRL models

because it represented a significant difference from individual models (DRL, DRLRwd,

and DRLV alid).

Table 5.13: The F1-score of the E3 models when testing with the dataset from the
same station (shown in the bracket) and different stations.

Tested Dataset
Trained Dataset

CPY011 CPY012 CPY013 CPY014 CPY015 CPY016 CPY017 YOM009

CPY011 (0.9231) 0.4000 0.3222 0.7778 0.4028 0.1373 0.7059 0.6087
CPY012 0.7183 (0.8387) 0.8060 0.7500 0.1508 0.6923 0.7273 0.7857
CPY013 0.6920 0.7350 (0.7600) 0.7000 0.2117 0.7123 0.6909 0.7719
CPY014 0.6895 0.8635 0.8571 (0.8571) 0.5714 0.6000 0.8571 0.8571
CPY015 0.3444 0.2192 0.2093 0.2593 (0.4132) 0.1420 0.3077 0.2414
CPY016 0.5840 0.6398 0.6603 0.6322 0.3495 (0.6629) 0.5665 0.6580
CPY017 0.7600 0.6667 0.6000 1.0000 0.3651 0.2857 (1.0000) 1.0000
YOM009 0.1017 0.2948 0.3221 0.2908 0.0437 0.4500 0.3230 (0.4396)

avg 0.6016 0.5822 0.5671 0.6584 0.3135 0.4603 0.6473 0.6703

std 0.2603 0.2468 0.2496 0.2607 0.1682 0.2432 0.2412 0.2415

We then tested the generalisation ability of ensemble models with the data collected

from different stations. The F1-score of each station is depicted in Table 5.13. Using

ensemble E3 with CPY011 data, to identify anomalies from other stations, we can

see that it works well with F1-score of more than 0.5800, but it performed poorly

at detecting anomalies on CPY015 and YOM009 with F1-score of 0.3444 and 0.1017,

respectively. E3 on CPY012 performed well when detecting anomalies on CPY014

with a 0.8635 F1-score. Similarly, E3 on CPY013 provided a higher F1-score on their

own dataset when detecting anomalies on CPY012 and CPY014 with an F1-score of

0.8060 and 0.8571, respectively. The best ensemble on CPY014 generated excellent

performance when identifying anomalies on CPY017 data. In contrast, E3 on CPY015

performed poorly on YOM009 with an F1-score of only 0.0437. While considered E3 on

CPY016, although it provided good performance with an F1-score higher than 0.6 on

CPY012, CPY013, and CPY014, it performed poorly on CPY011, CPY015, CPY017,

and YOM009 with an F1-score lower than 0.45. E3 on CPY017 provided good results

with an F1-score of more than 0.69, except on CPY015, CPY016, and YOM009 with an
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F1-score lower than 0.56. Meanwhile, E3 on YOM009 generated an F1-score on its own

of only 0.43, but it performed excellently when detecting anomalies on CPY017 and

other datasets with an F1-score higher than 0.65, except on CPY015 with an F1-score

of 0.2414.

5.5 Discussion

We can see that some of the results obtained have an F1-score of 0.5 or less. The

reason for this is that the number of anomalies present in the training set is smaller

compared to the number of anomalies in the validation and testing sets. For instance,

in the case of CPY015, the ratio of anomalies in the training, validation, and testing

sets is 0.14, 0.88, and 1.98, respectively. This means that the models might not have

enough information about the anomalies to learn from the training set, which could

result in lower performance on the testing set. Moreover, in the cases of CPY016 and

YOM009, the data shows high fluctuations, which can make it difficult for the models

to identify anomalies accurately. As a result, the performance of the models might

be affected, leading to lower F1-score. However, when the number of training epochs

increases, the performance of each model grows or decreases in each epoch, then drops

and bounces back. This might indicate that our model is still learning or is learning

too much—that is, it is difficult to decide when it is time to stop training.

Even though DRL can do better than other models, it is time-consuming—at least

50 times slower than MLP models on average—because we have to train it until it

performs well enough and we cannot predict how long that will take. The size of the

windows must also be taken into account. A larger window size takes more time than

a smaller window size. The window size has an effect on the comparison of data in

windows to identify the anomaly. Additionally, we may add additional neural networks

to improve the accuracy of our technique, but training will take longer.

DRL does better than other models when it is trained on datasets with a low number

of outliers. This proves the ability to detect unknown anomalies. However, its perfor-

mance is insufficient, which may be due to an imbalance in our dataset. As a result,

models may lack sufficient information to explore and leverage knowledge for adaptive
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detection of unknown abnormalities.

Moreover, the neural structure that works well with one station may not function

well with another. Hence, the problems of this topic include determining the suitable

neural structure for each station. Furthermore, the primary parameter that requires

further attention is the reward function, since a suitable reward will impact the model’s

learning process.

In the case of ensemble models, when all of the individual models in an ensemble

perform similarly, majority voting is the best method for determining the final decision.

However, when the accuracies of individual models are different, the weighted voting

is the best way to utilise the strengths of the good models in making a decision.

Furthermore, the ensemble model can also reduce the false alarm rate, as seen by an

increased precision score. It should be noted that, although single models performed

well on certain stations, they did poorly on others, such as the LSTM model. As a

result, we cannot rely on a single model since we do not know if it is the best or not.

The ensemble models, on the other hand, are more reliable, even though they may

not produce the best accuracy for every station. On the whole, nevertheless, most

ensembles, such as WEDRL3 performed consistently very well and their accuracies

are always ranked highly at every station, whilst the individual models: DRL, MLP

and LSTM, are not consistent through out all the stations.

5.6 Summary

In this research, we firstly investigated how deep reinforcement learning (DRL) can

be applied to detect anomalies in water level data and then devised two strategies

to construct more effective and reliable ensembles. For DRL, we defined a reward

function as it plays a key role in determining the success of an RL. We developed

ensemble models with five deep reinforcement learning models, generated by the same

DRL algorithm but with different criteria of performance measurement. We tested

our ensemble approach on telemetry water level data from eight different stations.

We compared our approach to two different neural network models. Moreover, we

demonstrate the ability to detect unknown anomalies by using the trained model to
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detect anomalies from other stations’ data.

The results indicate that DRLAcc models are the best individual DRL models, but they

performed slightly poor than LSTM. When tested on different stations, LSTM still does

better than others, but its accuracy is not satisfactory. When compared to an ensemble

approach, LSTM was more accurate in some stations than other ensembles with DRL

models, but less accurate in some others. On the whole, the statistical results from the

CD diagram showed that our ensemble approach with only 3 members of DRL models,

WEDRL3, was superior. Furthermore, all ensemble models that were combined by

selecting models from 5 DRL models, MLP, and LSTM outperformed both the best

individual model, LSTM, and the best ensemble using DRL models, WEDRL3. This

is supported by the highest F1-score and rankings with the CD diagram. It is clear that

ensemble methods not only increased the accuracy of a single model but also provided

a higher reliability of performance.

In conclusion, DRL is applicable for detecting anomalies in telemetry water level data

with added benefit of detecting unknown anomalies. Our ensemble construction meth-

ods can be used to build ensemble models from selected single DRL models in order

to increase the accuracy and reliability. In general, the ensembles are consistent in

producing more accurate classification, although they may not always achieve the best

results. Moreover, they are superior in reducing the number of false alarms in identi-

fying abnormalities in water level data, which is very important in real application.

However, using just water level as a single feature in our dataset may not be enough for

the model to learn and correctly recognise abnormal data. Thus, feature extraction is

needed to extract important information from telemetry water level data. As a result,

the next step in our research will be to develop effective strategies for extracting an

important feature from telemetry water level data. The work done on feature extraction

will be explained in the next chapter.
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New Multiple Features Extraction
Method for Anomaly Detection.

6.1 Introduction

Our dataset comprises only one feature, which is the water level, and this may not

provide sufficient information for the model to identify anomalies in the data. There-

fore, feature extraction is necessary to extract useful information from the telemetry

water level data. However, existing feature extraction methods often rely on dividing

the data into windows to calculate new features, and this may not always be appropri-

ate. Selecting an unsuitable window size for feature extraction can result in irrelevant

features being extracted, which can negatively affect the model’s performance. Fur-

thermore, it is critical to consider the time taken for feature extraction since detecting

anomalies promptly is essential.

Moreover, most existing feature extraction methods are generic and may not be op-

timized to handle the unique characteristics of telemetry water level data, which is

continuously streaming and dynamic. Furthermore, such methods require the entire

dataset to be available before feature extraction can occur, which may not be feasible

for real-time or near real-time data. Therefore, there is a need for a feature extraction

method that can operate on streaming data and can handle large volumes of data.

To address these challenges, we have developed a new feature extraction approach

that is specifically designed for telemetry water level data. This approach allows us

to extract relevant features from the data, enabling the model to identify anomalies
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accurately and quickly even in a continuously streaming or real-time environment.

We have also introduced a weighted ensemble method that can enhance the model’s

performance.

6.2 Methods

Our study has identified that existing feature extraction methods have significant draw-

backs that make them unsuitable for anomaly detection in telemetry water level data.

These methods tend to be time-consuming and extract too many features. To overcome

these limitations, we propose a new feature extraction approach that is specifically de-

signed for this application. Our approach combines the saliency map (SM) method

with our newly developed nearest neighbour feature extraction (NNFE) to create a

new method called SM+NNFE. By using sliding windows with only two members and

incorporating the SM method, we can extract essential features from telemetry water

level data that are crucial for accurate anomaly detection. The SM+NNFE is a new

approach, and it has been designed to enhance the accuracy of anomaly detection in

telemetry water level data.

6.2.1 Saliency Map

In anomaly detection, we are looking for data point that is different from the expected

value (Gupta et al., 2014). The Saliency Map (SM) method (Hou and Zhang, 2007;

Cui et al., 2009; Zhang et al., 2021a), developed for discovering the salient parts of a

picture in computer vision, can be adapted for this purpose. It can be achieved by

transforming data from the time domain to the frequency domain and calculating the

spectral residual. After that, we convert it back to a time domain to get the saliency

map. The SM method has demonstrated effectiveness and success not only in detecting

image saliency but also in detecting anomalies in time series data (Ren et al., 2019).

Therefore, we can leverage this method for anomaly detection in telemetry water level

data.

All of the steps for generating a saliency map for a given series of water level data:

x = x1, x2, ..., xn are detailed below.
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i) Convert x to frequency domain by using Fourier transform (F). The results comes

with both of real R(f) and imaginary I(f) parts.

F (α) = F(x)

R = ℜ(F (α))

I = ℑ(F (α))

(6.2.1)

ii) Calculate the amplitude A(f) of the Fourier spectrum.

A =
√
R2 + I2 (6.2.2)

iii) Find the log amplitude spectrum L(f).

L = log(A) (6.2.3)

iv) Eliminate the redundant component by subtracting with the local average spec-

trum L(f) to get the spectral residual SR(f).

SR = L − L(f) (6.2.4)

v) After removing the redundant component we have to update the values of real and

imaginary by

R =
R× eSR

A

I =
I × eSR

A

(6.2.5)

vi) Finally, using the inverse Fourier Transform (F−1), reverse the data back to the

time domain to create a saliency map S(x).

S(x) = ||F−1(F (α))|| (6.2.6)
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Figure 6.1: An Example of the Saliency Map

Figure 6.1 gives an example of a saliency map. This method is effective in detecting

anomalies in time series data by highlighting important data points with higher values.

By applying a simple threshold or clustering models, we can identify some of these

highlighted values as anomalies and mark their locations. However, SM is designed

to highlight only the salient parts of the data, without considering the relationships

between data points. As a consequence, it has a limitation in detecting anomalies with

small deviations from normal values, which are common in long periods of datasets.

In situations where the anomaly is situated at the center of the sliding window, the

SM can effectively identify it because the anomaly point will be significantly different

from both the preceding and succeeding values. However, in cases where the difference

between the previous and most recent water level is larger than usual, such as during

the rainy season or just prior to a flood, the SM values of normal data during that

time may be significantly different from other times, leading to false identifications of

anomalies. Therefore, relying solely on a SM to detect anomalies may not be sufficient

for accurately detecting all types of anomalies in the data.

To overcome the limitations of the SM method and improve the accuracy of anomaly

detection, it is necessary to combine it with other features that can capture the rela-

tionships between data points and provide a more comprehensive representation of the

data.
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6.2.2 Nearest Neighbour Features Extraction (NNFE)

To detect anomalies in time series data, it is common to compare a data point with its

preceding value. A significant change from the previous value is more likely to indicate

an abnormality. Thus, we can derive features that describe the data based on this

comparison. In this study, we derived four types of features by comparing the two

nearest time series values: difference, trend, angle, and percent change. The difference

feature simply measures the numerical difference between the two data points. The

trend feature indicates whether the data is increasing, decreasing, or remaining constant

over time. The angle feature calculates the angle between the line connecting the two

data points and the horizontal axis, which helps capture non-linear trends. Finally, the

percent change feature measures the percentage change between the two data points

relative to the overall magnitude of the data. These four types of features are calculated

as follows:

i) Difference:

∆x = xt − xt−1

ii) Trend:

trend =


1, if xt−1 < xt

0, if xt−1 = xt

−1, otherwise

iii) Angle:

θ = tan−1(xt − xt−1)

iv) Percent Change:

%change = 100 × (xt − xt−1)

xt−1

This approach is beneficial as it has several advantages. First, it reduces the number

of features extracted from the data, which helps reduce the computational cost and

complexity of the anomaly detection model. Second, using data from only two time

points allows for a more focused analysis of the data as it emphasises the changes be-

tween consecutive time points, which are likely to be the most informative for detecting
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anomalies.

6.2.3 SM+NNFE

Although the saliency map and nearest neighbour feature extraction methods can be

used for identifying anomalies in time series data, each method has its own strengths

and limitations. Using only one of them may not be sufficient to accurately detect

all types of anomalies. Therefore, we proposed a hybrid method called SM+NNFE

that combines the features extracted from both methods. This new method uses five

features in total: saliency map, difference, trend, angle, and percent change.

By combining these features, the SM+NNFE method may improve the accuracy and

effectiveness of anomaly detection. For example, the SM feature is effective in detecting

anomalies with significant deviations from normal values, while the NNFE can capture

non-linear trends, which may be missed by other methods.

6.3 Evaluation

6.3.1 Datasets

We chose the similar dataset from 8 stations that have been used in Chapter 5 which

has been summarised in Table 5.1. After doing data pre-processing, we then use our

combined feature extraction method to extract five features. For each of the datasets of

water level data, the data from each station is divided into three subsets: a training set

60%, a validation set 20%, and a testing set 20% using a stratified statistical sampling

technique.

Water level data from telemetry stations is unlabelled in the first place. To evaluate

the accuracy of our models in this study, we asked some experts at the HII to look at

the data to identify and label the anomalies.
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6.3.2 Evaluation Models

To evaluate the performance of our approach, we employ five popular basic machine

learning methods for anomaly detection: Decision Tree (DT), k-Nearest Neighbors (k-

NN), Support Vector Machine (SVM), Gaussian Naive Bayes(GNB), and Multi-Layer

Perceptron (MLP). Moreover, The selected classifiers are initially added to a pool,

where they serve as candidates for the ensembles being constructed. The ensembles are

constructed by choosing a specific number of classifiers from the pool, and although

they are built using the same methodology, they employ different decision-making

strategies (simple majority voting and weighted voting), which are outlined in Chapter

5. In order to examine whether the size of the ensemble has an impact on accuracy,

we constructed our ensemble models with variable sizes of 5 and 3 models.

6.3.3 Evaluation Metrics

In order to evaluate the accuracy of classifiers for individual models and developed

ensembles, in this phase, we employ measures of precision, recall and F1−score. They

are calculated with the equations, as described in Section 3.6, based on a confusion

matrix (see Table 3.1).

6.3.4 Experiment Setting

The Scikit-learn Python library was used as it contains the implementation of the

chosen machine learning algorithms. In our experiments, the default parameters of

these learning algorithms were used, as our focus was not to optimise these algorithms.

For comparison, we also extracted features from these water level datasets using our

suggested techniques, SM+NNFE, and the existing state-of-the-art time series fea-

ture extraction methods provided in the library TSFRESH (Christ et al., 2018). The

SM+NNFE can extract 5 features, whereas TSFRESH can extract 787 features, which

is too many. So we applied a feature selection function1 of TSFRESH to pick only the

relevant features, reducing the number of features from 787 to 137.

1https://tsfresh.readthedocs.io/en/latest/api/tsfresh.feature_selection.html
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We now have five sets of data: (1) WL contains only the water level data with standard-

isation; (2) SM contains only the saliency map feature; (3) NNFE contains 4 features

that have been extracted by NNFE; (4) SM+NNFE contains the SM feature and the

features extracted by NNFE, 5 features in total; (5) TSFRESH, contains 137 features.

They are used separately in training the classifiers to compare which set of features are

more effective in detecting anomalies. For each setting, the experiment were repeated

20 times with different random seeds in order to test the consistency of the classifiers.

It should be noted that we used the default parameters from the Scikit-Learn pack-

age without doing any hyperparameter tuning because we wanted to compare each

technique under the same conditions.

6.4 Results

The average testing results of the 20 experiments from traditional models and ensemble

models for each experimental setting are reported as follows.

Results of individual models

Five different models were trained on a specific set of data, and their performance was

assessed using a different datasets. The findings of this study are presented in Table 6.1,

which displays the average results of 20 experiments conducted. The outcomes show

that without any feature extraction, the average of F1-score, precision, and recall of

water level data are 0.3199, 0.6122, and 0.3215, respectively. While assessing individual

models, the decision tree (DT) model showed the highest F1-score of 0.3765, whereas

the Gaussian Naive Bayes (GNB) model displayed the lowest score of 0.2354. All

models showed low recall, indicating that they could only detect a few anomalies in

each dataset. In other words, training a model on only water level data may not provide

enough information to identify anomalies effectively.

Utilising feature extraction with SM on water level data resulted in an average increase

of 25% in the F1-score of all models. The most substantial improvement was observed

in the MLP model, which showed a 30% improvement, while the DT model had the

smallest improvement of 16%. In addition, all models displayed an increase in recall,
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indicating that their ability to detect anomalies was enhanced with greater precision

compared to using only water level data.

The use of NNFE as a feature extraction method resulted in an increase of almost 23%

in the F1-score of all models compared to models with no feature extraction. The k-

NN model demonstrated the most significant improvement, rising approximately 33%.

Moreover, not only did the average F1-score improve, but the standard deviation also

decreased, suggesting a higher degree of consistency and reduced variability compared

to using solely water level data as an input for each anomaly detection model.

Table 6.1: Average performance scores of five machine learning models, trained with
three different sets of features: Saliency Map (SM), our new feature set, SM+NNFE,
and the baseline feature set, TSFRESH.

Methods Avg. extracting time(sec.) Model F1-Score Precision Recall

WL - DT 0.3765 0.6346 0.2921
k-NN 0.3477 0.6084 0.2720
SVM 0.3257 0.6049 0.2478
GNB 0.2354 0.6082 0.1688
MLP 0.3142 0.6049 0.2376

Avg 0.3199 0.6122 0.3215
Std 0.2985 0.4411 0.3149

SM 0.014 DT 0.5383 0.7035 0.4514
k-NN 0.5943 0.7692 0.5148
SVM 0.6069 0.7998 0.5232
GNB 0.5412 0.4748 0.7344
MLP 0.5603 0.7773 0.4709

Avg 0.5683 0.7049 0.5389
Std 0.2244 0.2341 0.2656

NNFE 0.043 DT 0.6968 0.7765 0.6498
k-NN 0.6738 0.8026 0.5888
SVM 0.5116 0.8134 0.3984
GNB 0.4184 0.3900 0.5593
MLP 0.6182 0.8162 0.5203

Avg 0.5838 0.7197 0.5433
Std 0.2145 0.2540 0.2195

SM+NNFE 0.072 DT 0.7374 0.7795 0.7028
k-NN 0.7268 0.8700 0.6317
SVM 0.6515 0.9190 0.5365
GNB 0.5377 0.4593 0.7305
MLP 0.7147 0.8618 0.6272

Avg 0.6736 0.7779 0.6658
Std 0.1641 0.2067 0.1903

TSFRESH 245 DT 0.7425 0.7699 0.7234
k-NN 0.7260 0.8633 0.6422
SVM 0.6010 0.9781 0.4654
GNB 0.3099 0.2052 0.8656
MLP 0.7865 0.8719 0.7274

Avg 0.6332 0.7377 0.6848
Std 0.2378 0.3090 0.2121
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Combining SM with NNFE resulted in a substantial increase in the average score for

all metrics, with the most significant improvement observed in recall and the F1-score,

which doubled compared to no feature extraction. Additionally, this approach yielded

the lowest average standard deviation among all strategies.

The application of TSFRESH as a feature extraction technique resulted in a noteworthy

increase in the average F1-score of all models by 0.31, with the MLP model showing

the most substantial improvement of 0.47 when compared to no feature extraction.

Moreover, the average F1-score and recall significantly increased from 0.3199 to 0.6332

and 0.3215 to 0.6848, respectively.

When comparing different feature extraction techniques, models utilising NNFE out-

performed models utilising SM by approximately 0.2 in terms of the average F1-score.

Additionally, NNFE provided a lower standard deviation, indicating higher consistency

and reduced variability. When SM and NNFE were combined, the average F1-score

increased by approximately 0.10 when compared to NNFE and SM used individually.

Although TSFRESH has a higher average F1-score than that of WL, SM, and NNFE,

its average F1-score is lower when compared with SM+NNFE. Moreover, TSFRESH

was too time-consuming to extract features and took about 4 minutes, whereas SM,

NNFE, and SM+NNFE only took less than one second. So, TSFRESH is not only

less accurate but also much less efficient, about several hundred times slower than the

other two methods.

The critical difference diagram in Figure 6.2 summarises the final results of SM+NNFE

against the 4 feature extraction techniques. When we consider only the group of

our proposed feature extraction techniques, we can observe that WL has the lowest

performance, and there is no difference between SM and NNFE, but when they are

combined, they are significantly higher ranked than one separate methodology. When

compared to the existing feature extraction algorithm, TSFRESH outperforms WL

and SM, but it still has a lower ranking than SM+NNFE.
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Table 6.2: Average performance score with ensemble models.

Methods Score 5 Models Top 3 Models

Majority Weighted Majority Weighted

WL F1 0.3142 0.3587 0.3218 0.3678
Precision 0.6049 0.6785 0.6049 0.6785
Recall 0.2376 0.2696 0.2442 0.2765

SM F1 0.5609 0.6124 0.5757 0.6291
Precision 0.8820 0.7045 0.8355 0.6660
Recall 0.4618 0.5850 0.4796 0.6789

NNFE F1 0.5925 0.7080 0.5920 0.7192
Precision 0.9176 0.8675 0.9102 0.8608
Recall 0.4622 0.6067 0.4684 0.6327

SM+NNFE F1 0.7135 0.7825 0.6852 0.7701
Precision 0.9341 0.8888 0.9581 0.8499
Recall 0.5932 0.7061 0.5608 0.7102

TSFRESH F1 0.7239 0.8018 0.6919 0.8124
Precision 0.9640 0.9040 0.9870 0.9234
Recall 0.5961 0.7291 0.5580 0.7389

Figure 6.2: The critical difference diagram for 3 different feature extraction techniques
against the existing feature extraction technique (TSFRESH) and the telemetry water
level data before applying any feature extraction technique (WL) to the telemetry
water level.

Results of ensembles

As mentioned earlier, our ensemble methods combine the outputs of member models

with different weights, which are computed by our function defined in equation 3.5.1.

Basically, it uses the validation data set to evaluate the models, then uses their F1-score

and ranking positions to determine the weight score for each model. The experimental

results of the ensembles are presented in Table 6.2.

Without applying any feature extraction approach (WL), or applying SM or NNFE as

feature extraction, the average performance of majority voting ensemble models is not

different from the average performance before combining models. While it has improved

by around 5% by weighted voting ensemble models. In the case of SM+NNFE, their

performance has improved by around 10% with weighted ensemble techniques. When
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Figure 6.3: The critical difference diagram for four different ensemble models versus five
individual models on telemetry water level. Ensemble generated the highest ranked.

compared to TSFRESH, it has considerably improved with both ensemble methodolo-

gies and has the greatest F1-score from a weighted voting ensemble among the top 3

models at 81.24%.

Figure 6.3 depicts a comparative analysis of the critical difference between distinct

individual models and ensembles. The results indicate that the weighted ensemble of

the best three models (3EW) generally exhibits the highest performance, although its

advantage is not always statistically significant when compared to a few other models.

On the other hand, the individual model GNB shows the lowest accuracy amongst

all models. When examining the ensembles exclusively, the weighted ensemble models

perform better than the majority voting ensemble models. It is important to note that

the simple ensembles (3EV and 5EV) rank lower than all individual models except

GNB. This suggests that a mere combination of models without proper consideration

may not enhance accuracy. Conversely, ensembles built with appropriate models and

their outputs combined with a suitable weighted function can significantly improve

accuracy and consistency over the individual models.

Discussion

Only telemetry water level data provides insufficient for machine learning models to

accurately detect anomalies, as the results from many anomaly detection model pro-

vided low accuracy. While SM that convert the data to frequency domain to represent

the salient part which could be the anomaly in our datasets. However, in some event

the difference between the previous and most recent reported water levels is greater

than usual, such as rainy season or before a flood, which difficult for models to classify.
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NNFE generates new features by computing the difference between neighbouring data

points to highlight the significant dissimilarities. However, it still has the same issue

with SM approach.

TSFRESH extracts features by extracting features across multiple domains (such as

time domain and frequency domain) to obtain a wide range of features suitable for

diverse tasks. Although extracting the feature can give new insights into the time

series and their dynamics which models may achieved the better results, adding re-

dundant variables reduces the model’s generalisation capability and may also reduce

the overall accuracy of a classifier. Moreover, This extensive feature extraction process

can be time-consuming , as seen on the time for extracting features with TSFRESH

are significantly higher than other candidate techniques. Additionally, the process for

selecting the optimal features for a particular application also needs more time.

With the combination of SM and NNFE can address those issue and improved the per-

formance of each model. Moreover, our suggested approach generates new features by

computing the difference between neighbouring data points to highlight the significant

dissimilarities, combined with the saliency map, improve the model accuracy to detect

anomalies. While simultaneously reducing time costs, as it only employs two members

and performs basic computations.

Furthermore, the accuracy of anomaly detection can be improved by utilizing ensemble

techniques. However, the decision-making method employed is a crucial factor that

significantly impacts the performance of the ensemble model. As we can see, there

is no variation in ensemble performance with varying numbers of model members.

However, when our weighted voting strategy is used in decision-making, the accuracy

has been noticeably improved when water levels changed rapidly from some events.

6.5 Summary

In this experiment, we introduced a new feature extraction approach that combined the

saliency map and the nearest neighbour feature extraction to extract significant features

for the model to learn. As a result, the models are more diverse from each other and
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thus reduce their chance of making the same errors, which leads to an improvement in

their performance. In addition, we proposed a weighted ensemble approach to combine

the models selected for building an ensemble with different weights so that the good

models contribute more than the poor models in determining the final output of the

ensemble.

We used an existing library, TSFRESH, for extracting features from time series data as

a baseline for comparison. Five types of models have been trained with different feature

sets: SM, NNFE, WL, SM+NNFE, and TSFRESH. Then some of these trained models

were selected based on their accuracy on the validation data to build an ensemble. We

devised a weighting function to determine the weight for each model in an ensemble.

We ran several series of experiments using data from eight water level data sets. Each

experiment was repeated 20 times with different partitions of the data to investigate

the consistency of the models. The accuracies were measured by recall, precision and

F1-score. The results were evaluated with a statistical significance test.

The results show that the new feature extraction methods, SM+NNFE, do produce

more informative and diverse features and represent more underlying information about

the water level time series data than the existing feature extraction library, TSFRESH.

The ensemble methods are more accurate and reliable compared with the individual

models. The weighted ensemble trained with SM+NNFE features outperformed the

others in terms of accuracy and consistency. Additionally, our proposed feature ex-

traction methods were significantly more efficient, taking approximately 0.072 seconds,

thousands of times faster than TSFRESH (245 seconds), indicating that our methods

are suitable for real-time anomaly detection, a critical requirement for an early warning

system.

Anomalies are often deleted or excluded from a series of data, which is problematic since

many modelling processes need whole data sets to avoid biases or incorrect research

conclusions. As a result, the next step in our research will be to develop effective

strategies for addressing data mistakes. The work done on anomaly correction will be

explained in the next chapter.
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Chapter 7

Subsequence Matching Approaches
for Data Correction and Imputation

Contributing Publications

• Khampuengson, T. and Wang, W. (2023). Novel methods for imputing missing

values in water level monitoring data. Water Resources Management, pp.1-28.

7.1 Introduction

Using telemetry stations is a cost-effective approach to automatically collect the hy-

drological data for monitoring water levels in real time. However, there are several

factors that might disrupt the operation of stations such as environmental, technologi-

cal issues and human activities, and consequently result in anomalous or missing data

in the collected water level data. Although, there are many methods, as discussed

by Blázquez-Garćıa et al. (2020) and Yang et al. (2017), for discovering anomalies

and missing data, they often remove anomalies from a series of data, or replace them

with some constants, which are problematic because the missing data or inaccurate

data can lead to erroneous analysis results. Thus, effective approaches for predicting

missing values from accessible data are needed.

The goal of this research is to improve the accuracy and efficiency of correcting missing

or anomalous values in time series data, specifically in telemetry surface water level

data. We have developed a new technique that utilises the patterns of water levels that

tend to repeat themselves over a year. By identifying the most similar subsequence in
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the historical data, we can reproduce the pattern and effectively correct the missing

data. Our approach involves simple operations for searching and matching patterns,

making it an efficient and effective solution for data correction.

7.2 Methods

We recognise that removing anomalies from time series data can create gaps that need

to be treated as missing values, and we include them in our imputation approach.

This research aims to develop an efficient and effective framework for imputing missing

values in water level data, and we propose a novel approach called full subsequence

matching (FSM). To evaluate the effectiveness of our approach, we compare it to the

traditional approach of partial subsequence matching (PSM), which involves splitting

the subsequences before and after the missing gaps. By comparing the two methods,

we can demonstrate the advantages of our FSM approach in terms of accuracy and

efficiency. Each method is described in detail below:

7.2.1 Full Subsequence Matching (FSM)

In a time series, the data surrounding a missing gap can contain valuable information

related to the gap and hence should be used for imputation of the missing points. A key

question is how these pieces of useful information can be extracted and utilised in an

efficient and effective manner. In this research, rather than separating the subsequence

into two parts, before and after the missing gap, we replaced the missing gap with

some temporary constant values to construct a dummy full sequence. Then, for parity

in searching with historical data, we set the data in each sliding window at the same

position as the same replaced constant values in the dummy full sequence. So, we can

search for similar subsequences with the subsequences before and after a missing gap

at the same time.

Our proposed FSM method consists of four main steps, which are explained as follows:

For a given time series X = {x1, ..., xN}, where N is the length, i.e. the number of

data point in a time series.
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Step one - Identifying a missing gap: Firstly, we identify the first missing point at

time xt and the last missing point xt+T of a missing gap with T number of consecutive

points, [xt, ..., xt+T ].

Step two - Extracting an extended subsequence: We then extract a subsequence I that

contains the identified missing gap sandwiched with two subsequences of m and n

consecutive data points at the left side and the right side of the gap respectively. This

extended subsequence can be represent as:

I = {xt−m, ...xt−1, [xt, ..., xt+T ], xt+T+1, ..., xt+T+n}

We then assign constant values c for every value of missing values in I as follows:

I = {xt−m, ..., xt−1, [c, ..., c], xt+T+1, ..., xt+T+n}.

Step three - Matching: This step searches and matches I with other subsequences

in X. It is done by a sliding window technique. We set W = {w1, w2, ..., wi} to

denote the subsequence in a sliding window where wi is the set of consecutive values

of X at position i with length z. We then compute the Euclidean distance of I with

each subsequence in W . However, because the missing values in I have been replaced

with constants, before computing the distance, we must replace all values in each

subsequence of the sliding windows at the same position as the missing values in I

with the same constant c. The most similar subsequence, denoted by S, is the one

with the shortest distance, as shown in equation 7.2.1.

S = min{d(I,W )} (7.2.1)

Step four - Imputation : We developed two different techniques to impute missing

values: difference imputation and scaling imputation, as shown in Algorithm 2. They

are explained further below.

1. Difference Imputation (FSMD): If we know the difference between every two
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consecutive values in the any sequence, we can recreate the original series even

if some values are missing. We calculate the difference between each pair of

consecutive values in S, starting with the first pair of values at the same position

of missing data in I. Then addition those value with the first values before the

missing gap in I to calculate the first missing values. The difference between

the following pairwise values in S is computed and added to the latest imputed

values in I. We do so until all missing values have been imputed.

2. Scaling Imputation (FSMS): The scale of the query subsequence and the scale

of the most similar subsequence should be the same or almost the same. Hence,

we can adjust the scale of the most similar subsequence to the scale of query

subsequence to regenerate the values in missing gaps.

Algorithm 2 FSM Imputation
1: Input: S - the most similar subsequence.
2: I - query subsequence.
3: m - the number of points of the right subsequence.
4: T - the length of missing gap.
5: procedure FSMD(S, I,m, T )
6: D = {}
7: for i=0 to T − 1 do
8: D ← S[m+ 1 + i]− S[m+ i] ▷ difference between two consecutive values

9: imp = {I[m]}
10: for index i in D do
11: val = imp[−1] +D[i]
12: imp← val

13: return imp

14: procedure FSMS(S, I,m, T )
15: diff = S[m]− I[m] ▷ difference between two subsequences
16: max = Max(S[m : m+ T + 1])− diff
17: min = Min(S[m : m+ T + 1])− diff
18: val = I[m : m+ T + 1]
19: imp = MinMaxScaler(val, feature range = (min,max))
20: return imp

7.2.2 Partial Subsequence Matching (PSM)

The basic idea behind the partial subsequence matching method is that instead of using

full subsequences for search and matching, only partial subsequences are used, which

could speed up the process. The PSM is explained in detail as follows:

Step one - Identifying a missing gap: This step is the same as that of the FSM, i.e.

finding the start and end indices of the missing gap in X.

Step two - Dividing: We then extract subsequence with m points from left (L) and n

points from right (R) side of the missing gap in X. That is , we have that
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L = {xt−m, ..., xt−1}

and

R = {xt+T+1, ..., xt+T+n}

Step three - Matching: We then search the most similar subsequences to L and R,

denoted by SL and SR, respectively. It is done by computing the Euclidean distance of

L and R with each subsequence in sliding windows W . The most similar subsequences

can be represent by

SL = min{d(L,W )}

and

SR = min{d(R,W )}

Step four - imputation: Four different techniques have been developed to impute the

missing values as represented in Algorithm 3. We use SL to generate the forward sub-

sequence, and SR to generate the backward subsequence, then combine those generated

subsequences to impute the missing values. The missing values have been imputed by

4 different methods, as follows:

1. Average Imputation (PSMA): We extracted the consecutive subsequence on the

right side of SL, and on the left side of SR that was the same length as the missing

gap. Then, to calculate the difference between each pair of consecutive values,

we combined them with the average method before using them to impute missing

values.

2. Forward Imputation (PSMF ): Instead of using an average difference from both

side of the most similar subsequence, we then use only the calculated difference

from subsequence on the right side of SL to impute the missing values.

3. Backward Imputation (PSMB): We used only the calculated difference from the
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subsequence on the left side SR to impute the missing values.

4. Weighted Imputation (PSMW ): The basic idea is that the values closest to the

missing gap have more effect than the values farthest away. We will assign higher

weights to closer points and decrease the weight as the time interval grows. The

missing values are then imputed by multiplying the difference between each pair

of consecutive subsequences by their weighted score.

Algorithm 3 PSM Imputation
1: p - last index of SL

2: k - first index of SR

3: procedure PSMA(SL, SR,m, T,X)
4: DL = {}
5: DR = {}
6: for i=0 to T − 1 do
7: DL ← X[p+ i]−X[p− 1 + i]
8: DR ← X[k − i]−X[k − 1− i]

9: Davg = avg(DL, DR)
10: imp = {X[p− 1]}
11: for index i in Davg do
12: val = imp[−1] +Davg [i]
13: imp← val

14: return imp

15: procedure PSMF(X, p, T )
16: DL = {}
17: for i=0 to T − 1 do
18: DL ← X[p+ i]−X[p− 1 + i] ▷ difference between two neighbours

19: imp = {X[p− 1]}
20: for index i in DL do
21: val = imp[−1] +DL[i]
22: imp← val

23: return imp

24: procedure PSMB(X, k, T )
25: DR = {}
26: for i=1 to T do
27: DR ← X[k − 1]−X[k − 1− i] ▷ difference between two neighbours

28: imp = {X[k]}
29: for index i in DR do
30: val = imp[−1] +DR[i]
31: imp← val

32: return inverse(imp)

33: procedure PSMW(X, p, k, T )
34: weightNumber = {1, 2, 3, ..., T}
35: Weightfwd = MinMaxScaler(weightNumber, featurerange = (0, 1))
36: Weightbwd = Inverse(Weightfwd)
37: imp = {L[m]}
38: for i=1 to T do
39: val =

DL[i]∗Weightfwd[i]+DR[T−i]∗Weightbwd[i]

Weightfwd[i]+Weightbwd[i]

40: imp← val

41: return imp

7.3 Evaluation

7.3.1 Dataset

Indeed, we were unable to examine the capacity of imputation algorithms on genuine

missing data because the true values were not available. As a result, we must generate
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simulated missing values on complete data in order to evaluate the performance of

imputation approaches. So we considered datasets that were either complete or had

the fewest number of missing or anomalous data points. After data preprocessing, we

chose two years of data (2015 and 2016) from six representative stations (CPY012,

CPY015, CPY016, CPY017, CHM003, and CHR004) to test the accuracy and general-

isation of our proposed methods when dealing with different data behaviours. CPY012

and CPY015 stations represent the data with tidal effects that have strong periodic

patterns, as depicted in Figure 7.1. While the data from CPY016 and CPY017 that

have fluctuation characteristics with few upward and downward as a result of irrigation

operating in the canal that has telemetry stations installed, as shown in Figure 7.2.

Additionally, the data from CHM003 and CHR004 show fluctuations and many upward

and downward patterns as a result of the rain effect, as shown in Figure 7.3.

(a) CPY012

(b) CPY015

Figure 7.1: Water level data with tidal influences.
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(a) CPY016

(b) CPY017

Figure 7.2: Water level data with irrigation influences.

(a) CHM003

(b) CHR004

Figure 7.3: Water level data with rain influences.
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7.3.2 Missing data generation

We were unable to examine the accuracy of imputation algorithms on genuine missing

data because the true values were not available. But we can simulate some missing

data with some methods on complete data in order to evaluate the performance of

imputation approaches. To produce datasets with missing data, we delete consecutive

values from the dataset under the assumption that it happens at random.

To simulate various missing data situations, we generated missing gaps of sizes 6, 12,

18, 36, 72, and 144 (1 hour, 2 hours, 3 hours, 6 hours, 12 hours, and 1 day), and the

length of a consecutive subsequence before and after the missing gap equal to the size

of the missing gap. For instance, if the missing gap is six in length, the lengths of the

subsequences before and after the missing gap are also six.

7.3.3 Comparision imputation methods

We chose some well-known representative imputation methods for comparing our meth-

ods. These are interpolation of linear and polynomial, k-Nearest Neighbours (k-NN),

MissForest (MF), and a deep learning method - long short term memory (LSTM). In

case of LSTM, we utilised two LSTM models (LSTMF and LSTMB) with the same

architecture for predicting and backcasting the missing gaps. In the event of back-

casting, we invert the position of the subsequence after the missing data and feed it

into the LSTMB model. Furthermore, we created two new imputations based on the

results of both LSTMF and LSTMB. The first is LSTMA, which takes the average of

the outputs of both models and uses it as the final output. The second is LSTMW ,

which we weight the values of output from LSTMF and LSTMB using the same notion

of weighting imputation as in FSMW by assigning the greatest weighting score to the

data that is closest to the current values.

7.3.4 Experimental Setting

The datasets are divided depending on each method, and we run each method 500

times and average the results. The dataset is divided into training/searching and

testing/removing. The training data is used to fit neural network model and search
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the most similar subsequence, while the testing data is used to generate the missing

subsequences and assess model performance. For training purposes, we used data from

2015, whereas for testing purposes, we used data from 2016.

For interpolation technique we used interpolate class in panda.DataFrame1 python

library, which is a method for filling missing value using an interpolation method. We

specified a linear approach for linear interpolation and a polynomial method with an

order of 2 for polynomial interpolation.

We used the grid search technique to find the best k number of nearest neighbours,

ranging from 2 to the number of members in the query subsequence for k-NN models.

Since MF models require multivariate data, we chose the simplest way to convert

our data from univariate to multivariate by dividing the query sequence into three

subsequences to use as input for MF models.

For partial subsequence matching, we used the matrix profile python library called

STUMPY (Law, 2019) which is a powerful and scalable library for searching the most

similar subsequence. In order to properly train LSTM models, we used one LSTM

layer and one hidden layer that uses only dense layer, 30 training epochs, prevent

time-consuming and over-fitting with early stopping with the patience values of 5 and

mini-batch size of 128. In practical, we tried with different number of neurons per

layer (64, 128, and 256) and found that 128 neuron per layer give the best result. The

input of LSTM is the subsequence of before and after missing values for prediction the

missing values.

All the experiments were coded with Python Programming Language (V3.6) and Ten-

sorFlow 2.8, and run on a personal computer with an Intel Core i5-7500 CPU @ 3.4

GHz, 32 GB RAM, 64-Bit Operating System.

7.3.5 Evaluating imputation methods

We assess the performance of our proposed approaches to current imputation methods

using three separate measures: RMSE, MAE, and Sim, as described in Section 3.6.3.

1https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.interpolate.html
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7.4 Results

Incomplete subsequence matching methods as described in Section 7.2 guarantee that

our suggested model will be capable of producing imputation results with varying

lengths. Aside from that, the number of available data points around the missing

values can also be adjusted. As a result, the FMS is built to deal with random size of

data gaps in time series. We random remove the subsequence 500 times from telemetry

water level data and the results described as follow.

Table 7.1: The average imputation performance indexes of 14 methods on telemetry
water level data with tidal influence.

Method Gap RMSE MAE Sim Gap RMSE MAE Sim Gap RMSE MAE Sim

Li-Inter 6 0.0180 0.0158 0.8525 12 0.0419 0.0376 0.8625 18 0.0726 0.0652 0.8485
Poly-Deg2 0.0202 0.0177 0.8305 0.0343 0.0297 0.8728 0.0507 0.0433 0.8742
k-NN 0.0818 0.0768 0.7251 0.1136 0.1030 0.7697 0.1763 0.1593 0.7538
MF 0.0835 0.0790 0.6295 0.1976 0.1862 0.6074 0.3253 0.3011 0.5919
PSMF 0.0647 0.0560 0.6915 0.1231 0.1040 0.7340 0.1776 0.1487 0.7311
PSMB 0.0688 0.0618 0.6696 0.1315 0.1174 0.7149 0.2044 0.1809 0.7031
PSMA 0.0522 0.0460 0.7167 0.0944 0.0822 0.7645 0.1417 0.1223 0.7600
PSMW 0.0509 0.0448 0.7187 0.0912 0.0792 0.7674 0.1339 0.1149 0.7643
FSMD 0.0231 0.0198 0.8223 0.0349 0.0300 0.8704 0.0460 0.0395 0.8788
FSMS 0.0208 0.0178 0.8356 0.0290 0.0247 0.8872 0.0383 0.0327 0.8984
LSTMF 0.0634 0.0551 0.6888 0.1062 0.0901 0.7551 0.1513 0.1257 0.7610
LSTMB 0.0540 0.0470 0.7203 0.1096 0.0944 0.7395 0.1251 0.1060 0.7790
LSTMA 0.0376 0.0340 0.7537 0.0797 0.0729 0.7613 0.1064 0.0950 0.7883
LSTMW 0.0398 0.0345 0.7767 0.0679 0.0605 0.8050 0.0836 0.0730 0.8384

Li-Inter 36 0.2034 0.1792 0.8136 72 0.4464 0.3729 0.7820 144 0.6121 0.5056 0.7760
Poly-Deg2 0.1125 0.0939 0.8736 0.3777 0.3107 0.8033 0.7508 0.5970 0.7453
k-NN 0.2685 0.2375 0.7732 0.3229 0.2937 0.8085 0.2695 0.2451 0.8633
MF 0.6674 0.5987 0.5881 0.6402 0.5792 0.6781 0.1253 0.1014 0.9331
PSMF 0.2754 0.2273 0.7736 0.2531 0.2142 0.8340 0.2180 0.1786 0.8785
PSMB 0.3202 0.2776 0.7435 0.2666 0.2303 0.8254 0.2503 0.2137 0.8646
PSMA 0.2220 0.1885 0.7940 0.2128 0.1822 0.8506 0.1923 0.1616 0.8873
PSMW 0.2121 0.1790 0.8024 0.2338 0.2001 0.8410 0.1954 0.1639 0.8847
FSMD 0.1029 0.0887 0.8707 0.2329 0.1982 0.8392 0.1904 0.1593 0.8877
FSMS 0.0921 0.0790 0.8794 0.2066 0.1737 0.8542 0.1692 0.1391 0.8977
LSTMF 0.2205 0.1869 0.7933 0.2405 0.2073 0.8372 0.2724 0.2375 0.8622
LSTMB 0.2406 0.2092 0.7810 0.2612 0.2237 0.8291 0.2574 0.2227 0.8719
LSTMA 0.1895 0.1729 0.7948 0.2208 0.1962 0.8408 0.2334 0.2094 0.8758
LSTMW 0.1394 0.1250 0.8391 0.1949 0.1679 0.8564 0.2172 0.1889 0.8807

We first consider the tidal-influenced data whose recurrent upward and downward

trends are noticeably and frequent changing with a similar magnitude. The average

imputation performance of each methods are depicted in Table 7.1. As expected, when

the size of the missing gaps is small, e.g., 6, linear interpolation techniques (Li-Inter)

achieve the best performance for RMSE, MAE, and Sim with 0.0180, 0.0158, and

0.8525, respectively. However, their performance degrades steadily when dealing with

gaps bigger than 6. Similar to polynomial interpolation (Poly-Deg2), which performed
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well when imputed missing data with a small gap but poorly when the gap increased.

MF technique performed the poorest results with gap size lower than 144, particularly

on gap size 36, with 0.6674 (RMSE), 0.5987 (MAE), and 0.5991 (Sim), but it performed

best when it filled in the missing gaps with a size of 144, with 0.1253 (RMSE), 0.1014

(MAE), and 0.9331 (Sim). Our proposed solution, FSMS, outperforms all others when

imputed missing gaps of sizes 12, 18, and 36. LSTMW performed best on gap size

72, with RMSE, MAE, and Sim of 0.1949, 0.1678, and 0.8564, respectively. When the

missing gaps were imputed at size 144, MF beat other models with the lowest RMSE

of 0.0383, the lowest MAE of 0.0322, and the highest Sim of 0.9331.

We also plotted the average imputation performance for 14 methods using telemetry

water level data with tidal features, as illustrated in Figure 7.5. As we can see, the

interpolation method, Li-Inter and Poly-Deg2, appeared to decrease in performance as

the number of missing gaps rose. When filling in data gaps with sizes of 12, 18, and 36,

our suggested method, FSMS, is clearly better than all others. After increasing the gap

size to 144, performance of k-NN often improves. While performance of MF was the

poorest while trying to impute missing data with a gap size of 72 or less, it improved to

the best when the gap size was increased to 144. Although the set of PSM techniques

performs poorly when the missing gap size is small, their performance improves when

the missing gap size is equal to or higher than 72. It is interesting to note that as the

amount of input data goes up, the performance of LSTM approaches gets better as the

number of missing gaps goes up.

Figure 7.4: A critical difference diagram for 14 different imputation techniques on tidal
influence datasets of telemetry water level data.
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(a) RMSE

(b) MAE

(c) Similarity

Figure 7.5: The performance for imputing telemetry water level data with tidal influ-
ence for various missing gap size.
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Figure 7.4 shows the comparison of the critical difference between the different im-

putation models. The number associated with each algorithm is the average rank of

the imputation models on each type of datasets and solid bar group classifiers with no

significant difference. For the data type with tidal effect, FSMS achieved the top rank

follow with FSMD, LSTMW, and Poly-Deg2, respectively. MF not only provided the

lowest ranking but also significant difference from FSM-based technique.

Table 7.2 shows the imputing findings for the irrigation-affected data. Li-Inter is not

only the best imputation model for missing gaps of size 6, but also performs well for

larger missing gaps. k-NN, on the other hand, performed the poorest with every missing

gap size and has a score difference from Li-Inter of roughly 0.08 in every performance

metric.

Table 7.2: The average imputation performance indexes of 14 methods on telemetry
water level data with irrigation influence.

Method Gap RMSE MAE Sim Gap RMSE MAE Sim Gap RMSE MAE Sim

Li-Inter 6 0.0050 0.0042 0.7004 12 0.0066 0.0054 0.7641 18 0.0069 0.0055 0.7992
Poly-Deg2 0.0083 0.0071 0.4525 0.0138 0.0117 0.5570 0.0177 0.0150 0.5596
k-NN 0.0832 0.0822 0.3505 0.0933 0.0918 0.4006 0.1061 0.1042 0.4173
MF 0.0075 0.0058 0.7271 0.0113 0.0089 0.7454 0.0124 0.0100 0.7452
PSMF 0.0140 0.0120 0.5239 0.0151 0.0123 0.6745 0.0183 0.0151 0.6610
PSMB 0.0133 0.0112 0.5251 0.0178 0.0151 0.6179 0.0168 0.0140 0.6631
PSMA 0.0117 0.0099 0.5542 0.0140 0.0115 0.6651 0.0147 0.0119 0.6962
PSMW 0.0138 0.0117 0.5389 0.0136 0.0109 0.6916 0.0158 0.0130 0.6827
FSMD 0.0082 0.0063 0.6689 0.0103 0.0081 0.7214 0.0119 0.0094 0.7165
FSMS 0.0075 0.0058 0.6831 0.0090 0.0071 0.7342 0.0097 0.0077 0.7418
LSTMF 0.0394 0.0386 0.2696 0.0333 0.0319 0.4421 0.0512 0.0498 0.3514
LSTMB 0.0233 0.0225 0.3171 0.0287 0.0273 0.4167 0.0324 0.0309 0.4655
LSTMA 0.0279 0.0271 0.3283 0.0284 0.0272 0.4529 0.0360 0.0346 0.4579
LSTMW 0.0302 0.0281 0.3116 0.0284 0.0268 0.4591 0.0381 0.0356 0.4424

Li-Inter 36 0.0092 0.0074 0.8261 72 0.0155 0.0126 0.8367 144 0.0240 0.0193 0.8424
Poly-Deg2 0.0320 0.0269 0.6305 0.0609 0.0510 0.6556 0.1271 0.1070 0.6252
k-NN 0.1146 0.1118 0.4511 0.1235 0.1194 0.4759 0.1600 0.1544 0.4988
MF 0.0207 0.0176 0.7131 0.0335 0.0289 0.7069 0.0445 0.0386 0.7529
PSMF 0.0265 0.0222 0.6639 0.0482 0.0405 0.6407 0.0683 0.0580 0.6479
PSMB 0.0266 0.0227 0.6404 0.0506 0.0429 0.6225 0.0675 0.0571 0.6500
PSMA 0.0225 0.0188 0.6837 0.0416 0.0351 0.6589 0.0560 0.0474 0.6786
PSMW 0.0233 0.0195 0.6811 0.0443 0.0374 0.6465 0.0625 0.0531 0.6579
FSMD 0.0200 0.0166 0.7001 0.0371 0.0312 0.7050 0.0458 0.0388 0.7222
FSMS 0.0153 0.0127 0.7416 0.0274 0.0229 0.7407 0.0344 0.0283 0.7729
LSTMF 0.0588 0.0564 0.4748 0.0784 0.0745 0.5279 0.1222 0.1170 0.5406
LSTMB 0.0488 0.0467 0.4684 0.0627 0.0590 0.5661 0.0737 0.0680 0.5986
LSTMA 0.0463 0.0444 0.5264 0.0631 0.0602 0.5735 0.0890 0.0844 0.5880
LSTMW 0.0457 0.0434 0.5241 0.0600 0.0567 0.5963 0.0860 0.0798 0.6040
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(a) RMSE

(b) MAE

(c) Similarity

Figure 7.6: The performance for imputing telemetry water level data with irrigation
influence for various missing gap size.
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As seen in Figure 7.6, the performance of all approaches fell progressively as the size

of the missing gap rose, with the exception of the similarity score of LSTM models,

which tended to improve performance as the gap size increases.

Figure 7.7: A critical difference diagram for 14 different imputation techniques on
irrigation influence datasets of telemetry water level data.

The CD diagram in Figure 7.7 revealed that Li-Inter took first place, followed by our

suggested technique (FSMS), and MF, respectively, while the group of LSTM models

performed the worst. A collection of PSM and FSM models works well and offers a

considerable improvement over LSTM-based imputation approaches.

Regarding the impacts of rain, Li-Inter outperformed across all gap sizes and evaluation

metrics, with the exception of gap 6, where performance was slightly lower than MF,

around 0.0259, for Sim score. Moreover, the line charts in Figure 7.9 present the

performance for imputing telemetry water level data with rain influence for various

missing gap sizes. As we can see, the set of LSTM models scores the lowest on all

evaluation metrics. Li-Inter and Poly-Deg2 have a tendency to perform worse as the

number of missing values grows, while the set of PSM and FSM strategies maintain a

consistent level of performance.

When used to impute the missing data on the water level with rain-effected, Li-Inter,

FSMS, and MF maintained their top rankings. However, k-NN dropped to the bottom

of the list. LSTM-based techniques still provided the low ranking and significant

difference from Li-Inter and FSMS, as shown in Figure 7.8.
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Table 7.3: The average imputation performance indexes of 14 methods on telemetry
water level data with rain influence.

Method Gap RMSE MAE Sim Gap RMSE MAE Sim Gap RMSE MAE Sim

Li-Inter 6 0.0066 0.0053 0.7200 12 0.0079 0.0062 0.7949 18 0.0080 0.0063 0.8148
Poly-Deg2 0.0126 0.0110 0.5195 0.0211 0.0184 0.5577 0.0273 0.0236 0.5621
k-NN 0.0274 0.0263 0.5021 0.0358 0.0338 0.5668 0.0384 0.0364 0.5620
MF 0.0089 0.0069 0.7459 0.0128 0.0102 0.7701 0.0145 0.0117 0.7685
PSMF 0.0131 0.0106 0.6658 0.0163 0.0129 0.7248 0.0188 0.0151 0.7210
PSMB 0.0147 0.0124 0.5719 0.0196 0.0164 0.6628 0.0223 0.0186 0.6912
PSMA 0.0120 0.0097 0.6395 0.0151 0.0122 0.7218 0.0173 0.0140 0.7305
PSMW 0.0122 0.0098 0.6694 0.0153 0.0121 0.7330 0.0173 0.0139 0.7291
FSMD 0.0110 0.0086 0.6773 0.0137 0.0109 0.7114 0.0165 0.0137 0.6853
FSMS 0.0100 0.0078 0.6804 0.0115 0.0092 0.6959 0.0124 0.0099 0.7346
LSTMF 0.3161 0.3159 0.0952 0.3216 0.3211 0.1272 0.3219 0.3215 0.1364
LSTMB 0.3204 0.3202 0.0912 0.3268 0.3263 0.1204 0.3252 0.3248 0.1354
LSTMA 0.3182 0.3180 0.0912 0.3241 0.3236 0.1239 0.3235 0.3230 0.1357
LSTMW 0.3184 0.3180 0.0922 0.3243 0.3236 0.1238 0.3237 0.3231 0.1361

Li-Inter 36 0.0105 0.0084 0.8453 72 0.0173 0.0143 0.8500 144 0.0277 0.0229 0.8561
Poly-Deg2 0.0506 0.0436 0.5753 0.0944 0.0804 0.5647 0.1895 0.1618 0.5348
k-NN 0.0545 0.0512 0.5877 0.0850 0.0790 0.5786 0.1158 0.1080 0.5818
MF 0.0256 0.0218 0.7656 0.0438 0.0380 0.7548 0.0609 0.0527 0.7813
PSMF 0.0360 0.0299 0.7001 0.0691 0.0578 0.6509 0.0945 0.0798 0.6358
PSMB 0.0391 0.0331 0.6928 0.0830 0.0693 0.6315 0.1394 0.1169 0.6097
PSMA 0.0300 0.0249 0.7234 0.0620 0.0517 0.6591 0.0955 0.0803 0.6342
PSMW 0.0313 0.0261 0.7148 0.0649 0.0537 0.6549 0.0964 0.0795 0.6304
FSMD 0.0221 0.0182 0.7452 0.0352 0.0295 0.7518 0.0625 0.0528 0.7296
FSMS 0.0164 0.0134 0.7607 0.0249 0.0208 0.7711 0.0437 0.0367 0.7750
LSTMF 0.3190 0.3181 0.1874 0.3328 0.3307 0.2219 0.3219 0.3182 0.2862
LSTMB 0.3237 0.3228 0.1827 0.3371 0.3351 0.2185 0.3275 0.3237 0.2824
LSTMA 0.3212 0.3203 0.1844 0.3348 0.3328 0.2204 0.3246 0.3208 0.2842
LSTMW 0.3214 0.3203 0.1849 0.3351 0.3329 0.2202 0.3249 0.3210 0.2840

Figure 7.8: A critical difference diagram for 14 different imputation techniques on rain
influence datasets of telemetry water level data.
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(a) RMSE

(b) MAE

(c) Similarity

Figure 7.9: The performance for imputing telemetry water level data with rain influence
for various missing gap size.
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7.4.1 Discussion

Li-inter and Poly-Deg2 produced the best performance on data with non-cyclical and

periodic patterns, like data with rain and irrigation effects. Moreover, with the small

missing gap size Li-inter outperformed the others with all data behaviours, which is

expected.

When imputing the missing values on water level data with tidal influence, our ap-

proaches FSMS outperformed the others. It is mostly due to the fact that some cycli-

cal patterns of tidal influence are repeated in water level data over time, and our

approaches are capable of finding and matching the most similar pattern in the past

to impute the missing data more accurately. However, when we took a close look into

the very short missing gaps, which still seem more like linear, then it is not surprising

to see that Li-inter performed better.

The utilized LSTM model was trained on the input subsequence and its reversed copy

that preserved both past and future information of a specific time frame. With this

advantage, LSTM models are able to understand the context better and thus in prin-

ciple they should be suitable for imputing the missing data in telemetry water level.

However, they did not produce the best performance. According to our experiments

on the data with different behaviours, LSTM models incorrectly estimated strongly

fluctuated data, for example the data with some raining effects. On the other hand,

they are capable of imputing the missing values on the data with tidal and irrigation

effects with periodic and without frequent trends.

Since MF does not use data for training, it performed poorly when dealing with short

subsequences but produced excellent outcomes for missing data with large gap sizes. In

other words, MF performed better when appropriate data is available. However, since

MF models need multivariate data, which is not always the case in this application

and transformation from univariate data to multivariate data can introduce noise or

misrepresentations. Splitting the sequence into many subsequences is the simplest

technique to generate multivariate data. This raises the challenge of determining the

optimal number of subsequence splits.
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7.5 Summary

This experiment introduced two subsequence matching methods: full and partial meth-

ods, for searching the most similar subsequence and filling in the missing values in

telemetry water level data. They were tested with real-world water level data collected

from 6 water level monitoring stations, and their results were compared with a range of

other existing methods, including some commonly used methods and the latest state-

of-the-art deep learning methods - LSTM. The results showed that our new methods,

particularly full subsequence matching with scaling imputation technique (FSMS), were

better than all of them.

The FSM approach uses the Euclidean distance technique to search for the most similar

subsequence of the query subsequences, then calculate missing data values based on the

pattern of those subsequence. However, rather than dividing it into two subsequences

we replaced missing data with constant values and searched as a single subsequence.

The proposed methods were evaluated using missing data simulated on six time series

water level data with three distinct data behaviours. The results indicate that FSM

with scaling imputation, FSMS, outperforms other imputation methods when dealing

with large missing gap sizes.

The FSMS performs well on data that has strong periodic and cyclical pattern such as

data of water level with tidal effects. While the linear interpolation approach works

well with data that fluctuates and has a number of up and down trends such as water

level data with rain and irrigation effects. LSTM and MF models show increased

performance when the missing gap size is increased. However, for large datasets, LSTM

is computationally costly and time-consuming. Although we may train the model using

long periods of historical data with high performance computing (HPC) to shorten

training time, we have no way of knowing when we need to retrain the model, which is a

significant downside of this approach. While MF needs to transform univariate data to

multivariate data which difficult to find the appropriate techniques of transformation.
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Evaluation

8.1 Introduction

In Chapters 4 - 7, we presented our work on anomaly detection and data imputation.

In this chapter, we overview all the methodologies used in our study, then evaluate and

discuss them and the results. Moreover, we have also performed a fully independent

validation of our work by evaluating our techniques on external methodologies and

datasets.

8.2 Overview of the Research

This study examined the issue with telemetry water level data from two perspectives.

The first component was to detect anomalous data. The second part was data impu-

tation.

For anomaly detection, we first considered the statistical models to determine how

well those methods were when dealing with telemetry water level data. Although

an individual statistical model can be used to identify anomalies, it still produces a

large number of false alarms. DRL is an algorithm that has obtained outstanding

performance during the last decade. Therefore, we created DRL models for detecting

anomalies in telemetry water level data. Although DRL is applicable for identifying

abnormalities, it takes a long time because we have to train it until it works well

enough and there are a lot of hyperparameters to tune. We then developed a feature

extraction algorithm called SM+NNFE that combined the saliency map and nearest
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neighbour extracted features to improve the performance of models. Furthermore, we

combined the individual models with ensemble methods, which provided more accurate

and consistent classification. Although they may not always produce the best results,

they outperformed in terms of minimising the frequency of false alarms in detecting

anomalies, which is critical in real-world applications.

In the case of data imputation, the water level is seasonal, which means it follows

the same pattern throughout the year. For these characteristics, we may replicate the

most similar pattern from the prior data to impute the missing data. The results of

experiments suggest that our method is better than others when dealing with data

that has a strong periodic pattern.

8.3 Evaluation

In each experiment, we picked data from a distinct time period and station. Because

each model has its limitations, such as statistical models do not need data for train-

ing, we have tested using data that has a sufficient consecutive sequence with a low

proportion of missing data. While machine learning models need data for training, our

problem is imbalanced datasets. Therefore, we picked data from certain stations with

a low proportion of missing data and an appropriate number of anomalies to conduct

the experiment. Also, because DRL takes a lot of time, we only used data from short

time periods to evaluate the models. As a consequence, the evaluation of the accuracy

of our models is needed. In this section, we explain how we evaluated our research

methods and compared the results of our approaches.

8.3.1 Evaluation of the Research Methods

While assessing a research methodology, there are three primary aspects that should

be addressed. These are accuracy, reliability, and time-consuming. The accuracy was

measured using the F1-score for anomaly detection and RMSE for data imputation,

in addition to the critical difference diagram for statistical comparison. The reliability

was determined by doing each experiment five times with variations, and then the

mean and standard deviation of the results were reported. The time-consuming was
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measured by the time spent on training each model.

8.3.2 Comparison between our anomaly detection methods

We analyse data gathered over a variety of periods and from different stations to assess

the accuracy, consistency, and reliability of each model. We picked data from 33 sites

that covered all different water level behaviours. The summary of the data is shown

in Table 8.1.

Table 8.1: Summary of data from 33 telemetry stations.

Data Behavior Station Date Interval No. of Records No. of Anomaly % of Anomaly Data

Irrigation DIV001 1 Jan 2015 - 31 Dec 2015 51798 11 0.02
PIN002 1 Jun 2016 - 1 Oct 2017 68760 2 0.00
PIN003 1 Apr 2015 - 1 Oct 2016 77858 696 0.89
VLGE13 1 Jan 2017 - 31 Dec 2017 52290 4 0.01
YOM012 9 Apr 2014 - 31 Dec 2016 140489 6 0.00

Rain CHM001 1 Mar 2014 - 31 Dec 2014 39317 2 0.01
CHM002 1 May 2014 - 31 Dec 2017 181878 2 3.72
CHM003 1 Apr 2014 - 31 Dec 2016 136462 8 0.01
CHM005 1 Jan 2015 - 31 Dec 2016 99447 2 0.00
CHM006 1 Apr 2014 - 31 Dec 2017 187008 1909 1.02
CHR004 1 Apr 2014 - 30 Sep 2017 173610 57 0.03
CHR005 1 May 2014 - 28 Feb 2015 40623 4 0.01
CPY001 1 Jan 2013 - 31 Dec 2014 105120 41 0.04
CPY002 1 Nov 2013 - 31 Dec 2014 61344 3 0.00
CPY004 1 Jan 2013 - 31 Jul 2014 83088 158 0.19
CPY005 1 Jan 2013 - 31 Oct 2014 96336 2 0.00
CPY006 1 Dec 2014 - 31 Oct 2017 153504 12 0.01
DIV004 16 May 2014 - 30 Jul 2016 114370 46 0.04
PIN005 1 May 2014 - 30 Nov 2015 77391 6449 8.33
PIN006 16 Aug 2015 - 1 May 2016 37165 2943 7.92
WAN001 1 Jan 2015 - 31 Jul 2017 125840 2207 1.75
WAN002 1 Mar 2014 - 30 Sep 2016 122946 5 0.00
WAN003 1 May 2016 - 31 Dec 2017 86483 3 0.00
WAN005 1 Mar 2014 - 31 Dec 2015 92652 60 0.06
YOM009 15 Dec 2014 - 15 Mar 2016 65153 1773 2.72
YOM010 1 Jan 2014 - 30 Nov 2015 90645 3372 3.72

Tidal CPY011 1 Apr 2016 - 31 Mar 2017 52560 109 0.21
CPY012 1 Jan 2015 - 31 Jul 2016 83232 1292 1.55
CPY013 1 May 2016 - 31 Dec 2016 35280 578 1.64
CPY014 1 Jan 2014 - 30 Aug 2015 87408 371 0.42
CPY015 1 Jan 2014 - 31 Dec 2016 157824 94 0.06
CPY016 1 Apr 2014 - 31 Dec 2016 144864 2265 1.56
CPY017 1 Jan 2014 - 31 Dec 2016 157824 1028 0.65

Avg 99411.18 773.15 1.11

For comparison, we selected seven statistical models in Chapter 4, MLP and LSTM

in Chapter 5, and five machine learning models in Chapter 6. We experimented with

univariate and multivariate data that had been extracted by SM+NNFE as described

in Chapter 6. We used F1-score to evaluate the results. Additionally, the statistical

comparison with the critical difference diagram is also represented.

With univariate data.

We start with comparing the accuracy of each model by using only telemetry water

level data (univariate). The F1-score of each model, as depicted in Table 8.2. With

statistical models, IQR had the greatest overall average F1-score of 0.2425, followed by
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MAS and Ksigma, which had 0.1781 and 0.1441, respectively. KNN had the highest

overall average F1-score of 0.1970 for ML models, while GNB had the lowest overall

average F1-score of 0.0190. Both LSTM and MLP models produced an overall average

F1-score of roughly 0.2, which was slightly lower than the IQR model. Overall, IQR

provided the best performance, followed by LSTM, MLP, and KNN. GNB, on the

other hand, had the lowest overall average F1-score of 0.0190. When we analysed

the accuracy of each model based on data behaviour, we discovered that ML and NN

models provided low accuracy when dealing with data with irrigation behaviour; almost

all of them, with the exception of KNN on the PIN003 dataset, were unable to identify

any abnormality. KNN had the greatest average F1-score of 0.2386 for data with rain

behaviour, followed by DT with a 0.1624 F1-score and LSTM with a 0.1255 F1-score,

respectively. On tidal behaviour data, NN models achieved the highest accuracy, with

an average F1-score of 0.5953 by LSTM and 0.5856 by MLP.

Table 8.2: The F1-score of each model on univariate telemetry water level data with
different characteristics.

Data Behaviour Station Statistical Models ML Models NN Models
AR DB IQR KSigma MAS SA ZScore DT GNB IsoForest KNN SVC LSTM MLP

Irrigation DIV001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PIN002 0.0001 0.1176 1.0000 0.0104 0.0084 0.6667 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PIN003 0.0009 0.1087 0.0571 0.0665 0.0140 0.0000 0.0156 0.0000 0.0000 0.0007 0.0474 0.0000 0.0000 0.0000
VLGE13 0.0000 0.1429 0.0037 0.0056 0.0014 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
YOM012 0.0000 0.0909 0.0025 0.0034 0.0142 0.0000 0.0006 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000

Avg 0.0002 0.0920 0.2127 0.0172 0.0076 0.1333 0.0036 0.0000 0.0000 0.0001 0.0095 0.0000 0.0000 0.0000
Std 0.0004 0.0548 0.4408 0.0278 0.0067 0.2982 0.0067 0.0000 0.0000 0.0003 0.0212 0.0000 0.0000 0.0000

Rain CHM001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM003 0.0000 0.1212 0.0020 0.0061 0.0005 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM006 0.0004 0.2462 0.0195 0.0136 0.0034 0.0000 0.0023 1.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000
CHR004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHR005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CPY001 0.0008 0.0212 0.0017 0.0040 0.0027 0.0000 0.0017 0.0000 0.0000 0.0004 0.0000 0.0000 0.6356 0.7846
CPY002 0.0001 0.0870 0.1600 0.0066 0.0833 0.0000 0.0008 0.0000 0.1733 0.0010 0.0000 0.0000 0.0000 0.0000
CPY004 0.0061 0.2814 0.4436 0.3174 0.1363 0.0000 0.0295 0.0405 0.0000 0.0020 0.0253 0.0000 0.8880 0.8329
CPY005 0.0007 0.2927 0.0040 0.0194 0.0037 0.0000 0.0021 0.0000 0.0000 0.0005 0.0000 0.0000 0.4240 0.4746
CPY006 0.0004 0.3556 0.0015 0.0129 0.0022 0.0000 0.0010 0.0000 0.0000 0.0015 0.0000 0.0000 0.0800 0.1133
DIV004 0.0001 0.1379 0.0089 0.0053 0.0007 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PIN005 0.2789 0.1012 0.3828 0.0615 0.9992 0.0398 0.3312 0.0002 0.0000 0.1154 0.9321 0.0231 0.0783 0.0923
PIN006 0.3201 0.1321 0.9484 0.1799 1.0000 0.2044 0.9652 0.8974 0.0468 0.1379 0.9394 0.0044 0.4503 0.1385
WAN001 0.0257 0.0443 0.2038 0.1018 0.1495 0.0000 0.0440 0.0000 0.0000 0.0726 0.9505 0.0000 0.0000 0.0000
WAN002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WAN003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WAN005 0.0003 0.0656 0.0505 0.0310 0.0115 0.0000 0.0080 0.0000 0.0000 0.0040 0.2725 0.0000 0.0000 0.0000
YOM009 0.0173 0.1421 0.5118 0.1918 0.3488 0.0000 0.2905 0.2734 0.0000 0.0187 0.9472 0.0000 0.0800 0.1003
YOM010 0.1206 0.0947 0.2195 0.1716 0.3461 0.0000 0.1510 0.9491 0.4064 0.2860 0.9446 0.6642 0.0000 0.0000

Avg 0.0367 0.1011 0.1409 0.0535 0.1470 0.0116 0.0871 0.1624 0.0298 0.0305 0.2386 0.0329 0.1255 0.1208
Std 0.0915 0.1100 0.2456 0.0881 0.3028 0.0450 0.2227 0.3385 0.0945 0.0708 0.4076 0.1447 0.2513 0.2529

Tidal CPY011 0.0003 0.4643 0.4235 0.6778 0.0274 0.0000 0.1787 0.0917 0.0000 0.0030 0.0083 0.0000 0.8729 0.8090
CPY012 0.0158 0.4273 0.7475 0.6836 0.3131 0.0628 0.6128 0.4386 0.0000 0.0198 0.3849 0.0000 0.8131 0.8120
CPY013 0.0465 0.4495 0.7611 0.7164 0.4987 0.1558 0.5625 0.1982 0.0000 0.0310 0.0821 0.0000 0.8185 0.8083
CPY014 0.0067 0.1842 0.5631 0.6975 0.6424 0.1253 0.3902 0.0845 0.0000 0.0019 0.0126 0.0000 0.5506 0.6627
CPY015 0.0021 0.1429 0.5564 0.1295 0.0031 0.1386 0.0669 0.0000 0.0000 0.0012 0.0000 0.0000 0.0000 0.0000
CPY016 0.0626 0.1314 0.4373 0.2248 0.6225 0.0052 0.0736 0.0895 0.0000 0.0203 0.5911 0.0000 0.4855 0.3968
CPY017 0.0214 0.2432 0.4910 0.4182 0.6430 0.0136 0.0668 0.2894 0.0000 0.0143 0.3619 0.0000 0.6267 0.6103

Avg 0.0222 0.2918 0.5686 0.5068 0.3929 0.0716 0.2788 0.1703 0.0000 0.0131 0.2058 0.0000 0.5953 0.5856
Std 0.0238 0.1499 0.1376 0.2485 0.2830 0.0676 0.2403 0.1506 0.0000 0.0114 0.2377 0.0000 0.3010 0.2989

Overall Avg 0.0281 0.1402 0.2425 0.1441 0.1781 0.0428 0.1151 0.1395 0.0190 0.0222 0.1970 0.0210 0.2062 0.2011
Overall Std 0.0743 0.1362 0.3094 0.2307 0.2960 0.1238 0.2240 0.2818 0.0761 0.0574 0.3481 0.1155 0.3170 0.3156

With multivariate data.

The created feature extraction technique, SM+NNFE, is then used to extract more

features, as explained in Chapter 6. Because statistical models are univariate, the only
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results from ML and NN models are unambiguous. Table 8.3 displays the findings. DT

not only had the highest overall average f1-score of 0.3102, but it also performed the

best on all data behaviour, particularly tidal behaviour, with a 0.7089 f1-score. Data

with irrigation influenced is the most difficult for models to identify anomalies in, as

seen by the average f1-score of every model being less than 0.0600.

Table 8.3: F1-score of each machine learning models with multivariate telemetry water
level datasets.

Data Behaviour Station ML Models NN Models
DT GNB IsoForest KNN SVC LSTM MLP

Irrigation DIV001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PIN002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PIN003 0.2718 0.1298 0.0143 0.0000 0.0333 0.0000 0.0000
VLGE13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
YOM012 0.0000 0.0041 0.0007 0.0000 0.0000 0.0000 0.0000

Avg 0.0544 0.0268 0.0030 0.0000 0.0067 0.0000 0.0000
Std 0.1216 0.0576 0.0063 0.0000 0.0149 0.0000 0.0000

Rain CHM001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM006 0.1249 0.0132 0.0020 0.0000 0.1019 0.0000 0.0000
CHR004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHR005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CPY001 0.0000 0.0000 0.0022 0.0000 0.0000 0.0000 0.0000
CPY002 0.3000 0.0675 0.0010 0.0000 0.0000 0.0000 0.0000
CPY004 0.8699 0.5557 0.0439 0.8893 0.8913 0.7130 0.1101
CPY005 0.3090 0.0208 0.0028 0.2000 0.2267 0.0000 0.0000
CPY006 0.6267 0.0292 0.0024 0.4991 0.4667 0.0000 0.0000
DIV004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PIN005 0.5768 0.1367 0.4590 0.5707 0.0757 0.0000 0.0000
PIN006 0.8653 0.3426 0.4572 0.8325 0.1992 0.9799 0.9740
WAN001 0.1936 0.2352 0.1530 0.2920 0.1430 0.0000 0.0000
WAN002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WAN003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WAN005 0.0733 0.0452 0.0047 0.0000 0.0000 0.0000 0.0000
YOM009 0.5493 0.4309 0.3028 0.5227 0.2899 0.4991 0.4122
YOM010 0.5137 0.4919 0.3551 0.5403 0.2643 0.3730 0.4181

Avg 0.2382 0.1128 0.0851 0.2070 0.1266 0.1221 0.0912
Std 0.3040 0.1829 0.1598 0.3041 0.2188 0.2778 0.2378

Tidal CPY011 0.8528 0.4675 0.0419 0.7759 0.7646 0.8687 0.2424
CPY012 0.7920 0.5756 0.2504 0.7238 0.6977 0.8470 0.8369
CPY013 0.8190 0.6032 0.2827 0.6282 0.5789 0.8743 0.8463
CPY014 0.7256 0.3876 0.0788 0.6280 0.6403 0.8707 0.7145
CPY015 0.3986 0.1978 0.0110 0.2892 0.2002 0.0000 0.0000
CPY016 0.6728 0.5719 0.2467 0.6690 0.5486 0.4329 0.1963
CPY017 0.7012 0.5775 0.1216 0.6705 0.6260 0.6790 0.5038

Avg 0.7089 0.4830 0.1476 0.6264 0.5795 0.6532 0.4772
Std 0.1515 0.1475 0.1110 0.1578 0.1821 0.3307 0.3377

Overall Avg 0.3102 0.1783 0.0859 0.2646 0.2045 0.2163 0.1592
Overall Std 0.3351 0.2283 0.1421 0.3228 0.2775 0.3516 0.2930
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Figure 8.1: Bar charts of average F1-score different models with univariate and multi-
variate telemetry water level data.

In addition, as shown in Figure 8.1, we created a bar chart to compare the average F1-

score from each model when evaluated with data from diverse data characteristics. DT

models utilising multivariate data generated the highest average f1-score, which was

about twice as high as univariate. Multivariate models outperformed univariate models,

except for multivariate MLP which performed worse than univariate MLP. Multivariate

LSTM slightly outperforms univariate LSTM. When compared to univariate SVC,

multivariate SVC significantly increased the f1-score by about ten times.

With sliding windows technique.

Since our data sets are imbalanced time-series data. As a result, the normal train-

test split or time series train-test split cannot divide data into train and test datasets

with the same normal/anomaly ratio. As a consequence, we use the sliding windows

approach described in Chapter 4 to construct the sliding windows. Furthermore, we

only use this strategy with ML models since statistics and NN models already use it.

Table 8.4 displays the effects of training using this strategy.
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Table 8.4: The f1-score of machine learning model with univariate data when used and
not used sliding windows techniques.

Data Behaviour Station DT GNB IsoForest KNN SVC
Uni Uni-SW Uni Uni-SW Uni Uni-SW Uni Uni-SW Uni Uni-SW

Irrigation DIV001 0.0000 0.3543 0.0000 0.0010 0.0000 0.0000 0.0000 0.0500 0.0000 0.0000
PIN002 0.0000 1.0000 0.0000 0.0000 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000
PIN003 0.0000 0.9028 0.0000 0.0507 0.0007 0.0111 0.0474 0.9285 0.0000 0.6294
VLGE13 0.0000 0.3000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000
YOM012 0.0000 0.2405 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Avg 0.0000 0.5595 0.0000 0.0103 0.0001 0.0024 0.0095 0.1957 0.0000 0.1259
Std 0.0000 0.3616 0.0000 0.0226 0.0003 0.0049 0.0212 0.4102 0.0000 0.2815

Rain CHM001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
CHM003 0.0000 0.3919 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
CHM005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM006 1.0000 0.8961 0.0000 0.0822 0.0004 0.0374 0.0000 0.9208 0.0000 0.8462
CHR004 0.2500 0.2551 0.0000 0.0000 0.0000 0.0002 0.0000 0.0111 0.0000 0.0000
CHR005 0.0000 0.2000 0.0000 0.0000 0.0000 0.0003 0.0000 0.0000 0.0000 0.0000
CPY001 0.0000 0.0000 0.0000 0.0000 0.0004 0.0004 0.0000 0.0000 0.0000 0.0000
CPY002 0.0000 0.9000 0.1733 0.2000 0.0010 0.0007 0.0000 0.0000 0.0000 0.0000
CPY004 0.0405 0.7659 0.0000 0.0000 0.0020 0.0025 0.0253 0.8289 0.0000 0.7924
CPY005 0.0000 0.6667 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000
CPY006 0.0000 0.1175 0.0000 0.0000 0.0015 0.0002 0.0000 0.0000 0.0000 0.0000
DIV004 0.0000 0.7129 0.0000 0.0098 0.0000 0.0004 0.0000 0.8223 0.0000 0.5960
PIN005 0.0002 0.9996 0.0000 0.9994 0.1154 0.3082 0.9321 0.9995 0.0231 0.9995
PIN006 0.8974 1.0000 0.0468 1.0000 0.1379 0.3071 0.9394 1.0000 0.0044 1.0000
WAN001 0.0000 0.9259 0.0000 0.2859 0.0726 0.0880 0.9505 0.9271 0.0000 0.4009
WAN002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000
WAN003 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
WAN005 0.0000 0.7867 0.0000 0.0030 0.0040 0.0042 0.2725 0.6777 0.0000 0.0000
YOM009 0.2734 0.8866 0.0000 0.0726 0.0187 0.0057 0.9472 0.8909 0.0000 0.6883
YOM010 0.9491 0.9200 0.4064 0.5918 0.2860 0.2742 0.9446 0.9473 0.6642 0.8484

Avg 0.1624 0.4964 0.0298 0.1545 0.0305 0.0491 0.2386 0.3822 0.0329 0.2939
Std 0.3385 0.4097 0.0945 0.3148 0.0708 0.1056 0.4076 0.4557 0.1447 0.4024

Tidal CPY011 0.0917 0.7720 0.0000 0.0000 0.0030 0.0027 0.0083 0.7874 0.0000 0.7566
CPY012 0.4386 0.7595 0.0000 0.0840 0.0198 0.0415 0.3849 0.8046 0.0000 0.7612
CPY013 0.1982 0.7801 0.0000 0.0262 0.0310 0.0646 0.0821 0.8172 0.0000 0.6437
CPY014 0.0845 0.8174 0.0000 0.1754 0.0019 0.0089 0.0126 0.8368 0.0000 0.6017
CPY015 0.0000 0.7025 0.0000 0.0650 0.0012 0.0052 0.0000 0.7723 0.0000 0.7545
CPY016 0.0895 0.9290 0.0000 0.0000 0.0203 0.0481 0.5911 0.9531 0.0000 0.8821
CPY017 0.2894 0.8189 0.0000 0.0000 0.0143 0.0236 0.3619 0.8265 0.0000 0.6769

Avg 0.1703 0.7971 0.0000 0.0501 0.0131 0.0278 0.2058 0.8283 0.0000 0.7253
Std 0.1506 0.0702 0.0000 0.0648 0.0114 0.0240 0.2377 0.0594 0.0000 0.0931

Overall Avg 0.1395 0.5698 0.0190 0.1105 0.0222 0.0375 0.1970 0.4485 0.0210 0.3599
Overall Std 0.2818 0.3702 0.0761 0.2577 0.0574 0.0859 0.3481 0.4426 0.1155 0.3916

The f1-score of every model has been improved using the sliding window approach.

DT’s f1-score on PIN002 got the perfect score of 1.0000. Although most classifier

models used to identify anomalies in PIN006 data had an f1-score of 1.000, IsoForest

had an f1-score of just 0.3071. DT has the highest overall average f1-score, followed by

KNN and KSigma.

The performance of multivariate machine learning using sliding windows approaches

was then compared, as shown in table 8.5. We can observe that when we use the

sliding windows approach, the average f1-score of DT increases from 0.3102 to 0.4495,

KNN increases from 0.2646 to 0.3074, and SVC increases from 0.2045 to 0.2466. On

the other hand, GNB and IsoForest have seen their average f1-score slightly drop from

0.1783 to 0.1743, and 0.0859 to 0.0810, respectively. The DT with the sliding windows

approach not only delivered the greatest overall f1-score but also performed the best

when used to identify abnormalities in datasets that have been impacted by irrigation

and rain.
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Table 8.5: The f1-score of machine learning model with multivariate data when used
and not used sliding windows techniques.

Data Behaviour Station DT GNB IsoForest KNN SVC
Multi Multi-SW Multi Multi-SW Multi Multi-SW Multi Multi-SW Multi Multi-SW

Irrigation DIV001 0.0000 0.2821 0.0000 0.0253 0.0000 0.0038 0.0000 0.1400 0.0000 0.0000
PIN002 0.0000 0.3000 0.0000 0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000
PIN003 0.2718 0.4096 0.1298 0.3611 0.0143 0.1173 0.0000 0.2976 0.0333 0.1661
VLGE13 0.0000 0.1000 0.0000 0.0066 0.0000 0.0013 0.0000 0.0000 0.0000 0.0000
YOM012 0.0000 0.0750 0.0041 0.0012 0.0007 0.0009 0.0000 0.0000 0.0000 0.0000

Avg 0.0544 0.2334 0.0268 0.0788 0.0030 0.0248 0.0000 0.0875 0.0067 0.0332
Std 0.1216 0.1421 0.0576 0.1581 0.0063 0.0517 0.0000 0.1322 0.0149 0.0743

Rain CHM001 0.0000 0.3667 0.0000 0.0000 0.0000 0.0017 0.0000 0.0000 0.0000 0.0000
CHM002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000
CHM003 0.0000 0.1749 0.0000 0.0217 0.0000 0.0008 0.0000 0.0000 0.0000 0.0000
CHM005 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
CHM006 0.1249 0.7152 0.0132 0.5248 0.0020 0.1827 0.0000 0.6170 0.1019 0.6849
CHR004 0.0000 0.2186 0.0000 0.0228 0.0000 0.0044 0.0000 0.0732 0.0000 0.0000
CHR005 0.0000 0.0667 0.0000 0.0249 0.0000 0.0016 0.0000 0.0000 0.0000 0.0000
CPY001 0.0000 0.0548 0.0000 0.0016 0.0022 0.0004 0.0000 0.0000 0.0000 0.0000
CPY002 0.3000 0.0667 0.0675 0.0000 0.0010 0.0011 0.0000 0.0000 0.0000 0.0000
CPY004 0.8699 0.8938 0.5557 0.3623 0.0439 0.0434 0.8893 0.8711 0.8913 0.7161
CPY005 0.3090 0.7000 0.0208 0.0000 0.0028 0.0006 0.2000 0.0000 0.2267 0.0000
CPY006 0.6267 0.2413 0.0292 0.0119 0.0024 0.0013 0.4991 0.0000 0.4667 0.0000
DIV004 0.0000 0.6385 0.0000 0.1079 0.0000 0.0075 0.0000 0.3698 0.0000 0.0000
PIN005 0.5768 0.8179 0.1367 0.1888 0.4590 0.2538 0.5707 0.6675 0.0757 0.2446
PIN006 0.8653 0.9112 0.3426 0.5382 0.4572 0.3810 0.8325 0.8393 0.1992 0.6983
WAN001 0.1936 0.4468 0.2352 0.3469 0.1530 0.1388 0.2920 0.2609 0.1430 0.1743
WAN002 0.0000 0.5067 0.0000 0.0009 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000
WAN003 0.0000 0.2567 0.0000 0.0230 0.0000 0.0007 0.0000 0.0000 0.0000 0.0000
WAN005 0.0733 0.2925 0.0452 0.0454 0.0047 0.0079 0.0000 0.2604 0.0000 0.0211
YOM009 0.5493 0.6148 0.4309 0.4084 0.3028 0.3008 0.5227 0.4630 0.2899 0.4428
YOM010 0.5137 0.5811 0.4919 0.5246 0.3551 0.3461 0.5403 0.5047 0.2643 0.5372

Avg 0.2382 0.4078 0.1128 0.1502 0.0851 0.0798 0.2070 0.2346 0.1266 0.1676
Std 0.3040 0.3017 0.1829 0.2045 0.1598 0.1305 0.3041 0.3066 0.2188 0.2697

Tidal CPY011 0.8528 0.8168 0.4675 0.3025 0.0419 0.0342 0.7759 0.8165 0.7646 0.8408
CPY012 0.7920 0.8011 0.5756 0.4240 0.2504 0.1902 0.7238 0.8342 0.6977 0.8239
CPY013 0.8190 0.8649 0.6032 0.4037 0.2827 0.2175 0.6282 0.8243 0.5789 0.7868
CPY014 0.7256 0.8171 0.3876 0.2118 0.0788 0.0678 0.6280 0.8274 0.6403 0.7763
CPY015 0.3986 0.3830 0.1978 0.0481 0.0110 0.0097 0.2892 0.2660 0.2002 0.1151
CPY016 0.6728 0.6694 0.5719 0.4616 0.2467 0.2365 0.6690 0.5949 0.5486 0.5679
CPY017 0.7012 0.7515 0.5775 0.3510 0.1216 0.1172 0.6705 0.6170 0.6260 0.5420

Avg 0.7089 0.7291 0.4830 0.3147 0.1476 0.1247 0.6264 0.6829 0.5795 0.6361
Std 0.1515 0.1648 0.1475 0.1441 0.1110 0.0914 0.1578 0.2111 0.1821 0.2596

Overall Avg 0.3102 0.4495 0.1783 0.1743 0.0859 0.0810 0.2646 0.3074 0.2045 0.2466
Overall Std 0.3351 0.3001 0.2283 0.1982 0.1421 0.1160 0.3228 0.3334 0.2775 0.3212

Figure 8.2 shows bar charts of average F1-score for comparing the performance of each

machine learning on univariate and multivariate data with and without the sliding

windows technique. DT with univariate sliding windows outperforms candidate models.

Furthermore, sliding window approaches have the potential to increase the performance

of all models, except GNB and IsoForest. DT, KNN, and SVC with univariate sliding

windows outperformed univariate, multivariate, and multivariate with sliding windows.
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Figure 8.2: Bar charts of average F1-score of different machine learning models with
and without the sliding windows techniques.

As illustrated in Figure 8.3, we next do a statistical comparison using a critical dif-

ference diagram to compare the accuracy of each approach. The highest ranking went

to DT with univariate sliding windows (DT-UW), followed by DT with multivariate

sliding windows (DT-MW) and KNN with univariate sliding windows (KNN-UW).

Meanwhile, SVC-U was ranked last, followed by GNB-U and SA-U, respectively. In

other words, the machine learning models with the sliding windows technique achieved

the best. Only IQR is an exception among the statistical models, which reach high

accuracy.

Figure 8.3: A critical difference diagram of all models with univariate (U), multivariate
(M), univariate sliding windows (UW), and multivariate sliding windows (MW).
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However, when we consider the data characteristics, as depicted in Figure 8.4 - 8.6.

We found that, although DT-UW had the highest ranking on data with irrigation-

influenced, it had no significant difference with other models. Meanwhile, data with

rain-influenced, DT-UW generated the highest ranking, followed by DT-MW, with a

significant difference from SA-U, SVC-U, and GNB-U. In the case of data with tidal-

influenced, KNN-UW provided the best, with the highest ranking, followed by DT-MW

and DT-M.

Figure 8.4: A critical difference diagram of all models with univariate (U), multivariate
(M), univariate sliding windows (UW), and multivariate sliding windows (MW) on
irrigation data behaviours.

Figure 8.5: A critical difference diagram of all models with univariate (U), multivariate
(M), univariate sliding windows (UW), and multivariate sliding windows (MW) on rain
data behaviours.
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Figure 8.6: A critical difference diagram of all models with univariate (U), multivariate
(M), univariate sliding windows (UW), and multivariate sliding windows (MW) on tidal
data behaviours.

Comparison with External Datasets

To evaluate our anomaly detection methods, we selected Yahoo published time-series

datasets (Yahoo! Webscope, 2010) which consist of real and synthesis data, and have

characteristics like our telemetry water level datasets for comparison. The data can be

separated into four main datasets, which are detailed as follows:

• A1: This is a univariate time-series dataset that contains traffic to Yahoo ser-

vices. The abnormalities are identified by humans. This data set has 67 different

time-series, and each one has about 1400 timestamps. 1.9% of the timestamps

are anomalies.

• A2: This dataset contains 100 synthetic univariate time-series data with anoma-

lies. Each time series has around 1421 timestamps. The anomalies were inserted

at random, therefore representing point anomalies. Each time series has 0.3%

anomalies on average.

• A3: This dataset also includes 100 synthetic univariate time series with around

1680 timestamps per series. The anomalies are placed at random locations to

indicate the change-points, and the rate of anomaly in each time series is around

0.3%.

• A4: The dataset also includes one hundred synthetic univariate time series. Each

time series consists of around 1680 timestamps. An average of 0.5% of the dataset
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is change point anomalies.

For our evaluation, we focus on the main anomalous points and ignore distinguishing

between anomalous types. In addition, since we use the sliding window approach, each

dataset is rather tiny. Then, we test the influence of window size on each model’s

accuracy by using several window sizes. We were tested with window sizes of 6, 12, 18,

36, 72, and 144 and found that window size 6 provided the best, as shown in Figure

8.7.

(a) DT (b) GNB

(c) IsoForest (d) KNN

(e) SVC (f) LSTM

(g) MLP

Figure 8.7: The accuracy of each model on different windows size.
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Figure 8.8 shows an example of data from the Yahoo dataset. We conducted ex-

periments with our statistical models, ML models, and NN models using univariate,

multivariate, and sliding window techniques.

(a) A1

(b) A2

(c) A3

(d) A4

Figure 8.8: Example data from Yahoo datasets with an anomaly on the orange cross,
x (a-d).

The average F1-score of each model with the best window size is shown in Table 8.6.

With an average F1-score of 0.4915, IQR produced the highest results among statistical

models, followed by Zscore with an average F1-score of 0.3073, while AR did badly with
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Table 8.6: The F1-score of different models on the Yahoo dataset.

Dataset Statistical Models
AR DB IQR KSigma MAS SA ZScore

A1 0.0046 0.0409 0.3493 0.0197 0.2292 0.0752 0.3342
A2 0.0000 0.0028 0.5818 0.0000 0.3227 0.0069 0.2601
A3 0.0000 0.0051 0.5534 0.0000 0.0352 0.0113 0.3441
A4 0.0000 0.0033 0.4815 0.0000 0.0301 0.0095 0.2909

Avg 0.0011 0.0130 0.4915 0.0049 0.1543 0.0257 0.3073
Std 0.0023 0.0186 0.1038 0.0099 0.1456 0.0330 0.0390

ML Models NN Models
DT-U GNB-U IsoForest-U KNN-U SVC-U LSTM-U MLP-U

A1 0.1200 0.1466 0.2149 0.0243 0.5105 0.0261 0.1071
A2 0.0000 0.0000 0.0000 0.0000 0.6234 0.0000 0.0000
A3 0.1071 0.0869 0.0342 0.0107 0.0615 0.0000 0.1254
A4 0.0339 0.0601 0.0343 0.0021 0.0274 0.0000 0.0778

Avg 0.0653 0.0734 0.0709 0.0093 0.3057 0.0065 0.0776
Std 0.0577 0.0608 0.0974 0.0111 0.3055 0.0131 0.0553

ML Models
DT-UW GNB-UW IsoForest-UW KNN-UW SVC-UW

A1 0.1269 0.0125 0.0821 0.1004 0.5315
A2 0.0000 0.0000 0.0159 0.0000 0.9012
A3 0.1370 0.0564 0.0172 0.0140 0.1075
A4 0.0553 0.0298 0.0149 0.0113 0.0406

Avg 0.0798 0.0247 0.0325 0.0314 0.3952
Std 0.0644 0.0244 0.0331 0.0464 0.4013

ML Models NN Models
DT-M GNB-M IsoForest-M KNN-M SVC-M LSTM-M MLP-M

A1 0.1462 0.0378 0.1820 0.0220 0.1796 0.1725 0.1225
A2 0.0000 0.0000 0.0000 0.0000 0.5661 0.0000 0.0000
A3 0.7144 0.4644 0.1146 0.6290 0.7096 0.7406 0.6860
A4 0.4518 0.2890 0.0842 0.3175 0.4125 0.4984 0.4422

Avg 0.3281 0.1978 0.0952 0.2421 0.4669 0.3529 0.3127
Std 0.3190 0.2192 0.0755 0.2957 0.2267 0.3309 0.3110

ML Models
DT-MW GNB-MW IsoForest-MW KNN-MW SVC-MW

A1 0.517 0.2948 0.1784 0.2486 0.2235
A2 0.9186 0.4854 0.0897 0.0000 0.9355
A3 0.8929 0.5837 0.1022 0.8516 0.8046
A4 0.7641 0.2842 0.0791 0.5808 0.5105

Avg 0.7732 0.4120 0.1124 0.4203 0.6185
Std 0.1837 0.1471 0.0450 0.3732 0.3177
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an average F1-score of just 0.0011. AR, DB, KSigma, and SA models performed poorly

when identifying anomalies in datasets A2, A3, and A4 with an average maximum F1-

score of 0.0113 and a minimum of 0.0000. Despite having the highest average F1-score

among machine learning methods for univariate data, SVC performed worse than IQR.

Similar to the poor performance of NN models on univariate data, with the maximum

average F1-score from MLP being 0.0776. With the exception of GNB and IsoForest,

the accuracy of univariate ML models has been enhanced by the use of sliding window

approaches. With multivariate ML models, the accuracy of each model has grown

dramatically, particularly KNN, which boosted the average F1-score by 26 times, from

0.0093 to 0.2421. Our work on feature extraction not only improved the ability for ML

models to identify anomalies, but it also made NN models more accurate by improving

the performance of LSTM and MLP by 54 and 4 times, respectively. However, data

containing fluctuations, such as the A2 dataset, makes it difficult to identify anomalies,

as shown by the fact that the majority of models had a low F1-score and some models

had a F1-score of 0.0000. When sliding windows are used in multivariate ML models,

accuracy has gone up a lot, especially for DT-MW, which has seen its F1-score double.

Figure 8.9 depicted a bar chart comparing the total average F1-score of each approach

in desending order. In other words, better models are on the left, while worse models

are on the right. The highest overall F1-score was obtained by DT-MW, followed by

SVC-MW and IQR, in that order. Most of the multivariate models are on the left,

whereas most of the univariate models are on the right.

Figure 8.9: Overall average F1-Score from different anomaly detection techniques on
A1-A4 datasets.
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Figure 8.10: A critical difference diagram of all models with Yahoo time-series dataset.

However, the overall average F1-score may not represent the real potential of each

model. The CD diagram is then plotted to establish statistical comparisons, as shown

in Figure 8.10. We discovered that DT-MW had the highest ranking, followed by SVC-

MW and IQR, respectively. Three of the top four are multivariate models with sliding

windows. AR not only got the lowest score, but it was also significantly different from

the model that got the best score, which was DT-MW.

8.3.3 Comparison of our data imputation methods with ex-

ternal methods.

We compared our methods with the work presented by Kulanuwat et al. (2021). They

applied 3 methods for imputing missing data, including linear interpolation, spline

interpolation, and bidirectional LSTM for data imputation on HII telemetry stations.

Their findings showed that spline interpolation worked better on non-cyclical data,

but bidirectional long short-term memory (BiLSTM) outperformed other interpolation

techniques on a specific tidal data pattern. Our results of data imputation in Chapter

7 are similar to the results of them in the case of non-cyclical data (rain and irrigation

behaviours). Moreover, from the literature review, KNN is one of the methods that is

widely used for univariate data imputation. So we then compare our approach with

BiLSTM and KNN on data with tidal behaviour from 4 stations (CPY011, GLF002,

THA009, and TNG002) on data from 2020 to 2021. The data and the hyperparameter

settings of BiLSTM are followed by the settings from their research. The results are

shown in Table 8.7.
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Table 8.7: The average RMSE of eight methods on telemetry water level data with
tidal behaviour on different missing gap size.

Gap PSMF PSMB PSMA PSMW KNN FSMD FSMS BiLSTM

6 0.0707 (±0.03) 0.0786 (±0.05) 0.0572 (±0.03) 0.0593 (±0.04) 0.6990 (±1.19) 0.0277 (±0.01) 0.0240 (±0.01) 0.6655 (±1.15)
12 0.1305 (±0.07) 0.1221 (±0.05) 0.0949 (±0.05) 0.0987 (±0.06) 0.8857 (±1.52) 0.0674 (±0.06) 0.0790 (±0.11) 0.6246 (±0.79)
18 0.1667 (±0.07) 0.1851 (±0.09) 0.1312 (±0.06) 0.1288 (±0.06) 0.8556 (±1.40) 0.0735 (±0.04) 0.0562 (±0.05) 0.8290 (±1.13)
36 0.2697 (±0.09) 0.3371 (±0.14) 0.2375 (±0.09) 0.2137 (±0.07) 0.9902 (±1.42) 0.1460 (±0.05) 0.1165 (±0.07) 0.8532 (±1.35)
72 0.2724 (±0.14) 0.3018 (±0.18) 0.2451 (±0.15) 0.2488 (±0.13) 1.0258 (±1.39) 0.3008 (±0.12) 0.2227 (±0.10) 0.8731 (±1.51)
144 0.2811 (±0.20) 0.3005 (±0.19) 0.2388 (±0.18) 0.2528 (±0.19) 1.1103 (±1.68) 0.2848 (±0.19) 0.2105 (±0.15) 0.7144 (±1.20)

Avg 0.1985 (±0.13) 0.2209 (±0.15) 0.1674 (±0.12) 0.1670 (±0.12) 0.9278 (±1.28) 0.1500 (±0.14) 0.1181 (±0.11) 0.7600 (±1.07)

We can see that our technique FSMS clearly beats candidate models with the lowest

overall average RMSE of 0.1181. Furthermore, FSMS performed best when imputed

missing data with all gap sizes except gap size 12, where FSMD performed better.

KNN performed poorly, achieving the highest RMSE across all gap sizes. Similar to

BiLSTM, which produced poor results with an overall average RMSE of 0.76.

Figure 8.11: A critical difference diagram of our approach and candidate imputation
models on tidal influence dataset of telemetry water level data.

The comparison of the critical difference between the various imputation models, as

represented in Figure 8.11, validated the superior performance of our method in com-

parison to candidate models. Not only did FSMS and FSMD have the highest ranking,

but they also had a statistically significant difference compared to KNN and BiLSTM.

We also plotted the RMSE results for all models, as demonstrated in Figure 8.12. As

we can see, the performance of KNN decreased as the number of missing gaps increased.

While the performance of BiLSTM models tends to decrease as the number of missing

data points increases, their performance improves when the number of missing data

points reaches 144. When the gap sizes are increased, our approach still retains a

steady level with a slight drop in performance.
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Figure 8.12: The RMSE for imputing telemetry water level data with tidal influence
for various missing gap sizes.

8.4 Summary

In this chapter, we have presented a comprehensive overview of our methodology and

the results of our four main experiments. We begin with the use of statistical models to

detect anomalies, how applicable RL is for detecting anomalies, how to improve model

accuracy with our feature extraction techniques, and the most similar pattern searching

for data imputation. Finally, we compared all our experiments on anomaly detection

approaches on various datasets while comparing our data imputation approaches with

external methods.

In the case of anomaly detection, we observed that machine learning algorithms using

the sliding window methodology outperform all others. Statistical techniques beat

neural networks while performing worse than machine learning models. Despite the

fact that neural network approaches have received a lot of attention from the artificial

intelligence community, our findings show that they are not typically able to achieve

higher accuracy than the best statistical model. In the case of data imputation, we

compared our methods to those of other researchers by using their datasets as well as

our own. We discovered that our methods produced better results.

The conclusions of this research are presented in the following chapter, along with

suggestions for further work.
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Conclusion and Further Work

9.1 Summary

This study aimed to experimentally investigate the application of detecting and correct-

ing errors in telemetry water level data. As we mentioned in Chapter 1, to ensure the

validity, reliability, and effectiveness of early warning systems, the ability to promptly

identify and correct data errors in telemetry water levels is critical. We investigated

various existing anomaly detection and correction methods and also developed new

methods to address those issues. Moreover, we applied ensemble techniques to im-

prove the performance of individual models. We begin with an overall view of the

thesis and then look at more specific conclusions. Our entire research is summarised

next.

First, in Chapter 1, we identified some research question namely:

• How efficient are the statistical models in detecting anomalies in telemetry water

level data?

• Is DRL applicable and effective for identifying abnormalities in water level data?

• Can multi features data improve the performance of anomaly detection models?

• How efficient is pattern-matching-based data imputation for imputing data errors

in telemetry water level data?

• Can ensemble methods improve the performance of single models?

We also proposed specific objectives for carrying out our experimentation in order to

163



Chapter 9 – Conclusion and Further Work

answer the predefined question and achieve our goals.

We next described details of telemetry systems and the description of datasets used in

this research in Chapter 2. The issues of anomaly identification and correction in time

series data were discovered by the current literature and are explored in Chapter 3.

According to our review of the literature, machine learning is frequently employed in

anomaly detection and correction in time-series data. However, most of them employ

regression and prediction approaches to detect abnormalities, which requires time and

effort to set the optimum threshold, which may not be adequate with the amount and

frequency of data from telemetry water level stations. Furthermore, most studies used

multivariate data, which is in contrast to our univariate data. We also noticed that

minimal efforts had been made to identify and repair problems in real-time water level

data. This prompted us to recognise that there was a need for further research in this

area. Thus, there is a need to develop machine learning to detect and correct errors in

telemetry water level data.

After that, in Chapter 4, we investigated the standard statistical models for detecting

anomalies in water level data. We tested our initial research question by looking at

how efficient the statistical models were in detecting anomalies in telemetry water

level data. The experimental findings demonstrated that deployed statistical models

performed poorly when detecting anomalies in flood events, such as a rapid increase in

water level before a flood. Although the ensemble of statistical models may improve

performance, they do not perform adequately. This supported the need for further

work on other machine learning algorithms.

We next carried out an extended experiment to investigate the efficiency of deep rein-

forcement learning models and deep learning for detecting anomalies in Chapter 5. Here

we answer the second research question regarding the ability of the proposed methods.

We answer this by implementing reinforcement learning models and the state-of-the-art

deep learning models (MLP and LSTM) and comparing their performance. Our finding

showed that in general, deep learning performs better than reinforcement learning, not

only in terms of performance but also time spent. Although the accuracy of basic deep

learning models is not sufficient in data from certain stations, it may be improved with
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parameter adjustment and the addition of hidden layers. As a result, deep learning

appears to be the preferred option for dealing with anomaly detection. Also, generated

ensemble models can improve the detection of anomalies in water level data, making

them more accurate and reliable, including reducing the number of false alarms.

We also tested here our third question related to the effect of the multivariate variable

on the algorithm performance. We then developed the new techniques to extract more

features from water level data to improve the performance of anomaly detection models.

We developed a nearest neighbour algorithmic method, in conjunction with a saliency

map, so called SM+NNFE, to extract more features for improving the performance of

anomaly detection models in Chapter 6. We compared the performances by training

the models with only water level data and the extracted features from SM+NNFE.

In comparison with one of the existing state-of-the-art time series feature extraction

library. Furthermore, ensemble models were also used, using weighted ensemble voting.

The results proved that our approach not only increased the performance of learning

algorithms but also outperformed the candidate feature extraction library in terms of

accuracy and time efficiency. Also, the idea of ensemble techniques shows that they can

not only improve the performance of a single model but also improve the performance

of a group of models.

Finally, in Chapter 7, we proposed a technique for imputing telemetry water level data

with subsequence matching to test the fourth research question. Instead of splitting

the subsequence in two, the missing data are temporarily replaced with some constant

values to produce a dummy full subsequence, and then a sliding window is used to

search for the most similar historical data subsequence. The identified subsequence

will be adapted to fit the missing part based on their similarity. We found out that our

developed methods outperforms other imputation methods when dealing with large

missing gap sizes and has strong periodic pattern such as data of water level with

tidal-influenced.

To find the answer to our final research question on ensemble techniques’ abilities. For

each experiment, ensemble models were developed, and they all showed that the idea

of ensemble approaches can improve not only the performance of a single model but
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also the performance of a group of models.

9.2 Conclusion

Upon completing this research on two main issues: anomaly detection and anomaly

correction, the following conclusion can be drawn.

9.2.1 Anomaly Detection

The first focus of this thesis is to detect anomalies in telemetry water level data. We first

considered the statistical models to determine how well those methods worked when

dealing with real-world datasets. These results showed that they are unsuitable for this

purpose due to a high frequency of false alarms because the water level will dramatically

rise before the flood, which differs considerably from the other data points. As a

consequence, the majority of statistical models will identify such points as anomalous,

but in fact they are normal points, which provides very useful information in flood

management.

So, we then developed reinforcement learning based models to solve such limitations

and compared them with the deep learning models. These findings reveal that the

reinforcement learning models not only provided the best performance but also had the

ability to detect unseen anomalies. However, the rewards function and determining the

right training duration are the most challenging and lead to time-consuming problems.

Although deep learning models perform well, the neural structure that works well with

one station may not function well with another. So, one of the problems with this topic

is figuring out which neural structure is best for each station.

However, with the time-consuming of RL that is not appropriate for use with real-

time data, we have developed a feature extraction algorithm called SM+NNFE that

combines the saliency map and nearest neighbour extracted feature to improve the

performance of ML models. The results demonstrated that when models are given

more information to learn, their performance improves.

Individual models built by certain learning algorithms may learn separate sections of
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the issue and make different decisions. Therefore, it is best to combine different models

in order to work together. This method inspired us to develop an ensemble model

in order to improve the performance of our model. The results show that ensemble

methods can increase the accuracy of anomaly detection in water level data by selecting

suitable models and final decision-making.

In conclusion, machine learning with sliding windows technique is the first option to

use for detecting anomalies in telemetry water level data. Moreover, we can apply a

reinforcement learning model to detect anomalies in critical stations that need more

attention. Although deep learning and reinforcement learning models need time to

train and fine-tune parameters, they can detect anomalies in real-time. As a result, we

can schedule batch processing training and tuning at regular intervals, such as weekly,

monthly, and so on. Statistical models, on the other hand, work well with slightly

changed data, making them ideal for detecting abnormalities during the dry season.

We also developed the firmware of the telemetry station to be able to detect anomaly

values by itself with the statistical model. But depending on just one or a few models

may be too risky since their performance may diminish in the future without awareness.

Thus, built models using ensemble techniques are effective solutions for reducing errors

from such issues.

9.2.2 Anomaly Correction

In the case of data imputation, the water level is seasonal, which means it has a

similar pattern in each season. With those characteristics, we can impute the missing

data by imitating the most similar pattern from the previous data. We created a

technique called full subsequence matching (FSM) for locating a subsequence that

contains missing data without breaking it into two parts. Experimental results show

that our approach outperforms other methods when dealing with data that has a

strong periodic pattern (tidal effect). However, accuracy is determined by the amount

and quality of past data. But for data that has few changes or patterns, like data

from stations with rain or irrigation effects, linear or polynomial interpolation are the

appropriate methods. It not only provided good results, but also less computed cost
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and less time-consuming.

9.3 Suggestions for Further Work

This research has highlighted a number of areas that could be explored further in the

future; these are:

1. We aim to develop this system in a real-world setting in order to test the capa-

bility of our approach. The overview system is depicted in Figure 9.1. Telemetry

water level data was sent from the telemetry station to the data centre via the

MQTT protocol. The raw data was saved in the raw database, and the data

that was found to be an anomaly by the anomaly detection service, which finds

anomalies in real time, was stored in the cleaned database and marked as an

anomaly. The data imputation service then imputes the anomalous and missing

data from the cleaned database at regular intervals (depending on user settings,

such as daily, weekly, or monthly) and stores it in the completed database. Users

can access data through an online service, which can be utilised for a number of

objectives. For example, a researcher may need raw data or data that has been

cleaned for further analysis, while other users may use completed data to make

a report. However, it is difficult to assess how effectively our model works in the

real world since it requires a human to compare the outcomes of what the model

accomplishes to what occurs in the real world. So, feedback from online users

and labelled data from a database like this are the best ways to measure how

well our processes are working. This is especially helpful for figuring out when

our system needs to be retrained.

2. Nowadays, HII established the “National Hydroinformatics Data Center” (NHC)1

to serve as a focal point for the integration of national water resources informa-

tion in order to maximise benefits in managing water resources, analysing data,

forecasting, and assisting decision-making in normal and crisis situations. When

data is pooled from several sources, it might be inconsistent since they use vari-

ous types of sensors for different purposes, making identifying abnormalities more

1https://www.thaiwater.net/
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Figure 9.1: System Overview

challenging. This will be the challenge of our future study to identify anomalies

from different sources.

3. HII has developed survey technologies such as the seafloor echoboat unmanned

surface vessel (USV), the mobile mapping system (MMS), and the points cloud

map. The data has been collected, which is the kinds of time series, with multiple

kinds of scanners (e.g., laser and radar) that may have anomalies. So, we might

adapt our study to detect and correct any anomalous data in the survey method.
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Apostol, E.-S., Truică, C.-O., Pop, F., and Esposito, C. (2021). Change point enhanced

anomaly detection for iot time series data. Water, 13(12):1633.

Asesh, A. (2022). Normalization and bias in time series data. In Digital Interaction

and Machine Intelligence: Proceedings of MIDI’2021–9th Machine Intelligence and

Digital Interaction Conference, December 9-10, 2021, Warsaw, Poland, pages 88–97.

Springer.

Atienza, R. (2018). Advanced Deep Learning with Keras: Apply deep learning tech-

niques, autoencoders, GANs, variational autoencoders, deep reinforcement learning,

policy gradients, and more. Packt Publishing Ltd.

Bank, W. (2012). Thai Flood 2011: Rapid assessment for resilient recovery and recon-

struction planning. World Bank.

Basu, S. and Meckesheimer, M. (2007). Automatic outlier detection for time series: an

application to sensor data. Knowledge and Information Systems, 11(2):137–154.

Berkhahn, S., Fuchs, L., and Neuweiler, I. (2019). An ensemble neural network model

for real-time prediction of urban floods. Journal of hydrology, 575:743–754.

170



Chapter 9 – BIBLIOGRAPHY

Bernacki, J. and Ko laczek, G. (2015). Anomaly detection in network traffic using

selected methods of time series analysis. IJ Computer Network and Information

Security, 9:10–18.
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