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H I G H L I G H T S

Chirp signals enable transfer of ultrasound-based battery monitoring method to any cell.
Piezoelectric transducers validate technique on 12.5 Ah battery pouch cells.
Dominant frequency in response to tone burst signal indicates state-of-charge.
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A B S T R A C T

Conventional battery management systems rely on cell voltage, current, and temperature to predict the battery
state-of-charge and state-of-health, but their accuracy is limited. To overcome this limitation, ultrasonic probing
has been proposed as a novel battery monitoring technique. This paper introduces the use of ultrasonic chirp
signals for the transfer of ultrasound-based battery monitoring techniques without requiring prior knowledge
of the architecture of the cell. To validate this technique, small, lightweight piezoelectric disc transducers
that can be easily installed on off-the-shelf battery pouch cells were utilized for large cells with a capacity of
12.5 Ah. Furthermore, the dominant frequency of the response signal to a Hanning-windowed tone burst signal
was identified as a quantitative state-of-charge indicator. A predictive model was developed to compare the
performance of this indicator with that of previous ultrasound-based state-of-charge prediction methods. The
influence of the cell temperature and cycle age on ultrasonic guided wave propagation was also investigated
and isolated for analysis.
1. Introduction

The climate crisis urges the entire transport industry to find energy
storage systems that do not require fossil fuels and the market share
of battery-powered cars increases rapidly [1]. A major challenge in
the path to the certification of electrically powered vehicles, especially
aircraft, is the design of reliable and safe battery systems. Certain
failure conditions for Lithium-ion (Li-ion) batteries can lead to violent
battery fires and explosions. In land-based vehicles, passengers can
evacuate within a few seconds. In contrast, air transport vehicles must
operate safely for an extended period after the occurrence of a battery
malfunction without endangering the health of the passengers or the
integrity of the airframe. Therefore, advanced monitoring techniques
for battery cells are required to prevent battery fires in the first place.

Conventional battery management systems (BMS) typically use
open-circuit voltage, current integral, and temperature data to esti-
mate the state-of-charge (SoC) and state-of-health (SoH). Advanced
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predictions methods have been introduced including combined short-
term, long-term memory neural networks to predict the SoC and SoH
accurately based on these parameters [2–4]. Even though the prediction
techniques are mature, they still rely on the external parameters of
the cell. Unfortunately, the open-circuit voltage can only be measured
when no electric load is applied to the cell, and hence, not during oper-
ation. Coulomb counting must be performed continuously and cannot
account for internal losses in the cell. However, a Li-ion battery can be
analysed not only as an electrochemical system but also as a layered
multi-material composite. Because energy is stored by relocating Li
ions between the cathode and the anode of the cell, the compositions
of both materials change with the SoC. This fact can be utilized in
ultrasonic testing. Ultrasonic guided waves have been used extensively
in detecting damage in metallic and composite structures from small
coupons to large structures [5–7]. Their propagation in a medium is
dependent on multiple factors including the density, modulus, and
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porosity [8] of the structure. In the active materials of a Li-ion battery
cell, these properties are dependent on the SoC, as well as on the
temperature and cycle age. Consequently, ultrasonic guided waves can
be used to monitor the SoC of Li-ion batteries [8–10]. In contrast to
traditional imaging techniques based on electrons, ions, neutrons, or X-
ray radiation, ultrasonic guided waves provide rich information about
the physical properties of a sample without damaging it or requiring
its disassembly [11].

Initial work using ultrasonic transducers on Li-ion cells was per-
formed by Sood et al. in 2013 [12]. The authors intended to monitor
the interfaces between the active materials of the anode and cathode
and their respective current collector foils. Using two 1/4′′ (6.35 mm)
diameter transducers centrally on the upper and lower sides of a pouch
cell with a frequency of 5 MHz and signal strength of 400 V, they
analysed the reflected and transmitted parts of the signal, respectively.
The authors found that the transmitted signal was much weaker after
the cell was cycled, which they attributed to the degradation of the
interfaces. During cycling, gases such as CO2, CH4, and C2H4 are re-
leased and form pockets at the interfaces that push away the electrolyte
and therefore decouple sections of the cell, leading to a reduction in
capacity [12]. In 2015, Hsieh et al. [9] used a similar setup with
two 2.25 MHz transducers on different cell types, including LiCoO2
ouch cells, to demonstrate the global trend of decreasing time-of-flight
ToF) and increasing signal amplitude (SA) when the SoC increases. In
ddition to this global trend, they found exemptions close to the end of
ischarge, where LiCoO2 approaches a hexagonal-to-monoclinic phase
ransition that can quickly change the density and Young’s modulus of
he cathode [9]. When the cell is recharged, this phase shift is reversed,
nd the signal intensity drops again [9]. Furthermore, Hsieh et al. found
slight decrease in the signal intensity close to 100% SoC, which is

elated to a two-phase staging reaction.
Gold et al. [8] introduced the use of small piezoelectric disc trans-

ucers on Li-ion battery cells in 2017. Similar to the studies above, they
robed their 1.2 Ah pouch cell along the thickness dimension with two
ensors mounted on opposite sides of the cell. In their study, they found
hat the amplitude of the second peak in the response signal increased
ith increasing SoC, whereas the time-of-flight decreased. The data

ollected during charging in steps of 20% SoC were approximated as
inear trend. During discharging, Gold et al. observed a hysteresis effect
n the SA. In 2018, Ladpli et al. [10] used ultrasonic disc transducers
n a pitch-catch mode along the surface of a 3.65 Ah graphite/NMC
i-ion pouch cell. Throughout the cycling with low currents of 𝐶∕10,
ltrasonic guided waves were introduced into the cell using five-cycle
one burst signals with a centre frequency of 125 kHz. In agreement
ith Gold et al. [8], a decrease in the ToF and an increase in the
A were observed during charging. For similar SoCs, higher signal
mplitudes were observed during charging than during discharging.
owards 0% and 100% SoC deviations from the global trend were
etected for the signal amplitudes which had been found by Hsieh
t al. [9] too. The setup introduced by Gold et al. and further developed
y Ladpli et al. can be deployed in field operations and is also used
n this study. However, the ultrasonic signal used for probing a cell
ust be adjusted to the geometry and material properties of the cell.
he representative computational models often used for this purpose
equire detailed knowledge of electrode stacking as well as the dimen-
ions and material properties of the constituents [8,10]. Because this
nformation is often protected as an intellectual property of the cell
anufacturer, an alternative method is sought to adjust the ultrasonic

ignal to the cell at hand. Therefore, chirp signals comprising a wide
ange of excitation frequencies are introduced in this study to easily
djust the ultrasonic input signal to any cell (Section 3.1). In this report,
hrough chirp signals, the ultrasonic SoC indication is adjusted to cells
2

ith a nominal capacity of 12.5 Ah (size for use in electric vehicles),
hereas most published studies (e.g., [8,10,13–15]) employed small
ells used for smartphones or other personal electronics.

Additionally, the dominant frequencies in the responses to Hanning-
indowed tone burst signals are considered as an indicator of SoC.
ecently, Liu et al. [15] published the results of guided wave analysis
f a 4.3 Ah Li-ion pouch cell. In addition to the features in the time
omain, Liu et al. [15] observed a shift and amplitude change in the fre-
uency domain when the SoC was changed. However, the authors were
nly able to show qualitative changes in the dominant frequency owing
o limitations in frequency resolution. In this study, the frequency
esponse is analysed using a significantly larger number of discrete
ourier transfer points, and the shift of the dominant frequencies is
dentified to correlate quantitatively with the SoC (Section 3.3). Even-
ually, the dominant frequency of the response to a Hanning-windowed
one burst signal is compared to the established indicators ToF and SA
hrough a prediction algorithm for the SoC introduced in Section 3.6.

All ultrasound-based battery monitoring indicators detect changes
n the modulus and density of the cell structure [16]. Because both
re influenced by the temperature and cycle age of the cell [17],
ections 3.4 and 3.5 are dedicated to identifying and isolating these
actors.

. Experimental set-up and methods

.1. Set-up for charging and discharging

WS-NCM12.5 Ah cells with an NMC cathode were supplied by
ithium System GmbH, Am Dorfbach 36, CH-8307 Illnau, Switzerland.
he operating voltage range of the cell is 3.0 to 4.2 V. For electrochem-

cal cycling, a BioLogic VSP-3e potentiostat with a booster FlexP0060
as used. To satisfy the operational limits of the cell, discharging

urrents up to 𝐼𝐿𝑖𝑚𝑖𝑡− = 2𝐶 = 25 A and charging currents up to
𝐿𝑖𝑚𝑖𝑡+ = 0.5𝐶 = 6.25 A were used. At a rate of 1𝐶, the current is
et such that the nominal capacity of the cell would be transferred
ithin one hour. Hence, for a cell with a nominal capacity of 12.5 Ah,
𝐶 = 12.5 A. If the cell is charged at a higher C-rate, for example,
𝐶 = 25 A, the charging time is reduced. In the subsequent descriptions,
he following conventions are applied: When the discharge current is
ower than the maximum allowable charging current of 0.5𝐶 = 6.25 A,
he same current was used for discharging and charging. E.g., for a
0.2𝐶-cycle’, both the charging and discharging currents were selected
o be 2.5 A. If the peak discharge current was above the charging limit,
he charging was conducted at 0.5𝐶. Hence, a ‘2𝐶 ’-cycle refers to a
ischarge current of 25 A and charging current of 6.25 A. Throughout
his report, C-Rates are provided as a fraction of the nominal cell
apacity of 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 12.5 Ah, even though a slightly higher capacity
f 𝐶𝑟𝑒𝑎𝑙 ≈ 13.4 Ah was measured. The potentiostat was controlled using
C-Lab software, which was also used to collect electrical parameters
hroughout the experiments, including voltage, current, and charge.
urthermore, the cell temperature was monitored and recorded using
type-K thermocouple connected to the potentiostat. Data from the

otentiostat were recorded at time steps of 1 s.
A constant-current-constant-voltage (CCCV) protocol was selected

or charging and discharging operations. The charging/discharging
rocess was ended when the amplitude of the current dropped below
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1∕20𝐶 = 0.625 A. Between any charging and discharging
equences, the cell was left to relax for 30 min.

The SoC was calculated based on the charge drawn from and
upplied to the cell. The difference in charge 𝑄 to the chosen reference
𝑚𝑖𝑛 at the end of discharge was computed and divided by the charge

ange 𝑄𝑚𝑎𝑥 −𝑄𝑚𝑖𝑛 of the respective cycle, according to formula (1).

𝑜𝐶 =
𝑄 −𝑄𝑚𝑖𝑛 (1)
𝑄𝑚𝑎𝑥 −𝑄𝑚𝑖𝑛
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Fig. 1. Top: Schematic of cell WS-NCM12.5AH-3.7 including piezoelectric transducer
iscs (brown) and thermocouples (red), Bottom: Picture of cell WS-NCM12.5AH-3.7
ncluding piezoelectric transducer discs and one thermocouple.

.2. Set-up for ultrasonic guided wave probing

To monitor the changing mechanical properties of the cell, ultra-
onic guided waves were actuated and sensed through permanently
urface-mounted piezoelectric disc transducers of the type PI
-876K025. The setup was inspired by work conducted by Ladpli et al..

Compared with conventional ultrasonic probes, such as those used
by Hsieh et al. and Robinson et al., surface-mounted disc transducers
can be integrated in batteries for consumer electronics or in battery
packs for electric vehicles because of their small size and weight. As
they are permanently attached, errors in the transducer distance or
variations in the attachment pressure can be avoided. Four sensors were
attached to the same side of the cell, as shown in Fig. 1 and the data
recorded on Path 1–2 were used in this study.

An attempt was made to mount the piezoelectric disc transducers
using double-sided tape ‘Advance Tapes AT395’ to allow repositioning
of the transducers. However, a trial on an aluminium plate showed that
the signal amplitude and modal clearness were severely compromised.
Therefore, ‘Loctite Super Glue All Plastics, 2G’ was used to attach the
sensors to the battery cell.

The sensors were operated in pitch-catch mode, where one trans-
ducer acted as an actuator and the remaining transducers were re-
ceivers. A software initially developed by Lambinet and Sharif Kho-
daei [18] and enhanced by Rodrigues in the Structural Integrity and
Health Monitoring Group at Imperial College London [19] was used
to create the actuation signal and operate the waveform generator
‘NI PXI-5412’ and oscilloscope ‘NI PXI-5105’. The input signal data
had a sampling frequency of 100 MHz, and the response signals were
recorded with a sampling frequency of 60 MHz. During the charging–
discharging cycles, guided wave measurements were conducted every
2 to 6 min depending on the charging and discharging speed, to collect
a sufficient number of data points throughout the entire cycle. The data
recorded by the potentiostat (voltage, current, charge, temperature,
etc.) were synchronized with the guided wave measurements using the
absolute timestamp saved to each data point. Because the time step
for the potentiostat measurements was as small as 1 s, two adjacent
data points were always available for each guided wave measurement
with a distance of less than 1 s. When synchronizing the data, each
guided wave measurement got a value for the corresponding voltage,
3

i

current, cell temperature, etc., assigned using the weighted average of
the two adjacent data points from the potentiostat. For example, if a
guided wave measurement is taken at time 𝑇𝐺𝑊 = ‘12:55:05’ and the
potentiostat records the voltages 𝑈1 = 4.12 V at 𝑇1 = ‘12:55:04.419’
and voltage 𝑈2 = 4.11 V at 𝑇2 = ‘12:55:05.419’, the voltage assigned
to this particular guided wave measurement is calculated as shown in
formula (2).

𝑈𝐺𝑊 =
[

𝑈1 𝑈2
]

[

1 − |𝑇1 − 𝑇𝐺𝑊 |

1 − |𝑇2 − 𝑇𝐺𝑊 |

]

≈ 4.114𝑉 (2)

3. Results and discussion

3.1. Optimization of tone burst signal using chirp

Ultrasonic guided wave measurements which have been introduced
as battery monitoring technique [8,10] are originating from structural
health monitoring techniques. For the later, piezoelectric disc trans-
ducers have been used to detect damage in structural components.
Typically Hanning-windowed tone burst signals are deployed since they
allow the excitation of the structure with only a small frequency band
centred around one frequency (e.g. [20]). This leads to limited wave
modes in the probed structure. Therefore, specific wave packages can
be detected and identified more easily. The centre frequency can be
adjusted such that specific wave modes are excited and the propaga-
tion speed of the wave is within the nondispersive frequency band.
In this zone, the propagation speed does not change significantly if
the frequency is altered by the interaction with damage [16]. Ladpli
et al. (2018) used five-cycle Hanning-windowed tone burst signals with
centre frequencies between 100 and 200 kHz to excite their battery
cell [10].

To identify a suitable frequency, either different frequencies can be
tested until the response signal shows clear wave packets or the interac-
tion between the ultrasonic guided wave and the structure needs to be
analytically or numerically estimated to compute the wave modes pro-
duced by a specific input frequency. Multiple authors, including Hsieh
et al., Gold et al., Ladpli et al., have developed advanced models to
simulate the propagation of ultrasonic waves in battery pouch cells.
However, these models require knowledge of the internal structure
of the cells, including the stacking sequence, number and thickness
of layers, and material properties of the constituents a priori. The
complexity of the computational model is further increased by the
interaction of waves with the liquid electrolyte contained in the cell.
If SoC monitoring shall be applied to different cell types without the
need for a detailed computational model, another method of adjusting
the signal to the cell is required. To this end, a chirp signal is used in
this study, as suggested by Michaels et al. [21] and utilized in [7,22]
for structural health-monitoring purposes.

A chirp signal is a finite signal that sweeps over a range of fre-
quencies. If the response to a chirp signal is recorded for a structure,
then the response to any tone burst signal within the frequency range
of the chirp signal can be reconstructed [21]. The chirp signal can
be expressed by Eq. (3) where 𝑓0 is the initial frequency, 𝐵 is the
bandwidth, and 𝑇 is the chirp duration [21]. The corresponding Fourier
transform is denoted by 𝑆𝑐 (𝜔). Both are illustrated in Fig. 2(a) and (b),
respectively.

𝑠𝑐 = 𝑤(𝑡)𝑠𝑖𝑛(2𝜋𝑓0𝑡 +
𝜋𝐵𝑡2

𝑇
) (3)

𝑅𝑡(𝜔) = 𝑅𝑐 (𝜔)
𝑆𝑡(𝜔)
𝑆𝑐 (𝜔)

(4)

The signal excited by one of the piezoelectric transducers propagates
through the battery cell and undergoes change. This alteration can be
expressed as transfer function 𝐻(𝜔) in the frequency domain. If the
structure can be represented as a linear system [21], the response to an
nput function 𝑆(𝜔) can be computed as 𝑅(𝜔) = 𝐻(𝜔)𝑆(𝜔) where 𝐻(𝜔)

s the transfer function of the cell with instrumentation that is valid
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Fig. 2. Chirp reconstruction at 100% SoC for path 1-2: (a) Chirp signal with frequency range of 1–600 kHz in time domain (b) Frequency content of chirp signal (c) Response to
chirp signal in time domain (d) Frequency content of response to chirp signal (e) Recorded (blue) and calculated (dashed red) three-peak tone burst signal with centre frequency
65 kHz in time domain (f) Frequency content of recorded tone burst signal (g) Recorded (blue) and calculated (dashed red) response to tone burst signal in time domain (h)
Frequency content of calculated response to tone burst signal. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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for both the chirp signal and tone burst signal within the frequency
range of the chirp signal [21]. Hence, once the response 𝑅𝑐 (𝜔) to a
chirp signal 𝑆𝑐 (𝜔) covering the frequency range of the desired tone
burst signal is recorded, the expected response 𝑅𝑡(𝜔) in the frequency
domain to any tone burst signal 𝑆𝑡(𝜔) within the bandwidth of the chirp
signal can be calculated using Eq. (4).

Therefore, the following method is suggested to adjust the ultrasonic
uided wave signal to any cell at hand. First, a chirp signal with a
ide frequency range is created, and the corresponding response of the

tructure recorded (see Fig. 2(a) and (c)). The frequency content of both
he signal and the response is shown in 2(b) and (d). With this data,
he response to any tone burst signal within the frequency range of the
hirp signal may be computed according to Eq. (4). Next, the desired
one burst signal is created in the time domain, as shown by the red
ashed line in Fig. 2(e), and the frequency content calculated using the
ast Fourier algorithm (Fig. 2(f)). The response to the tone burst signal
Fig. 2(h)) is computed according to Eq. (4) and the corresponding
one burst response in time domain obtained using the inverse Fast
ourier transformation. Fig. 2(e) and (g) show the calculated tone burst
ignal and the reconstructed response, respectively, using a dashed red
ine. For validation, the same tone burst signal was used to excite the
ell, and the recorded response is plotted in blue, showing a precise
it with the reconstructed response in Fig. 2(g). This procedure allows
he evaluation of the response of the cell to multiple tone burst signals
ithout recording the response to each signal on the actual cell.

To monitor the SoC of a cell, the characteristics of the response
o the tone burst signal must be correlated with the changes in the
oC. In this section, the optimization of the number of excitation
4

s

ycles in the tone burst signal and its centre frequency is discussed.
ig. 3 displays the tone burst signals (a) with 5 and (b) 1.5 excitation
ycles and the corresponding responses at different states of charge.
or the response signals the colour is changed from light to dark
lue incrementally to illustrate the SoC variation from 0% to 100%
oC. The black line shows the scaled excitation signal to compare the
ossible overlap of the actuation and sensing signals, due to the short
hysical distance between the transducers. The dashed lines show the
econstructed response signals based on the chirp signals recorded on
he cell. The solid lines indicate the magnitudes of the corresponding
ilbert envelopes and the dots on the centreline highlight the positions
f the respective signal peaks. It is important to note that the frequency
ontent of a tone burst signal becomes narrower when more cycles are
ncluded in the excitation signal. Thus, a signal with a very low number
f cycles contains a wider frequency band. However, at a given centre
requency, a signal with more cycles has a longer duration. The input
ignals with 5 and 1.5 cycles at 65 kHz have lengths of 78 μs and 24 μs,
espectively. For the signal with 5 cycles, (a), the input signal duration
s significantly longer than the ToF for the first peak. In contrast, the
nput signal with only 1.5 cycles, (b) ends just after the signal arrives
t the second transducer. If multiple wave modes are excited, a long
ignal duration can lead to interference of the wave modes.

In all the response signals, more than one peak is evident, with the
irst peak having a higher amplitude than the second. For a signal with

cycles, two distinct wave packages can be identified at 100% SoC
dark blue). However, at lower charge states, the second peak fades in
mplitude to a point where the minimum between the first peak and

econd peak is barely identifiable. For the signal with 1.5 cycles, the
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Fig. 3. Tone bursts for path 1–2 recorded during charging at 𝐼 = 6.25 A on 07.07.2022
ith a temperature variation of 𝛥𝑇 = 2.21 K: (a) centre frequency 65 kHz with 5 cycles;

b) centre frequency 65 kHz with 1.5 cycles; (c) various centre frequencies with 1.5
ycles showing only the peak positions. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

agnitude of the response Hilbert envelope reaches almost 0 V between
he first and the second peak, making both peaks clearly identifiable at
ll states of charge. Therefore, signals with 1.5 cycles were chosen for
he following experiments.

In addition, the different characteristics of the first and second peak
n the respective response signals can be compared based on Fig. 3(a)
nd (b). The first peak is stronger in amplitude; however, this is not
he most relevant criterion for the analysis. Rather, features that show
significant change with SoC are sought. A larger variation in the ToF

nd SA in absolute numbers improves the signal-to-noise ratio. The
econd peak shows a much wider variation in ToF and SA than the first
eak and is therefore chosen for subsequent analyses. Further peaks
after the second) are not considered, as the wave packages become less
istinct, which could be caused by interactions with the cell boundaries
compare Fig. 1).

The same technique can be used to probe different centre frequen-
ies. Once the chirp signal response has been recorded for different
oCs, responses to tone burst signals with different frequencies can be
omputed automatically, and only the relevant output parameters are
lotted. For example, the peaks of the response signals can be plotted
or each frequency in the relevant range to visualize the spacing of
he ToF over the SoC range. A wider spacing allows for an improved
ignal-to-noise ratio as the absolute differences increase. The same
rocedure may be applied to any desired parameter (ToF, SA, or
ominant frequency). For the cell WS-NCM12.5 Ah, an example of such
5

plot is shown in Fig. 3(c) for the position of the response peaks at
different centre frequencies of tone burst signals with 1.5 cycles. The
first and second peak appear consistently and have similar distances
from each other for frequencies between 40 kHz and 110 kHz. At
110 kHz, the first peak is at approximately 25 μs and the second peak
is at approximately 42 μs. At 120 kHz, another peak at approximately
29 μs becomes stronger than the peak at 42 μs for low states of charge.
For low frequencies of up to 80 kHz, the second peak shows a larger
spread at the time of arrival than the first peak. Based on the criteria
discussed above, a tone burst signal with 1.5 cycles and a centre
frequency of 65 kHz was selected as the optimum waveform to excite
the WS-NCM12.5 Ah cell.

Using the procedure outlined in this section, the ultrasonic signal
may be easily adjusted to any cell at hand. Instead of probing different
tone burst signals at each SoC, only a chirp signal needs to be recorded
throughout one charge–discharge cycle. The identification of the most
suitable tone burst signal can be performed during post-processing.

Subsequently, the suggested method was applied to a
WS-NCM12.5 Ah cell. First, the indicators time-of-fight (ToF) and
signal amplitude (SA) are briefly analysed to validate the method
in Section 3.2. Next, the dominant frequency of the response to a
tone burst signal is investigated as a novel state-of-charge indicator in
Section 3.3.

3.2. Validation of time-of-flight and signal amplitude as state-of-charge
indicators

To validate the method for the established indicators ToF and
SA [10], the responses of the battery cell to tone burst signals were
reconstructed from chirp signals with a frequency range of 1− 600 kHz
which were recorded over the duration of a discharge–charge cycle at a
current of 𝐼 = 0.34𝐶 = 4.25 A. The results are shown in Fig. 4. Similar to
the trends found by Ladpli et al. [10], a decrease in SoC correlates to an
increase in the ToF in plot (a), and vice versa. Interestingly, this trend
is not symmetric. The SA in plot (b) decreases when the SoC decreases.
Both the ToF and SA show larger gradients at the start of discharging
and towards the end of charging. Hence, they are more sensitive at
20%–100% SoC. In agreement with the results of Hsieh et al. (2015) [9]
nd Ladpli et al. (2018) [10], a deviation of the trend can be observed
owards the end of discharge. Hsieh et al. attributed this to a phase
ransition of the cathode which could have a major impact on its
ensity and young’s modulus. In accordance with the cell datasheet,
lot (c) shows a small initial drop of the cell voltage, followed by
piecewise linear decline with decreasing SoC. The cell temperature

hown in plot (d) has a low overall variation of 𝛥𝑇 = 2.73 ◦C, owing
o the low charge/discharge current. The temperature increases during
ischarging, with the peak located at the end of discharge. It decreases
uring the 30 min rest period and increases slightly again during
harging. While Ladpli et al. [10] conducted their experiment at a very
ow current and corresponding constant temperature, the declining
emperature during the rest period seems to impact the ToF and SA
n this work, as suggested by [14]. Further analysis of the impact of
emperature is presented in Section 3.4.

Furthermore, it can be concluded that the ultrasonic indicators ToF
and SA complement the cell voltage well for SoC monitoring purposes.
While the guided wave features show a high susceptibility to changes
in SoC between 100% and 20% SoC, their gradient is small between
20% and 0% SoC. On the other hand, for the cell voltage, the largest
changes are found at low charge states.

3.3. Demonstration of dominant frequency as state-of-charge indicator

With the results in Section 3.2, the experimental set-up and data
processing is validated against the results of previous research in-
cluding [8–10] using the ToF and SA. Both are characteristics of the
response signal in the time domain. Liu et al. [15] set out to analyse
the dominant frequency in the response to a tone burst signal. Due
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Fig. 4. (a) ToF of the second response peak, (b) SA of the second response peak, (c) cell voltage, (d) cell temperature and SoC (in all plots) during a discharge–charge cycle at
𝐼 = 0.34𝐶 using a tone burst signal with 1.5 cycles and a centre frequency of 65 kHz on path 1–2 recorded on 13.07.2022 with a temperature variation of 𝛥𝑇 = 2.73 K.
Fig. 5. (a) Response signal in time domain and (b) corresponding Hilbert envelope for different SoC during discharge with 𝐼 = 0.34𝐶 using a tone burst signal with 1.5 cycles and
a centre frequency of 65 kHz on path 1–2 recorded on 13.07.2022 with a temperature variation of 𝛥𝑇 = 2.73 K. (c) Frequency content of first two wave packets. (d) Variation of
hase angle of the dominant frequencies identified in (c). (e) Variation in dominant frequencies with SoC (f) Moving average of gradient d(f)/d(SoC) with window size 5.
o the low fidelity analysis of the frequency content, they could only
how qualitative correlations between the dominant frequency of the
esponse to a tone burst signal and the SoC. This work aims to provide a
ufficiently fine frequency resolution to utilize the dominant frequency
f the response to a tone burst signal as an additional SoC indicator to
upplement the indicators in time domain.

Examining Fig. 3(b) again, it is noticed that not only the peaks,
but the entire second wave packet is shifted. It is apparent that the
phase shift of the signal increases with time, suggesting a change in
the dominant frequency. The frequency appears higher (shorter period)
6

towards 100% SoC. A similar observation was made by Liu et al. [15]
for some states of charge. These observations are substantiated in Fig. 5.
Based on chirp signal responses recorded during a cycle with 𝐼 =
0.34𝐶 = 4.25 A, the responses to a tone burst signal with 1.5 cycles
and a centre frequency of 65 kHz were reconstructed and are plotted in
Fig. 5(a). Plot 5(b) contains the associated Hilbert envelopes to simplify
the identification of relevant wave packets. In both plots, the dashed
red lines indicate the first two wave packets. The sequence enclosed by
these red lines was analysed for its frequency content, and the results

are shown in plot (c). It is important to note that the discrete Fourier
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transform must be computed with a sufficiently fine spacing to resolve
the small changes in the dominant frequencies. The frequency spacing
is given by 𝛥𝑓 in Eq. (5) where 𝑓𝑠 is the sampling frequency (60 MHz)
nd 𝑛 = 𝑚𝑘 is the number of discrete Fourier points expressed as a
ultiple 𝑚 of the signal length 𝑘 = 𝛥𝑡𝑓𝑠 with 𝛥𝑡 being the duration

of the analysed signal section (approx. 50 μs, Fig. 5(a)). To achieve a
frequency spacing 𝛥𝑓 of approximately 40 Hz, 𝑚 = 500 was selected.

𝛥𝑓 =
𝑓𝑠
𝑛

=
𝑓𝑠

𝑚 ⋅ 𝑘
=

𝑓𝑠
𝑚𝛥𝑡𝑓𝑠

= 1
𝑚𝛥𝑡

(5)

In [15], a frequency spacing of approximately 2500 Hz was used.
onsidering the dominant frequency range of approximately 6 kHz,
s displayed in Fig. 5(e), no quantitative analysis would have been
ossible. Note that, for the reconstruction and analysis in the time
omain of a tone burst response from a chirp signal, as explained in
ection 3.1, a significantly lower number of discrete points (e.g. 𝑛 = 2𝑘)
s sufficient.

In Fig. 5(c), the two dominant frequencies are identified as 𝑓1 ≈
8 − 41 kHz and 𝑓2 ≈ 73 − 79 kHz, respectively. Plot (d) shows the
hase shift of the dominant frequencies with varying SoC. It can be
bserved that the phase shift decreases with an increase in SoC. The
agnitude of the gradient of the phase shift increases towards a high

oC. The phase shift displayed in Fig. 5(d) is likely a result of a shift
n the dominant frequencies. Plot (e) illustrates a clear increase in
oth the dominant frequencies with increasing SoC. Near 0% SoC, the
radient of the dominant frequency 𝜕(𝑓 )∕𝜕(𝑆𝑜𝐶) is approximately zero.

At approximately 20% SoC, the gradients of both the central frequen-
cies start to increase. This is even more evident when plotting the
gradient 𝜕(𝑓 )∕𝜕(𝑆𝑜𝐶) in plot (f). During discharging, both gradients are
almost linear, suggesting a quadratic correlation between the dominant
frequencies and SoC. However, during charging, the gradient starts to
decrease again after the cell reached 70% SoC.

It is worth noting again that all the response signals used in Fig. 5
are responses to tone burst signals with a centre frequency of 65 kHz.
However, plot 5(e) indicates that the central frequencies detected in
the response signal varies as a function of SoC.

3.4. Temperature influence

The data analysed up to this point were recorded during charging
and discharging cycles with currents no larger than 0.5𝐶 = 6.25 A and
corresponding low temperature variations of 𝛥𝑇 = 1− 3 ◦C throughout
the entire cycle. For higher C-rates, larger temperature variations were
observed. At 1𝐶, the temperature varied by 𝛥𝑇 = 5− 5.7 ◦C and for 2𝐶
cycles variations of 𝛥𝑇 = 7.9−12.3 ◦C were measured. From research on
amage detection using ultrasonic guided waves, a linear correlation
etween temperature and ToF as well as SA is known for materials
uch as aluminium and CFRP ([23–25]). Furthermore, a shift in the
entral frequency of the response signal can be linked to changes in
emperature [26].

Owen et al. [14] characterized the temperature impact on their
ltrasonic measurements on a 210 mAh pouch cell (PL-65168-2C, AA
ortable Power Corp., U.S.A). The authors used a 6 mm diameter non-
ermanently mounted ultrasonic probe in pulse-echo mode to monitor
he SoC and other parameters of the cell. For a temperature variation
etween 0 ◦ C and 50 ◦C, Owen et al. observed a linear increase in
he ToF. The gradient of this trend changed slightly with the SoC of
he cell. The SA was found to decrease with increasing temperature.
ased on these findings, it was deemed necessary to account for the

nfluence of temperature on the guided wave features when analysing
harging–discharging cycles with larger temperature variations.

To isolate the influence of temperature on the ToF, SA, and dom-
nant frequency, an experiment was conducted in which the cell was
ooled and heated at a constant state of charge. The cell was first
laced in a refrigerator at 5 ◦C for at least 60 min. Subsequently,
7

hree thermocouples were mounted on the cell, as indicated by the t
Table 1
Temperature and aging influence on ToF, SA and dominant frequency compared
to parameter range observed during cycle with 𝐼 = 0.34𝐶 = 4.25 A recorded on
13.07.2022.

SoC 0-1 Temperature Aging

𝛥ToF −1770 ns 109 ns/◦C
6.16%

−1.35 ns/cycle
−0.08%

𝛥SA 1255 μV −35.3 μV∕◦C
−2.81%

9.62 μV∕cycle
0.77%

𝛥f 6000 Hz −170 Hz/◦C
−2.83%

5.79 Hz/cycle
0.10%

red circles in the cell schematic in Fig. 1. Thermocouple ‘A’ was used
to monitor the ambient temperature while thermocouples ‘B’-’D’ indi-
cated the cell temperature. With the thermocouples and piezoelectric
transducers attached, the cell was placed in an oven and heated at
approximately 45 ◦C for approximately one hour until the thermocou-
ples on the cell indicated 40 ◦C. Once the cell temperature reached
40 ◦C, the oven door was opened and the cell was left to cool to
room temperature. Chirp signals were recorded throughout the heating
and cooling periods, and the analysed 1.5 cycle, 65 kHz tone burst
signals were reconstructed, as explained in Section 3.1. The experiment
was repeated at 0%, 33%, 67%, and 100% SoC. The maximum dif-
ference read between any of the three thermocouples on the cell was
0.87 ◦C and the average spread was only 0.31 ◦C. Therefore, spatial
differences in the cell temperatures were not considered. Instead, the
mean cell temperature was used. For the analysis, only the temperature
range of 22–35 ◦C was considered, as only this temperature range was
concerned during the discharge–charge cycles.

Eight linear regression models were set up, with two separate
models for each SoC, to split the data collected during heat up and
cool down. For the dominant frequency, the maximum deviation of
any regression slope from the average slope of 𝑚𝐹𝑟𝑒𝑞 = −170 Hz∕◦C is
14.66%. The ToF average slope is 𝑚𝑇 𝑜𝐹 = 0.109 μs∕◦C, and the individ-
ual slopes deviate in inclination by up to 19.85%. With an average slope
of 𝑚𝑆𝐴 = −0.0353 mV∕◦C and a maximum deviation of 35.18%, the
prediction of the temperature influence on the SA is less certain than
for the dominant frequency and ToF. To put the temperature influence
on the dominant frequency into perspective, the discharge–charge cycle
displayed in Figs. 4 and 5 should be considered again. When changing
the SoC between 0% and 100% in the 0.34C cycle illustrated there, the
second dominant frequency changes by 6000 Hz, the ToF by −1700 ns,
and the SA by 1255 μV. The third column of Table 1 shows the impact
of a one degree change in temperature in comparison.

The temperature correction models for the dominant frequency,
ToF, and SA developed above were applied to two discharge–charge
cycles recorded at different C-rates. Fig. 6 is divided into two columns.
The left plots (a), (c), and (e) show the cycle recorded at 𝐼 = 0.34𝐶 =
.25 A, and the right plots (b), (d), and (f) represent the cycle recorded
t 𝐼 = 2𝐶 = 25 A. The specific data points are indicated with dots if
= 0, upward-facing triangles for data recorded during charging, and
ownward-facing triangles for points recorded during discharging.

Starting with plot (e), the originally recorded dominant frequency
s shown as a dashed red line, whereas the temperature-corrected data
re plotted as a solid red line. The linear correction model for the
nfluence of temperature on the dominant frequency was applied using

reference temperature of 25 ◦C. A correction of −170 Hz/◦C was
ence used for each degree temperature difference from the reference
emperature. The same procedure was applied using the respective
orrection models for ToF and SA in plots 6(a) and (c), respectively.
enerally, it is clear from the first column plots that the temperature
orrection has only a minor influence on the values collected during the
.34𝐶 cycle because the temperature range of the data used for these
lots is only 𝛥𝑇 = 2.32 ◦C.

The second column of plots (b,d,f) shows the original and

emperature-corrected data for a 2𝐶 cycle (2𝐶 discharging and 0.5𝐶
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Fig. 6. Original and corrected ToF, SA (second peak) and second dominant frequency
for 0.34C cycle recorded on 13.07.2022 (plots a,c,e) and 2C cycle recorded on
14.07.2022 (plots b,d,f) with 1.5 cycle, 65 kHz tone burst reconstructed from 1–600 kHz
chirp signal on path 1–2. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

charging; see Section 2.1). Considering the original dominant frequency
data shown as the dashed blue line in Fig. 6(f), the low values are
striking during discharge, especially at low SoCs. For all cycles, the
highest temperature was measured during the discharge at a low SoC,
as visualized in Fig. 4(d). Applying the temperature correction model
increases the frequency values during discharging significantly, as the
original measurements were taken at temperatures up to 32.95 ◦C. As
the cell was left to rest for 30 min after the discharging was completed,
the cell temperature during charging was lower, and so is the influence
of the temperature correction. Plots 6(b) and (d) show a similar offset
using the temperature correction for the ToF and SA.

Thin red lines indicate equal values in each row of plots. In plot (b),
the corrected ToF at low charge states is still higher in the 2𝐶 cycle than
in the 0.34𝐶 cycle (a). For the SA (d) and the dominant frequency (f)
recorded during the 2𝐶 cycle, the ranges of values after applying the
temperature correction are close to the respective ranges found for the
0.34𝐶 cycles in (c) and (e).

3.5. Aging influence

The capacity degradation of Li-ion battery cells is widely discussed
for all cell sizes. For portable electronics, it reduces the time the device
can be used before it needs to be recharged, whereas for electric
vehicles, it leads to a reduced range. The number of cycles to which
the cell has been exposed, and correspondingly, the remaining capacity,
also influence the parameters which are typically utilized for SoC esti-
mations. Therefore, the aging of cells poses a challenge for the accurate
8

f

prediction of SoCs [2,4]. The simplest option to measure the remaining
capacity is to run a full discharge cycle on the cell and precisely
measure the amount of charge that can be drawn from it. This method
was used as a reference (ground truth) in this study. However, for
batteries built into products it is not feasible to run an entire discharge
cycle from 100% to 0% SoC to measure the remaining capacity. It is
explored subsequently if ultrasonic guided wave measurements can be
used to estimate the cycle age of the cell to supplement the parameters
used for SoC prediction algorithm.

The mechanisms which lead to a reduction in capacity are physical
changes in the components of the battery cell. The largest impact
is due to the growth of the solid electrolyte interface on the car-
bon anode materials [27]. Thus, the lattice volume of the anode can
be increased [27]. Most products use methods such as voltammetry
or impedance spectroscopy for remaining capacity estimation which
are based on electrochemical measurements. In particular, impedance
spectroscopy which is a measurement of cell impedance over a large
frequency range, offers a wide range of information. However, this
method does not directly measure the physical changes inside the
cell, but rather their effect of these changes on the electrochemistry.
Therefore, complex models are required to infer physical changes inside
the cell [27]. Direct measurements of the changing material properties
inside the cell require elaborate methods, such as X-ray diffraction or
cell destruction. Hence, these options are not viable for cells in products
during operation.

Ultrasonic guided waves change their propagation characteristics
based on the material properties. Therefore, not only can changes
caused by the variation of SoC and temperature be detected, but also
changes in the material properties related to the cell cycle age. Ladpli
et al. [10] found a clear trend of a decreasing ToF and increasing SA
with the increasing degradation on a 3.65 Ah Li-ion pouch cell. In this
section it is explored whether the same trend for the ToF and SA can
be found on the larger 12.5 Ah cell used in this study. Furthermore, the
impact of the cycle age on the newly introduced dominant frequency
is analysed.

The initial 16.41 cycles run on the tested cell (including partial
charging and discharging operations) were recorded at various ambient
conditions and C-rates. For the aging experiment analysed in this
section, 20 additional cycles were recorded. After every fourth 2𝐶
cycle, one cycle at 0.5𝐶 was conducted. Because the lifetime of a cell
can entail more than a thousand cycles, only small changes could be
expected during this experiment.

During the initial four 2𝐶 cycles of the aging experiment (16.41–
20.41 previous cycles), the battery capacity increased, which could be
related to incomplete formation at the manufacturer. Starting at 20.41
previous cycles, a clear capacity degradation of approximately 0.02%
per cycle was observed. Interestingly, the capacity observed in the 0.5𝐶
cycles is lower than that of the neighbouring 2C cycles. During the
cycles using 2𝐶 the cell heated up significantly more (𝛥𝑇 = 7.9−12.3 ◦C)
than during the 0.5𝐶 cycles (𝛥𝑇 = 1 − 3 ◦C). Because the discharging
process is diffusion-driven, a higher temperature could enable a larger
amount of Li ions to be exchanged between the electrodes, which could
explain the increased capacity.

Corresponding to the capacity degradation for the cycles with a
previous cycle count of 20.41–35.41, changes in ToF, SA, and dominant
frequency are observed. Therefore, guided wave features can be utilized
to estimate the remaining capacity. To isolate the signal changes caused
by decreasing state-of-health (SoH, normalized remaining capacity),
the present SoC must be known. As devices with batteries (phones,
notebooks, and cars) are frequently charged to 100% SoC, this state
is chosen as an SoC reference to monitor the SoH. The variations in the
ToF, SA, and dominant frequency at 100% SoC are shown in Fig. 7.

The empty circles in Fig. 7 indicate the measurements obtained at
00% SoC throughout the aging experiment. It is clear that the scatter,
specially for the ToF (a) and dominant frequency (c), is very wide. The

illed circles indicate the mean value for each x-station, and the dashed
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Fig. 7. Datapoints (empty circles), mean value at each x-station (filled circles) and
linear regression (dashed black) for ToF (a), SA (b), and dominant frequency (c) at
100% SoC with temperature correction for 1.5 cycle 65 kHz tone burst reconstructed
from 1–600 kHz chirp on path 1-2.

black line is the result of a linear regression of the averages. For the SA
(b) an increase with the number of cycles can be confirmed. For the
dominant frequency (c) and ToF (a), the number of aging cycles is not
large enough to establish a robust prediction. To this end, and to check
for nonlinear effects which Ladpli et al. [10] found after approximately
125 cycles, multiple cells would need to be cycled for the duration of
a cell life.

Nevertheless, as an indication, the slopes of the trendlines are added
in the last column of Table 1 comparing them to the SoC and tem-
erature influences on the indicators. From this summary, it becomes
lear that neither the influence of temperature nor the influence of
ging can be ignored if guided wave features are used to predict the
oC accurately. The temperature variation during one cycle can easily
xceed 10 ◦C, leading to >50% variation in ToF and >25% variation
n SA and dominant frequency compared to the range of values found
etween 0% and 100% SoC. Considering the aging trend for the SA, an
rror in SoC of 25% would be exceeded after only 33 cycles.

.6. State-of-charge prediction

Advanced methods are available for predicting SoCs of Li-ion bat-
eries. In addition to simple analytical models, recurrent neural net-
ork have been introduced to create multi-parameter-based predictions
hich can account for variations in voltage, current, temperature,
nd aging [2,4,15]. These models could be further enhanced by in-
roducing ultrasonic guided-wave signal data. However, this work is
ocused on the validation of the ultrasonic parameters which could
9

e used as input to these models. Therefore, in this work, a simple t
odel assuming a quadratic correlation between the ultrasonic param-
ters and SoC is used to compare the prediction performance of the
ominant frequency, ToF, and SA on the WS-NCM12.5AH-3.7 battery
ell. Furthermore, precision improvements through temperature and
ging corrections are discussed. For the prediction models, the cycles
ecorded in the aging experiment after 20.41–35.41 previous cycles are
sed.

Fig. 8 presents the regression model for the SoC based on the
econd dominant frequency. The data points used for the regression
empty circles) have been corrected for the influence of temperature
Section 3.4) and aging (Section 3.5).

To account for the cycle age in any new cycle 𝑗, multiple dominant
frequency measurements recorded at 100% SoC were averaged and the
result denoted as 𝑓 𝑗,𝑆𝑜𝐶=1. The first cycle of the series shown in Fig. 7
was chosen as the reference 𝑓 1,𝑆𝑜𝐶=1. Subsequently, for the new cycle 𝑗
the impact of the cell age on the dominant frequency is calculated using
Eq. (6) and subtracted from all measurements in this cycle per Eq. (7).
This approach assumes that the effect of the cycle age is independent
of the SoC, as the same correction 𝛥𝑓𝑗,𝑎𝑔𝑒 is used for all charge states.

𝛥𝑓𝑗,𝑎𝑔𝑒 = 𝑓 𝑗,𝑆𝑜𝐶=1, − 𝑓 1,𝑆𝑜𝐶=1 (6)

𝑓𝑗,𝑆𝑜𝐶=𝑥,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑓𝑗,𝑆𝑜𝐶=𝑥 − 𝛥𝑓𝑗,𝑎𝑔𝑒 (7)

In the previous discussion on the dominant frequency (Fig. 5), it
as been identified that 𝑑(𝑓 )∕𝑑(𝑆𝑜𝐶) ≈ 0 at 0% SoC (similar to ToF
nd SA). Therefore, it was to be expected that the accuracy of the SoC
rediction would be worse for low charge states. Fig. 8 illustrates this
esult. The root mean squared error (RMSE) and maximum error are
hown as dashed and dotted lines, respectively, for each quarter of
he dominant frequency range. Whereas the RMSE in the first quarter
lowest SoC) is ±11.51%, it decreases to ±4.41% in the last quarter
highest SoC).

Next, the quality of the temperature and aging correction models is
valuated based on the error of the regression for each ultrasonic indi-
ator. Table 2 compares the accuracy of the prediction model for each
uarter of the prediction-parameter range. Even without any correc-
ion, the trend of decreasing error with increasing SoC can be read from
he first data line of the table. The second data line displays the RMSE
or the prediction based on temperature-corrected values. For quarters
–2, a reduction of 2.37% to 3.66% in the RMSE of the SoC prediction is
vident. For the last quarter, in which the error is already the smallest,
slight increase of 0.37% can be observed. As discussed before and

hown in Fig. 4, the cell temperature increases during the discharge
ycle. Therefore, the temperature variation is the highest for low charge
tates. For high SoCs, temperature variability is much smaller. The
orrection introduced for the temperature influence has associated
ources of error. Therefore, the already small RMSE at high states of
harge cannot be further improved using temperature-corrected values.

The third data line in Table 2 shows the RMSE of the model using
emperature and aging corrections. It is clear from the data that aging
orrection has no major impact on the accuracy of the prediction.
his was expected based on the uncertain trend of the dominant fre-
uency with increasing cycle age, shown in Fig. 7. However, if a larger
umber of cycles (e.g. 200 cycles) would be analysed, age correction
ight become more relevant for the dominant frequency-based SoC
rediction.

A similar regression model was built to estimate the SoC based
n the SA. Data rows 4–6 in Table 2 illustrate the RMSE for the
rediction model based on the SA. Here, the temperature correction has
smaller impact on the prediction accuracy compared to the dominant

requency-based model. However, as already expected from Fig. 7, the
ging correction has a more significant impact with an improvement
f up to 1.02% in RMSE compared to the data corrected only for the
emperature impact. Considering that only 16 cycles were included in

he analysis, the 1.02% deviation is substantial.
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Fig. 8. Second dominant frequency (empty blue circles) with temperature and age correction for 16 cycles (20–35 previous cycles) for path 1–2; Second order regression polynomial
(black line); RMSE (dashed lines) and maximum error (dotted lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
Table 2
RMSE error for SoC prediction.

Prediction basis Data correction 1. Quarter (lowest SoC) 2. Quarter 3. Quarter 4. Quarter (highest SoC) Global

Dominant frequency
Original 13.85% 10.29% 7.09% 4.04% 10.01%
Temperature 11.47% 6.63% 7.09% 4.42% 8.73%
Temperature & cycle age 11.51% 6.56% 7.18% 4.41% 8.76%

Signal amplitude
Original 14.44% 13.64% 7.29% 3.80% 11.38%
Temperature 16.05% 10.12% 6.11% 3.74% 11.81%
Temperature & cycle age 15.02% 9.91% 6.23% 3.26% 11.11%

Time of flight
Original 18.70% 14.01% 9.51% 2.98% 11.34%
Temperature 11.77% 5.97% 5.11% 3.72% 8.48%
Temperature & cycle age 11.89% 5.90% 4.99% 3.70% 8.55%
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The SoC prediction based on ToF displays similar trends to the dom-
nant frequency-based prediction. The corresponding error comparison
s summarized in the last three rows of Table 2.

The last column of Table 2 presents the RMSE for the entire SoC
ange. The model using ToF achieves 8.55% RMSE, outperforming
he model using SA (11.11% RMSE). Predicting the SoC based on
he dominant frequency results in an RMSE of 8.76%. Because three
ndicators were available, an additional model was created using a
ombination of them. A second-order polynomial without cross-terms,
s shown in Eq. (8) was used to lower the RMSE of the SoC estimate
y 0.91% to 7.64% compared with the ToF-based model. If a second-
rder multivariable model including cross-terms is employed, an RMSE
f 7.59% can be achieved, resulting in an improvement of only 0.05%
ompared to the model shown in Eq. (8).

𝑜𝐶 = 𝑚0 + 𝑚11(𝑇 𝑜𝐹 ) + 𝑚12(𝑇 𝑜𝐹 )2

+ 𝑚21𝑆𝐴 + 𝑚22(𝑆𝐴)2 + 𝑚31𝑓 + 𝑚32𝑓
2 (8)

To put the obtained RMSE values into context, a comparison with
he SoC prediction models of Liu et al. [15] and Wang et al. [2] shall
e drawn. They achieved average RMSE of 3.757% and 3.53%, respec-
ively, using different types of neural networks. While such algorithms
an capture nonlinear trends and multivariable dependencies easily,
hey have the disadvantage that the prediction is not physics-based.
herefore, the causes and consequences of variations in the ambient
onditions or cell parameters cannot be retrieved. For example, Liu
10

t al. [15] used only data recorded during charging and discharging d
ith 1𝐶 to train the network. However, in this study, it is found that
he C-rate influences guided wave propagation through temperature
ariations and potentially through other effects. To make a neural net-
ork robust to such variations, a large amount of data is required. The
etwork must be trained with data collected under different conditions
ecause small changes in the input can lead to large errors in the
redictive output of a neural network.

. Conclusion

This study proposes a novel method of using chirp signals to opti-
ize Hanning-windowed ultrasound tone burst signals for probing the

oC, SoH, and temperature of battery pouch cells. The wave packets in
he response signal are more confined using a small number of cycles
n the excitation signal. The frequency of the excitation signal can be
ptimized without prior knowledge of the cell architecture, to account
or the different sizes, constituents, and stacking of different cells. The
ominant frequency of the response to a Hanning-windowed tone burst
ignal is analysed with fine frequency resolution to enable its use as an
oC indicator. Compared to the ToF and SA of ultrasonic guided waves,
hich were used in earlier research [8,10], the dominant frequency
ffers almost the same predictive accuracy while being less sensitive to
emperature changes. However, it is computationally more expensive
ecause it requires a high-fidelity discrete Fourier transform to obtain
he dominant frequency with sufficient resolution. The developed pre-

iction algorithm for the SoC confirms the performance of the dominant
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frequency-based model. Furthermore, it shows that the ToF and SA
may be used to indicate the SoC not only for small cells, as shown in
previous studies [8,10,15], but also for cells with capacities suitable for
electric vehicles. Moreover, the study identifies that both temperature
and cycle age have a significant impact on all the considered indicators.
Each error was isolated to produce a clear correlation between the SoC
and the wave features.

Two domains of further research appear interesting: First, the exist-
ing correlations should be further refined to produce more reliable and
precise SoC predictions. The prediction in the low SoC region may be
enhanced by adding the derivatives of the indicators 𝜕(𝑇 𝑜𝐹 )∕𝜕(𝑆𝑜𝐶),
(𝑆𝐴)∕𝜕(𝑆𝑜𝐶), and 𝜕(𝑓 )∕𝜕(𝑆𝑜𝐶) as parameters for the model. In addi-
ion, the cell voltage and current are easy to obtain and already used
n battery management systems. Especially for low states of charge,
he cell voltage shows a large variation which complements the guided
ave-based prediction well. Combining the electrical parameters and
uided-wave-based indicators might enable the development of an
lgorithm to predict the SoC, SoH, and temperature simultaneously
ith great accuracy.

The second field of interest is the identification of abnormal sit-
ations. Appleberry et al. [28] developed an early thermal runaway
battery fire) warning mechanism for selected failure mechanisms on
small Li-ion battery using conventional ultrasonic transducers. If a

imilar warning mechanism can be developed using ultrasonic guided
aves with small disc transducers, it could be integrated into real-
orld products. In addition to thermal runaway, it might be possible

o identify other failure mechanisms. Excessive self-discharge could not
nly be identified through the SoC but also by identifying the material
hanges leading to self-discharge in the first place.
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