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Abstract: Safe navigation is a key objective for autonomous applications, particularly those involving
mobile tasks, to avoid dangerous situations and prevent harm to humans. However, the integration
of a risk management process is not yet mandatory in robotics development. Ensuring safety using
mobile robots is critical for many real-world applications, especially those in which contact with the
robot could result in fatal consequences, such as agricultural environments where a mobile device
with an industrial cutter is used for grass-mowing. In this paper, we propose an explicit integration
of a risk management process into the design of the software for an autonomous grass mower, with
the aim of enhancing safety. Our approach is tested and validated in simulated scenarios that assess
the effectiveness of different custom safety functionalities in terms of collision prevention, execution
time, and the number of required human interventions.
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1. Introduction

The enhancement of a vehicle to navigate autonomously in an environment has been
studied, for which more applications focus on intelligent behaviours through the addition of
robust navigation systems [1]. These approaches require human-robot interaction features
that lead to a safety culture, and their design must take into account several aspects to
reach optimal performance without any casualties.

As a result of constant and intense research, autonomous vehicles are now becoming
part of our present, granting a greater quality of life. Whenever there exists a direct
interaction between autonomous devices and humans, there are safety concerns that must
be handled.

In the case of agricultural scenarios, agriculture encompasses constraints like any
other open-field or human-robot collaboration scenarios, that must be part of the design of
the human-aware navigation. Human-robot collaboration in real-world applications has
increased since the early 2000’s [2], and the goal of a robot-human interaction system [3]
includes optimizing the technology benefits.

Safety implies a reliable performance and the reduction of injuries related to the use of
agricultural vehicles, mainly tractors [4]. In that context, the ability to detect humans on a
field represents one of the core features of robust safety systems [5]. This demand becomes
more evident when a robot carries powerful tools.

The risks-related methods are systematic processes for identifying hazards and eval-
uating any risks, then implementing control measures to remove or reduce them which
provide a proper pipeline to address the robotic safety navigation process. These method-
ologies are a perfect match for autonomous applications where a set of circumstances can
lead to potential failures or accidents.

Robotics 2023, 12, 63. https://doi.org/10.3390/robotics12030063 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12030063
https://doi.org/10.3390/robotics12030063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0002-6299-8465
https://doi.org/10.3390/robotics12030063
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12030063?type=check_update&version=2


Robotics 2023, 12, 63 2 of 21

Therefore, the possibility of designing a system with a risk assessment becomes even
more tangible to avoid endangering persons and animals, destroying private properties
or inducing collateral damage.

In the current work, we present a risk analysis method of a grass-mowing process that
was used to design a customized risk mitigation plan and each of the safety functions devel-
oped for the safe navigation process for agricultural purposes. The specific contributions of
this paper are:

• Design of a safe navigation architecture through the risk assessment methodology
for an automated grass-cutting application, including a hazard detection and risk
mitigation plan;

• Development of safety functions for open-field agricultural tasks, specifically grass-
mowing;

• A safe navigation system designed according to the risk assessment method focusing
on human detection and risk mitigation, and designed specifically to handle potential
human-robot accidents.

2. Related Work

Navigating on unstructured dynamic environments, such as open fields, requires
a more robust perception sub-system able to understand the environment dynamics [6].
Therefore, obtaining a comprehensive safety solution for autonomous navigation is a highly
complex task, given the broad range of fields, systems, and tasks involved. In addition, there
are safety requirements for every application that may vary depending on the application
and environment, as industrial and domestic settings may entail different types of hazards
that must be addressed to ensure optimal performance.

Standard ISO10218 [7] identifies four classes of safety in robotics systems, and each
class uses different methods for safety assurance: control, motion planning, prediction,
and psychological considerations [8,9].

There are human-aware navigation solutions available that are based on several people
detection algorithms and considerations, for which it is possible to consider a safety state
as a fault-tolerant system [10] (control), or use human trajectory prediction for collision
avoidance [11] (prediction), or even improve with the addition of safety rules applied to
occluded obstacles [12] (motion planning).

In the field of autonomous navigation, safety is a critical consideration to prevent acci-
dents and ensure the proper functioning of the systems. One approach to addressing safety
concerns is to develop a taxonomy of safety features. For example, Zacharaki et al. [13]
proposed a safety feature taxonomy that includes various aspects of autonomous systems.
Specifically, the taxonomy identifies perception, cognition, action, hardware, social and
psychological features, and a hazard analysis as critical components for reducing the risk
of accidents or failures.

As safety is a complex term to define, an attempt to standardize the implied require-
ments in agricultural applications comes within the International Standard ISO18497 [14]
that summarizes safety as a function of human and obstacle detection, safe-state transition
procedures, the suppression of unintended excursions, a remote emergency stop mecha-
nism, and the non-presence of humans and obstacles in a defined hazard zone. Additionally,
other standards, such as ISO 31000 [15] and ISO 21000 [16], demonstrate how to complete a
risk assessment and manage successfully.

Standard 18497 [14] explains that human safety is one of the fundamental aspects
required in agricultural machinery where people detection can be considered as the main
feature of an autonomous device in an agricultural task.

People detection has involved the development of a large set of solutions over the
years. A very popular solution is to use cameras to detect people via feature extraction
algorithms, from the well-known extractors SURF (speeded-up robust features) or SIFT
(scale invariant feature transform) to hog (histogram of oriented gradients) solutions [17].
However, in recent years, machine learning and deep learning-based approaches have
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achieved overwhelming results for object and people detection. For example, Redmon
proposes a new deep learning architecture called YOLO, that stands for "you only look
once", and its third version was released on 2018 in [18]. The main characteristics of this
architecture rely on its input as an entire image, and its output gives a set of bounding
boxes in the same frame. It is also robust for object overlapping.

Another sensor used for human detection in real-time applications is the 3D LiDAR,
where a combination of filtering and convolutional neural network layers can detect
humans in cluttered environments [19], or with a two-stage deep learning architecture, such
as PointRCNN, developed by Shi et.al. [20], that decomposes the problem into bounding
box proposal generation with a refining coordinate process as the last stage.

For safety systems in agricultural environments, a camera is used in different man-
ners, highlighting collision avoidance, human intention recognition, and distance to robot
metrics [21]. Similarly, Raja et.al. [22] developed a customized costmap used for smart
navigation avoidance during an agricultural task that avoids stepping on healthy crops.

Indeed, robotics has evolved from a stage where safety was handled by reactive
mechanisms to decision-making processes where safety policies play a major role in the
decision-making. With the use of more advanced sensors, algorithms, and machine learning
techniques, modern robots are capable of making informed decisions to ensure safe and
efficient operations [23].

Designing safety policies in the system design stage reduces the hazardousness of
robotic applications. Woodman et.al. suggested a high-level system analysing the hazard
sources to achieve real-time safety monitors [24]. Additionally, a risk-based method is
used to integrate safety requirements implementing a safety-driven controller through the
definition of safety policies [25]. The decision-making process is also implicit in a safe
autonomous navigation task. For instance, once a mobile robot obtains a person’s position,
it might decide what to do with this information. For example, Must and Lauderbaugh [26]
have provided an offline safety-based architecture, calculating the reliability of a plan to
avoid safety constraints being violated. Using a statistical evaluation, the solutions analyse
the feasibility of a generated plan before being executed.

Another implementation for real-time applications is with a safety framework called
SMOF [27] that has been developed to generate rules that model a robot as a fault-tolerant
system, and focuses on monitoring safety rules through the inclusion of active monitors.
The framework considers three basic system states: safe, warning, and catastrophic.

Schratter and colleagues have reformulated the problem as a partially observable
Markov decision process (POMDP) [28], that extends the capabilities of a safety system
merging an autonomous breaking system into the decision process. This approach assumes
a pedestrian’s constant velocity and predicts the next positions of the human and the time
to collision, improving the system’s safety capabilities.

It can be derived that this is due to the artificial intelligence’s high performance, that
is well-known in robotic-related tasks. Safe navigation and risk management processes can
be designed as a combination of fuzzy logic, risk management, and deep learning [29].

Risk estimation is the final stage of the risk management process. The use of different
metrics in human-robot collaboration stages should be a system priority that relies on
robot perception. These metrics can be based on social cues, visiting points to define
the riskier spots in a map, or in the form of a multi-variable cost function [30]. Further,
an analysis of a robotic navigation system concludes that in applications where safety is a
concern, additional considerations must be monitored as the CPU load or the performance,
and detected anomalies should be input into the safety system [31].

In this paper, we suggest the explicit integration of the risk management into the
autonomous navigation process, and evaluate its performance in a simulated environment
of a grass cutting task where human-robot collisions are unwanted. Hereby, all of the
assumptions and considerations are explained, describing a custom autonomous solution
for the mentioned task to make it as safe as possible.
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3. Problem Statement

For an autonomous application, it is mandatory to understand the limitations and
characteristics of the task to be automated. The test case for our research is an autonomous
grass mower under the scope of the GrassRobotics project.

The main core idea is to increase the productivity of the grass-mowing and collecting
process, and decreasing soil compaction as a natural consequence of using lighter vehicles
for such applications. The selected robot Thorvald [32] (Figure 1) consists of a four-wheeled
robotic platform, and each wheel is controlled by two electric motors for steering and
accelerating. The tool is mounted on the front part of the robot to increase control over
path planning.

Figure 1. Our robotic platform.

Our sensor set consists of: an RGBD camera, a VLP-16 Velodyne LiDAR, an IMU, and a
set of RTK antennas. The robot also carries two computers and a WiFi router. The platform
used is designed to carry tools for agricultural applications.

In Table 1, some task properties are mentioned at three description levels: environment,
task, and platform. This information is of major importance to keep track of the resources
and to define the requirements of the system in such a way that the safe navigation archi-
tecture constrains its execution within the available resources. The task description table
summarizes the environment characteristics in which the robot normally runs, including
the weather conditions and seasonality.

The components selection and features are based on the problem statement shown in
Table 1, using this information to select the best configuration for our system. The selected
system’s design makes allowances for the grass-mowing application with three modes:
crop-following, line changing, and free navigation. The system configuration is shown in
Table 2, introducing the main components for each navigation mode.
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Table 1. Task description.

Property Value

Environment

Structured No

Season Spring-Summer

Weather Sunny

Collaboration Required

Multi-Agent No

Mowing

Material Grass

Nominal Speed 3.35 mph

Tool Industrial Cutter

Platform

Power Electricity

Drive Omnidirectional

Name Thorvald

Sensor Set Customized

Wheels 4

Motors 8

Table 2. Navigation architecture design.

Selection Mode Layer Avoidance

Nav. Stack MBF ALL None Enabled

Motion
Planners

Global
Planner

Line Changing Free Custom

Free Obstacle Enabled

Carrot
Planner Crop Following Custom Disabled

Local
Planners

DWA Free Custom

MPC Crop Following Custom Custom

Line Changing Obstacle Enabled

Localization
RTK-GPS

and
Odometry

ALL - -

Mapping Custom ALL Custom -

4. Approach

For this research, a safe navigation application requires merging two main aspects
that frequently appear in the literature: risk management and autonomous navigation.
Both systems require an improvement at the design stage that analyses all of the safety
requirements, and they must be analysed before proceeding to development. This step is of
major importance to handle further potential risks throughout the system’s lifetime.

4.1. Risk Management

As a start, we consider the safety system as a five-step risk management process
based on [16,33] and modified for handling run-time applications using different risk
policies, as shown in Figure 2. This figure summarizes the approach followed in the present
research, highlighting the importance and advantages of mapping the potential risks into
the design step.
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Hazard
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Risk Mit-
igation

Risk Eval-
uation

Emergency
Stop

Hazard
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fication

Risk
Mitigation
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Figure 2. Risk management plan.

It starts with a hazard identification step that provides all potential hazards. This
information is sent to a detection phase that is constantly waiting for these events to happen
in the scene. Later on, a risk mitigation plan links this to an action according to a predefined
plan. Finally, the system evaluates if the previous step output is as expected and whether
the risk is acceptable or not. If the risk is high, the robot must stop all actions to avoid
any casualties.

The hazard definition starts by defining the scenario and task that the robot will
perform. In the case of this research, the tasks run in open-field environments and the
device executes agricultural applications, such as seeding, harvesting, cutting, or sowing.
Given these elements, the full list of hazards found for this task is provided in Table A1 in
Appendix A. However, due to the complexity of the nature of the experiments presented
in this paper and the early status of the robotic platform, a subset of this is picked to be
included in the design stage (Table 3).

Table 3. Hazards definitions.

Risk ID Hazard Definition Severity P.Oc.

01 Living Being Not Detected S0, S2 E4

02 Living Being Detected in Proximity S0–S3 E4

06 Trajectory Intersects Human Trajectory S1–S3 E4

09 Running out of Borders S2 E3

Table 3 covers the most common hazards in agricultural applications mentioned in
ISO Standard 18497 [14]. However, all of these are caused by different errors or failures.
Therefore, a failure mode effect analysis (Table A2 in Appendix B) provides a deeper
understanding of the causes.

Our FMEA splits into low-level and high-level failures and effects. The high-level
failures represent the process modules and the low-level represent the ones caused directly
by sensing failures. Once the hazards are defined, the cyclic detection stage can perform as
expected. All true positive-detected events are managed by the risk mitigation plan.

The risk mitigation plan consists of two steps. First, it defines some risk policies that
could potentially address all risks together, and then it links all policies to a specific risk.
This process ends in a customized risk plan for agricultural applications based on the
hazards defined in Table 2.

The hazards definition aims to guide the risk policy development. However, either
detecting or not detecting living and non-living beings in the scenes can result in a different
severity range according to the direction of the robot.

Figure 2. Risk management plan.

It starts with a hazard identification step that provides all potential hazards. This
information is sent to a detection phase that is constantly waiting for these events to happen
in the scene. Later on, a risk mitigation plan links this to an action according to a predefined
plan. Finally, the system evaluates if the previous step output is as expected and whether
the risk is acceptable or not. If the risk is high, the robot must stop all actions to avoid
any casualties.

The hazard definition starts by defining the scenario and task that the robot will
perform. In the case of this research, the tasks run in open-field environments and the
device executes agricultural applications, such as seeding, harvesting, cutting, or sowing.
Given these elements, the full list of hazards found for this task is provided in Table A1 in
Appendix A. However, due to the complexity of the nature of the experiments presented
in this paper and the early status of the robotic platform, a subset of this is picked to be
included in the design stage (Table 3).

Table 3. Hazards definitions.

Risk ID Hazard Definition Severity P.Oc.

01 Living Being Not Detected S0, S2 E4

02 Living Being Detected in Proximity S0–S3 E4

06 Trajectory Intersects Human Trajectory S1–S3 E4

09 Running out of Borders S2 E3

Table 3 covers the most common hazards in agricultural applications mentioned in
ISO Standard 18497 [14]. However, all of these are caused by different errors or failures.
Therefore, a failure mode effect analysis (Table A2 in Appendix B) provides a deeper
understanding of the causes.

Our FMEA splits into low-level and high-level failures and effects. The high-level
failures represent the process modules and the low-level represent the ones caused directly
by sensing failures. Once the hazards are defined, the cyclic detection stage can perform as
expected. All true positive-detected events are managed by the risk mitigation plan.

The risk mitigation plan consists of two steps. First, it defines some risk policies that
could potentially address all risks together, and then it links all policies to a specific risk.
This process ends in a customized risk plan for agricultural applications based on the
hazards defined in Figure 2.
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The hazards definition aims to guide the risk policy development. However, either
detecting or not detecting living and non-living beings in the scenes can result in a different
severity range according to the direction of the robot.

Therefore, a risk zone definition has been created to handle these situations defined
per the policy. The summary of the proposed mitigation plan is described in Table 4.

Table 4. Risk mitigation through proposed policies.

Risk ID Hazard Definition Severity Function Type

01-A Living Being not Detected
in Lethal Zone S0 State-Transition Event

01-B Living Being not Detected
in Danger Zone S1 State-Transition Event

01-C Living Being not Detected
in Warning Zone S2 State-Transition Event

01-D Living Being not Detected
in Safe Zone S3 State-Transition Event

02 Living Being Detected in ∗ Advance-Proximity Continuous

Proximity State-Transition Event

03-A Non-Living Being not
Detected in Lethal Zone S0 State-Transition Event

03-B Non-Living Being not
Detected in Danger Zone S1 State-Transition Event

03-C Non-Living Being not
Detected in Warning Zone S2 NONE Idle

03-D Non-Living Being not
Detected in Safe Zone S3 NONE Idle

04 Non-Living Being Detected S3 Basic-Proximity Event

in Proximity Collision-Avoidance Continous

05 People Laying on the Grass ∗ State-Transition Event

06 Trajectory Intersects
Human Trajectory ∗ Advance-Proximity Continuous

07 Injured Animals on the Crops ∗ Basic-Proximity Event

Collision-Avoidance Continuous

08 Tool Malfunction S2 Monitor Continous

09 Running out of Borders S2 Knowledge HI

10 Encoder Malfunction S1 FMEA HI

11 Camera Malfunction S2 FMEA HI

12 LiDAR Malfunction S2 FMEA HI

13 GPS Malfunction S2 Knowledge HI

14 Speeding S2 Advance-Proximity Continous

Knowledge FMEA

15 Communication Lost S2 FMEA Idle

16 Others (to be defined)
∗means applicable from S0 to S3.
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Section 5 provides the details of the different risk policies mentioned in Table 4. This
strategy guides the actions run by the robot to reduce all danger for the people and obstacles
within the environment it performs the task. Once each action is executed, the system
evaluates the risk, and if it is above a defined threshold, the robot must stop its task.

4.2. Autonomous Navigation

Additionally, safe navigation is an autonomous execution pipeline that implicitly
embeds safety into its major design considerations. However, explicitly integrating safety
into autonomous navigation requires special considerations.

For the purpose of this research, safe navigation implies that safety is the core function
instead of the execution module, as normally considered. Our conceptual definition of
safety navigation is based on the considerations wrapped in the International Standard
ISO18497 [14]. To fully consider a system safe, the system must include four different
modules. Our definition considers explicitly four modules to guarantee a robust focus on
safety: monitoring, communications, execution, and safety systems. Together, the four
provide a robust system deployed in different software levels ranging from low to high.
A brief definition for each subsystem is:

• Execution: This module handles the task execution, including localization, mapping,
trajectory planning, and control. The agricultural robots normally localize themselves
by GPS-based solutions. In mapping approaches, there are two main tendencies using
a static map or map-less solutions. A high number of controllers and planners can be
used to make the robot execute a given task; however, the selection is influenced by the
agricultural application’s characteristics. The execution module must stop whenever
the safety module is not working;

• Communication: The second module addresses the problem of creating human-robot
communication. This can include visual, speech, haptic, or smartphone app interfaces
to receive and send information to the robot. In this module, the concept of human
intervention is introduced, enabling a safe human-robot interface;

• Safety: This monitors the external events that interrupt the robot’s safe state. Any
object or human that is put at risk of collision, injury, or death must be detected in
order to prevent these from happening. This, and the execution module are highly
dependent;

• Monitoring: Any of the other systems can fail during run-time. The last module
watches the correct behaviour of the other three modules. This module can interrupt
the robot’s task.

Execution and communication tasks are highly developed, as demonstrated in the
literature. However, the safety module is normally implicitly considered in perception
systems. These elements take into account simple policies based on precision or on a
number of retries. However, more robust safety systems can be deployed if the task
is fully understood and a hazard analysis is carried out before the development phase.
For the purpose of the current work, the definitions of execution and safety systems are
hereby established.

4.2.1. Execution Module

There are some navigation frameworks available on the market, such as move_base,
move_base_flex [34], and Nav2 [35], that have been developed in the popular robotic
framework ROS. All of them rely on a four-step navigation procedure that comprises:
localization, mapping, path planning, and path execution. However, Nav2 provides,
by default, a map-independent navigation framework that makes the navigation stack
modular and flexible.

The grass-mowing process is an iterative operation; however, the flexible design of
the Nav2 and the behaviour tree structure might be too complex for the problem per se.
In addition, the Thorvald platform software is developed on ROS1 framework. The three
modes described in Table 2 represent the main action in the grass cutting procedure.
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Free navigation runs the default collision avoidance navigation system used to go in
a defined start position, grass collector, and other coordinates. Crop-following is a set of
global and local planners with parameter values set for such behaviours. A customized
agricultural task costmap based on [22] constrains the planners to avoid undesired be-
haviours. Finally, row changing defines an MPC for the differential drive to turn in tighter
curves than an Ackerman drive. The customized costmap is explained in Section 5.4.

4.2.2. Safety Systems Module

Our safe navigation system uses the risk management process for detecting and
handling any detected hazard during the execution. This identification stage is of great
importance for our system because it provides a guideline for our autonomous system.

5. Safety Functionalities

Safety functions must solve a specific safety objective. In the case of the grass-mowing
task, human safety is a major priority for the optimal autonomous execution of the task.
Therefore, our main focus remains on this critical aspect analysing different safety functions,
and how they impact safety without compromising performance.

As an additional classification for our functions, we defined their classes as continuous
and event-based. The first is executed continuously while the robot is active, meanwhile the
event-based is called once per detected hazard. Finally, HI stands for human intervention
and it calls for the emergency stop and requests assistance.

5.1. Basic Proximity Function

This basic policy is nothing other than a simplified approach for the safe action
selection in robotics using the Euclidean distance between the robot and closest object or
person. This approach assumes that the robot needs to perform a safe action for returning to
a safe state and uses prior knowledge to select an appropriate action based on the distance
to the nearest object or person. A simple visualization of our approach is given in Figure 3.

R
O
B
O
T

Lethal

Warning
Safe

Figure 3. Basic proximity safety function.

The safe action execution also includes a set of safety rules and their only purpose is to
minimize true positives and negatives from the object detection algorithms based on logic:

1. Once the hazard state is reached, the robot cannot transit to the safe state directly,
i.e., a person is no longer detected in the hazard zone;

2. If the detection algorithm does not provide feedback after a timeout, it might mean
that the robot does not understand the environment (blind robot), therefore, the robot
must stop and/or require human assistance;
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3. Safety system acts as a navigation monitor, therefore, it interrupts and commands the
system if any of the safety rules are threatened.

5.2. Braking System Function

Real-world is a complex and dynamic environment where obstacles in static conditions
are commonly found. Then, object tracking represents a good choice for handling a braking
system policy with tracking functionalities.

Risk estimation for the environmental obstacles can be modelled as a function of
time, position, the robot’s orientation, and risk layers around the robot. Mayoral et al. [36]
provided a framework for risk assessment using, as a test case, human detection in an
open-field environment, and its conceptual idea can be observed in Figure 4.

Robot

Human 0

Possible
Locations

Detected
Location

Human 1
Possible
Locations

Detected
Location

Risk Zones

Human Risk

Risk Layer

Braking Function

Risk Cell (Rt
i)

1 −max{Rt
i∀Rt}(Rt

i)

Figure 4. Braking system function.

This method is used as a risk-based braking system, and its concept utilizes human
3D position sampling to evaluate the 2D projected position in the map using a degradation
function. Finally, it concatenates all of the layers and injects the resulting risk index as a
braking parameter into the motion controller. Those features make this policy a good choice
for a continuous risk policy where the depth-limited sampling mitigates the processing
power and time to generate a run-time solution.

5.3. Human Risk Assessment Function

With AI’s steep development, detecting obstacles [37,38] and vegetation [39] for open-
field agricultural applications has been developed in a variety of sensors, including cameras
and LiDARs with a large set of solutions that fulfil extraordinary results. However, the risk
evaluation process comes from a set of safety rules that processes the robot’s state to identify
the next action.
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An approach to classify human risk according to a single RGB frame is presented
in [40], this reuses a one-shot neural network classifier to estimate the risk according to
the distance from a camera without using depth information. The idea is simple as the
closer the person moves to the camera, the greater the risk and the lower the class index,
according to the original research.

For this risk assessment policy, the previous approach is extended and taken as a state
transition. This method attaches a single action according to the transition between the
previous and current state. To achieve this purpose, this policy encompasses a definition
for the current risk state that uses all human risk classification Pclass at time t:

R(t) = min
pt

i∀Pclass

(pt
i)

The policy’s action criterion designates the risk mitigation operation to minimize the
risk. In the start time, the state is set as unknown to mitigate a potential risk in the initial
state. State transitions should be sequential, where a transition higher than one level change
leads to a mitigation action. A complete risk mitigation action must be defined by the
system designer, and Table 5 displays ours.

Table 5. States transition safe action selection.

t − 1

t
Lethal Danger Warning Safe Unknown

Lethal Stop Resume Resume H.I. Stop
Danger Stop Stop Resume H.I. Stop

Warning Stop Stop Idle SpeedUp Slowdown
Safe H.I. H.I. SlowDown Idle Slowdown

Unknown H.I. Stop Resume Resume Idle

This risk assessment policy is designed for this particular approach every time an
action brings out the following effects in the system:

• Idle: Sets current state t with previous risk state t− 1;
• Speed-Up Enables full speed;
• Slowdown Constrains mobile robot by limiting maximum speed to a safe speed t∗;
• Stop: Pauses given task, motion, and shuts down power tools;
• Resume: Resumes current task, motion, and shuts down power tools;
• HI: Requests human intervention, and leaves the decision-making process to a human

operator.

The significance of human intervention in monitoring the autonomous devices cannot
be overstated. The HI action is designed to detect any inconsistencies in performance,
upon which the robot must immediately stop and alert the operator. The human operator
is then able to decide whether to allow the task to continue, following which the robot can
resume its operation.

5.4. Knowledge-Based Function

This safety policy is developed through a special costmap representation that will
avoid trespassing on the workspace. A representation for a four-row length field is shown
in Figure 5, where the blue regions identify the acceptable region that the robot must be
located in to mow the grass, and the green indicates the limits of the workspace. It is
a simple idea that provides feedback to the robot when it trespasses in an area where it
should not be.
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Figure 5. Simple task knowledge costmap representation.

This simple smart costmap will monitor, in a fast manner, the motion of the robot
in the crop following mode. In addition, it will also crash the local planner when the
localization of the robot is out of the blue region (acceptable localization region). Even the
global planner is set up to fail when the robot is out of the green region, allowing for a
correct determination of the running out of borders hazard.

6. Navigation Architecture

The safe navigation architecture proposed for this research is shown in Figure 6, and it
consists of four actions and three components. Those components are the map manager,
the navigation manager, and the safe controller.

Map Manager Navigation
Manager

Safe Con-
troller

HRI
Monitor

& Control

Human In-
tervention

Braking
SystemSafe Speed

Emergency
Stop

Figure 6. Navigation architecture.

The map manager sets or resets the workspace map (Figure 5) according to the in-
tended action of the robot, for example, tool on or off. The navigation manager commands
this action and manages the execution of the task and the controller selection. The HRI
monitor and control component receive the desired task from a human operator who is also
responsible for resetting the human intervention that stops the robot until a confirmation is
received. Finally, the safe controller computes the final speed through the aggregation of
all of the speed signals.

7. Simulations

Agricultural robots perform mostly under open-field scenarios where people work
within their limits and sharing space with the robots. Therefore, our experiments mimic
this situation by testing the performance of our approach.

The experiments are designed to perform a risk assessment in a simulated-based
scenario where all hazards described in Table 3 can be tested without endangering humans
or private property. The simulated environment looks like a field where any agricultural
application could be performed (Figure 7), and it also consists of two automatized hu-
mans moving at different speeds and in different trajectories that were developed on the
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Gazebo simulator. Our simulation engine commands the trajectory of each of the humans
automating their motions, randomly selecting their speed, direction, and distance to move.

The experimental setup uses an analysis for hard scenarios, so it is challenging for
any perception system. Thus, there are humans moving around all the time along the
environment. There is no prior knowledge of when a collision might happen or when a
person is not detected.

Figure 7. Gazebo simulator with an open-field agricultural environment and the collision boxes.

The simulated environment consists of a field-like simulation, measuring 10 × 10 m,
in which the robot must cover four grass rows. The main objective of the experiment is to
evaluate the risk to humans during the execution. The two moving persons possess no
intelligence to avoid the robot; therefore collision avoidance relies entirely on the safety
functions. We define five experimental setups, the base results with no safety function
component, and four with one or two different safe functions. All of our experiments are
set in challenging conditions simulating persons within the robot’s workspace. The human
agents re-spawn every 15 s in simulation time to test the robustness of our system.

The experiments consist of five test cases, including one used as a reference (no safety
system). For each test case, we performed twenty runs over a simulated field under the
same challenging conditions. The main measure of the experiments is the number of
collisions between the robot and human. A collision is considered genuine only if it occurs
in front of the robot while it is moving at a speed greater than 0.1 m/s. Both humans
are re-spawned every time there is a collision, or when there is no collision affecting its
trajectory after three motion repetitions.

Our first case and reference run without any safety systems and it is used as a reference
to analyse the performance of the other cases. The other four experiments provide stochastic
comparisons with collisions with humans, the average time between collisions, speed,
and interventions. Each test case performed is monitored with one safety function before it
is explained, and they are:

1. No Safety;
2. Basic Proximity;
3. Braking System (based in [36]);
4. Human Risk Assessment (based on [40]);
5. Functions Fusion (Advance Proximity and State-Transition).
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In addition, for all test cases, the knowledge-based function (Section 5.4) ensures
that the robot with the tool never leaves the workspace. Together with a motion planner,
the robot must pass the same path over and over without any path modifications.

For evaluation, there are two main metrics: the mean execution speed per cycle and
the average execution time. Additionally, safety components, such as the number of
collisions, mean time between collisions (MTBC), and mean time between interventions
(MTBI), complement the assessment. Furthermore, we also calculated a percentage im-
provement in terms of MTBC (%Imp), that grades the average time between collisions
during the execution.

8. Results

The experiments analyse the performance of the presented safety functions for avoid-
ing fatal collisions in a human-robot collaboration environment. The experiment’s main
goal is to prove the robustness of our system and provide a benchmark for future research.
Table 6 summarizes the findings of the five test cases.

Table 6. Performance analysis for the five test cases.

No -Safety
Basic

Proxim-
ity

Braking
System

H. Risk
Assess-
ment

Functions
Fusion

Vx 0.32 0.11 0.24 0.28 0.26

T 160.5 476.8 234.9 184.9 222.1

#Col. 55 30 28 31 19

MTBC 101.5 442.1 327.6 222.6 417.8

MTBI - - - 45.16 52.90

%Imp. - 435.5 322.7 219.2 411.5

Our baseline provides a performance overview of how a mobile robot would work in
a field without any safety system. It shows the highest mean speed along the execution
(0.32 m/s), and the longest execution time per iteration as well (160.5 s). In comparison,
the basic safety function over performs the baseline in its number of collisions, and its
improvement in terms of MTBC is around 435.5%. However, in terms of coverage time
per execution iteration, it performs poorly at 476.8 s. Therefore, using this safety function
provides a more robust solution, but its performance is severely affected, producing longer
executions times.

The human risk assessment function performs in the shortest time and shows an
improvement in MTBC of 219.2% and MTBI of 45.16 s. Furthermore, the functions fusion is
the one with the fewest causalities, an MTBC of 417.8 s, which is the closest one to the basic
function, and an MTBI of 52.90 s.

The simulations run in an environment with two simulated humans randomly moving
around; however, the robot’s motion is also important to understand whether the robot
attempted to decelerate and avoid an accident. The speed profiles of the executions are
shown in Figure 8 and display the collision locations on the map. Our safety functions are
able to minimize fatal casualties; however, it is not a perfect solution.

The figures shown in Figure 8 display the basic plot of a farm land, where the axes
represent the height and width of the terrain on which the robot runs and performs
experiments. On the one hand, Figure 8a demonstrates the profile without any attempt at
stopping or reducing speed when a risk situation appears in its workspace. On the other
hand, when safety functions complement the performance, there is a decrease in collisions,
especially when our human risk assessment and braking system are fused.
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(a) (b)

(c) (d)

(e)

Figure 8. Speed profile for safety actions. (a) No safety functions. (b) Braking system. (c) Simple
proximity. (d) Human risk assessment. (e) Fusion test case.

The braking system (Figure 8b) shows attempts for decreasing the velocity when a
person is detected. However, the simple proximity function (Figure 8c) struggles to manage
the complexity of the environment, showing non-significant slow-down attempts. Our
camera-based solution (Figure 8d) seems to perform well to reduce the speed before the
collisions, but the reduced vision range avoids having a full range detection; but, once
fused, the speed footprint changes along the trajectory (Figure 8e).

Further, in the case of the risk assessment function, the robot calls for different safety
actions during the experiments. Ignoring idle cases where the state remains constant for
two consecutive times, the actions called distributions are shown in Figure 9, observing
that non-consecutive transitions are not common along the execution of a task.
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(a) (b)
Figure 9. Action request calling results. (a) Transition test case. (b) Fusion test case.

The state of the risk has preserved most of the execution time (diagonal values) when
the non-diagonal values are the events where the simulated humans change their location
in terms of the risk zones. Furthermore, the diagonal values of the figures illustrate the
transitions over time of the system for this safety function, demonstrating the tracking
behaviour of the people in the robot’s scene.

In addition, Figure 9 demonstrates that the safety actions that are performed most
frequently are stop and idle (action mapping is shown in Table 5). Meanwhile, transitions
from and to the unknown state are not common during the execution.

9. Conclusions

The current paper presents an innovative approach to integrating object detection and
safety systems in autonomous grass-mowing applications. The primary contribution lies in
utilizing a risk assessment method to develop a customized navigation stack that prioritizes
safety. Our autonomous architecture demonstrates great performance in handling risks
during the execution of autonomous tasks.

To explicitly integrate safety functions in an autonomous mobile application, in this
work, we generate a risk mitigation plan that covers a wide range of potential risks for
industrial grass-mowing solutions. Risk metrics, including average time per cycle, inform
the performance impact when integrating a safety system. Our findings demonstrate a
significant improvement in performance, with the fusion case showing an increase from
160.48 to 222.13 s, and a decrease in the number of collisions from 55 to 19. Furthermore, we
compared four safety functions in complex situations and found a remarkable improvement
of more than 400 percent in MTBC.

Despite these promising results, experiments in production environments are nec-
essary to obtain more accurate metrics and achieve international safety standards in au-
tonomous agricultural applications. Human factors, such as fatigue, technology reliability,
and intelligence, must be part of future experiments providing more reasonable and in
depth human behaviours.

The current research provides the first steps toward a safe autonomous agricultural
robotic grass-mowing application. However, there is a set of additional features that
provide a more robust solution for handling real-world applications. Advanced fault-
detection algorithms can be employed to complement sensors’ accuracy and reliability.
In addition, analysing recent networking protocols can expand the range of human-robot
interfaces in open-field environments. Finally, incorporating international safety standards
into the overall design can address additional hazards and indoor environments.
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Appendix A

In this section, the complete analysis and description of the hazards are presented.
In the case of hazard description, a more accurate interpretation of the potential risk is
described in Table A1.

Table A1. Hazards definition.

Risk ID Hazard Definition Severity P.Oc.

01 Living Being not Detected S0, S2 E4

02 Living Being Detected in
Proximity

S0–S3 E4

03 Non-Living Being not De-
tected

S1, S2 E4

04 Non-Living Being Detected
in Proximity

S1, S2 E4

05 People Laying on the Grass S0, S3 E2

06 Trajectory Intersects Human
Trajectory

S1–S3 E4

07 Injured Animals on the Crops S1–S4 E3

08 Tool Malfunction S2 E2

09 Running out of Borders S2 E3

10 Encoders Malfunction S1 E2

11 Camera Malfunction S2 E2

12 LiDAR Malfunction S2 E1

13 GPS Malfunction S2 E3

14 Speeding S2 E3

15 Communication Lost S2 E2

16 Others (to be defined)

The previous table provides a guideline for future work of the presented research,
to make a more robust approach ready for real-world operations. The hazard list is generic
for a grass-mowing agricultural task, and the last line introduces the facility to extend
the hazards list or to create a more specific description for another task rather than grass-
mowing.

Appendix B

A failure mode effect analysis demonstrates the relation between potential failures
and the recommended actions to prevent catastrophes. The FMEA used for this research is
shown in Tables A2 and A3 where high- and low-level failures are divided. Note that some
low-level failures, such as sensor-related ones are not part of the current research; however,
they must be a core part of future extensions of the system hereby introduced.
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Table A2. The high-level failure mode and effects analysis.

Process Step Potential Failure Mode Potential Failure
Effects Potential Causes Current

Controls
Recomm.
Action

High-Level Failures

Execution

Localization Imprecision

Speeding
GPS Failure Monitoring Slow Down

Odometry
Failure Kalman Filter Slow Down

Unintended Excursion
GPS Failure Monitoring EStop

Odometry
Failure Kalman Filter EStop

Unintended Excursion
Collision

Odometry
Failure

Perception
System EStop

Speeding Localization
Imprecision

Velocity
Constraints Abort

Wrong Path
Unintended Excursion Localization

Imprecision Kalman Filter EStop

Collision Safety System
Error

Perception
System Abort

Safety

Collision
Injuries/Death Wrong Path Perception

System
ESTOP + H.I. +

Shutdown

Destroy Property Wrong Path Perception
System ESTOP + H.I.

Safety System Error Injuries/Death
Camera Failure Perception

System
ESTOP + H.I.+

Shutdown

LiDAR Failure Perception
System

ESTOP + H.I. +
Restart

Comms.

App Comm. Lost Injuries/Death Bluetooth Failure Monitoring Abort + H.IWiFi Failure

Visual Comm. Lost

Injuries/Death

Camera Failure
Monitoring

Stop Motion

Speech Comm. Lost Microphones
Failure Stop Motion

Haptic Comm. Lost Inertial Sensor
Failure Stop Motion

High-level failures include starting from the localization to system communication
losses, and their potential effects lead to sensor errors. Furthermore, the recommended
actions manage the navigation system to prevent unrelated actions by stopping, slowing
down, or triggering the emergency system. Low-level failures are described in Table A3.



Robotics 2023, 12, 63 19 of 21

Table A3. The low-level failure mode and effects analysis.

Low-Level Failures

Process Step Potential Failure Mode Potential Failure
Effects Potential Causes Current

Controls
Recomm.
Action

Monitoring

Camera Failure Safety System Error

Power Issue Electric Design H.I. + Shutdown

Unplugged
Cable

Reinforce
connections

Stop Motion
+ H.I.

Software Crash Signal
Monitoring Restart Firmware

Visual Comm. Lost Software Crash None Wait

LiDAR Failure Safety System Error

Power Issue Electric Design H.I. + Shutdown

Unplugged
Cable

Reinforce
Connection

Stop Motion
+ H.I.

Software Crash Signal
Monitoring Restart Firmware

GPS Failure Unintended Excursion
Software Crash Monitoring Restart Firmware

Signal Precision None Wait

Localization Imprecision Satellites Comm. Kalman Filter Wait

Odometry Failure

Localization Imprecision Encoders
Malfunction Maintenance Maintenance

Speeding GPS Failures Param.
Optimization Slow Down

Unintended Excursion Software Crash Monitoring Restart Firmware

Aborted Execution Localization
Imprecision

Velocity
Controller H.I.

WiFi Failure App Comm. Lost

Low Reception None Wait

Unplugged
Cable

Reinforce
connections

Stop Motion
+ H.I.

Software Crash Signal
Monitoring Restart Firmware

Bluetooth Failure App Comm. Lost

Low Reception None Wait

Unplugged
Cable

Reinforce
connections

Stop Motion
+ H.I.

Software Crash Signal
Monitoring Restart Firmware

Inertial Sensor Failure Haptic Comm. Lost

External Noise Kalman Filter Wait

Unplugged
Cable

Reinforce
connections

Stop Motion
+ H.I.

Software Crash Signal
Monitoring Restart Firmware

Microphone Failure Speech Comm. Lost

External Noise None Wait

Unplugged
Cable

Reinforce
connections

Stop Motion
+ H.I.

Software Crash Signal
Monitoring Restart Firmware
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