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ABSTRACT Image captioning has shown encouraging outcomes with Transformer-based architectures
that typically use attention-based methods to establish semantic associations between objects in an
image for caption prediction. Nevertheless, when appearance features of objects in an image display low
interdependence, attention-based methods have difficulty in capturing the semantic association between
them. To tackle this problem, additional knowledge beyond the task-specific dataset is often required
to create captions that are more precise and meaningful. In this article, a semantic attention network is
proposed to incorporate general-purpose knowledge into a transformer attention block model. This design
combines visual and semantic properties of internal image knowledge in one place for fusion, serving as
a reference point to aid in the learning of alignments between vision and language and to improve visual
attention and semantic association. The proposed framework is validated on the Microsoft COCO dataset,
and experimental results demonstrate competitive performance against the current state of the art.

INDEX TERMS Attention, Image Captioning, Knowledge Base, Semantic Feature, Transformer.

I. INTRODUCTION

IMAGE captioning techniques, which automatically create
a natural language description from an image, are an

important aspect of multimedia content analysis. They have
attracted much attention since they offer insight into the
relationships between the multi-modal mapping of vision
and natural language tasks. It is, however, a challenging
research subject and entails a great deal of deep knowledge
regarding how to process reasoning over vision and language
understanding [1]–[3], in particular the act of recognising
an image’s objects, understanding their interactions, and ex-
pressing them in human language. Image captioning, which
aims to describe the image in continuous natural language,
also has a variety of practical applications. Some examples
of image captioning’s various use cases involve helping blind
people by explaining images and their surroundings [4] ,
improving service robotics in visual assistant applications
[5], and providing reports for medical images to doctors to
support diagnoses and boost productivity [6].
Image captioning methods have been intensively investigated
and improved since the advent of deep learning [7]; they go
beyond prediction tasks and are increasingly capable of re-
porting in natural languages. Allowing for these capabilities,
however, requires a solid linguistic knowledge and coherent
understanding of the given image. In this paper, the semantic

representations of given images within our attention model is
explained, demonstrating the value of this architecture on the
image captioning problem.
Existing approaches to image captioning have evolved an
encoder-decoder structure [8]–[10], based on the sequence-
to-sequence paradigm for machine translation [11]. Typi-
cally, Convolutional Neural Networks (CNNs) are utilised
as encoders, converting image data into usable visual fea-
tures. Alongside this, Recurrent Neural Networks (RNNs)
are typically utilised as decoders for generating a language
description. The standard encoding and decoding structure
works on the input image to provide a related description of
the scene, objects, and their relationships. The majority of
current methods investigate mapping relationships between
words in a sentence and specific regions of an image [9],
[12]–[14]. The main challenge faced by researchers in the
application of vision-and-language models is data-related;
the majority of image captioning models are trained on a
large amount of paired image and caption data, but these
datasets typically have only a few ground truth captions per
image, which are insufficient to provide a clear description of
the contents of each image. It’s common knowledge in this
area of research that not all captions hold equivalent impor-
tance in describing the contents of a given image. Another
limitation is that many image captioning models use just the

VOLUME 10, 2022 1



D. A. Hafeth et al.: Semantic Representations with Attention Networks for Boosting Image Captioning

visual characteristics of an image to direct the encoder, while
the decoder typically relies on the textual information from
the training set – this can result in difficulties accurately
identifying objects in a given image. When several objects
are present in an image, the described structure may not
be able to identify all objects present and may especially
struggle to identify any relationships between objects. These
weaknesses can result in the model missing tiny objects, pro-
viding incorrect object relationships, or producing incorrect
text representations, which go on to affect the quality of
the resulting caption. This shows that it may be beneficial
to introduce more knowledge sources to the network during
training in an aims to increase contextual understanding and
further caption generation accuracy.
To overcome the aforementioned restrictions, a semantic-
guided attention model is suggested as an image caption-
ing technique to enhance visual understanding. In order
to improve visual understanding, information from external
knowledge bases is used to detect semantic features and
embed them into a continuous vector space. These are then
used to link and control the image visual representation,
also taking into account the relationship between key objects
in the image. In terms of improving visual comprehension,
an external knowledge network is introduced, which aids
in the generation of more flexible description sentences by
utilising information other than the basic content of the image
provided. In this manner, the proposed model can gather data
from external sources other than the image’s basic content
to use in creating more flexible description sentences. We
believe that embedding this type of knowledge in a model is
a necessary step to enable progress on complex multi-modal
image captioning problems.
Our contributions are summarised as follows:
• We propose a semantic-guided attention network based on
the Transformer model. The solution employs the semantic
representation of input images to develop a more comprehen-
sive image understanding and generate high-quality natural
language captions.
• We use semantic features of the image’s main elements to
link and guide visual features, such as spatial relationships
between objects, so that the information in the image is more
highly integrated.
• We insert information from an auxiliary knowledge base
source to increase our model’s reasoning capabilities. This
involves gathering information from outside of an image’s
basic content and allows for the creation of more appropriate
image descriptions.
• We do an in-depth investigation that includes ablations and
analytical tests on the Microsoft COCO dataset. The results
demonstrate how we have enhanced the capability of deep
semantic understanding, which is absent in common vision
and language models.

II. RELATED WORK
Image captioning is a research area that has received a lot of
attention in recent years, and there are many works that have

proposed different approaches to solve this problem. In this
section, we will discuss some of the important works in this
area.

A. IMAGE CAPTIONING
According to the history of the field, automatic image
captioning development approaches can be classified into
three groups: template-based methods, retrieval-based meth-
ods, and neural network-based methods. The template-based
methods [15], [16] define all the properties of the images
using object and image classification techniques. These ap-
proaches construct captions by filling in pre-defined tem-
plates with data obtained from the detected images. The use
of template has the advantage of producing captions that
are more likely to be clear and precise. They are, however,
inflexible and suffer from output variety limitations [13].
Retrieval-based methods have been widely applied to image
captioning [17]–[19]. A collection of query related images is
built from an image database, rank them based on how simi-
lar they are, and then modify the descriptions of the identified
images to construct a new description for the requested im-
age. However, the utility of this strategy is severely limited,
particularly when dealing with pictures that are unseen, not
in the dataset, or not classified. The neural network-based
methods are influenced by deep neural networks’ success
in machine learning and are used in an encoder-decoder
architecture. A CNN encoder retrieves image features, which
an RNN decoder is used for language modelling and con-
structing image captions. These methods are more flexible
and produce higher-quality image captions than the afore-
mentioned two methods. Vinyals et al. [3] presented a neural
image caption (NIC) model. It is the first effort to incorporate
the encoder-decoder paradigm into image captioning. It acts
as a foundation for later upgrades and a benchmark model
for performance comparisons between models. The CNN is
commonly used as the encoder to extract image information
expressed as fixed-length vectors via matrix transformation,
decoding visual information using long short-term memory
(LSTM). This method increases the probability of the correct
description given the image. However, visual input is only
available during the first decoder update and employs a more
complex CNN.
According to the history of the field, automatic image
captioning development approaches can be classified into
three groups: template-based methods, retrieval-based meth-
ods, and neural network-based methods. The template-based
methods [15], [16] define all the properties of the images
using object and image classification techniques. These ap-
proaches construct captions by filling in pre-defined tem-
plates with data obtained from the detected images. The use
of template has the advantage of producing captions that
are more likely to be clear and precise. They are, however,
inflexible and suffer from output variety limitations [13].
Retrieval-based methods have been widely applied to image
captioning [17]–[19]. A collection of query related images is
built from an image database, rank them based on how simi-
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lar they are, and then modify the descriptions of the identified
images to construct a new description for the requested im-
age. However, the utility of this strategy is severely limited,
particularly when dealing with pictures that are unseen, not
in the dataset, or not classified. The neural network-based
methods are influenced by deep neural networks’ success
in machine learning and are used in an encoder-decoder
architecture. A CNN encoder retrieves image features, which
an RNN decoder is used for language modelling and con-
structing image captions. These methods are more flexible
and produce higher-quality image captions than the afore-
mentioned two methods. Vinyals et al. [3] presented a neural
image caption (NIC) model. It is the first effort to incorporate
the encoder-decoder paradigm into image captioning. It acts
as a foundation for later upgrades and a benchmark model
for performance comparisons between models. The CNN is
commonly used as the encoder to extract image information
expressed as fixed-length vectors via matrix transformation,
decoding visual information using long short-term memory
(LSTM). This method increases the probability of the correct
description given the image. However, visual input is only
available during the first decoder update and employs a more
complex CNN.
The design of the visual description framework has research
a new stage, particularly after applying the attention mech-
anism [20]. Employing an attention mechanism for image’s
regions can reduce problems with missing image objects or
spatial information about objects. This is because it learns
which regions to focus on by swiftly scanning them, then
devoting more attention resources to those areas to gain a
more specific understanding of the target of attention. In
2015, Xu et al. [20] proposed the first attention mechanism
approach applied to the encoder-decoder framework for im-
age captioning. They used visual attention to automatically
focus on different areas and learn the alignments between
words in the provided sentences and image regions, making
their framework new and state-of-the-art for attention image
captioning. However, encoding image systems that rely only
on visual features from the whole image do not always suc-
ceed in extracting all the information that requires attention.
Consequently, that may generate inaccurate and limited de-
scriptive statements, since incorrect visual components may
be retrieved. Huang et al. [21] proposed the Attention-on-
Attention network (AOANet) for the encoder and decoder
architecture. The network determined the relevance between
attention results and queries in the transformer model [11].
The transformer model has an attentive mechanism in which
each element of a set is connected to every other element in
the set. The AOANet outperformed other methods in terms
of output quality and training time for image captioning [9],
[22]–[24].
However, the encoder-decoder attention transformer mod-
elling technique cannot effectively capture the semantic rela-
tionship between image items, especially if their appearance
attributes have a weak dependency. In this paper, semantic
links among image items is defined by modelling a visual

relationship. This is done by using a self-attention technique
to weigh the importance of the appearance features of query
objects in relation to candidate visual relationships.

B. OBJECT DETECTION

It is one of the foundational processes for visual com-
prehension and reasoning that enhance captioning perfor-
mance by capturing semantic relationships between image
and language. Several image captioning methods [8], [25],
[26] extracted visual information from multiple areas in an
image using the Faster R-CNN object detector approach
[27]. Anderson et al. [8] proposed a combined bottom-
up and top-down attention mechanism using a Faster R-
CNN object detector to attend more naturally at the level of
objects and other visual regions. Their approach enhanced
visual attention but did not consider semantic connections
between the identified regions in the image. To come up
with further information that is not included in the provided
captions, other researchers have proposed advanced models
that incorporate visual features with high-level semantic in-
formation for image object instance-level concepts as another
form of image representation. Most recent works [8], [28]
unified object instance-level concepts probability with region
features as the visual input for image captioning and visual
question answering models, while other methods [13], [29]–
[31] used level concepts as supplementary information to
enhance image-text semantic alignments. Unfortunately, in
some works, the object concepts are not related to both the
object areas and the caption supplied, resulting in a lack
of grounding. These motivate us to spread semantics in
visual attention across the total proposed regions. A semantic
guided attention model is proposed, that uses object instance-
level concepts [8]. To align the object-region features in the
pre-trained linguistic semantic space. That exploits not only
an overview understanding of the input image but also visual
semantic attributes for attention calculation.

C. IMAGE CAPTIONING WITH COMMONSENSE
KNOWLEDGE BASE

Knowledge Bases (KBs) can be selected as an external
source of information to enhance many deep neural network
processes. Several approaches have been developed in the
natural language processing and computer vision fields to
benefit image captioning via the utilisation of KBs [32]–
[34]. Motivated by the importance of object instance-level
concepts’ semantic relations, in this paper we focus on in-
tegrating common sense KBs from external resources and
integrating them with other attributes to achieve better model
performance. ConceptNet [35] is used as an external KB
rather than several other alternatives due to its broad coverage
of concepts and accompanying semantic embedding of useful
features. A type of new attention method is developed that
embeds common sense KBs from ConceptNet and share the
common space embedding feature with other input image
information in the encoder transformer. This provides an
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additional advantage and information for an image’s object
representations.

III. BACKGROUND
Attention mechanisms have proven to be a powerful tool for
modelling complex dependencies in both natural language
processing and image captioning. By allowing models to
focus on specific parts of the input when making predic-
tions, attention-based models can produce more accurate
and detailed results. In this section, we describe relevant
background on attention on transformers models and image
caption generation with attention mechanism.

A. ATTENTION ON TRANSFORMERS
1) Scaled Dot-Product Attention
Scaled dot-product attention is the transformer’s key compo-
nent. The input consists of a set of three inputs, i.e., keys K,
values V , and queries Q. This attention is shown as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V. (1)

where Q ∈ RL×dK is the query, K ∈ RL×dK is the
key, V ∈ RL×dv is the value, and the L is the length of
the sequence. The QKT ∈ RL×L is a product operation.
This could make the result become too large or small, and
influence the precision of the variable. So

√
dk is used to

scale QKT . At last, we get Attention(Q,K, V ) ∈ RL×dv .
In practice, dot-product attention is faster and more space-
efficient. When the keys, values, and queries are the same
matrices, this mechanism is called self-Attention.

2) Multi-Head Attention
The image captioning model uses an encoder-decoder struc-
ture with stacking layers of attention blocks. Multi-Head
Attention (MHA) and Feed-Forward Networks (FFN) are
present in each attention block, figure 1. Generally, The
CNN is used to encode the given image I to the image
region feature vector as input, V = {V1, V2, ..., VK×k},
Vi ∈ Rdmodel , where K×K is the number of regions, and Vi

represents a region of the image. The decoder generates the
target caption y = {y1, y2, ..., ym}, where m is the maximum
length of the generated sentence.
The MHA applies scaled dot-product attention multiple times
n in parallel to manage the mixing of input across parts of
an input vector. This is resulting in richer representations
and higher performance. Then the outputs of the separate
attention are concatenated. The following equations illustrate
MHA:

headi = Attention(QW i
Q,KW i

K , V W i
V ). (2)

H = Concat(head1, ..., headn). (3)

X = HWh. (4)

where the projections are parameter matrices W i
Q ∈

Rdmodel×dk , W i
k ∈ Rdmodel×dk , W i

V ∈ Rdmodel×dv ,

Q ∈ RL×dmodel , K ∈ RL×dmodel , V ∈ RL×dmodel are the
inputs of the multi-head attention and dmodel is the dimen-
sional image feature. headi ∈ RL×dv is the output of the
scaled dot-product attention. n scaled dot-product attentions
are concatenated Concat to generate H ∈ RL×(n×dv). A
Wh ∈ R(n×dv)×dmodel is used to project H into the output
X ∈ RL×dmodel .
Another main component in the encoder transformer network
is a FFN. It takes input from MHA output and consists of two
fully connected layers with a ReLU activation function and
dropout function.

FFN(x) = FC(Dropout(ReLU(FC(x)))). (5)

where x is the previous MHA module’s output. The FFN
modules learn further non-linearly for the attended feature
vector. To reduce information loss, FFN is encapsulated
within a residual connection and layer normalisation. It is
applied to the outputs of the multi-head attention and the
FFN to produce an encoded feature A′. where A′ denotes the
output of the transformer encoder module, which describes
the visual information of the input image.

A′ = Layernorm(x+ FFN(x)). (6)

B. IMAGE CAPTIONING AND ATTENTION MECHANISM
Traditional CNN-RNN image captioning framework-based
approaches usually concatenate image area and language in-
formation as input. Despite the state-of-the-art performance
associated with the use of object detectors, the drawbacks
of these models are that they construct unneeded areas and
extract visual features from excessively overlapped, noisy,
and ambiguous regions, which makes the task difficult. If
feature vectors do not include meaningful information, then
the attention model generates feature vectors unrelated to
the proper caption. A lack of grounding learning is also
caused by the absence of unambiguous semantic alignments
between areas or objects in an image and words or phrases
in the appropriate caption. To overcome the aforementioned
difficulties, an aligning vision and language features in a
shared semantic space are suggested by detecting input object
semantic level concepts as a point of reference. The training
examples are divided into three triplets: each image contains
a word sequence, a collection of object classes, and a set of
image region features used for image captioning.

IV. DESIGN OF THE PROPOSED FRAMEWORK
Semantic guided-attention networks can adaptively perform
the image encoder procedure to describe a given image.
Figure 1 depicts the proposed framework for image cap-
tioning. First, an object detection model is used, i.e., Faster
R-CNN, to extract the feature of the original image. Then,
an attention module is needed to encode the visual features
and output an attentive feature. Following this, common
sense embedding features are extracted from external KBs
ConceptNet and share the common feature space with other
input image information in the encoder transformer to depict
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FIGURE 1. The architecture of the Semantic Representations with Attention Networks for Boosting Image Captioning Image Encoder.

relationships between different objects and scenes in image.
Finally, a language decoder is applied to generate language
descriptions.

A. OBJECT DETECTION

Following [8], a Faster R-CNN [27] in conjunction with
ResNet-101 [36] is adopted, which has a CNN base, for
object detection and feature extraction. The Faster R-CNN
model is pre-trained on the Visual Genome dataset [37] and
outputs object classes. Its first stage is a Region Proposal
Network (RPN) that uses intermediate feature maps from
ResNet-101 as inputs and generates bounding boxes for
proposed objects. Intersection-Over-Union (IOU) is metric
that measures the overlap between two bounding boxes. The
reference boxes n that have an IoU more than 0.7 are se-
lected. In the second stage, Region-Of-Interest (ROI) pooling
layer is used to convert all proposal bounding boxes to the
same spatial size feature map (e.g., 14 x 14 x 2048). For
simplicity, the top 36 ROIs are only used. These are followed
by a softmax distribution to predict the bounding box object
classes and refinements for each box proposal.

After using Faster R-CNN, each image can be represented
as a set of object semantic concepts S = {s1, s2, ..., sn} and
a set of object visual features V = {v1, v2, ..., vn}, in which
vi ∈ Rd1 , N = 36, and d1 = 2048. For each selected region
i, the feature after the average pooling layer is extracted to
serve as object visual feature vi. So far, we have extended
the training example to include the number of objects n, their
corresponding semantic classes S, and visual features V . All
will be used later by the encoder transformer.

B. IMAGE ENCODER
To improve the image understanding capability of the image
encoder, we construct the merged box as a semantic rela-
tionship guide to direct attention and enhance visual feature
representation. Based on the detection results of Faster R-
CNN, self-attention layers contain two kinds of inputs: the
object’s visual features Vi of previously detected objects and
their semantic classes Si. First, the visual object’s attention
is founded. This is done by employing layers of MHA.
Secondly, the ConceptNet knowledge base [35] is used to
generate objects with semantic concepts embedded Ese(S).
Thus, semantic concepts S = {s1, s2, ..., sn} are embedded
to semantic concepts features O = {o1, o2, ..., on}, where
oi ∈ Rd2 , and d2 = 300. Notably, towards a specific
object (e.g., car, door, lion), visual features may vary from
object to object while semantic features always remain un-
changed. The merged box combines the visual attention
features Attention(Q,K, V ) and semantic vectors to get
visual semantic representation for input image. The seman-
tic guided attention representations AGA for Self-attention
layers are calculated as follows:

AGA = Attention(Q,K, V ) + Ese(S). (7)

where Ese(S) object semantic vectors. The attention block
is followed by a FFN that takes the input from the output of
MHA and transforms each feature vector using two linear
layers with ReLU activation and dropout in between as
follows:

FFN(AGA) = FC(Dropout(ReLU(FC(AGA)))). (8)

The output for the final transformer layer AGA will feed to
the LSTM decoder and give an overall understanding of the
image. The encoder output is identical in size to the decoder
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FIGURE 2. The Architecture of the Semantic Representations with Attention Networks for Boosting Image Captioning System.

input. In the end, the proposed encoder model learns visual
relations attentively at each time step, guided by semantic
features at the object level.

C. LANGUAGE DECODER
In this paper, the LSTM units are selected as the decoder. The
decoding component is used to decode visual features to iter-
atively generate descriptive text sequences. The improvement
of the decoder mainly focuses on enriching the information
in both the visual and text [3]. As shown in Figure 2, we
jointly integrate both the attention features from encoder
output A′ and the word embedding vectors Wt in one fusion
representation into the LSTM unit. The LSTM network has a
state cell and several gates, such as a forget gate and an input
gate. These gates ensure the effective memory and updating
of information at each time step t ∈ [1, T ], and generate
output word yt. The LSTM outputs the hidden state h, that
saves the decoding state, and then uses it to compute the
conditional probabilities on the vocabulary:

p(yt|y1:t−1, A) = softmax(Wpht). (9)

where Wp ∈ RD×|
∑

| is the weight parameters to be learnt
and |

∑
| the size of the vocabulary.

In this way, the LSTM performs step-by-step decoding to
generate the final word sequence Y = (y1, y2, ..., ym) where
m is the maximum length of the generated sentence.

V. MATERIALS AND EVALUATION METRICS
In this section, we first provide a detailed description for
the dataset used to evaluate the performance of the proposed
model. Then we discuss the implementation details followed
by description of evaluation measures used in our study.

A. DATASET
We trained and evaluated our algorithm on the Microsoft
COCO (MS-COCO) 2014 dataset [38], where images are
labelled with five human annotated captions manually. The

offline “Karpathy” data split [39] is used for offline perfor-
mance comparisons, using 82,783 training images and 5,000
images are used for testing and validation, respectively. The
descriptions included in the dataset were pre-processed to
be lowercase, tokenize sentences, remove punctuation, and
drop words occurring less than 5 times in total. After pre-
processing, there were 10,369 unique words present in the
set.

B. IMPLEMENTATION DETAILS

Our algorithm was developed in PyTorch, and we employ a
pre-trained Faster R-CNN [27] model (subsection IV-A) on
ImageNet [40] and Visual Genome [37] to extract bottom-
up feature vectors of images [8] and ConceptNet 5 [35].
We follow the practice in [21] and set the dimension of the
original vectors to 2048, and project them to a new space
with the dimension D = 1024, which is also the hidden size
of the LSTM in the decoder. Our best performing model was
pre-trained for 30 epochs with a softmax cross-entropy loss
using the ADAM optimiser [41] and batch size of 10 with a
2e-4 learning rate. The number of attention blocks was set
to six, and the number of parallel attention heads was set to
eight. To minimise over-fitting, drop-out was applied at the
inputs and outputs of all layers. The beam search approach
[42] is used in the testing stage to locate the sentence with
the best probability.

C. EVALUATION MEASURES

In this paper, we adopt the BLEU@N(B@N (BiLingual
Evaluation Understudy) [43], METEOR (Metric for Evalua-
tion of Translation with Explicit ORdering) [44], ROUGE-
L (Recall-Oriented Understudy for Gisting Evaluation-
Longest) [45], and CIDEr-D (Consensus-based Image De-
scription Evaluation) [46] metrics against all ground truth to
evaluate the generated sentences. The common practice in the
literature is to report all the aforementioned metrics for image
caption generation.
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Each metric has its own calculating technique and special
advantages. BLEU is a precision-based metric. The main
component of BLEU is the n-gram precision of the generated
caption with respect to the ground-truth captions. METEOR
is an automatic machine translation evaluation metric. It
looks at the precision, recall, and alignments between the
related tokens. This is accomplished by performing gener-
alised uni-gram matches between a candidate sentence and
references and then computing a score depending on the
findings of the matches. As a result, the captions generated by
these approaches exhibit high precision and recall accuracy,
as well as good word-level similarity. While ROUGE-L can
assess the sufficiency and fluency of machine translation, for
the purpose of evaluating image captioning, precision and
recall are determined using the longest subsequence of tokens
that exist in both the candidate and reference captions in the
same relative order, maybe with additional tokens in between.
CIDEr is a method that measures the effectiveness of image
captioning using human consensus. This measure takes into
account information content and grammatical accuracy. It
assesses how closely an image captioning sentence resem-
bles the vast majority of ground truth sentences written by
humans.

VI. EVALUATION RESULTS AND DISCUSSION
Extensive experiments were conducted to assess the pro-
posed models for image captioning. In this section, we
present all the results and discussions using the Microsoft
COCO caption evaluation tool. A comparison and analysis of
the proposed model’s performance is made with other state-
of-the-art models. Next, we evaluate the model architecture,
followed by a qualitative analysis. Finally, we assess the
proposed model’s effectiveness.

A. COMPARISON OF THE EFFECTIVENESS WITH
RELATED STUDIES
In this section, we evaluate the effectiveness of semantic
guided attention on the MS-COCO dataset. Three state-of-
the-art methods are compared as follows: (i) Show and Tell
[3] uses CNN layers; the convolution layer, the pooling
layer, and full connection layers as the encoder to obtain
fixed-length vectors for the image features represented. To
successively construct descriptive text sequences, visual
characteristics are decoded using an RNN/LSTM decoder.
(ii) Up-Down [8] integrates Faster R-CNN to obtain object
regions and other salient image regions and enables attention
to be calculated at a high level of semantic information.
(iii) AoA [21] introduces a method of using an extra attention
layer with a Transformer to encode regions into hidden states,
and connects with an extra attention layer with LSTM based
decoders for image captioning.
The results in Table 1 show that our proposed method
achieves higher scores in terms of BLEU@1, ROUGE-l, and
CIDEr-D at 78.6%, 57.7% ,and 120.98% , respectively. The
results indicate the advantage of semantic feature selection
and KBs ConceptNet embedding in the proposed framework,

TABLE 1. The performance of our model and other the state-of-the-art
methods on MS-COCO

. All values are reported as a percentage.
Method BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr-D
Show and tell [3] - 29.6 25.2 52.6 94.0
Up-Down [8] 77.2 36.2 27.0 56.4 113.5
AoANet [21] 77.4 37.0 28.4 57.5 119.8
Semantic Guided
Attention

78.6 36.0 27.6 57.7 120.9

which generates better image captions suitable for different
contexts. Moreover, ROUGE evaluates the appropriateness
and fluency of the generated captions, whereas CIDEr fo-
cuses on grammar and relevance. These results demonstrate
that our method outperforms the other approaches in terms
of appropriateness, fluency, and relevance.
However, the performance of the proposed method is slitly
worse than Up-Down and AoANet under the BLEU@4
and METEOR metrics, because Up-Down simultaneously
comprises two LSTM to train the captioners. Additionally,
AoANet outperforms the others in terms of BLEU@4 and
METEOR, it proposed a better language model that employs
an attention strategy in the encoder transformer and LSTM
decoder. Comparatively, this study focuses on improving the
encoder block but not the language decoder block, which
can somewhat degrade the outcomes while also reducing the
model complexity and producing a lightweight model.
Furthermore, it can be observed that the proposed seman-
tic attention method performs differently across BLEU@n
metrics. It achieves good performance on B@1 by 78.6%
compared to B@4 by 36.0%. These results further support
the idea that in some circumstances, an increase in the
BLEU@n score does not imply that the generated text is
good, like when the text is short [47]. This is because the
BLEU@n metric is used to assess the quality of machine
generated text. It uses n-grams, where n denotes the number
of overlapping words. The final scores are determined by
comparing a set of reference texts to the generated text and
taking the average. The BLEU@n scores, on the other hand,
do not account for syntactical accuracy.
The results demonstrate that the proposed method improves
image captioning performance. The key advantage of our
model is that it can understand the relationships among de-
tected objects, and uses the external ConceptNet KBs module
to enhance the semantic association between objects with a
weak dependence on appearance features. It is reasonable
to expect that the performance of the proposed method can
be further improved by utilising more information, such as
appearance, motion, and attribute features.

B. EVALUATION OF MODEL ARCHITECTURE
The encoder Transformer is a semantic guided attention
model that incorporates multi modal information at the same
time to produce a visual representation. The proposed model
is evaluated by varying the number of multi head attentions.
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FIGURE 3. Experimental results for the different number of parallel
attention heads.

We set variants with different numbers of heads, H ∈
{4, 8, 16, 32}. They are trained using cross-entropy loss. The
results of the quantitative comparisons of BLEU@1, ME-
TEOR, ROUGE-L, and CIDEr-D, are shown in Figure 3. It
is clearly seen that the models with more attention heads do
not necessarily exhibit better performance. Meanwhile, when
H is set to 8, the model exhibits the best performance, pro-
viding a more accurate understanding of the image content.
However, increasing the number of heads would result in over
fitting, which would make the incorporation of multi modal
information more difficult. Furthermore, when a critical point
has been reached, the difficulty of training increases as the
number of parameters increases. This results in a perfor-
mance decline, rather than an increase in performance.

C. QUALITATIVE ANALYSIS
Table 4 shows a few images from the MS-COCO dataset
with their generated descriptions, the state-of-the-art model
descriptions [21], and ground-truth descriptions. It is clearly
seen that the generated sentences well describe the contents
of the image. Specifically, our model has advantages in that
it can better understand the visual relationship that charac-
terises semantic association between objects by simultane-
ously using the semantic features of the objects. This can
improve the visual relationship between objects with a weak
dependence on appearance features and enhance the semantic
association between them.
For example, in the first image, our method recognises the
main objects in the image, even when the visual objects are
ambiguous. It differentiates the main objects in the image
better than the baseline model, which benefits from using
external knowledge to introduce semantic relations between
image objects. Our model can further describe the visual rela-
tionship between a man and table in the generated text ’a man
sitting at the table with wine glasses and a bottle of wine’.
Similarly, the second example illustrates how our model can
more accurately infer the concept of marine from the words

TABLE 2. The performance comparison between transformers attention
model and transformers semantic guided attention model. All values are
reported as a percentage.

Method BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr-D
Transformers at-
tention model

75.8 35.4 27.9 56.5 114.4

Transformers
semantic guided
attention model

78.6 36.0 27.6 57.7 120.98

ocean and kite, plus create more extensive and descriptive
image content than the baseline model. The caption generated
by the baseline model is logically correct, but it might not
accurately describe the image content. As illustrated in the
third example, although the baseline method can capture the
relative position between objects dog and room, it fails to
further model the semantic association between other objects
with a weak dependence on the appearance features. Our
method first models the visual relationship that characterises
the semantic association between objects, and then it is
assigned to measure the importance of appearance features
to the modelled visual relationship between top and sofa,
especially for objects with a weak dependence on appearance
features. In summary, our approach has proven its ability to
understand image content by taking advantage of enhanced
image understanding abilities.

D. EVALUATION OF THE PROPOSED MODEL
In this section, the validation and robustness of our proposed
method are reported and the results are compared to a basic
attention structure that employs only the attention method
and does not employ the suggested semantic guided attention
network. All the experiments are trained on the MS-COCO
dataset and use semantic guided attention network hyper-
parameters and structure to ensure fairness. The results are
shown in Table 2.
The proposed method can significantly improve the majority
of the evaluation measures. The experimental results based
on the basic attention model is not as good as those of the
proposed method. The larger performance improvement of
the semantic guided attention method supports our belief that
incorporating external knowledge offers additional benefits
and serves as supplemental knowledge for predicting the final
image caption.

VII. CONCLUSION
In this paper, an attention network that leverages semantic
representation data network based on the transformer’s self-
attention mechanism is introduced. It boosts a comprehensive
understanding and guidance of visual features. It maps data
from vision and language and applies it to tasks such as
image caption generation. Our experiments demonstrate that
some types of commonsense and KBs, like ConceptNet,
can capture factual knowledge from input data. Furthermore,
extensive experiments on the MS COCO dataset are per-
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FIGURE 4. Examples images and captions results by semantic guided attention model and baseline model, coupled with the corresponding ground
truth sentences.

formed to investigate the mechanics behind how and why
our semantic direct attention model with external knowledge
functions works. We conclude that combining information
from many sources is a helpful strategy for improving the ap-
plicability of existing machine learning models. Furthermore,
by increasing the availability of supporting knowledge, this
strategy provides the foundation for future developments in
reasoning methods to analyse this information. For example,
it may lead to improved skills in addressing problems that
require a high degree of comprehension. In future research,
we will continue to enhance the accuracy of image captioning
network generation. This may be accomplished by increasing
reasoning and text recognition, as well as by improving the
semantic comprehension of image and text information.
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