
Argflow: A Toolkit for Deep Argumentative Explanations for
Neural Networks

Adam Dejl∗
Imperial College London, UK

adam.dejl18@ic.ac.uk

Peter He∗
Imperial College London, UK

peter.he18@ic.ac.uk

Pranav Mangal∗
Imperial College London, UK
pranav.mangal18@ic.ac.uk

Hasan Mohsin∗
Imperial College London, UK
hasan.mohsin18@ic.ac.uk

Bogdan Surdu∗
Imperial College London, UK

george-bogdan.surdu18@ic.ac.uk

Eduard Voinea∗
Imperial College London, UK

eduard-george.voinea18@ic.ac.uk

Emanuele Albini
Imperial College London, UK

emanuele@ic.ac.uk

Piyawat Lertvittayakumjorn
Imperial College London, UK

pl1515@ic.ac.uk

Antonio Rago
Imperial College London, UK

a.rago15@ic.ac.uk

Francesca Toni
Imperial College London, UK

ft@ic.ac.uk

ABSTRACT
In recent years, machine learning (ML) models have been success-
fully applied in a variety of real-world applications. However, they
are often complex and incomprehensible to human users. This can
decrease trust in their outputs and render their usage in critical
settings ethically problematic. As a result, several methods for ex-
plaining such ML models have been proposed recently, in particular
for black-box models such as deep neural networks (NNs), but these
are predominantly explaining outputs in terms of inputs, disregard-
ing the inner workings of the ML model computing those outputs.

We present Argflow, a toolkit enabling the generation of a variety
of ‘deep’ argumentative explanations (DAXs) for outputs of NNs
on classification tasks. Argflow comprises a Python library for
generating DAXs as well as a web portal for delivering these DAXs
to users with differing requirements. The design of Argflow is based
on principles of modularity and extensibility, ensuring that it is
flexible enough to be used for a variety of applications.

KEYWORDS
Computational Argumentation, Explainable AI, Neural Networks
ACM Reference Format:
Adam Dejl, Peter He, Pranav Mangal, Hasan Mohsin, Bogdan Surdu, Eduard
Voinea, Emanuele Albini, Piyawat Lertvittayakumjorn, Antonio Rago, and
Francesca Toni. 2021. Argflow: A Toolkit for Deep Argumentative Expla-
nations for Neural Networks. In Proc. of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), London, UK,
May 3–7, 2021, IFAAMAS, 4 pages.

1 INTRODUCTION
Recently, machine learning (ML) models have been successfully
applied in a variety of real-world settings, including self-driving
∗These authors contributed equally.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, London,
UK. © 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

cars, automated translation, diagnostic engines, or job applicant
screening. In many such deployments, understanding why certain
outputs are generated can be critical. As a simple example, if an ML
model is deployed in healthcare for treatment recommendation, a
medic (or patient) may wish to know why one treatment was sug-
gested over another. In other settings, explanations of ML systems
may be needed to assess the presence of algorithmic bias.

For some ML models, such as decision trees or k-nearest neigh-
bours, generating explanations is relatively straightforward; one
may say that they are intrinsically interpretable. However, for some
ML models, and in particular those based on modern machine learn-
ing algorithms such as deep artificial neural networks (NNs), it is
often difficult to understand why a certain output is generated, even
for experts in ML. The development of methods and systems for
extracting human-interpretable descriptions of black-box model
behaviour such as NNs has thus recently received much attention
in the field of explainable artificial intelligence (XAI), e.g. with post-
hoc approaches for explanation. These include feature importance
methods (such as LIME [5] and GradCAM [6]), prototype-based
methods (such as activation maximisation [3]), model extraction
(such as [2]) and counterfactual explanations (such as [7]). However,
the majority of research has hitherto been focused on explaining
the output of machine learning models solely in terms of the input,
without providing intuition regarding the inner workings of a given
model.

Recently, a novel method of deep argumentative explanations
(DAXs) has been proposed, drawing ideas from computational ar-
gumentation [1]. The advantage of DAXs over previous methods
is that it constructs ‘deep’ explanations that reflect the internal
influence structure of a model. In a convolutional neural network
(CNN), this may correspond to how the detection of lower level
features (such as linguistic or facial features) influence the detec-
tion of higher level features (such as text or face classification).
Moreover, as the concepts of debating and argumentation are gen-
erally well-understood by human users, the explanations generated
by computational argumentation can often be more intuitive than



Figure 1: Adapted from [1]: DAX methodology (alongside the typical process of obtaining outputs from a neural model given
its inputs) comprising steps: 1. Based on the chosen nodes 𝑁 within N , extract ⟨𝑁,I⟩, a directed graph of influences between
nodes; 2. Extract aGeneralised Argumentation Framework (GAF) from the output of the first step, based on choices of argument
mapping 𝜌 , dialectical relation characterisations {𝑐1, ..., 𝑐𝑚} and dialectical strength 𝜎 . These choices are driven by the types
{𝑡1, ..., 𝑡𝑚} of dialectical relations to be extracted and the dialectical properties Π that 𝜎 should satisfy (on the GAF) to form the
basis for explanations; 3. Generate a DAX from the GAF for user consumption in a certain format 𝜙 associating arguments
with human-interpretable concepts through amapping 𝜒 .

explanations generated using other methods. The overall DAX
methodology is summarised in Figure 1. This involves constructing
an influence graph (Step 1), converting it to a generalised argumen-
tation framework (GAF) (Step 2) and then displaying the GAF to
users in the relevant format with individual arguments visualised
in a human-interpretable format (Step 3). We refer the reader to [1]
for further details on the DAX methodology and its use of compu-
tational argumentation.

2 ARGFLOW
We develop a generic toolkit for constructing DAXs for neural net-
works. The code is available at https://gitlab.com/argflow, and a
video of experiments can be found at https://youtu.be/LPz4QbmLaxs.

Python Library. We collapse the first two steps into a single
GAF extraction step handled by GAFExtractor class which imple-
ments dependency injection pattern. The GAFExtractor construc-
tor takes an a StrengthMapper, an InfluenceMapper, a Charac-
terisationMapper and a Chi object as arguments corresponding
roughly to 𝜎 , a slightly embellished 𝜌 , 𝑐 𝑗 and 𝜒 in [1] respec-
tively. The GAFExtractor class exposes a single extract()method
which, given a model and its input, will return a GAF (represented
by the GAF class) for the model run on its input.

To extract the influence graph (which is represented by the In-
fluenceGraph class) and arguments, we provide an abstract class
InfluenceMapper. Developers implement the apply() function
which extracts the necessary InfluenceGraph given a model and
some input. The InfluenceGraph class is similar to a standard
graph implementation with the nodes being able to store any data
useful for the next steps. Moreover, in order to decide what con-
stitutes a ‘strong’ argument, we use the StrengthMapper abstract
class. Like for the InfluenceMapper class, developers implement
the apply() function which returns a strength value for a given
node in the InfluenceGraph object. To assign dialectical relations
between arguments, we provide the CharacterisationMapper ab-
stract class. Again, developers implement the apply() function,
this time returning the dialectical relations (represented by an enu-
meration) between two nodes. Note that this is slightly different

from 𝑐 𝑗 in that apply(u, v) on two nodes u and v returns the
relation R𝑖 for which 𝑐𝑖 = 𝑡𝑟𝑢𝑒 .

In order to visualise arguments in a human-interpretable modal-
ity, we provide the Chi abstract class which generates a visualisation
given a specific node, a model and its input. These visualisations
are stored in Payload objects associated with each node. Argflow
provides several out-of-the-box concrete implementations of the
Chi class (GradCAM and activation maximisation for convolutional
filters), as well as the other abstract classes mentioned above.

Finally, Argflow provides utilities to serialise the generated GAFs
as JSON files for use in the web portal using the Writer class.

Web Portal. This provides users with the ability to visualise
GAFs in different formats (corresponding to 𝜙 in Figure 1). We use
a typical web app architecture, with the frontend implemented as a
React app using JavaScript, and a Python server for the application’s
backend. Note that the portal is not designed to be deployed publicly
over a network. Rather, the server is intended to be run locally on
a single machine, by a single user. Several parts of the portal have
been designed to be customised and extended by the user.

The portal provides a graphical interface to quickly import some
classes of model and generate DAXs for them. However, this func-
tionality can be extendedwith the ExplanationGenerator abstract
class which contains a method that can be called to generate expla-
nations, taking in any necessary parameters. Developers can create
their own ExplanationGenerator implementation in a plugins
folder and, in the portal’s GUI, a menu allows users to select which
generator implementation they would like to use.

The visualisation system itself is also extensible. It uses an ab-
stracted interface that enables plugging in additional visualiser
implementations at runtime to allow for new types of visualisa-
tions. We provide two built-in visualisation types: graph-based and
conversation-based. The former was capable of comfortably render-
ing up to 3000 nodes and 6000 edges on an Intel i7-6500U CPU with
16GB RAM, though in practice rendering so many arguments may
lead to information overload for the user and is not recommended.

DemoApplication.Wepresent two demos generating explaina-
tions for VGG-16 [4] and a feed-forward NN.

https://gitlab.com/argflow
https://youtu.be/LPz4QbmLaxs


REFERENCES
[1] Emanuele Albini, Piyawat Lertvittayakumjorn, Antonio Rago, and Francesca

Toni. 2020. DAX: Deep Argumentative eXplanation for Neural Networks. CoRR
abs/2012.05766 (2020). arXiv:2012.05766 https://arxiv.org/abs/2012.05766

[2] Osbert Bastani, Carolyn Kim, and Hamsa Bastani. 2017. Interpreting Blackbox
Models via Model Extraction. CoRR abs/1705.08504 (2017). http://arxiv.org/abs/
1705.08504

[3] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2009. Visual-
izing Higher-Layer Features of a Deep Network. Technical Report 1341. University
of Montreal. Also presented at the ICML 2009 Workshop on Learning Feature
Hierarchies, Montréal, Canada.

[4] Shuying Liu and Weihong Deng. 2015. Very deep convolutional neural network
based image classification using small training sample size. In 2015 3rd IAPR Asian
Conference on Pattern Recognition (ACPR). 730–734. https://doi.org/10.1109/ACPR.
2015.7486599

[5] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(San Francisco, California, USA) (KDD ’16). Association for Computing Machinery,
New York, NY, USA, 1135–1144. https://doi.org/10.1145/2939672.2939778

[6] Ramprassath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Localization. In 2017 IEEE International Con-
ference on Computer Vision (ICCV). 618–626. https://doi.org/10.1109/ICCV.2017.74

[7] Sandra Wachter, Brent D. Mittelstadt, and Chris Russell. 2017. Counterfactual
Explanations without Opening the Black Box: Automated Decisions and the GDPR.
CoRR abs/1711.00399 (2017). http://arxiv.org/abs/1711.00399

https://arxiv.org/abs/2012.05766
https://arxiv.org/abs/2012.05766
http://arxiv.org/abs/1705.08504
http://arxiv.org/abs/1705.08504
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1109/ICCV.2017.74
http://arxiv.org/abs/1711.00399


REQUIREMENTS
For an ‘in-person’ demo using a laptop, a screen equipped with an
HDMI lead and a power extension cord will suffice.


	Abstract
	1 Introduction
	2 Argflow
	References

