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Abstract—Recent translational efforts in brain-machine inter-
faces (BMI) are demonstrating the potential to help people with
neurological disorders. The current trend in BMI technology is
to increase the number of recording channels to the thousands,
resulting in the generation of vast amounts of raw data. This in
turn places high bandwidth requirements for data transmission,
which increases power consumption and thermal dissipation of
implanted systems. On-implant compression and/or feature ex-
traction are therefore becoming essential to limiting this increase
in bandwidth, but add further power constraints – the power
required for data reduction must remain less than the power
saved through bandwidth reduction.

Spike detection is a common feature extraction technique
used for intracortical BMIs. In this paper, we develop a
novel firing-rate-based spike detection algorithm that requires
no external training and is hardware efficient and therefore
ideally suited for real-time applications. Key performance and
implementation metrics such as detection accuracy, adaptability
in chronic deployment, power consumption, area utilization, and
channel scalability are benchmarked against existing methods
using various datasets. The algorithm is first validated using a
reconfigurable hardware (FPGA) platform and then ported to a
digital ASIC implementation in both 65 nm and 0.18µm CMOS
technologies.

The 128-channel ASIC design implemented in a 65 nm
CMOS technology occupies 0.096 mm2 silicon area and consumes
4.86µW from a 1.2 V power supply. The adaptive algorithm
achieves a 96% spike detection accuracy on a commonly used
synthetic dataset, without the need for any prior training.

Index Terms—Spike detection, calibration-free, adaptive
threshold, low power, hardware-efficient, ASIC

I. INTRODUCTION

IMPLANTABLE Brain Machine Interfaces (iBMIs) have
advanced significantly over the past two decades, already

demonstrating their utility and potential impact through neuro-
prosthetic control [1], as well as decoding of handwriting [2]
and speech [3] for communication. Research in iBMI tech-
nology is targeting devices with higher channel counts to
access more neural data, with the prospect of this achieving a
higher information transfer rate and better robustness/longevity
through redundancy. Translational and commercialization ef-
forts are also aiming to reduce the level of invasiveness
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through miniaturization and avoiding percutaenous connectors,
i.e. wired implants.

Wireless connectivity is an essential feature for the
widespread clinical adoption of iBMIs to reduce the risk of
infection [4]–[6]. However, with an ever-increasing number
of channels, the raw data bandwidth required for wireless
transmission also increases and can become prohibitive. There,
therefore, exists a real need for efficient and effective on-
implant processing to reduce the amount of data through data
compression or feature extraction.

The neural firing rate is a commonly used feature [4]–[7]
that distills important information related to subject behavior
or intention from the observed intracortical signals. By using
this feature, the required data bandwidth can be significantly
reduced, in turn resulting in reduced transmission power
requirements [8]. The firing rate feature is often obtained by
counting the number of spikes fired in a given period from
either a single neuron (Single-Unit Activity, SUA) or multiple
neurons (Multi-Unit Activities, MUAs). The occurrences of
these spikes are captured using spike detection algorithms.
These algorithms typically work as follows: they first remove
any remaining Local Field Potential (LFP) component that
typically escapes the passband of the analog front-end. They
then use a number of different techniques to emphasize the
spikes and/or suppress the noise in order to enhance the signal-
to-noise ratio (SNR). A threshold is then established as a
reference for spike detection. Any signal passing above this
threshold triggers a spike detection – used as the key input
feature for brain signal decoding.

Although SUA features are highly informative (encoding
the activity of single neurons), and often used in scientific
studies (e.g. understanding underlying neural circuit dynam-
ics), they require additional processing (i.e. spike sorting).
For iBMI applications however, the consensus is that MUA
features are sufficient and do not lead to significant degra-
dation of decoding performance [9]–[11]. This is particularly
important considering the stringent power requirements for any
implantable hardware – both SUA and MUA features provide a
similar level of data reduction, but spike sorting (for extracting
SUA features) is significantly more computationally intensive
than spike detection (for extracting MUA features).

Various spike detection algorithms have been proposed for
systems. Unlike offline algorithms, on-implant signal process-
ing algorithms must be operable in real-time and be hardware-
efficient (i.e. both low power and low resource) to ensure a
fast response and that the on-implant processing power does
not exceed the transmission power reduced by bandwidth
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Fig. 1. An overview of on-implant signal processing: the intracortical signal, after digitization, is low-pass filtered to remove the local stationary LFP offset.
The resulting signal is then ‘emphasized’ to enhance the SNR. A threshold is then set to detect this emphasized signal, with the threshold crossings serving
as the features to be transmitted from the implant. To reduce data bandwidth, various compression techniques can be employed. The proposed spike detection
method utilizes an absolute difference filter to improve the SNR, and incorporates firing rate information to set the threshold. The proposed spike detector is
compared to three other baseline emphasizers (NEO, ASO, ED) and two threshold mechanisms.

reduction. Template-matching-based [12], [13] and wavelet-
based spike detection [14], [15] achieve good spike detection
performance, but their complexity makes them relatively inef-
ficient for wireless implantable BMIs. Simple spike detection
algorithms are most commonly used with thresholds defined
using signal statistics, for example, using the local mean to
capture a level that is somewhere between the spike and noise
levels [16]. However, the local mean value-based threshold
can be overly sensitive to changes in spike activity resulting
in unstable thresholds. Some studies have tried eliminating
the impact of spikes for a more reliable threshold [17], [18].
Median can also be used for a similar purpose, but calculating
the median value often requires a large buffer making it
inefficient for on-implant use. Rooted-Mean-Square (RMS)
values, standard deviations (STD) and cross-correlations [19]
are also used in some studies but are not preferred for implants
due to their high hardware cost. There have also been works
on estimating RMS and STD values resulting in reduced hard-
ware complexity despite needing multiple cycles to converge,
leading to bottlenecks in throughput. In combination with
statistics-based thresholding, multiple pre-processing operators
have been proposed to enhance the signal SNR. Nonlinear
Energy Operator (NEO) is the most widely used operator [20].
Following NEO, multiple variants have been proposed, such
as smoothed NEO [21], multi-resolution NEO [22], Amplitude
Slope Operator(ASO) [17] and Energy of Derivative (ED) [23],
achieving better performance and/or reduced computational

complexity.

Beyond conventional statistical methods for defining the
detection threshold, our earlier work proposed using a firing-
rate-based spike detection algorithm [24]. Here, instead of
manually defining the threshold based on training data, a
target detection rate is set, and the threshold adjusts toward
maintaining that target. This is based on the assumption that
neurons in a certain brain region over time maintain an
average spike rate, and when the detection rate meets this
target, the threshold is expected to be reliable. This work also
established a mechanism to automatically update the target
rate, reducing the sensitivity to an inaccurately selected initial
value. More generally, this work demonstrated that relatively
simple methods can perform at least as well as statistics-based
methods, but without requiring a training history, and can
provide good robustness to different or varying signals.

Although there do exist several spike detection algorithms
that have been previously reported in the literature, few
compare spike detection performance from a computational
or hardware perspective (unless a full custom circuit). In [25],
[26], several spike detection algorithms are assessed and
minimum requirements are determined for optimizing hard-
ware implementation. In [27], the detection and decoding
performance of different algorithms are compared, and the
hardware cost of the best-performing algorithm is presented.
We also recently reported [28] an FPGA-based hardware com-
parison of common statistical-based spike detection algorithms
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previously reported in the literature.
The work presented herein builds on our earlier work [24],

[28] by further optimizing the firing-rate-based spike detection
algorithm to adapt to signals of varying dynamics (SNR and
nominal firing rate) whilst also improving the efficiency of
the hardware implementation. This is then evaluated on a
variety of different datasets, including both synthetic (with
known ground truth) and real recordings (with more realistic
signal dynamics) taken with different electrode technologies
(e.g. Utah array, Neuropixels), across different animal models,
neural targets and test subjects (rodent visual cortex, non-
human primate motor cortex). By testing across this set of
diverse recording setups we demonstrate both the robustness
of our technique to different signal dynamics and to vary-
ing signal dynamics through testing chronic datasets. From
the circuit and system standpoint, we then demonstrate the
algorithmic equivalence of the proposed algorithm using a
reconfigurable hardware (FPGA) implementation. We then
port to a standard digital ASIC implementation in two different
CMOS technology nodes (65 nm and 0.18µm) to quantify
hardware efficiency both in terms of area utilization and power
consumption. We then compare our results to the state-of-the-
art as previously reported. An overview is given in Fig.1

The remainder of this paper is organized as follows:
Section II reviews selected low-complexity statistical-based
spike detection algorithms and their hardware implementation;
Section III introduces the proposed firing-rate-based thresh-
old algorithm and the hardware implementation; Section III
describes the experimental setup and datasets used in this
work; Section IV compares the spike detection algorithm
and decoding performance of different algorithms; Section V
compares the resource utilization and power consumption for
an FPGA target, and also area utilization and estimated power
consumption on an ASIC target. Finally, Section VI concludes
this work.

II. BASELINE HARDWARE-EFFICIENT SPIKE DETECTION
ALGORITHMS

We regularly see new advances reported in spike detection
algorithms, including different pre-processing, feature extrac-
tion methods, and threshold mechanisms. These are however
not all directly suitable for real-time application, particularly
for on-implant use due to their computational complexity and
hardware requirements such as silicon area and power budget.
We have selected some of the more commonly used methods
that are amenable to hardware implementation using fixed-
point representation, with minimal requirements for hardware-
intensive operations such as multiplications. This section intro-
duces the selected methods that are illustrated through a high-
level functional schematic shown in Fig. 2. In the interests of
hardware efficiency, we have constrained the sampling rate to
7 kHz and data resolution to 10 bits, as previous work shows
this is sufficient for detection purposes [25]. Although the
7 kHz sampling frequency used in this study is typically lower
than that of the vast majority of the electrophysiology research
tools. As most of the spike energy is below 3 kHz, 7 kHz is
however sufficient to capture the spike event, according to the
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Fig. 2. The circuit diagram of baseline emphasizers and thresholding modules.
(a) NEO (b) ASO (c) ED (d) Shift-based multiplier for product operation
(e) Unrolled median recursion (f) Rolled median recursion (g) Accumulated
mean

Nyquist Theorem with 1 kHz oversampling. For applications
like spike sorting where spike waveform information is essen-
tial, a higher sampling rate is desirable. Nonetheless, previous
works have shown that a 7 kHz sampling rate is sufficient for
accurate spike detection applications [25], [29].

A. LFP filters

There are several studies (e.g. [25], [27]) that investigate
the most efficient filter topologies for rejecting the local field
potentials (LFPs). Generally, a linear phase filter is considered
ideal, as this does not introduce any phase distortion and
therefore the spike shape is preserved. Phase distortion is
especially critical for applications requiring single unit activity,
as spike sorting relies on feature differences in the spike
shape dynamics. However, as it has been shown [2], [3],
[9], [26] that neural decoding for iBMIs can be achieved
effectively using only threshold crossings (i.e. MUA data), a
linear phase response is not critical, whereas filter complexity
is important. Therefore, for our baseline method, a simple two-
pole Butterworth filter is used as recommended in [25] to be
shared for all channels.

B. Emphasizers

Using an emphasizer to enhance the SNR of the LFP-
removed signal is critical for improving detection performance,
in particular for low SNR recordings.
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The circuits of the selected emphasizers are shown in
Fig. 2(a)-(c). NEO in (1) and its variations are the most widely
used emphasizers. ASO [17] and ED [23] both used one less
multiplication to emphasize the spikes and were reported to
outperform NEO, so they were chosen for this work given in
(2) and (3).

Y NEO
n = X2

n −Xn−1Xn+1 (1)

Y ASO
n = Xn(Xn −Xn−1) (2)

Y ED
n = (Xn −Xn−1)

2 (3)

Absolute values are taken after the operation allowing the
algorithm to detect both positive and negative peaks with a
single threshold.

Other variations may necessitate smoothing filters, deeper
buffers, or multiplexing between different emphasizers based
on detected noise levels. Although the detection performance
can be improved, this comes with an additional hardware
burden, and thus are less attractive for efficient on-implant
use. As such we have chosen to exclude these more advanced
methods from our study.

In order to optimize our hardware implementation, we chose
to target a multiplication-free system, but instead estimate
multiplication using bit shift according to (4) as shown in
Fig.2.(d).

C = B ∗A
= Σi{B << [(i− 1) ∗ bi(A)]}
≈ B << (MSB(A)− 1) (4)

where A>B, bi stands for the binary value of number at i-th
digit and MSB finds the index of the most significant bit.

Instead of multiplying two values, the larger value is left-
shifted by N bits, where N is the index of the most significant
bit of the smaller value. A binary search is adopted to find
the most significant bit of one number. The circuit is shown
in Fig.2(d).

In order to test whether such an estimation is more efficient
than using a look-up table (LUT) to implement a multiplier
for product operation, we have implemented three different
multipliers: 1) Digital Signal Processor (DSP) Multiplier 2)
LUT Multiplier 3) Bit shift multiplier. These different imple-
mentations are compared both from algorithmic and hardware
perspectives.

C. Thresholding

Thresholding is the most important step in spike detection.
Most commonly, the threshold is defined using signal statis-
tics – including the mean, root-mean-square (RMS)/standard
deviation (STD), and median values.

The mean value is the most preferable for hardware systems
due to its simplicity. Instead of summing all values using a
buffer to capture a training history, it is preferred the mean
is calculated incrementally using an accumulator as shown in
Fig.2.(g). The sum of the buffer is stored, the oldest value
is subtracted from the mean, and latest value is added to the
result. Such an operation can be completed in a single clock
cycle requiring only two adders, reducing the hardware cost

to a minimum. The threshold is then calculated through bit
shifting operation.

The median is however often preferable to the mean because
it is less affected by outliers (spikes), but it is inefficient
on hardware due to its O(n2) computational complexity. To
address this shortcoming, we proposed using median recursion
to estimate global median values from subset medians in [28],
reducing the complexity to O(nlog(n)). In further detail (see
Fig.2(e,f)), to calculate the median of 25 numbers, we divide
all values into five subsets and take the median value of
each subset. Finally, we use the median of these medians as
the output. Although this does not guarantee to find the real
median value, it is a close enough estimate to provide a reliable
threshold.

Three different median implementations are adopted in this
work: (1) Normal median; (2) rolling median recursion: the
subset median search logic is shared across the subset; and
(3) rolling median recursion: where each subset has its own
median search logic.

We have chosen to exclude the RMS pre-operator (or
RMS estimation [29]) in our comparison due to the high
computational cost. This makes it less desirable for on-implant
use. It should be noted however that there does exist past work
that implements this using analog circuits.

D. Compression

Instead of using a pulse stream output, i.e. the raw threshold
crossing binary output, several studies use binning to define
a spike rate that is then used for neural decoding [10]. This
is shown to both reduce data bandwidth requirements whilst
also improving decoding performance. The binning period is
typically of the order of 1 to 50 ms. It is however essential
to mitigate for detecting the same spike multiple times. This
is achieved by setting a refractory period of 1 ms. The count
will not increase until the end of this refractory period. More
advanced compression can be applied to reduce the data
bandwidth [30] further.

Different emphasizers and thresholding mechanisms are in-
vestigated in this work, while the filters are shown to have less
impact on spike detection [27], and compression algorithms
have been compared in [31].

III. PROPOSED ULTRA HARDWARE EFFICIENT SPIKE
DETECTION ALGORITHM

Although the previously described baseline algorithms are
used widely, there do exist several drawbacks. Firstly, there
is no heuristic way to find optimized multiplications such as
to reliably estimate the local statistics. The standard approach
is searching through trial and error using synthetic data. It
is however not guaranteed that selected parameters will be
generalized well if applied to real recordings, in particular
with changing noise levels. In fact, in [32], we found that using
statistics-based thresholding methods, it is hugely challenging
to establish a reliable threshold that can adapt to different
noise levels. Another problem is that calculating local statistics
can require significant memory to maintain sufficient history
– memory requirements increase linearly with the number
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control unit that updates the RAM status, and a control unit that generates the control signals for threshold updating. The filter output, threshold, and detection
binary stream are the final outputs from the system; (b) Detailed digital logic for different modules.

of channels and sampling frequency. Finally, [26] suggests
that the neural decoding performance is quite robust to the
spike detection algorithm missing small spikes (i.e. there is
only a small reduction in accuracy). Fewer spikes detected
mean fewer data to be communicated. Statistics-based spike
detection is also sensitive to the scaling factor that is used
to map local statistics to the threshold level – it is not clear
how to balance the scaling factor to intentionally detect fewer
spikes and trade-off accuracy with power consumption.

To avoid these challenges in conventional methods, we pro-
pose a firing-rate-based spike detection algorithm, originally
reported in [24]. Here, instead of needing an arbitrary scaling
factor to define the threshold from the local statistics, the
proposed algorithm only requires a detection rate interval.
We hypothesize that the threshold is reliable if it detects
spikes at a rate close to the actual local firing rate. The target
detection rate can therefore be set according to neuroscience
observations heuristically. For example, it has been reported in
[33] that the firing rate of human motor neurons varies from
a nominal rate of about 10 Hz when the subject is performing
minimum effort tasks, to over 20 Hz for maximum effort tasks.
Additionally, it has been reported that on average 3 to 4
neurons can be observed per Utah array electrode in motor cor-
tex [34] (i.e. through spike sorting efforts). Thus, the average
firing rate of the ticker reaching task (low effort) is expected to
be around 40 Hz. A target detection rate interval can then be set
to, for example, 30 to 60 Hz, and the threshold is dynamically
updated to maintain the detection rate within this interval. In
the meantime, the firing-rate-based algorithm can intentionally
‘miss’ spikes (i.e. set a slightly lower detection rate) for better
power efficiency.

We first reported our hardware-efficient firing-rate-based
spike detection method in [24]. In this work, we further

TABLE I
BIT WIDTH AND DESCRIPTIONS FOR THE VALUES STORED IN RAM

Width Description

D1 10 ADF buffer for the first previous sample
D2 10 ADF buffer for the second previous sample
Thr 10 Current threshold
S 7 Number of detections within the current duty cycle
U 13 Count for the update duty cycle
H 3 Count to hold after detection avoiding redetection

improve its performance and simplify it to use fewer resources
and power. The circuit schematic and timing diagrams are
shown in Figs. 3 and 4 respectively. This consists of four key
blocks: (1) the system status memory; (2) the input buffer and
pre-processing filter; (3) the control; and (4) update logic.

A. RAM

The system status random access memory (RAM) stores
the current status of each channel, and the channel counter
schedules channels sharing the same combinational logic. The
proposed algorithm only needs one clock cycle to process each
sample, so there is no need for any register except the memory
output buffer.

The RAM is a single-clock, dual-port block RAM. On each
rising clock edge, the memory stores the updated status of the
current channel read from the combinational logic and outputs
the current status of the next channel into the output buffer.
The channel counter updates the current and next channel
addresses for the memory cyclically. Table. I lists the various
statuses stored in memory. This requires a total of 53 bits per
channel.
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B. Absolute difference filter

As first proposed in [24], both the LFP signal removal
and spike signal emphasizing are achieved using the Absolute
Difference Filter (ADF) as (5).

Yn = abs{Xn −Xn−k} (5)

where k=2 for a sampling rate of 7 kHz.
The ADF operates by reading the new input sample together

with previous samples from a rolling buffer. The filter output
is obtained by subtracting a previous sample (two samples
back) from the new sample. If the difference is negative, the
absolute value is calculated according to a two’s complement
representation.

No additional digital filters are used to remove the LFP. In
practice, the LFP is mostly rejected using a high-pass or band-
pass filter in the analog front-end. The digital filter is used to
remove the residual LFP component that may have leaked into
the passband from the front-end. Hence, a simple difference
operation is sufficient.

The filter output is compared with the threshold value stored
in RAM. When the filter output exceeds the threshold, and no
spike is detected in five samples before, a valid spike detection
signal is generated.

C. Control logic

The control unit reads three values (S, U, and H) and
generates five control signals. C0 - C4, according to the logic
circuits plotted in the control logic block. C0 and C1 control
two conditions for the threshold to update. C0 is set when the
current number of detections exceeds R1, and C1 is high when
the current number of detections is below R2. C2 is high at
the end of one update duty cycle. C3 and C4 control the signal
entering and exiting the period when a spike is detected. C3
is high when it reaches the preset length of a spike after a
spike is detected, and C4 is high when H is zero, i.e. not in a
period of the presence of the spike.

D. Update logic (‘updaters’)

Four updaters update the values of Thr, S, U and H. When
the number of detections S within the current duty cycle
exceeds the detection rate upper limit R1 (C0 is high), the
threshold is increased by 2−q ∗ Thr (q is four). When S
is below the lower limit of R2 (C1 is high) at the end of
each duty cycle (C1 is high), the threshold is reduced by
2−q ∗ Thr. Otherwise, the threshold stays unchanged for the
next duty cycle. This threshold update rule is different from
where this firing-rate-based algorithm is proposed in [24]. The
threshold is originally increased or decreased by half. We have
found that finer grain control in the threshold update scale can
provide more accurate threshold levels. We have additionally
removed the block allowing for the target detection rate to
update automatically as this added some hardware complexity,
but does not significantly improve the performance.

When a validation spike is detected (D is high), the S is
increased by one as long as it does not reach R1 (C0 is high),
while it does reach the R1 or one duty cycle is over (C2 is
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high), S is reset. There is a special case when a valid spike is
detected at the end of one duty cycle. In this case, S is set to
1. In all other cases, S stays unchanged.

U is increased by one every clock cycle and reset when the
threshold needs to be updated, i.e. C0 is high, or C2 is high.
H is increased by one when a D is high or when C3 is low,
and C4 is high. Otherwise, it stays at zero.

The new values are concatenated as follows: [Input, D1,
new Thr, new S, new U, new H] replacing the old values
[D1, D2, S, U, H] of the current channel stored in RAM. The
values for R1 and R2 have been set to 30/60 according to the
expected firing rate of the recordings as stated at the start of
the Section.III. As a spike typically lasts for 7 samples (1 ms),
skipping 5 samples after detection can effectively avoid re-
detection while maintaining sensitivity. P is thus set to 5. The
threshold updating duty cycle is empirically set to 1 s. T is
thus 7000.

E. Timing

The hardware implementation is designed such that a single
spike detection system can serve multiple channels through
multiplexing input and maintaining channel-specific memory.
Therefore, a 128-channel spike detection system operating at
a 7 kHz sampling rate would require a system clock speed of
896 kHz (i.e. 1 clock cycle is needed for each independent
sample). As an example, Fig.4 shows a timing diagram illus-
trating how the threshold value in RAM can be updated for
channels 0 and 1. D1, D2, S, U, and H are updated following
a similar procedure.

At the CLK posedge, the threshold value 50 is read from
RAM location R (CH0) as RAMout.Thr. Here we suppose
the threshold is to be decreased by 1/16. The threshold
updater updates RAMout.Thr as 47 into RAMin.Thr. At the
next CLK negedge, the new R/W channel addresses will be
updated. At the coming CLK posedge, the RAMin.Thr is
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wirte into the W (CH0) position of RAM as RAM.CH0.Thr.
In the meantime, the threshold value of CH1 is read into the
RAM output buffer and the threshold value will be updated
accordingly.

F. System scalability

As the proposed spike detection system is efficient both
in terms of hardware complexity (number of logic gates,
memory) and computation (only 1 clock cycle is needed per
input sample), this implementation is easily scalable to higher
channel counts. The number of channels supported can be
increased by linearly increasing the RAM and clock frequency.
The LUTs usage is less affected because all channels share
the same filter, control logic, and updaters in a time-sharing
manner. Without considering the on-implant area and power
constraints, the system can be scaled up to N channel as long
as (6) is satisfied.

Tdelay(RAMout,RAMin) + TRAM <
1

7000 ∗N
(6)

where Tdelay(RAMout,RAMin) is the propagation delay
from RAMout to RAMin and TRAM is the delay of RAM read
and write. The system can be easily scaled up to more than
1000 channels (7MHz), without violating timing constraints.

IV. SPIKE DETECTION PERFORMANCE

As previously mentioned this work further develops the
firing-rate-based spike detection originally introduced in [24]
by optimizing further for hardware implementation. Our pre-
vious work implemented an additional feedback loop, i.e.
to adjust for target spike detection rate to provide good
robustness to inaccurately defined initial values. Although for
optimal spike detection performance, this work requires a
better estimated target detection rate, this work achieves 1%
higher spike detection accuracy, significantly improves long-
term detection stability, and reduced hardware resources by
67%.

In this section, we compare the firing-rate-based spike
detection with the baseline statistical-based spike detection
algorithms w.r.t spike detection accuracy and adaptiveness on
the synthetic dataset. We also compare the neural decoding
performance, and long-term detection stability on the Utah
array recording. The firing-rate-based spike detection is also
validated on Neuropixel recordings.

All algorithms are validated using MATLAB R2020a (v9.8)
for detection performance evaluation. To ensure the MATLAB
algorithm is equivalent to a hardware implementation (refer-
ring to both FPGA and ASIC), we defined all parameters to
use 10-bit integers and ensured all arithmetic functions use
fixed point operations.

A. Datasets

This work uses three datasets to validate the algorithm, one
of which is a commonly used synthetic dataset [35] and two
based on real recordings (Utah electrode recordings [34] and
Neuropixels recordings [36]).

1) Synthetic dataset: The synthetic dataset is first generated
in [35] and widely used for evaluating spike detection and
spike sorting algorithms [17], [24], [27]. This dataset simulates
neuron activities using a Poisson process. The average firing
rate is 20 Hz per neuron, and it simulates three neurons. It has
16 signals divided into four groups: Easy1, Easy2, Difficult1,
and Difficult2. Within each group, the noise standard deviation
to spike peak ratio is 0.05 to 0.2 with a step of 0.05. The
sampling frequency of the original recordings is 24 kHz. It
is downsampled to 7 kHz on MATLAB to align with the
hardware implementation.

2) Utah array recordings: Another dataset is a real record-
ing publicly available in [34]. This was collected on the Motor
Cortex of a non-human primate using a Utah array when
the subject was operating a ticker simultaneously. The finger
movement displacement and velocity were also recorded. It
contains 5 hours of recordings over 200 days, from June
27, 2016, to January 13, 2017. The recording is collected at
24,414 Hz and is downsampled to 7 kHz using MATLAB for
our experiment.

Since there is no ground truth, quantitatively evaluating
spike detection on real recordings is challenging. Instead
of explicitly evaluating the spike detection performance, we
decode the spike detection result from the raw recording and
use the decoding performance to evaluate how much useful
information is preserved after spike detection. This allows us
to evaluate the spike detection performance on real recordings
implicitly. Along with this dataset, threshold crossings are
provided, which are obtained using 3-5 times STD values.
The STD-based spike detection is expected to have a more
accurate detection performance than the mean or median ones.
Therefore, we used the provided STD-threshold crossings
to compare with the threshold crossings from the proposed
algorithm on their decode accuracy.

The threshold crossings are binned at 50 ms. Two decoding
models are used to decode such features. The first model is
Wiener Cascade Filter used in [37]–[39]. A linear Wiener filter
is first fitted with Lasso regression between the spike crossings
and kinematic data with a regularisation factor of 0.01. Then
a third-order polynomial is fitted between the Wiener filter
and the kinematic data to add the nonlinearity to the model.
Another model is an LSTM following [10]. It contained 150
cells and was trained with Adam optimizer at a learning rate
of 0.0035, and the batch size is 64.

3) Neuropixel recordings: This dataset was obtained from
the rodent visual cortex and collected by Cortex Lab at Univer-
sity College London using Neuropixel probes. Each shank of
the probes contained 384 channels, with each channel sampled
at 30 kHz. The dataset is publicly available at [36]. The
recordings were also downsampled to 7 kHz using MATLAB
before being processed by the spike detection algorithm.

B. Evaluation metrics

Three metrics: Sensitivity (Sens), False Detection
Rate (FDR) and Accuracy (Acc) are used to evaluate the



IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, 2023 8

Mul�pliers
100806040200 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1
Ac

c

100806040200 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Ac
c

Mul�pliers

100806040200 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Ac
c

Mul�pliers
100806040200 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

Ac
c

Mul�pliers

(a) (b)

(c) (d)

ED+M NEO+M ASO+M ED+MD NEO+MD ASO+MD
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spike detection performance quantitatively in the synthetic
dataset. The formula is given in (7) - (9).

Sens =
TP

TP + FN
(7)

FDR =
FP

TP + FP
(8)

Acc =
TP

TP + FP + FN
(9)

A True Positive (TP) refers to the count of spikes that
have been accurately identified by the algorithm. A False
Positive (FP) represents the number of instances where the
algorithm mistakenly identified non-spikes as spikes. Lastly, a
False Negative (FN) is the number of actual spikes that went
undetected by the algorithm.

The metric Sens describes the capability of the algorithm
in refining the spike detection, while FDR measures its ability
to filter out the noise. It is not possible for an algorithm to
perform optimally on both metrics at the same time. Acc serves
as a compromise between Sens and FDR, and is the primary
metric used in this study.

The performance of the decoding on a real dataset is
evaluated by computing the correlation coefficients (CC) be-
tween the ground truth finger velocity and the prediction.
This approach indirectly assesses the effectiveness of spike
detection in a practical setting. CC is formulated as (10)

CC =

∑N
t=1(Yt − Ȳ )(Ŷt − ¯̂

Yt)√∑N
t=1(Yt − Ȳ )2

√∑N
i=1(Ŷt − ¯̂

Yt)2
(10)

where Yt and Ȳ are the true target velocities at timesteps t

and the average, Ŷt and ¯̂
Y are the predicted velocities and the

average. N is the total number of samples in this trial. CC is
measured on both the x and y-axis. The models are evaluated
using 10-fold validation, and the final CC is obtained by taking
the average of the CCs from all ten folds.

C. Baseline algorithm performance

Fig.5 is the average detection accuracy of different combi-
nations of ED, NEO or ASO, and 16-point mean or 25-point
median at different levels, obtained from tests on the synthetic
data. The 16/25 buffer thresholds buffer size is considered to
consume acceptable among resources for on-implant use. A
detailed analysis of the emphasizers and thresholding mecha-
nisms is given below.

1) Emphasizers: Based on Fig.5, ED (solid lines) is the
most accurate emphasizers among the three baseline methods
at all noise levels for both thresholding mechanisms. ED is
also the most adaptive emphasizer in terms of multiplier choice
robustness (flatter curves).

ASO (dotted lines) has comparable peak Acc, but its perfor-
mance decreases faster with increasing noise levels, while the
performance of NEO (Dash lines) degrades the most rapidly.
The observation above implies that the gradient is more dis-
criminative than amplitude in spike emphasizing, particularly
as noise levels rise and ED becomes more effective than NEO
or ASO.

2) Thresholding: The performance of the estimated me-
dian (MD, Red lines) and the Mean (M, Blue lines) is compa-
rable in terms of the highest detection Acc they can achieve.
However, a typical shortcoming of statistically-based thresh-
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olding is that multiplier selection might impact detection per-
formance, requiring manual threshold calibration in practice.
As seen in Fig.5, the median is more robust to the choice of
multiplier since it produces a flatter curve nearer to its peak.
This characteristic is particularly apparent around 0.05 noise
level when the method can nearly always achieve high Acc.
In contrast, when utilizing the mean, the Acc degrades rapidly
as the multiplier moves away from the maximum values. The
median outperforms the mean according to the above results
because of its robustness to the outliers. Spikes can affect local
statistics estimation, especially when the buffer size is limited.
Though several samples are skipped after one detection to
reduce such an impact, some residual energy of spikes and
undetected spikes can still be contaminated, thus disturbing
the threshold calculation. The outlier robustness of the median
then plays a critical role in relaxing the impact of the spikes.

D. Proposed algorithm performance and adaptiveness analy-
sis

We have compared the proposed algorithm with shift-based
ED emphasizer combined with mean or median with different
threshold buffer sizes. The results are shown in Table. II.
Compared to the 16-sample Mean (M16) or 25-sample Me-
dian (MD25). The proposed algorithm achieves much higher
detection accuracy across four noise levels. The detection
performance is only minorly degraded (1.3%) if the noise level
increases from 0.05 to 0.15. It is 5.3% for both M16 and
MD25. At 0.2 noise level, the proposed algorithm can still

TABLE II
THE SPIKE DETECTION ACCURACY OF THE PROPOSED AND BASELINE

ALGORITHMS AT DIFFERENT NOISE LEVELS

Noise levels M16 M90 MD25 MD50 ADF+FR

0.05 0.966 0.95 0.983 0.987 0.98
0.1 0.957 0.94 0.968 0.983 0.974
0.15 0.913 0.90 0.93 0.976 0.967
0.2 0.851 0.90 0.835 0.907 0.919
Avg 0.922 0.923 0.929 0.963 0.96

maintain over 90% detection accuracy while it becomes 85%
and even lower for the other two.

The median achieves compatible performance if the thresh-
old buffer size increases to 50. However, the improvement in
mean-based spike detection is limited.

To investigate how the threshold buffer size can affect
different algorithms and their adaptiveness, we simulated the
scenario in practice that calibration recordings are statistically
different from the recordings onward. The recordings of noise
levels 0.05 - 0.15 are used to find the best parameter settings,
and the recordings of noise level 0.2 are then tested on these
settings. These test results for different buffer size is then
plotted as the solid lines in Fig.6.(a). The dashed lines are the
best detection accuracy algorithms can achieve if the settings
are appropriately set.

For median-based spike detection, the detection accuracy
can be improved effectively with the increased buffer size,
while it becomes less effective for the mean for a buffer size
larger than 30. This is also because of the outlier robustness of
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the median operation. A large mean buffer can help estimate
more accurate mean values but also increases the chance of
including undetected small spikes. There is no threshold buffer
used in the proposed algorithm therefore unaffected.

If the parameters are appropriately set, median-based spike
detection can achieve the highest spike detection accuracy
when the buffer size is large enough, as the yellow dashed
line shows. However, as the solid yellow line shows, when the
noise level is different between calibration and experimental
recordings, median-based threshold detection performance can
be degraded for at least 5% according to our simulation.
Firing-rate based algorithm is less affected, and the mean-
based one comes in second place. The two green starts are the
intersections when mean or median-based detection achieves
a similar performance as the firing-rate-based one.

Fig.6.(b) shows how their detection accuracy varies with the
multipliers or the target detection rate at different noise levels.
It explains why firing-rate-based spike detection can achieve
the highest adaptiveness. The response of the accuracy to the
target rate is similar across different noise levels for the firing-
rate-based algorithm. However, the median varies significantly
while the mean is milder. Therefore, even though the median
can achieve the highest detection performance when threshold
buffers are enough, it is not suitable in practice.

Aside from the high level of detection accuracy, the ability
to operate without calibration is a crucial feature for a spike
detection algorithm in Brain-Machine Interface (BMI) systems
with thousands of channels, where frequent calibration of all
channels is not feasible. The firing-rate-based spike detection
algorithm proposed in this study is highly adaptive to varying
noise levels, making it a suitable choice for this requirement.

E. Estimation error

In order to reduce hardware complexity, we used recursive
median and shift-based multipliers as approximations for the
actual median values and multipliers. While these approxima-
tions are not part of the proposed spike detection algorithm,
it is still useful to quantify the impact on performance.

The results, shown in Fig.6, indicate that the approximation
of the median introduces less than a 5% degradation, and the
trends are similar across all three emphasizers. However, when
using estimated multiplication, the degradation is more severe
for the NEO approach, as two successive multiplications
amplify the estimation error. The ED and ASO methods
only involve a single multiplication and show only minor
degradation.

The proposed spike detection algorithm does not require any
multiplication and thus does not require any approximation. As
a result, there is no compromise in achieving a multiplication-
free fixed-point spike detection solution.

F. Long-term detection stability on Utah array recordings

Long-term stability is another important aspect of im-
plantable BMI applications. Fig.7 shows the real detection rate
of three different spike detection outcomes from this work,
previous work [24] and adaptive STD threshold.
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Fig. 7. Spike rates of the Utah array recording detected from this work
detected at 20 Hz (Red), previous (Grey), STD thresholding (Blue), and the
average spike peak amplitude (Yellow) over 200 days of recording started
from 27 July 2016. The grey curve quickly disappears, indicating that the
previous method is not long-term stable.

It can be clearly observed from Fig.7 that the detection rate
of the STD threshold (Blue) is reduced from nearly 18 kHz
to 10 kHz, while the threshold of [24] can reduce to an
unreasonable low level detecting too many spikes (Gery) if not
reset constantly. However, the detection rate of this work (Red,
target detection rate is set at 20 Hz) is stable over 200 days of
recordings.

The growth of scar tissue can push the neurons further away
from the implants. The neural activities are thus weakened over
time, leading to less significant spikes [40]. Statistical-based
spike detection can therefore detect fewer spikes over time.

In our previous work [24], we observed inadequate per-
formance in long-term detection stability. To be robust to
the inaccurate initial settings, that work sets the threshold
according to both the spike peak mean values and target
detection rate. However, due to the sub-optimal spike peak
mean value estimation method in that work, false detection
of noise peaks can reduce the estimated peak mean value
below the real spike peak level. After a long time of detection,
the spike peak means can potentially become too low, which
guides the threshold to be even lower, creating even more
false detections. Such positive feedback can eventually cause
the algorithm to fail unless the system is reset. This impact is
especially prominent when the signal-to-noise ratio is low.

The firing-rate-based spike detection in this work however
eliminates the dependence on spikes. Although the target
detection rate should be properly set to achieve optimal spike
detection performance, the algorithm can now provide long-
term stable detection outcomes as shown in Fig.7. The thresh-
old can be automatically adjusted to a lower level to detect the
activities from neurons that have been pushed further away by
the scar tissue maintaining the preset target detection rate. It
is reasonable to assume that such stable detection results are
expected to provide better long-term decoding performance
compared to conventional statistical-based spike detection.

G. Decoding performance on Utah array recordings

The vast majority of spike detection algorithms are validated
using synthetic data – as the ground truth is known a priori.
Rarely are they validated using real recordings, as manual
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TABLE III
DECODING PERFORMANCE WHEN USING THE RESULT FROM STD-BASED

SPIKE DETECTION AND THE PROPOSED SPIKE DETECTION ALGORITHM

STD w calibration FR w/o calibration FR w calibration

WCF 0.636 0.663 0.668
LSTM 0.738 0.753 0.759

labeling can be time-consuming. Some studies use the record-
ing of paired electrodes to obtain the neural firing ground
truth of one signal neuron. However, this only allows us to
evaluate the algorithms’ sensitivity, not the false detection rate
or accuracy. Other studies have attempted to use new metrics
to evaluate spike detection performance in practice [41] or
design algorithms to automatically label the spikes [42], but
these methods have not been widely used.

We used CC to evaluate the corresponding neural decod-
ing performance and implicitly evaluate the spike detection
performance. The results are given in Table III.

We can observe that for both conventional filter-based
decoding and machine-learning-based decoding, with a fixed
parameter setting across all channels, the proposed spike de-
tection algorithm achieves 1% to 3% higher decoding accuracy
compared to the results from calibrated STD-based spike
detection. The corresponding mean or median-based result is
expected to be even lower as their detection performance is
supposed to be worse than the STD-based one. We also notice
that channel-wised and day-to-day calibration only increased
decoding accuracy by less than 1%, which means that after we
find suitable parameters at the start, there is no need for further

parameter calibration for the proposed algorithm in practice.

H. Validation on Neuropixels recordings
We have shown the effectiveness of the firing-rate-based

spike detection algorithm on Utah array recordings. The syn-
thetic dataset is also created from Utah array templates. To
investigate the adaptability of our algorithm to other types of
recordings, we also tested it on Neuropixels recordings, which
use a high-density electrode array, and were provided in [36].
Moreover, this high-density recording can provide a diverse
collection of the different signal SNRs, allowing us to evaluate
the algorithm’s robustness in varying brain environments.
However, since there is no ground truth available to evaluate
the spike detection performance quantitatively, we visually
inspected the spike detection results.

The detection outcomes are shown in Fig.8, where four
different channels with varying SNRs are plotted at the same
scale. The original recording is down-sampled to 800 Hz
before plotting for better visualization, but the detection al-
gorithm still operates at 7 kHz with a target detection interval
of [30 Hz,60 Hz].

Even though the neural activities are significantly attenuated
across CH99, CH35, and CH169, similar neural activities are
detected from these channels according to the detection rate
plot on the right. It is especially notable for CH169 that the
spikes are nearly invisible from the noise. It has been shown
in [9], [43] that detecting noise-level spikes is beneficial for
neural decoding. Such an observation provides strong support
for the robustness of the proposed algorithm to be used without
calibration.
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We can also observe that in CH374, the detection rate is
relatively stable at the start. We assume the reason is that
the neural activity could be attenuated to be invisible from the
noise making this channel to be ‘silence’ for a while. Once the
activities happen in a closer region, this channel is activated.

Another observation is that even though a target detection
interval is set, the instant detection rate can exceed or fall
below this range, rather than being confined within it. This is
because the threshold is updated only gradually after the target
interval is not met. Burst activities or inactive states can still
be detected, even if the rate is expected to be outside that
interval.

Although we cannot provide a quantitative analysis of
the spike detection accuracy in Neuropixels recording, the
visualization and qualitative analysis above can demonstrate
the potential of the proposed algorithm to be applied to new
recordings at varying noise levels without calibration.

V. HARDWARE IMPLEMENTATION PERFORMANCE

The baseline and proposed algorithms have first been im-
plemented on a Digilent Artix-7 FPGA development board
featuring the XC7A35TICSG324-1L FPGA core built on
28 nm technology using Vivado 2022.2. A Digilent PMOD
DA2 dual channel 12-bit DAC and Digilent PMOD AD1 dual
channel 12-bit ADC are used for I/O conversion. The RTL
design is also implemented using TSMC 0.18µm and 65 nm
technology for the ASIC designs The experimental setup is
shown in Fig. 9.

A. Resource occupation and power on FPGA

The FPGA implementation provides us a rapid workflow
to compare hardware complexity, identify bottlenecks, and
optimize hardware implementation. Resource utilization pro-
vides a relative measure of the area and power consumption
of the ultimate ASIC design. We synthesized the algorithms
into different modules. The resource utilization is shown in
Table. IV. We also report the resources of the most resource-
saving baseline implementation, ED+Mean spike detection,
compared to the proposed firing-rate-based spike detection
algorithm.
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Fig. 10. Power breakdown for different implementations of NEO, ASO, ED
and ADF emphasizers simulating at 100 kHz.

1) Emphasizers: The absolute difference filer is obviously
the most hardware-efficient emphasizer. 2-6 times fewer LUTs
can be saved compared to other LUT multiplication imple-
mentations, without considering the usage of an LFP filter for
baseline emphasizes. Even though we implement NEO, ASO
or ED using shift-based multipliers, they still consume more
LUTs than ADF.

We also investigated how three different implementations
of the multipliers can affect the hardware-efficiency. Though
none of these are used in the proposed spike detection algo-
rithm, these results can provide useful information to design
new emphasizers. The LUT-based multiplier provides a fair
reference for the corresponding ASIC design, while the shift-
based multiplication has shown promising performance in
several works [17]. Compared to the LUT-based multipliers,
half of the LUT can be saved with the cost of a maximum of
5% accuracy excluding NEO, as shown previously in Fig.6.(c).

The power breakdown is shown in Fig. 10 according to
the power estimator with the implementation simulated at
100 kHz. ADF is estimated to consume the least amount of
power which is 7 times less compared to the LUT implementa-
tion of NEO. It can also be observed that shift implementation
is supposed to reduce 25% of the power consumption for
ASO and ED, while it becomes 50% for NEO. However, the
DSP implementation of NEO consumes more power than the
shift implementation becomes two DSPs are used. Their power
consumption becomes similar when only one DSP is used for
ASO and ED.

2) Thresholding: The 16-sample mean and 25-sample me-
dian are two compact baseline algorithms, while the 64-
sample mean and 50-sample median are two settings achieving
competitive detection performance as the firing-rate-based
algorithm. The RAM bandwidth increases linearly with an
increase in buffer size. It eventually requires more than 30-
40 times more RAM for median or mean to achieve simi-
lar performance as the firing-rate-based spike detection. The
proposed firing-rate-based spike detection utilizes half the
LUTs and significantly less RAM compared to the mean or
any median implementation because no buffer is needed for
calculating the statistics.

The estimated median consumes much more resources com-
pared to others. However, the conventional median operation
for 25 numbers can consume over 7500 LUTs. More than 5
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TABLE IV
FPGA IMPLEMENTATION RESOURCE UTILISATION

LUT Registers RAM Width (Bits) DSPs

LFP filter Butterworth filter 196 0 20 0

NEO LUT Mul 272 0 20 0
NEO shift 147 0 20 0
NEO DSP 50 0 20 2

ASO LUT Mul 140 0 10 0
ASO shift 75 0 10 0
ASO DSP 29 0 10 1

ED LUT Mul 121 0 10 0
ED shift 48 0 10 0
ED DSP 10 0 10 1

emphasizers

ADF 30 0 20 0

Mean (16/64) 95 0 380/1300 0
Median unroll (25/50) 1495/2579 0 500/1000 0
median roll (25/50) 468 184 500/1000 0
median real 25 >7500 - - -

Thresholding

FR 53 0 33 0

ADF+FR 78 16 53 0
Previous ADF+FR 193 106 90 0Full system
ED+Mean16 140 24 390 0

TABLE V
COMPARISON TO STATE-OF-THE-ART ASIC ADAPTIVE SPIKE DETECTORS

This work
(0.18µm)

This work
(65 nm)

BioCAS2022
[29]

JNE2022
[27]

TBCAS2020
[16]

AEU2018
[18]

TBCAS2017
[44]

Technology (nm) 180 65 65 180 180 180 130
Implementation Digital Digital Digital Digital Analog Analog Digital
Supply voltage 1.8 1.2 1.1 1.8 0.5 0.8 1.2
Clock frequency (MHz) 0.896 0.896 4 0.8 0.54 - 0.16
Preprocessing ADF ADF Dual NEO NEO MAE ED NEO
Thresholding FR FR STD RMS Mean RMS RMS
Channel 128 128 256 128 - - 32
Resolution (Bits) 10 10 7 - - - 10
Sample frequency (kHz) 7 7 16 24 30 16 20
Power per channel (µW/Ch) 0.28 0.038b 0.07 4.9 0.116 5.1 0.52d

Area per channel (mm2/Ch) 6.76×10−3 7.51×10−4 9.69×10−4 c 0.02 0.27 0.018 3.82×10−3 c

Accuracy 0.96a 0.96a 0.97 0.92 <0.97e 0.95 <0.95e
a The accuracy is 0.97 @ 12 kHz sampling rate.
b At best FoM (32 channels), this design only takes 0.01µW/ch and 1.01×10−3mm2/ch.
c The area is obtained from multiplexing eight 32-channel modules.
d Only NEO processor and threshold estimator modules in the spike sorting design are included.
e Maximum accuracy on a different dataset.

times reduction has been made through the median estimation.
The recursion implementation of median estimation makes the
median operation achievable in hardware, especially in the
rolled version, where it can be implemented using less than
1000 logic cells.

The power of the thresholding algorithm is highly data-
dependent and therefore is not estimated. However, it is no
doubt that the firing-rate-based thresholding can consume less
power than the mean or median because of the very low RAM
requirements.

Compared to our previous work, our new design has
achieved significant resource savings. Specifically, one-third
of the LUTs+registers and half of the RAM bandwidth have
been saved. Furthermore, Our design consumes 0.21µW power

in Lattice ice40lp1k platform, which features a low-power
FPGA with 40 nm technology. In comparison, the power
consumption was 0.28µW in our previous work. We should
note that the Digilent Artix-7 FPGA platform can consume
considerable static power, which can lead to inaccurate power
measurements. Therefore, we report the power consumption
on a lower-end FPGA platform to provide more representative
values for power.

According to the spike detection accuracy in Table. II and
the resource usage in Table. IV, we can see that combining
the shift-based ED with 16-point mean thresholding can be the
best trade-off of statistical-based spike detection. LFP filter is
not used as the difference operation in ED already removes
LFP and there is no performance degradation. Therefore,
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Fig. 11. The layouts of 128 channel proposed firing-rate-based spike detector
and ED-Mean-based spike detector in 0.18µm and 65 nm technology. The
ratio of the area occupation is annotated.

we selected ED+Mean16 as a generic spike detection model
following the statistical approach. It achieves adequate spike
detection performance and adaptiveness while being the most
hardware efficient among other statistical-based algorithm
combinations. The ADF+FR spike detection in this work
consumes only half LUTs and one-seventh RAM bandwidth
compared to the ED+Mean16 spike detector. Such improve-
ment in hardware efficiency is expected to reduce the ASIC
area and power consumption significantly.

B. Area and power estimation on ASIC

The register transfer level (RTL) implementation of the
Firing-rate-based spike detection is mapped to two ASIC
designs using TSMC 0.18µm BCD Gen II and 65 nm LP
technology. The synthesis and place & route were performed
by Cadence Genus and Innovus by using standard digital
cells. The entire implementation is composed of sequential
and combinational logic cells. Based on the synthesized re-
ports, sequential logic instances (mainly the memory) occupy
four times of silicon area than combinational logic ones.
At 0.18µm technology, the 128-channel FR spike detection
occupies 0.93×0.93 mm2 and consumes 35.7µW at 1.8 V
supply voltage. When it is upgraded to 65 nm technology,
it only occupies 0.31×0.31 mm2 and consumes 4.86µW at
1.2 V supply voltage, resulting in 7-fold reduction in power
consumption and 9-fold reduction in area. These two designs
can provide a good reference to study how the technology
node can impact the power and area. and allow us to compare
our work with state-of-the-art implementations using different
technology.

As shown in Table. V, our design has achieved the lowest
power consumption and area occupation while still maintain-
ing spike detection accuracy similar to the highest performing
designs that have been included in the table. Compared the
65 nm implementation with the work in [29], the power
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Fig. 12. The area occupation and power consumption scaling with channel
count for two different spike detector implementations in 0.18µm technology.

consumption is nearly halved and the area occupied is reduced
by about 1/4.

The power of our 0.18µm design only consumes 1/20
of the power reported in [27] and occupies 2/3 less area.
Although analog designs are expected to have better hardware
efficiency than digital designs, our digital design reduced the
area occupation by nearly two orders of magnitude compared
to the analog design in [16], and more than one order of
magnitude of the power compared to [18]. Even the 0.13µm
design in [44] requires twice as much power and area as our
0.18µm design.

Another interesting observation in Table.V can be found by
comparing the work in [16] and [18]. They both use 0.18µm
analog design, while the former one uses mean thresholding
and the latter one uses RMS thresholding. The mean thresh-
olding leads to significantly reduced power consumption but
requires more area, as sample buffers are needed to calculate
the mean values, increasing the area requirement. However,
the latter one estimate RMS values without using data buffers,
but it typically requires multiple clock cycles (e.g. 200 [29])
and complex logic, leading to less area occupation but sig-
nificantly increased power consumption. However, firing-rate-
based spike detection requires no buffer and can be calculated
with only one clock cycle, making it the best choice for
spike detection when jointly considering the power, area, and
accuracy.

While we implemented our design in two different technol-
ogy sizes, it is important to note that the hardware specifi-
cations, experimental setups, and power estimation strategies
can vary, making it challenging to compare designs directly.
Comparing our design to the ED+Mean16 algorithm allows
us to control for these variables and compare the hardware
efficiency difference resulting solely from the algorithm. We
can use them as two generic models for comparing statistical
and firing rate approaches for thresholding. Furthermore, we
can investigate how these two approaches scale with increased
channel counts. As a result, we implemented both designs in
0.18µm technology with channel counts ranging from 8 to
512 channels. The layouts of 128 channel designs of both
algorithms in two technology sizes are given in Fig.11 with
the relative area ratios among them.

The 128-channel ED+Mean16 requires 2×2 mm2 and con-
sume 35.7µW, which is 0.03 mm2 and 1.77µW per channel.
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It already achieves a similar area occupation and much lower
power consumption compared to the work in [27] with the
same spike detection accuracy (0.92). Compared to the firing-
rate-based spike detection in this work, it requires 4.6 times
more area and 6.3 times more power while the detection
accuracy becomes 4% lower.

Fig.12 shows the scalability of these two implementa-
tions with an increased channel count. The area occupation
per channel decreased slowly for both spike detectors be-
cause combinational circuits are shared across channels. The
power consumption of ED+Mean16 scales much faster than
ADF+FR, ED+Mean consumes 0.64µW more power than
ADF+FR per channel when the channel number is 8 and
it becomes 6.7µW per channel when the channel count in-
creased to 512. The reason is that ED+Mean16 requires much
more memory than ADF+FR and the memory is supposed to
be the most power-consuming module [29]. The observation
above demonstrates that the firing-rate-based thresholding has
better scalability with increased channel count compared to the
mean-based thresholding. As the RMS-based spike detection
can consume even more power compared to the mean-based
one, our design potentially also outperforms the RMS-based
spike detection as well.

In this section, we have demonstrated improved hardware
efficiency over other works. Such an advantage comes from
various aspects. On the one hand, since ADF requires no
multiplication, it requires fewer logic cells, and the data band-
width is maintained at 10 bits. In contrast, emphasizers using
multiplications are more complex and require 20-bit output
bandwidth. Reduced logic complexity and data width lead to
less resource usage and more efficient placing and routing.
On the other hand, the firing-rate-based thresholding of our
algorithm does not require buffering of samples, reducing
RAM usage. Additionally, it only requires one clock cycle for
each sample. As a result, power and area can be significantly
reduced.

VI. CONCLUSION

This paper reviews, compares and further develops spike
detection methods for real-time on-implant operation in BMI
applications. We start by comparing common spike detection
methods that focus on balancing spike detection performance
with hardware efficiency, and then further develop a firing-
rate-based spike detection algorithm. We compare implemen-
tation and performance metrics including synthetic neural
spike detection accuracy, real recording decoding accuracy,
algorithm adaptiveness, long-term detection stability, hardware
power consumption, and area utilization.

The firing-rate-based spike detection algorithm we propose
achieves over 96% detection accuracy and the best adaptive-
ness across noise levels. It also achieves higher decoding ac-
curacy without any calibration compared to the calibrated con-
ventional spike detection algorithms. Moreover, it can provide
stable detection results for long-term recordings over 200 days
and well-adapt to different types of recordings. With 65 nm
technology, the ASIC design only occupied 7.51×10−4mm2

area and consumes 0.038µW power per channel making it one
of the most hardware-efficient spike detectors in literature.

A high-performance and hardware-efficient spike detection
algorithm is crucial for next-generation iBMIs to achieve thou-
sands of channels. Spike detection can reduce data bandwidth
by approximately 200×, enabling the transmission of 200×
more channels with the same transmission power. This is
however only possible if spike detection can be achieved with-
out distorting features and consuming significant additional
power. The proposed spike detection algorithm strikes a very
good balance between adaptiveness, hardware efficiency and
detection accuracy.
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