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A B S T R A C T   

The construction industry is facing enormous pressure to adopt digital solutions to solve the industry’s inherent 
problems. The digital twin has emerged as a solution that can update a BIM model with real-time data to achieve 
cyber-physical integration, enabling real-time monitoring of assets and activities and improving decision- 
making. The application of digital twins in the construction industry is still in its nascent stages but has been 
steadily growing over the past few years. A wide variety of emerging technologies are being used in the 
development of digital twins in diverse applications in construction but it is not immediately clear from the 
literature which ones are key to the successful development of digital twins, necessitating a systematic literature 
review with a focus on technologies. This paper aims to identify the key technologies used in the development of 
digital twins in construction in the existing literature, the research gaps and the potential areas for future 
research. This is achieved by conducting a systematic review of studies with demonstrative case studies and 
experimental setups in construction. Based on the observed research gaps, prominent future research directions 
are suggested, focusing on technologies in data transmission, interoperability and data integration and data 
processing and visualisation.   

1. Introduction and research background 

The digital twin is a revolutionising technology in the industry 4.0 
era. The advent of the concept can be traced back to Grieve’s presen-
tation for a Product Lifecycle Management module at the University of 
Michigan in 2002 [1]. The concept was not conclusive at the time but 
elaborated the components of a digital twin to be a ‘physical product in 
real space’, a ‘virtual product in virtual space’ and a connection between 
both the physical and virtual products for data exchange. It became 
more evident in 2010 when it was published in the National Aeronautics 
and Space Administration (NASA) modelling, simulation, information 
technology processing roadmap where a digital twin was defined as “an 
integrated multiphysics, multiscale, probabilistic simulation of an as- 
built vehicle or system that uses the best available physical models, 
sensor updates, fleet history, etc., to mirror the life of its corresponding 
flying twin” [2]. Several definitions of the concept have been made in 

the following years. For example, a digital twin has been referred to as a 
“realistic model” [3], “digital representation” [4], “dynamic virtual 
model” [5] that possesses the properties and behaviour of a system in the 
physical world. This study adopts the early definition of digital twins by 
Grieves [1]. The digital twin was first practically applied in NASA’s 
Apollo program in 2010, and its application has evolved and has spread 
to other industries since then. Digital twin applications have been 
mainly investigated in manufacturing, aviation, and healthcare [6].They 
have been reported to improve, automate and enhance the efficiency of 
various activities in those industries. The promising abilities of digital 
twins and the rapid advances in emerging smart technologies have 
attracted interest in their application for the construction industry. 

The term ‘digital twin’ is relatively new in the construction research 
literature. However, there is quite some lack of clarity in the concept 
because of its confusion with the term ‘BIM’. Some authors use the two 
terms interchangeably while others consider them to be different. For 
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example, the digital twin has been referred to as BDOs (BIM Digital 
Objects) [7] and as a BIM model with lifecycle data and the ability to 
carry out simulations [8] . The confusion in the usage of the terms might 
hinder the acceptance of digital twins as a new concept in the con-
struction industry [9] . Therefore, it is essential to differentiate between 
digital twins and BIM. BIM has been defined by the UK BIM task group as 
“a collaborative way of working, underpinned by the digital technolo-
gies which unlock more efficient methods of designing, delivering and 
maintaining physical built assets” [10] . A key feature of BIM is the 3D 
model commonly known as the BIM model which is realised with object- 
oriented software [11]. The BIM model acts as a rich data repository that 
contains information on geometric and functional aspects of an asset 
[12] and other related data like time schedules (4D) [13], cost (5D) 
estimation [14], asset management [15], etc. It can be used to integrate 
multi-disciplinary information from different project lifecycle phases to 
promote communication [16]. When properly developed and managed, 
the BIM model can provide a wealth of accurate geometric, descriptive 
and operable metadata that can be used to enhance project delivery 
practices [17]. However, the BIM model is limited in providing dynamic 
real-time data of the physical environment. Construction projects and 
assets are both implemented within a dynamic physical environment 
generating a vast amount of non-geometric data. A significant volume of 
this data is not fully taken advantage of yet it is critical for informed 
decision-making [18] .Thus, the need to collect this data by monitoring 
assets and projects in real time is required. Also, the BIM model has 
limited capability to process large sets of dynamic and multi-form data 
that require advanced technologies for storage and processing. These 
limitations of BIM models can lead to underutilisation of data, ineffec-
tive decision-making and inefficient practices with significant cost im-
plications. The emerging concept of the digital twin offers an 
opportunity to address the limitations of BIM. In a digital twin system, 
the physical entity is connected to its equivalent virtual model by a data 
connection that allows data exchange between both entities. This im-
plies that a BIM model is a merely starting point for the development of a 
digital twin in construction. With digital twin technology, the BIM 
model is connected to the physical environment to enable the bi- 
directional transfer of data between both entities. This enables the 
BIM model to be updated with real-time data which facilitates improved 
decision-making in the implementation and management of assets. 
Moreover, digital twins leverage advanced data analytics techniques like 
artificial intelligence for processing large sets of data to enable condition 
monitoring, predictions, diagnostics, prognostics and system optimisa-
tion . These digital twin capabilities have the potential to significantly 
improve information management and decision-making in various 
construction practices which in turn enhances the efficiency of con-
struction and asset management activities. 

The application of digital twins in the construction industry is a 
growing area of research. Five systematic literature reviews that include 
Boje, et al. [19], Jiang, et al. [20], Opoku, et al. [21], Deng, et al. [22] 
and Ozturk [23] on digital twin applications in construction already 
exist. Ozturk [23] conducted a bibliometric analysis to provide an 
overview of the research landscape for digital twins in the AECO-FM 
industry. Boje, et al. [19] analysed the perceived abilities of a digital 
twin as applied across various engineering domains and identified po-
tential areas in BIM application in the construction phase that can be 
enhanced by a digital twin. Opoku, et al. [21] investigated digital twin 
applications in various project lifecycle phases while Deng, et al. [22] 
examined the built areas that concern digital twins and the capabilities 
of current state-of-the-art digital twins. Jiang, et al. [20] investigated the 
applications of digital twins in the civil engineering sector. None of the 
reviews has focussed on establishing the state of the art of existing 
technologies for digital twin development in the literature. It has been 
reported that digital twins present significant challenges in their 
development from a technological perspective [24–26]. A wide variety 
of emerging technologies are being used in their development for 
various applications but it is not immediately clear from the literature 

which ones are key to their successful development, necessitating a 
systematic literature review with a focus on technologies. Although the 
focus here is on technologies, it has to be acknowledged that the 
application and adoption of digital technologies in the AEC industry is 
affected by several organisational challenges such as inadequate 
expertise [27,28], financial constraints [29], cultural barriers [30], 
resistance to change [31] and competing initiatives [32,33] etc., which 
are out of the scope of this study. This paper aims to identify the key 
technologies used in the development of digital twins in construction in 
the existing literature, the research gaps and the potential areas for 
future research. 

Typically, the development of a digital twin requires a data 
connection between a physical entity and its equivalent virtual model. 
Modelling technologies are used to generate a virtual model which 
mirrors the parameters of the physical environment such as the geo-
metric structure, functionality, state, location, process, and performance 
[25]. The Internet of Things (IoT) technologies enable data connection, 
which allow for the bi-directional flow of data between physical and 
virtual entities [34]. The IoT technologies collect data from the physical 
environment which is then transmitted to the virtual model using 
communication transmissions in application layer protocols. The 
collected data is of high volume and can be multi-source, requiring big 
data storage technologies. The dynamic data from the physical envi-
ronment is then integrated and fused into the virtual model to provide 
human-understandable abstractions and inferences [35]. The digital 
twin data can be processed using advanced data analytics technologies 
to provide various services to the users. The processed data is finally 
available to the end users straightforwardly and interactively through 
data visualisation which is supported by visualisation technologies [36]. 
These technologies collectively form the basis for implementing a viable 
digital twin consisting of a high-fidelity model with bi-directional data 
transfer and data processing capabilities. The technologies have been 
conceptualised into a digital twin system architecture with five devel-
opment layers that include data acquisition, data transmission, digital 
modelling, data/model integration and the service [37]. The data 
acquisition layer consists of technologies for data collection and the 
collected data set. The transmission layer consists of the networking, 
communications and transmission protocols technologies. The digital 
modelling layer considers the technologies for measuring the parame-
ters of the physical entity and for modelling the virtual model. The data/ 
model integration layer consists of technologies that support data stor-
age, data/model integration and fusion, data processing and analysis, 
visualisation and AI, machine learning and simulation engine. For this 
study, four broad categories that include data storage, data/model 
integration and fusion, data processing and analysis and data visual-
isation are treated as sub-categories of the data/model integration layer. 
The study uses this architecture as a guiding framework to identify the 
various technologies used in the five development layers of digital twins. 
The study adopts a systematic literature review methodology of selected 
digital twin application studies with construction-related demonstrative 
case studies and experimental setups. Firstly, the generic composition of 
digital twins in the studies is examined. This is followed by the elicita-
tion of data about the technologies against the five conceptual digital 
twin development layers by [37]. Moreover, gaps and research issues for 
digital twin applications are discussed in this paper. 

Following this introduction, the research design is presented in 
Section 2 followed by data collection in Section 3 and data extraction in 
Section 4. This is followed by Section 5 which presents the findings and 
discussions and Section 6 that presents the research gaps and future 
research. Finally, the conclusions and limitations are presented in Sec-
tion 7. 
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2. Research design 

2.1. Research methodology 

A systematic literature review (SLR) is applied in this paper because 
it follows a rigorous and explicit procedure to identify, evaluate and 
synthesise the existing body of knowledge on a specific subject [38]. 
This approach helps in establishing the current state of the art on a 
subject which aids in identifying research gaps and determining future 
research directions in that subject field. Kitchenham, et al. [39] propose 
that an SLR comprises three stages which include: planning, imple-
mentation and reporting. The planning phase involves framing the 
research questions and creating criteria for locating the material and 
search methods. This is followed by the implementation phase where the 
material is collected and selected for the study. Lastly, the literature is 

combined and analysed in the reporting phase. This paper applies the 
preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) method for collecting data for the systematic review. The 
PRISMA method is widely used in systematic reviews since it clearly 
describes the rationale and procedures for identifying, selecting, 
excluding and including literature to improve the accuracy of the sys-
tematic review [40]. The methodology of the study consists of 1) 
framing the research questions, 2) data collection and processing, 3) 
data extraction and analysis and 4) summary of findings and discussions. 

2.2. Research questions 

To define the scope of interest of the SLR, the following research 
questions were addressed: 

Q1: What are the components of digital twins in digital twin 

Fig. 1. PRISMA workflow diagram.  
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applications in construction? 
Q2: What are the existing technologies used in the development of 

digital twins? 
Q3: What are the research gaps and potential areas for future 

research? 

3. Data collection for the literature 

This section describes the steps taken to collect the relevant literature 
for the study. A PRISMA workflow diagram for the study is shown in 
Fig. 1. 

3.1. Performing the search process 

An initial literature search was conducted in the ScienceDirect 
database because it is one of the biggest databases covering a wide range 
of scientific publications. Moreover, it possesses desired attributes for 
conducting search queries like advanced search fields where systematic 
searches can be conducted [41]. An advanced search with keywords 
executed in the ScienceDirect database with a search string set to 
(“digital twin OR “virtual twin“ OR “cyber-physical system“) AND 
(“construction industry” OR “AEC” OR “construction management” OR 
“construction engineering“), for publications between 2015 and 
September 2022 and set to only research and review articles. The period 
selected for the search is appropriate because there are very few publi-
cations on digital twins before 2015. This search yielded a result of 508 
records. A similar search using the keywords of “digital twin” and 
“construction industry” was run in similar databases like Web of Science 
and Google Scholar. An additional 153 records were identified by 
reading through the titles of the papers in the databases and selecting 
only those that had not been found in ScienceDirect. 

3.2. Inclusion and exclusion criteria 

The study gathered a total of 661 articles from both ScienceDirect 
and other additional databases. Inclusion and exclusion criteria were 
applied in three phases. The screening phase began by removing 51 
records that were duplicates and studies that are not construction- 
industry related leaving a total of 610 articles. The second phase of 
screening involved reading of titles and abstracts of the publications and 
343 articles were excluded because they were BIM application studies 
and on other related technologies in the construction industry. This left 
behind a total of 267 records. In phase three, 142 records were excluded 
of which, 25 were conceptual papers, 92 focused on one feature or 
technology of the digital twin and 25 records emphasised the service or 
function area for which the digital twin is developed. A total of 125 
records remained for full-text assessment. An inclusion criterion was 
applied to the remaining 125 records. The inclusion criteria considered 
having 1) a detailed systematic architecture for a digital twin applica-
tion 2) a methodology for the implementation 3) the technologies used 
for the implementation and 4) the demonstrative case studies and lab-
oratory setups presented. The introduction, methodology and figures of 
the remaining studies were assessed and scored up to 4 in terms of those 
4 criteria. The eligible papers obtained for the review were 38 in total 
and these are shown in Table 1. 

4. Data extraction and analysis 

The study uses Grieve’s [1] generic components of a digital twin to 
identify the essential components of a digital twin in the selected studies 
as indicated in Table 2. We identified the essential components of a 
digital twin using Grieve’s three dimensions of a digital twin namely 
physical entity, virtual entity and the data connection between both 
entities in the various studies. Table 2 shows the elicited data on the 
composition of digital twins in the selected studies. Table 2 comprises 4 
columns for the article reference, physical entity, virtual entity and data 

Table 1 
Selected practical studies for the systematic review.  

Item Title of paper Aim of study Reference 

1 Towards Civil 
Engineering 4.0: 
Concept, workflow and 
application of 
Digital Twins for 
existing infrastructure 

To propose a step-by- 
step workflow process 
for developing a digital 
twin for an existing 
asset in the built 
environment 

Pregnolato, et al. 
[42] 

2 Digital Twin-driven 
approach to improving 
the energy efficiency of 
indoor 
lighting based on 
computer vision and 
dynamic BIM 

To consider the linkage 
between the lighting 
and surveillance 
systems and propose a 
digital twin lighting 
system. 

Tan, et al. [43] 

3 Using IoT for 
automated heating of a 
smart home by means 
of Open HAB software 
platform 

To develop an IoT based 
application for 
managing automated 
heating in a smart home 

Borissova, et al. [44] 

4 Digital twin-enabled 
real-time 
synchronisation for 
planning, scheduling, 
and execution in 
precast on-site 
assembly 

To develop a digital 
twin-enabled real-time 
synchronisation systems 
to facilitate planning, 
scheduling and 
execution during on-site 
assembly in 
prefabricated 
construction 

Jiang, et al. [45] 

5 A BIM-IoT and 
intelligent compaction 
integrated framework 
for 
advanced road 
compaction quality 
monitoring and 
management 

To propose a BIM-IoT 
based framework 
combined with 
intelligent compaction 
prototype for real-time 
compaction quality 
monitoring and 
management 

Han, et al. [46] 

6 A digital twin 
predictive maintenance 
framework of Air 
handling units based on 
automatic fault 
detection and 
diagnostics 

To propose a digital 
twin predictive 
maintenance framework 
of AHU 

Hosamo, et al. [47] 

7 Digital twin-enabled 
smart modular 
integrated construction 
system for on-site 
assembly 

To propose a digital 
twin-enabled smart 
modular integrated 
system with a testbed 
robotic demonstration 
for collaborative 
decision-making and 
daily operation during 
on-site assembly. 

Jiang, et al. [48] 

8 Augmented reality and 
digital twin system for 
interaction with 
construction machinery 

To develop an 
Augmented Reality (AR) 
and Digital Twin (DT) 
based Digital Physical 
Link (DPL) of 
computing devices 
found in most 
construction projects 
with construction 
machinery. 

Hasan, et al. [49] 

9 BIM- and IoT-based 
virtual reality tool for 
real-time thermal 
comfort 
assessment in building 
enclosures 

To investigate the 
synergistic benefits of 
BIM, the Internet of 
Things (IoT) and Virtual 
Reality (VR) for 
developing an 
immersive VR 
application for real-time 
monitoring of thermal 
comfort 
conditions. 

Shahinmoghadam, 
et al. [50] 

10 Data driven indoor air 
quality prediction in 

To investigate how to 
activate the control of 

Tagliabue, et al. 
[51] 

(continued on next page) 

V.V. Tuhaise et al.                                                                                                                                                                                                                              



Automation in Construction 152 (2023) 104931

5

Table 1 (continued ) 

Item Title of paper Aim of study Reference 

educational facilities 
based 
on IoT network 

the indoor conditions 
according to the 
occupancy rate by 
integrating of indoor air 
quality data gathered by 
the internet of 
things (IoT) sensors. 

11 IoT open-source 
architecture for the 
maintenance of 
building facilities 

To integrate IoT alert 
systems with BIM 
models to monitor 
building facilities 

Villa, et al. [52] 

12 A BIM-data mining 
integrated digital twin 
framework for 
advanced 
project management 

To develop a digital 
twin-based framework 
to control and optimise 
the complex 
construction process 

Pan and Zhang [53] 

13 Integrated digital twin 
and blockchain 
framework to support 
accountable 
information sharing in 
construction projects 

To develop an 
integrated digital twin 
and blockchain 
framework that can 
selectively store and 
share important project- 
related information 
traceably 

Lee, et al. [54] 

14 Digital Twin-Based 
Safety Risk Coupling of 
Prefabricated 
Building Hoisting 

To propose a digital 
twin-based safety risk 
management 
framework for 
prefabricated building 
hoisting 

Liu, et al. [55] 

15 Intelligent Safety 
Assessment of 
Prestressed Steel 
Structures 
Based on Digital Twins 

To propose an 
intelligent safety 
assessment method of 
prestressed steel 
structures based on 
digital twins. 

Liu, et al. [56] 

16 Digital Twins and Road 
Construction Using 
Secondary 
Raw Materials 

To establish a fully 
functioning digital twin 
of a road constructed 
using Secondary Raw 
Materials (SRM) 

Meža, et al. [57] 

17 Digital twin for supply 
chain coordination in 
modular construction 

To develop a digital 
twin framework for 
real-time logistics 
simulation to predict 
potential logistics risks 
and accurate module 
arrival time. 

Lee and Lee [58] 

18 Towards an 
Occupancy-Oriented 
Digital Twin for Facility 
Management: Test 
Campaign and Sensors 
Assessment 

To facilitate the 
optimisation of building 
operational stage 
through advanced 
monitoring techniques 
and data analytics 

Seghezzi, et al. [59] 

19 Developing a Digital 
Twin at Building and 
City Levels: A Case 
Study of West 1 
Cambridge Campus 

To present a system 
architecture for digital 
twins at both building 
and city levels. 

Lu, et al. [37] 

20 Digital twin-enabled 
anomaly detection for 
built asset monitoring 
in 
operation and 
maintenance 

To propose a digital 
twin-enabled anomaly 
detection system for 
asset monitoring 
and its data integration 
method based on 
extended industry 
foundation classes (IFC) 
in daily O&M 
management. 

Lu, et al. [60] 

21 Digital Twin Hospital 
Buildings: An 
Exemplary Case 
Study through 
Continuous Lifecycle 
Integration 

To present a digital twin 
for a hospital building 
based on the concept of 
continuous lifecycle 
integration 

Peng, et al. [61]  

Table 1 (continued ) 

Item Title of paper Aim of study Reference 

22 Data-driven predictive 
maintenance planning 
framework for MEP 
components based on 
BIM and IoT using 
machine learning 
algorithms 

To develop an 
integrated data-driven 
framework based on 
BIM and IoT 
technologies for 
predictive maintenance 
of building facilities. 

Cheng, et al. [62] 

23 Cyber-physical system 
for safety management 
in smart 
construction site 

To propose a smart 
construction site 
framework for safety 
management 

Jiang, et al. [63] 

24 Visualised inspection 
system for monitoring 
environmental 
anomalies during daily 
operation 
and maintenance 

To explain the 
development of an AR- 
supported automated 
environmental anomaly 
detection and fault 
isolation method to 
improve building 
occupants’ thermal 
comfort. 

Xie, et al. [64] 

25 Cyber-physical postural 
training system for 
construction workers 

To propose a cyber- 
physical postural 
training environment 
that integrates virtual 
reality and embodied 
interaction for 
construction workers to 
undergo repetitive 
training and obtain 
feedback. 

Akanmu, et al. [65] 

26 Prototype of a cyber- 
physical façade system 

To systematically test 
the application of 
individual cyber- 
physical system criteria 
to facades using a 
prototype. 

Böke, et al. [66] 

27 Real-Time Process- 
Level Digital Twin for 
Collaborative 
Human-Robot 
Construction Work 

To propose human- 
robot interaction and 
collaboration within a 
real-time, process-level, 
immersive virtual 
reality (VR) digital twin 

Wang, et al. [67] 

28 Development of a Twin 
Model for Real-time 
Detection of Fall 
Hazards 

To propose and test a 
digital twin for health 
and safety management 
on construction sites 

Messi, et al. [68] 

29 Cyber-physical-system- 
based safety 
monitoring for blind 
hoisting with the 
Internet of things: A 
case study 

To develop a cyber- 
physical safety 
monitoring system for 
blind hoisting in metro 
and underground 
constructions 

Zhou, et al. [69] 

30 Linking energy-cyber- 
physical systems with 
occupancy prediction 
and 
interpretation through 
WiFi probe-based 
ensemble classification 

To propose an 
occupancy-linked 
energy-cyber-physical 
system that incorporates 
WiFi probe-based 
occupancy detection. 

Wang, et al. [70] 

31 Office building 
occupancy monitoring 
through image 
recognition sensors 

To investigate image 
recognition (ImR) to 
detect users’ 
movements in an office 
building, and to provide 
real-time occupancy 
data. 

Antonino, et al. [71] 

32 Digital twin: vision, 
benefits, boundaries 
and creation of 
buildings 

To explore issues related 
to the creation 
of a building’s digital 
twin and propose a 
method for its 
implementation for a 
building facade 

Khajavi, et al. [72] 

33 Wireless electric 
appliance control for 
smart buildings using 

To present an intuitive 
point-and-click 
framework to control 

Rashid, et al. [73] 

(continued on next page) 
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connection between the physical and virtual entities. 
This is followed by elicitation of data on the technologies for the five 

conceptual digital twin development layers proposed by Lu, et al. [37]. 
In this section, the data on the technologies from the system architec-
tures of the selected studies is elicited for the five development layers of 
a construction digital twin system architecture namely data acquisition, 
data transmission, digital modelling, data/model integration layer and 
the service layer by Lu, et al. [37] as explained in Section 1. The analysis 
is divided into two parts. The first part focuses on the first three layers of 
data acquisition, data transmission and digital modelling layers as 
shown in Table 3. The second part elaborates on the last two layers 
which include the data/model integration layer and the service layer as 
shown in Table 4. 

5. Findings and discussions 

This section presents the findings from the data extraction and 
analysis of the selected studies (Table 1) that is indicated in Table 2, 
Table 3 and Table 4. 

5.1. Components of digital twins in construction applications 

The digital twin applications consisted of various physical entities. 
Most of the studies used buildings and the associated building spaces 
[44,50,51,59,61,64,67,68,70,71,73,75–77]. Some studies focused on 
specific building components and systems such as lighting and surveil-
lance system [43], air handling unit [47], fan coil [52], building systems 
[37], centrifugal pumps [60], chiller for an HVAC system [62] and 
building façade [66,72]. Other studies considered the construction and 
assembling sites for buildings [45,48,49,53–56,58,63,65,74,78] and 
road construction sites [46,57,69]. In these environments, various 

Table 1 (continued ) 

Item Title of paper Aim of study Reference 

indoor location 
tracking and BIM-based 
virtual environments 

electrical fixtures in a 
smart built 
environment. 

34 An Internet of Things- 
enabled BIM platform 
for on-site assembly 
services in 
prefabricated 
construction 

To propose an Internet 
of Things (IoT)-enabled 
platform for 
prefabricated public 
housing projects in 
Hong Kong. 

Li, et al. [74] 

35 An automated IoT 
visualisation BIM 
platform for decision 
support in facilities 
management 

To describe an attempt 
to represent and 
visualise sensor data in 
BIM with multiple 
perspectives to support 
complex decisions 
requiring 
interdisciplinary 
information. 

Chang, et al. [75] 

36 BIM- and IoT-based 
monitoring framework 
for 
building performance 
management 

To propose a new 
monitoring framework 
based on BIM and IoT. 

Kang, et al. [76] 

37 BIM integrated smart 
monitoring techniques 
for building fire 
prevention and 
disaster relief. 

To construct a BIM- 
based Intelligent Fire 
Prevention and Disaster 
Relief System 

Cheng, et al. [77]  

38 
Cyber-physical systems 
for temporary structure 
monitoring 

To propose CPS-based 
temporary structures 
monitoring system that 
integrates the virtual 
model of a temporary 
structure and the 
physical structure on 
the construction job 
site. 

Yuan, et al. [78]  

Table 2 
Components of digital twin in the selected studies.  

Reference Physical entity Virtual entity The data connection 
between physical 
and virtual entities 

Pregnolato, et al. 
[42] 

Suspension 
bridge 

3D FEM (Finite 
Element Model) 

IoT sensors 

Tan, et al. [43] Building with a 
lighting and 
surveillance 
system 

BIM model of 
lighting system 
in the building 

Surveillance 
system with 
cameras 

Borissova, et al. 
[44] 

Rooms in a single 
apartment 

3D model of 
apartment 

IoT sensors 

Jiang, et al. [45] Robotic testbed 
assembling 
structure site 

3D model of 
assembling site 

RFID (Radio 
frequency 
identification) and 
UWB (Ultra-Wide 
Band) technology 

Han, et al. [46] Section of a road 
being compacted 

IFC BIM model 
to 3D models on 
a web browser 
(virtual assets) 

IoT sensors and 
Satellite 
positioning and 
recognition 
devices 

Hosamo, et al. [47] Building Air 
handling units 
with (AHU) a 
rotary heat 
exchanger, 
bypass, heater 
and cooler 

BIM model of 
AHU 

Restful 
Application 
Programming 
Interface (API) 
over a 
conventional BMS 

Jiang, et al. [48] Assembly zone of 
a 3D printed 
modular building 

3D model of 
assembly zone 

Smart objects 

Hasan, et al. [49] Analogue of a 
stationary tower 
crane 

3D model of 
tower crane 

IoT sensors, 

Shahinmoghadam, 
et al. [50] 

The living room 
of a two-bedroom 
apartment 

BIM model of 
the room 

IoT sensors and 
thermography 
imaging 

Tagliabue, et al. 
[51] 

A laboratory in 
an education 
building 

BIM model of 
laboratory 

RESTful 
Application 
Programming 
Interface (API) 

Villa, et al. [52] Building and a 
room fan coil 

3D model of 
building and fan 
coil 

Wired IoT sensor 
network 

Pan and Zhang [53] Construction site 
of a 3 storeyed 
building 

3D point cloud 
model, As-built 
IFC mode 

Sensors in laser 
scanner 

Lee, et al. [54] Two industrial 
robots building a 
small mock-up 
bridge using 
prefab 
interlocking 
bricks 

The virtual 
robotic 
construction 
project for a 
small mock-up 
bridge 

RFID and GPS 
(Global 
positioning 
system) 
technology 

Liu, et al. [55] Real hoisting site 
for a 
prefabricated 
building 

A virtual model 
of hoisting site 

IoT network 
(Mesh) and RFID 

Liu, et al. [56] Prestressed steel 
construction site 

3D model of the 
construction 
site, physical 
model and 
behaviour 
model in the 
finite element 
model. 

IoT sensors 

Meža, et al. [57] 300 m access 
road project in 
Maribor, 
Slovenia, 

BIM model IoT sensors 

Lee and Lee [58] Truck and 
prefabricated 
modules 

BIM model IoT sensors 

(continued on next page) 
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resources such as machinery, materials, and workers were monitored. 
Pregnolato, et al. [42] used an existing suspension bridge as their 
physical entity. All the studies contained a 3D model of the physical 
entity with the BIM model being the commonest virtual model. A 3D 
FEM (Finite Element Model) was used for the suspension bridge. The 
(IoT) Internet of Things sensors were the most used devices for creating a 
data connection between the physical entities and their corresponding 
virtual models. Other technologies that were used include RFID (Radio 
frequency identification), image sensors and image recognition artificial 
intelligence, vision and component-based sensing systems, satellite 
positioning and recognition devices, laser scanning and Restful APIs. 

5.2. Technologies in digital twin applications 

The data elicited in Table 3 and Table 4 for is categorised under five 
layers that include data acquisition, data transmission, digital model-
ling, data/model integration and service layers. The data/model inte-
gration layer is further classified into data storage, data/model 
integration and fusion, data processing and analysis and data 
visualisation. 

5.2.1. Data acquisition layer 
Dynamic data from the physical environment is collected depending 

on the intended functionality of the digital twin. IoT sensors and tech-
nologies were the technologies used for data acquisition from the 
physical environment. The IoT sensor networks use sensing nodes to 
communicate the status of a parameter in a surrounding in a wireless 
manner [79]. They measure changes in physical, chemical and electrical 
properties of a surrounding and generate a response in the form of an 
electrical output. Various types of intelligent sensors are used to mea-
sure environmental parameters that include temperature, humidity, air 
quality, motion, pressure, airflow rates, air velocity, CO2, lux levels, gas, 
particulate matter (PM) 10, smoke and acoustic levels. A wide range of 
sensors is available to collect data on various environmental parameters. 
For example, DHT11 sensors [50,76] and Monnit wireless sensors [64] 
were used for measuring temperature and humidity. Other types of 
sensors used include Rev. P wind sensors (MD0555 category) for air 
velocity [50], DHT22 sensors for ambient temperature, humidity and a 
light-dependent resistor (LDR) [52], TA465-X sensor system for airflow, 
temperature and humidity [70], Texas Instruments (TI) Sensortag 
CC2650 light sensors [72] and PT550 light sensors [76]. In other cases, 
sensor data is obtained from already existing monitoring systems of 
buildings. [47] used a Restful API (Application Programming Interface) 
over a conventional BMS (Building Management System) to collect data 
of the BMS hard-wired sensors that include NTC-12 K-sensors for tem-
perature, TTH-6040–0 for the outdoor temperature and the IVL10 
temperature-sensitive airflow transmitters and PTH-3202-DR for pres-
sure. Similarly, a RESTful API was applied to collect sensor data from the 
Supervisory Control and Data Acquisition (SCADA) system for HVAC 
plants with temperature, humidity and CO2 sensors [51]. Cheng, et al. 
[62] obtained sensor data from a direct digital control (DDC) system in 
an IoT sensor network consisting of temperature sensors, humidity 
sensors, flow rate sensors and pressure sensors. 

IoT sensor technologies are also used to collect mechanical data in 

Table 2 (continued ) 

Reference Physical entity Virtual entity The data connection 
between physical 
and virtual entities 

Seghezzi, et al. [59] Spaces in an 
Education 
building 

BIM model IoT sensors 

Lu, et al. [37] A university 
building and 
building systems 

BIM model of 
building and 
building 
systems like 
HVAC, etc 

RESTful Web API 
and BMS data 
integrator 
application, Other 
IoT sensors and QR 
code-based asset 
management 
network 

Lu, et al. [60] Two centrifugal 
pumps of the 
HVAC system in a 
building 

BIM model of 
building and 
pumps 

IoT sensors 

Peng, et al. [61] Hospital building BIM model of 
building 

API 

Cheng, et al. [62] Chiller for a 
building HVAC 
system. 

BIM model of 
building and 
chiller. 

IoT sensor network 
with sensors and a 
Dedicated Digital 
Controller (DDC) 
system 

Jiang, et al. [63] Construction site 
with machinery, 
people, tower 
crane, etc. 

BIM model of 
people, 
machinery, 
components and 
site 
environment 

IoT sensors and 
positioning 
technologies 

Xie, et al. [64] A three-storeyed 
education 
building 

BIM model of 
building 

IoT sensors 

Akanmu, et al. [65] Real-life 
construction site 
with a trainee 

Virtual 
construction site 
containing a 
wooden frame 
and human 
avatars 

Vision and 
component-based 
sensing systems 

Böke, et al. [66] Experimental 
facade 

3D model of 
facade 

IoT sensors 

Wang, et al. [67] A drywall 
installation with 
a 6DOF KUKA 
robot 

As design BIM 
model and as- 
built point 
clouds of 
workspace 

Camera sensors on 
the virtual 
construction site in 
Gazebo 

Messi, et al. [68] Ladder in a 
laboratory room 

BIM model of 
laboratory room 
with a ladder 

Ultra-wideband 
(UWB) sensor 
network 

Zhou, et al. [69] Road tunnel BIM model of 
road tunnel 

IoT sensors and 
actuators 

Wang, et al. [70] Large office space BIM model used 
to develop 
energy cyber 
models 

IoT sensors 

Antonino, et al. 
[71] 

Rooms in an 
office building 

BIM model of 
building 

Image sensors 
coupled with 
image recognition 
(Im) artificial 
intelligence on 
Raspberry board 

Khajavi, et al. [72] A building facade BIM model of 
facade 

Wireless sensor 
network 

Rashid, et al. [73] Office room BIM model of 
office room 

UWB-based real- 
time location 
tracking system 
and UWB 
localisation tag in 
a microcontroller 

Li, et al. [74] Construction site 
of a storeyed 
building 

BIM model of 
storeyed 
building 

RFID technologies 

Chang, et al. [75] Classroom in an 
education 
building 

BIM model IoT sensors  

Table 2 (continued ) 

Reference Physical entity Virtual entity The data connection 
between physical 
and virtual entities 

Kang, et al. [76] Office in a 
building 

BIM model of 
building 

IoT sensors 

Cheng, et al. [77] Campus building BIM model of 
building 

IoT sensors 

Yuan, et al. [78] Scaffolding 
system on a 
construction site 

3D model of the 
scaffold frame 

IoT sensors  
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Table 3 
Technologies used in the data acquisition, data transmission and digital modelling layers in a digital twin architecture.  

Reference Data acquisition layer Transmission layer Digital modelling layer 

Data collection Data set Network and communication Transmission Virtual (3D) modelling 

Pregnolato, et al. 
[42] 

Temperature sensors, 
displacement transducers and 
strain gauges 

Mechanical sensor 
data 

Hybrid wired and WSN 
(wireless sensor network) 

MQTT (Message 
Queuing Telemetry 
Transport) message 
broker 

3D FEM (Finite Element 
Model). Midas Gen Software 

Tan, et al. [43] Cameras Video stream data LAN (Local Area Network), 
Internet 

Not stated BIM model. Autodesk Revit, 
Three.js and Draco 

Borissova, et al. [44] Temperature sensors, motion 
sensors, door sensors, 
thermostats, smart contacts 

Environmental sensor 
data 

WiFi Raspberry Pi installed 
openHAB 

MQTT 3D model. 

Jiang, et al. [45] UWB, RFID tags Positioning data Smart mobile gateway MQTT 3D model. Unity 3D 
Han, et al. [46] Acceleration sensors, speed 

sensors. Real-time kinematic 
global navigation satellite system 
(RTK – GNSS) antenna 

Mechanical sensor 
data, 
Positioning data 

Bluetooth MQTT IFC BIM model converted to 3D 
models on a web browser 
(virtual assets) in Three.js 
program 

Hosamo, et al. [47] Restful API over a conventional 
BMS system with hard-wired 
sensors: NTC-12 K-sensors for 
temperatures, PTH- 
3202-DR for pressure, TTH- 
6040–0 for outdoor temperature 
and 
the IVL10 temperature-sensitive 
airflow transmitters. 

Environmental sensor 
data 

Internet and BACnet (Building 
Automation and Control 
Networks) for data 
communication among the 
various equipment, devices 
and sensors 

Universal Resource 
Locator via the API 

BIM model. Autodesk Revit 

Jiang, et al. [48] UWB tag, RFID tag and industrial 
wearable 

Positioning data, 
control data 

Mobile Gateway Operating 
System (MGOS) light 
middleware, wireless network 

MQTT 3D modelling. Solidworks and 
3D Max 

Hasan, et al. [49] HC-SRo4 ultrasonic distance 
sensor and accelerometer and 
gyroscopic sensor(MPU-6050) 
Micro-controller unit (MCU) 
connects to sensor/actuator 
network using Arduino sketch 

Positioning data, 
mechanical sensor 
data 

Not stated Not stated Sketchup 3D for BIM model. 
Model imported to Unity 3D 

Shahinmoghadam, 
et al. [50] 

DHT11 sensors for air 
temperature and relative 
humidity and modern device Rev. 
P 
wind sensors (MD0555 category) 
for air velocity . IoT node for 
FLIR Lepton thermal imaging 
module 
VR-based module for user-defined 
input 

Environmental sensor 
data, weather data, 
thermal image data 

Wi-Fi HTTP BIM model. Autodesk Revit 

Tagliabue, et al. 
[51] 

RESTful API to collect data from 
temperature, humidity and CO2 

sensors 

Environmental sensor 
data 

Internet and Supervisory 
Control and Data Acquisition 
(SCADA) for HVAC plant 

Not stated Not stated 

Villa, et al. [52] SCT-013-000 current sensor, 
EU:77DE-06-09 voltage sensor, 
DS18B20 and PT100 temperature 
sensors for fan coil. DHT22 
sensors for ambient temperature, 
humidity and a light-dependent 
resistor (LDR) 

Mechanical and 
environmental Sensor 
data 

WiFi, Raspberry Pi (RPi) 3B 
acts as a router using 
DNSmasq software. 
Node-Red installed on the RPi. 

MQTT 3D modelling. Autodesk Revit 

Pan and Zhang [53] UAV (Unmanned Aerial Vehicle) 
equipped with LiDAR scanner 

3D point clouds Not stated Not stated Laser scanning to obtain 3D 
points cloud model. 

Lee, et al. [54] RFID and GPS tags Positioning data Internet, Azure blockchain 
platform to provide IoT hub, 
web server and blockchain 
network 

Not stated Unity Software for virtual 
environment modelling. 

Liu, et al. [55] Smart camera, wind speed, 
temperature, humidity and air 
quality sensors. Tower data 
recorder and RFID tags 

Video and image 
data, environmental 
sensor data, state 
information data 

Self-organising Wi-Fi network Not stated Not stated 

Liu, et al. [56] Cable compression-tension 
sensors (DH3815), RFID tags, 
Environmental sensors (wind 
speed and temperature) 

Mechanical sensor 
data, environmental 
sensor data, 
component 
information 

Not stated Not stated Autodesk Revit. 
Laser scanning using a Trimble 
TX5 3D scanner and Real works 
8.0 to obtain 3D points cloud. 

Meža, et al. [57] Temperature sensor, Inductive 
displacement sensor, soil 
moisture sensor, asphalt strain 
sensor, horizontal inclinometer 
and pressure pads. 

Mechanical sensor 
data 

Not stated Not stated 3D modelling. Autodesk Civil 
3D, Revit and Bexel manager 
BIM analysis and management 
tool 

(continued on next page) 
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Table 3 (continued ) 

Reference Data acquisition layer Transmission layer Digital modelling layer 

Data collection Data set Network and communication Transmission Virtual (3D) modelling 

Lee and Lee [58] The virtual server generating 
hypothetical IoT sensor data 

Location and tracking 
data 

Not stated Not stated Virtual modelling. Unity 3D 

Seghezzi, et al. [59] High quality Bullet Pro Camera 
sensors 

image data Virtual local area network 
(VLAN) and use of static IPs 

Data stored in an 
online database and 
downloaded as CSV 
files 

Online platform SophyAI. 

Lu, et al. [37] Monnit wireless sensors for 
environmental parameters like 
temperature and humidity, BMS 
sensor network and QR codes. 

Environmental sensor 
data, component 
information data 

Ethernet gateways in a 
wireless communication 
network 

HTTP (Hypertext 
Transfer Protocol) 

3D model. Autodesk Revit and 
AECOsim building designer. 
Laser scanning and 
photogrammetry. 

Lu, et al. [60] Vibration sensors Mechanical sensor 
data 

Not stated Not stated 3D model. Autodesk Revit 

Peng, et al. [61] Building automation systems 
(BAS), energy monitoring 
systems, security monitoring 
systems, medical gas pipeline 
systems and armarium system 
sensor networks 

Environmental sensor 
data, energy data, 
video data 

Building systems 
communication networks 

HTTP Laser scanning and Mixed 
Reality (MR) application. 

Cheng, et al. [62] Direct digital control system that 
receives data from temperature 
sensors, pressure sensors and flow 
rate sensors 

Environmental sensor 
data 

Direct digital control system 
and BACnet protocol for 
communications between 
devices 

Not stated 3D model. Autodesk Revit 

Jiang, et al. [63] Positioning base stations, 
positioning labels for workers, 
hoisting positioning devices, 
ultrasonic positioning sensors, 
laser ranging and 3D gyroscope 
sensor 

Positioning data, 
location label data 

Bluetooth and Wi-Fi HTTP and socket 
protocol 

Not stated 

Xie, et al. [64] Monnit wireless sensors for 
temperature and humidity and 
sensor data from BMS 

Environmental 
Sensor data 

Not stated HTTP Not stated 

Akanmu, et al. [65] Vision and wearable IMUs (Inertia 
Measurement Units) with a 3-axis 
accelerometer, gyroscope and 
magnetometer, 
Vive trackers using a velcro 

Kinematic data (body 
movement data) 

Wi-Fi. HTC VIVE Pro’s base 
station and USB connection 

Not stated VR environment created using 
the Unity game platform and 
HTC VIVE Pro device. 
Autodesk 3D Max for creating a 
human avatar, imported to 
Unity 

Böke, et al. [66] Light, gas, temperature, humidity 
and acoustic sensors connected to 
NodeMCU microcontroller 

Environmental sensor 
data 

Wireless local area network 
(WLAN) 

MQTT Rhinoceros 6 software for the 
3D model 

Wang, et al. [67] Three Microsoft Kinect cameras Image data converted 
to point clouds 

Not stated gazebo_ros_pkg VR (Virtual Reality) 
environment using Unity 3D 
and Unified Robotics 
Description Format (UDRF) for 
building Robot arm model 

Messi, et al. [68] UWB tags on the ladder Positioning data Node-RED programming tool 
for connecting UWB data to 
the database 

MQTT Unity 3D. 

Zhou, et al. [69] Ultrasonic sensors, laser ranging 
sensors, Wind speed sensors, PM 
10 sensors, noise sensors, 
humidity sensors and 
temperature sensor 

Positioning data, 
tracking data, and 
environmental data 

Self-organising Wi-Fi network Not stated Not stated 

Wang, et al. [70] TA465-X sensor system for 
airflow, temperature and 
humidity. Cameras for recording 
occupants. 

Environmental sensor 
data, video data 

Wi-Fi network Not stated BIM model 

Antonino, et al. [71] Cameras Image data Not stated Not stated 3D modelling. Autodesk Revit 
Khajavi, et al. [72] Texas Instruments (TI) Sensortag 

CC2650 light sensors 
Environmental sensor 
data 

Raspberry Pi 3B+ network 
gateway using 
Bluetooth 

Not stated 3D model. 

Rashid, et al. [73] UWB anchors and UWB tag in 
handheld clicker 

Positioning and 
orientation data 

UWB radio communication Not stated Virtual modelling. Game 
engine Unity 3D 

Li, et al. [74] RFID tags on precast building 
components 

Positioning data IoT gateway and Bluetooth Not stated Not stated 

Chang, et al. [75] Sensors for indoor temperature 
and humidity connected to an 
Aurdino Mega 2560 R3 
microcontroller board 

Environmental sensor 
data 

Not stated Not stated 3D model. Autodesk Revit 

Kang, et al. [76] DHT11 sensors for temperature 
and humidity and PT550 light 
sensors connected to Arduino 
microcontroller 

Environmental 
Sensor data 

Wired or wireless network MQTT protocol. 
Mosquitto service 
program to implement 
MQTT. Python and C# 
language. 

BIM model. Autodesk Revit 

(continued on next page) 
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various applications. For a suspension bridge, temperature sensors were 
used to measure the temperature of the chain links while displacement 
transducers measured the displacement of the saddles [42]. The piezo-
electric acceleration sensor was used to acquire the vertical acceleration 
of the vibration wheel to monitor the quality of road compaction [46]. 
To monitor the safety of a scaffolding system Yuan, et al. [78] and cables 
on a prestressed steel structure Liu, et al. [56], a column tension- 
compression sensor and accelerometer with a displacement sensor 
were used respectively. Lu, et al. [60] applied vibration sensors to 
monitor the mechanical condition of a chiller pump. To monitor the 
mechanical condition of a fan coil, SCT-013-000 current sensor, 
EU:77DE-06-09 voltage sensor, and DS18B20 and PT100 temperature 
sensors were used [52]. Meža, et al. [57] used various sensors that 
included temperature sensors, inductive displacement network sensor, 
soil moisture sensors, asphalt strain sensors, horizontal inclinometers 
network sensors and surface sensor pressure pads to obtain real-time 
data on a road construction project. Load cells, switch sensors, an 
accelerometer and displacement sensor were used to monitor the safety 
of a scaffolding system [78]. 

The IoT sensor technologies can also be used to obtain positioning 
data in dynamic environments. For example, the ultrasonic sensor and 
gyroscopic sensors were used to collect positioning data of resources to 
detect clashes and accurate placement [49] and track locations of re-
sources on site [63]. Zhou, et al. [69] used both ultrasonic sensors and 
laser ranging sensors to track the location of machinery during tunnel 
operations. Akanmu, et al. [65] used vision and wearable IMUs (Inertia 
Measurement Units) with a 3-axis accelerometer, gyroscope and 
magnetometer as well as Velcro vive trackers to obtain body kinematic 
data. Another use of IoT sensors involved the application of cameras and 
laser scanners. Tan, et al. [43] used a building surveillance system to 
obtain video streams of scenes which were processed by an algorithm to 
detect pedestrians and perceive ambient brightness. A FLIR lepton 2.5 
thermal imaging module was connected to the Raspberry Pi micropro-
cessor to measure surface temperatures to monitor MRT (Mean Radiant 
Temperature) values at different points in the building enclosure [50]. 
Smart cameras provided video streams recording the wearing of safety 
equipment on site and uploaded to the cloud storage for analysis [55]. 
Seghezzi, et al. [59] used high-quality Bullet Pro Camera sensors to 
capture image data of occupant movement which was registered as a 
human by the deep learning algorithm embedded in the camera sensors 
to provide a count of occupants. Three Microsoft Kinect cameras ac-
quired image data of a robot’s workspace environment in Gazebo which 
was then converted to point clouds [67]. Antonino, et al. [71] used 
cameras with image sensors coupled with image recognition (Im) arti-
ficial intelligence to detect users’ movements in an office building. Two 
overhead cameras were applied to record the entrance and exit events of 
occupants in a room which were then translated into counts of occupants 
[70]. On the other hand, 3D point clouds for a construction site were 
obtained using a UAV (Unmanned Aerial Vehicle) equipped with a 
LiDAR scanner [53]. 

To obtain positioning and location data, identification and tracking 
technlogies that include RFID tags, UWB tags and the global navigation 
satellite system (GNSS) were used. RFID systems consist of one or more 
readers and several RFID tags that contain a unique identifier which is 

applied to objects. A tag transmission is triggered by the readers using 
electromagnetic fields to automatically query for the possible presence 
of tags in the surroundings to receive their IDs (identifications) [80]. 
This enables the RFID systems to track or monitor physical objects in real 
time. On the other hand, UWB is a short-range and high-bandwidth 
communication technology that uses radio signals [81]. It can be used 
to locate and track human beings and objects in real time. The GNSS is 
an outdoor localisation system that uses a satellite-based navigation 
system at a global level. From the analysis, RFID and UWB tags were 
used to collect positioning data of prefabricated components on an 
assembling site (UWB) [48] and smart objects on a construction site 
[45]. Lee, et al. [54] used RFID tags and the GPS (Global Positioning 
System) to track and locate prefabricated blocks on a mock-up bridge 
site. RFID and UWB tags were used to locate precast building compo-
nents [74] and the position of a ladder [68] respectively. UWB anchors 
and tags provided the position and orientation data on appliances in an 
office room [73]. The real-time kinematic global navigation satellite 
system (RTK – GNSS) was used to obtain location data for construction 
machinery [46]. The use of sensors, RFID and UWB devices, cameras and 
laser scanning in the construction industry, is growing and is well 
covered in the literature [81–85]. 

To be able to collect and transmit useful data, sensor systems consist 
of various functional layers like sensing and transduction, signal pro-
cessing, data processing, signal transmission, etc., [86]. This follows that 
a high-level sensor system architecture can include a microcontroller, 
wired or wireless interface, memory, sensors, display and power. Ex-
amples of sensor platforms indicated in some studies include NodeMCU 
micro-controller Böke, et al. [66], Aurdino Mega 2560 R3 microcon-
troller board [75], Raspberry Pi 3B+ [72] and Raspberry Pi 3 [77]. The 
details on sensor architectures and platforms can be found in various 
studies such as [87–89] etc. 

5.2.2. Data transmission layer 
Data transmission involves the processing and transporting of raw 

data from the data acquisition layer. The collected data is generally 
transmitted through the wire and wireless transmission technologies. 
The Wi-Fi wireless short-range technology was used in several applica-
tions [44,45,48,52,55,63,69,70,77]. Wi-Fi is a common communication 
technology that connects devices in a local area network using radio 
waves. Other examples of short-range wireless technologies included 
wireless local area network (WLAN) [66], Bluetooth [46,63,72,74] and 
ultra-wide-band (UWB) radio communication [68,73]. On the other 
hand, one study used Ethernet wired transmissions [37] while another 
study by Pregnolato, et al. [42] used a hybrid of both wired and wireless 
networks. In the case of sensor data obtained from a Building Manage-
ment Systems (BMS), the internet and the BACnet (Building Automation 
and Control Networks) protocols were used for data communication 
among the various equipment, devices and sensors as indicated by [47]. 

The transmission of data must conform to communication layer 
protocols. These protocols are defined by different groups such as IEEE 
(Institute of Electrical and Electronics Engineers), IETF (Internet Engi-
neering Task Force), etc., and are officially used as standards in the in-
dustry. They can be categorised into file transfer protocols and 
messaging protocols which are best suited for web applications and IoT 

Table 3 (continued ) 

Reference Data acquisition layer Transmission layer Digital modelling layer 

Data collection Data set Network and communication Transmission Virtual (3D) modelling 

Cheng, et al. [77] Bluetooth smoke detector sensors 
connected to Raspberry Pi 3, 
Location data from mobile 
applications of users 

Environmental sensor 
data, location data 

Wi-Fi and Ethernet Not stated 3D model. Autodesk Revit 

Yuan, et al. [78] Load cells switch sensors, an 
accelerometer and displacement 
sensor 

Mechanical sensor 
data 

Cloud computing Internet and cloud 
computing services. 

3D model. Autodesk 
Navisworks  
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Table 4 
Technologies for the data/model integration and service layers in a digital twin architecture.  

Reference Data/model integration layer Service layer 

Data storage Data/model integration and 
fusion 

Data processing and analysis Data visualisation Functionality 

Pregnolato, et al. 
[42] 

Not stated Metadata 
APIs into Midas Gen software 

Calculations and comparison of 
modelled and measured values 

Midas gen software. 
Dashboards 

Real-time monitoring, alerts 
when thresholds are reached 

Tan, et al. [43] MySQL, Cloud server 
and database 

Three.js program. Deep learning Three.js program. 
Dashboards, Trend 
graphs, Pie charts, 
Pedestrian count 

Detection of pedestrians, 
monitoring of pedestrian 
trends and pedestrian time 

Borissova, et al. [44] Internet my 
openHAB cloud 

Not stated Rule-based reasoning for time 
and temperature. 
Energyplus for simulations 

Colour coding, time 
series graphs 

Simulation of effects of the 
digital infrastructure on the 
heating loads. 

Jiang, et al. [45] Not stated Unity 3D Time numerical models Unity 3D. Analytic charts Real-time monitoring of 
activities, ticket visualisation 
and real-time task alerts 

Han, et al. [46] MySQL API into the Three.js program. Computed intelligent 
compaction measurement values 
are compared against the target 
values 

Three.js program. 
Dashboards, Colour 
coding, time series 
graphs and alert 
messages 

Real-time monitoring of 
compaction progress and 
quality 

Hosamo, et al. [47] MSSQL IFC data mapped into COBie 
and FM data using an 
ontology-based strategy in 
GraphDB, 
Semantic data description for 
metadata using Brick schema, 
Revit C#.NET API add-in plug- 
in using Microsoft Visual 
Studio 

Machine learning involves the 
analysis of variance (ANOVA) 
and support vector machine 
(SVM) 

Autodesk Revit. Time 
series graphs, Maximum 
and minimum sensor 
values, sensor’s average 
value and historical 
value 

Fault detection and prediction 
in AHU 

Jiang, et al. [48] Web Database API into Unity 3D Rule-based reasoning Unity 3D. Real-time 
status Kanban, analytic 
charts that include line 
graphs and histograms 

Real-time positioning tracing 
for smart objects, real-time 
control for the robots, 
instantiation for prefabricated 
modules 

Hasan, et al. [49] Unity 3D server Script coded in Unity’s game 
engine and the MCU sketch 
application. Augmented 
Reality (AR) viewfinder 

Visibility analysis Mobile application using 
marker-based 
Augmented Reality (AR). 
Dashboards, parameter 
values 

Real Time monitoring of 
operations 

Shahinmoghadam, 
et al. [50] 

Google cloud 
platform 

Unreal Engine 4 game engine 
using Oculus Rift S headsets 
HTTP requests transmit 
calculated values based on 
sensor data into the game 
engine 
VaRest plug-in to cloud 
storage module 

Calculated indices namely 
predicted mean vote (PMV) and 
predicted percentage of 
dissatisfied (PPD) 

Thermal comfort charts Display environmental and 
thermography data in real- 
time, display thermal comfort 
levels using PMV/PPD and 
bioclimatic charts 

Tagliabue, et al. 
[51] 

Asset database Not stated Markov model preparation and 
ANN (artificial neural network) 
training 

Time series graphs comfort predictions and CO2 
predictions 

Villa, et al. [52] MySQL database, 
PHP interpreter 
server and Apache 
web service are used 
to store data locally. 

Autodesk forge API on the 
Raspberry Pi (RPi) 3B 

Rule-based algorithm and alarm 
system 

Autodesk Forge 
platform. Monitored fan 
coil variable values in 
real-time and 
dashboards for ambient 
variables. 

Real-time visualisation of fan 
coil status. Alarm signals or 
real-time notifications to 
operators using telegrams or 
SMS. 

Pan and Zhang [53] BIM cloud database Not stated Data mining techniques Colour coding, time 
series graphs 

Bottleneck detection, 
simulation, real-time 
monitoring and construction 
progress prediction 

Lee, et al. [54] Azure Microsoft for 
cloud storage. 

Add-in plug-in using Unity 
software 

Compliance checking between 
as-built BIM and as-planned BIM, 
Blockchain 

Unity platform. 
Dashboards in Azure 
Microsoft for the 
blockchain platform 

Providing real-time 
information that was traced 
via a blockchain network 

Liu, et al. [55] Cloud server Not stated Apriori algorithms for 
association rules and complex 
network analysis 

Line graphs and 
dashboards 

Visualisation and monitoring 
for safety management 

Liu, et al. [56] Not stated Not stated Machine learning algorithm 
using Markov chain 

Autodesk Revit. Line 
graphs and dashboard on 
a mobile terminal device 

Simulating various working 
conditions for structural 
health predicting of structure 
and early warnings for 
maintenance 

Meža, et al. [57] Not stated Open C# API in Bexel 
Manager. 

Data analysis using Bexel 
Manager 

Autodesk Civil 3D. 
Colour-coded element 

Centralised data collection 
platform to analyse the safety 
of using secondary raw 

(continued on next page) 
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Table 4 (continued ) 

Reference Data/model integration layer Service layer 

Data storage Data/model integration and 
fusion 

Data processing and analysis Data visualisation Functionality 

breakdown in a 3D 
model 

materials for road 
construction 

Lee and Lee [58] Not stated Unity engine 
API into Bing Maps 

3D simulations and data 
analytics 

Unity engine. Colour 
coding 

Real-time monitoring, 
Simulations of different 
scenarios 

Seghezzi, et al. [59] Online cloud 
database 

SophyAI online platform Visibility analysis SophyAI online platform. 
Anonymous virtual 
agents, real-time 
occupancy count, trend 
graphs 

Visualise real-time occupancy 
count and movements 

Lu, et al. [37] A mirrored database 
in a DynamoDB 
NoSQL database 
supported by the 
Amazon web services 
(AWS) 

AWS DynamoDB, Autodesk 
forge API and web-based 
program design 
(i.e., .Net) using C# and 
Javascript. IFC schema 
mapping with the asset 
management system and 
sensors 

Cumulative sum charts for 
anomaly point detection in 
pumps, comparison to 
predetermined comfort 
threshold to evaluate comfort 
levels and machine learning 
algorithms for predicting 
maintenance faults. 

Autodesk forge platform. 
Time series graphs, 
colour coding, S curves 
and dashboards 

Anomaly detection in pumps, 
real-time ambient 
environment monitoring and 
prediction of faults of boilers, 
and maintenance 
prioritisation. 

Lu, et al. [60] Amazon Web service 
(AWS) DynamoDB 

Ifc Object matching table to 
describe the link between the 
BIM object Globally Unique 
Identifier (GUID) and 
corresponding item ID from 
different data sources. 
Autodesk forge API and .NET 
using C# and Javascript 

Sequential analysis techniques 
and Bayesian online change 
point detection algorithm 

Cumulative sum control 
charts (CUSUM) 

Monitoring of the working 
condition of pumps and 
anomaly detection 

Peng, et al. [61] MySQL, Private 
cloud storage and 
Flink 

Apache Kafka and Flink, 
Scheduled ETL (Extract, 
Transform and Load) 

AI models using popular 
frameworks like TensorFlow, 
Keras and Pytorch deep learning 

Dashboards, colour 
coding, line graphs, bar 
graphs, operation and 
alarm status, lists, trend 
charts and real-time 
animations 

Visualisation for space 
management, monitoring of 
energy consumption in the 
building and building systems 
like the AHU and security 
system for fault detection 

Cheng, et al. [62] MSSQL BIM and COBie data mapped 
onto facility data in FM system 
using a COBie connector plug- 
in 
IFC 4 extension of sensor 
entities 
Autodesk Revit plug-in 

Comparison of real-time sensor 
data to historical maintenance 
and 
Machine learning algorithms 

Autodesk Revit. Time 
series graphs for 
temperature, pressure 
and flow rate. 

Condition monitoring of the 
chiller and condition 
prediction of the chillers. 

Jiang, et al. [63] Not stated Not stated Algorithm engines for face 
recognition, personnel 
positioning and mechanical 
attitude positioning 

Colour coding Real-time monitoring of 
operations, worker and 
component tracking alerts for 
risks 

Xie, et al. [64] Dynamo DB NoQSL 
provided by Amazon 
web services 

Not stated Anomaly detection algorithms 
including moving average, 
cumulative sum and a binary 
segmentation-based change 
point detection method 

Time series graphs, 
colour coding, 
Augmented Reality (AR) 
based visualisation 

Identification of indoor 
environmental anomalies and 
corresponding failed assets 

Akanmu, et al. [65] Not stated VR environment using Unity 
game platform 

Rule-based reasoning VR environment using 
Unity game platform. 
Colour codes for 
different risk levels 

Monitoring of workers’ 
postures during operations 

Böke, et al. [66] Cloud ‘Processing’ development 
environment where the 3D 
model is loaded and sensor and 
actuator data is received 

Comparison to thresholds, 
applying control logic 

Node-RED dashboard for 
user interface. Data in 
form of flow charts 

Real-time monitoring, and 
adaptive actions to the system 

Wang, et al. [67] Not stated Virtual Reality (VR) 
environment in Unity 3D and 
Oculus Rift S VR headset, 
connected to ROS 

Robot Operating Software (ROS) Unity 3D and Oculus Rift 
S for VR interface. 
Visible agents on site 

Real-time data that is used to 
control the Robot on site 

Messi, et al. [68] ArangoDB database Unity 3D game engine for 
digital twin platform. IFC 
loader to import BIM model 
information 

Checking against defined 
positions 

Unity 3D. Colour coding 
and user notifications 

Simulations using real-time 
data 

Zhou, et al. [69] Alibaba cloud server Not stated Visibility analysis and 
computation 
Mechanical analysis and 
computation 

Colour coding, 
parameter values 

Monitoring of tunnel 
operations, early warnings 
about potential accidents 

Wang, et al. [70] Not stated Not stated Ensemble learning algorithms for 
occupancy prediction 

Trend graphs Occupancy monitoring and 
occupancy detection 

Antonino, et al. [71] Microsoft Azure SQL 
cloud database 

Not stated Visibility analysis Occupancy values Occupancy monitoring 

(continued on next page) 
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frameworks respectively [90]. The most commonly used transmission 
protocol was MQTT (Message Queuing Telemetry Transport) 
[42,44–46,48,52,66,68,76]. MQTT is a lightweight publish/subscribe 
messaging transmission protocol that connects remote sensors to other 
software layers of an application [91]. It is characterised by high latency 
and suitable for restricted equipment, unreliable networks and low 
bandwidth. It uses a client-server architecture whereby the MQTT client 
publishes messages to an MQTT broker to be subscribed to by other 
clients or retained for future use [92]. The HTTP (Hypertext Transfer 
Protocol) was the other mostly used transmission protocol 
[37,50,61,63,64]. The HTTP is a web messaging protocol that supports 
request/response RESTful web architecture [92]. It uses the Universal 
Resource Identifier (URI) to send data from the servers to the client who 
receives the data through a specific URI. In Hosamo, et al. [47] study, a 
specific URL from the sensor data API was used for data transfer to the 
BIM model. Jiang, et al. [63] used both the HTTP and socket protocols 
for their study. A socket protocol is a standard protocol for transferring 
data from one machine to another [93]. On the other hand, Lee, et al. 
[54] applied an Azure blockchain platform to provide an IoT hub for 
receiving the GPS data from the IoT sensors which was then later sent to 
the as-built BIM model. Seghezzi, et al. [59] stored sensor data in an 
online database and downloaded it as CSV files which was then visual-
ised in the SophyAI online platform. The gazebo_ros_pkgs, a set of robot 
operating software, was used to create a communication interface be-
tween the Gazebo platform with sensor data and the ROS (Robot 
Operating Software) [67]. 

5.2.3. Digital modelling layer 
This layer involves the development of the corresponding virtual 

model of the physical entity. This process is generally done by modelling 
the digital model. Modelling is the process of “representing a physical 
entity in digital forms that can be processed, analysed, and managed by 
computers” [24]. Through modelling, the physical entity and related 
information are represented in a digital environment. To be able to 
model the physical entity, the parameters of the physical environment 
such as the geometric structure, functionality, state, time, location, 
process, performance [25] etc. are measured to produce a virtual replica 
that mirrors the physical environment. From the analysis, laser scanning 

was used to obtain the 3D point cloud model of the physical assets 
[37,53,56,61]. Other measurement methods included laser tape mea-
surement [73], Mixed Reality (MR) [61] and photogrammetry [37]. 
Modelling parametric design software is used to develop the virtual 
model that mirrors the features of the physical entity. Most of the studies 
used a 3D model (BIM model) to represent the virtual equivalent of the 
physical entity. Autodesk Revit was the most used software for 3D 
modelling of buildings as indicated in these studies 
[43,47,50,52,60,62,71,75,77].Other 3D geometric software tools that 
were applied include Autodesk Navisworks [78], Solidworks and 3D 
Max [45], Sketchup 3D [49] and Rhinoceros 6 software [66].To create a 
BIM model of a road, Autodesk Civil 3D and Autodesk Revit were used 
[57]. The former was used to generate the road model while the latter 
was used to model sensors to create the BIM model. Autodesk Revit and 
AECOsim building designer were used to develop geometry models at 
the system, building and city levels Lu, et al. [37]. On the other hand, 
game development software is also used to develop the virtual entity of 
the digital twin application. A human avatar was modelled using the 
Unity game engine and Autodesk 3D Max [65]. Four studies imported 
geometric data into Unity 3D to develop 3D models [48,54,58,73]. A 
Virtual Reality (VR) environment was created using the Unity 3D plat-
form, Oculus Rift S VR headset and the Oculus touch controllers [67].To 
create a human-robot construction system, the Robot arm model was 
developed using the Unified Robotics Description Format (UDRF) and 
sent to Robot Operating Software (ROS) to be loaded as a game object in 
VR. Moreover, BIM components for the construction site were also 
loaded into the VR environment. Other 3D modelling platforms that 
were used include Three.js program [46] and Midas Gen software [42]. 

5.2.4. Data/model integration and fusion layer 

5.2.4.1. Data storage. In the data/model integration layer, the digital 
twin data undergoes a series of stages that include data storage, data/ 
model integration and fusion, data processing and analysis and data 
visualisation to produce useful information. Digital twin data is multi- 
source and of high volume requiring big data storage technologies 
[24]. The selection of a storage database depends on the accessibility, 
scalability, high-performance and management capability of massive 

Table 4 (continued ) 

Reference Data/model integration layer Service layer 

Data storage Data/model integration and 
fusion 

Data processing and analysis Data visualisation Functionality 

Khajavi, et al. [72] Not stated Not stated Matching lux values to the 
defined colour spectrum 

Colour coding, lux values Visualise the real-time state of 
a façade brightness 

Rashid, et al. [73] Not stated Unity 3D Positioning algorithm Unity 3D. Colour coding Detect interactions between a 
user and appliance of interest 
to control the appliance 

Li, et al. [74] Cloud server Not stated Visibility analysis Colour coding Progress visualisation and 
monitoring, Error alerts 

Chang, et al. [75] Not stated Dynamo plug-in into Revit. 
Firefly suite to link Dynamo 
and Arduino sensor 
microcontroller 

Numerical models to integrate 
values of sensor data into a 
colourful 3D fashion 

Dynamo in Autodesk 
Revit. Time series 
graphs, Colour coding in 
a 3D schematic 

Visualisation of sensor data for 
indoor temperature and 
humidity 

Kang, et al. [76] Data storage for BIM 
in Mongo database 
and monitoring data 
in Influx database 

Revit plug-in written in C# 
language 

Data analysis using Python and 
Chronograf tool 

Revit. Time series graphs 
and colour coding in 2D 
schematic 

Visualisation of data in the 
BIM model 

Cheng, et al. [77] Cloud database and 
SQL server 

Autodesk Revit API plug in Algorithms for planning rescue 
paths 

Colour-coded agents in a 
3D schematic, Colour 
coding on the 3D 
schematic, Colour coded 
arrows on the 3D 
schematic 

Early detection of fires and 
planning of rescue paths 

Yuan, et al. [78] Amazon Elastic 
Compute Cloud 
(Amazon EC2) 
service using Heidi 
SQL 

Autodesk Navisworks add-in 
tool using Microsoft Visio 
studio 

Comparisons to user-defined 
thresholds 

Autodesk Navisworks 
management and mobile 
application. Colour 
coding. 

Warning alerts for potential 
failures  
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data. The studies mostly used cloud-based computing platforms for data 
storage. Cloud databases provide adaptable and exceptional backend 
access for computing applications [94]. Examples of the cloud-databases 
from the studies include Internet my openHAB cloud [44], Google cloud 
platform [50], web database [45], BIM cloud database [53], Azure 
Microsoft for cloud storage [54], cloud servers [55,59,66,74], Alibaba 
cloud server [69], Microsoft Azure SQL cloud database [71], Cloud 
database and SQL server [77], Heidi SQL [78], Amazon Web service 
(AWS) DynamoDB [60,64], MSSQL [47,77], MySQL [43,46,52,61], 
ArangoDB database [68] and influx database [76]. To collect data from 
already existing building systems like the BMS (Building Management 
System) with security firewalls, a mirrored database was used to store all 
data sets in the protected BMS into DynamoDB NoSQL schema [37]. 
Data was also stored on-premise in Mongo database [76] and using a 
PHP interpreter server and Apache web service [52]. 

5.2.4.2. Data/model integration and fusion. The various digital twin data 
from the physical and virtual spaces are integrated through data fusion 
techniques to provide human-understandable inferences [35]. This in-
volves integrating sensor data like environmental data, mechanical data, 
and image and video data into the BIM models to reflect the real-time 
status of the physical entity in the virtual model. This requires the use 
of technologies to provide a platform for hosting the digital twin with 
both sensor and model data. To enable this data integration, customised 
APIs are built into the 3D model software platforms. Therefore, API add- 
in plug-ins were developed for Autodesk Revit [47,62,77], Midas Gen 
software [42], Bexel Manager [57], Dynamo into Revit [75], Autodesk 
Navisworks [78], Autodesk forge [37,52,60] and Three.js program 
[43,46]. The Unity game engine platform by Unity technologies was 
used by eight studies as the data/model platform 
[45,48,49,54,58,65,73]. Shahinmoghadam, et al. [50] used the Data-
smith tool to import geometric data for building spaces into an Unreal 
Engine 4 game engine using Oculus Rift S headsets. Other platforms used 
for data/model integration and fusion included the ‘Processing’ devel-
opment environment [66] and SophyAI online platform [59]. Peng, 
et al. [61] used data processing frameworks that include Apache Kafka 
and Flink and Scheduled ETL (Extract, Transform and Load) to integrate 
sensor data from 13 subsystems into a virtual environment. To integrate 
the multi-form sensor data and data from other systems into the BIM 
model, the data can be modelled into formal data structures to allow for 
seamless fusion of the data into the model. Four studies provided details 
on the data structures for the integration of the sensor data and 3D 
models. Hosamo, et al. [47] used the Brick schema for the semantic 
description of the metadata. Three studies used semantic data descrip-
tion to map the BIM model data in the IFC schema with the sensor 
systems and asset management systems [37,60,62]. 

5.2.4.3. Data processing and analysis. The digital twin data is processed 
and analysed using advanced technologies to obtain useful information. 
Table 4 analysis consists of both simple and advanced data analysis 
techniques. Examples of simple data analysis techniques include the 
comparison of measured values against target values/thresholds 
[42,46,50,54,66,68,72,78], visibility analysis [49,59,69,71,74], nu-
merical models [48,75] and rule-based reasoning [44,45,52,65]. The 
other studies applied artificial intelligence techniques that include ma-
chine learning, deep learning and artificial intelligence algorithms for 
data analysis. Artificial intelligence (AI) involves programming a ma-
chine to behave in an intelligent manner [95]. Machine learning was the 
most used technique in the studies. Various machine learning techniques 
that include the analysis of variance (ANOVA) and support vector ma-
chine (SVM) [47,62], Markov model preparation and ANN (artificial 
neural network) training [51], Apriori algorithms and complex network 
analysis [55], Markov chain [55], Cumulative sum charts and machine 
learning [37] and ensemble learning algorithms [70] were applied. Tan, 
et al. [43] applied deep learning to convert video stream data into text 

data to analyse the pedestrian trend, time and determine the most saving 
energy saving option. Artificial intelligence models using popular 
frameworks like TensorFlow, Keras and Pytorch deep learning were used 
for event identification, fault diagnosis and automated decision making 
[61]. Algorithms were developed for face recognition, personnel posi-
tioning and mechanical attitude positioning [63], anomaly detection 
[64], Bayesian online change point detection [60], planning rescue 
paths [77] and positioning [73]. Pan and Zhang [53] applied data 
mining techniques to produce process models, diagnose bottlenecks, and 
predict progress of works. Other studies analysed data using Python and 
Chronograf tool [76], Bexel manager [57], computation mechanical 
analysis [69], Robot Operating Software (ROS) [67] and 3D simulations 
[58]. 

5.2.4.4. Data visualisation. The visualisation of temporal sensor data in 
a virtual environment is one of the powerful aspects of digital twins. 
From the analysis, the 3D modelling software platforms are used for data 
visualisation. Examples of these include Autodesk Revit 
[47,56,62,75–77], Midas Gen software [42], Autodesk Navisworks [78], 
and Autodesk Civil 3D [57]. Some studies used Autodesk forge 
[37,52,60] for visualising the sensor data in the BIM model. Gaming 
environment platforms like Unity 3D game engine, which possess 
powerful visualisation capabilities are also used for visualisation 
[45,48,54,58,67,68,73]. Furthermore, game engine platforms can be 
used to create VR (Virtual Reality) environments as indicated by 
Akanmu, et al. [65] Wang, et al. [67] and Shahinmoghadam, et al. [50]. 
Akanmu, et al. [65] applied a VR environment using the Unity game 
engine. Wang, et al. [67] created a Virtual Reality (VR) environment in 
Unity 3D and Oculus Rift S VR headset that was connected to the ROS 
(Robot Operating Software). Similarly, Shahinmoghadam, et al. [50] 
used Unreal Engine 4 game engine with Oculus Rift S headsets for the VR 
environment. On the other hand, AR (Augmented Reality) was used for 
visualisation [49,64]. An AR mobile-based application was applied to 
allow the users to interact with the application for remotely operating of 
construction machinery [49]. This was developed using Unity3D in the 
form of a server with AR interfaces and marker images that were 
uploaded as assets. Other software that were used for visualisation 
include the Three.js program [43,46], SophyAI online platform [59] and 
a Node-RED dashboard in the ‘Processing development’ [66]. 

The processed digital twin data is finally availed to the end users 
straightforwardly in various visualisation forms. The two most used 
methods of visualisation for the digital twin data were colour coding in 
2D and 3D schematics, performance dashboards, and time series graphs 
supported by the visualisation platforms. Other forms of visualisation 
included trend graphs [43,59,61,70], pie charts [43], line graphs 
[48,55,56,61], real-time status Kanban [48], thermal comfort charts 
[50], S curves [37] and cumulative sum control charts [60]. In many 
studies, the values for monitored parameters like pedestrian count and 
sensor readings for ambient temperature and humidity were indicated 
on the visualisation platforms. Other forms of visualisation involved the 
use of anonymous virtual agents [59,67,77] and real-time animations 
[61]. Most studies had more than one form of visualisation of the data. 

5.2.5. Service layer 
The last layer represents the service that digital twin offers to the 

users. Digital twin offers a diverse range of service depending on the 
context within which it is applied. The most common service offered in 
the studies was real-time monitoring of assets and activities. This 
included monitoring a suspension bridge [42], building façade [66], 
façade brightness [72], pedestrian trends and time [43], construction 
site activities [48], compaction progress and quality [46], smart objects 
[45], machine and worker operations [49,63], construction progress 
[53,54,74], structural health [55], the safety of materials [57], occu-
pancy trends and movements [59], ambient environment monitoring 
[37], working conditions [60], energy consumption [61], chiller 
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condition [62], workers’ postures during operations [65], tunnel oper-
ations [69] and room occupancy [70,71]. Another functionality of the 
digital twin involved early detection: of potential failures in a scaf-
folding system [78], faults in building AHUs [47,61], bottlenecks in on- 
site construction [53], anomalies in a pump’s operations [37] and in-
door environment [64], and fires in a building [77]. Moreover, digital 
twins were applied for the prediction of faults in building systems 
[37,47], the condition of a chiller system [62], and comfort and CO2 
levels in spaces [51]. Also, some applications used digital twins to 
provide early warnings about potential accidents [69] and alarm signals 
when thresholds are exceeded [52]. Some studies showed that digital 
twin enabled the visualisation of environmental and thermal comfort 
levels [50], fan coil status [52], space use [61], construction progress 
[74] and indoor ambient conditions [75,76]. Other studies showed that 
digital twins can be used for simulations [44,53,56,58,68], real-time 
control of robotic operations [45,67] and home appliances [73]. 

5.3. Summary of findings 

The existence of the three components of a physical entity, its virtual 
model and the data connection between both entities highlights a shift 
away from static BIM models to the emerging technology of digital twins 
in construction. The studies show the diverse application of digital twins 
to various entities in the physical environment from building compo-
nents, buildings, workers, machinery, site resources, civil engineering 
structures, and even at the city level. This implies that digital twins can 
be applied at different levels of granularity of the construction industry 
ecosystem. Data from the physical environment was mainly acquired 
using IoT sensor technologies. Other technologies that include vision 
and component-based sensing devices, RFID and UWB tags were also 
used. In some cases, sensor data was acquired from already existing 
monitoring systems like the BMS. For the transmission of the data, the 
applications mostly relied on wireless technology. MQTT protocol was 
most used standard communication protocol followed by the HTTP 
protocol. MQTT protocol is favoured for IoT networks because it is 
designed for use in low bandwidth and high latency networks. More-
over, its publish-subscribe strategy that allows for one-to-one and one- 
to-many connections makes it useful for digital twin development as it 
allows for several subscriptions to the sensor data. Also, it is considered 
to be faster than other transmission protocols [91]. On the other hand, 
the HTTP protocol uses a specific Universal Resource Identifier (URI) to 
send data from the servers to the client [92]. However, there was lack of 
emphasis on the technologies for networking, communication and 
transmission protocols under the data transmission layer as over 18 
studies did not provide these details in their system architectures. For 
the digital modelling layer, most of the studies used a 3D model, mostly 
a BIM model and four studies used 3D point cloud models. Various 
parametric design software was used to generate the 3D models, with 
Autodesk Revit being the most used modelling software. Four studies 
imported geometric data into the Unity 3D software. One study used a 
VR environment. For the storage of digital twin data, studies mostly used 
cloud-based computing platforms that exist on the market. Customised 
plug-ins were added to the geometric software platforms for data inte-
gration and fusion. The Unity cross-platform by Unity technologies was 
the most used platform for data/model integration. However, most of 
the studies did not provide the details of the integration of the sensor, 
model and other digital twin data in the data/model layer. Only four 
studies provided some details on their data structures for the sensor and 
model data integration. Both simple and advanced data analysis tech-
niques were used in the processing and analysis of data, with machine 
learning being the most applied technique for data processing. The 
visualisation of the data was done using the data/model integration 
platforms. Four studies used VR/AR technologies for visualisation and 
interaction with the users. The presentation of the digital twin data was 
done using 2D graphical methods mostly in form of performance dash-
boards, colour-coding and time-series graphs. 

6. Research gaps and future research 

Through the analysis, some challenges and opportunities were 
identified in three areas namely 1) data transmission 2) interoperability 
and data integration and 3) data processing and visualisation, as dis-
cussed in this section. 

6.1. Data transmission 

The use of wireless technology for creating the network was the most 
commonly used approach in the studies. However, the focus was on the 
use of short-range wireless technologies that included Wi-Fi, Bluetooth 
and UWB. The use of long-distance wireless transmission technologies 
like digital radio and satellite communication needs to be investigated. 
This is essential for the future of digital twins to be expanded to city 
digital twins, country digital twins and the worldwide scale. The most 
applied standard transmission protocols for data transfer in the studies 
were the MQTT and HTTP protocols. These two protocols are popular in 
IoT technologies [91].However, over 20 studies did not state the details 
of their communication protocols for their applications. It is also the 
case that the acquisition of digital twin data from heterogeneous sys-
tems, networks and devices increases the complexity of data trans-
mission. Transmission protocols create mediums for data transmission 
using standardised formats. This is essential for achieving a two-way 
data synchronous transmission channel in a digital twin application 
and enabling machine to machine communication. Therefore, the use of 
standard communication protocols for data transmission in digital twins 
of varying complexity should be further investigated. 

It is the case that digital twins use a diverse range of data, some of 
which is confidential in nature to people and organisations. The trans-
mission of such data is prone to cyber-attacks which can essentially 
become a security threat to people’s lives and the infrastructure that is 
monitored. Therefore, it is necessary to consider security requirements 
and secure transmission protocols for the network and communication 
layer. From the analysis of the studies, three studies considered the se-
curity and privacy aspects in their digital twin monitoring systems. In 
their proposed digital twin for management of a hospital facility, Peng, 
et al. [61] used only private HTTP APIs inside hospital firewalls to 
address the safety issues about the use of security monitoring videos and 
visiting records of patients. Shahinmoghadam, et al. [50] opted to use a 
marker-based registration method to obtain orthogonal thermal image 
mosaics taken by a FLIR lepton thermal camera instead of using visual 
cameras to avoid undermining the privacy-preserving aspect of their 
system. Smart contract and block chain technology were integrated in a 
digital twin prototype to increase network security and traceability of 
data [59]. Thus, the issues of privacy-preserving networks and context- 
aware privacy policies are some of the areas that need to be researched 
[96]. 

6.2. Interoperability and data integration in digital twins 

The integration and fusion of the virtual model and IoT sensor data 
are core to the functioning of a digital twin. As indicated from the 
studies, digital twin data is diverse and is collected using different types 
of sensors resulting in heterogeneous data sets like image data, video 
data, positioning data, environmental data, mechanical data, etc. that 
have to be integrated with the BIM model. This data is obtained from 
disparate and heterogeneous systems like the BMS and Asset manage-
ment system. These systems operate on different software platforms 
with different syntax and schematics. This increases the complexity of 
digital twin models creating integration and interoperability issues at 
both syntax and semantic levels. From the analysis of the studies, most of 
the studies did not provide the details pertaining to the structure of the 
digital twin data for the purpose of data integration. Only four studies 
provided details for the data architecture for integrating the various 
digital twin data. To integrate BIM and FM data, the IFC data of the AHU 
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was mapped onto the relevant COBie and FM using an ontology-based 
strategy in GraphDB [47]. Moreover, a single Brick schema model 
describing the metadata for the AHU, its components and sensor data 
points was developed. Cheng, et al. [62] imported BIM data into COBie 
spreadsheets and then the COBie data was mapped onto the facility data 
in FM systems. The attribute names of COBie data were matched to the 
attribute names in the FM database table. Furthermore, a sensor data 
model was proposed and used as a basis to extend the the Ifcsensor entity 
to enable sensor entities and attributes to be visualised in a BIM model. 
An IfcObject matching table was used to describe the link between the 
BIM object Globally Unique Identifier (GUID) and corresponding item ID 
from different data sources like the BMS and sensor system [37,60]. 
These studies use semantic data modelling to enable data integration 
from various sources. 

The use of semantic models and ontologies [97,98] has been pro-
posed for data integration and interoperability in digital twin models. 
Semantic modelling involves the use of semantic web-based methods to 
map data streams, active sensing data and proprietary relational data 
sets and combine them with user preferences to a dynamic structure of 
things [24]. On the other hand, ontologies provide a formal and explicit 
representation of domain concepts that can be shared [99]. Therefore, 
there is a need to investigate semantic data modelling of sensor data, 
BIM model data and data from other systems to aid in moving towards 
standardising digital twin data by enabling data integration and inter-
operability. The development of rich data models for various applica-
tions, data sets, different assets and processes is a ripe area of research. 
Through the use of web-based ontologies, the IFC schema, which is the 
standard format for interoperability within the built environment can be 
extended and linked to other domains. Semantic web technologies can 
help overcome the limitations of the IFC standard models by providing 
flexible methods of data integration across various domains and scales to 
facilitate interoperability among data and systems [100]. Therefore, the 
use of web-based semantic ontologies for digital twin data integration 
should be explored. 

6.3. Data processing and visualisation of digital twin data 

Both simple and advanced data analysis techniques were used in the 
processing and analysis of data such as the comparison of measured 
values against target values/thresholds and machine learning respec-
tively. The introduction of artificial intelligence techniques such as 
machine learning offers opportunities for analysing the heterogenous 
and voluminous data of the built environment. Artificial intelligence 
methods attempt to recreate the problem-solving and reasoning abilities 
of the human brain [101]. AI uses machine learning or deep learning 
models for reasoning about the real world [102]. From the analysis, 
machine learning was the most used AI technique in the studies. It in-
volves the use of algorithms that learn from the data by automatically 
extracting patterns within a defined context [103]. Thus, machine 
learning algorithms can be applied to a diverse range of functions to 
solve complex problems in the real world. The advent of digital twins in 
the construction industry has led to an increase in dynamic data which 
creates challenges in storing, and processing of this big data and situa-
tions of ‘garbage’ data. There is a need to explore the use of advanced 
technologies for storing and processing this smart big data as well as 
managing ‘garbage’ data in the digital twins. The use of AI techniques 
like machine learning and deep learning enables the automatic pro-
cessing of large data sets into useful knowledge for various applications 
[104]. Research should be conducted on developing AI models for 
processing big data to tackle various challenges in the industry. For 
example, expert systems for various functions in the different phases of a 
project lifecycle can be developed. Moreover, there is a need to consider 
realistic practical applications of these systems to improve the accuracy 
and intelligence levels of the applications. This will provide more 
advanced data models and richer data sets that are useful for decision- 
making in various project and asset management functions. 

The visualisation of the digital twin data involved the use of common 
3D modelling software platforms and gaming environment platforms. 
There was also the use of more powerful visualisation technologies that 
include Virtual Reality [49,50] and Augmented Reality [64]. Virtual 
Reality (VR) can be defined as the simulation of 3D objects in a virtual 
world to enable real-time interactions in pseudo-natural immersion via 
sensorimotor channels [105] while Augmented Reality involves the use 
of an interface to overlay digital information onto a user’s view, which is 
often a camera image of the physical environment [106]. VR/AR tech-
nologies are capable of providing interactive and immersive experiences 
for users in various functions in the built environment [107]. This is 
achieved by the support of devices that can be stationary-based displays, 
head-based displays and hand-held displays. Within digital twin appli-
cations, the VR/AR technologies enable the user to visualise, engage and 
also control selected components in the physical environment as 
required. Therefore, future research on the use of VR/AR environments 
for digital twin applications is recommended. Another key aspect in the 
visualisation of digital twin data is the presentation of the data in 
meaningful ways to the users. From the analysis, most of the studies used 
2D graphical methods to present the digital twin data to the users. 
However, this diminishes the use of a 3D virtual model and environment 
to reflect the three-dimensional world that humans exist in. It is there-
fore worth exploring alternative approaches to visualising temporal data 
in a BIM model and 3D environments. It is also the case that the IoT 
sensors for digital twins collect data on various parameters in the 
physical environment such as temperature, humidity, pressure, etc. 
These are abstract parameters that cannot be seen but can be measured. 
With the advanced technologies of digital twins, it could be possible to 
explore various methods of visualising such abstract parameters within a 
digital model. 

7. Conclusions 

The concept of digital twins has the potential to improve perfor-
mance and productivity in the construction industry through effective 
decision-making enabled by real-time condition monitoring, pre-
dictions, simulations and optimization of processes. The study conducts 
a systematic review of digital twin studies with demonstrative case 
studies or experimental setups to identify the current technologies used 
in the development of digital twins, the research gaps and future focus. 
The first contribution of the paper is the identification of current tech-
nologies that have been used in existing research literature in the five 
digital twin conceptual layers by [37] that include data acquisition, data 
transmission, digital modelling, data/model integration and services. 
This has provided a state of the art for the technologies in the devel-
opment of digital twins in the existing research literature. The digital 
twins in the applications have been created using state-of-the-art and 
off-the-shelf technologies and tools that are developed independently 
and integrated to form digital twin platforms. The second contribution 
of the paper is the identification of the research gaps and potential areas 
for future research from a technological perspective. Future research is 
required on the technologies for data transmission in the application 
layers, interoperability and data integration and advanced data pro-
cessing and data visualisation to generate high-performance digital 
twins with effective bi-directional data exchange capabilities, interop-
erable and semantic data/model integration, advanced data processing 
and enhanced visualisation and navigation by the users. The application 
of digital twins is still in its nascent stages within the construction in-
dustry. Most of the identified studies used small-scale experiments and 
case studies to demonstrate the application of digital twins. Mature 
practical applications from industry are missing in the research litera-
ture. This study was limited to the technologies of digital twins, but the 
successful implementation of digital technologies in practice requires 
both technological and organisational factors to work together. Thus, 
research on the organisational aspects of digital twin applications is 
recommended. This study is limited to the publications obtained from 
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using the seven keywords that were used for searching for records in the 
ScienceDirect database and other additional databases that included 
Web of Science and Google Scholar. The search might have missed out 
on records that were very specific to certain aspects of the AEC industry 
and those that did not use similar keywords. It is therefore recom-
mended to undertake the study in specific domains and activities of the 
construction industry using different search terms. 
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