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Abstract—Channel state information (CSI) plays a critical role
in achieving the potential benefits of massive multiple input
multiple output (MIMO) systems. In frequency division duplex
(FDD) massive MIMO systems, the base station (BS) relies on
sustained and accurate CSI feedback from users. However, due to
the large number of antennas and users being served in massive
MIMO systems, feedback overhead can become a bottleneck. In
this paper, we propose a model-driven deep learning method for
CSI feedback, called learnable optimization and regularization
algorithm (LORA). Instead of using /;-norm as the regularization
term, LORA introduces a learnable regularization module that
adapts to characteristics of CSI automatically. The conventional
Iterative Shrinkage-Thresholding Algorithm (ISTA) is unfolded
into a neural network, which can learn both the optimization
process and the regularization term by end-to-end training. We
show that LORA improves the CSI feedback accuracy and
speed. Besides, a novel learnable quantization method and the
corresponding training scheme are proposed, and it is shown that
LORA can operate successfully at different bit rates, providing
flexibility in terms of the CSI feedback overhead. Various realistic
scenarios are considered to demonstrate the effectiveness and
robustness of LORA through numerical simulations.

Index Terms—Massive MIMO; CSI feedback; model-driven;
deep learning; regularization learning.

I. INTRODUCTION

S a core technology for the sixth generation (6G) of

wireless networks, massive multiple input multiple out-
put (MIMO) systems can provide higher data rates and link
reliability [1]. To realize the benefits provided by massive
MIMO systems, such as beamforming [2] and more reliable
signal detection [3], accurate channel state information (CSI)
at the base station (BS) is necessary in both the time division
duplex (TDD) and frequency division duplex (FDD) modes.
In the TDD mode, downlink CSI can be obtained directly
from uplink CSI under the assumption of perfect channel
reciprocity. However, the TDD mode may not work well in
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time sensitive scenarios, such as live streaming and vehicu-
lar communications [4]. In the FDD mode, the uplink and
downlink use different frequency resources at the same time.
However, due to the lack of perfect channel reciprocity in the
FDD mode, user equipments (UEs) need to estimate downlink
CSI and feed it back to the BS [5]. Nevertheless, the huge
feedback overhead due to the large number of antennas at the
BS and the large number of users being served can become a
significant performance bottleneck. Therefore, a CSI feedback
method with low overhead and high accuracy is essential to
deliver the promised gains of massive MIMO systems in next
generation communication networks.

Due to the strong spatial correlations and the shared local
scatterers in the propagation environment in massive MIMO
systems, CSI exhibits approximate sparsity in the angular-
delay domain, which means that CSI matrix can be com-
pressed significantly to reduce the feedback overhead [6].
Compressive sensing (CS)-based methods can be used to
project sparse signals to a low-dimensional space and recover
them efficiently with theoretical guarantees. The first CS-based
CSI feedback method for massive MIMO systems was pro-
posed in [7], which considered both two dimensional-discrete
Fourier transformation (2D-DFT) and Karhunen-Loeve Trans-
form (KLT) as sparsifying bases. In [8], the authors used
the statistical information about the angle-of-departure (AOD)
to develop a basis for sparsity mapping and a weighted
ly-norm was proposed for recovery, which was shown to
achieve a better performance than the DFT basis. Considering
orthogonal frequency-division multiplexing (OFDM) systems,
a multidimensional CS-based analog CSI feedback method
was proposed in [9], which treated the CSI feedback design as
a multidimensional matrix compression and recovery problem,
and exploited the tensor decomposition method. However,
these methods are limited in general as they cannot identify
the best basis, and the projected CSI matrices are often not
perfectly sparse, resulting in performance loss. Although some
particular priors are shown to reduce the strict requirement of
sparsity [8], [10], [11], these ‘manual’ designs are done in a
case-by-case basis and are still not efficient enough due to the
diverse use cases and high performance requirements of future
systems.

In recent years, data-driven methods, in particular, deep
learning (DL), has achieved notable success in a variety of
wireless communication applications [12], such as channel es-
timation [13], signal detection [3], joint source-channel coding
[14], channel prediction [15], and beamforming [16]. Besides,
DL-based methods have also made tremendous strides in



increasing the quality of CSI feedback [17].

The authors in [18] were the first to employ DL for CSI
feedback reduction and proposed a simple convolutional neural
network (CNN) auto-encoder architecture for dimensionality
reduction, which has been considered as a baseline for the
follow-up studies on DL-based CSI feedback methods. The
encoder and decoder in [18] carry out the compression and
recovery operations, respectively. Since increasing the recep-
tive field in CNN can extract more information from the input,
CsiNet+ in [19] considers different convolution kernel dimen-
sions. Inspired by the inception model, the authors in [20]
designed CRNet, which used multi-paths and multi-receptive
fields in both encoder and decoder to improve the performance.
MREFNet proposed in [21] shows that the larger number of
convolution channels can recover more details of CSI. The
authors in [22] exploited the dilate convolution operator to
increase the receptive field without increasing the number
of parameters, while retaining a high performance. In [23],
the popular self-attention architecture, named transformer, was
exploited for CSI feedback. To design the lightweight neural
network (NN) for CSI feedback, the authors in [24] exploited
the complex-value convolution operator and proposed a X-
shape NN architecture to reduce the complexity of the NN. In
[25], the NNs for real and imaginary parts share parameters,
which reduces the complexity of the NN. In [26], projected
CSI coefficients are further quantized, and entropy coded
to reduce the required rate, and a significant improvement
was reported with respect to CsiNet [18]. This approach was
extended to CSI feedback from multiple nearby users in [27],
where the correlation among CSI matrices was taken in to
account to achieve better compression efficiency. Researchers
have also adopted other DL techniques for CSI feedback. The
authors in [28] proposed a CSI feedback method based on
generative adversarial networks (GANSs). In [29], CSI feedback
is modeled as an image super resolution problem, and SRNet
is proposed. In [30], inspired by the elastic network, ACRNet
is proposed to adjust the complexity and performance of
the NN. To extract time correlation of CSI, CNN-LSTM-A
[31] and CsiNet-LSTM [32] are proposed. Feedback schemes
that are designed for a particular task, such as beamforming,
were investigated in [33], [34], which could reduce the feed-
back overhead by bypassing channel estimation. Although the
aforementioned CNN-based methods have achieved significant
performance improvements compared to their CS-based coun-
terparts, these methods simply treat the channel matrix as a
two-dimensional ‘image’ with local correlations, which may
limit their performance.

Model-driven DL methods exploit our prior knowledge
about the particular learning problem. Bringing model-driven
and data-driven approaches together, model-driven DL meth-
ods not only make the learned model more explainable and
predictable [35], but also avoid the requirements for accurate
and explicit modeling. In [36], the authors proposed a model-
driven DL method to improve the recovery accuracy in CSI
feedback, by unfolding a conventional CS algorithm into a
NN and learning the measurement matrix. Inspired by the
transformation matrix design and unfolding, TiLISTA-Joint
was proposed in [37], which not only learned the down-

sampling matrix, but also used a sparse auto-encoder archi-
tecture to learn the sparse transformation. To further improve
the recovery accuracy, the authors exploited the attention
mechanism for learning sparse transformation and proposed
FISTA-Net in [38]. In [39], the authors designed a model-
driven module to pre-compress CSI based on self-information,
and the entire NN was trained in a data-driven manner. For
the better presentation and easier reading, we present TABLE
I to summarize and show the detailed technical information
of related works. Key ideas and main characteristics show the
similarities and differences of these works, respectively.

Although model-driven DL methods have exhibited remark-
able success in CSI feedback, current methods are all designed
with an [;-norm regularization term, which cannot extract
the prior knowledge of CSI in some cases. Actually, how
to design a suitable regularization (i.e., data prior) is an
active research problem in machine learning. It is well-known
that lp-norm is the optimal regularization term to describe
sparsity, but the optimization with [p-norm is untractable.
When the measurement matrix satisfies restricted isometry
property (RIP) condition, /;-norm is equivalent to [p-norm
in terms of sparse signal recovery [43]. The authors in [44]
utilized a mixture of Gaussian distributions to learn the noise
distribution. Although the proposed method in [44] does not
explicitly formulate a regularization term, the data prior is
learned through the loss function. Due to the strength of DL,
the authors proposed a proximal dehaze-net, which learned
a haze-related prior to achieve the obvious performance gain
in single photo dehazing [45]. In [46], the authors proposed
RCDNet to automatically extract the prior from rain images
for better deraining.

Inspired by the model-driven methods for CSI feedback and
regularization term learning in [44]-[46], in this paper, we
propose a joint regularization and optimization method, called
learnable optimization and regularization algorithm (LORA).
LORA exploits a NN to learn the regularization term for better
fitting the characteristics of CSI, and develops an iterative
algorithm with learnable parameters to achieve performance
gains.

The main contributions of this work are summarized as
follows:

« Existing model-driven DL architectures for CSI feedback
all unfold the algorithm derived from an optimization
problem with the [;-norm regularization term, which
cannot describe the prior of CSI well due to its imperfect
sparsity. Instead, LORA treats the regularization term as
a learnable function that can be adjusted according to the
characteristics of CSI itself. The proposed method results
in a novel algorithm of model-driven DL for CSI feed-
back with significant improvements in the performance in
terms of both the normalized mean square error (NMSE)
and the achievable average rate.

o To further mitigate the effect of quantization in LORA,
we exploit quantization-aware training (QAT) with learn-
able quantization parameters, such as quantization scale
and zero point value. The proposed quantization method
eases the performance decay caused by quantization in



TABLE I: Summary of key ideas and main characteristics of related works.

Key ideas Related works Main characteristics
CsiNet+ [19] Increasing the depth and width of the CsiNet
Convolution operator design CRNet [20] Strip convolution kernel pattern, multiple paths and feature fusion
MRFNet [21] Large number of convolution channels
DCRNet [22] Increasing receptive fields with dilated convolution
TransNet [23] Self-attention and transformer
. [28] GAN
Novel DL techniques SRNet [29] Image super resolution technique
ACRNet [30] Elastic network and network aggregation technique

Distributed DeepCMC [27]
CNNLSTM-A [31]
CSINET-LSTM [32]

Multi-domain correlation utilization

Correlation among nearby users’ CSI
Correlation among the time domain with the attention mechanism
Correlation among the time domain based on CsiNet

Joint other modules [33]

[34] Joint the channel estimation, CSI feedback and beamforming with multiple users, and exploiting users correlations

Joint the channel estimation, CSI feedback and beamforming

[36]
TiLISTA-Joint [37]

Model-driven DL methods FISTA-Net [38]

Learning the measurement matrix, step size, sparse auto-encoder and sparse transformation
Unfolding FISTA and considering both sparsity and low-rank properties of CSI

Learning the measurement matrix

IdasNet [39] Using a model-driven module to pre-compress CSI based on the self-information
Changeable compression rate [40] ] o Designing an pverhead control unit to disca.rq part of thfa ogtput of the encoder ]
[41] Using principal component analysis to compress CSI and proposing a quantization method based on k-means clustering
Viewing CSI as sequence [42] Regarding CSI as a sequence and proposing a novel network based on 2D-LSTM

different bit levels.

o The numerical results show that LORA has a superior
performance than CsiNet+ [19], CRNet [20], DCRNet
[22], TransNet [23], ACRNet [30], TiLISTA-Joint [37]
and ISTA-NET in different scenarios based on 3GPP TR
38.901 [47]. Moreover, the performance with channel es-
timation error and complexity comparisons are provided.
We also carry out ablation studies to explore the effects
of different modules of LORA on the final performance.

The rest of this work is organized as follows. Section II

describes the massive MIMO system, CSI feedback procedure
and channel model. We re-formulate the CSI feedback problem
and present the basic algorithm in Section III. In Section IV,
we present LORA with insights in detail. Numerical results
and analyses are provided in Section V to demonstrate the
superiority of LORA compared to the existing CSI feedback
schemes. Finally, the paper is concluded in Section VI
Notations: Throughout the paper, bold uppercase letters,
bold lowercase letters and non-bold letters are used to denote
matrices, vectors and scalars, respectively. || - ||2 is the Eu-
clidean norm. | -| stands for element-wise absolute value. ()7
and (-)H are transpose and conjugate transpose, respectively.
The real and complex number fields are R and C, respectively.
The expectation operation is represented by E{-}. £ is used to
indicate the definition of the value and new variable, while ~
represents approximate equality. CA (1, 03) denotes complex
Gaussian distribution with mean 1, and variance 0.

II. SYSTEM MODEL
A. Massive MIMO system and DL-based CSI feedback

We consider the downlink of a single-cell massive MIMO
OFDM system in the FDD mode, where a BS equipped with
N; > 1 antennas serves a single-antenna user equipment
(UE) [18] over NC subcarriers. The received signal at the n-th
subcarrier (n = 1,...,N.) in the frequency domain can be
expressed as

Yn = iLrIL{'vnxn + Zn, ()

where h, € CM*1 o, € CM*! and z, € C are
the downlink channel vector, corresponding precoding vec-
tor and the modulated transmitted signal, respectively, while
zn, ~ CN(0,1) denotes the complex random additive Gaussian

spatial

[frequency

delay N

delay
(b) (c)

Fig. 1: The real part of the complete channel matrix in (a)
spatial-frequency domain, the real part of the complete (b) and
the cropped (c) channel matrices in angular-delay domain.

noise. The detailed channel model will be introduced in
Section II-B. In the FDD mode, the downlink channel vector
iln has to be estimated at the UE and sent back to the
BS. The overall downlink CSI matrix can be expressed as
H = [hy,hy,--- ,iLNC] € CN+*Ne which consists of 2N; N,
real numbers after decomposing the complex matrix into real
and imaginary parts. H can be transformed from the spatial-
frequency domain to the angular-delay domain by a 2D-DFT
as

H;=F,HF,, )
where Fy € CNtXNt and F, € CNe*Ne are the DFT matrices.
As mentioned, H has approximate sparsity in the angular-
delay domain. Moreover, only the first' few columns of H
have significant values because the delay between multipath
components typically lies within a limited period in the delay
domain. So, we preserve only the first N. < N. columns
and remove the rest. An example illustrating the real part of
the complete and cropped channel matrices in the angular-
delay domain, and the complete channel matrix in the spatial-
frequency domain are shown in Fig. 1. We denote the truncated
CSI matrix by H, which consists of 2Ny N, real numbers
after decomposing the real and imaginary parts. Although the
required number of feedback parameters has been reduced

The exact subset of significant values depends on the distribution of the
channel, and does not always correspond to the first part.
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Fig. 2: CSI feedback procedure.

from 2N; x Nc to 2N; X N,., the feedback overhead is still
too large and will consume significant channel resources.

Following the prior works, we consider a pair of encoder-
decoder networks to compress and recover CSI, and a pair
of quantizer-dequantizer to reduce the required CSI feedback
bits. As shown in Fig. 2, H € R2*N:xNe jg fed into the
encoder network, whose output is M floating point parameters.
Then, these parameters are quantized to a bit stream by the
quantizer, whose output is denoted by c. The dequantizer and
the decoder are applied at the BS. The dequantizer transforms
¢ back to floating point numbers, and the decoder transforms
the dequantizer output to H € R2*Ne*Ne The compression
ratio (CR) is defined as CR = M /2N, N,. The whole feedback
procedure can be presented as

c= Q. (fe(H,@e),@q), 3)
I:I:fd(Qd,(Cv@dq)a@d)a 4)

where H is the reconstructed and cropped CSI, f. and fy
denote the encoder and decoder functions, Q. and Q4 denote
the quantizer and dequantizer functions, while O., 4, O,
Oqq are the parameters of f., fq, Q. and Qg, respectively.
The complete CSI can be obtained by zero-padding followed
by inverse DFT operation on H.

B. Channel model

Due to the large size of the antenna array in massive MIMO
systems, spherical wave channel model should be considered
instead of a plane wave channel model [48]. This is also
verified through measurements in [49] and [50]. Spherical
wave channel model is more realistic, and has been widely
adopted in wireless communication applications [51]-[53]. We
also adopt a 3-D geometric stochastic channel model [54]
in this work, which incorporates the spherical wave channel
model.

We model the paths and sub-paths of channels distinctly
by considering the scatterers in the environment. The adopted
model does not require an exact geometric representation of
the environment, but instead, relies on the statistical distribu-
tion of the scattering clusters. The last-bounce scatterers in
the single—bounce2 model is considered, which focus on the
signal propagation from the last scatterers to the receiver, and
is not an exact geometric representation of the propagation

2The following illustrations are based on the single-bounce model for
simplifying notations, which can be easily extended to the multi-bounce
model. In Section V, the proposed method is evaluated on the multi-bounce
model. More details about the multi-bounce model can be found in [54].

Scatterers

Fig. 3: The geometric relationship between the BS, UE and
scatterers.

environment. The locations of the last-bounce scatterers are
used to generate the channel coefficients. The length of the
k-th path, dj, can be expressed as

di = ||r]l2 + e, ®)

where ||7||2 is the distance between the BS and the UE, 7y
is the delay of the k-th path, and c is the speed of light. We
define gy, as the arrival vector of the m-th sub-path in the k-
th path pointing from the UE location to the scatterers. Then,
its length can be expressed as

dj — I3
dkml|2 = 577 7= (6)
|| m” Q(dk + T'qu,m) ’
where
cos ¢y, , cosby
qk',m = sin (bz,m cos eg,m ’ (7)

M a
sin gk,m

®% . and 0, are the azimuth and elevation angle of arrival
(AOA) of the m-th sub-path in the k-th path, respectively. The
location of the scatterers can be obtained by the geometric
relationship shown in Fig. 3.

To model the spherical wave, each antenna element s at
the BS is considered separately. Given an reference antenna
(which can be chosen arbitrarily in the antenna array) element
location and its departure vector of the m-th sub-path in the k-
th path py, ,,, the departure vector of the s-th antenna of the m-

th sub-path in the k-th path p; 1 ., the corresponding elevation

d : d :
AOD ‘95, keom and azimuth AOD ¢s,k,m’ can be derived as
.. Pskm,
0% jm = arcsin = ®)
Y ||pS,k,m||2
and
k
@ = arctan L2 ©)
/ Ds,k,m,x
where
Ps,k,m = Pkm — €s, (10)

and e is the vector from the reference antenna element to the

s-th antenna element, while P 1 25 Ps k,m,y a0d Ps g m, . are

the Cartesian coordinate components of ps . . Therefore, the

deterministic phase 1 1 ,, and delay 7, can be derived by
2T

—(ds k,m mod A¢),

ws,k,m - )\C

(1)



and

oy s km
s — m= 3 vy , 12
Tsk My (12)
where
ds,kﬂn = ”ps,k,m”Q + ||qk,m||2> (13)

Mj, is the number of sub-paths in the k-th path, A, is
the wavelength, and mod stands for the modulo operation.
Therefore, the channel between the s-th BS antenna and the
UE via the k-th path can be described as (14), where P j, p,,
Frx0r Fixpr Fixos Fix, J and 4 are the polarization
coupling matrix of the s-th antenna of the m-th sub-path in
the k-th path, elevation polarimetric antenna response at the
receiver, azimuth polarimetric antenna response at the receiver,
elevation polarimetric antenna response at the transmitter,
azimuth polarimetric antenna response at the transmitter, imag-
inary unit, and the random phase of the m-th sub-path in the
k-th path, respectively.

Therefore, the (s,[)-th element of H in spatial-frequency
domain can be expressed as

s ds (7 j2n =1 B'r )

H, =) gopel 77TR7 T8 (15)
k=1

where B’ is the bandwidth, K " is the number of paths, s =

1,---,Nyand [ =1,---, N,.

III. PROBLEM FORMULATION

In this section, we first formulate CSI feedback as a linear
inverse problem. Then, the iterative shrinkage-thresholding
algorithm (ISTA) will be introduced, which inspired the pro-
posed method.

A. Problem formulation

We consider a learnable matrix as the encoder, which can be
conveniently designed as a light linear layer, and is appropriate
for the UE due to its limited computation and storage ability.
Therefore, the projected vector v can be expressed as

v= Az, (16)

where A is the learnable matrix and x € R2MVtNe is the CSI
matrix H in the vector form. Then, the decoder at the BS can
be regarded as solving an inverse problem, which is presented
as

minlﬂv—AwH%. (17)
z 2
Due to the huge dimension reduction, the problem (17) is
highly ill-posed; and hence, hard to solve directly. Typically, a
regularization term is introduced into the optimization function
to exploit any known prior information about the optimal
solution. Therefore, the problem (17) can be modified as

1
min §||U—A£L'||%+R(:B), (18)

where R(x) is the regularization term.

B. ISTA

Considering the sparsity of CSI, conventional CS-based and
model-driven DL methods utilize /;-norm as the regularization
term. Then, the problem (18) can be written as

1
mzin§||vam||§+)\HmH1. (19)

ISTA [55] is a classical iterative method to solve (19), and
the related model-driven DL methods for CSI feedback [36],
[37] are inspired by it. Its iterative formulation at the ¢-th step
can be expressed as follows:

u® =z _ AT (ACE(t_l) — v) ,
z® = sign(u®)max(0, |u®| — 6),

(20)
3y

where u, 0, @ and « are the intermediate variable, zero
vector, thresholding term and step size, respectively. The sign
and max are element-wise operations, which can be expressed
as

1 ifu>0,
sign(u)=¢ 0 ifu=0, (22)
—1 otherwise,
and if u >0
u if u>0,
max(u, ) = { 6 ifu<o. @3)

IV. DESIGN OF LORA AND TRAINING SCHEME

In this section, we first propose a novel model-driven DL
method, called LORA, which unfolds the derived iterative
formulations to a NN and incorporates a regularization learn-
ing module. Moreover, considering the quantization in CSI
feedback procedure, QAT and learnable quantization methods
will be employed.

A. Architecture of LORA

As in Equation (16) presented above, we consider the CSI in
the vector form. However, instead of fixing the regularization
term to I;-norm, we consider R(x) as a learnable transform,
which is assumed to be differentiable. Then, the iterative
formulation at the ¢-th step (t = 1,...,7) in the solution
of problem (18) can be derived as

20 — =1 _ =1 (AT(Am@fl) —v)

+VR@“*»), (24)

where VR(-) stands for the gradient of R(-). Built upon the
idea of unfolding, the decoder of LORA is developed by
treating each iteration as a separate layer, which are connected
sequentially. The step size a in (24) is set as a learnable
parameter that is different in each layer. The matrix A is the
same one used by the encoder. Different from the previous
works designing the sparsity transformation to fit a fixed
regularization term, we employ a learnable regularization term
to better fit the characteristics of CSI, and learn the regular-
ization term implicitly. To learn VR(-), each layer employs
a regularization learning module, which will be introduced
in detail in the next sub-section. Together with the encoder,
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Fig. 4: The NN architecture and forward procedure of LORA: (a) shows the overall architecture of LORA for the encoder
and decoder, (b) shows the detailed architecture of a single layer of the LORA decoder, including the regularization learning

module.

a complete NN architecture is established, and the overall
architecture of LORA is presented in Fig. 4 (a).
Model-driven DL exploits NNs to replace explicit expres-
sions or manually set parameters in model-based iterative
algorithms. This can mitigate the performance loss due to in-
accurate modeling, while exploiting the valuable knowledge of
the model simultaneously. Besides, model-driven DL methods
can also prevent the over-fitting problem, and are usually easier
to train compared to purely data-driven NN approaches.
Notably, the initialization of x is important due to the use of
gradient descent. Since CSI has sparsity, and its values are near
zero, (9 = 0 is considered as the initialization for LORA.

B. Regularization learning module

The parameters in ISTA, such as the measurement matrix,
step size, etc, are all treated as learnable parameters in existing
works. However, the regularization term is set as conventional
l1-norm. Meanwhile, [;-norm is not a fully accurate prior be-
cause of the weak sparsity of CSI. Even with strict sparsity, the
measurement matrix needs to satisfy RIP condition to ensure
the exact signal recovery by using /;-norm. Therefore, making
the regularization learnable to directly fit the characteristics of
CSI is a promising approach.

The architecture of the regularization learning module is
shown in Fig. 4 (b), which is a light multi-layer perceptron
(MLP). The number of neurons of the input layer, hidden
layer, and output layer of the regularization learning module
are set as 2Ny N,., N,, and 2NN, respectively. Therefore,

the mathematical expression for the regularization learning
module can be expressed as

MLP(x) = Wao (W1Xx), (25)

where W7 € RNmX2NiNe gnd W, € RZNiNeXNm gre
the parameters of the first and second linear layers, o(-)
is the rectified linear unit (ReLU) activation function and
x € R2NitNe s the input.

The reasons for choosing MLP as the architecture of the
regularization learning module are as follows: (1) MLP has
the universal approximation property [56], and hence, it is
capable to characterize the complex properties of CSI; (2)
The linear layer in MLP has a dense connection architecture,
which can keep the original information as much as possi-
ble compared to a locally connected architecture, such as a
convolution operator. Since the regularization term is part of
the optimization problem, which is fixed once the training is
finished, the parameters of the MLP should be shared by all the
layers. This also reduces the number of trainable parameters.

C. Training scheme with quantization

LORA is trained in an end-to-end manner. Mean square
error (MSE) is used as the loss function, which can be written
as

-
1 N
L(©) == > | Hi— Hil}, (26)
=1

where 7 is the total number of samples in the training set
and © denotes the parameters of the NN, including the MLP.
To avoid hyper-parameter tuning for dynamic learning rate



adjustment operator, ADAM [57] with fixed learning rate is
applied as the optimization operator.

The quantization module is also considered in CSI feedback
for practical implementation. The conventional quantization
procedure can be written as

q = round (clip (rgzm,p)) ,

b = num2bit(q),

27)

(28)

where r refers to real number to be quantized, s and z are the
scale and zero point values, respectively (i.e., the parameters
of the quantization function), q is an integer corresponding to
the quantized value, num2bit is the function that converts an
integer to its binary representation, b is the resultant bit stream,
n= —2B-1and p = 28-! —1 are the lower and upper bounds
on the clip function, B is the number of quantization bits per
real dimension, round is the rounding function that maps a
floating number to the closest integer, clip function aims to
limit the range of the input, which can be expressed as

n ifx<n,
clip(z,n,p) =4 = ifn<z<p, (29)
p ifx>p.

The corresponding dequantization procedure can be ex-
pressed as

(30)

r=qgxs+z 31
where bit2num is the function which converts a binary
number b to the equivalent integer value, q, and t is the
dequantized float values corresponding to r. Quantization and
dequantization operations can be regarded as two blocks,
which are inserted to the end of the encoder and the beginning
of the decoder, respectively. Therefore, the forward procedure
of NN can be regarded as CSI feedback with quantization
and dequantization. Meanwhile, since end-to-end training is
applied, the backward procedure can be regarded as learning
the parameters with the effect of quantization. However, the
rounding function is not differentiable, which would prevent
back-propagation during training. Instead, we can employ
straight-through differentiation [58], where we set

Jround(z) ,

o 1. (32)

The aforementioned training scheme is a modified QAT
method, which is inspired by the QAT in NN quantization
[59]. Although QAT achieves a reasonable performance, it
still has the weakness that the scale and zero point values are
manually set. As the quantization procedure is embedded into
the end-to-end training, the scale and zero point values can also
be learned and trained jointly. Considering back-propagation
during training, the derivatives of scale and zero point values
can be derived from (27), (31) and (32) as follows:

o _ %

<t &
Os Os +d
(5%, -
~ o s+dq
) —SFA4round(E) ifn< 2 <p
"l n or p otherwise,

(33)

or 09
E—ES—FI
9(5%)
7TS+1
N{ 0 ifn<™=%2<p

1 otherwise, (34)

where the derivatives of clip(x,n,p) at x = n and x = p are
set as 0 [60].

We name the scale learnable quantization method as LSQ,
and both scale and zero point value learnable quantization
method as LSZQ. The LSQ and LSZQ are modified versions
of the NN quantization methods in [61] and [60], respectively.

V. NUMERICAL EXPERIMENT

In this section, we study the effects of different design
options of LORA. We present numerical results evaluating the
performance of LORA in terms of the reconstruction accuracy,
and the achievable rate.

A. Experiment settings

1) Data generation: QuaDRiGa [54] is a general channel
simulator that meets the 3GPP standards. The spherical waves
introduced in Section II as well as other realistic scenarios
can be modeled by QuaDRiGa. Therefore, in this work,
we use QuaDRiGa to generate CSI matrices in rural macro
non-line-of-sight (RMANLOS), urban macro non-line-of-sight
(UMANLOS), and urban micro non-line-of-sight (UMINLOS)
scenarios. The carrier frequency, number of subcarriers, sub-
carrier interval, and N, are set as 3.5GHz, 1024, 30kHz and
32, respectively, for the above three scenarios. The BS is
equipped with a cross-polarized uniform planar array (UPA)
with half wavelength antenna spacing, where the number of
horizontal antennas is 4, and the number of vertical antennas
is 4 and 8 for N; = 32 and N, = 64, respectively. The UE is
assumed to move along a linear trajectory with a velocity of
© = 6km/h. The heights of the BS are 10m, 10m, and 25m
for the RMANLOS, UMINLOS and UMANLOS scenarios,
respectively. Training and test datasets are generated with
40000 and 10000 samples, respectively.

2) Training settings and evaluation metric: LORA is im-
plemented in PyTorch. The parameters of the NN are updated
and optimized by the ADAM optimizer with default settings.
The learning rate, number of epochs and batch size are set
to 0.001, 1000 and 200, respectively. The number of layers
in LORA, i.e., T, is set as 4, while N, is set as 1024 in
the simulations. We use the NMSE as the evaluation metric,
which is defined as

I 2 A1)
NMSEAIE{”HHHQ}. (35)
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TABLE II: The NMSE performance of the output of each layer
of a trained LORA using MLP and CNN for CR= 1/16 in
the RMANLOS scenario.

Order of Layers MLP CNN
1 0.2936 | 0.317
2 0.0888 | 0.5911
3 0.0174 | 0.0848
4 0.0012 | 0.0753

Unless stated otherwise, all experiments are implemented
with the above settings.

B. Ablation studies for the LORA architecture

In this sub-section, the effects of different design options of
LORA will be studied. The design motivations presented in
Section IV are supported by the following results.

1) Architecture of the regularization learning module: To
further motivate using MLP as the regularization learning
module, we present the output of the last layer using MLP
and CNN? in Fig. 5. The part of the output of the last layer,
which corresponds to the real part of the CSI, is shown in the
figure. By comparing the visualization results, it can be seen
that using CNN loses some information in the region of red
box, while the MLP recovers them well. To further investigate
the effect of two architectures to the iterative optimization
procedure, we also calculate the NMSE of the output of each
layer in LORA, which is given in TABLE II. It can be seen
that MLP has better performances than CNN at all iterations.
The above visualization and numerical results show that using
MLP for the regularization learning module in LORA achieves
a better performance than using CNN.

2) Effect of the learnable regularization module: To verify
the effectiveness of the regularization learning module in
LORA, and to motivate the particular architecture argued
for in Section IV-A, the performance of conventional ISTA®,
ISTA-NET, TiLISTA-Joint and LORA are compared next. The
ISTA-NET stands for an ISTA unfolding method, which has
learnable measurement matrix, step size and threshold. In
TiLISTA-Joint, in addition to the parameters in ISTA-NET,
a sparse transformation is also learned. In this experiment,
the conventional ISTA is the baseline method, which has no
learnable part. The results are shown in Fig. 6. As we can
see, the performance increases as we learn more parameters
of the underlying model. This phenomenon suggests that
the performance can be improved by making more of the
model parameters learnable. Specifically, the results verify
that the learnable regularization outperforms fixing [;-norm
as the regularization term. In addition, the importance of
regularization in terms of the performance can be shown
among the compared DL methods.

We also compare the /;-norm of the output of the ISTA-
NET and LORA, to further study the learned regularization
term. The results are shown in TABLE III. Although the

3The CNN here consists of two convolutional layers with a ReLU activation
function. The convolution filter sizes are 3 X 3 and the numbers of convolution
channels in the two layers are 32 and 2, respectively.

4We choose Gaussian matrix as the measurement matrix.

TABLE III: /;-norm of the output of different methods for
CR=1/16 in the UMANLOS and UMINLOS scenarios.

Scenario

Method UMANLOS | UMINLOS
ISTA-NET 3.74 318
LORA (ours) 439 10.15

TABLE IV: The NMSE performance of LORA with different
number of layers and width of MLP for CR= 1/64 in the
RMANLOS scenario.

Number
of Layers (1)
Number of 4 3 6 7
Neurons (N,,)
512 0.1791 | 0.1706 | 0.1656 | 0.1625
1024 0.0099 | 0.0071 | 0.0055 | 0.0047
4096 0.1629 | 0.0137 | 0.0105 | 0.0081

learned regularization term has no explicit formulation, we
can conclude that the learned regularization term is different
from the conventional /;-norm, and the improved performance
of LORA with the learned regularization term confirms that
l1-norm is not the right regularization for this problem.

3) Effect of different layers of LORA and the width of MLP:
The number of layers of LORA and the width of the hidden
layer in MLP are investigated next. The impact of these two
hyper-parameters on the performance of LORA can be seen
in TABLE IV. If the performance is more important and the
increased complexity can be accommodated, such as the high
accuracy communication, LORA has the potential to improve
the performance by using more layers according to the results
in TABLE IV. We also observe that increasing the width of
MLP from N,, = 512 to N,,, = 1024 can significantly boost
the performance. Indeed, simply using a wider MLP can be
sufficient as the gains from increasing the number of layers
from T = 4 to T = 7 is relatively marginal in this case.
Moreover, it is worth mentioning that increasing the width or
depth of a NN can make training process more difficult, e.g.,
due to gradient vanishing and explosion. In TABLE IV, we
can observe that increasing IV, from 1024 to 4096 results in
a worse NMSE performance. To maximize the performance in
each setting, the training parameters, such as the learning rate
and batch size, need to be carefully adjusted.

C. Further performance results

In this sub-section, the performance of LORA is evalu-
ated in the aforementioned three scenarios, and compared
with seven benchmarks to investigate its effectiveness and
robustness. CsiNet+ [19] and CRNet [20] are considered as
two CNN-based benchmarks. Meanwhile, TiLISTA-Joint [37]
and the ISTA-NET are considered as the unfolding-based
benchmarks. To further highlight the superiority of LORA,
DCRNet [22], TransNet [23] and ACRNet [30] are also applied
as benchmarks. The results are shown in Fig. 7 - Fig. 9 for
the three scenarios RMANLOS, UMANLOS and UMINLOS,
respectively. LORA outperforms all benchmarks clearly for all
CR values in all the scenarios, especially for small CR values.
The presented results demonstrate the superiority of LORA
compared to recent works in terms of the recovery accuracy
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Fig. 5: The visualization of the real part of the CSI from the last layer of a trained LORA with (a) CNN and (b) MLP as
two alternative architectures for the regularization learning module, while (c) is the groundtruth. The significant differences

are marked by red boxes.
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TABLE V: The NMSE performance of the proposed method
in RMANLOS scenario with a 64-antenna BS serving UEs
with 2 antennas.

CR
NMSE

1/16
0.00031

1/32
0.00347

1/64
0.01062

even for CR = 1/64. Moreover, the robustness of LORA
in terms of achieving a superior performance in a variety
of communication scenarios and CR values are verified. We
conclude that LORA is a promising method for practical cases
with high performance and small overhead. Next, we consider
a more complex scenario with a 64-antenna BS serving UEs
with 2 antennas. The NMSE performance of the proposed
method in this scenario is presented in TABLE V. The results
show that the proposed method can be easily extended to
more antennas at the UEs or the BS, and serve more complex
massive MIMO systems.

Next, to evaluate the robustness of LORA against channel
estimation errors, we study its performance with imperfect
CSI. In particular, different from the above experiments that
assumed perfect CSI at the UE, an additive white Gaussian
noise is added to the CSI during both training and testing
stages. The NMSE performance for CR= 1/64 of TiLISTA-
Joint and LORA in the RMANLOS scenario are compared.
The signal-to-noise ratio (SNR) of CSI is used to adjust the

TABLE VI: The number of parameters of different methods
in the encoder and decoder, respectively.

CR=1/4 CR=1/64
Method Encoder Decoder Encoder Decoder
CsiNet+ 1,048,772 1,069,936 65,732 86,896
TiLISTA-Joint | 1,048,576 | 11,468,820 65,536 10,485,780
LORA(ours) 1,048,576 | 16,777,220 65,536 16,777,220

noise level introduced to the CSI. According to the results
in Fig. 10, LORA significantly outperforms TiLISTA-Joint in
all imperfect CSI noise levels, which suggests that LORA
has better capability to adapt to different degrees of channel
estimation errors. Notably, the NMSE here is defined as

T2
NMSEéE{—”Hgt H”2}, (36)

[ H ge 13
where H; denotes the perfect CSI. Since the input of LORA
contains channel estimation errors, the results in Fig. 10 also
show the denoising capability of LORA in addition to the CSI
compression and recovery.

D. Complexity

Here, we analyze the storage and computational complexity
of LORA. At the encoder of LORA, there is only a measure-
ment matrix, which has ((2N;N.)? x CR) parameters. At the
decoder of LORA, each layer has a learning rate parameter and
a regularization learning module, which has (4N;N. x N,;,)
parameters. Thus, the total number of parameters of LORA is
((2M 4 4T N,,) xN¢N. + T). Thanks to parameter sharing
among regularization learning modules of different layers, the
number of trainable parameters of LORA can be reduced
to ((2M + 4N,,,)NyN. + T). The number of parameters of
CsiNet+, TiLISTA-Joint and LORA at the encoder and de-
coder are also shown in TABLE VI for both CR= 1/4 and
CR= 1/64. The results show that unfolding-based methods
have slightly fewer parameters at the encoder, but significantly
more parameters are needed at the decoder. It is because the
convolution operator in CsiNet+ shares parameters and has
less connections with the output of the former layer than MLP.
However, since the BS usually has large storage, it is desirable
to employ a larger model on the decoder side.
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Fig. 10: The NMSE performance with different SNRs.

TABLE VII: The computation costs of different methods for
CR=1/64 in the RMANLOS scenario.

Method Training time (sec.) | Test time (sec.)
ISTA - 90.96
CsiNet+ 64.307 6.712
TiLISTA-Joint 109.688 10.432
LORA (ours) 29.337 3.54

The main operator employed in LORA is a linear layer,
whose computational cost can be calculated as N;, X Nyyt,
where N;, and N, are the sizes of the input and output of
the linear layer, respectively. Therefore, the encoder, decoder
and total computational complexity of LORA are O(M N.N,),
O(TMNZN?2) and O(TMNZN?), which indicates that the
computational cost of LORA depends on the number of layers,
antennas, preserved sub-carriers and feedback parameters. In
the following, CR= 1/64 is used as an example to compare
the running time of one epoch of three DL-based methods,
and the training and test times are shown in seconds (sec.)
in TABLE VII. According to TABLE VII, it is obvious that
LORA costs the least time among the compared methods,
which shows the superiority of LORA in terms of computing
time. Comparing the LORA results with these of ISTA and
TiLISTA-Joint, we conclude that introducing the learnable
regularization term improves the recovery performance while
reducing the inference time. It can be clearly observed that
DL-based methods have faster inference speed. Although the
proposed method will cost extra time in training compared
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—A— LSZQabit \
105} |~ © —QATebi >
— % —LSQ8bit
— A —LsZQBbit

— — —without quantization

106 L L
1/64 1/32 116 1/4
CR

Fig. 11: The NMSE performance versus CR for different quan-
tization methods and bit levels in the RMANLOS scenario.

with conventional ISTA, which does not require any training
at all, training be done offline and online fine-tuning or MAML
[62] methods can be exploited to reduce the cost of training
in non-stationary environments.

E. Quantization

In the above simulations, we ignored the quantization er-
ror. In this sub-section, the proposed quantization method is
evaluated. We first compare jointly training LORA and the
quantizer-dequantizer parameters with training the quantizer-
dequantizer on a well-trained LORA. The NMSE of these two
approaches are 0.0053 and 0.0069, respectively, for CR= 1/4
in the RMANLOS scenario. Hence, as one would expect,
joint training is preferable as the NN parameters adapt to
the quantization effect. We next compare three methods for
four different CR values and two different bit levels in the
RMANLOS scenario. The NMSE performance of the quanti-
zation methods are presented in Fig. 11. QAT is the baseline
method for comparison, while the dashed line without marks
refers to LORA without quantization. It can be seen that LSQ
and LSZQ both outperform QAT. Moreover, the performance
increases with the number of learnable parameters in the
quantization module; that is LSZQ outperforms LSQ. Compar-
ison with LORA without quantization benchmark shows that
quantization decreases the performance of LORA, especially
when the number of quantization bits is small. The results not



— — —perfect CSI

8 |—#A—LORA(ours) A
TiLISTA-Joint -
—6— CsiNet+

Average user rate[bps/Hz]
IS

R

0 2 4 6 8 10 12 14 16 18 20
SNR [dB]
(a) CR=1/64

— — —perfect CSI

| |—A—LORA(ours)
TILISTA-Joint P
—6— CsiNet+ P

0 2 4 6 8 10 12 14 16 18 20
SNR [dB]
(b) CR=1/4
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Fig. 13: The achievable rate versus SNR with 4-bit quantiza-
tion with different methods in the RMANLOS scenario.

only verify that the scale and zero point value are essential
parameters of the quantization, but also demonstrate the effec-
tiveness of making these parameters learnable. As expected,
the performance of all three methods improve with the number
of quantization bits. In addition, the performance of LSQ and
LSZQ increase with the increase in CR more significantly in
8-bit quantization than 4-bit quantization. It is also interesting
that the improvement of LSQ and LSZQ compared to QAT
also increases with the number of quantization bits. This
phenomenon may be attributed to the fact that the impacts
of scale and zero point parameters are amplified due to the
increase in the number of quantization bits.

F. Communication performance analysis

So far, we have mainly analyzed the NMSE performance
of LORA. However, in practical systems, the goal of provid-
ing accurate CSI feedback is to improve the communication
performance. Hence, in this section, we consider the average
achievable user rate to evaluate the performance, where zero-
forcing (ZF) is used as the precoding algorithm. ZF is applied
independently for all sub-carriers to calculate the correspond-
ing rates, and the results are averaged over the number of sub-
carriers. The details of how these rates are evaulated can be

found in [63] and [64]. We generate 8000 samples for training
and 2000 samples for the test. The number of sub-carriers is
set to 512, while the other variables remain the same as in
Section V-A.

The performance of TiLISTA-Joint, CsiNet+, and the pro-
posed LORA method versus SNR for CR= 1/64 and CR=
1/4 in the UMANLOS scenario are shown in Fig. 12 (a)
and Fig. 12 (b), respectively. The dotted line represents the
achievable rate with perfect CSI knowledge, which can be
regarded as an upper bound. From the figure, it can be seen
that the proposed method outperforms the compared methods
for both CR values, while the improvement with respect to
TiLISTA-Joint is more significant in the high compression
case. Moreover, the gaps between LORA and the upper bound
are uniformly narrow across all SNRs for both CR= 1/64 and
CR= 1/4. Since the overhead is large for CR= 1/4, the gap
between LORA and TiLISTA-Joint is small, and both of which
perform close to the upper bound. The achievable average rate
results corroborate the comparisons based on the NMSE, and
verify the superiority of LORA.

To further verify the effectiveness of the proposed quanti-
zation method, we evaluate the rate performance of the three
quantization methods considered in Fig. 11. According to the
results presented in Fig. 13, the quantization methods with
learnable parameters outperform the method without learnable
parameters, also in terms of the rate performance. We also
observe that the gap between the rates achieved by the LSQ
and LSZQ is rather small, which may attribute to the fact that
the rate is a logarithmic function of the SNR, which shrinks
the relatively larger gap observed in terms of the NMSE.

VI. CONCLUSION

In this paper, a model-driven DL method, called LORA,
has been proposed for efficient CSI feedback in FDD massive
MIMO systems. LORA is constructed by unfolding an iterative
optimization algorithm with learnable parameters. Specifically,
the derivative of the regularization term of the optimization
problem is parameterized as a MLP to automatically and
directly extract the characteristics of CSI instead of using
the fixed conventional [;-norm. Besides, a scale and zero



point value learnable quantization method with the end-to-end
training was proposed to ease the performance decay caused
by quantization. Numerical results not only show effects of
various components of LORA, supporting the presented ar-
chitecture, but also demonstrate the superiority and robustness
of this architecture with respect to existing techniques in the
literature. It has been also shown that LORA with the proposed
quantization method can be effective at different bit levels,
providing flexibility in terms of the available feedback channel
capacity.
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