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1 Introduction

In recent years we have seen tremendous advances in new geometric formulations of
observables in Quantum Field Theories, known nowadays under the name of positive
geometries [1]. These are defined recursively as regions with boundaries of all codimensions,
where each boundary is again a positive geometry. Importantly, they are equipped with a
unique differential form with logarithmic singularities along all boundaries — the canonical
form — which, for physically relevant positive geometries, is a physical quantity. A
striking feature of these geometries is that from their definition, by imposing only positivity
constraints on some external data, they encode physical properties, such as locality and
unitarity, in their boundary structure.

In this paper we focus on positive geometries for scattering amplitudes in N “ 4
super Yang-Mills (sYM) theory, i.e. amplituhedra — see [2, 3] for extensive reviews. Two
geometries have been defined in this theory: the amplituhedron [4] and the momentum
amplituhedron [5]. The amplituhedron, which has been the prime example of a positive
geometry, is defined in momentum twistor space and is relevant for tree- and loop-level
expectation values of Wilson loops, i.e. scattering amplitudes with the maximally-helicity-
violating (MHV) part factored out. Importantly, since ordering is crucial in the definition
of momentum twistors, the amplituhedron encodes only the planar sector of N “ 4 sYM.
The momentum amplituhedron is instead formulated in the non-chiral spinor helicity space
and therefore provides a natural language to extend the positive geometry construction
to the non-planar sector. However, until now, it was defined only for amplitudes at tree
level. The natural question arises whether there exists a positive geometry formulated in
the non-chiral spinor helicity space which also produces the amplitude integrands at loop
level. In this paper we provide an affirmative answer to this question and formulate the long
sought-after geometry for loop amplitudes in spinor helicity space — the loop momentum
amplituhedron.
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Finding the loop momentum amplituhedron has been a long-standing and important
goal since the inception of the tree-level geometry. One of the main obstacles that had
been hindering this construction was to find a proper, global definition of the off-shell loop
momentum in the spinor helicity space. Indeed, while in the dual space, where momentum
twistors are defined, the loop momentum is uniquely determined up to a global shift, in
the Feynman approach in momentum space we can redefine it independently for each
Feynman diagram. The final answer, after performing Feynman integrals, does not depend
on these redefinitions, however, the integrand itself changes significantly. In particular,
this leads to introducing unphysical singularities that should not arise in the geometric
approach. In this paper we resolve this problem by providing a global definition of the loop
momenta that serve as parameters in the map defining the loop momentum amplituhedron.
To construct this map, we emphasize an important fact about the singularity structures
of scattering amplitudes and expectation values of Wilson loops. While at tree level
their singularities differ, at loop level there is a one-to-one correspondence between the
singularities of integrands for these quantities. Then, since amplituhedra encode physical
singularities in the structure of their boundaries, this statement is valid for the boundaries
of the geometries: while at tree level the amplituhedron and momentum amplituhedron
boundaries are different, at loop level they can be mapped to each other in a simple way.
Led by this observation, we draw inspiration from the loop amplituhedron and find its
counterpart in spinor helicity variables. For this purpose, we use the relation between
momentum twistors and spinor helicity variables, which first appeared in the Grassmannian
formulations of scattering amplitudes in these two spaces [6]. This allows us to define the
loop momentum amplituhedron. By enhancing the Grassmannian space G`pk, nq present
at tree level with L two-planes and requiring additional positivity constraints, we find that
the L-loop momentum amplituhedron is the image of a map which associates to every
point of this extended positive space the tree-level variables pλ, λ̃q and the loop momenta
`p for p “ 1, . . . , L.

This paper is organized as follows. In section 2 we review the basic facts about
amplituhedra. In particular, we start by recalling, and afterwards refining, the definition of
the momentum amplituhedron at tree level. After a review of the amplituhedron, we present
the motivation for our definition of momentum amplituhedron at loop level. Section 3 is the
main part of the paper and contains the definition of the loop momentum amplituhedron.
We then present a few examples in section 4, before closing with conclusions and outlook.
Appendix A collects the definitions of all variables used throughout the paper.

2 Amplituhedra

In this section we provide a brief review of the definitions of the momentum amplituhedron
Mn,k at tree level and the amplituhedron An,k1,L at tree and loop level. This will set the
stage for our new definition of the momentum amplituhedron at loop level that we introduce
in the subsequent section.

2.1 The momentum amplituhedron revisited

Let us start by recalling the original definition of the (tree) momentum amplituhedron
introduced in [5]. First, we consider the Grassmannian Gpk, nq, which is the space of
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all k ˆ n matrices modulo GLpkq row transformations, and the positive Grassmannian
G`pk, nq, which is the subset of Gpk, nq consisting of all positive matrices, i.e. matrices
with all maximal ordered minors positive. We also introduce a pair of fixed matrices pΛ, Λ̃q
and demands that Λ̃ P M`pk ` 2, nq is a positive matrix and Λ P M`,τ pn´ k ` 2, nq is a
twisted positive matrix, i.e. a matrix whose orthogonal complement is a positive matrix.
Then, the momentum amplituhedron Mn,k “ ΦΛ,Λ̃pG`pk, nqq, for 2 ď k ď n´ 2, is defined
as the image of the positive Grassmannian G`pk, nq through a linear map ΦΛ,Λ̃ specified
by the two fixed matrices Λ and Λ̃:

ΦΛ,Λ̃ : G`pk, nq Ñ Gpk, k ` 2q ˆGpn´ k, n´ k ` 2q . (2.1)

Explicitly, we have for pY, Ỹ q P Gpk, k`2qˆGpn´k, n´k`2q and C “ pc 9αiq P G`pk, nq that

Y A
α “

ÿ

i

pcKqαiΛAi , Ỹ
9A

9α “
ÿ

i

c 9αiΛ̃
9A
i , (2.2)

where pcKqαi for α “ 1, . . . , k and i “ 1, . . . , n are the elements of the orthogonal complement
CK of the matrix C.

The linear map ΦΛ,Λ̃ can be further composed with a projection

PΛ,Λ̃ : Gpk, k ` 2q ˆGpn´ k, n´ k ` 2q Ñ Gp2, nq ˆGp2, nq , (2.3)

to extract the familiar spinor helicity variables

λai “
ÿ

A

pY KqaA ΛAi , λ̃ 9a
i “

ÿ

9A

pỸ Kq 9a
9A
Λ̃ 9A
i . (2.4)

The image Mn,k :“ pPΛ,Λ̃ ˝ ΦΛ,Λ̃qpG`pk, nqq of the positive Grassmannian through the
composition of these maps is then a region defined directly in spinor helicity space. As
shown in [5], definition (2.2) implies that for any point pλ, λ̃q P Mn,k the spinor brackets
xii ` 1y :“ λ1

iλ
2
j ´ λ2

iλ
1
j ą 0 and rii ` 1s :“ λ̃1

i λ̃
2
j ´ λ̃2

i λ̃
1
j ą 0 are positive. Moreover, for

particular choices of matrices Λ and Λ̃ also all planar Mandelstam variables si,i`1,...,i`j ą 0
are positive, ensuring that the boundary structure of Mn,k reflects the correct singularity
structure of the tree-level amplitudes in planar N “ 4 sYM. Additionally, the following
sign flip patterns are satisfied by the spinor brackets:

tx12y, x13y, . . . , x1nyu has k ´ 2 sign flips , (2.5)
tr12s, r13s, . . . , r1nsu has k sign flips . (2.6)

Before moving on to the definition of the amplituhedron, we want to make an important
comment regarding the properties of Mn,k that has not been previously spelled out in the
literature but will be crucial in the following. Notice that the definitions (2.2) and (2.4)
trivially imply that for any point pλ, λ̃q P Mn,k we have

ÿ

i

λai pc
Kqαi “ 0 ,

ÿ

i

λ̃ 9a
i c 9αi “ 0 , (2.7)
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and therefore1 λ̃ ¨C “ 0 and λ Ă C. Let us make the latter statement more precise. To this
extent, we will use the observation made in [5] that allows to rewrite the λ part of (2.2)
and (2.4) in an alternative way. Let us modify the previous definition and define a map
φΛK,Λ̃ labelled by two positive matrices ΛK PM`pk ´ 2, nq and Λ̃ PM`pk ` 2, nq:

φΛK,Λ̃ : G`pk, nq Ñ Gp2, nq ˆGp2, nq , (2.8)

that will generalize the compositions of functions in our original definition. To every element
in the positive Grassmannian G`pk, nq it associates a pair of matrices pλ, λ̃q:

λai “
ÿ

α

pXKqaαcαi , λ̃ 9a
i “

ÿ

9A

pỸ Kq 9a
9A
Λ̃ 9A
i , (2.9)

where X ā
α “

ř

i

`

ΛK
˘ā

i
cαi P Gpk ´ 2, kq. Then Mn,k “ φΛK,Λ̃pG`pk, nqq. The equivalence

between this definition and the one in (2.4) descends from the fact that for all i, j we have
xijy “ xY ijy “ pXijqC , where the last equality was proven in [5]. Importantly, the variables
X that we introduced allow one to construct a GLpkq matrix

G “

˜

XK2,k
0k´2,2 1k´2,k´2

¸

, (2.10)

such that

GC “

˜

λ

c

¸

, (2.11)

where c PMpk ´ 2, nq. Therefore, for any element C P G`pk, nq and for the corresponding
image point pλpCq, λ̃pCqq P Mn,k, it is always possible to find a representative for C such
that the first two rows of the matrix C are the λs.

The final comment in this section is related to the fact that points in the positive
Grassmannian space G`pk, nq featuring in the definition of the momentum amplituhedron
have a well-known relation to the points in the positive Grassmannian space G`pk1, nq “
G`pk ´ 2, nq in the definition of the amplituhedron [6]. Provided λ P Gp2, nq, and using
relation (2.11), one can define the matrix

č “ Qc , (2.12)

where
Qij “

xi´ 1 iyδi`1,j ` xi i` 1yδi´1,j ` xi` 1 i´ 1yδi,j
xi´ 1 iyxi i` 1y . (2.13)

Importantly, we checked in various examples that if λ is inside the momentum amplituhedron
Mn,k, then č P G`pk ´ 2, nq is a positive matrix, and we conjecture this holds for all n
and k.

1These relations between λ, λ̃ and C were the starting point of the development of the Grassmannian
approach to scattering amplitudes in [7]. Here, instead they rather result from the definition of the
momentum amplituhedron.
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2.2 The amplituhedron

Similar to the momentum amplituhedron, the L-loop amplituhedron An,k1,L can be defined [8]
as the image of a particular space, generalizing the positive Grassmannian, through a
linear map

ΦZ : G`pk1, nqˆGp2, nqL Ñ Gpk1, k1 ` 4q ˆGp2, k1 ` 4qL , (2.14)

where k1 “ k ´ 2 and Z PM`pk
1 ` 4, nq is a positive matrix. The map ΦZ assigns to every

point C “ pcαiq P G`pk1, nq and a collection of points Dl “ pdl,γiq P Gp2, nq the values

pYZq
I
α “

n
ÿ

i“1
cαi Z

I
i , LIl,γ “

n
ÿ

i“1
dl,γi Z

I
i , (2.15)

with l “ 1, . . . , L enumerating the loops and γ “ A,B. The domain G`pk1, nqˆGp2, nqL
of ΦZ is defined as all points pC,D1, . . . , DLq P Gpk

1, nq ˆGp2, nq ˆ . . .ˆGp2, nq such that
all matrices

´

C
¯

,

˜

Dl1

C

¸

, . . .

¨

˚

˚

˚

˚

˝

Dl1
...

DlL

C

˛

‹

‹

‹

‹

‚

, (2.16)

are positive for li “ 1, . . . , L. Then the loop amplituhedron is defined as

An,k1,L “ ΦZpG`pk
1, nqˆGp2, nqLq . (2.17)

As for the momentum amplituhedron, we can compose ΦZ with a projection

PZ : Gpk1, k1 ` 4q ˆGp2, k1 ` 4qL Ñ Gp4, nq ˆGp2, 4qL , (2.18)

and define the bosonic part of the momentum twistors zai as

zai “
ÿ

I

pY KZ q
a
IZ

I
i . (2.19)

The momentum twistor line parametrizing the loop momenta is specified by a pair of points
pABql where

zal,γ “
ÿ

I

pY KZ q
a
ILIl,γ . (2.20)

This allows us to define the loop amplituhedron directly in the momentum twistor space

An,k1,L “ pPZ ˝ ΦZqpG`pk
1, nqˆGp2, nqLq . (2.21)

For completeness, we recall an important property of An,k1,L that follows from the defini-
tions of the maps ΦZ and PZ : given a point pzi, pABq1, . . . , pABqLq P An,k1,L, the brackets of
momentum twistors xi i` 1 j j ` 1y ą 0 are positive, where xijkly “ εIJKLz

I
i z
J
j z

K
k z

L
l . Simi-

larly, for brackets involving loop variables we have xpABql i i`1y ą 0 and xpABqapABqby ą 0.
Moreover, points in the loop amplituhedron are known to have the following sign flip patterns

txpABqa12y, xpABqa13y, . . . , xpABqa1nyu has pk1 ` 2q sign flips for each loop ,
tx1234y, x1235y, . . . , x123nyu has k1 sign flips . (2.22)

– 5 –



J
H
E
P
0
5
(
2
0
2
3
)
1
8
3

2.3 Boundaries of amplituhedra

The amplituhedra we reviewed in the previous sections are conjectured2 to define positive
geometries3 [1] and therefore can be equipped with canonical differential forms that encode
physical quantities. For the tree momentum amplituhedron, the canonical form encodes
the tree-level scattering amplitudes in planar N “ 4 sYM, written in the non-chiral
spinor helicity superspace. On the other hand, the loop amplituhedron canonical form
provides the loop integrand in the same theory but written in the momentum twistor space
instead. Importantly, in the latter case the tree-level MHV factor is removed. This last
statement has significant implications for the singularity structure of the canonical form of
the amplituhedron, and therefore for the boundary structure of the amplituhedron itself. In
particular, at tree level, the codimension one boundaries of the momentum amplituhedron
Mn,k are given by the collinear limits, xi i ` 1y “ 0 , ri i ` 1s “ 0, and the factorization
limits si,i`1...,i`p “ 0 ,with p “ 2, . . . , n ´ 4. On the other hand, for the amplituhedron
the facets are given by the points satisfying xi i ` 1 j j ` 1y “ 0. When j “ i ` 2, the
boundary xi i ` 1 i ` 2 i ` 3y “ 0 translates into the boundary rii ` 1s “ 0 of the tree
momentum amplituhedron. When j ą i` 2, the boundary corresponds to a factorization
channel and one can map it to the boundary of the momentum amplituhedron where
one of the planar Mandelstam variables vanishes. However, since the MHV amplitude is
factored out for the amplituhedron, there is no boundary of the amplituhedron that would
correspond to xi i ` 1y “ 0. Therefore, the boundary structure of the tree momentum
amplituhedron is very different from the boundary structure of the tree amplituhedron.
This has the important implication that there is no simple map relating the points in the
two amplituhedra. However, there exists a direct translation of all singularities of loop-level
integrands from momentum twistors to spinor helicity space:

xABi i` 1y “ 0 ÐÑ

´

``
ÿ

j

pj

¯2
“ 0 , (2.23)

xpABq1pABq2y “ 0 ÐÑ p`1 ´ `2q
2 “ 0 , (2.24)

where `l is a particular choice of off-shell loop momenta that we will discuss in detail in the
following. Equipped with this observation, we provide in the next section the definition of
the loop momentum amplituhedron.

3 The loop momentum amplituhedron

We want to extend the definition of momentum amplituhedron from the previous section
to include loops. As we argued before, since there is a one-to-one correspondence between
singularities of loop-level integrands written in terms of momentum twistors and in the
momentum space (after we translate between kinematic variables), we will adapt the
construction of the loop amplituhedron from section 2.2 into spinor helicity variables. To

2There is no general proof of this fact, but in all cases where the explicit answer has been found, one can
check that it is indeed true.

3To be more precise they are weighted positive geometries as advocated in [9].
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start, let us recall that in the momentum twistor space each loop momentum is encoded as
a line pABql that can be defined by specifying two momentum twistors zl,A and zl,B, up
to a GLp2q transformation. To simplify our notation, we will drop the loop index l in the
remaining part of this section, and discuss a single loop variable. In the amplituhedron
construction, after we use the projections (2.19) and (2.20), the line is parametrised in
terms of the external momentum twistors as

zaγ “
ÿ

i

dγiz
a
i , γ “ A,B . (3.1)

Moreover, momentum twistors can be written in terms of the spinor helicity variables λ
and dual space coordinates xi as

zi “

˜

λi
µ̃i

¸

“

˜

λi
xiλi

¸

, i “ 1, . . . , n , (3.2)

and similarly for the loop momentum twistors in terms of a single dual space coordinate x:

zγ “

˜

λγ
µ̃γ

¸

“

˜

λγ
xλγ

¸

, γ “ A,B . (3.3)

Combining the expansion (3.1) with (3.3), we immediately get an expansion of λA and
λB in terms of the external particles:

λαγ “
ÿ

i

dγiλ
α
i , γ “ A,B . (3.4)

Since D “ pdγiq P Gp2, nq, then there is a natural GLp2q transformation between λA and
λB.

One of the most important insights from this simple calculation is that, if we want to
translate the momentum twistors loop variables to spinor helicity space, we should look for
a parametrisation of the loop momenta that renders manifest this GLp2q transformation.
In the following, we will use the following parametrisation of off-shell momentum, written
in terms of spinor helicity variables

` “ λAλ̃
A ` λBλ̃

B , (3.5)

where, in order for ` to be GLp2q-invariant, λ̃A, λ̃B need to transform as

´

λ1A λ1B

¯

“

´

λA λB

¯

¨G ,

˜

λ̃1A

λ̃1B

¸

“ G´1 ¨

˜

λ̃A

λ̃B

¸

, (3.6)

for G P GLp2q.
In the next step, we want to derive the expansion of λ̃A and λ̃B in terms of external

particles by considering the remaining part of the condition (3.1). First, let us introduce

λ̃γ “
ÿ

δ“A,B

εγδλ̃
δ , γ “ A,B . (3.7)
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Taking the last two entries in the expansion (3.1), we have that

µ̃γ “
ÿ

i

dγiµ̃i (3.8)

with µ̃i “ xiλi and µ̃γ “ xγλγ . A simple calculation results in

xλA “
ÿ

i

dAixiλi “
ÿ

i

dAi

˜

x1 ´
i´1
ÿ

j“1
pj

¸

λi “ x1λA ´
ÿ

jăi

dAixjiyλ̃j . (3.9)

As the last step, we need to identify the loop momentum ` with the dual coordinate x. There
are various choices that we could make which would result in different loop momentum
amplituhedron geometries. Importantly, the canonical forms on these geometries can be
related to each other by the change of variables between these choices. Motivated by the
explicit form of the relation (3.9), we settled for the following relation

` “ x´ x1 “ λAλ̃
A ` λBλ̃

B “ λAλ̃B ´ λBλ̃A . (3.10)

This allows us to find the explicit expansion of λ̃γ in terms of the external particles

λ̃γ “
ÿ

jăi

dγi
xijy

xABy
λ̃j . (3.11)

Using (3.10), we find the loop momentum written in terms of external spinor helicity
variables, as well as of elements of the matrix D:

` “

˜

ÿ

i

dAiλi

¸˜

ÿ

jăi

dBi
xijy

xABy
λ̃j

¸

´

˜

ÿ

i

dBiλi

¸˜

ÿ

jăi

dAi
xijy

xABy
λ̃j

¸

. (3.12)

Importantly, this formula provides a global definition of loop momentum.
We are now ready to define the loop momentum amplituhedron. To this effect, we

extend the map from section 2.1 to include also loop momenta. We define

φ̃
pΛK,Λ̃q : G`pk, nq ˆ Gp2, nqL Ñ Gp2, nq ˆ Gp2, nq ˆ GLp2qL

C Dl ÞÑ λ λ̃ `l

where ΛK PM`pk ´ 2, nq, Λ̃ PM`pk ` 2, nq and we will define the product ˆ shortly. The
map φ̃

pΛK,Λ̃q associates to every point C P G`pk, nq and a collection of points Dl P Gp2, nq,
the tree-level variables pλ, λ̃q given by (2.4) and the loop momenta `l given by (3.10). To
complete our definition, we need to explain what we mean by the ˆ product present in
the domain of φ̃

pΛK,Λ̃q. We have already introduced in (2.13) the matrix Qpλq that relates
the Grassmannian points in the definition of the tree amplituhedron to the Grassmannian
points in the definition of the tree momentum amplituhedron. In particular, we conjectured
that for pλ, λ̃q P Mn,k and C P G`pk, nq, if we can define č “ Q ¨ c then č P G`pk ´ 2, nq.
The product ˆ is defined by additional positivity conditions relating the matrix č with the

– 8 –
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loop-level matrices Dl. We define G`pk, nqˆGp2, nqL as the set of all points C P G`pk, nq
and Dl P Gp2, nq for l “ 1, . . . L such that all matrices

´

č
¯

,

˜

Dl1

č

¸

, . . .

¨

˚

˚

˚

˚

˝

Dl1
...

DlL

č

˛

‹

‹

‹

‹

‚

, (3.13)

are positive for all li “ 1, . . . , L.
The loop momentum amplituhedron Mn,k,L is then defined as the image

Mn,k,L “ φ̃
pΛK,Λ̃q

`

G`pk, nqˆGp2, nqL
˘

. (3.14)

This is the main result of our paper. We emphasize that although (3.4) and (3.11) provide
a direct translation of the momentum twistor variables for loop momenta pzAzBq to the
spinor helicity space, the loop momentum amplituhedron Mn,k,L is not isomorphic to the
loop amplituhedron An,k1,L. The reason is that the tree-level parts of these amplituhedra
differ (most importantly they have different dimensions) and there is no direct translation
relating the geometries at tree level. This has important implications since, for example,
the boundary stratifications of the two geometries will be significantly different.

We conclude this section by having a preliminary look at the boundary structure of the
loop momentum amplituhedron. First, it is clear from our construction that Mn,k,L has
boundaries when the tree-level invariants vanish, reflecting the facet structure of the tree
momentum amplituhedron. In particular, it has boundaries that correspond to factorisations
when the planar Mandelstam variables vanish si,i`1,...,i`p “ 0. It also has boundaries coming
from collinear limits of two types4 when xii`1y “ 0 or rii`1s “ 0. These are supplemented
by the codimension-one boundaries of two types coming from loop level:

• p`r `
ř

j pjq
2 “ 0 corresponding to a sufficient number of minors of the matrix

˜

Dr

č

¸

vanishing for some r “ 1, . . . , L;

• p`r1 ´ `r2q
2 “ 0 corresponding to a sufficient number of minors of the matrix

¨

˚

˝

Dr1

Dr2

č

˛

‹

‚

vanishing for some r1 ‰ r2.

Finding the complete stratification of boundaries of Mn,k,L remains an open and interesting
problem that we plan to address in the future.

4 Examples

In this section we present a few examples of the loop momentum amplituhedron and the
related amplitudes.

4It is possible that these boundaries are not facets of the loop momentum amplituhedron but instead
they are lower dimensional, as for example in the 4-point case.
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Let us start with the simplest case, the MHV amplitudes. Since in this case we have
k1 “ k ´ 2 “ 0, then the matrix č in (3.13) is an empty matrix and there is no positivity
condition mixing C and the loop matrices Dl. This means that each matrix Dl P G`p2, nq
is positive on its own, and there are additional mutual positivity conditions between Ds
as in (3.13). Therefore, the geometry in this case is simply the product of the tree-level
geometry and the loop geometry. This immediately implies that the canonical form Ωn,2,L
for the loop momentum amplituhedron Mn,2,L is the wedge product of the canonical form
for the tree momentum amplituhedron Mn,2,0 times the 4L-form coming from the loop
geometry:

Ωn,2,L “ Ωn,2,0 ^ Ω̃n,2,L , (4.1)

where Ω̃n,2,L is a 4L-form coming purely from the loop geometry. Since we know from [5]
the exact form of the tree-level canonical form, we just need to find the canonical form
of the loop geometry. The latter can be found as a direct translation of the canonical
differential form of An,0,L. Despite this, in the following paragraphs we summarise some
basic direct checks that we performed on the loop momentum amplituhedron geometry to
ensure that the rational map (3.12) does not introduce any unwanted behaviour. We also
provide explicit expressions of the canonical differential forms directly in the spinor helicity
space for a few simple examples.

Because of the factorisation of the tree and loop geometries we described above, it is
possible for a direct translation of the loop canonical forms from the loop amplituhedron [4].
In particular, the one-loop amplituhedron An,0,1 is the union of images of the so-called
kermits [4, 10] with associated matrices:

Ki,j :
˜

1 0 . . . ˚i ˚ . . . 0 0 . . .
1 0 . . . 0 0 . . . ˚j ˚ . . .

¸

, (4.2)

through the map PZ ˝ ΦZ . Then, we conjecture that also the one-loop momentum ampli-
tuhedron Mn,2,1 is the union of the images of the kermits

Mn,2,1 “
ď

iăj

φ̃
pΛK,Λ̃qpC,Ki,jq . (4.3)

The canonical form ωn,0,1 of An,0,1 is known and reads

ωn,0,1 “
ÿ

1ăiăjăn
ωKi,j , (4.4)

where

ωKi,j “ dlog xAB1iy
xAB1i` 1y ^ dlog xABii` 1y

xAB1i` 1y ^ dlog xAB1jy
xAB1j ` 1y ^ dlog xABjj ` 1y

xAB1j ` 1y . (4.5)

We claim that the canonical form for the one-loop momentum amplituhedron is

Ωn,2,1 “ Ωn,2,0 ^
ÿ

iăj

ΩKi,j , (4.6)
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where

ΩKi,j “ dlog p`´ `˚1 iq
2

p`´ `˚1 i`1q
2 ^ dlog p`´

ři
a“1 paq

2

p`´ `˚1 i`1q
2 ^ dlog

p`´ `˚1 jq
2

p`´ `˚1 j`1q
2 ^ dlog p`´

řj
a“1 paq

2

p`´ `˚1 j`1q
2 ,

(4.7)
and we have defined

`˚ij “
1
xijy

˜

λi

j´1
ÿ

l“1
xljyλ̃l ´ λj

i´1
ÿ

l“1
xliyλ̃l

¸

. (4.8)

Moving on beyond one loop, general triangulations of the loop amplituhedron can
be obtained from the BCFW recursion relation [10] together with the on-shell diagram
parametrisation proposed in [11]. We conjecture that for MHV amplitudes, the images of
the same BCFW matrices will triangulate the loop momentum amplituhedron and loop
amplituhedron. To support our claim, we provide the simplest example beyond one loop:
two-loop four-point amplitude. In this case, there are 16 BCFW terms [11] and we have
performed extensive numerical checks that given a set of positive data and a point inside
the loop momentum amplituhedron, it lies in one and only one of the images of the 16 cells
corresponding to these BCFW terms. Then we can translate the known canonical forms to
spinor helicity space and sum them together. Ultimately, we get the well-known formula

Ω̃4,2,2 “

"

s2t d4`1d4`2
`21p`1 ` p1q2p`1 ´ p4q2p`1 ´ `2q2p`2 ` p1q2p`2 ` p1 ` p2q2p`2 ´ p4q2

`
st2 d4`1d4`2

`21p`1 ` p1q2p`1 ` p1 ` p2q2p`1 ´ `2q2`22p`2 ` p1 ` p2q2p`2 ´ p4q2

*

` p`1 Ø `2q ,

(4.9)

where as defined before we have `1 “ xAB ´ x1 and `2 “ xCD ´ x1. Each term in this
expansion corresponds to the expression associated to a standard Feynman diagram, see
figure 1. Since for MHV amplitudes the parametrization of the BCFW cells is known
at any loop [11], then it is in principle possible to extend our calculation beyond four
points and beyond two loops to find canonical differential forms for the loop momentum
amplituhedron Mn,2,L.

We conclude this section by having a first look at examples beyond the MHV sector.
In this case, the geometry is not the product of the tree-level and loop geometries anymore.
Indeed, the matrix č is not empty, and therefore there are positivity conditions mixing the
matrices č and Dl. For instance, for next-to-MHV (NMHV) amplitudes at one loop, we
require that the 3ˆ n matrix C is positive (that implies that the 1ˆ n matrix č is positive),
and the 3 ˆ n matrix obtained by stacking a single D matrix on top of the č is positive.
Let us consider the 5-point case. One would naively think to be able to use the BCFW
triangulations of the loop amplituhedron given in [4, 12], where one can find three BCFW
terms with their parametrisations of pD, čq matrices. Then, one considers points in the
domain of the loop momentum amplituhedron map C ˆD corresponding to points in these
BCFW cells, namely points for which č “ Qc. Since Q has rank n´ 2 and is therefore not
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xAB xCD

p1 p2

p3p4

x1

x2

x4

x3
ℓ1

ℓ1 + p1 ℓ2 + p1

ℓ2 + p1 + p2

ℓ2 − p4ℓ1 − p4

ℓ1 − ℓ2

xCD

xAB

p4

p1 p2

p3x4

x1 x3

x2
ℓ1 + p1

ℓ1 + p1 + p2

ℓ2 + p1 + p2

ℓ2 − p4

ℓ2

ℓ1

ℓ1 − ℓ2

Figure 1. The two diagrams corresponding to the two terms in (4.9). The remaining two terms
have identical diagrams with xAB and xCD exchanged.

an invertible matrix, this is however not possible.5 Therefore, it is a non-trivial task to
find triangulations of the loop momentum amplituhedron using the known results about
the loop amplituhedron, and the problem of triangulating Mn,k,L for k ą 2 remains the
most urgent unresolved question. The fact that the triangulations of amplituhedron and
momentum amplituhedron cannot be easily matched also means that the geometry of the
loop momentum amplituhedron beyond MHV level is much richer in structure and deserves
further study.

5 Conclusions and outlook

In this paper we presented the geometry for scattering amplitudes in N “ 4 sYM at tree
and loop level in spinor helicity space, i.e. the loop momentum amplituhedron. Taking
inspiration from the singularity structure of amplitudes and expectation values of Wilson
loops, we used the known construction of the loop amplituhedron and adapted it to spinor
helicity space. Importantly, while all facets of the loop part of the amplituhedron are
mapped to facets of the momentum amplituhedron at loop level, the complete boundary
stratification of the two geometries is different, due to the differences at tree level.

There are many natural questions which arise from this work. The most pressing
direction is to investigate how to triangulate the loop momentum amplituhedron geometry.
Unlike for the MHV loop momentum amplituhedron, where the triangulation can be directly
obtained from the triangulations of the loop amplituhedron, for higher helicity sectors it is
not possible anymore due to the mixing of tree and loop geometries. As for the momentum
twistor space, the most natural starting point would be the BCFW recursion relation solved
in terms of on-shell diagrams, which should provide parametrisations for the tree-level
matrix C and the loop-level matrices Dp.

5It differs at tree level where one can construct a map from positroid cells of G`pk ´ 2, nq to positroid
cells Gk,n, the so-called T-duality map [13, 14]. The T-duality map however acts on whole positroid cells
and not on their points, as is required at loop level.

– 12 –



J
H
E
P
0
5
(
2
0
2
3
)
1
8
3

An equally pressing question is the boundary structure of the loop momentum am-
plituhedron. The full stratification at tree level was found in [15] and it possesses very
natural physical properties, with all boundaries labelled by Grassmannian forests that
physically correspond to all possible factorisations and soft and collinear limits of tree
amplitudes. We expect that also at loop level one will be able to introduce a natural,
physically motivated labelling for all boundaries of the loop momentum amplituhedron. As
the starting point, one can expand the methods implemented in the Mathematica package
amplituhedronBoundaries [16] that have been crucial at tree level. This would provide us
with a classification of all singularities of amplitude integrands at any loop order.

Another interesting question is the extension of our construction to the loop level of the
orthogonal momentum amplituhedron, i.e. the positive geometry for tree-level amplitudes in
ABJM theory [17, 18], that is defined in terms of the positive orthogonal Grassmannian [19].
For four-point ABJM amplitudes a geometry encoding all-loop amplitude integrands has
already been suggested in [20]. This has been done by projecting the N “ 4 sYM loop
amplituhedron to three dimensions. Then, a natural question is if this result, combined
with our definition of the loop momentum amplituhedron, allows for generating the all-loop
orthogonal momentum amplituhedron also for other multiplicities.

Furthermore, it has been recently showed that the so-called “negative geometries” [21]
provide a geometric definition of an infrared finite quantity interpreted as the expectation
value of the Wilson loop with a single Lagrangian insertion, at least for four points. Following
the same logic, it would be interesting to study whether one can retrieve infrared finite
information about integrated amplitudes also from the loop momentum amplituhedron.

Finally, since the loop momentum amplituhedron is defined in spinor helicity space, it
should allow for generalisations to the non-planar sector of N “ 4 sYM, which would result
in a geometry for non-planar loop integrands. A strong suggestion that such geometry
should exist come from the fact that also the non-planar loop amplitude integrands have
logarithmic singularities and can be converted to logarithmic differential forms [22]. One of
the main difficulties of moving to non-planar amplitudes had been the absence of a global
definition of the loop momentum. However, since our construction provides such a global
definition by defining the loop momentum as a parameter of the map φ̃

pΛK,Λ̃q, a natural
conjecture would be to find non-planar contributions by modifying the domain of the map φ̃.
This conjecture is reinforced by the fact that non-planar on-shell diagrams [23–25], which
represent cuts of non-planar loop amplitudes, are connected to parts of Grassmannian
spaces different from the positive one. Therefore, they can provide a useful hint on finding
a non-planar momentum amplituhedron.
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A Kinematic variables

In this appendix we collect the variables used in N “ 4 sYM which are mentioned in
the paper.

Spinor helicity variables. In a massless theory in four dimensions with p2
i “ 0 for all

particles, one can write each momentum as

pa 9a
i “ λai

rλ 9a
i , (A.1)

in terms of two spinor variables λ and rλ. In N “ 4 SYM, we can consider

• the chiral superspace pλα, λ̃ 9α|ηAq: ηA are Grassmann-odd variables transforming in
the fundamental representation of the SUp4q R-symmetry,

• the non-chiral superspace pλα, ηa|λ̃ 9α, η̃ 9aq: ηa, rη 9a are two sets of Grassmann-odd vari-
ables both transforming in the fundamental representations of SUp2q. One can think
of rη 9a as Fourier conjugate variables to η3,4.

Dual superspace. Starting from the on-shell chiral superspace, one can define a dual
superspace with coordinates px, θq with

xa 9a
i ´ x

a 9a
i´1 “ λai

rλ 9a
i , θaAi ´ θaAi´1 “ λai η

A
i i “ 1, . . . , n . (A.2)

This is the space where the n-sided null polygon Wilson loop dual to the n-point amplitude
is formulated.

Momentum twistor variables. The (super) momentum twistors are defined from the
dual superspace

Zi “ pz
a
i |χ

A
i q “ pλia, µ̃

9a
i |χ

A
i q ” pλia, x

a 9aλia|θ
aA
i λiaq . (A.3)

The momentum twistors are unconstrained and they determine rλ, η via,

prλ|ηqi “
xi´ 1 iypµ̃|χqi`1 ` xi` 1 i´ 1ypµ̃|χqi ` xi i` 1ypµ̃|χqi´1

xi´ 1 iyxi i` 1y , (A.4)

and we also have
x2
ij :“ pxi ´ xjq2 “

xi´ 1 i k ´ 1 ky
xi´ 1 iyxk ´ 1 ky , (A.5)

where xijkly “ εIJKLz
I
i z
J
j z

K
k z

L
l . Finally, in momentum twistor variables, the loop integral

is an integral over the space of lines pABq. This can be rewritten as an integral over a pair
of points A and B, modulo the GLp2q redundancies labeling their positions on the line:

d4` “
d4zAd

4zB
volpGLp2qq . (A.6)
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